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Abstract

In this thesis we discuss, within the framework of the Standard Model (SM) of particle
physics, advanced methods for the computation of scattering amplitudes at higher-order
in perturbation theory. We offer a new insight into the role played by the unitarity
of scattering amplitudes in the theoretical understanding and in the computational
simplification of multi-loop calculations, at both the algebraic and the analytical level.

On the algebraic side, generalized unitarity can be used, within the integrand re-
duction method, to express the integrand associated to a multi-loop amplitude as a
sum of fundamental, irreducible contributions, yielding to a decomposition of the am-
plitude as a linear combination of master integrals. In this framework, we propose an
adaptive formulation of the integrand decomposition algorithm, which systematically
adjusts to the kinematics of the individual integrands the dimensionality of the mo-
mentum space, where unitarity cuts are performed. This new formulation makes the
integrand decomposition method, which in the past played a key role in streamlining
one-loop computations, an efficient tool also at multi-loop level. We provide evidence
of the generality of the proposed method by determining a universal parametrization
of the integrand basis for two-loop amplitudes in arbitrary kinematics and we illustrate
its technical feasibility in the first automated implementation of the analytic integrand
decomposition at one- and two-loop level.

On the analytic side, we discuss the role of maximal-unitarity for the solution of dif-
ferential equations for dimensionally regulated Feynman integrals. The determination of
the analytic expression of the master integrals as a Laurent expansion in the regulating
parameter ǫ = (4−d)/2 requires the knowledge of the solutions of the homogeneous part
of their differential equations at ǫ = 0. In all cases where Feynman integrals fulfil gen-
uine first-order differential equations with a linear dependence on ǫ, the corresponding
homogeneous solutions can be determined through the Magnus exponential expansion.
In this work we apply the latter to two-loop corrections to several SM processes such as
the Higgs decay to weak vector bosons, H → WW , triple gauge couplings ZWW and
γ∗WW and to the elastic scattering µe → µe in quantum electrodynamics.

In some cases, the inadequacy of the Magnus method hints at the presence of mas-
ter integrals that obey higher-order differential equations, for which no general theory
exists. In this thesis we show that maximal-cuts of Feynman integrals solve, by con-
struction, such homogeneous equations regardless of their order and complexity. Hence,
whenever a Feynman integral obeys an irreducible higher-order differential equation,
the computation of its maximal-cut along independent contours provides a closed inte-
gral representation of the full set of independent homogeneous solutions. We apply this
strategy to the two-loop elliptic integrals that appear in heavy-quark mediated correc-
tions to gg → gg and gg → gH as well as to the three-loop massive banana graph, which
constitute the first example of Feynman integral that obeys a third-order differential
equation.

In the light of the results presented in this thesis, generalized unitarity emerges as
a powerful tool not only for handling the algebraic complexity of perturbative calcu-
lations but also for investigating the nature of new classes of mathematical functions
encountered in particle physics.
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Chapter 1

Introduction

The ongoing Run II of the Large Hadron Collider (LHC) has been collecting data from
scattering events at luminosities and energy scales that had never been reached before
in collider experiments. The steadily increasing precision of the resulting experimental
measurements demands that correspondingly accurate predictions be given by theoret-
ical physicists.

The theoretical study of the fundamental interactions of nature is based on Quan-
tum Field Theory (QFT) which is a consistent mathematical framework that combines
the principles of Special Relativity and those of Quantum Mechanics and led to the
formulation of the Standard Model (SM) of particle physics.

The Standard Model unifies under a single guiding principle, i.e. gauge symme-
try, three of the four known fundamental interactions: the symmetry group SU(3)C ⊗
SU(2)L ⊗ U(1)Y describes the strong interaction, which is associated to the SU(3)C
symmetry of Quantum Chromodynamics (QCD), and the electro-weak sector SU(2)L ⊗
U(1)Y , which combines Quantum Electrodynamics (QED) and the weak interaction.
The symmetry group of QCD is realized in the SM as an exact symmetry, while the
SU(2)L ⊗ U(1)Y symmetry of the electro-weak interaction is spontaneously broken via
the so-called Higgs mechanism, which is responsible for the masses of all SM particles.

Although open questions (such as the inclusion of the gravitational interaction and
the existence of dark matter and dark energy) prevent it from being considered as the
ultimate theory of fundamental interactions, the SM encodes our best understanding
of the microscopic structure of the universe, and, since its original formulation in the
1970s, it has successfully undergone countless experimental validations, culminating in
the discovery of the Higgs boson.

The core of particle physics phenomenology lies in the prediction of scattering ampli-
tudes, that is to say the transition probabilities between two configurations of a quantum
mechanical system, which constitute the contact point between theoretical models and
physical observables. In a QFT such as the SM, the calculation of scattering amplitudes
heavily resorts to the perturbation theory, i.e. to the possibility of expanding them into
powers of the (small) coupling constants of the theory, and of computing each summand
of such expansion in terms of Feynman diagrams.

It is by now an indisputable fact that the leading-order (LO) approximation in
perturbation theory does not provide reliable predictions, since the magnitude of their
theoretical uncertainty is often comparable to the very same value of the computed
observables. Therefore, an accurate theoretical description of interaction phenomena
requires the computation of next-to-leading-order (NLO) or even higher-terms of the
perturbative expansion.
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4 Chapter 1. Introduction

At higher-orders in perturbation theory, the presence of complicated loop integrals
reveals the quantum effects of the fundamental interactions. The calculation of these
integrals is one of the most difficult challenges towards making theoretical predictions.

Within the SM, the computation of even a single Feynman diagram can be made
inherently arduous by the presence of many different mass scales. In addition, the high
centre-of-mass energy available at the LHC yields a large number of particles in the
final state. These particles enhance both the complexity and the number of Feynman
diagrams involved in a fixed-order calculation. In this scenario, a direct diagram-by-
diagram evaluation of loop-level scattering amplitudes rapidly becomes unfeasible. A
strategy must therefore be developed (one as general and automatable as possible) in
order to handle this complexity. Such a strategy entails the decomposition of scattering
amplitudes into a minimal set of independent functions, on which human computational
efforts can be focused.

The standard approach to the calculation of Feynman amplitudes at multi-loop level
consists of three main steps:

i) decomposition of the entire set of Feynman diagrams contributing to a process in
terms of linear combinations of scalar loop integrals1 ;

ii) reduction of the scalar integrals into a minimal number of independent ones a.k.a.
the master integrals, which form a basis of the space of Feynman integrals for the
process;

iii) evaluation of the master integrals.

In this thesis, we will discuss a series of methods for tackling these problems that are
originally inspired by the unitarity of the scattering matrix.

The unitarity of scattering amplitudes is a reflection of the conservation of probabil-
ity in Quantum Mechanics. It found its first formulation in the so-called optical theorem,
which establishes the equivalence between the imaginary part of a scattering amplitude
in the forward limit and its total cross section. When the unitarity condition is for-
mulated in terms of the individual Feynman diagrams that contribute to an amplitude,
Cutkosky rules [10, 11] state that the imaginary part of a diagram (which corresponds to
the discontinuity across a branch-cut determined by a kinematic threshold) is obtained
by summing over all possible ways of cutting the diagram, i.e. of partitioning it into two
connected pieces. This is achieved by enforcing the on-shellness of the virtual particles
which are traversed by the cut.

Hence, in the perturbative expansion of scattering amplitudes, unitarity can be used,
to some extent, in order to retrieve information about higher-order contributions from
the knowledge of lower-order ones. For instance the cutting equation can be combined
with dispersion relations [12, 13] to determine a one-loop amplitude from the computa-
tion of the corresponding tree-level cross section.

Starting from this basic idea, and from the intuition of assigning complex values
to loop momenta, the standard unitarity techniques were extended by introducing the
concept of generalized unitarity cuts [14–17]. By cutting an arbitrary number of in-
ternal propagators which can satisfy the on-shell conditions simultaneously, Feynman

1here, as in the remaing part of the manuscript, we name as scalar integral a loop integral whose

numerator dependence on the integration momenta is fully expressed in terms of scalar products, i.e.

a loop integral with no free Lorentz indices.
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diagrams can be grouped according to their multi-particle factorization channels. Such
factorization even allows to reconstruct a full loop-level amplitude by assembling on-
shell tree-level building blocks.

Passarino and Veltman [18] were the first to demonstrate, on the grounds of Lorentz
invariance principles, the possibility of decomposing any one-loop amplitude in terms
of a finite basis of scalar loop integrals. This in turn suggested the idea of determining
the coefficients of such master integrals by evaluating the amplitude on the multi-pole
channels identified by the simultaneous vanishing of all loop denominators associated
to a given integral.

Within this framework, a new level of understanding of one-loop scattering ampli-
tudes was brought about by the development of the integrand decomposition method. It
was originally formulated in four space-time dimensions by Ossola, Papadopoulos and
Pittau [19, 20] and later extended to accommodate the effects of dimensional regular-
ization [21–25].

In this perspective, the integrand decomposition consists in the reduction of an inte-
grand into a sum of simpler, irreducible integrands, whose denominators are given by all
possible partitions of the initial set of propagators and whose numerators correspond to
the remainders of the subsequent divisions. Once such integrand reduction is achieved,
the corresponding decomposition of the integrated amplitude is obtained by restoring
the integration over the loop momenta.

The simplification allowed by the manipulation of integrands comes at the cost of
introducing spurious contributions, i.e. irreducible integrands that, although present in
the integrand-level decomposition, vanish after integration. Nonetheless, at one-loop the
identification and elimination of spurious terms follow trivially from Lorentz invariance,
and do not constitute a practical problem.

One of the main advantages of the purely algebraic nature of the integrand-level
reduction consists in its applicability regardless of the kinematic complexity of the
amplitude. This allowed to overcome the issues of the other integral-level unitarity-
based method that can be severely limited by the presence of massive particles.

The efficient numerical implementation [26–28] of the integrand decomposition al-
gorithm and its embedding in automated frameworks for one-loop computations [29–38]
played a crucial role in the so-called NLO revolution. As a consequence of this a deluge of
next-to-leading-order predictions for a series of high-multiplicity, multi-scale processes
of phenomenological interest for LHC physics was made possible.

The first part of this thesis deals with the extension of the integrand decomposition
method at multi-loop level.

The possibility of applying the integrand decomposition algorithm beyond one-loop
was first probed in [39, 40] and has been proven, from a rigorous mathematical point of
view, through the introduction of algebraic geometry methods. Namely the integrand re-
duction procedure was formulated in terms of a multivariate polynomial division modulo
Gröbner bases [41, 42]. These theoretical studies, besides finding remarkable applica-
tions (such as the first analytic computation of a two-loop five-gluon helicity amplitude
[43, 44]), have highlighted the specific features of the multi-loop level problem.

First of all, at multi-loop level, a universal basis of integrals is not known a priori
and can be determined only after the reduction is actually performed.

Secondly, due to the interplay of different integration momenta, the number of in-
dependent scalar products between loop and external momenta becomes, in general,
larger than the number of denominators. Thus it is not possible to algebraically express
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all scalar products in terms of loop denominators. In this sense, the main bounce in
complexity is represented by the presence of irreducible scalar products, which cause
a proliferation of the number of independent integrands appearing in the amplitude
decomposition. Although present in the decomposition, a relevant portion of these ir-
reducible integrands is spurious. Beyond one-loop the systematic identification of such
spurious terms, which is not entirely straightforward, is a fundamental requirement for
a successful application of the integrand decomposition method, in order to avoid a
hardly controllable growth of the intermediate expressions generated in the reduction
procedure.

Irreducible scalar products can also produce non-spurious integrands. The latter
in all respects enter the amplitude decomposition, since they are independent from an
integrand-level point of view. However, the existence of integral-level relations between
Feynman integrals, such as integration-by-parts identities [45–47] and Lorentz invariance
identities [48], can consistently reduce the number of truly independent integrals.

The determination of a minimal basis of master integrals requires, after the integrand
decomposition has been achieved, a further integral-level reduction. Therefore it is im-
portant that the outcome of the integrand decomposition be optimized for this purpose.

All these issues have so far prevented the integrand decomposition method from
becoming an efficient and fully competitive technique that might be used for analytical
and numerical multi-loop computations and that might be adopted in lieu of the more
traditional form factor decomposition.

One of the main results of this thesis consists in the formulation of a simplified
approach to the multi-loop integrand decomposition, which offers a cleaner theoret-
ical description of the problem and also provides valuable technical solutions to the
aforementioned difficulties.

We refer to the newly proposed algorithm as adaptive integrand decomposition [5, 8,
9], since it entirely relies on the systematic adaptation of the choice of the loop variables
according to external kinematic of each individual integrand topology.

Depending on the number of external legs of a diagram, the d-dimensional space-
time can be split into a longitudinal space with dimension d‖ ≤ 4 determined by the
number of independent external momenta, and a complementary transverse space with
continuous dimension d⊥ = d− d‖ [49–54].

This simple consideration allows to derive a parametrization of dimensionally regu-
lated Feynman integrals in terms of a finite number of integration variables which enjoys
remarkable properties. In fact, although Feynman integrands are, in general, rational
functions of all components of the loop momenta, the d = d‖ + d⊥ parametrization
exposes their purely polynomial dependence on the transverse components, which are
the source of spurious contributions. Hence, since it is always possible to integrate a
polynomial through elementary techniques, this parametrization allows a trivial, algo-
rithmic integration over the transverse variables which is able to systematically detect
and eliminate all spurious integrands.

Due to the hyperspherical symmetry of the transverse space, an efficient way to
compute the transverse integrals, one which provides an alternative to the tensor re-
duction, consists in performing an expansion of the integrand in terms of Gegenbauer
polynomials and in reducing all integrations to the iterative application of their orthog-
onality condition.

After integration over the transverse variables, each integrand is parametrized in
terms of the longitudinal components of the loop momenta and of the scalar prod-



7

ucts between the vectors which represent the transverse part of the loop momenta.
This integral representation can be mapped, through a linear change of variables, into
the Baikov parametrization [55–57] which, by adopting denominators and irreducible
scalar products as integration variables, has recently proved to be a versatile tool for
the derivation of integration-by-parts identities, differential equations, and generalized
unitarity cuts [58–63].

This last observation has a crucial impact on the integrand decomposition algorithm.
Due to the linear dependence of the denominators on the variables which parametrize the
integrand in d = d‖+d⊥, the set of on-shell conditions, which define any multiple-cut at
any loop order, are linearized. Therefore, in its adaptive formulation, the multivariate
polynomial division turns out to be reduced to the solution of an under-determined
linear system, and the very definition of the loop denominators in terms of the adaptive
variables can replace the computation of Gröbner bases.

The simplified polynomial division procedure and the systematic integration over
the transverse variables can be combined into a new reduction algorithm, which we
refer to as divide-integrate-divide. The latter will be the subject of a dedicated chapter
of this thesis, where it will be employed in the systematic identification of a universal
parametrization of the integrand basis for two-loop amplitudes with up to eight exter-
nal legs and arbitrary kinematics. In addition, the streamlined structure of the new
division procedure enables, for the first time, an automated implementation of the ana-
lytic integrand decomposition of one- and two-loop amplitudes provided by code Aida

(Adaptive Integrand Decomposition Algorithm), which we will discuss in detail. In this
respect, we believe that integrand decomposition, in its adaptive formulation, will prove
to be a powerful tool able to set the ground for a forthcoming NNLO revolution.

The outcome of the proposed division algorithm consists in the decomposition of a
multi-loop scattering amplitude which is free of spurious terms and whose irreducible
integrands are expressed exclusively in terms of scalar products between loop and ex-
ternal momenta. So, besides being minimal from the integrand-level point of view, the
resulting reduction is also in a suitable form for the subsequent integration-by-parts
reduction. It is worth mentioning that the adaptive integrand reduction does not resort
to any form factor decomposition and thus can be applied to helicity amplitudes as well.

After the adaptive integrand reduction, a scattering amplitude is expressed as a
combination of a reduced –but not minimal– set of scalar Feynman integrals. With
the systematic generation and solution of symmetry relations, integration-by-parts and
Lorentz invariance identities, the full set of integrals can be expressed in terms of a
basis of independent master integrals, which can be identified through the Laporta al-
gorithm [64].

Once a decomposition of the amplitude in terms of master integrals has been de-
termined, the ultimate task of their evaluation must be addressed. In the last decades,
the rather non-trivial problem of computing loop integrals has been successfully tack-
led with to different approaches: the numerical one and the analytic one. These two
approaches can be considered, in some sense, complementary.

On the one hand, the search for an algorithm for the efficient numerical evaluation of
loop integrals is, indeed, appealing, since it would smooth over the complexity brought
about by the presence of many external legs and internal mass scales. The main difficulty
related to a numerical approach lies in the presence of divergencies in loop integrals,
which must be resolved and regularized before any numerical integration routine can
be applied. One effective strategy of regularizing divergencies has been implemented in
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the sector decomposition method [65–67], which has been successfully applied for the
numerical evaluation of two-loop virtual amplitudes whose analytic computation is at
the present time far beyond our capabilities [68, 69]. Despite these promising results,
however, there are severe limitations to a precise numerical evaluation of loop integrals.
These limitations are mainly related to the treatment of end-point singularities and can
make numerical methods extremely time-consuming and can, in some cases, prevent
them from providing reliable results in the whole phase-space.

On the other hand, the analytical evaluation of loop integrals provides, by defini-
tion, a complete control of the result at any point of the phase-space. However, at first
sight, analytic computations appear greatly limited by our ability to evaluate integrals
directly. In fact, although direct integration techniques (such as Feynman parametriza-
tion or the Mellin-Barnes [70–73] representation) can be effectively applied to one-loop
computations and to a number of (mostly massless) multi-loop integrals, when the num-
ber of kinematic scales of the problem increases, direct integration rapidly ceases to be
a viable option.

Nonetheless, the analytic expression of the master integrals can also be deter-
mined through indirect techniques, which resort to the solution of systems of differ-
ence [64, 74, 75] and differential [48, 76, 77] equations satisfied by Feynman integrals.
The second part of this thesis is devoted to the development of new techniques for the
solution of differential equations for master integrals.

If master integrals are regarded as analytic functions of the external kinematic in-
variants and of the internal masses, they can then be computed by solving their first-
order differential equations, which can be derived from integration-by-parts identities.
The idea of using differential equations for computing master integrals was first intro-
duced by Kotikov [76], for internal masses, and later extended to external invariants by
Remiddi [77] and Gehrmann and Remiddi [48] (see [78] for a review on the method).
Since then, the differential equations method has become by far the most powerful tool
for the analytic evaluation of multi-loop integrals and has led to results which remain
out of reach for any other available analytical method. One of the best examples of
these results is the evaluation of two-loop five-point integrals [79] obtained through a
simplified approach to differential equations [80].

Differential equations for master integrals in d-dimensions are, generally, coupled and
exhibit a block-triangular structure, which is naturally inherited from the integration-
by-parts identities. The presence of coupled differential equations makes it extremely
difficult to evaluate Feynman integrals as exact functions of the space-time dimensions.
However, for physical applications, we are usually interested in the expression of loop
integrals close to four space-time dimensions, i.e. as a Laurent expansion around small
values of the dimensional regulating parameter ǫ = (4−d)/2. If the Laurent expansion is
applied directly at the level of the differential equations, the structure of the system can
be drastically simplified and, in many cases, it can even assume a complete triangular
form, which allows a bottom-up solution of the whole set of differential equations by
repeated quadrature.

Given the arbitrariness of the choice of the basis of master integrals, there arises
the question about the existence of a particular basis that might make this simplified
structure manifest. In [81], it was proposed by Henn to search for a basis, usually re-
ferred to as canonical basis, which satisfies two different requirements: the ǫ dependence
of the corresponding system of differential equations is completely factorized from the
kinematic one, and the latter is in dlog-form (i.e. the total differential of the master
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integral must be expressible as an exact differential of logarithmic functions).

These two properties allow to decouple the system of differential equations trivially,
order-by-order in the ǫ-expansion, and naturally expose the uniform transcendental
weight structure of the coefficients of such expansion in terms of generalized polyloga-
rithms [82–86] or, more generally, Chen iterated integrals [87]. Consequently, the choice
of a canonical basis of master integrals makes the derivation of the general solution of
the differential equations almost entirely algorithmic, and reduces the whole complexity
of the problem to the determination of the boundary constants, which are needed in
order to impose physical requirements on the general solution.

A proof of the existence of the canonical basis is still missing – even for master
integrals which evaluate to polylogarithmic functions. However, during the last years,
several constructive algorithms have been put forward for the determination of a sim-
ilarity transformation that can bring a non-canonical basis of master integrals to a
canonical one, under different kind of assumptions [88–93].

The problem of finding a canonical basis is intimately related to the possibility of
explicitly determining a matrix-valued solution of the system of differential equations in
the four-dimensional limit, ǫ ∼ 0. This connection becomes transparent if we start from
an initial set of master integrals which obey ǫ-linear differential equations as it is nearly
always the case. In fact, under this assumption, a rotation of the master integrals by
a similarity matrix which is an exact solution of the system of equations in ǫ = 0 can
absorb the O(ǫ0) term of the differential equations and bring them to an ǫ-factorized
form.

The Magnus method [88] determines such a similarity transformation by attempting
a solution of the first order differential equations in ǫ = 0 through the Magnus expo-
nential expansion [94]. Whenever the underlying system of differential equations can be
triangularized in the four-dimensional limit, the Magnus representation of the solution,
generally expressed as an infinite series, terminates after a finite number of terms and,
hence, it can be used to algorithmically rotate the system of differential equations to a
canonical form.

This method has been successfully applied to several multi-loop, multi-scale prob-
lems [1, 3, 88, 95, 96], part of which will be presented in this thesis. In particular, we
will discuss the analytic calculation of the two-loop three-point master integrals that
enter QCD corrections to the triple gauge couplings ZWW and γ∗WW , to the Higgs
boson decay into a pair of off-shell W -boson, H → WW , and to heavy-quark contri-
butions to massive boson-pair production in the gluon-fusion channel, gg → HH and
gg → WW . In addition, we will compute all planar four-point integrals for the two-loop
QED corrections to the elastic scattering µe → µe. The analytic evaluation of these
integrals constitute the first step towards the determination of the full NNLO cross
section that is needed as theoretical input for the experimental measurement of the
leading hadronic contribution to the muon g − 2 to be realized at CERN by the future
experiment MUonE [97]. The same integrals are also useful for virtual corrections to
tt̄-production at colliders [98–101].

The Magnus rotation, as well as the other available methods, fails to find a canonical
form when there is no change of basis which triangularizes the system of differential
equations in ǫ ∼ 0, i.e. when some sector of master integrals obey differential equations
which cannot be decoupled, by any means, in four-dimensions. Such coupled systems
of first-order equations are actually equivalent to homogeneous higher-order differential
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equations, for which no general solving strategy is available. Thus, in these cases, the
possibility of determining the analytic expression of the master integrals through the
differential equations method has entirely resorted, so far, to our ability to recognize,
in a case-by-case analysis, the higher-order-differential equations as belonging to some
of the limited classes that are known from the mathematical literature.

This situation can first occur at two-loop level, where a growing number of multi-
scale integrals [60, 102–104] are found to obey irreducible second-order differential equa-
tions, the most famous of which is the massive two-loop sunrise [102]. In all these cases,
the homogeneous solutions of these equations turn out to be expressible in terms of
complete elliptic integrals. However, while it is unknown whether elliptic integrals can
complete the set of functions occurring in the computation of two-loop Feynman in-
tegrals, cases of multi-loop master integrals which obey even higher order differential
equations are known to exist [2, 105, 106]. Therefore, the development of a general
strategy for the determination of the homogeneous solutions is strongly advisable.

The answer to this problem comes, once more, from generalized unitarity. The con-
nection between maximal unitarity and canonical bases was first pointed out in [81],
and was based on the conjecture that integrals with unit leading singularity (which
corresponds to the maximal-cut of the integral computed in a finite number of dimen-
sions) are pure functions with homogeneous transcendental weight [107, 108] and so are
expected to obey canonical systems of differential equations.

The underpinning motivation of such conjecture relies on observation that the maximal-
cut of a Feynman integral satisfies, by construction, the homogeneous part of the differ-
ential equations fulfilled by the uncut integral. Therefore, the determination of a basis
of master integrals with unit leading singularity, which practically amounts to a redefi-
nition of the master integrals that reabsorbs their non-trivial maximal-cut, corresponds,
in all respects, to the solution of the homogeneous system of differential equations in
ǫ = 0.

In light of this, the explicit computation of maximal-cuts of Feynman integrals
proves to be a powerful and general tool for the determination of a representation of
the homogeneous solutions in a closed integral form [4]. This is also true in the case of
higher-order differential equations, where the ordinary solution strategies are not appli-
cable. The determination of the complete solution of a n-th order differential equation
requires the knowledge of a set of n-independent homogeneous solutions. We will show
that, given the integral representation of the maximal-cut of a multi-loop integral, it
is possible to identify a set of independent, integration-by-parts compatible, integra-
tion contours, each of which provides one independent homogeneous solution. Hence,
by defining a matrix of maximal-cuts, we can rotate a system of coupled differential
equations to an ǫ-factorized form, which allows a recursive determination of the in-
homogeneous solutions in terms of iterated integrals over kernels constituted by the
homogeneous solutions. In this sense, the resulting basis of master integrals can be
considered as a natural extension of the concept of basis with unit leading singularity
to the case of higher-order differential equations.

This result is one of the main accomplishments of the work presented in this thesis,
and it will be discussed in great detail on a number of explicit examples, which include
the determination of the homogeneous solutions of the master integrals for three- and
four-point functions involved in the top-quark contribution to two-loop corrections to
gg → gg [104] and gg → gH [103]. Furthermore, a special attention will be dedicated
to the application of the proposed method to the solution of the differential equations
for the massive three-loop banana graph, which constitutes the first non-trivial exam-
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ple of Feynman integral that obeys an irreducible third-order differential equation [2].
The general applicability of this method is amplified by the developments of efficient
algorithms for the computation of generalized unitarity cuts, based on the introduction
of the Baikov representation of Feynman integrals.

The complete control of the analytic expression of the master integrals requires,
of course, the study of the analytic properties of the homogeneous solutions obtained
through maximal-cuts and, possibly, a precise classification of the families of special
functions which emerge from the iterative integration of such homogeneous solutions.
A vast literature on the possible definition of iterated integrals over elliptic functions
has been produced [102, 109–123]. Nonetheless a clear understanding of the underlying
algebra of these special functions is still missing and is far from being comparable to
the absolute control we have over generalized polylogarithms. In addition, very little
is known in the case of differential equations of order higher than two. This subject
will definitely constitute an important direction for future investigations in the field of
higher-order computations.

This thesis is organized as follows. In chapter 2, we will review the basic definitions
and properties of Feynman integrals in dimensional regularization, we will derive a
series of equivalent finite dimensional integral representations, and we will introduce
the concept of generalised unitarity cut of a Feynman integral.

In chapter 3, we will review the integrand decomposition method for multi-loop
scattering amplitudes, by focusing on its algebraic geometry formulation.

In chapter 4, we will present the adaptive integrand decomposition algorithm and
we apply it to derive a new universal decomposition of one- and two-loop amplitudes
in d dimensions. We will discuss our Mathematica implementation of the algorithm
Aida, and we will illustrate its features on explicit examples.

In chapter 5, a review of the differential equations method for master integrals will be
given and the concept of canonical basis of master integrals will be introduced. We will
first discuss the Magnus exponential method for determining such basis, by highlight
its role in the determination of a set of master integrals with unit leading singularity,
and we will then review the main properties of the class of iterated integrals which
appear in the general solution of canonical systems, as well as the most commonly used
techniques for the fixing of boundary constants.

In chapters 6-8, we will apply the Magnus method to the analytic calculation of
two-loop integrals with both massive internal and external particles: in chapter 6, we
will calculate the vertex diagrams needed for the leading QCD corrections to the triple-
gauge couplings ZWW and γ∗WW , as well as for the Higgs decay into an off-shell W -
boson pair. In chapter 7, we will calculate two-loop three-point functions which enter
QCD corrections, with exact dependence on the top-quark mass, to the production of
a massive boson-pair (HH and ZZ) in the gluon-fusion channel. In chapter 8, we will
compute all the planar four-point integrals which are needed for the two-loop QED
virtual corrections to the elastic scattering between muons and electrons.

In chapter 9, we will address the problem of solving coupled systems of differential
equations, which are obeyed by Feynman integrals that are not expressible in terms
of polylogarithmic functions. We will propose a general method, based on maximal-
unitarity, for determining the homogeneous solutions of such systems, and define a
basis of master integrals which generalizes the concept of unit leading singularity to
the case of higher-order differential equations. We will illustrate the proposed method
on a series of two-loop cases, which involve homogeneous solutions expressed in terms
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of complete elliptic integrals, and later apply it to solve the irreducible third-order
differential equation satisfied by the three-loop massive banana graph.

We will give our conclusions in chapter 10.
The main body of this thesis is complemented by a series of appendices. In ap-

pendix A we will derive all the results needed for the definition of the d = d‖ + d⊥
parametrization of Feynman integrals, presented in chapter 2. In particular, we will
discuss the use of multidimensional spherical coordinates in the transverse space, the
main properties of Gegenbauer polynomials and the definition of the four-dimensional
vector bases which will be used throughout chapter 4. We will provide as well an inven-
tory of one- and two-loop tensor integrals in the transverse space. In appendix B, we
will list the dlog-forms of the systems of differential equations discussed in chapters 6-8.
In appendix C, we will present the details of the analytic continuation of the master in-
tegrals for the three-loop banana graphs discussed in chapter 9. Finally, in appendix D,
we will derive a set of identities between complete elliptic integrals and moments of
Bessel functions, which will be used in chapter 9 in order to obtain a representation of
the homogeneous solutions of the banana graph in terms of known functions.



Chapter 2

Feynman integrals: representations

and properties

In this chapter we review the basic definitions and properties of Feynman integrals

in dimensional regularization. In particular, we focus on a representation of multi-

loop integrals where the integration momenta are parametrized by splitting the d

dimensional space-time into a longitudinal space, spanned by the momenta of the

external particles, and its complementary, transverse space, d = d‖ + d⊥. Such

parametrization will play a fundamental role in the adaptive formulation of the in-

tegrand decomposition method, discussed in chapter 4. In addition, we discuss the

Baikov parametrization which, by introducing loop denominators and irreducible

scalar products as integration variables, allows a clear and efficient definition of

the multiple-cuts of Feynman integrals. Part of the content of this chapter is based

on the publications [5, 9] and on original research done in collaboration with P.

Mastrolia, U.Schubert and W.J.Torres Bobadilla.

2.1 Feynman integrals in dimensional regularization

In a d-dimensional space-time, we define a ℓ-loop Feynman integral with n external legs
and m internal propagators as the multivariate integral

Id (ℓ ,n)a1...am [N ] =

∫ ℓ∏

j=1

ddqj

πd/2

N (qi)

Da1
1 Da2

2 · · · Dam
m

, ai ∈ N , (2.1)

where N (qi) is an arbitrary tensor numerator depending on the loop momenta qi and
the loop denominators Dj(qi) are defined as

Dj = l2j +m2
j , with lαj =

∑

i

αijq
α
i +

∑

i

βijp
α
i , (2.2)

with {p1, . . . , pn} being the set of momenta associated to the external particles, which
satisfy the conservation rule

p1 + p2 + · · ·+ pn = 0 . (2.3)

In eq. (2.2), α and β are incidence matrices which entries take values in {0,±1}. The
denominators Di can be represented as propagators, i.e. internal edges of a connected
graph which obeys momentum conservation at each vertex.

13



14 Chapter 2. Feynman integrals: representations and properties

When tensor reduction or integrand decomposition is applied to the numerator N (qi)
(see chapters 3-4), the whole integrand

I a1...am(qi) =
N (qi)

Da1
1 Da2

2 · · · Dam
m

, ai ∈ N, (2.4)

becomes a rational function of the scalar products between loop momenta and external
ones, whose total number is given by

nSP = ℓ(n− 1) +
ℓ(ℓ+ 1)

2
=

ℓ(2n+ ℓ− 1)

2
, (2.5)

where the first summand corresponds to the number of scalar products sij = qi · pj and
the second one counts all possible scalar products between the loop momenta, s̃ij = qi·qj .

As we will discuss throughly in the next sections, at one loop all scalar products are
reducible (RSPs), i.e. they can be expressed in terms of denominators, since the number
of scalar products always corresponds to the number of propagators appearing in the
integrand. Conversely, at multi-loop level, it is generally not possible to rewrite all nSP

scalar products in terms of the m denominators, and we have a number

r = nSP −m (2.6)

of so-called irreducible scalar products (ISPs),

Si(qj) ∈ {sij} ,= 1 , . . . , r . (2.7)

The ISPs are naturally chosen among the scalar products sij but it is often convenient
to parametrize them in terms quadratic polynomials in qi, by extending the set loop
propagators so to include r auxiliary denominators Dm+1 , . . . Dm+r,

Si −→ Dm+i , i = 1 , . . . , r . (2.8)

In both cases, we can imagine to split the numerator N (qi) into a sum of elementary
building-blocks, each one corresponding to a different monomial in the ISPs, and define
basic Feynman integrals of the type

Id (ℓ ,n)(a1 , . . . , am ; b1 , . . . , br) =

∫ ℓ∏

j=1

ddqj

πd/2

S−b1
1 · · · S−br

r

Da1
1 · · · Dam

m
, (2.9)

which are usually referred to as integral families. In principle, we can allow the powers
ai and bi to assume any integer value. Nevertheless, we observe that, if the ISPs are
identified with auxiliary denominators, any bi > 0 would not correspond to a graph
where momentum is conserved at every vertex. For this reason, it useful to introduce
some additional terminology:

- We define a topology (or sector) as an integral of the type (2.9) where all denominators
have non-negative powers. Hence, every topology corresponds to a graph which obeys
momentum conservation at each vertex;

- Given a topology, its subtopologies correspond to integrals where some denominators
are raised to zero power. The graph of a subtopology can be obtained from the one of
the “parent ” topology by pinching (i.e. removing) the corresponding loop propagators.
Therefore, the subgraph still satisfies momentum conservation.
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Any integral family contains, obviously, infinitely many different integrals, each one
corresponding to a particular integer tuple {a1 , . . . , am , b1 , . . . , br}. However, only a
finite number of such integrals is actually independent, due to the existence of linear
relations between Feynman integrals which are a direct consequence of the invariance of
eq. (2.9) under Lorentz transformations and re-parametrization of the loop momenta.

2.1.1 Lorentz invariance identities

The integrals defined in eq. (2.9) are Lorentz scalars, i.e. they are invariant under
rotation of the external momenta

pαi → pαi + δωαβpi β , (2.10)

where δωαβ is an (infinitesimal) antisymmetric tensor δωαβ = −δωβα. By imposing
the invariance of Id (ℓ ,n)(a1 , . . . , am ; b1 , . . . , br) under the transformation (2.10), we
obtain [48]

0 =

n∑

i=1

δωαβ

(
pβi

∂

∂pαi

)
Id (ℓ ,n)(a1 , . . . , am ; b1 , . . . , br)

=

n∑

i=1

(
p
[β
i

∂

∂p
α]
i

)
Id (ℓ ,n)(a1 , . . . , am ; b1 , . . . , br) , (2.11)

where we have used the antisymmetry and the arbitrariness of δω.

If we contract eq. (2.11) with all possible antisymmetric tensors built from external

momenta, p
[α
i p

β]
j , we obtain a set of nLI = (n−1)(n−2)/2 Lorentz invariance identities

(LIs) between Feynman integrals. In fact, after explicitly computing the derivatives
under the integral sign, eq. (2.11) translates into a vanishing linear combination of
integrals, whose numerators consist of scalar products between loop momenta and the
external momenta. Hence, after expressing all RSPs in terms of denominators, we
obtain linear identities between different integrals of the type (2.9). In particular, since
differentiation cannot introduce any positive powers of additional denominators, LIs
only involve integrals from a same sector as well as their subtopologies.

2.1.2 Integration-by-parts identities

The use of dimensional regularization, allow us to derive another important class of lin-
ear relations between Feynman integrals, the integration-by-parts identities (IBPs) [45–
47]. In fact, provided that the space-time dimension d is treated as a continuous pa-
rameter, we can assume the integral (2.9) to be well-defined and, hence, convergent. In
order for the integral to be convergent, the integrand must vanish rapidly enough at the
boundary of the manifold spanned by the loop momenta. Therefore, when integrating
by parts eq. (2.9), no boundary terms is generated.

In other words, in d dimensions, the integral of the total derivative of any Feynman
integrand must vanish,

∫ ℓ∏

j=1

ddqj

πd/2

∂

∂qαi

(
vα

S−b1
1 · · · S−br

r

Da1
1 · · · Dam

m

)
= 0 , with i = 1 , . . . , ℓ , (2.12)

where vα is an arbitrary vector v ∈ {q1 , . . . , qℓ , p1 , . . . , pn}. By taking derivatives w.r.t.
all loop momenta and by choosing all possible values of the vector vα, we can produce
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ℓ(ℓ+n−1) IBPs for each integral. As for the case of LIs, differentiation can only produce
IBPs which involve integrals belonging to a same sector as well as their subtopologies.
We observe that eq. (2.12) offers a clear interpretation of IBPs as a generalization of
Gauss theorem to d dimensions. Mathematically speaking, IBPs correspond to exact
differential forms, as we will observe in section 2.5.1, when dealing with representations
of the integrand in terms of explicit components of the loop momenta.

Alternatively, it can be shown [124] that IBPs descend from the invariance of Feyn-
man integrals under shifts of the loop momenta of the type

qαi −→ qαi + δbij k
α
j , (2.13)

where kj ∈ {q1 , . . . , qℓ , p1 , . . . , pn} and δbij is an infinitesimal parameter. In addition,
it has been proven that LIs (2.11) can be expressed as a linear combination of IBPs [125].

2.1.3 Symmetry relations

The shifts of the loop momenta defined in eq. (2.13) can be generalized to a larger
symmetry group of Feynman integrals defined by the linear transformations

qαi −→ (A)ijq
α
j + (B)ijp

α
j , (2.14)

where A in an invertible ℓ× ℓ matrix, with |det A|= 1, and B is a ℓ×n matrix. A shift of
the type (2.14) leaves the value of a Feynman integral unchanged, but it transforms its
integrand into a linear combination of different integrands, allowing to determine linear
relations between integrals which might even belong to different sectors. In particular,
we refer to symmetry relations which map the set of denominators of a sector into itself
as sector symmetries.

2.2 Feynman integrals in d = 4− 2ǫ

Up to now, we have made no assumption on the specific dimensional regularization
scheme adopted in order to express an amplitude in terms of the Feynman integrals (2.1).
Although all schemes share the basic prescription of regularizing divergencies by promot-
ing the four-dimensional integration momenta to arbitrary d-dimensional ones, they may
adopt different conventions regarding the treatment of non-divergent elements which ap-
pear in Fenyman diagrams, such as γ matrices, metric tensors and, very importantly,
vector fields and degrees of freedom associated to the external particles. We refer the
reader to [126] for a recent review on the most commonly used regularization schemes.

One customary choice consists in considering momenta and wave functions asso-
ciated to the external particles as strictly four-dimensional objects. In practice, this
amounts to consider a d-dimensional metric tensor gαβ with a block-diagonal structure
of the type

gαβ =

(
gαβ[4] 0

0 gαβ[−2ǫ]

)
, (2.15)

where gαβ[4] is the metric tensor of the physical four-dimensional Minkowski space and

gαβ[−2ǫ] is the Euclidean metric of the infinite-dimensional space which regulates diver-
gencies,

gαβ[4] (g[4])αβ = 4 , gαβ[−2ǫ](g[−2ǫ])αβ = −2ǫ . (2.16)
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Consistently, we split all Lorentz vectors vα (and, in general, all tensors) into a four-
dimensional part and a (−2ǫ)-dimensional one,

vα = vα[4] + vα[−2ǫ] . (2.17)

In particular, if external particles are kept in four-dimensions, we identify external
momenta pi and polarizations εi as

pα ≡ pα[4] i , εαi ≡ εα[4] i . (2.18)

Conversely, we decompose the loop momenta qi as

qαi =qα[4] i + µα
i , (2.19)

where we have defined µα
i ≡ qα[−2ǫ] i. By using the metric tensor given in eq. (2.15),

we can derive the following scalar product rules between loop momenta and external
vectors,

qi · pj = qαi gαβ p
β
j = qα[4] i (g[4])αβ p

β
j = q[4] i · pj ,

qi · εj = qαi gαβ ε
β
j = qα[4] i (g[4])αβ ε

β
j = q[4] i · εj ,

qi · qj = qαi gαβ q
β
j = qα[4] i (g[4])αβq

β
[4] j + µα

i (g[−2ǫ])αβµ
β
j = q[4] i · q[4] j + µij , (2.20)

with µij ≡ µi · µj . As a consequence of eq. (2.20), the loop denominators defined in
eq. (2.2) are rewritten as

Dj = l2j[4] +
∑

i,k

αijαkj µik +m2
j , with lαj[4] =

∑

i

αijq
α
i[4] +

∑

i

βijp
α
i . (2.21)

For the same reason, the numerator N (qi) appearing in (2.1) can depend only on the
components of qαi[4] and on µij . Therefore, Feynman integrands in d = 4 − 2ǫ are
completely independent on the individual components of the vectors µα

i , which enter
the calculation exclusively in terms of the scalar products µij . This implies that the
integrals over the (−2ǫ)-dimensional Euclidean space can be expressed into spherical
coordinates, and that we can integrate away all directions which are orthogonal to the
relative orientations µij of the vectors µα

i .
The resulting parametrization of the Feynman integral (2.1) reads

Id (ℓ ,n)a1 ... am [N ] = Ω
(ℓ)
d

∫ ℓ∏

i=1

d4q[4] i

∫ ∏

1≤i≤j≤ℓ

dµij [G(µij)]
d−5−ℓ

2
N (q[4] i, µij)∏m

k=1D
ak
k (q[4] i, µij)

,

(2.22)

where G(µij) is the determinant of the Gram matrix G(µ1, . . . , µℓ) of the µα
i vectors,

[G(µ1, . . . , µℓ)]ij = µi · µj , (2.23)

and Ω
(ℓ)
d is the product of solid angles

Ω
(ℓ)
d =

ℓ∏

i=1

Ωd−4−i

2π
d
2

, with Ωn =
2π

n+1
2

Γ
(
n+1
2

) . (2.24)

The detailed derivation of eq. (2.22) is described in appendix A.1. It is interesting to
observe that, in the r.h.s. of eq. (2.22) the full dependence of the integrand on d is
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retained in the power of the Gram determinant which defines the integration volume.
This implies that tensor numerators which contain additional powers of G(µij) can be
identified with lower rank numerators of Feynman integrals in raised dimensions.

For example, in the case N (qi) = G(µij) it is easy to verify from eq. (2.22) that

Id (ℓ ,n)a1 ... am [G(µij)] =
1

2ℓ

ℓ∏

i=1

(d− 3− i)Id+2 (ℓ ,n)
a1 ... am [1] , (2.25)

where the d-dependent coefficient in the r.h.s. originates from the ratio of angular fac-

tors Ω
(ℓ)
d /Ω

(ℓ)
d+2. Eq. (2.25) generalizes to any number of loops a well-known result at

one loop, where G(µij) ≡ µ11, [127].

In practical computations, it is often convenient to decompose the four-dimensional
part of the loop momenta q[4] i in terms of some basis of four dimensional vectors E =
{e1 , e2 , e3 , e4},

qα[4] i =

4∑

j=1

xji e
α
j , (2.26)

and integrate directly on the components xij . As it is clear from eq. (2.26) one of
the advantages of introducing a four-dimensional basis E consists in trading any tensor
numerator in the loop momenta with a numerator in the components xij , which is, by
definition, a scalar. The parametrization of the Feynman integrals in terms of the xij
components can be directly obtained, up to a trivial Jacobian, from eq. (2.22),

Id (ℓ ,n)a1 ... am [N ] = Ω
(ℓ)
d J[4]

∫ +∞

−∞

ℓ∏

i=1

4∏

j=1

dxj i

∫ ∏

1≤i≤j≤ℓ

dµij [G(µij)]
d−5−ℓ

2
N (xij , µij)∏m

k=1D
ak
k (xij , µij)

,

(2.27)

where we have defined

J[4] =

ℓ∏

i=1

√√√√
∣∣∣∣det

(
∂qα[4] i

∂xji

∂q[4] i α

∂xki

)∣∣∣∣ . (2.28)

Eq. (2.27) completely specifies a Feynman integral, once appropriate integration bound-
aries are identified. The four dimensional components of the loop momenta xij are
integrated over the whole real axes, as explicitly indicated in eq. (2.27), whereas the
integration region in the µij-space is determined by demanding the positivity of both
the individual norms µ2

ii ≥ 0 and Gram determinant G(µij) ≥ 0, which corresponds to
the volume of the parallelotope described by the vectors µα

i . For instance, in a two loop
case, G(µij) = µ11µ22−µ2

12 and the integration bounds are µii ≥ 0, −√
µ11µ22 ≤ µ12 ≤√

µ11µ22.

Summarizing, if we adopt a dimensional regularization scheme where external par-
ticles propagate in four-dimensions, it is possible to represent a Feynman integral in d
continuous dimensions as a multiple integral over a finite number ℓ(ℓ+9)/2 of variables

z = {x1 j , x2 j x3 j x4 j , µij} , 1 ≤ i ≤ j ≤ ℓ , (2.29)

which correspond to the 4 ℓ four-dimensional components of the loop momenta q[4] i and
the ℓ(ℓ+ 1)/2 scalar products µij between the (−2ǫ)-dimensional vectors µα

i .
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We observe that, at this level, both numerator and loop denominators depend poly-
nomially on all z, so that the integrand is, generally, a rational function of ℓ(ℓ + 9)/2
variables. In the next section, we will see how momentum conservation can be used in
order to obtain a further simplified representation.

2.3 Feynman integrals in d = d‖ + d⊥

The choice of the four-dimensional basis E = {ei}, which has been used in eq. (2.27)
in order to decompose the four-dimensional part of the loop momenta, is completely
arbitrary.

A particularly interesting representation of the Feynman integral (2.1) can be ob-
tained by maximazing in E the number of vectors which are orthogonal to the momenta
of the external particles. Formally, this amounts to splitting the d-dimensional space-
time into a longitudinal space, which corresponds to the subspace of Minkowski space
spanned by the external momenta, and its orthogonal, complementary part, we can
refer to as transverse space.

In other words, we consider a d-dimensional metric tensor with the block-diagonal
structure

gαβ =

(
gαβ[d‖]

0

0 gαβ[d⊥]

)
, (2.30)

where g[d‖] and g[d⊥] are, respectively, the metric tensors of the longitudinal and trans-
verse space, which satisfy

gαβ[d‖]
(g[d‖])αβ = d‖ , gαβ[d⊥](g[d⊥])αβ = d⊥ . (2.31)

In the following, we assume, without loss of generality, the metric of the transverse
space to be Euclidean.

Due to momentum conservation (2.3), the dimension of the longitudinal space
spanned by the n external legs of a Feynman integral is

d‖ = min(4, n− 1) . (2.32)

This means that, for n ≤ 4, the longitudinal space covers only a subspace of the whole
Minkowski space and the transverse space, which is still infinite dimensional (as it is
needed to regulate divergencies) absorbs a number (5−n) of four-dimensional directions.
Obviously, if n ≥ 4 the transverse space is reduced to the (−2ǫ)-dimensional space
introduced in the previous section.

This simple observation is, indeed, not new, since it can traced back at least to [49],
and it has been exploited intensively for the direct analytic integrations of one- and
two-loop integrals with up to, respectively, three and two external legs [50–54]. In fol-
lowing, based on the discussion of [5], we show how to extend to arbitrary loop order
the construction of the d = d‖ + d⊥ parametrization of the integrand.

For a ℓ-loop Feynman integral with n ≤ 4 external legs, we can introduce in the
vector basis E a maximum of (4 − d‖) elements lying in the transverse space. For
definiteness, we choose the transverse vectors to correspond to eαn , . . . , e

α
4 , i.e. we define

ei · pj = 0, i > d‖, ∀j,
ei · ej = δij , i, j > d‖. (2.33)
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The normalization e2i = 1 of the transverse vectors is purely conventional and it is
adopted in order to simplify the discussion. Equivalent results can be obtained by
working with non-normalized vectors. The basis defined in eq. (2.33) is closely related
to the Van Neerven-Vermaseren basis [128, 129], which played a crucial role in the
reduction of one-loop tensor integrals (see, for instance, [25]).

Eq. (2.33) suggests a splitting of the d-dimensional loop momenta of the type

qαi = qα‖ i + λα
i , (2.34)

where qα‖ i is a vector of the d‖-dimensional longitudinal space,

qα‖ i =

d‖∑

j=1

xji e
α
j , (2.35)

and λα
i ≡ qα⊥ i is a vector belonging to the d⊥-dimensional transverse space,

λα
i =

4∑

j=d‖+1

xji e
α
j + µα

i . (2.36)

The block-diagonal structure (2.30) of the metric tensor ensures that

qi · pj = qαi gαβ p
β
j = qα‖ i (g[d‖])αβ p

β
j = q‖ i · pj ,

qi · qj = qαi gαβ q
β
j = qα‖ i (g[d‖])αβq

β
‖ j + λα

i (g[d⊥])αβλ
β
j = q‖ i · q‖ j + λij , (2.37)

where, in the last equality, we have introduced the symbol λij to indicate the scalar
products between transverse vectors,

λij ≡ λi · λj =
4∑

l=d‖+1

xlixlj + µi j . (2.38)

In the following, we will collectively denote by x‖ i the subset of components of qi which
lie in the longitudinal space and by x⊥ i the complementary set of four-dimensional
components that belong to the transverse space.

It is evident from the scalar products rules of eq. (2.37) that, when the decomposi-
tion (2.34) is applied to the loop denominators (2.2), they become independent of x⊥ i

and their dependence of the transverse space variables is entirely absorbed into a linear
dependence on λij . In fact, we can write

Dj = l2‖ j +
∑

i,l

αijαlj λil +m2
j , (2.39)

where lα‖ j is the longitudinal momentum that flows in the j-th propagator,

lα‖ j =
∑

i

αijq
α
‖ i +

∑

i

βijp
α
i . (2.40)

Thus, out of the total number of ℓ(ℓ+ 9)/2 variables parametrizing a ℓ-loop integrand,
the denominators depend on a reduced set of ℓ(ℓ+ 2d‖ + 1)/2 variables, which corre-
spond to the ℓ d‖ components x‖ i and to ℓ(ℓ+ 1)/2 scalar products λij .

Of course, the numerator of the integrand can still depend on the remaining ℓ(4 −
d‖) transverse components x⊥ i, since in general an amplitude can depend on four-
dimensional vectors which are orthogonal to the the external momenta. For instance,
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the contraction of the loop momentum qi with the polarization vector εj associated to
a massless external particle of momentum pj would receive a non-trivial contribution
from the transverse components of the loop momentum,

qi · εj ∝ λi · εj =
4∑

k=d‖+1

xk i (ek · εj) . (2.41)

Nonetheless, any dependence of the integrand on the ℓ(4 − d‖) transverse components
which originates from the numerator function is, by construction, of polynomial type.
Hence, forasmuch as any polynomial can always be integrated with elementary tech-
niques, the introduction of the d = d‖ + d⊥ parametrization allows a straightforward
integration over all transverse components x⊥ i.

In particular, the integral over each transverse variable can be factorized into an
angular integral involving elementary trigonometric functions and, hence, computed al-
gorithmically. In fact, by applying the recursive orthonormalization procedure described
in appendix A.1 to the vector basis E , it can be shown that all x⊥ i variables, as well as
the scalar products λij , can be mapped into ℓ(ℓ− 2d‖ + 9)/2 angular variables θij .

More precisely, by introducing the angles

ΘΛ ={θij}, 1 ≤ i < j ≤ ℓ,

Θ⊥ ={θij}, j ≤ i ≤ j + 3− d‖, 1 ≤ j ≤ ℓ, (2.42)

we can rewrite the ℓ-loop n-point integral of eq. (2.1) as

Id (ℓ ,n)a1 ... am [N ] = Ω
(ℓ)
d

∫ ℓ∏

i=1

dn−1q‖ i

∫
d

ℓ(ℓ+1)
2 Λ

∫
d(4−d‖)ℓΘ⊥

N (qi ‖,Λ,Θ⊥)∏m
j=1D

aj
j (q‖ i,Λ)

, (2.43)

where the integration over the d-dimensional loop momenta qi has been split in:

- The integral over the d‖ components of the longitudinal part of each loop momentum,
q‖ i, which can be rewritten as an integral over the parallel components x‖,

∫ ℓ∏

i=1

dn−1q‖ i = J[d‖]

∫ +∞

−∞

ℓ∏

i=1

d‖∏

j=1

dxj i , (2.44)

with

J[d‖] =
ℓ∏

i=1

√√√√
∣∣∣∣det

(
∂qα‖ i
∂xji

∂q‖ i α
∂xki

)∣∣∣∣ , j, k ≤ d‖ ; (2.45)

- The integral over the ℓ(ℓ+ 1)/2 variables λij ,

∫
d

ℓ(ℓ+1)
2 Λ =

∫ ℓ∏

1≤i≤j

dλij [G(λij)]
(d⊥−1−ℓ)/2 , (2.46)

where G(λij) is the Gram determinant built from the transverse vectors λα
i . The in-

tegration region of eq. (2.46) is determined, similarly to eq. (2.27), from the positivity
conditions λ2

ii ≥ 0 and of G(λij) ≥ 0 which represent, respectively, the square norm of
the transverse vectors λα

i and the volume of the parallelotope spanned by the latter.
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The integral over the scalar products λi·λj = λij , i 6= j, can be further parametrized in
terms of ℓ(ℓ−1)/2 angles ΘΛ which describe the relative orientations of the transverse
vectors,

∫
d

ℓ(ℓ+1)
2 Λ =

∫ ∞

0

ℓ∏

i=1

dλii(λii)
(d⊥−2)/2

∫
d

ℓ(ℓ−1)
2 ΘΛ , (2.47)

with
∫
d

ℓ(ℓ−1)
2 ΘΛ =

∫ 1

−1

∏

1≤i<j≤ℓ

dcos θij(sin θij)
d⊥−2−i ; (2.48)

- The integral over the ℓ(4− d‖)/2 angles Θ⊥ which parametrize the four-dimensional
transverse components x⊥ i of the loop momenta,

∫
d(4−d‖)ℓΘ⊥ =

∫ 1

−1

4−d‖∏

i=1

ℓ∏

j=1

dcos θ(i+j−1) j(sin θ(i+j−1) j)
d⊥−i−j−1 . (2.49)

The detailed derivation of eq. (2.43) is presented in appendix A.1 where we also provide
the polynomial transformations that map λij and x⊥ into the angular variables,

{
λij → P [λkk, sin[ΘΛ], cos[ΘΛ]] , i 6= j,

xji → P [λkk, sin[Θ⊥,Λ], cos[Θ⊥,Λ]] , j > d‖, k = 1, . . . ℓ .
(2.50)

For the present discussion, let us simply remark that:

• The integral defined by eq. (2.43) is dimensionally regularized through the depen-
dence of eqs. (2.48)-(2.49) on d⊥ = d+ 1− n;

• The choice of the four-dimensional basis E (and the consequent definition of the
transverse space variables Λ and Θ⊥) are determined just by the external kine-
matics and do not depend on the specific set of denominators which characterizes
the integral. Therefore, the integral representation (2.43) can be equally applied
to planar and non-planar topologies;

• It is important to observe that, in the case of two-point integrals depending on a
light-like external momentum p2 = 0, eq. (2.43) holds for d‖ = 2, since –in four
dimensions– we can only define two directions that are orthogonal to a massless
vector.

2.3.1 Angular integration over the transverse space

The most important feature of the integral rapresentation (2.43) is summarized by
eq. (2.49), which shows that the integral over each of the transverse components x⊥ i

can be cast into the standard form
∫ ∞

−∞
dxijf(xij) ∼

∫ 1

−1
dcos θ(sin θ)af(cos θ, sin θ) , i > d‖ , (2.51)

where the dependence on d of the exponent a of integration kernel (sin θ)a is fixed by
the number of loops and external legs of the topology under consideration. Morevoer,
the polynomial dependence on x⊥ i of any integrand is translated, via the change of
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variables (2.50), into a dependence on sin[Θ⊥] and cos[Θ⊥] which is in turn purely
polynomial.

This implies that, independently of the particular numerator under consideration,
the integration over the transverse components is always reduced to the evaluation of
ℓ(4− d‖) factorized one-dimensional integrals of the type

∫ 1

−1
dcos θ(sin θ)a(cos θ)b . (2.52)

Obviously, the explicit expression of the numerator function determines, together with
the number of loops and external momenta, the actual values of the powers a and
b. A convenient algorithmic way of mapping any numerator into a product of angular

integrals (2.52) is to expand it in terms of Gegenbauer polynomials C
(α)
n (cos θ), a class of

orthogonal polynomials over the interval [−1, 1] whose orthogonality relation is defined
exactly through a weighting function of the type ωa(θ) = (sin θ)a,

∫ 1

−1
dcos θij (sin θ)2α−1 C(α)

n (cos θ) C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n! (n+ α)Γ2(α)
. (2.53)

We refer the reader to appendix A.4 for a summary of the most important properties
of this class of polynomials.

Eq. (2.53) can be used to systematically integrate any numerator over all the trans-
verse components x⊥ i in the following way:

- We use the transformation defined in eq. (2.50) in order to map any monomial in the
transverse components into a polynomial in sin[Θ⊥] and cos[Θ⊥];

- We expand the resulting polynomial in terms of products of C
(α)
n (cos θ);

- We integrate each term of the expansion by using the orthogonality relation (2.53).

It is important to remark that we do not need to apply from scratch this procedure to
every new numerator. Given the number of loops and external legs, we can simply inte-
grate once and for all every possible monomial in the corresponding transverse variables
up to the desired rank and then re-use the result whenever we need it. General results
for one- and two-loop transverse integrals, in all external kinematic configurations, are
collected in appendices A.2-A.3.
After the outlined procedure has been applied to integrate away all transverse directions,
we obtain a representation of the Feynman integral (2.1) of the type

Id (ℓ ,n)a1 ... am [N ] = Ω̃
(ℓ)
d

∫ ℓ∏

i=1

dn−1q‖ i

∫ ℓ∏

1≤i≤j

dλij [G(λij)]
(d⊥−1−ℓ)/2 N (qi ‖, λij)∏m

j=1D
aj
j (q‖ i, λij)

= Ω̃
(ℓ)
d J[d‖]

∫ +∞

−∞

ℓ∏

i=1

d‖∏

j=1

dxj i

∫ ℓ∏

1≤i≤j

dλij [G(λij)]
(d⊥−1−ℓ)/2 N (xij , λij)∏m

j=1D
aj
j (xij , λij)

,

(2.54)

where Ω̃
(ℓ)
d absorbs, besides Ω

(ℓ)
d , the additional prefactor resulting from the angular

integrations. For instance, in the case N = 1, we have

Ω̃
(ℓ)
d = Ω

(ℓ)
d

∫
d(4−d‖)ℓΘ⊥ =

π−ℓ(ℓ+2n−3)/4

∏ℓ
i=1 Γ

(
d−n+i

2

) . (2.55)
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This parametrization of the integral enjoys some remarkable properties.
First of all, we observe that eq. (2.54) represents a d-dimensional Feynman integral

as a multiple integral over a number of variables which is equal to the total number of
scalar products nSP = ℓ(2n+ ℓ− 1)/2.

Secondly, the integration over x⊥ i has removed all vanishing terms, so that the
integral is free from any spurious contribution. In this perspective, it is interesting to
observe that the vanishing of all spurious terms is captured by one single master formula,
which corresponds to the orthogonality relation (2.53) of Gegenbauer polynomials.

Finally, once all angular integrations have been performed, the entire dependence of
the integrand on the dimensions d is absorbed in the exponent of the Gram determinant
G(λij), similarly to the d = 4− 2ǫ case. Therefore, also in d = d‖ + d⊥, we are able to
identify additional powers of G(λij) in the numerator with higher-dimensional integrals.

For instance, in the case N (qi) = G(λij) it is easy to verify from eq. (2.54) that

Id (ℓ ,n)a1 ... am [G(λij)] =
1

2ℓ

ℓ∏

i=1

(d⊥ − i+ 1)Id+2 (ℓ ,n)
a1 ... am [1] , (2.56)

where the d-dependent coefficient in the r.h.s. originates from the ratio of angular fac-

tors Ω̃
(ℓ)
d /Ω̃

(ℓ)
d+2.

As a concluding remark, we would like to comment on the connection between
the Gegengebauer polynomial expansion and the tensor integral decomposition in the
transverse space [50]. In the d = d‖ + d⊥ parametrization, the most general ℓ-loop
n-point integral with a non-trivial dependence on the transverse components x⊥ i can
be written in the form

∫ ℓ∏

i=1

ddqi

πd/2
f
(
q‖ i, λij

)



4∏

j=d‖+1

ℓ∏

k=1

(ej · λk)
αjk


 , αjk ∈ N , (2.57)

where we have collected in f
(
q‖ i, λij

)
the full dependence of the integrand on the

variables λij and on the longitudinal components of the loop momenta.
The integral (2.57) corresponds to a rank α =

∑
j k αjk tensor integral of the type

∫ ℓ∏

i=1

ddqi

πd/2
f
(
q‖ i, λij

)(
λν1
1 · · ·λνα

ℓ

)
, (2.58)

which can be reduced through the standard tensor decomposition technique. Remark-
ably, the tensor decomposition in the transverse space is significantly simpler than the
full d-dimensional tensor reduction, since no external momenta lies in the transverse
space and tensor integrals can only be projected onto the d⊥-dimensional metric tensor,

∫ ℓ∏

i=1

ddqi

πd/2
f
(
q‖ i, λij

)(
λν1
1 · · ·λνα

ℓ

)
=
∑

σ∈S
aσ P

νσ(1) ... νσ(α)
σ , (2.59)

where S is the set of non-equivalent permutations of the Lorentz indexes νi and Pσ is
the rank-α tensor

P
νσ(1) ... νσ(α)
σ = g

νσ(1)νσ(2)

[d⊥] · · · gνσ(α−1)νσ(α)

[d⊥] . (2.60)

The coefficients aσ can be determined in the traditional way, by contracting both sides
of the eq. (2.59) with each of the projector (2.60). Such contractions would produce,
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Figure 2.1: One- two- and three-loop four-point integrals.

on the l.h.s., terms proportional to λij and, on the r.h.s., a polynomial in d. There-
fore, consistently with the result of the Gegenbauer polynomial expansion, the tensor
decomposition eq. (2.57) will reduce the dependence on the transverse components of
the loop momenta to polynomial numerators in λij multiplying f

(
q‖ i, λij

)
.

As in the case of the explicit angular integration, the result of the tensor decompo-
sition in the transverse space solely depends on the number n of external legs and on
the powers of transverse loop momenta appearing in the numerator, while it is com-
pletely independent of the details of the integral under consideration. Hence transverse
integrals can be computed once and for all.

In the following, we use the integral representation (2.43) and apply the integra-
tion procedure described above in the case four-point integrals up to three loops. A
collection of general results for one- and two- loop integrals in all kinematic config-
urations, including a list of integrals over the transverse directions, can be found in
appendices A.2-A.3.

Example: four-point integrals

Let us consider the one- two- and three-loop four-point topologies depicted in figure 2.1.
The following discussion is independent of the one-shell condition of the external mo-
menta pi and of the presence of internal masses.

Due to momentum conservation p1 + p2 + p3 + p4 = 0, the external momenta span
a subspace with dimension d‖ = 3. Therefore, we can define a four-dimensional vector
basis E which contains one single transverse direction eα4 ,

pi · e4 = 0 ∀i = 1, 2, 3. (2.61)

Consistently, in all the three cases, we can decompose the d-dimensional loop momenta
according to eq. (2.34),

qαi = qα‖ i + λα
i , i = 1, . . . , ℓ , (2.62)

where qα‖ i is the three-dimensional longitudinal vector defined by

qα‖ i =
3∑

j=1

xji e
α
j , (2.63)

and λα
i is the transverse vector belonging to the d⊥ = (d − 3)-dimensional orthogonal

space,

λα
i = x4i e

α
4 + µα

i . (2.64)
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Upon this decomposition, all denominators become independent of the component x4i
of all loop momenta. The d‖ + d⊥ parametrization of the integrals can now be readily
obtained by specializing eqs. (2.43)-(2.49) to d‖ = 3 and, according to the case, ℓ =
1, 2, 3.

• One-loop: For the one-loop integral of figure 2.1(a), we have one single transverse
vector, with square norm λ11 ≡ λ2 and one angle θ, which parametrizes the
transverse direction x4,

x4 =
√
λ2 cos θ . (2.65)

The d = d‖ + d⊥ parametrization is

Id (1,4)a1 ...a4 [N ] =
1

π2Γ(d−4
2 )

∫
d3q‖

∫ ∞

0
dλ2(λ2)

d−5
2

∫ 1

−1
dcos θ(sin θ)d−6 N (q)∏4

m=1D
am
m (q)

.

(2.66)

Any polynomial dependence of the numerator on x4, hence on cos θ, can be simply
integrated through the orthogonality relation (2.53). In the case N=1, we obtain

Id (1,4)a1 ...a4 [1] =
1

π3/2Γ(d−3
2 )

∫
d3q‖

∫ ∞

0
dλ2(λ2)

d−5
2

1∏4
m=1D

am
m (q)

. (2.67)

The integrals of odd powers of x4, which would correspond to products of Gegen-
bauer polynomials with different indices, vanish by orthogonality. Even powers
of x4, due to eq. (2.65), are reduced to additional λ2 factors. For instance, let us
consider

Id (1,4)a1 ...a4 [x
2
4 ] =

1

π2Γ(d−4
2 )

∫
d3q‖

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
dcos θ

(sin θ)d−6(cos θ)2∏4
m=1D

am
m (q)

(2.68)

and

Id (1,4)a1 ...a4 [x
4
4 ] =

1

π2Γ(d−4
2 )

∫
d3q‖

∫ ∞

0
dλ2(λ2)

d−1
2

∫ 1

−1
dcos θ

(sin θ)d−6(cos θ)4∏4
m=1D

am
m (q)

.

(2.69)

Powers of cos θ are express in terms of Gegenbauer polynomials as (see appendix A.4)

(cos θ)2 =
1

(d− 5)2
[C

( d−5
2

)

1 (cos θ)]2, (2.70a)

(cos θ)4 =
1

(d− 3)2

[
C

( d−5
2

)

0 (cos θ) +
4

(d− 5)2
C

( d−5
2

)

2 (cos θ)

]2
, (2.70b)

where the index α = (d−5)/2 has been set in order to match the integration kernel
(sin θ)d−6 of eq. (2.66) with the weight function appearing in the orthogonality
relation (2.53). The latter is used to obtain

Id (1,4)a1 ...a4 [x
2
4 ] =

1

d− 3
Id (1,4)a1 ...a4 [λ

2 ] =
1

2
Id+2 (1,4)
a1 ...a4 [1], (2.71a)

Id (1,4)a1 ...a4 [x
4
4 ] =

3

(d− 3)(d− 1)
Id (1,4)a1 ...a4 [λ

4 ] =
3

4
Id+4 (1,4)
a1 ...a4 [1]. (2.71b)
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As we have already observed, additional powers of λ2 ≡ G(λ2) in the numerator
can be identified with higher-dimensional integrals. The rational prefactors arising
in the second equality of both eqs. (2.71a) an (2.71b) can be easily derived from
the comparison with eq. (2.67), through the shifts d → d + 2 and d → d + 4,
respectively.

• Two-loop: The transverse space of the four-point topology shown in figure 2.1(b)
is described by the norms λ11 and λ22, and by three angles θ12, θ11 and θ22, which
parametrize, respectively, the relative orientation of the vectors λ1 and λ2 and the
transverse directions x41 and x42 of the two loop momenta.

The mapping between angular variables and the loop components is In this case,(2.50)
reads





λ12 =
√
λ11λ22cθ12

x41 =
√
λ11cθ11

x42 =
√
λ22(cθ11cθ12 + sθ11sθ12cθ22) ,

(2.72)

where, for ease of notation, we have identified cθij = cos θij and sθij = sin θij . The
corresponding d = d‖ + d⊥ parametrization reads

Id (2,4)a1 ...a7 [N ] =
2d−6

π5Γ(d− 5)

∫
d3q‖ 1d

3q‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

∫ 1

−1
dcθ12dcθ22dcθ11 (sθ12)

d−6 (sθ11)
d−6(sθ22)

d−7 N (qi)∏7
m=1D

am
m (qi)

. (2.73)

In the N = 1 case, the integration over the transverse angles θ12 and θ22 yields to

Id (2,4)a1 ...a7 [ 1 ] =
2d−5

π4Γ(d− 4)

∫
d3q‖ 1d

3q‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

∫ 1

−1
dcθ12 (sin θ12)

d−6 1∏7
m=1D

am
m (qi)

. (2.74)

Through the change of variables (2.72), any numerator depending on x41 and x42
is transformed into a polynomial in cθij and sθij , with coefficients depending on
λij , which can be again integrated in terms of Gegenbauer polynomials.

For instance, rank-2 monomials in x41 and x42 produce

Id (2,4)a1 ...a7 [x4ix4j ] =
1

d− 3
Id (2,4)a1 ...a7 [λij ] , i, j = 1, 2 . (2.75)

Results for higher rank numerators are listed in appendix A.3.

• Three-loop: Finally, we consider the tennis-court topology shown in figure
eq. 2.1(c). The transverse space is parametrized in terms of the variables Λ =
{λ11, λ22, λ33, θ12, θ13, θ23} and Θ⊥ = {θ11, θ22, θ33}, which are related to the com-
ponents of the loop momenta through the transformation





λ12 =
√
λ11λ22cθ12

λ23 =
√
λ22λ33cθ13

λ13 =
√
λ11λ33(cθ12cθ13 + sθ12sθ13cθ23)

x41 =
√
λ11cθ11

x42 =
√
λ22(cθ11cθ12 + sθ11sθ12cθ22)

x43 =
√
λ33(cθ11cθ12cθ13 + sθ11sθ12cθ22cθ13 − sθ11sθ13cθ12cθ22cθ23

+sθ12sθ13cθ11cθ23 + sθ11sθ13sθ22sθ23cθ33) .

(2.76)
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In d = d‖ + d⊥, the integral is parametrized as

Id (3,4)a1 ...a10 [N ] =
2d−7

π8Γ(d− 6)Γ
(
d−4
2

)
∫ 3∏

i=1

d3q‖ i

∫ ∞

0

3∏

i=1

dλii(λii)
d−5
2 ×

∫ 1

−1

∏

1≤i≤j≤3

dcθij (sθij )
d−5−i N (qi)∏9

m=0D
am
m (qi)

, (2.77)

which, in the N = 1 case, reduces to

Id (3,4)a1 ...a10 [ 1 ] =
2d−5

π13/2Γ(d− 4)Γ
(
d−5
2

)
∫ 3∏

i=1

d3q‖ i

∫ ∞

0

3∏

i=1

dλii(λii)
d−5
2 ×

∫ 1

−1

∏

1≤i<j≤3

dcθij (sθij )
d−5−i 1∏10

m=1D
am
m (qi)

. (2.78)

Higher-rank numerators in the transverse variables x4i can be integrated via the
orthogonality relation (2.53). For example, similarly to the previous case, at rank-
2 we find

Id (3,4)a1 ...a10 [x4ix4j ] =
1

d− 3
Id (3,4)a1 ...a10 [λij ] , i, j = 1, 2, 3 . (2.79)

2.3.2 Factorized integrals and ladders

p1

p2 p3

p4
q1 q2

(a)

q1 q2 q3

p1

p2 p3

p4

(b)

Figure 2.2: Two-loop factorized topology and three-loop ladder topology.

Whenever the set of denominators characterizing a multi-loop integral is independent
of a certain number of scalar products λij , with i 6= j, (i.e. on some angles θij ∈ ΘΛ),
the d = d‖ + d⊥ parametrization defined in eq. (2.43) admits a further simplified form.

In fact, in such cases, the dependence of the integrand on λij is reduced to a poly-
nomial one, which is then mapped into a polynomial in sθij and cθij by the change of
variables (2.50). Therefore, the same integration via expansion in Gegenbauer polyno-
mials applied to the transverse angles Θ⊥, can be used also for any θij ∈ ΘΛ which
does not appear in the denominators.

This simplification occurs for two different types of integral topologies: factorized
integrals, where there exists one or more loop momenta qi such that the denominators
are independent of qi · qj , for all j 6= i, and ladder integrals, where the full set of
denominators is independent on at least one scalar product qi ·qj , for some j 6= i. In the
following, we discuss the simplified d = d‖+ d⊥ parametrization for these two classes of
integrals, by working on explicit examples.
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Factorized integrals

When the loop corresponding to qαi is factorized, no denominator depends on qi ·qj , with
j 6= i. In general, whether a factorized integral originates from a Feynman diagram or
as a subtopology of a non-factorized integral, the integrand is not necessarily fully
factorized, since the numerator could still depend on the (d − 4)-dimensional part of
qi · qj , corresponding to µij .

Nevertheless, it can be shown that, after integrating over µij , by means of the or-
thogonality relation (2.53), the d = d‖ + d⊥ parametrization of a factorized integral is
given by the product of the d = d‖+d⊥ parametrizations of the integrals corresponding
to the subtopologies. Remarkably, the transverse space of the factorized sub-integrals
can have a different dimensions, according to the number of external legs attached to
them.

As an example, let us consider the two-loop bowtie integral of the type shown in
figure 2.2 (a). Before defining the longitudinal and transverse variables associated to
this integral, we consider its d = 4− 2ǫ parametrization, which according to eq. (2.22),
reads

I
d (2 ,4)
bowtie [N ] =

2d−6

π5Γ(d− 5)

∫
d4q[4] 1d

4q[4] 2

∫ ∞

0
dµ11

∫ ∞

0
dµ22×

∫ √
µ11µ22

−√
µ11µ22

dµ12(µ11µ22 − µ2
12)

d−7
2

N (q1, q2)∏3
i=1Di(q1)

∏6
j=4Dj(q2)

. (2.80)

As we have explicitly indicated, the loop denominators depend either on q1 or q2 and,
hence, are independent of µ12. The most general numerator associated to this integral
can always be written as a combination of terms of the form

N (q1, q2) = (µ12)
aN1(q1)N2(q2), a ∈ N. (2.81)

Therefore, the integral over µ12 can be performed trivially, and the dependence of the
full integrand on q1 and q2 can be completely factorized. In particular, by introducing
the change of variable cos θ = µ12/

√
µ11µ22, we can cast the µ12 integral in the standard

angular integral given in eq. (2.52), which can be evaluated by means of the by-now
usual orthogonality relation (2.53),

∫ 1

−1
dcos θ(sin θ)d−7(cos θ)a =




0 for a = 2n+ 1
Γ(a+1

2 )Γ( d−5
2 )

Γ( d+a−4
2 )

for a = 2n.
(2.82)

As one could expect, odd powers of µ12 produce vanishing contributions. In non-trvial
cases with a = 2n, we apply eq. (2.82) to the integral (2.81) and identify

I
d (2 ,4)
bowtie [ (µ12)

aN1N2] =

(a− 1)! !




a/2∏

k=1

1

(d− 6 + 2k)



∫

ddq1

πd/2

(µ11)
a
2N1∏3

i=1Di(q1)
×
∫

ddq2

πd/2

(µ22)
a
2N2∏6

j=4Dj(q2)
. (2.83)

where a! ! is the double factorial a! ! = a(a − 2) · · · 4 · 2. The coefficient appearing in
the r.h.s. is deduced by comparison with the d = 4 − 2ǫ parametrization of one-loop
integrals, given in eq. (2.22).

Each of two one-loop integrals admits now a d = d‖ + d⊥ parametrization (2.43).
The decomposition can be implemented by working with two different momentum bases,
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each one containing two vectors orthogonal to the external legs connected to the corre-
sponding loop. In this case, the factorized graph is obtained from the product of two
identical subtopologies (i.e. we have d‖ = 2 for both integrals) but, in general, factor-
ized subtopologies may have a different number of external legs and, hence, longitudinal
space of different dimensions. These results can be, of course, extended to an arbitrary
number of loops.

Ladder integrals

Starting from a number of loops ℓ ≥ 3, ladder topologies correspond to integrals which
denominators depend on a limited number variables λij . In these cases, the d = d‖+d⊥
parametrization (2.43) reads exactly as in the general case (2.43) but the integration in
terms of Gegenbauer polynomials can be extended to the subsets of angles ΘΛ corre-
sponding to the λij which do not appear in the denominators.

As an example, we consider the three-loop four-point ladder box shown in fig-
ure 2.2 (b), for which we introduce the same set of transverse variables as for the
three-loop integral discussed in the previous section,

Λ = {λ11, λ22, λ33, θ12, θ13, θ23} , Θ⊥ = {θ11, θ22, θ33} , (2.84)

and we parametrize the integral exactly as in eq. (2.77). The denominators of this
ladder integral are independent of q1 · q3, i.e. on λ13. Hence, as it can be seen from the
change of variables given in eq. (2.76), θ23 can only appear in the numerator in terms
of the type

N (q1, q2, q3) = (cos θ23)
a (sin θ23)

bÑ (q1, q2, q3), α , β ∈ N. (2.85)

with Ñ independent of θ23. Therefore, the integration over θ23 is reduced to the standard
angular form of eq. (2.52), and yields to

∫ 1

−1
dcos θ23 (sin θ23)

d−7−b (cos θ23)
a =




0 for a = 2n+ 1
Γ(a+1

2 )Γ( d−5+b
2 )

Γ( d+a+b−4
2 )

for a = 2n.
(2.86)

For instance, in the a = b = 0, this additional integration returns

I
d (3 ,4)
4 ladder[ 1 ] =

2d−5

π6Γ(d− 4)Γ
(
d−4
2

)
∫ 3∏

i=1

d3q‖ i

∫ ∞

0

3∏

i=1

dλii(λii)
d−5
2 ×

∫ 1

−1
dcθ12 dcθ13 (sθ12)

d−6 (sθ13)
d−6 1∏10

m=1Dm(qi)
. (2.87)

2.4 Baikov representation

In section 2.3.1 we have shown that, after integrating over the transverse directions, the
d = d‖ + d⊥ parametrization of Feynman integrals reduces to a multiple integral over
the longitudinal components of the loop momenta and the scalar products between the
transverse vectors λα

i ,

Id (ℓ ,n)a1 ... am [N ] = Ω̃
(ℓ)
d

∫ ℓ∏

i=1

dn−1q‖ i

∫ ℓ∏

1≤i≤j

dλij [G(λij)]
(d⊥−1−ℓ)/2 N (qi ‖, λij)∏m

j=1D
aj
j (q‖ i, λij)

.

(2.88)
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As we have already observed, the number of integration variables that appear in eq. (2.88)
matches the total number nSP = ℓ(ℓ + 2n − 1)/2 of scalar products between loop mo-
menta and external ones,

sij =qi · pj , i = 1, . . . , ℓ , j = 1, . . . , n− 1 ,

s̃ij =qi · qj , 1 ≤ i ≤ j ≤ ℓ . (2.89)

Therefore, we can perform a variables transformation on eq. (2.88) and express a Feyn-
man integral as a multidimensional integral over the scalar products sij and s̃ij . Ulti-
mately, because of the existence of an invertible, linear mapping between scalar prod-
ucts, loop denominators and ISPs, it is possible to use as integration variables the loop
denominators themselves.

In this section, we derive this alternative parametrization of Feynman integrals,
which was first proposed by Baikov [55–57], by starting from eq. (2.88) and we discuss
its most relevant features, which emerged from recents studies of its application to IBPs,
differential equations and unitarity cuts [58–63]. For an alternative derivation, we refer
the reader to [124]. In the following we indicate with G(v1, v2, . . . , vn) ≡ G(vi) the
determinant of the Gram matrix G(v1, v2, . . . , vn).

First of all, we observe that the volume element of the space spanned by the scalar
products sij can be written as

dsi1dsi2 · · · dsi n−1 =

√√√√det

(
∂sij
∂qα‖ i

∂sik
∂q‖ i α

)
dn−1q‖ i =

√
det (pj · pk) dn−1q‖ i

=
√
G(p1, p2, . . . , pn−1) d

n−1q‖ i . (2.90)

Therefore, we can express the integral over the longitudinal components of the i-th loop
momentum as

∫
dn−1q‖ i =

∫
dsi1dsi2 · · · dsi n−1√
G(p1, p2, . . . , pn−1)

. (2.91)

In addition, since s̃ij = q‖ i · q‖ j + λij , the mapping between λij and s̃ij has a trivial
Jacobian,

∫ ℓ∏

1≤i≤j

dλij =

∫ ℓ∏

1≤i≤j

ds̃ij . (2.92)

The Gram determinant of the transverse vectors λα
i can be expressed in terms of the

scalar products as the ratio of Gram determinants,

G(λij) =
G(q1, . . . , qℓ, p1, . . . , pn−1)

G(p1, p2, . . . , pn−1)
. (2.93)

In fact, we observe that any contribution to the Gram determinant of the longitudinal
part of the loop mommenta qαi cancels, since it is linearly dependent on the external
kinematics. Hence, we can write

G(q1, . . . , qℓ, p1, . . . , pn−1) = G(λ1, . . . , λℓ, p1, . . . , pn−1) . (2.94)
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In addition, due to the transversality condition λi·pj = 0, the Gram matrix G(λ1, . . . , λℓ, p1, . . . , pn−1)
is block-diagonal,

G(λ1, . . . , λℓ, p1 , . . . , pn−1) =

(
G(λ1, . . . , λℓ) 0

0 G(p1 , . . . pn−1)

)
, (2.95)

and, thus, by recalling that the determinant of a block-diagonal matrix is equal to the
product of the determinants of the individual blocks, we can write

det (G(λ1, . . . , λℓ, p1 , . . . pn−1)) = det (G(λ1, . . . , λℓ)) det (G(p1 , . . . pn−1)) , (2.96)

which, exactly proves eq. (2.93).

We can now combine eqs. (2.91)-(2.93) and rewrite the integration measure of
eq. (2.88) as

∫ ℓ∏

i=1

dn−1q‖ i

∫ ℓ∏

1≤i≤j

dλij [G(λij)]
(d⊥−1−ℓ)/2

=

∫ ℓ∏

i=1

dsi1dsi2 · · · dsi n−1√
G(p1, p2, . . . , pn−1)

∫ ℓ∏

1≤i≤j

ds̃ij

(
G(q1, . . . , qℓ, p1, . . . , pn−1)

G(p1, p2, . . . , pn−1)

)(d⊥−1−ℓ)/2

=(G(pi))
(1−d⊥)/2

∫ ℓ∏

i=1

n−1∏

j=1

dsij

∫ ℓ∏

1≤i≤j

ds̃ij (G(q1, . . . , qℓ, p1, . . . , pn−1))
(d⊥−1−ℓ)/2 ,

(2.97)

in such a way to obtain a parametrization of the Feynman integral I
d (ℓ ,n)
a1 ... am in terms of

the scalar products sij and s̃ij ,

Id (ℓ ,n)a1 ... am [N ] =Ω̃
(ℓ)
d (G(pi))

(1−d⊥)/2
∫ ℓ∏

i=1

n−1∏

j=1

dsij×

∫ ℓ∏

1≤i≤j

ds̃ij (G(q1, . . . , qℓ, p1, . . . , pn−1))
(d⊥−1−ℓ)/2 N (sij , s̃ij)∏m

j=1D
aj
j (sij , s̃ij)

,

(2.98)

where d⊥ = d− n+ 1.

As a final step, we introduce a new set of nSP = ℓ(ℓ + 2n − 1)/2 variables zi,
which correspond to the denominators Di and the ISPs Si that characterize the integral
topology,

zi =

{
Di , i = 1 , . . . ,m

Si−m , i = m+ 1 , . . .m+ r .
(2.99)

As it is obvious for the ISPs and as it can be seen for the denominators from their very
definition (2.2), the relation between zi and the scalar products sij and s̃ij is linear, i.e.
if we introduce the vectors z = {z1, . . . , zm+r} and s = {sij , s̃ij}, we can write

z = A s+ c , (2.100)

with A being an invertible matrix and c a vector which depends on the internal masses
and kinematic invariants.
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Therefore, from eq. (2.98) we can immediately obtain the Baikov parametrization of
the Feynman integral

Id (ℓ ,n)a1 ... am [N ] =C(ℓ ,n)(d) (G(pi))
(1−d⊥)/2

∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2 N (zi)

za11 · · · zamm
, (2.101)

where C(ℓ ,n)(d) a normalization factor, defined by

C(ℓ ,n)(d) = Ω̃
(ℓ)
d det

(
A
−1
)
, (2.102)

and G(zi), which is often referred to as Baikov polynomial, corresponds to the Gram
determinant of loop and external momenta, expressed in terms of the zi variables ,

G(zi) = G(q1, . . . , qℓ, p1, . . . , pn−1)|s=A−1(z−c) . (2.103)

The integration bounds of eq. (2.101) are inherited from the positivity condition λii ≥ 0
and G(λij) ≥ 0 of the d = d‖ + d⊥ parametrization of eq. (2.46), once expressed in
terms of the zi.

According to the specific dependence of the integrand on the zi variables or, equiv-
alently on the scalar products sij and s̃ij , the integral representations of eqs. (2.101)-
(2.98) can be further simplified. In fact, analogously to the case examined in sec-
tion 2.3.2, whenever the loop denominators become independent on some variable, the
latter can be integrated away with elementary techniques, so to minimize the number
of integration variables that parametrize the integrand.

Alternatively to the direct integration of redundant variables, it is possible to ob-
tain a representation in terms of a minimal number variables by recursively applying
the Baikov representation to each individual loop momentum [60]. In this way, the
integration measure of the Feynman integral is written as product of Gram determi-
nants, where individual loop momenta can play the role external momenta of the other
sub-loops. Let us illustrate this construction on a simple two-loop example.

Example 1

Let us consider the massless two-loop sunrise integral family defined by

p

m

m

m

= I
d (2,2)
a1 a2 a3 b1 b2

=

∫
ddq1

πd/2

ddq2

πd/2

S−b1
1 S−b2

2

Da1
1 Da2

2 Da3
3

, (2.104)

where p is the external momentum (p2 6= 0), the three loop denominators are defined
by

D1 = q21 , D2 = q22 , D3 = (q2 − q1 + p)2 , (2.105)

and the ISPs are chosen to be the quadratic forms

S1 = (p− q1)
2 , S2 = (q2 + p)2 . (2.106)

If we identify zi = Di, for i = 1, 2, 3 and z4 = S1, z5 = S2, the Baikov representation of

the scalar bubble I
d (2,2)
1 1 1 0 0 reads, according to eq. (2.101),

I
d (2,2)
1 1 1 0 0 = C(2 ,2)(d) (G(p))(2−d)/2

∫ 5∏

i=1

dzi
(G(z1, z2, z3, z4, z5))

(d−4)/2

z1z2z3
, (2.107)
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where G(z1, z2, z3, z4, z5) is the Gram determinant G(q1, q2, p) expressed in terms of the
zi variables. Hence, we have obtained, consistently with nSP = 5, a five-fold integral
representation of the sunrise integral. However, we observe that, for b1 = b2 = 0, the
integrand of eq. (2.104) does not depend, separately, on all five scalar products, since
q2 · p and q2 · q1 only appear in the combination q2 · (p − q1) in the definition of D3.
Therefore, it must be possible to obtain a representation of the integrand in terms of
four variables only.

Indeed, if we formally rewrite

I
d (2,2)
1 1 1 0 0 =

∫
ddq1

πd/2

1

D1

∫
ddq2

πd/2

1

D2D3
, (2.108)

we can recognize the q2 integral as a one-loop bubble with external momentum (p−q1).
Therefore, we can first introduce the Baikov representation (2.101) of the q2 integral,
in terms of an integral over the denominators z2 and z3,

I
d (2,2)
1 1 1 0 0 = C(1 ,2)(d)

∫
ddq1

πd/2

1

D1
(G(p− q1))

(2−d)/2
∫

dz2dz3
(G(z2, z3, z4))

(d−3)/2

z2z3
,

(2.109)

where G(p − q1) = (p − q1)
2 = z4 is the external momentum of the q2 bubble and

G(z2, z3, z4) is the the Gram determinant G(p − q1, q2) expressed in terms of the vari-
ables z1 , z2 and z4.

The remaining q1 integral depends on q21 and q1 · p, i.e. on z1 and z4.
Hence, we can parametrize the integral over q1 again as a one-loop bubble, with external
momentum p, and obtain

I
d (2,2)
1 1 1 0 0 = C(1 ,2)(d)C(1 ,2)(d) (G(p))(2−d)/2×

∫ 4∏

i=1

dzi
z
(2−d)/2
4 (G(z2, z3, z4))

(d−3)/2 (G(z1, z4))
(d−3)/2

z1z2z3
, (2.110)

with G(z1, z4) being G(q1, p) expressed in terms of z1 and z4. �

The above example shows that, according to the symmetry of the integrand, it
is possible to obtain a representation of a Feynman integral in terms of a minimum
number of variables, by applying the Baikov parametrization (2.101) sequentially to
each loop. This is, of course, particularly desirable if we need to perform explicitly all
integrations, as we will see in chapter 9, where we will examine in more detail the loop-
by-loop parametrization of different two- and three-loop integrals. Finally, we observe
that, although it is possible to recover eq. (2.110) from the integration over z5 of the
standard Baikov representation (2.107) (see [60] for a detailed discussion), the loop-by-
loop approach allows to minimize the number of integration variables in a much simpler
way.

2.5 Feynman integral identities in finite dimensional rep-

resentations

In the previous two sections, we have derived different (but equivalent) representations
of d-dimensional Feynman integrals as multiple integrals over a finite number of vari-
ables, which corresponds to the total number of scalar products nSP the integral may



2.5. Feynman integral identities in finite dimensional representations 35

depend on. In addition, we have seen how to further reduce the number of integration
variables in the presence of additional symmetries of the integrand. It is particularly
interesting to study how the identities between Feynman integrals, which we discussed
in section 2.1 in the usual momentum-space representation, are translated in these finite
dimensional representations of the loop integrals.

First of all, we observe that the integral representations of eqs. (2.54)-(2.98) and (2.101)
share a common structure. In fact, if we collectively label with y the kinematic invari-
ants and x the integration variables, we can write the general expression of the Feynman
integral (2.1) as

Id (ℓ ,n)a1 ... am [N ] = C(d,y)

∫
dxG(x,y)(d⊥−1−ℓ)/2R(x,y) , (2.111)

where, for instance, x = {x‖ i, λij} in the d = d‖ + d⊥ parametrization (2.54), x =
{sij , s̃ij} in the scalar products representation (2.98) and x = z in the Baikov represen-
tation (2.101).

In eq. (2.111), P (x,y) stands for the polynomial that originates from the expression
of G(λij) in the corresponding set of variables and R(x,y) is the integrand

R(x,y) =
N (x,y)

Da1
1 (x,y) · · ·Dam

m (x,y)
. (2.112)

2.5.1 Integration-by-parts

In the finite dimensional representation (2.111), IBPs correspond to exact differential

forms, i.e. the most general IBP identity involving I
d (ℓ ,n)
a1 ... am can be written as a linear

combination of total derivatives w.r.t. any of the integration variables x,

∫
dx

nSP∑

i=1

∂

∂xi

(
vi(x,y)G(x,y)(d⊥−ℓ−1)/2R(x,y)

)
= 0 . (2.113)

In eq. (2.113) vi(x,y) are arbitrary polynomials in the loop variables x, which play an
analogous role to vectors vα in the traditional IBPs defined in eq. (2.12). Their choice
can be used to select specific classes of IBPs. In order to illustrate this point, let us
consider a simple example.

Example 2

We consider a one-loop massive bubble integral with arbitrary external momentum p,

Id (1,2)a1 a2 =
p

m2

m1

=

∫
ddq

πd/2

1

Da1
1 Da2

2

, (2.114)

where the denominators are defined as

D1 = q2 −m2 , D2 = (q + p)2 −m2 . (2.115)

For p2 6= 0, d‖ = 1 and, if we decompose the loop momentum as qα = qα‖ + λα, with

qα‖ = x1 p
α, we can write the d = d‖ + d⊥ parametrization (2.54) as

Id (1,2)a1 a2 = Ω̃
(ℓ)
d J[1]

∫ +∞

−∞
dx1

∫ ∞

0
dλ2 (λ

2)
d−3
2

Da1
1 Da2

2

, (2.116)
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with

D1 = x21p
2 −m2 + λ2,

D2 = (1 + x1(x1 + 2))p2 −m2 + λ2. (2.117)

According to eq. (2.113), the most general IBP for I
d (1,2)
a1 a2 is

0 = Ω̃
(ℓ)
d J[1]

∫ +∞

−∞
dx1

∫ ∞

0
dλ2

[
∂x1vx1(x1, λ

2) + ∂λ2vλ2(x1, λ
2)
] (λ2)

d−3
2

Da1
1 Da2

2

= Ω̃
(ℓ)
d J[1]

∫ +∞

−∞
dx1

∫ ∞

0
dλ2

(
∂x1vx1 + ∂λ2vλ2 − a1

vx1∂x1D1 + vλ2∂λ2D1

D1
+

− a2
vx1∂x1D2 + vλ2∂λ2D2

D2
+

(
d− 3

2

)
vλ2

λ2

)
(λ2)

d−3
2

Da1
1 Da2

2

,

(2.118)

where vx1 and vλ2 are two arbitrary polynomials in x1 and λ2. We observe that the
last term in eq. (2.118), which is proportional to 1/λ2, would correspond, according
to eq. (2.25), to an integral in (d − 2) space-time dimensions. Hence, the above IBP
involves, in general, integrals in different dimensions. However, it is clear that by
choosing vλ2 ∼ λ2 we are able to select IBPs which involve d-dimensional integrals
only. For instance, by picking vx1 = x1 and vλ2 = 2λ2 and by explicitly computing
derivatives, eq. (2.118) we obtain the IBP

(d− 2a1 − a2)I
d (1,2)
1 1 − a2I

d (1,2)
0 2 − 2m2a1I

d (1,2)
2 1 − (2m2 − p2)a2I

d (1,2)
1 2 = 0. (2.119)

whose validity can be checked verified from the traditional IBPs (2.12). �

Integration-by-parts in Baikov representation

Eq. (2.111) can be used in order to produce particular classes of IBPs which, for in-
stance, do not enhance the powers of the loop denominators. This possibility is more
transparent in the Baikov representation, where the denominators are directly used
as integration (and, hence, differentiation) variables. In order to illustrate this point
let us specialize eq. (2.111) to the Baikov representation, and absorb any polynomial
numerator N (zi) into the definition of the IBPs polynomials vzi ,

C(d)(ℓ,n) (G(pi))
(1−d⊥)/2

∫ nSP∏

k=1

dzk

[ nSP∑

i=1

∂i

(
vzi (G(zj))

(d⊥−1−ℓ)/2

za11 · · · zamm

)
= 0 , (2.120)

where we have indicated ∂i ≡ ∂/∂zi . We can now observe that:

- If we restrict, in eq. (2.120), the sum over the partial derivatives w.r.t. the ISPs
zm+1, . . . znSP

,

C(d)(ℓ,n) (G(pi))
(1−d⊥)/2

∫
dz1 · · · dznSP

za11 · · · zamm

nSP∑

i=m+1

∂i

(
vzi (G(zj))

(d⊥−1−ℓ)/2
)
= 0 ,

(2.121)

we can generate IBPs which involve I
d (ℓ ,n)
a1 ... am and its subtopologies but do not produce

any term with higher powers of denominators;
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- In particular, it is interesting to observe that, since G(zj) is polynomial, it exists some

positive integer k such that ∂
(k)
i G(zj) = 0. Thus we can choose vi = ∂

(k−1)
i G(zj) and

vzj = 0, for every j 6= 0 and obtain

I
d (ℓ,n)
a1···am

[
∂
(k−1)
i G(zj) ∂iG(zj)

]
= 0 , i = m+ 1, . . . , nSP . (2.122)

In other words, N (zj) = ∂
(k−1)
i G(zj) ∂iG(zj) is a spurious numerator which can pro-

duce a non-trivial d-independent identity which does not enhance the powers of the
loop denominators. Additional identities, involving d, can be systematically generated
by considering mixed derivative of the Baikov polynomial w.r.t. the ISPs;

- A more general analysis, which takes into account the differentiation w.r.t. the loop
denominators, has been presented in [58], where it has been shown how to systemat-
ically determine the IBP polynomial vzi in order to select IBPs that do not involve
either lower-dimensional integrals or higher powers of denominators. If we expand the
derivatives in eq. (2.120),

0 = C(d)(ℓ,n) (G(pi))
(1−d⊥)/2

∫ nSP∏

k=1

dzk

[ nSP∑

i=1

(
∂i vzi +

(
d⊥−1−ℓ

2

)
vzi

G(zj)
∂iG(zj)

)

−
m∑

i=1

ai
vzi
zi

]
(G(zj))

(d⊥−1−ℓ)/2

za11 · · · zamm
, (2.123)

we observe that, as a generalization of the case discussed in the Example 2, the term
proportional to G(zj)

−1 would correspond to lower-dimensional integrals. Hence, the
full d-dimensionality of the IBP can be restored by demanding

nSP∑

i=1

vzi∂iG(zj) = v G(zj) , (2.124)

where v is some polynomial. In addition, as it is clear from the last term in square
brackets, we can avoid the presence of integrals with higher-powers of denominators
if we choose vzi ∼ zi for all zi which correspond to a denominator,

vzi = ωzi zi , i = 1, . . . ,m (2.125)

Hence, if we combine eqs. (2.124)-(2.125),

m∑

i=1

ziωzi∂iG(zj) +

nSP∑

i=m+1

vzi∂iG(zj)− v G(zj) = 0 , (2.126)

we obtain a single condition which yields to d-dimensional IBPs which leave the pow-
ers of the loop denominators unchanged. In eq. (2.126) both G(zj) and ∂iG(zj) are
polynomials in the integration variables and the unknowns v, vzi and ωzi are polyno-
mials as well. This types of equations are known as syzygy equations and they were
first introduced in the generation of IBPs without square propagators in [130]. Syzygy
solutions can be efficiently determined with several computer algebra systems, such
as Singular [131] and Macaulay2 [132] and an IBPs reduction code, based the
construction (2.123), is implemented in the Mathematica package Azurithe [133].

A similar analysis on the systematic way to select IBPs by a proper construction of
IBP vectors (polynomials), in the framework of numerical unitarity, can be found
in [59].
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2.5.2 Sector symmetries

In section 2.1.3, we have seen that particular shifts of the loop momenta

qαi −→ (A)ijq
α
j + (B)ijp

α
j , (2.127)

can produce relations between integrals belonging to the same sector. In Baikov repre-
sentation, the algebraic interpretation of such sector symmetries is particularly clear. In
fact, from eq. (2.101) it is evident that a sector symmetry must correspond to a linear
transformation L of the zi variables

zi −→ L(zi) (2.128)

such that

- L(zi) acts on the denominators as a pure permutation;

- L(zi) leaves the Baikov polynomial G(zi) unchanged.

In order to illustrate this two features on a simple example, let us consider again the
two-loop massless sunrise discussed in the Example 1.

Example 3

In order to simplify the discussion, we rewrite the Baikov representation of the massless
sunrise defined in eq. (2.104),

I
d (2,2)
1 1 1 0 0 = C(2 ,2)(d) (G(p))(2−d)/2

∫ 5∏

i=1

dzi
(G(z1, z2, z3, z4, z5))

(d−4)/2

z1z2z3
, (2.129)

by choosing as ISPs the linear forms

z4 = q1 · p , z5 = q2 · p . (2.130)

With this choice, the explicit expression of the Baikov polynomial is

G(z1, z2, z3, z4, z5) =z5z4(s+ z1 + z2 − z3 − 2z4 + 2z5)+

− 1

4
s(s+ z1 + z2 − z3 − 2z4 + 2z5)

2 + sz1z2 − z2z
2
4 − z1z

2
5 .

(2.131)

The scalar sunrise integral I
d (2,2)
1 1 1 0 0 is invariant under a set of 5 different re-parametrizations

of the loop momenta

{q1 → q1 , q2 → q1 − q2 − p} ,
{q1 → q2 − q1 + p , q2 → −q1} ,
{q1 → q2 − q1 + p , q2 → q2} ,
{q1 → −q2 , q2 → −q1} ,
{q1 → −q2 , q2 → q1 − q − 2− p} , (2.132)

which can be easily generated with automated codes such as Reduze [134]. By starting
from the definition of the loop denominators, given in eq. (2.105) and of the ISPs (2.130),
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each of the above transformation can be mapped into a permutation of the denominators
z1, z2 and z3 and a linear transformation of the ISPs z4 and z5,

{z1, z2, z3} → {z1, z3, z2} , {z4, z5} → {z4, z4 − z5 − p2} ,
{z1, z2, z3} → {z3, z1, z1} , {z4, z5} → {−z4 + z5 + p2,−z4} ,
{z1, z2, z3} → {z3, z2, z1} , {z4, z5} → {−z4 + z5 + p2, z5} ,
{z1, z2, z3} → {z2, z1, z3} , {z4, z5} → {−z5,−z4} ,
{z1, z2, z3} → {z2, z3, z1} , {z4, z5} → {−z5, z4 − z5 − p2} . (2.133)

As expected, it can be checked that eqs. (2.133) correspond to symmetries of the Baikov
polynomial (2.131). Hence, by algorithmically applying to any polynomial numerator in
the ISPs the transformations (2.133), we can generate d-independent identities internal
to a single sector. For the case of the massless sunrise we have, up to rank-3,

I
d (2,2)
1 1 1−1 0 =

s

3
I
d (2,2)
1 1 1 0 0 ,

I
d (2,2)
1 1 1 0−1 = −s

3
I
d (2,2)
1 1 1 0 0 ,

I
d (2,2)
1 1 1−2 0 =

1

3

(
p4I

d (2,2)
1 1 1 0 0 + 6I

d (2,2)
1 1 1−1−1

)
,

I
d (2,2)
1 1 1 0−2 =

1

3

(
p4I

d (2,2)
1 1 1 0 0 − 6I

d (2,2)
1 1 1−1−1

)
,

I
d (2,2)
1 1 1 0−3 = −I

d (2,2)
1 1 1−3 0 ,

I
d (2,2)
1 1 1−1−2 =

1

6

(
p6I

d (2,2)
1 1 1 0 0 − 6p2I

d (2,2)
1 1 1−1−1 + 3I

d (2,2)
1 1 1−3 0

)
,

I
d (2,2)
1 1 1−2−1 = −1

6

(
p6I

d (2,2)
1 1 1 0 0 − 6p2I

d (2,2)
1 1 1−1−1 + 3I

d (2,2)
1 1 1−3 0

)
. (2.134)

�

2.6 Cut Feynman integrals

In the concluding section of this chapter, we introduce the concept of generalized cut of
a Feynman integral, which we will ubiquitously encounter in the rest of this thesis.

Roughly speaking, cutting a Feynman integral means to constrain one (or more) vir-
tual particles circulating in the loops to be on the mass-shell by replacing its propagator
by a proper δ-function.

The physical meaning of such operation draws its origin from the unitarity of the
scattering matrix SS† = 1, which expresses the conservation of probability in a scat-
tering process of a quantum system.

If we separate the actual interaction by rewriting S in terms of a transition matrix
T ,

S = 1 + i T , (2.135)

we immediately see that the unitarity of S imposes a relation between the imaginary
part of T and its square modulus,

−i(T − T †) = T T † . (2.136)
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We can relate eq. (2.136) to observable quantities by expressing it in terms of scattering
amplitudes, i.e. of the transition probabilities between an initial state pi and a final one
pf ,

Ai→f (s) = i 〈pf |T |pi〉 , (2.137)

where s collectively labels all the external state variables the amplitude depends on. In
fact, if we sandwich both sides of eq. (2.136) between the two states and we insert a
completeness relation

∑|px〉〈px|= 1 in the r.h.s., we obtain

Api→pf (s)−Api→pf (s
∗) =

∑∫

px

Api→px(s)Apx→pf (s
∗) , (2.138)

where the integral sum appearing in the r.h.s. stems for the sum over all continuous
and discrete degrees of freedom associated to the intermediate states px.

Eq. (2.138) establish a relation between the imaginary part of the amplitude Ai→f (s),
i.e. its discontinuity across a branch-cut determined from its physical thresholds, and
the sum over all possible states of the product of the partial amplitudes for the pro-
duction (decay) of the initial (final) states into such intermediate states. If we think of
a perturbative expansion of Ai→f (s), it is clear from simple power counting that the
above all-order relation generally connects different orders in perturbation theory, as
graphically depicted at one-loop in figure 2.3, for the case of the forward scattering
pi = pf , where eq. (2.138) reduces to the well-known optical theorem.

An important observation about eq. (2.138) is that, in order for Api→px to have a
physical meaning, all particles of the intermediate state px must be on-shell. This fact
acquires a quantitative meaning when the unitarity equation (2.138) (which holds at
the amplitude level) is turned, through the largest time equation [135], into a cutting
equation for the Feynman diagrams that contribute to Api→pf , which is graphically
depicted in figure 2.4.

In the figure, the diagrams lying in the shaded region, i.e. on the right of the dashed
lined, must be interpreted as complex conjugated and the (scalar) propagators crossed
by the dashed line are cut through the Cutkosky rule [10]

1

Dk
→ 2πiθ(l0k)δ(Dk) , (2.139)

which imposes the on-shellness of the particle propagating along the k-th line. In
eq. (2.139) l0k stems for the time component of the momentum lk which flows through
the propagator Dk (extensions of the Cutkosky rule for particles with spin are possible
but they are irrelevant for the present discussion).

2 Im =...
...1-loop

...
...tree

2

X
pi

Z
dφpi

pipi pi pipx

px

px1-loop

Figure 2.3: Optical theorem.

Given this prescription, we see that the cutting equation states that the real part
of a Feynman diagram, which by convention contributes to the imaginary part of the
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...
...

pi pf

= ...
...

pi pf

...
...

pi pf

+ −

X
cuts

Figure 2.4: Cutting equation for Feynman diagrams. Cut lines represents on-shell
particles, and their propagator is replaced by the Cutkosky rule. The diagrams in the
shaded region are understood as complex conjugated.

amplitude, can be obtained from the sum over all possible unitarity cuts of the diagram
itself. Hence unitarity cuts, i.e. cuts which split Feynman diagrams into two connected
pieces, allow a direct determination of the discontinuity of an amplitude across its
branch cuts.

This result might suggest that cutting more propagators can provide further infor-
mation about the structure of scattering amplitudes [14, 136, 137]. With this idea in
mind, we can extend the Cutkosky rule (2.139) and, given a m-denominator Feynman

integral I
d (ℓ ,n)
1 ... 1 [N ] (where we assume all denominators to be raised to power one), we

define the multiple-cut Dk1 = . . . Dks = 0 as the integral

Cutk1...ks

[
I
d (ℓ ,n)
1 ... 1 [N ]

]
=

∫ ℓ∏

j=1

ddqj

πd/2

N (qi)∏m
i 6=k1 ...ks

Di
δ(Dk1) · · · δ(Dks) . (2.140)

Although it is intended as a generalization of the standard unitarity cut (2.139), the
cutting operation defined by eq. (2.140) is not directly connected to any discontinuity of
the Feynman integral, since we gave the θ-function prescriptions which enforce physical
requirements on the energy of the cut propagators.

As we will discuss in detail in chapter 9, particular relevance shall be attributed
to the maximal-cut, i.e. to the simultaneous imposition of the on-shell condition to all
denominators which characterize the integral,

MCut
[
I
d (ℓ ,n)
1 ... 1 [N ]

]
=

∫ ℓ∏

j=1

ddqj

πd/2
N (qi)

m∏

i=1

δ(Dk) . (2.141)

It some cases, we might have to consider Feynman integrals with higher-powers of
denominators and, hence, it is advisable to have an operative definition of the cut of
a denominator Dk with ak > 1. One possibility consists in formally modifying the
mass the of the k-th propagator, m2

k → m̂2
k (so that m̂2

k is different from any other

mass the Feynman integral depends on) and observe that, from D̂k = l2k + m̂2
k, we can

immediately write

∂m̂2
k
Îd (ℓ ,n)a1 ... ak ... am [N ] = −ak Î

d (ℓ ,n)
a1 ... ak+1 ... am

[N ] , (2.142)

where Î stems for the Feynman integral with modified mass.
If we assume the cutting operation to be insensible to any differentiation, eq. (2.142)

allows us to write, recursively, the cut of a Feynman integral with arbitrary power of
propagators in terms of derivatives w.r.t. to internal masses of the cut of an analogous
integral with denominators raised to power one.

For instance, in the case ak = 2 we can define the cut of the k-th denominator as

Cutk

[
I
d (ℓ ,n)
1 ... 2 ... 1[N ]

]
= − lim

m̂2
k
→m2

k

∂m̂2
k
Cutk

[
Î
d (ℓ ,n)
1 ... 1 ... 1[N ]

]
. (2.143)
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At this level, an important observation is in order. As one could verify from direct
computation, conversely to the standard unitarity cut obtained through the Cutkosky
rules, multiple unitarity cuts do not admit, in general, a solution in terms of real loop
momenta, since it is not possible to determine real-valued solutions to the full set of
constraints imposed by the on-shell conditions.

In this sense, a more precise definition of generalized unitarity cuts, which naturally
assumes the loop momenta as complex variables, consists, rather than substituting a
denominator with a δ-function, in deforming the integration contour to a circle enclosing
the singularity Dk = 0,

∫
ddq

1

Dk(q)
→
∮

Dk=0
ddq

1

Dk
. (2.144)

Such a definition of generalized cut in terms of a contour integral becomes extremely
transparent in the Baikov representation [58–61, 63] introduced in section 2.4, where
we define the cut of the k-th propagator, with arbitrary power ak, as

Cutk

[
Id (ℓ ,n)a1 ... am [N ]

]
=C(ℓ ,n)(d) (G(pi))

(1−d⊥)/2
∫ nsp∏

i 6=k

dzi
N (zi)

za11 · · · zamm
×

∮

zk=0
dzk

(G(zj))
(d⊥−1−ℓ)/2

zakk
. (2.145)

In the case of a simple pole in zk, ak = 1, the above definition corresponds to the naive
prescription

1

zk
→ 2πi δ(zk) , (2.146)

while, in the case of higher-order poles, ak > 1, the calculation of the residue of
eq. (2.145) in zk = 0 involves, consistently with eq. (2.143), the evaluation deriva-
tives of the Baikov polynomial G(zi) w.r.t. zk.

The above definition can be used to compute the generalized unitarity cut of a
Feynman integrals corresponding to the vanishing any subset of its loop denominators.
In particular, in the Baikov representation, the maximal-cut (2.141) corresponds, for
arbitrary powers of denominators, to the multiple residue

MCut
[
Id (ℓ ,n)a1 ... am [N ]

]
=C(ℓ ,n)(d) (G(pi))

(1−d⊥)/2
∫ nsp∏

i=m+1

dzi

m∏

k=1

∮

zk=0
dzk (G(zj))

(d⊥−1−ℓ)/2 N (zi)

za11 · · · zamm
. (2.147)

From eq. (2.147) it is easy to see that, if all denominators are raised to power one, the
maximal-cut can be almost trivially obtained by evaluating (the integral of) the Baikov
polynomomial and the potential numerator N at the origin z1 = · · · = zm = 0 of the
hyperplane spanned by the loop denominators

MCut
[
I
d (ℓ ,n)
1 ... 1 [N ]

]
=(2πi)mC(ℓ ,n)(d) (G(pi))

(1−d⊥)/2×
∫ nsp∏

i=m+1

dzi (G(zj))
(d⊥−1−ℓ)/2N (zi)

∣∣∣∣
z1=···=zm=0

. (2.148)
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In chapter 9 we will examine several explicit examples of maximal-cut of Feynman inte-
grals up to three loops. For the time being, let us conclude with a couple of elementary
observations, which will later become of great importance:

- At one-loop level, where the number of integration variables always correspond to the
number of denominators, the maximal-cut is, anticipating the discussion of the next
chapter, a maximum-cut, i.e. it completely localizes the integrand. Conversely, as it is
clear from eq. (2.148), at multi-loop level the maximal-cut corresponds to a multiple
integral over the ISPs, which are not affected by the cut of the loop denominators,
The integration domain of (2.148) corresponds to the patch of the region λii ≥ 0,
G(λij) ≥ 0 identified by the additional conditions D1 = · · · = Dm = 0. Hence, as for
the uncut integral, we can assume the integrand of the maximal-cut to vanish at the
boundary of the corresponding integration region. We will will discuss in more detail
the features of the integration domain of eq. (2.148) in chapter 9;

- Under the assumption that no boundary term is generated by the cutting operation,
generalized unitary cuts are compatible with the IBPs (2.12) satisfied by the uncut
integrals. Obviously, when applying the multiple-cut (2.140) to all integrals appearing
in an IBP, only the Feynman integrals which contain the whole set of propagators
Dk1 , . . . , Dks will contribute, since the same s-denominator cut cannot be supported
by integrals with fewer denominators. In particular, if we apply the maximal-cut
corresponding to the highest sector involved in the IBP, we automatically select the
homogeneous term of the identity.

In order to clarify this point, let us consider a Feynman integral of the type (2.9) with
arbitrary powers of denominators. Through IBPs, it is always possible to express such
integral as a linear combination of a certain number N of integrals belonging to the
same sector but with all denominators raised to power one, and some subtopology
contributions,

Id (ℓ ,n)(a1 , . . . , am; b1 , . . . , br) =
N∑

i=1

ci(d)I
d (ℓ ,n)(1 , . . . , 1; b

(i)
1 , . . . , b(i)r )+

+ subtopologies . (2.149)

If we now apply the maximal-cut D1 = · · · = Dm = 0 to both sides of the equation,
all subtopologies drop, since they cannot support the full set of δ-functions, and we
are left with the homogenous IBP

MCut
[
Id (ℓ ,n)(a1 , . . . , am; b1 , . . . , br)

]
=

N∑

i=1

ci(d)MCut
[
Id (ℓ ,n)(1 , . . . , 1; b

(i)
1 , . . . , b(i)r )

]
. (2.150)

Note that eq. (2.150) provides another operative definition of generalized unitarity
cut with higher power of loop denominators, which can be checked to be consistent
with both eqs. (2.143) and (2.145).

The fact that the maximal-cut of a Feynman integral obeys the homogeneous part
of the IBPs identities satisfied by the corresponding uncut integral will play a funda-
mental role in solution of the differential equations fulfilled by the latter, as we will
discuss in chapters 5 and 9.
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2.7 Conclusions

In this chapter, we have reviewed the most important properties of multi-loop Feynman
integrals in dimensional regularization, by focusing on their representation as multiple
integrals in a finite number of variables which can be introduced every time the adopted
regularization scheme considers purely four-dimensional external particles.

In particular, we have shown how the splitting of the d-dimensional space-time into
the longitudinal space spanned by the independent external momenta and its comple-
mentary transverse space, d = d‖ + d⊥ [5, 50–54] allows to obtain a representation of
Feynman integrals where, after a trivial integration of the transverse directions through
an expansion in Gegenbauer polynomials [5], the number of variables parametrizing
the integrand matches, at any loop order, the total number of scalar products between
loop and external momenta. We have discussed the connection between this repre-
sentation and the Baikov parametrization [55–57], which introduces loop denominators
and irreducible scalar products as integration variables. We analyzed how the linear
identities satisfied by Feynman integrals, such as symmetry relations, IBPs and LIs,
are rephrased in terms of these finite dimensional representations [58, 60]. Finally, we
have given a definition of generalized unitarity cuts of Feynman integrals, which, in the
Baikov parametrization, have a clear interpretation as multiple residues at the poles
identified by the vanishing of the loop propagators [58–63].

The next chapter will be devoted to the discussion of a general technique, based
on the Lorentz invariace and generalized unitarity of scattering amplitudes, to reduce
dimensionally regulated amplitudes to a linear combination of Feynman integrals, which
goes under the name of integrand decomposition method.



Chapter 3

Integrand decomposition of

scattering amplitudes

In this chapter we give a brief introduction to the integrand level approach to

the decomposition of scattering amplitudes in terms of scalar Feynman integrals.

In particular, we focus on the algebraic geometry interpretation of the integrand

reduction algorithm, which, by rigorously identifying the partial fractioning of the

integrand with a multivariate polynomial division modulo Gröbner basis, has played

a key role in understanding how to extend integrand-level techniques at multi-loop

level.

3.1 Introduction

When embarking on higher-order calculations in perturbation theory, the first issue
we need to address is the rapid growth of the number of Feynman diagrams with the
number of loops and external legs of the amplitude which, in most cases, makes a
diagram-by-diagram evaluation prohibitive.

The solution to this problem requires the introduction of a reduction procedure,
which consists in the initial decomposition of the amplitude in terms of a minimal set of
independent functions, i.e. scalar Feynman integrals of the type discussed in chapter 2,
and the subsequent evaluation of the latter. In other words, we need a strategy to
disentangle the algebraic complexity of the problem, dictated by the specific interaction
theory under consideration (which determines the number of Feynman diagrams and
the tensor properties of their numerators) so to reduce to a minimal set of universal
building-blocks the effort needed for the analytic computation of loop integrals.

Among the available techniques, in this chapter we discuss the integrand decomposi-
tion algorithm, which was originally formulated for one-loop amplitudes in four space-
time dimensions by Ossola, Papadopoulos and Pittau [19, 20] and subsequently extended
to the d-dimensional case [21–25]. The integrand decomposition method combines in a
unique framework the basic ideas of the traditional Passarino-Veltman reduction [18],
where the amplitude is decomposed in terms of scalar integrals by using Lorentz in-
variance in order to strip out from the integral sign the tensor structures, and those of
generalized unitarity methods [14–17, 138–151], which extracts the rational coefficients
of the scalar integrals by sampling the amplitude and multiple unitarity cuts.

The combination of these two driving principles, namely the exploitation of the
Lorentz invariance of the amplitude and of its multi-pole factorization properties, can
be realized in a very effective way by working at the integrand level, where the decom-
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position algorithm is reduced to a pure algebraic manipulation of rational functions,
constituted by the integrands associated to the Feynman amplitude.

The main advantage of such an algebraic approach is to level out the decomposition
of loop amplitudes, irrespectively of the presence of (internal and external) massive par-
ticles, which often constitutes the bottleneck of other reduction methods. Obviously,
such simplification does not come without drawbacks, the most relevant being the intro-
duction of spurious terms, i.e. rational functions which are present in the decomposition
of the integrand but vanish after integration of the loop momenta.

In this chapter, we give a general introduction to the integrand decomposition
method in a formulation based on algebraic geometry principles [41, 42], which pro-
vides a clear picture, on the one hand, of the validity of the method at arbitrary loop
order [39, 40, 152–154] and, on the other hand, of the technical issues one needs to cir-
cumvent in order to make integrand decomposition a general and systematic framework
for multi-loop computations.

The goal of the integrand reduction method consists in recursively decomposing an
arbitrary d-dimensional, ℓ-loop amplitude

I
d (ℓ)
i1...ir

=

∫ ℓ∏

j=1

ddqj

πd/2

Ni1...ir

Di1 · · ·Dir

, (3.1)

in terms of a linear combination of scalar Feynman integrals by exploiting the algebraic
properties of associated integrand

Ii1...ir(qj) ≡
Ni1...ir(qj)

Di1(qj) · · ·Dir(qj)
. (3.2)

The basic observation underlying this method is that, prior to integration, the integrand
Ii1...ir is a purely rational function, since both the numerator Ni1...ir and the loop
denominators Dir are polynomials in the loop momenta qi. Therefore, one possible
way to reduce the full integrated amplitude to a combination of simpler, independent
integrals consist in first deriving a decomposition of the integrand (3.2) in terms of
simpler rational functions and then reading off the corresponding integral decomposition
by integrating back over the loop momenta.

The main advantage of dealing with rational integrands is the possibility of reducing
the decomposition of the amplitude to the algebraic partial fractioning of the integrand,

Ii1...ir(qj) =
s∑

k=0

∑

{j1···jk}

∆j1···jk(qj)
Dj1(qj) · · ·Djk(qj)

, s ≤ r , (3.3)

where the inner sum scans over the possible subsets of denominators Dim and each
∆j1···jk is, in turn, a polynomial in the loop momenta.

Once such a partial fraction expansion of the integrand has been reached, the cor-
responding integral decomposition of the Feynman amplitude is obtained by restoring
the integration over the loop variables qj on both sides of eq. (3.3),

I
d (ℓ)
i1...ir

=
r∑

k=1

∑

{j1···jk}

∫ ℓ∏

j=1

ddqj

πd/2

∆j1···jk
Dj1 · · ·Djk

. (3.4)

In this way, we can identify each of the integrals appearing in the r.h.s. of eq. (3.4)
with a Feynman amplitude with a reduced number of internal propagators (and of
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external legs) and, possibly, a simpler numerator. Obviously, whenever an integrand
decomposition of the type (3.3) is achieved, the corresponding integral decomposition

(3.4) provides a valid representation of the amplitude I
d (ℓ)
i1...ir

.
However, since our goal is to reduce the independent integrals to be computed to

a minimal number, the effectiveness of the integrand decomposition formula (3.3) will
crucially depends on its minimality and its universality. In other words, we would
like each polynomial ∆j1···jk to be irreducible, i.e. not to contain any term which can
be further rewritten in terms of the denominators Dj1 , · · · , Dkj (and, hence, partial
fractioned) and to posses a universal polynomial dependence of the loop variables. This
latter requirement would make the integrand decomposition method applicable to any
amplitude in QFT, regardless of the number of external legs, the presence of multiple,
different mass scales and, in general, the complexity of the integrands, which would be
confined to the kinematic dependence of the coefficients of ∆j1···jk . In order to illustrate
how the integrand decomposition formula given in eq. (3.3) can fulfil these minimality
and universality requirements, let us first go back to its recursive derivation.

3.2 The integrand recurrence relation

For definiteness, we will hereby make use of the d = 4− 2ǫ representation of Feynman
integrals that has been discussed in section 2.2 and parametrize the integrand in terms
of the variables z defined in eq. 2.29, which are in number ℓ(ℓ+9)

2 . Therefore we write,

Ni1...ir(z) , Dis(z) ∈ P [z] z = {z1, . . . , z ℓ(ℓ+9)
2

} , (3.5)

where P [z] is the ring of all polynomials in the variables z. Moreover, for any set of
denominators Di1 , . . . , Dis we define the ideal Ji1···ir ,

Ji1···ir ≡
{ r∑

k=1

hk(z)Dik(z) : hk(z) ∈ P [z]

}
, (3.6)

as the set of all possible linear combinations of denominators with polynomial coef-
ficients. The partial fractioning of the integrand Ii1...ir amounts to the multivariate
polynomial division of the numerator

Ni1...ir(z) = Qi1...ir(z) + ∆i1...ir(z) , (3.7)

where Qi1...ir(z) is the quotient belonging to the ideal Ii1...ir ,

Qi1...ir(z) =
r∑

k=1

Ni1···ik−1 ik+1...ir(z)Dik(z) , (3.8)

and ∆i1...ir(z) is the remainder of the division, i.e. a polynomial which does not contain
any term belonging to the ideal. If we make use eqs. (3.7) and (3.8) to reconstruct the
original integrand Ii1...ir ,

Ii1...ir(z) =
r∑

k=1

Ni1···ik−1 ik+1...ir(z)Dik(z)

Di1 · · ·Dir

+
∆i1...ir(z)

Di1 · · ·Dir

=
r∑

k=1

Ii1···ik−1 ik+1...ir(z) +
∆i1...ir(z)

Di1 · · ·Dir

, (3.9)

we can immediately identify the first term of the r.h.s. as a sum of new integrands, each
one corresponding to a sub-diagram where the loop propagator Dik has been removed.
This procedure can be iteratively applied to the newly generated integrands, until the
final decomposition formula (3.3) is reached.
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3.3 Polynomial division and Gröbner bases

Despite the simple logic beneath the recursive algorithm outlined in the previous section,
we shall give due consideration to some mathematical subtleties at its basis. First of all,
is a well-known fact that, when dealing with the division of the multivariate polynomial
p(z) ∈ P [z] by another set of polynomials p1(z) , . . . , pk(z) ∈ P [z], the result of the
division, i.e. the identification of the quotients and of the remainder is not unique and
depends on two (in principle arbitrary) prescriptions we need to adopt when defining a
division algorithm:

1. The monomial order, i.e a total order of the monomials in P [z] that determines
which monomials of p(z) must be divided first. In order to motivate the need
for a monomial ordering with an example, let us first consider the univariate
division of p(x) = x2 − 2x by p1(x) = x + 1. In the univariate case, we can
easily identify the leading term (LT) of both p(x) and p1(x) as their highest rank
monomial, LT(p) = x2 and LT(p1) = x. The division is performed by dividing
LT(p) by LT(p1) and then by iterating the division on the remainder, until no
more divisions are possible:

LT(p)/LT(p1) = x ⇒ p′ = p− x p1 = −3x ,

LT(p′)/LT(p1) = −3 ⇒ p′′ = p′ + 3 p1 = 3 , (3.10)

and therefore,

p =
(
LT(p)/LT(p1) + LT(p′)/LT(p1)

)
p1 + p′′ = (x− 3)p1 + 3 . (3.11)

It is clear that, in the case of a single variable the algorithm terminates after a
finite number of steps and that the reminder, whose rank is strictly lower than
the one of p1, is unique.

If we introduce one more variable into the game and we try to divide p(x) =
x2 − 2y2 by p1(x) = x + 1, we immediately see that there is no more obvious
definition of LT(p). In fact, if we assume x2 to be the leading term we obtain

p = (x− 1) p1 + 0 p2 + (1− 2y2) , (3.12)

while, if we take LT(p) = −2y2, we get

p = 0 p1 + 0 p2 + (x2 − 2y2) . (3.13)

Therefore, we need to introduce a monomial order which can be used to un-
ambiguously compare any pair of monomials. The simplest of such orderings is
the so-called lexicographic order which, given one ordering between the variables,
sorts the monomials by subsequently comparing their rank in each variable. For
instance, with lexicographic order y ≺ x, we have xy2 < x2y. Obviously, many dif-
ferent monomial orders are admissible, provided that they satisfy the well-ordering
condition 1 < m for any monomial m, in such a way to ensure the converge of
the division algorithm. In principle, all these orders are equivalent. However, in
practical cases, a proper choice of the monomial order can make the computation
significantly more efficient.

2. The divisor ordering, i.e. the order used for the division by each of the polyno-
mials p1(z) , . . . , pk(z). Different divisor orderings lead, in general, to different
remainders, as we can illustrate again on a simple example.
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Consider the two-variable polynomials p(x, y) = x2y3 − 2xy2, p1(x, y) = x2y− 2x
and p2(x, y) = y3 + 4. Clearly, p belongs to the ideal generated by p1 and p2,
since, by factoring y2 we can immediately write

p = y2(x2y − 2x) = y2 p1 . (3.14)

Indeed the same result can be obtained by choosing the lexicographic order y ≺ x
and by dividing p first by p1 and subsequently by p2. However, if we maintai the
same monomial order but we exchange the order of the divisions by p1 and p2, we
arrive to radically different result,

p = x2 p2 − (2xy2 + 4) . (3.15)

This simple calculation shows that not only the polynomial division produces
different remainders according to the divisor order but that the division for an ar-
bitrary set p1(z) , . . . , pk(z) can even return a non-zero reminder for a polynomial
p which belongs to the corresponding ideal.

Going back to the integrand decomposition of Feynman amplitudes, the observation 2
seems to seriously compromise the applicability of the integrand decomposition algo-
rithm, since it implies that, if we perform the polynomial division using as a naive basis
of Ii1...ir the set of denominators Dik , we would obtain a far non-unique parametriza-
tion of the numerators ∆j1···jk . In the ultimate case, we could even fail to identify an
integrand which is completely reducible to a sum of sub-amplitudes with fewer loop
propagators. Although it turned out not to be the case for one-loop amplitudes, this
issue prevented for some time the effective extension of the integrand decomposition
algorithm at multi-loop level.

The solution to the problem resorted to the introduction of the division modulo
Gröbner basis [41, 42].

Definition 1. Given an ideal J on a polynomial ring P [z], a Gröbner basis is a gen-
erating set G(z) = g1(z) , . . . , g1(z) of J such that, given a monomial order ≺, the
multivariate polynomial division of any p(z) ∈ P (z) has a unique remainder.

In other words, a Gröbner basis is a “good” basis of the ideal, in the sense that it
allows to define an unambiguous division algorithm and it makes the remainder of the
division a univocal identifier of the membership of an arbitrary polynomial to an ideal.
Thus, the existence of a Gröbner basis of the ideal generated by the loop propagators
Ii1...ir allow us to define a consistent decomposition algorithm in the following way:

• Given the numerator Ni1...ir , and a Gröbner basis Gi1···ir of Ji1...ir we perform the
multivariate polynomial division of Ni1...ir modulo Gi1···ir and obtain

Ni1...ir(z) = Qi1...ir(z) + ∆i1...ir(z) , (3.16)

where, the remainder ∆i1...ir(z) is now uniquely determined and the quotient is
written as a combination of the elements of Gi1···ir ,

Qi1...ir(z) =
m∑

k=1

Γk(z)gk(z) . (3.17)

• Since Gi1···ir belongs to Ji1...ir , it is always possibile to write its element in terms
of the loop denominators,

gk(z) =

r∑

s=1

hsj (z)Dik(z) ∀k , (3.18)
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so that, by applying this relation to eq. (3.17), we can recover the recurrence
relation (3.9) and identify the sub-amplitudes numerators Ni1···ik−1···ik+1...ir .

The uniqueness of the remainder obtained through this procedure ensure that all the
remainders that appear in the integrand decomposition formula(3.3) are irreducile, in
the sense that they cannot be further decomposed in terms of denominators. Therefore,
we can univocally associate each ∆j1···jk to the corrisponding set of loop propagators
Dj1 , · · · , Djk and, for this reason, ∆j1···jk is usually referred to as the residue of the
multiple-cut Dj1 = · · · = Djk = 0. One last comment on the definition 1 is in order.
Although this is a formal definition and it doesn’t tell us how to practically calculate
G, constructive algorithms for the computation Gröbner bases are available and they
have been implemented in several computer programs, such as Singular [131] and
Macaulay2 [132], which, besides computing the Gröbner basis of a given ideal, can
also provide the relation between its elements and the original generating set of poly-
nomials (3.18).

A fundamental issue related to the integrand decomposition formula (3.3) is the
related to the reducibility of loop integrands. If we think back to the familiar example of
the tensor integral decomposition in d = 4, we know that any one-loop amplitude can be
decomposed in terms of integrals containing at most four loop propagators. Therefore, in
the context of the integrand decomposition, it is natural to wonder whether there exists
some condition which ensures that the integrand Ii1...ir is reducibile, i.e. it has vanishing
residue ∆j1···jk . The property of ideals over polynomial rings allow to prove [42] the
following

Theorem 1. Reducibilty criterion. If a multiple-cut Di1(z) = · · · = Dik(z) = 0 has
no solution, any integrand Ii1...ir associated to it is reducible.

It is obvious that any integrand Ii1...ir is reducible whenever the ideal Ji1...ir gener-
ated by the set of loop propagators coincides with the entire polynomial ring P [z] since,
in this case, Ii1...ir ∈ P [z] independently of its specific expression. The proof of the
reducibility criterion, which follows from the so-called weak nullstellensatz [155], states
that P [z] ≡ Ji1...ir if and only if the set of on-shell conditions Di1(z) = · · · = Dik(z) = 0
admits no simultaneous solution. This result implies that all the residues that contribute
to the in r.h.s. of the decomposition formula (3.3) are associated to systems of poly-
nomial equations in the loop variables which must be at least fully determined. This
observation motivates the

Definition 2. A multiple-cut Di1(z) = · · · = Dik(z) = 0 is said to be a maximum-cut
if the system of on-shell conditions constrains all loop components z to a finite number
ns of solutions.

The simplest case of maximum-cut is the four-dimensional quadruple-cut at one-
loop. Since one-loop integrands in four dimensions are parametrized in terms of four
variables, which correspond to the components of the loop momentum, the quadruple-
cut constrains all integration variables and, as it is well known [15], admits ns = 2
two distinct solutions. By contrast, in the case of dimensionally regulated one-loop
amplitudes, whose integrands are parametrized in terms of five variables, the maximum-
cut corresponds to a pentuple-cut D1 = · · · = D5 = 0 which, as it can be verified, admits
one single solution, ns = 1. Therefore, at one-loop, the integrand decomposition of any
amplitude in d dimensions will receive contributions ranging from five-point integrands
down to tadpoles.
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It is easy to imagine how this picture extends at higher loops: as a consequence
of the reducibility criterion, the integrand decomposition formula will contain contri-
butions from the maximum-cuts (which, at multi-loop level, can correspond to several,
distinct integrand topologies) as well as from the multiple-cuts associated to all possible
subsets of loop denominators.

A further remarkable result which can be derived from the properties of the ideal
Ji1...ir is the following

Theorem 2. Maximum-cut. The residue of a maximum-cut which admits ns distinct
solution is a polynomial parametrized by ns coefficients, which admits an univariate
representation of degree (ns − 1).

This result, which was proven in [42] under the well-motivated assumption that each
of the ns solutions of the maximum-cut has multiplicity one, states that the parametric
form of the residues associated to the maximum-cuts can be predicted just by looking
at the number of independent solutions of the on-shell conditions. For instance, in
four dimensions the residue of the one-loop maximum-cut is parametrized by two coef-
ficients, since the four-dimensional quadruple-cut has ns = 2 and the situation becomes
even simpler when moving to d dimensions, where the pentuple-cut admits one single
solution and, therefore, the maximum-cut residue will depend on a single coefficient.
As we will see in the next chapter, this feature of dimensional regularization remains
true at any loop order: the maximal-cuts in d dimensions always corresponds to a fully-
determined system of linear equations with ns = 1 solutions. Therefore, the residue of a
maximum-cut is always parametrized in terms of one single coefficient. In this respect,
the integrand decomposition in d dimensions seems to possess a simpler structure than
the one in a finite number of dimensions.

One last comment on the integrand decomposition formula eq. (3.9) is in order. So
far we have only considered, for simplicity, integrands where all the loop denominators
are raised to power one. However, in multi-loop computations, it is not uncommon to
encounter integrands with higher powers of denominators. In can be proven [154] that
integrand recurrence relation given in eq. (3.9) is valid, in total generality, for integrands
of the type

Ii1...ir(qj) ≡
Ni1...ir(qj)

Da1
i1
(qj) · · ·Dar

ir
(qj)

, ai ∈ N . (3.19)

In the case of higher powers of denominators, the polynomial division must be iterated
a1×. . .×ar times for each ideal Ji1,...ir in order to determine the residues of all multiple-
cuts Di1 = · · · = Dir = 0 with denominators powers ranging from {a1 , . . . , ar} down
to {1 , . . . , 1}.

3.4 Example: one-loop integrand decomposition

The most general one-loop amplitude with n external legs,

I
d (1)
i1···in [Ni1···in ] =

∫
ddq

πd/2

Ni1···in(q)
Di1 . . . Din

, (3.20)

is uniquely characterized by the set of denominators Di1 , . . . , Din and by a numerator
function Ni1···in . The integrand is parametrized in terms of five variables which, in the
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standard d = 4− 2ǫ representation (see section 2.2), are identified with

z = {z1, z2, z3, z4, z5} ≡ {x1, x2, x3, x4, µ2}, (3.21)

where xi are the components of the loop momentum with respect to an arbitrary four-
dimensional basis E [19, 27, 28, 156] and µ2 is the square norm of the loop component
along the −2ǫ regulating dimensions. Both the denominators and the numerator are
polynomials in z: each of the Dik(z) is a quadratic polynomial of the form (2.21) while,
depending on the specific scattering process, Ni1···in is a general polynomial of the type

Ni1···in(z) =
∑

~∈J
α~ z

j1
1 zj22 zj33 zj44 zj55 , jk ∈ N , (3.22)

where α~ are coefficients depending on the external kinematics and polarizations, on
the mass of the particles circulating into the loop and on the space-time dimensions d.
The sum over the integer 5-tuples ~ = (j1, j2, j3, j4, j5) runs over a subset J determined
by the renormalization properties of the theory under consideration, which sets limits
on the rank of Ni1···in . In the following, we will restrict our analysis to the case of
renormalizable theories,

J ≡ J5(n) = {~ : j1 + j2 + j3 + j4 + 2j5 ≤ n} , (3.23)

but higher rank numerators, such as the one appearing in effective theories, can be
treated in a similar way, along the lines of [154]. By working on general numera-
tors (3.22) with arbitrary coefficients α~, we can perform the division modulo Gröbner
basis (for which computation we adopt lexicographic ordering z1 ≺ . . . ≺ z5 and we
make use the Mathematica built-in Gröbner bases generator) and obtain the well-
known parametrization of the one-loop residues [19, 21, 42],

∆ijklm =c0µ
2,

∆ijkl =c0 + c1x4 + c2µ
2 + c3x4µ

2 + c4µ
4,

∆ijk =c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x3 + c5x

2
3 + c6x

3
3 + c7µ

2 + c8x4µ
2

+ c9x3µ
2,

∆ij =c0 + c1x1 + c2x
2
1 + c3x4 + c4x

2
4 + c5x3 + c6x

2
3 + c7x1x4 + c8x1x3

+ c9µ
2,

∆i =c0 + c1x1 + c2x2 + c3x3 + c4x4 , (3.24)

where the coeffcients ck are, in general, rational functions of the kinematics quantities
and d. Note that, for sake of simplicity, we have omitted for each coefficient the label
i . . . j of the corresponding multiple-cut. The parametrization (3.24) is universal in the
sense that it gives the most general expression of the residues we can obtain in the
computation any one-loop amplitude within the Standard Model or any other renor-
malizable theory. The actual expression of the ck and, in case, their vanishing depend
on the specific process under consideration.

A few comments on eq. (3.24) are in order:

• There is no residue corresponding to integrands with more than six external par-
ticle since, in agreement with the reducibility criterion (1), they can be fully
decomposed in terms lower-point integrands,

Ni1···in
Di1 . . . Din

=

5∑

k=0

∑

{j1···jk}

∆j1···jk
Dj1 · · ·Djk

∀ n > 5 . (3.25)
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• The residue of the pentuple-cut has a very simple structure which, as we have seen
in the previous section, is dictated by the maximum cut theorem (2). We observe
that the application of the multivariate polynomial division tout court leads a
constant residue ∆ijklm = c′0. However, we have used the on-shell conditions of
the pentuple-cut to trade the constant residue with a monomial depending on µ2.
The reason for this conventional choice is that, conversely to the case of the scalar
five-point integral, in the d → 4 limit the rank-two integral vanishes,

∫
ddq

πd/2

µ2

Di1Di2Di3Di4Di5

= O(ǫ). (3.26)

In this way, the new class of loop integrals introduced by the dimensional regu-
larization of divergencies will not contribute in the four-dimensional limit. (this
choice was also shown to improve the stability of numerical implementations).

• By looking at the parametrization of the quadruple-, triple-, double- and single-
cuts, we immediately see that the integrand decomposition (3.25) does not match
the result of ordinary tensor integral decomposition, which would reduce the am-
plitude to a combination of rank-zero integrals only, one for every multiple-cut.
The reason for this discrepancy is that the residues contain spurious terms, i.e.
monomials that vanish upon integration,

∆i1···in(q) = ∆n-sp
i1···in(q) + ∆sp

i1···in(q) , (3.27)

where

∫
ddq

πd/2

∆sp
i1···in(q)

Di1 . . . Din

= 0 . (3.28)

Eq. (3.28) implies that although the spurious terms ∆sp
i1···in are generated during

the recursion of the the decomposition algorithm and they are required in order to
make the equality (3.25) satisfied at the integrand-level, they will not contribute
to the integrated amplitude. It can be easily verified by Lorentz-invariance argu-
ments that all the monomials that depends on the four dimensional loop compo-
nents xi are spurious, with the only exception of the rank-one and -two terms of
the double-cuts associated to a massless external momentum p2 = 0, Therefore, by
inserting eq. (3.24) into the decomposition (3.25) and by integrating over the loop
momentum, we obtain an integral decomposition of the one-loop amplitude (3.20),

I
d (1)
i1···in [Ni1···in ] =

n∑

i≪m

c
(ijklm)
0 I

d (1)
ijklm[µ2]

+
n∑

i≪l

[
c
(ijkl)
0 I

d (1)
ijkl [1] + c

(ijkl)
2 I

d (1)
ijkl [µ

2]

+ c
(ijkl)
4 I

d (1)
ijkl [µ

4]

]
+

n∑

i≪k

[
c
(ijk)
0 I

d (1)
ijk [1] + c

(ijk)
7 I

d (1)
ijk [µ2]

]

+
n∑

i≪j

[
δ0,p2i

(
c
(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

)

+ c
(ij)
0 I

d (1)
ij [1] + c

(ij)
9 Iij [µ

2]

]
+

n∑

i

c
(i)
0 I

d (1)
i [1] . (3.29)
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• After removing the spurious terms, the only higher-rank numerators contributing
to the integrated amplitude depend on powers of µ2 and they can be identified with
higher-dimensional integrals (see eq. (2.25)). Integral-level dimensional recurrence
relations can then be used in order to reduce each of the µ2 integrals to the
corresponding rank-zero integral. Therefore, the decomposition of the one-loop
amplitude in terms of a minimal number of scalar integrals reads

I
d (1)
i1···in [Ni1···in ] =

n∑

i≪m

c
(ijklm)
0 I

d (1)
ijklm[µ2]+

n∑

i≪l

c
(ijkl)
0 I

d (1)
ijkl [1] +

n∑

i≪k

c
(ijk)
0 I

d (1)
ijk [1]

+
n∑

i≪j

[
δ0,p2i

(
c
(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

)

+ c
(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

]
+

n∑

i

c
(i)
0 I

d (1)
i [1] , (3.30)

where the integral coefficients cj , which are of course different from the one ap-
pearing in eq.(3.29), have acquired an additional dependence on the dimensions
d, which is inherited from the the dimensional recurrence relations.

3.5 Conclusions

In this chapter we have reviewed the main features of the integrand decomposition
method, which allows to decompose multi-loop scattering amplitudes as a combination
of scalar Feynman integrals by determining their residues at the singular points identified
by a set of multiple-cut conditions Di1 = · · · = Dir = 0. Since its very first four-
dimensional formulation [19, 20] and the subsequent extension to arbitrary dimensions
d [21–25], the integrand decomposition algorithm for one-loop amplitudes has been
implemented in several public libraries like Cutools [26], Samurai [27] and Ninja[28,
157], which played an important role in the developments automatic codes for the
numerical evaluation of scattering amplitudes for generic processes at NLO accuracy,
as reviewed in [158].

The validity of the algorithm at higher-loop orders [39, 40] has been proven by re-
sorting to the introduction of algebraic geometry methods [41, 42]. In particular, the
study of the properties of polynomial ideals and of the Gröbner bases associated to the
multiple-cuts of the amplitude allowed to systematize the determination of the residues
at any loop order. Implementation of such methods to the determination of paramet-
ric integrand basis is provided, for instance, by the public package BasisDet [41]. In
addition, the integrand decomposition technique has been successfully applied for the
first time to non-trivial two-loop five-point helicity amplitude in [43, 44]. However,
despite the tremendous progress in the theoretical understanding of the underpinning
algebraic structure (see [159] for a recent review) and the tailored application to specific
massless amplitudes, at the present time integrand decomposition has fallen short to
become a fully competitive method for the systematic computation of scattering ampli-
tude beyond one-loop, due to a series of technical difficulties which can be summarized
as follows:

1. The major source of complexity in the multi-loop extension of the integrand de-
composition is the presence of the so-called irreducible scalar products (ISPs),
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i.e. scalar products involving the loop momenta which cannot be expressed in
terms of denominators [39]. The presence of ISPs can introduce both spurious
and non-spurious contributions in the residues. The systematic classification of
the spurious numerators at multi-loop level is less obvious and their prolifera-
tion increments the number irreducible monomials which, although they do not
contribute to the final integral decomposition, must be handled through the in-
termediate steps of the integrand reduction;

2. Conversely to the one-loop case, at multi-loop level the structure of the residues
and the algebraic complexity of the multivariate polynomial divisions can be heav-
ily affected by the choice of the variables z and of the monomial order adopted in
the definition of the Gröbner bases;

3. Although in the multi-loop case the number of independent integrals that ap-
pear in the amplitude decomposition is not known a priori, experience shows
that the number of irreducible monomials produced by the integrand integrand
decomposition is usually larger than the actual number of master integrals. The
minimal basis of independent integrals is, in fact, determined by the existence of
integral-level identities, such as IBPs, for which no integrand-level interpretation
is available. In this respect, a wise choice of the monomial ordering for the vari-
ables z, besides making the computation technically simpler, should also provide a
parametrization of the residues suitable for a subsequent integral-level reduction.

These issues can be efficiently addressed with the introduction of an alternative for-
mulation of the integrand decomposition algorithm based on d = d‖ + d⊥ parametriza-
tion of Feynman integrals introduced in section (2.3). The latter can be used to simplify
the division algorithm by optimizing the choice of loop variables according to kinematic
configuration of each integrand. Such formulation, which goes under the name of adpa-
tive integrand decomposition, will be the main focus of the next chapter.



56 Chapter 3. Integrand decomposition of scattering amplitudes



Chapter 4

Adaptive integrand decomposition

In this chapter we present the adpative integrand decomposition of multi-loop Feyn-

man amplitudes and we introduce the divide-integrate-divide algorithm, which al-

lows to decompose any amplitude, at the integrand-level, in terms of a reduced

set of scalar integrals whose numerator correspond to irreducible scalar products

between loop momenta and external momenta. The algorithm applies to scatter-

ing amplitudes in any QFT and it can be extended to any order in perturbation

theory. As an example, we revisit the one-loop decomposition and we discuss the

integrand reduction of two-loop planar and non-planar amplitudes with arbitrary

external and internal kinematics, by providing a full classification of the irreducible

numerators with up eight external particles. Finally, we discuss the automation

of the algorithm through the code Aida, which has been implemented in Math-

ematica. The content of this chapter is the result of an original research done

in collaboration with P. Mastrolia, T. Peraro and W.J. Torres Bobadilla and it is

based on the pubblications [5, 9].

4.1 Simplifying the polynomial division

In the previous chapter, we have shown how the algebraic geometry formulation of the
integrand decomposition, which relies on the concepts of ideals, Gröbner bases and mul-
tivariate polynomial division, had a fundamental role in demonstrating the applicability
of the integrand reduction techniques to any loop order.

However, despite being conceptually solved, the issue of practically extending, in
a general way, the integrand decomposition method beyond one-loop is still open. In
fact, at multi-loop level, the effectiveness of the algorithm is jeopardized by the alge-
braic complexity of the intermediate expressions generated at each division step. This
complexity is originated, on the one hand, by the the proliferation of spurious terms,
whose identification might be not straightforward, and, on the other hand, by the pres-
ence of ISPs which enlarge the number of monomials appearing in the integrand basis.

In this chapter, we discuss a simplified version of the integrand decomposition algo-
rithm, we refer to as adaptive integrand decomposition, which can help in keeping such
complexity under control and in making integrand reduction a flexible and automatable
tool also at multi-loop level.

The key idea of this simplified approach to integrand decomposition is to adapt the
choice of the loop variables according to the kinematic of the corresponding multiple-cut
at each step of the division algorithm. This amounts to introducing, for each ℓ-loop

57
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integrand with n ≤ 4 external legs, the d = d‖+d⊥ parametrization discussed in sec 2.3,
i.e. to defining the ℓ(ℓ+ 9)/2 variables z that characterize the integrand as

z ={x‖ i,x⊥ i, λij}, i, j = 1, . . . ℓ, (4.1)

where we have split, according to eq. (2.34), the four-dimensional components of the
i-th loop momentum xi into the subset belonging to the longitudinal space,

x‖ i = {xji}, j ≤ d‖, (4.2)

and the one lying in the space orthogonal to the external momenta,

x⊥ i = {xji}, d‖ < j ≤ 4 . (4.3)

As observed in section 2.3, the loop denominators are independent of x⊥ i, i.e. they are
polynomials in the subset of variables τ ⊂ z, defined by

τ ={x‖, λij} . (4.4)

In this way, we can rewrite the general loop integrand (3.2) as

Ii1...ir(τ ,x⊥) ≡
Ni1...ir(τ ,x⊥)

Di1(τ ) · · ·Dir(τ )
, (4.5)

and expose the purely polynomial dependence of Ii1...ir on the transverse components
x⊥, which can be integrated away systematically, as discussed in section 2.3. Moreover,
the reduction of the number of loop variables appearing in the denominators implies,
per se, a remarkable simplification of the multivariate polynomial division, since it
minimizes the number of variables of the polynomial ring to which each ideal Ji1...ir

belongs.
As a matter of fact, the adaptive parametrization has even more striking effects on

the integrand decomposition algorithm: as we will motivate below, it allows to com-
pletely bypass the computation of Gröbner bases and it reduces the polynomial division
to the mere application of a set of substitution rules.

In the d = d‖ + d⊥ parametrization, it is particularly easy to show that the loop
variables τ (or, beyond one-loop, a subset of them) can be expressed as combinations
of denominators just by solving linear equations. In fact, starting from the definition
of the denominators Di1 , . . . , Dir in terms of the loop momenta, we can always build
r independent differences of denominators which are linear in τ . More explicitly, at
one-loop, where all the denominators can be written in the form

Dj = (q +
∑

i

βijpi)
2 +m2

j , j = 1, . . . , r , (4.6)

we can choose one denominator, say D1, consider the r − 1 differences Dj − D1, and
build a system of equations of the type

{
D1 = (q +

∑
i βi1pi)

2 +m2
1

Dj −D1 =
∑

i(βij − βi1)q · pi + (
∑

i βijpi)
2 − (

∑
i βi1pi)

2 + (m2
j −m2

1) j = 6= 1 .

(4.7)

By construction, the differences Dj − D1 are linear in the loop momentum (i.e. they
are independent of λ2) and they only depend linearly on r−1 of the variables x‖, which
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are proportional to the scalar products q · pi. Thus, the solution of the corresponding
r − 1 equations allows to express x‖ as linear combinations of denominators. Finally,
the expression λ2 in terms of denominators can by directly deduced from the definition
of D1, yielding to

{
x‖ → P1[Dik ]

λ2 → P2[Dik ] , i = 1, 2 .
(4.8)

where Pi is a general i-rank polynomial.
This strategy can be easily generalized at multi-loop level. We can split the r loop

denominators into ℓ(ℓ+1)/2 partitions Si, identified by the subset of loop momenta each
denominator depends on, and consider differences between denominators belonging to
the same partition. Such differences will produce a set of linear relations, which can be
used to express the longitudinal components x‖ i in terms of denominators. In general,
beyond one-loop, the number ℓ d‖ of longitudinal variables is larger than the number k
of independent difference of denominators. Therefore, the linear system in x‖ i is under-
determined and its solution will reduce k longitudinal components (which we hereby
denote by xRSP

‖ i ) in terms of denominators and (ℓ d‖− k) unconstrained x‖ i. These free

(ℓ d‖ − k) longitudinal components corresponds to the physical ISPs, i.e. irreducible
scalar products between loop momenta and external momenta, and we will label them
as xISP

‖ i . Finally, having expressed the reducible longitudinal components xRSP
‖ i in terms

of denominators and physical ISPs, we can consider a representative denominator for
each partition of denominators and obtain a set of linear relations, which can be solved
for the variables λij .

For instance, at two loops, we can have at most three partitions S1, S2 and S3,
which, respectively, correspond to denominators of the type

Dj = (q1 +
∑

i

βijpi)
2 +m2

j , j ∈ S1,

Dj = (q2 +
∑

i

βijpi)
2 +m2

j , j ∈ S2,

Dj = (q1 + q2 +
∑

i

βijpi)
2 +m2

j , j ∈ S3. (4.9)

Similarly to the one-loop case, we can choose a representative denominator for each
partition, say D̄i ∈ Si for i = 1, 2, 3, and observe that, for any j ∈ Si, the difference Dj−
D̄i is linear in x‖ i and independent of λij . This allows us to write r−3 linear equations
which can be solved for a subset of the longitudinal components. The definitions of the
three representative denominators provide three complementary relations, which can be
solved for λ11, λ12 and λ22. Therefore, by solving a linear system, we can obtain the
set of substitutions

{
xRSP
‖ i → P [Dik ,x

ISP
‖ i ]

λij → P [Dik ,x
ISP
‖ i ] ,

(4.10)

which express the maximal number of τ variables in terms of denominators and physical
ISPs.

Finally, at multi-loop level, factorized topologies deserve a special attention. In such
cases, the denominators are independent of some of the λij , with i 6= j or, equivalently,
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one or more of the partitions Si are empty. The numerator function associated to a
factorized topology can, in principle, still depend on these λij but, as we discussed in
section 2.3.2, such dependence can be easily integrated away. Hence, after the full in-
tegrand has been made independent of these variables, the previous construction can
be restricted to the set of non-empty partitions, in such a way to obtain linear rela-
tions involving the minimum number of loop variables which parametrize the integrand.

In summary, we have shown that solving the d-dimensional cut constraints needed
for the integrand decomposition is never more complex than solving a linear system
of equations. The adaptive introduction of the d = d‖ + d⊥ parametrization of the
integrand has the main advantage of removing all the dependence on the orthogonal
directions from the denominators, hence from the on-shell conditions.

Indeed, in the perspective of the multivariate polynomial division, this is a remark-
able simplification, since it allows us to treat x⊥ i as constant parameters rather than
variables, i.e. to consider both numerators and denominators as members of polyno-
mial ring P [τ ] and to reduce to a minimal set the number of variables involved in the
computation of the Gröbner bases. In particular, if we chose the lexicographic ordering
λij ≺ x‖ i for the variables τ , the polynomials in the Gröbner bases would turn out to be

linear in the λij and in xRSP
‖ i . On the one hand, we have shown that is is always possible

to arrive to analogous linear relations by systematically building differences of denom-
inators and solving linear equations equivalent to the definition of the denominators
themselves.

Thus, the polynomial division can be equivalently performed by applying the afore-
mentioned set of linear relations, given by eqs.(4.8)-(4.10), without explicitly computing
the corresponding Gröbner basis and performing the multivariate polynomial division.

4.2 The divide-integrate-divide algorithm

The observation made at the end of the previous section suggests a simplified version of
the integrand decomposition algorithm, where the multivariate polynomial division of a
numerator Ni1···r modulo Gröbner basis of the ideal Ji1...ir is reduced to the application
of the substitution rules defined in eqs.(4.8)-(4.10). Moreover, since the d = d‖ + d⊥
parametrization exposes the polynomial dependence of the integrand on the transverse
components x⊥ i, the integrand reduction can be performed in tandem with the trans-
verse integration via Gegenbauer polynomials expansion, discussed in section 2.3.1, in
order the systematically remove spurious terms.

The proposed algorithm is organized in three steps:

1. Divide: we parametrize the numerator Ni1...ir in terms of the variables z =
{τ ,x⊥ i} and we make use of the relations (4.8)-(4.10) in oder to write

Ni1...ir(τ ,x⊥ i) =

r∑

k=1

Ni1...ik−1ik+1...ir(x
ISP
‖ i ,x⊥ i)Dik +∆i1...ir(x

ISP
‖ i ,x⊥ i). (4.11)

The residue ∆i1...ir depends on the transverse components x⊥ i (which are left
untouched by the division) as well as on the physical ISPs xISP

‖ i , but it is inde-
pendent of λij . As desired, the dependence of the quotient in terms of reducible
longitudinal components xRSP

‖ i and of λij is entirely expressed in terms of denom-
inators, so that the identification of the lower-cut numerators Ni1...ik−1ik+1...ir is
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straightforward. This single step, as we argued at the end of the previous section,
is equivalent to :

- Compute the Gröbner basis Gi1···ir of the ideal Ji1···ir with lexicographic
ordering λij ≺ x‖;

- Perform the multivariate polynomial division of Ni1...ir modulo Gi1···ir ;

- Determine the relation between the elements of Gi1···ir and the loop denomi-
nators in order to rewrite the quotient of the division in terms of Di1 , . . . , Dir .

2. Integrate: The spurious terms contained in the decomposed numerator can be
removed by integrating over the transverse components of the loop momenta. As
described in section 2.3.1, this integration can by performed by mapping x⊥ ,i to
polynomials in sinΘ⊥, and cosΘ⊥,

x⊥ i → P
[√

λij , sinΘ⊥, cosΘ⊥
]
, (4.12)

and by applying the orthogonality condition of Gegenbauer polynomials to all
integrals in the transverse angles Θ⊥. In this way, we obtain an integrated residue

∆int
i1...ir(x

ISP
‖ , λij) =

∫ ℓ∏

i=1

dx⊥ i∆i1...ir(x
ISP
‖ ,x⊥i)

∝
∫
d(4−d‖)ℓΘ⊥∆n-sp

i1...ir
(xISP, λij ,Θ⊥) , (4.13)

which is free of spurious terms and whose non-spurious dependence on the trans-
verse variables has been reduced, due to eq. (4.12), to powers of λij . It should
be noted that the explicit evaluation of the angular integral (4.13) yields to an
additional dependence of ∆int

i1...ir
on the space-time dimensions d.

3. Divide: The full set of residues ∆int
i1...ir

obtained by iterating the division and
the transverse integration on the numerator of all multiple-cuts provides a repre-
sentation of the Feynman amplitude which is completely free of spurious terms.
However, this representation is non-minimal, since λij can be reduced to denom-
inators and ISPs. Therefore, we can perform a further polynomial division of the
integrated residue, i.e. we can apply once more the relations (4.8)-(4.10), and
obtain

∆int
i1...ir(x

ISP
‖ , λij) =

r∑

k=1

N int
i1...ik−1ik+1...ir

(xISP
‖ ) + ∆

′

i1...ir(x
ISP
‖ ) , (4.14)

where the new residue ∆
′

i1...ir
(xISP

‖ ) depends exclusively on the physical ISPs.

Once the steps 1-3 have been iterated over all multiple-cuts, we obtain the final decom-
position

I
d (ℓ)
i1...ir

=

r∑

k=0

∑

{j1···jk}

∫ ℓ∏

j=1

ddqj

πd/2

∆′
j1···jk(x

ISP
‖ i )

Dj1 · · ·Djk

, (4.15)

which expresses the amplitudes as a sum of integrals whose irreducible numerators are
functions of the components of the loop momenta which are parallel to the external
kinematics.

At this level, a few comments on the eq. (4.15) are in order:
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• In the divide-integrate-divide algorithm, the integration over the transverse di-
rections is performed after the integrand reduction, namely after determining the
residues. This means that, as in the standard integrand reduction procedure, the
decomposed integrand that arises from the first division contains spurious terms
∆SP

i1...ir
, which are subsequently eliminated by the transverse integration.

It is clear that, if integration over x⊥ i was performed prior to any division, we
would obtain a decomposition with no spurious monomials in a single division
step. This second option, which we can refer to as integrate-divide, is conceptu-
ally equivalent to the divide-integrate-divide algorithm but, in view of practical
applications, it is indeed preferable, since it allows to thin down the expression of
the numerator before the division is performed and, hence, to simplify not only
the final decomposition but also the intermediate steps of the calculation.

Obviously, in order to integrate before the reduction, the dependence of the nu-
merator on the loop momenta must be either known analytically or reconstructed
semi-analytically [160, 161]. Such situation may indeed occur when the integrands
to be reduced are built from Feynman diagrams or they emerge as quotients of
subsequent divisions.

• Although in the discussion we have always referred explicitly to integrands with
all denominators raised to power one, the algorithm can be applied with no mod-
ifications to cases that involve higher powers of the loop denominators.

As we argued at the end of section 3.2, in case of integrands characterized by a
set of exponents {a1 , . . . , ar}, like the one defined in eq. (3.19), we simply need
to perform the polynomial division modulo the same Gröbner basis (i.e, in the
divide-integra-divide approach, apply the same set of substitution rules) a number
a1 × . . . × ar of times. We will discuss in more detail how to deal with higher
power of denominators in section 4.4.

Example

We can illustrate the features of the divide-integrate-divide algorithm on a toy example
at one loop. Let us consider the three-point integral

I
d (1)
1 2 3 =

∫
ddq

πd/2

(q · p1)(q · p2) + 4(q · ε12)(q · ε21)
D1D2D3

, (4.16)

where the denominators are defined as

D1 =q −m2 ,

D2 =(q + p1)−m2 ,

D3 =(q + p1 + p2)−m2 , (4.17)

with p1 and p2 being massless momenta satisfying (p1+ p2)
2 = s. In the numerator, εij

indicates the polarization vector εαij =
1
2〈i|γα|j], which are orthogonal to both external

momenta, εij · pk = 0.

We first introduce the d = d‖+ d⊥ parametrization. Being d‖ = 2, we split the loop
momentum as qα = qα‖ + λα, with

qα‖ = x1p
α
1 + x2p

α
2 , λα = xα3 e

α
3 + xα4 e

α
4 + µα . (4.18)
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The transverse vectors e3 ,4 are chosen to be e3 ,4 = ε12 ± ε21. In terms of the variables
z = {x1, x2, x3, x4 , λ2}, the integral (4.16) becomes

I
d (1)
1 2 3 = s2

∫
ddq

πd/2

x1 x2 + x23 − x24
D1D2D3

. (4.19)

The three denominators solely depend on the variables τ = {x1, x2, λ2},

D1(τ ) =s x1 x2 + λ2 −m2 ,

D2(τ ) =s x2(x1 + 1) + λ2 −m2 ,

D3(τ ) =s(x1 x2 + x1 + x2 + 1) + λ2 −m2 , (4.20)

and, according to the discussion of sec 4.1, we can consider differences of denominators
and build a system of three equations which are linear in τ ,





D1 = s x1 x2 + λ2 −m2

D2 −D1 = s x2

D3 −D1 = s(x1 + x2 + 1) .

(4.21)

The solution of this system allows to reduce all τ variables to combinations of denomi-
nators,





x1 =
D3−D1−s

s

x2 =
D2−D1

s

λ2 =
D2

1(D3−D2)+D2(s+D2−D3)+m2 s
s .

(4.22)

We can now apply the divide-integra-divide algorithm to (4.16):

1. Divide: We substitute the identities (4.22) in the numerator and, by collecting
powers of denominators, we obtain

s2
x1 x2 + x23 − x24

D1D2D3
=

1

D1
− 1

D2
+

1

D3
− s

D2D3
− (q + p1)

2 −m2 + s

D1D3

+ s2
x23 − x24
D1D2D3

. (4.23)

2. Integrate: We integrate over the transverse components x3 and x4 (see sec-
tion 2.52),

s2
∫

ddq

πd/2

x23 − x24
D1D2D3

= − 2s

(d− 2)

∫
ddq

πd/2

λ2

D1D2D3
. (4.24)

In this case, the transverse integrals are non-spurious and they produce a triple-cut
numerator proportional to λ2.

3. Divide: We apply again the identities (4.22) to the integrated residue (4.24) in
order to reduce λ2. By putting everything together we obtain

I
d (1)
1 2 3 =

∫
ddq

πd/2

[
d

d− 2

(
1

D1
− 1

D2
+

1

D3

)
+

s

D2D3

− d

d− 2

(q + p1)
2 −m2 + s

D1D3
− 2m2 s

D1D2D3

]
. (4.25)
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Thus, we have decomposed the rank-two integral I
d (1)
1 2 3 in terms of a three-point function

with constant numerator and a linear combination of lower-point integrals. The full
decomposition in terms of rank-zero integrals is obtained by iterating the steps of the
division algorithm to the double- and single-cuts (in this simple case, it is enough to
apply the division to the double cut D1 = D3 = 0, since the numerators of all the
other cuts have rank-zero already). Let us observe that the application of the divide-
integra-divide algorithm to this example was intended as a mere illustration: it is clear
that, from the knowledge of the full analytic structure of the integrand, we could have
applied the integration (4.24) directly on eq. (4.19) and obtain eq. (4.25) with a single
division.�

One-loop adaptive integrand decomposition

In this section, we revisit the one-loop integrand decomposition discussed in section 3.4,
in the light of the divide-integrate-divide algorithm.

We start again from the most general one-loop n-point amplitude (3.20), which is
now parametrized in terms of the adaptive variables z = {τ ,x⊥},

I
d (1)
i1···in [Ni1···in ] =

∫
ddq

πd/2

Ni1···in(z)
Di1(τ ) . . . Din(τ )

, (4.26)

where Ni1···in(z) is the arbitrary polynomial (3.22) satisfying the renormalizability con-
straint given by eq. (3.23). Such reparametrization doesn’t affect integrands with n ≥ 5
since, in that case, λα = µα and the longitudinal space correspond to the full four-
dimensional space-time. In the first division step, we systematically generate for each
multiple-cut the linear system of equations (4.7) and we solve them in order to obtain
the substitution rules given in eq. (4.8), which express the longitudinal components x‖
and λ2 as combinations of denominators. By applying these substitutions to arbitrary
parametric numerators, we obtain the set of universal one-loop residues

∆ijklm =c0µ
2 ,

∆ijkl =c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4 ,

∆ijk =c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4 + c5x

2
4 + c6x

3
3 + c7x

2
3x4

+ c8x3x
2
4 + c9x

3
4 ,

∆ij =c0 + c1x2 + c2x3 + c3x4 + c4x
2
2 + c5x2x3 + c6x2x4 + c7x

2
3

+ c8x3x4 + c9x
2
4 ,

∆ij |p2=0 = c0 + c1x1 + c2x3 + c3x4 + c4x
2
1 + c5x1x3 + c6x1x4 + c7x

2
3

+ c8x3x4 + c9x
2
4 ,

∆ij |p2=0 = c0 + c1x1 + c2x3 + c3x4 + c4x
2
1 + c5x1x3 + c6x1x4 + c7x

2
3

+ c8x3x4 + c9x
2
4 ,

∆i =c0 + c1x1 + c2x2 + c3x3 + c4x4 , (4.27)

where we have omitted, for each coefficient ck, the label i . . . j of the corresponding
multiple-cut.

It is particularly interesting to compare eq. (4.27) with the one-loop residues of
eq. (3.24), which were obtained in the d = 4− 2ǫ parametrization:
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• The reducibility criterion (1), which ensures the vanishing of the residues of all
nple-cuts with (n > 5), can be easily understood from the construction of the
system of the n linear relations (4.7). Whenever n > 5, besides expressing all loop
variables z in terms of denominators, eq. (4.7) determines a set n − 5 additional
relations between denominators of form

P [Dik ] = 1 , (4.28)

where P is a polynomial which vanishes on the multiple-cut Di1 = · · · = Din = 0.
Therefore, for any numerator Ni1···in , we can use eq. (4.28) to write

Ni1···in = P [Dik ]Ni1···in , (4.29)

from which we immediately see that the integrand is reducible to a combination
of lower-cut contributions.

• For n ≤ 5, the number of variables τ corresponds exactly to the number of
linear relations (4.7). In this sense, at one-loop, all multiple-cuts are maximum-
cuts with ns = 1 solution, since the on-shell conditions fix all τ variable to a
(unique) constant value. Therefore, according to the maximum-cut theorem (2),
all residues (4.27), regarded as members of the polynomial ring P [τ ], are rank-zero
polynomials in τ , i.e. constants.

Obviously, each ∆i1···in can still depend on the transverse variables x⊥. However,
since x⊥ are left untouched by the division, such dependence is completely fixed by
the dependence on x⊥ of the original numerator. In particular, for the arbitrary
numerator (3.22) the residue is just a complete polynomial in x⊥,

∆i1···in(x⊥) =
∑

~ ∈ J4−d‖
(n)

α~ x
j1
⊥ 1x

j2
⊥ 2 . . . x

j4−d‖

⊥ 4−d‖
, n ≤ 4, (4.30)

whose rank is determined by the renormalizability condition

J4−d‖(n) = {~ : j1 + j2 + · · ·+ j4−d‖ ≤ n} . (4.31)

The only exception to eq. (4.30) is the residue of the double-cut with massless
external momentum, ∆ij |p2=0, which depends on the longitudinal component x1
parallel to p. In fact, due to the reduced dimensions of the transverse space, the
denominators depend on three variables τ = {x1, x2, λ2} so that in this kinematic
configuration the double-cut is not maximum any more.

• Having maximized the dependence of the residues (4.27) on the transverse di-
rection x⊥, we can easily identify the spurious contributions ∆sp

i1···in by means
of eq. (2.52) and reduce all non-spurious terms to powers of λ2. The resulting
decomposition of the one-loop amplitude (4.16) is

I
d (1)
i1···in [Ni1···in ] =

n∑

i≪m

c
(ijklm)
0 I

d (1)
ijklm[µ2] +

n∑

i≪l

[
c
(ijkl)
0 I

d (1)
ijkl [1]

+ c
(ijkl)
2 I

d (1)
ijkl [λ

2] + c
(ijkl)
4 I

d (1)
ijkl [λ

4]

]

+
n∑

i≪k

[
c
(ijk)
0 I

d (1)
ijk [1] + c

(ijk)
7 I

d (1)
ijk [λ2]

]
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+

n∑

i≪j

[
δ0,p2i

(
c
(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

)

+ c
(ij)
0 I

d (1)
ij [1] + c

(ij)
9 I

d (1)
ij [λ2]

]
+

k∑

i

c
(i)
0 I

d (1)
i [1] , (4.32)

where the coefficients ck have now acquired and additional dependence on d, due
to the integration over the transverse variables.

• We can apply a further-integrand level reduction to the monomials in λ2 that
appear in the decomposition (4.32) and reduce them to rank-zero numerators. In
this way, we obtain a final decomposition of the amplitude in terms of a minimal
set of integrals,

I
d (1)
i1···in [Ni1···in ] =

n∑

i≪m

c
(ijklm)
0 I

d (1)
ijklm[µ2]

+
n∑

i≪l

c
(ijkl)
0 I

d (1)
ijkl [1] +

n∑

i≪k

c
(ijk)
0 I

d (1)
ijk [1]

+
n∑

i≪j

[
δ0,p2i

(
c
(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

)

+ c
(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

]
+

n∑

i

c
(i)
0 I

d (1)
i [1] , (4.33)

which is, of course, in agreement with eq. (3.30).

We would like to observe that, at one-loop level, this second division offer a par-
ticularly clear interpretation of the dimensional-recurrence relation (2.56) at the
integrand-level. In fact, according to eq. (2.25), λ2 numerators can be identi-
fied with higher-dimensional integrals and, hence, the integrand reducibility of
λ2 allows to write any higher dimensional integral as a combination of the corre-
sponding integral in d dimensions and integrals with fewer loop denominators.

Ii1 ··· in τ ∆i1 ··· in ∆int
i1 ··· in ∆

′

i1 ··· in

Ii1i2i3i4i5
1 − −

{x1, x2, x3, x4, µ2} {1} − −

Ii1i2i3i4
5 3 1

{x1, x2, x3, λ2} {1, x4, x24, x34, x44} {1, λ2, λ4} {1}

Ii1i2i3
10 2 1

{x1, x2, λ2} {1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1, λ2} {1}

Ii1i2
10 2 1

{x1, λ2} {1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1, λ2} {1}

Ii1i2
10 4 3

{x1, x2, λ2} {1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21, λ2} {1, x1, x21}

Ii1
5 1 −

{λ2} {1, x1, x2, x3, x4} {1} −

Table 4.1: Irreducible numerators for one-loop topologies. In the first column, τ labels the
variables the denominators depend on. For each of the residues, ∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list of their variables. In the pictures, wavy lines
stand for massless particles and solid ones denote propagators with arbitrary masses.
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Figure 4.1: Two-loop maximum-cuts.

The whole discussion of the one-loop adaptive integrand decomposition is summarized
by Table 4.1, which lists, for each step of the divide-integrate-divide algorithm, the
irreducible numerators of all one-loop topologies. In particular, the last column shows
that the final result of the algorithm, which doesn’t rely on any additional integral-level
identity, is completely equivalent to the ordinary tensor integral decomposition. In this
regard, we would like to stress once more that the algorithm does not resort to any form
factor decomposition and, thus, can be effectively applied also to helicity amplitudes.

4.3 Two-loop adaptive integrand decomposition

In this section, we apply the divide-integra-divide algorithm in order to determine the
universal parametric form of the residues appearing in the integrand decomposition of
a general r-denominator two-loop amplitude

I
d (2)
i1···ir [Ni1···ir ] =

∫
ddq1

πd/2

ddq2

πd/2

Ni1···ir(z)
Di1(τ ) . . . Dir(τ )

. (4.34)

The r denominators Di1 , . . . , Dir can be grouped into three different partitions, as in
eq. (4.9), according to which loop momenta they depend on.

Therefore, we can classify any two-loop integrand topology Ii1···ir according to the
number r1 of denominators depending on q1, the number r2 of denominators depending
on q2 and the number r12 = r − r1 − r2 of denominators which depend on both loop
momenta.

The value of r12 allow us to distinguish between three different kind of two-loop
integrands: planar topologies are identified by r12 = 1, non-planar ones by r12 > 1 and
r12 = 0 corresponds to two-loop topologies which are factorized into the product of two
one-loop ones.

As we have argued in section 3.3, the integrand decomposition of the amplitude (4.34)
receives, in general, contributions from maximum-cuts, i.e. multiple-cuts which fix all
the loop variables, as well as from all other cuts associated to subsets of denominators.

Hence, in order to classify the universal structure of the two-loop residues, we first
need to identify the maximum-cut topologies. Provided that two-loop integrands in d
dimensions are parametrized in terms of 11 variables, which in d = 4 − 2ǫ correspond
to

z = {x11, . . . x41, x12, . . . , x42, µ11, µ22, µ12}, (4.35)
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and that the definition of the loop denominators (4.9) can always be cast in terms of
linear equations for z, it is clear that a maximum-cut must have r = 11. Additional
constraints on r1 and r2 must ensure that the system of linear equations (4.9) is deter-
mined. If we assume, without loss of generality, r1 ≥ r2, these requirements are satisfied
in the following cases:

IP
1 2... 11 : r1 = 5 , r2 = 5 , r12 = 1 ,

INP1
1 2... 11 : r1 = 5 , r2 = 4 , r12 = 2 ,

INP2
1 2... 11 : r1 = 5 , r2 = 3 , r12 = 3 , (4.36)

which correspond, respectively, to the three eight-point topologies depicted in figure 4.1.
Any other topology which can be obtained from one of the maximum-cuts (4.36) with
the addition on any number of loop propagators, is reducible, i.e. it is completely
decomposed in terms of the corresponding maximum-cut and its subtopologies.

Therefore, the integrand decomposition of the amplitude I
d (2)
i1···ir is of the form

Ii1...ir ≡ Ni1...ir

Di1 · · ·Dir

=

s∑

k=2

∑

{j1···jk}

∆j1···jk
Dj1 · · ·Djk

, s = min(r, 11) . (4.37)

The determination of ∆j1···jk appearing in eq. (4.37) proceeds along the same lines of
the one-loop case discussed in section (4.2), namely:

1. For every multiple-cut, starting from the three maximum-cut topologies (4.36)
and ranging down to double-cuts with r1 = r2 = 1, we introduce, according
to the number n of external legs of each topology, the adaptive parametrization
z = {τ ,x⊥ 1,x⊥ 2}, with

τ = {x‖ 1,x‖ 2, λ11, λ22, λ12} , (4.38)

and we build a system of linear equations in the τ , following the discussion of
section 4.1. In general, the number of τ variables is larger than the number
of independent linear equations, so that the solution of such system expresses λij

and a subset of longitudinal components x‖ in terms of denominators and physical

ISPs xISP
‖ ,

{
xRSP
‖ i → P [Dik ,x

ISP
‖ i ]

λij → P [Dik ,x
ISP
‖ i ] , i, j = 1, 2 .

(4.39)

In the case of factorized topologies r12 = 0, the structure of (4.39) can be notably
simplified. In fact, as we discussed in section 2.3.2, when the loop denominators
are independent of q1 · q2, any possible dependence of the numerator on µ12 can
be easily integrated away.

Therefore, any factorized integrand can be parametrized in terms of 10 variables
only, z = {z1, z1}, each zi corresponding to the 5 variables associated to the loop
momentum qi. According to the number n1 and n2 of external legs attached,
respectively, to each loop, we can introduce the adaptive variables zi = {τ i,x⊥ i}
independently for q1 and q2. Since for a factorized topology ni = r1, this implies
that the system of r linear equations built from the definition of the loop denom-
inators allows to write all variables τ = {τ 1, τ 2} in terms of denominators and,
as in the one-loop case, there is no physical ISPs xISP

‖ ,
{
x‖ i → P1[Dik ]

λii → P2[Dik , ] , i = 1, 2 .
(4.40)
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2. We make use of the set of substitutions (4.39)-(4.40) and of the transverse inte-
gration techniques and apply the divide-integrate-divide algorithm to arbitrary
polynomial numerators of the type

Ni1···ir(z) =
∑

~∈J
α~ z

j1
1 zj22 . . . zj1111 , (4.41)

where α~ are arbitrary coefficients. The sum over the integer 11-tuples ~ =
{j1, j2 , . . . , j11} is restricted to a subset J which is determined by the details
of the theory under consideration. In particular, if restrict Ni1···ir to renormaliz-
able theories, we have J = J11(s1, s2, s) with

J11(s1, s2, s) =





∑4
i=1 ji + 2j9 + j11 ≤ s1∑8
i=5 ji + 2j10 + j11 ≤ s2∑8
i=1 ji + 2(j9 + j10 + j11) ≤ s ,

(4.42)

with s1 = r1 + r12, s2 = r2 + r12 and s = r1 + r2 + r12 − 1. Non-renormalizable
theories, which will generally correspond to higher values of s1, s2 and s, can be
treated in a completely analogous way.

As we discussed above, in the case of factorized topologies, we can assume the
full integrand to be independent of µ12 (or, equivalently, of λ12). Therefore, we
consider the parametric numerators to have the form

Ni1···ir(z1, z2) = Ni1···ir1 (z1)Nir1+1···ir1+r2
(z2), (4.43)

where each of the one-loop numerators appearing in the r.h.s. is parametrized as
in eq. (3.22).

The result of this analysis, i.e. the list of residues that contribute to eq. (4.37), is
shown in Tables 4.2-4.8, where Ia

i1 ... ir
labels the integrand associated to the subset of

denominators Di1 , . . . , Dir of the maximum-cut Ia
1 ... 11, with a ∈ {P ,NP1 ,NP2}. For

each integrand, we provide the number of monomials that appear in the corresponding
residue at each step of the divide-integrate-divide algorithm, as well as the loop vari-
ables they depend on.

In particular, we would like to point out that:

• The residues of the maximum-cut topologies IP
1···11, INP1

1···11 and INP2
1···11 contain one

single coefficients, in agreement with the maximum-cut theorem 2;

• For all topologies with a number of external legs 5 ≤ n ≤ 8, we can apply one
single division, since the four-dimensional loop momenta have no transverse com-
ponents and λα

i = µα
i . Nonetheless, the use of the set of relations (4.40), which, in

the multivariate polynomial division approach, would correspond to the choice of
monomial order µij ≺ x‖, ensure that the residues are written in terms of physical
ISPs only, i.e. in terms of scalar products between loop momenta and external
ones;

• In the case of n ≤ 4 external legs, the use of the d = d‖ + d⊥ parametriza-
tion maximizes the dependence on the transverse variables x⊥ i in the residue
∆i1 ... ir obtained after the first division step. The subsequent integration allows
the systematic detection of all spurious-terms, hence a substantial reduction of
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the number of monomials contributing to the integrated amplitude. Finally, the
second division removes the dependence of the residues on λij , which is a byprod-
uct the transverse integration of non-spurious terms. Therefore, the final residues
∆′

i1 ... ir
depend exclusively on the physical ISPs xISP

‖ i and their polynomial struc-

ture reflects the one of the original numerator (4.41), i.e. it is fully determined by
the renormalizability properties of the theory. This means that, if we assume the
topology Ii1 ... ir to have mi ISPs in the i-th loop momentum, then its residue is
given by

∆′
i1 ... ir(x

ISP
‖ i ) =

∑

~∈J
α~ (x

ISP
‖ 11)

j1 . . . (xISP
‖m11

)jm1 . . . (xISP
‖ 12)

jm1+1 . . . (xISP
‖m22

)jm1+m2 ,

(4.44)

where J = Jm1+m2(s1, s2, s) is the set of (m1 +m2)-tuples

Jm1+m2(s1, s2, s) =

{ ∑m1
i=1 ji ≤ s1 ,

∑m2
i=1 jm1+i ≤ s2∑m1+m2

i=1 ji ≤ s .
(4.45)

In the case of non-planar topologies, the inspection of the residues ∆′
i1 ... ir

reveals
an apparent violation of eq. (4.44), since they include monomials which do not
fulfil all the above renormalizability conditions. This effect is due to the fact that,
whenever r12 > 1, the linear relations (4.40) produce a mixing of the longitudinal
components of the two-loop momenta. Therefore, although they preserve the total
rank s as in eq. (4.45), these relations, when applied to a numerator, can enhance
the rank in the component of one of the loop momenta above the corresponding
si. Of course, the full set of the rinormalizability conditions can be restored at
the price of expressing the residue in terms of a larger number of variables.

• In the one-loop case, we have seen that the integrand reduction of monomials in λ2

corresponds to an integrand level implementation of the dimensional recurrence
relations between loop integrals. At multi-loop level, as dictated by eq. (2.56),
the Gram determinant G(λij) of the transverse vectors λα

i (or G(µij) in the cases
with more than four external legs) acts on any arbitrary numerator as a dimension-
rising operator,

Id (ℓ) [G(λij)] ∼ Id+2 (ℓ) [1] . (4.46)

Thus, if we apply the substition (4.10) to eq. (4.46), we can relate a combination
of d-dimensional integrals with non-trivial numerators to lower rank integrals in
d+ 2 dimensions,

Id (ℓ)
[
G(Dik , P (xISP

‖ i )
]
∼ Id+2 (ℓ) [1] . (4.47)

These kind of relations simplifies the interpretation of the monomials appearing
in the residues ∆

′

i1···ir(x‖) in terms of a basis of tensor integrals, since they can be
used in order to trade some of the higher-rank integrals with lower rank integrals
in higher dimensions.

• Table 4.8 shows that the adaptive integrand decomposition of any arbitrary two-
loop factorized topology produces a single, constant coefficient. This is a direct
consequence of introducing two independent d = d‖ + d⊥ parametrizations for
each loop momentum, which, as stated in eq. (4.40), allow us to write all loop



4.3. Two-loop adaptive integrand decomposition 71

variables in terms of denominators. In addition, the division of a numerator of
the type (4.43) is effectively equivalent to the individual division of each one-loop
numerator by the corresponding subset of denominators. Therefore, as expected,
the resulting residue is simply given by the product of constant residues associated
to the two individual one-loop subtopologies.

Ii1···in ∆i1···ir

IP
12345678910 11

1

{1}

INP1
12345678910 11

1

{1}

INP2
12345678910 11

1

{1}

IP
2345678910 11

6

{1, x41}

INP1
2345678910 11

10

{1, x42}

INP2
1234578910 11

6

{1, x42}

INP2
1234678910 11

10

{1, x42}

IP
234678910 11

15

{1, x31, x41}

IP
234578910 11

33

{1, x41, x42}

INP1
234578910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
234678910 11

45

{1, x41, x42}

Ii1···ir ∆i1···ir

IP
1245678910 11

6

{1, x41}

INP1
1245678910 11

10

{1, x42}

INP1
1234568910 11

6

{1, x42}

INP2
1245678910 11

10

{1, x42}

IP
245678910 11

15

{1, x31, x41}

IP
123478910 11

33

{1, x41, x42}

INP1
124568910 11

39

{1, x41, x42}

INP1
123456810 11

15

{1, x32, x42}

INP2
124678910 11

45

{1, x41, x42}

INP1
2478910 11

20

{1, x21, x31, x41}

INP1
23478910 11

76

{1, x31, x41, x42}

INP1
24578910 11

116

{1, x41, x32, x42}

INP1
12457810 11

80

{1, x31, x41, x42}

Table 4.2: Universal irreducible numerators for two-loop topologies eight- and seven-point
topologies. For each residue ∆i1 ··· in we indicate the number of monomials and the list of their
variables.
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Ii1···ir ∆i1···ir

IP
135678910 11

15

{1, x31, x41}

IP
124567910 11

62

{1, x41, x42}

INP1
23568910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
135678910 11

45

{1, x41, x42}

IP
25678910 11

20

{1, x21, x31, x41}

IP
23568910 11

76

{1, x31, x41, x42}

INP1
25678910 11

80

{1, x31, x41, x42}

INP1
24568910 11

116

{1, x41, x32, x42}

IP
3678910 11

15

{1, x11, x21, x31, x41}

IP
2578910 11

94

{1, x21, x31, x41, x42}

IP
2357910 11

160

{1, x31, x41, x32, x42}

INP1
2457910 11

185

{1, x31, x41, x32, x42}

Ii1···ir ∆i1···ir

IP
15678910 11

20

{1, x21, x31, x41}

IP
13567910 11

76

{1, x31, x41, x42}

INP1
15678910 11

80

{1, x31, x41, x42}

IP
1678910 11

15

{1, x11, x21, x31, x41}

INP1
13568910 11

116

{1, x31, x32, x42}

IP
1467910 11

94

{1, x21, x31, x41, x42}

IP
1678911

66

{1, x11, x21, x31, x41, x42}

IP
1256910 11

160

{1, x31, x41, y32, x42}

INP1
1357910 11

185

{1, x31, x41, x32, x42}

IP
1256911

180

{1, x11, x31, x41, x32, x42}

INP1
246910 11

246

{1, x31, x41, x22, x32, x42}

Table 4.3: Universal irreducible numerators for two-loop six- and five-point topologies. For
each residues ∆i1 ··· in we indicate the number of monomials and the list of their variables.

Ii1···ir ∆i1···ir ∆int
i1···ir ∆′

i1···ir

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31, λ11, λ22, λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32, λ11, λ22, λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32, λ11, λ22, λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32, λ11, λ22, λ12} {1, x31, x22, x32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31, λ11, λ22, λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32, λ11, λ22, λ12} {1, x31, x22, x32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32, λ11, λ22, λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32, λ11, λ22, λ12} {1, x11, x31, x22, x32}

Table 4.4: Universal irreducible numerators for two-loop four-point topologies. For each of
the residues, ∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list

of their variables.
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Ii1···ir ∆i1···ir ∆int
i1···ir ∆′

i1···ir

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22, λ11, λ22, λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22, λ11, λ22, λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12, λ11, λ22, λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11, λ22, λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22, λ11, λ22, λ12} {x11, x21, x22}

Table 4.5: Universal irreducible numerators for two-loop three-point topologies. For each of
the residues, ∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list

of their variables.

Ii1···ir ∆i1···ir ∆int
i1···ir ∆′

i1···ir

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1, λ11, λ22, λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11, λ11, λ22, λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12, λ11, λ22, λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12, λ11, λ22, λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22, λ11, λ22, λ12} {1, x11, x22, x21, x22}

Table 4.6: Universal irreducible numerators for two-loop two-point topologies. For each of the
residues, ∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list of

their variables. In the pictures, wavy lines stand for massless particles and solid ones denote
propagators with arbitrary masses.

Ii1···ir ∆i1···ir ∆int
i1···ir ∆′

i1···ir

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, λ11, λ22, λ12} {1}

Table 4.7: Irreducible numerators for two-loop one-point topologies. For each of the residues,
∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list of their variables
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Ii1···ir ∆i1···ir ∆int
i1···ir ∆′

i1···ir

IP
12345678910

1 − −
{1} − −

IP
1245678910

5 3 1

{1, x41} {1, λ11} {1}

IP
125678910

10 2 1

{1, x31, x41} {1, λ11} {1}

IP
15678910

10 2 1

{1, x21, x31, x41} {1, λ11} {1}

IP
12678910

10 4 3

{1, x11, x31, x41} {1, x11, λ11} {1, x11}

IP
1678910

5 1 −
{1, x11, x21, x31, x41} {1} −

IP
23456789

25 9 1

{1, x41, x42} {1, λ11, λ22} {1}

IP
2356789

50 6 1

{1, x31, x41, x42} {1, λ11, λ22} {1}

IP
256789

50 6 1

{1, x21, x31, x41, x42} {1, λ11, λ22} {1}

IP
236789

50 12 3

{1, x11, x31, x41, x42} {1, x11, λ11, λ22} {1, x11}

IP
26789

25 3 1

{1, x11, x21, x31, x41, x42} {1, λ22} {1}

IP
245689

100 4 1

{1, x31, x42, x32, x42} {1, λ11, λ22} {1}

IP
24689

100 4 1

{1, x21, x31, x41, x32, x42} {1, λ11, λ22} {1}

IP
45689

100 8 3

{1, x11, x31, x41, x32, x42} {1, x11, λ11, λ22} {1, x11}

IP
2689

50 2 1

{1, x11, x21, x31, x41, x32, x42} {1, λ22} {1}

IP
2569

100 4 1

{1, x11, x31, x41, x22, x32, x42} {1, λ11, λ22} {1}

IP
4569

100 8 3

{1, x11, x31, x41, x12, x32, x42} {1, x11, λ11, λ22} {1, x11}

IP
4568

100 16 9

{1, x11, x21, x31, x41, x32, x42} {1, x11, x12, λ11, λ22} {1, x11, x12}

IP
269

50 2 1

{1, x11, x21, x31, x41, x22, x32, x42} {1, λ22} {1}

IP
268

50 4 3

{1, x11, x21, x31, x41, x12, x32, x42} {1, x12, λ22} {x12}

IP
29

25 1 −
{1, x11, x21, x31, x41, x12, x22, x32, x42} {1} −

Table 4.8: Universal irreducible numerators for two-loop factorized topologies. For each of the
residues, ∆i1 ··· in , ∆int

i1 ··· in
and ∆

′

i1 ··· in
we indicate the number of monomials and the list of

their variables. In the pictures, wavy lines stand for massless particles and solid ones denote
propagators with arbitrary masses.
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Aida

I = {I1 , I2 , . . . , In}

Amplitude generator

Input: G1 = {I1
1 , . . . , I1

n1
}

...
Gk = {I1

k , . . . , Ik
nk
}

I =

(

Loop parametrization:

Jobs:

Im
1 −! {T1 ... j , . . . , Tm... n , . . . , Tmn}

x
[m... n] RSP
li → P [Dk , x

[m... n] ISP
ki ] }

λij → P [Dk , x
[m... n] ISP
ik ]

CutSol[Tm... n] =

(

Grouping:

Topology Analysis:

Cutam ... an

m... n −! {∆am ... an

m... n ,N b1 ... bn
1 ... n

∣

∣

Cutam ... an
m ... n

}

{Job[1] , . . . , Job[i] , Job[i+ 1] , . . . , Job[m]}

Divide-Integrate-Divide:

I = {∆1 ...m, . . . ,∆m}
Output:

IBPs +MIs/Numerical integration

Cuta1 ... am

1 ...m = {N a1 ... am

1 ...m , {1 , . . . ,m} , {a1 , . . . , am}}
Job[i] = {Cuta1 ... am

1 ...m }

Figure 4.2: Aida

4.4 Aida: a Mathematica implementation

In this section, we introduce Aida (Adaptive Integrand Decomposition Algorithm) a
Mathematica implementation of the divide-integrate-divide algorithm proposed in
section 4.2. The code performs the integrand decomposition of one- and two-loop am-
plitudes, both analytically and numerically. In the following, we describe the chain of
operations performed by Aida, which are summurized by the chart in figure 4.2, by
referring explicitly to the two-loop case. As a toy example, we illustrate step-by-step
the use of this code for the analytic integrand decomposition of the two-loop vacuum
polarization in QED.

Input

The input amplitude I of Aida is generally written as a list of integrands

I = {I1 , I2 , . . . , In} , (4.48)

where each integrand Ik in turn consists of a list specifying the numerator function, the
set of loop propagators and their corresponding powers,

Ik =
Nk

Da1
1 · · · Dam

m
≡ {Nk , {D1 , . . . , Dj}, {a1 , . . . , aj}} , ai ∈ N . (4.49)

The loop propagators are denoted by

Dk = (l2k −m2
k) ≡ { lk , m2 } , (4.50)
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Figure 4.3: Feynman integrals for the two-loop vacuum polarization

where lk =
∑ℓ

i=1 αikqi +
∑n−1

i=1 βikpi, is the momentum flow in the k-th propagator,
which is given by a linear combination of loop momenta qi and external momenta pi.
If the integrands are built from Feynman diagrams, the input can be easily obtained
from the output of commonly used diagrams generators, such as FeynArts [162, 163]
or QGraf [164].

Example: The input amplitude for the two-loop vacuum polarization in QED,

I = {I1 , I2 , I3} , (4.51)

consists of the three Feynman diagrams shown in figure 4.3, which have been pro-
duced with FeynArts and algebraically manipulated with the help of the package
FeynCalc [165]. For our puposes, it is convenient to consider the contraction of each
Feynman diagram with the transverse operator

Pµν(p) = gµν − pµpµ

p2
. (4.52)

In this way, we obtain

In[1]:= Int[1]

Out[1]= {Num[1], {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 1, 1, 1, 1}}

In[2]:= Int[2]

Out[2]= {Num[2], {{q1, m2}, {-p + q1, m2}, {q2, m2}, {p - q1 + q2, 0}}, {1, 2, 1, 1}}

In[3]:= Int[3]

Out[3]= {Num[3], {{q1, m2}, {-p + q1, m2}, {q2, m2}, {p - q1 + q2, 0}}, {1, 2, 1, 1}}

with p being the external momentum and m2 the square mass of the electron. For is-
tance, the numerator function of the first integrand is

In[1]:= Num[1]

Out[1]=

1

s
4 -2 (-2 + d) (p.q2)2 (m2 - q1.q1 + μ1,1) +

(-2 + d) s p.q2 (-m2 + d m2 - (-3 + d) q1.q1 + 2 q1.q2 - 3 μ1,1 + d μ1,1 - 2 μ1,2) -
2 (-2 + d) (p.q1)2 (m2 - q2.q2 + μ2,2) +
s 2 m22 - 3 d m22 + d2 m22 - 4 m2 s + 5 d m2 s - d2 m2 s + 4 (-2 + d) (q1.q2)2 -

6 m2 q2.q2 + 5 d m2 q2.q2 - d2 m2 q2.q2 + 6 m2 μ1,1 - 5 d m2 μ1,1 + d2 m2 μ1,1 -
10 q2.q2 μ1,1 + 7 d q2.q2 μ1,1 - d2 q2.q2 μ1,1 - 4 d m2 μ1,2 + 10 s μ1,2 - 7 d s μ1,2 +
d2 s μ1,2 - 8 μ1,22 + 4 d μ1,22 + q1.q2 4 d m2 - 10 s + 7 d s - d2 s - 8 (-2 + d) μ1,2 +
6 m2 μ2,2 - 5 d m2 μ2,2 + d2 m2 μ2,2 + 10 μ1,1 μ2,2 - 7 d μ1,1 μ2,2 + d2 μ1,1 μ2,2 -
(-2 + d) q1.q1 ((-3 + d) m2 - (-5 + d) q2.q2 + (-5 + d) μ2,2) -

p.q1 (4 p.q2 (d m2 - 2 s + d s + (-2 + d) q1.q2 - (-2 + d) μ1,2) +
(-2 + d) s (-m2 + d m2 + 2 q1.q2 - (-3 + d) q2.q2 - 2 μ1,2 - 3 μ2,2 + d μ2,2))
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where a.b = a · b indicates four-dimensional scalar products and s = p2. In our
convetions, 16π2α2 = 1. Similar expressions can be generated for N2 and N3. �

Grouping

In order to make the reduction more efficient, it is useful to group I into subsets Gk of
integrands which can be processed simultaneously,

I =
⋃

k

Gk , Gk = {IGk
1 , IGk

2 , . . . , IGk
m } , (4.53)

where, within each Gk, IGk
1 is chosen to be the integrand whose set of denominators

contains as subsets the denominators of all other IGk

j . In particular, it is convenient to
define

IGk
1 = {NGk

1 , {D1 , . . . , Dj}, {max
Gk

(a1) , . . . ,max
Gk

(aj)}} . (4.54)

In this way, all members of Gk can be interpreted as subgraphs of IGk
1 , i.e. they can

be obtained through the pinching of a certain set of its denominators. For this reason,
we can refer to IGk

1 as the parent integrand. Obviously, IGk
1 , as defined in eq. (4.54),

might not be present in the original set of integrands I. In such case, NGk
1 is simply

initialized to zero.

Generally, in order to identify an integrand Ij which belongs to Gk, we need to
determine a shift of the loop momenta

{
q1 → α1q1 + α2q2 +

∑
j ηjpj ,

q2 → β1q1 + β2q2 +
∑

j σjpj , with α1β2 − α2β1 6= 0 ,
(4.55)

which maps the denominators of Ik into (a subset of) of the denominators of IGk
1 . If

such a shift exists, eq.(4.55) is applied to Ik and the integrand is added to Gk. In
addition, if the sets of denominators of two or more integrands are mapped exactly into
each other through a proper shift of the loop momenta, they can be added to Gk as a
single integrand, whose numerator is given by the sum of the corresponding (shifted)
numerators.

Example: In the case of the two-loop vacuum polarization, it is easy to see that
I2 and I3 share the same set of loop denominators and, hence, they can be merged into
a single integrand with numerator N2 +N3. Moreover, by performing the shift

{
q1 → −q1 ,

q2 → q2 − p
(4.56)

the denominators of I2,3 are mapped into a subset of the denominators of I1. Thus,
the full amplitude I corresponds to a single group, defined as

G = {IG
1 , IG

2 , IG
3 } (4.57)

with
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In[1]:= IntG[1]

Out[1]= {0, {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 2, 1, 1, 1}}

In[2]:= IntG[2]

Out[2]= {Num[1], {{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 1, 1, 1, 1}}

In[3]:= IntG[3]

Out[3]= {Num[2] + Num[3],

{{q1, m2}, {p + q1, m2}, {-p + q2, m2}, {q2, m2}, {q1 + q2, 0}}, {1, 2, 1, 0, 1}}

IG
1 does not correspond to any of the Feynman diagrams of figure 4.3 (since it has five

distinct denominators and one them is squared) and, consistently, its numerator has
been set to zero. The other two integrands are, respectively, IG

2 = I1 and IG
3 = I2+I3.�

Topology Analysis

Having determined the set of parent integrands IG
1 that contribute to I, we can analyze

their graph structure in order to extract the kinematic information needed for the
definition of the adaptive parametrization.

First of all, the list of denominators of each IG
1 is translated into a Graph, i.e. a list

of connected vertices, where each internal edge corresponds to a loop denominator.

By systematically merging the vertices of the parent graph, we can generate the
graphs associated to all possible multiple-cuts of IG

1 . Every time two vertices are
merged, the use of the Graph representation of the integrand allows us to easily recon-
struct, by applying momentum conservation, the momentum flow of the corresponding
subgraph. After all subgraphs corresponding to IG

1 have been obtained, each of them is
translated into a topology Tm... n, i.e. a list containing all the relevant information which
will be used in the next steps of the algorithm. This set of operations is performed by
the function FindTopo,

FindTopo[IGk
1 ] = {T1 ... j , . . . , Tm... n , . . . , Tmn} . (4.58)

A m-denominator non-factorized topology T1 ...m (with m1 denominators depending on
q1 and m2 denominators depending on q2) is identified by the list

T1 ...m = {NF , {q1 , q2} , {p1 , . . . , pm},
{{D1 , . . . , Dm1} , {Dm1+1 , . . . , Dm1+m2} , {Dm1+m2+1 , . . . , Dm}}} , (4.59)

which collects, in order, the set of loop momenta, the list of external momenta and
the set denominators which, in turn, are split into three partitions, according to their
dependence, respectively, on q1, q2 and q1 ± q2.

A m-denominator factorized topology T1 ...m (with m1 denominators depending on
q1 and m2 = m −m1 denominators depending on q2) is identified by the two separate
lists, collecting loop momentum, external momenta and denominators of each sub-loop,

T1 ...m = {F , {{q1} , {p1 , .. pm1}, {D1 , . . . , Dm1}} ,
{{q2} , {pm1+1 , .. pm2}, {Dm1+1 , . . . , Dm2}}} . (4.60)

FindTopo is applied to all parent integrands IGk
1 . In this way, we can associate a topol-

ogy to each of the multiple-cuts contributing to I.

Example: The parent integrand IG
1 of the two-loop vacuum polarization, defines 24
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distinct topologies, whose Graph representation is depicted in figure 4.4. As an exam-
ple, we list below the internal representation of the parent topology T12345 and of the
four-denominator factorized topology T1234,

In[1]:= T[{{1, 2}, {3, 4}, {5}}]

Out[1]= {NF, {q1, q2}, {p}, {{{q1, m2}, {p + q1, m2}}, {{-p + q2, m2}, {q2, m2}}, {{q1 + q2, 0}}}}

In[2]:= T[{{1, 2}, {3, 4}}]

Out[2]= {F, {{q1}, {p}, {{q1, m2}, {p + q1, m2}}}, {{q2}, {p}, {{-p + q2, m2}, {q2, m2}}}}
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Figure 4.4: Relevant topologies Tm... n for the two-loop vacuum polarization. �

Loop parametrization

The knowledge of the external momenta of each topology allows us to introduce the
proper d = d‖ + d⊥ parametrization for every T1 ...m. To this aim, the routine LoopPar

builds the four-dimensional basis E = {e[1 ...m]
1 , . . . , e

[1 ...m]
4 }, as defined in eq.(2.33), and

produces the decomposition of the loop momenta in terms of the adaptive variables,

LoopPar[T1 ...m] ={q[1 ...m]
i ‖ →

d‖∑

j=1

x
[1 ...m]
j i e

[1 ...m]
j

λ
[1 ...m]
ij →

4∑

k=d‖+1

x
[1 ...m]
k i x

[1 ...m]
k j e

[1 ...m]
k · e[1 ...m]

k + µij} . (4.61)

This decomposition is applied by the routine CutSol to the definition of the loop de-
nominators, in order to build and solve the system of linear equations expressing λij

and the reducible physical directions xRSP
‖ i in terms of denominators and physical ISPs,

CutSol[T1 ...m] = {λij → P [Dk , x
[1 ...m] ISP

ik ] ,
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x
[1 ...m]RSP

li → P [Dk , x
[1 ...m] ISP

ki ] } , i, j = 1, 2 . (4.62)

In the initialization phase of Aida, CutSol is systematically applied to all T1 ...m and the
resulting substitution rules, which constitute the core of the entire reduction algorithm,
are stored for later use in the division step. Inverse substitution rules, which express
the physical ISPs x‖ i in terms of scalar products between loop momenta and external
momenta, are generated and stored as well.

Example: Let us consider the topology T1235, whose corresponding Graph is shown
in figure 4.4. Being d‖ = 1, the two-loop momenta q1 and q2 have one single physical
component. Thus, we have

τ = {x[1235]11 , x
[1235]
12 , λ11, λ22, λ12} . (4.63)

The system of four linear equations obtained from differences of denominators allows

us to express x
[1235]
11 and λij as combinations of denominators and x

[1235]
12 , which is the

only physical ISP. Consistently, CutSol[T1235] returns

In[1]:= CutSol[T {{1, 2}, {3} {5}}]

Out[1]= x[1][1, {{1, 2}, {3}, {5}}] → -
s + d[1] - d[2]

2 s
,

λ1,1[{{1, 2}, {3}, {5}}] →
4 m2 s - s2 + 2 s d[1] - d[1]2 + 2 s d[2] + 2 d[1] d[2] - d[2]2

4 s
,

λ1,2[{{1, 2}, {3}, {5}}] →
1

2
(-2 m2 - d[2] - d[3] + d[5] - s x1,2[{{1, 2}, {3}, {5}}] +

d[1] x1,2[{{1, 2}, {3}, {5}}] - d[2] x1,2[{{1, 2}, {3}, {5}}]),
λ2,2[{{1, 2}, {3}, {5}}] → m2 + d[3] - s x1,2[{{1, 2}, {3}, {5}}]2

where d[i] = Di. �

Jobs

Each integrand IGk

j in the group Gk corresponds to one of the topologies Tm...n gener-

ated from the parent integrand IGk

j . If in IGk
1 all denominators are raised to power one,

then every IGk

j corresponds to a different Tm...n. Conversely, when dealing with higher
powers of denominators, different integrands (which share the same set of denomina-
tors but have different powers) are associated to the same topology. Integrands are
distributed to the corresponding topologies through the definition of cuts Cuta1 ... am1 ...m ,

Cuta1 ... am1 ...m = {N a1 ... am
1 ...m ,

{{1 , . . . ,m1} , {m1 + 1 , . . . ,m1 +m2} , {m1 +m2 + 1 , . . . ,m}} ,
{{a1 , . . . , am1 , am1+1 , . . . , am1+m2 , am1+m2+1 , . . . , am}} . (4.64)

We assign to each cut Cuta1 ... am1 ...m the numerator of the integrand IGk

j with denomina-
tors D1 , . . . , Dm raised to powers {a1 , . . . , am}. If no such integrand exists, N a1 ... am

1 ...m is
initialized to zero. Cuts which are not associated to any integrand of Gk might acquire
non-trivial numerator during the division algorithm.

The assignments are made by the JobList routine,

JobList[Gk, {T1 ... j , . . . , Tm... n , . . . , Tmn}] = {Job[1] , . . . , Job[k]} , (4.65)
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which defines all cuts Cuta1 ... am1 ...m and organizes them into sublists, we refer to as Jobs.
Each Job[i] consists of the set of cuts Cuta1 ... am1 ...m which can receive a contribution from
the polynomial division of the cuts contained in Job[1] , . . . , Job[i− 1]. Job[1] contains
only the cut associated to the parent integrand, since the quotients produced by the
division of the numerator of IGk

1 can, in principle, contribute to all other cuts. By
construction, the quotient generated by Cuta1 ... am1 ...m ∈ Job[i] does not contain terms be-
longing to any other cuts in Job[i]. Therefore, the division of all the cuts contained in
a given Job can be parallelized.

Example: The integrand decomposition of the two-loop vacuum polarization requires
the evaluation of 38 cuts, which are organized in the 8 distinct Jobs:

In[1]:= Job[1]

Out[1]= {Cut[{{1, 2}, {3, 4}, {5}}, {1, 2, 1, 1, 1}]}

In[2]:= Job[2]

Out[2]= {Cut[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]}

In[3]:= Job[3]

Out[3]= {Cut[{{2}, {3, 4}, {5}}, {0, 2, 1, 1, 1}], Cut[{{1, 2}, {4}, {5}}, {1, 2, 0, 1, 1}],

Cut[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}], Cut[{{1, 2}, {3, 4}}, {1, 2, 1, 1, 0}]}

In[4]:= Job[4]

Out[4]= {Cut[{{2}, {3, 4}, {5}}, {0, 1, 1, 1, 1}],

Cut[{{1}, {3, 4}, {5}}, {1, 0, 1, 1, 1}], Cut[{{1, 2}, {4}, {5}}, {1, 1, 0, 1, 1}],

Cut[{{1, 2}, {3}, {5}}, {1, 1, 1, 0, 1}], Cut[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]}

In[5]:= Job[5]

Out[5]= {Cut[{{2}, {4}, {5}}, {0, 2, 0, 1, 1}], Cut[{{2}, {3}, {5}}, {0, 2, 1, 0, 1}],

Cut[{{2}, {3, 4}}, {0, 2, 1, 1, 0}], Cut[{{1, 2}, {5}}, {1, 2, 0, 0, 1}],

Cut[{{1, 2}, {4}}, {1, 2, 0, 1, 0}], Cut[{{1, 2}, {3}}, {1, 2, 1, 0, 0}]}

In[6]:= Job[6]

Out[6]= {Cut[{{3, 4}, {5}}, {0, 0, 1, 1, 1}], Cut[{{2}, {4}, {5}}, {0, 1, 0, 1, 1}],

Cut[{{2}, {3}, {5}}, {0, 1, 1, 0, 1}], Cut[{{2}, {3, 4}}, {0, 1, 1, 1, 0}],

Cut[{{1}, {4}, {5}}, {1, 0, 0, 1, 1}], Cut[{{1}, {3}, {5}}, {1, 0, 1, 0, 1}],

Cut[{{1}, {3, 4}}, {1, 0, 1, 1, 0}], Cut[{{1, 2}, {5}}, {1, 1, 0, 0, 1}],

Cut[{{1, 2}, {4}}, {1, 1, 0, 1, 0}], Cut[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]}

In[7]:= Job[7]

Out[7]= {Cut[{{2}, {5}}, {0, 2, 0, 0, 1}],

Cut[{{2}, {4}}, {0, 2, 0, 1, 0}], Cut[{{2}, {3}}, {0, 2, 1, 0, 0}]}

In[8]:= Job[8]

Out[8]= {Cut[{{4}, {5}}, {0, 0, 0, 1, 1}], Cut[{{3}, {5}}, {0, 0, 1, 0, 1}],

Cut[{{2}, {5}}, {0, 1, 0, 0, 1}], Cut[{{2}, {4}}, {0, 1, 0, 1, 0}],

Cut[{{2}, {3}}, {0, 1, 1, 0, 0}], Cut[{{1}, {5}}, {1, 0, 0, 0, 1}],

Cut[{{1}, {4}}, {1, 0, 0, 1, 0}], Cut[{{1}, {3}}, {1, 0, 1, 0, 0}]}

where Cut[{m,...,n},{am,...a_n}] = Cutan ... am
n ...m . The cuts

Cut1211112345 ={0 , {{1, 2} , {3, 4} , {5}} , {1, 2, 1, 1, 1}} ,
Cut1111112345 ={N1 , {{1, 2} , {3, 4} , {5}} , {1, 1, 1, 1, 1}} ,
Cut121011245 ={N2 +N3 , {{1, 2} , {3} , {5}} , {1, 2, 1, 0, 1}} , (4.66)
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correspond, respectively, to the integrands IG
1 , IG

2 , and IG
3 of the group G. The nu-

merator of all other cuts are initially set to zero. �

Divide-Integrate-Divide

The Job-organization of all cuts Cutam ... an
m... n that contribute to the group Gk completes

the initialization phase of the algorithm. Having stored the loop parametrization (4.61)
and the substitution rules (4.62) for all topologies, we can finally proceed to the division
step.

The division is applied sequentially to each Job, starting from Job[1]. When we
enter Job[i], the function BuilNum redefines the numerator of each Cutam ... an

m... n ∈ Job[i]
as follows:

N am ... an
m... n → BuilNum[Cutam ... an

m... n ] = N am ... an
m... n +

∑

Cut
bk...bl
k...l

∈Job[j<i]

N am ... an
m... n |

Cut
bk...bl
k...l

,

(4.67)

where N am ... an
m... n |

Cut
bk...bl
k...l

is the contribution to the numerator of Cutam ... an
m... n originated

from the division of the numerator associated to Cutbk...blk...l . By definition, Cutbk...blk...l

belongs to a Job[j] with j < i. Therefore, in order not to miss any contribution to
Cutam ... ,an

m... n , it is important to process Job[i] after all previous Jobs have been completed.
After the numerator of Cutam ... ,an

m... n has been redefined through eq. (4.67), the adap-
tive parametrization of eq. (4.61) of the loop momenta is applied. Finally the Divide

function acts on the numerator N am ... ,an
m... n , plugs in the substitution rules (4.62) of the

corresponding topology Tm... n and, by collecting the coefficients of the different mono-
mials in {Dm , . . . , Dn}, determines the residue ∆am ... an

m... n and stores the numerators
N bk ... bl

k ... l |Cutam ... an
m ... n

which will be processed in the next Jobs,

Divide[N am ... an
m... n , CutSol[T1 ...m]] = {∆am ... an

m... n ,N b1 ... bn
1 ... n |Cutam ... an

m ... n
} . (4.68)

The integration over the transverse directions x⊥ ,i is performed through a set of sub-
stitutions rules PerpIntegrate[Tm... n], which selects the result of appendices A.2-A.3
compatible with the d = d‖+d⊥ parametrization of the topology Tm... n. These rules can
be applied to N am ... an

m... n at any point, as soon as the loop parametrization of eq. (4.61)
has been introduced. If the integration is performed before the Divide function is
called, the residues obtained from eq. (4.68) will be free of spurious terms, and they will

directly correspond to the residues ∆
′ a1 ... am
1 ...m of the final decomposition of I.

Conversely, if no integration is applied prior to division, we can integrate each
∆a1 ... am

1 ...m , run again

Divide[∆int a1 ... am
1 ...m , CutSol[T1 ...m]] = {∆′ a1 ... am

1 ...m ,N b1 ... bn
1 ... n |Cutam ... an

m ... n
} (4.69)

through all Jobs and obtain the final decomposition of I.

Example: Let us consider the factorized cut Cut111101234 , which belongs to Job[4]. The
initial value of N 1110

1234 is zero, since none of the Feynman diagrams of figure 4.3 belongs to
the topology T1234. However, additional contributions to Cut111101234 might come from the
division of cuts with a larger number of denominators. Therefore, before the division
is performed, BuildNum redefines the numerator of Cut111101234 by summing all possible
contributions generated during the reduction of Job[1], Job[2] and Job[3],
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In[1]:= BuildNum[Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]]

Out[1]= Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}] +

Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 2, 1, 1, 0}] +

Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}] +

Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}, {5}}, {1, 2, 1, 1, 1}]

with

In[1]:= Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[1]= 0

In[2]:= Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 2, 1, 1, 0}]

Out[2]= 0

In[3]:= Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]

Out[3]= -8 (-4 + d) m2 - 2 (-2 + d) ((-8 + d) s - 2 (q1.q1 - 2 q1.q2 + q2.q2) + 2 (μ1,1 + μ2,2))

In[4]:= Num[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}, {{1, 2}, {3, 4}, {5}}, {1, 2, 1, 1, 1}]

Out[4]= 0

After introducing the d = d‖ + d⊥ parametrization of the loop momenta associated
to T1234 and integrating over the transverse components, the numerator is passed to
Divide, which returns the residue of Cut111101234 and distributes the quotients to the nu-
merators of lower cuts,

In[11]:= Δ[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[11]= 2 8 m2 - 14 - 9 d + d2 s

In[12]:= Num[{{1, 2}, {3}}, {1, 1, 1, 0, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[12]= 2 (-2 + d)

In[13]:= Num[{{1, 2}, {4}}, {1, 1, 0, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[13]= 2 (-2 + d)

In[14]:= Num[{{1}, {3, 4}}, {1, 0, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[14]= 2 (-2 + d)

In[15]:= Num[{{2}, {3, 4}}, {0, 1, 1, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[15]= 2 (-2 + d)

}]

+ )

}]

- )

}]

- )

}]

+ )
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+ )

In[17]:= Num[{{1}, {3}}, {1, 0, 1, 0, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[17]=

2 (-2 + d)

s

In[18]:= Num[{{1}, {4}}, {1, 0, 0, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[18]=

2 (2 - d)

s

In[19]:= Num[{{2}, {3}}, {0, 1, 1, 0, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[19]=

2 (2 - d)

s

In[20]:= Num[{{2}, {4}}, {0, 1, 0, 1, 0}, {{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]

Out[20]=

2 (-2 + d)

s

This procedure is iterated over all Jobs, one after the other. As a result, we obtain
the full set of non vanishing residues which contains a total number of 31 monomials

Δ[{{1, 2}, {3, 4}, {5}}, {1, 1, 1, 1, 1}]== -4 8 m22 - 8 m2 s + 2 d m2 s + 2 s2 - d s2

Δ[{{1, 2}, {3}, {5}}, {1, 2, 1, 0, 1}]== -16 4 m22 - 2 m2 s + d m2 s

Δ[{{2}, {3, 4}, {5}}, {0, 1, 1, 1, 1}]== -4 (2 m2 - 2 s + d s)

Δ[{{1}, {3, 4}, {5}}, {1, 0, 1, 1, 1}]== -4 (2 m2 - 2 s + d s)

Δ[{{1, 2}, {4}, {5}}, {1, 1, 0, 1, 1}]== -4 (2 m2 - 2 s + d s)

Δ[{{1, 2}, {3}, {5}}, {1, 1, 1, 0, 1}]==
-4 (10 m2 - 6 s + 5 d s - d2 s) + 8 (4 s - 4 d s + d2 s) x1,2[{{1, 2}, {3}, {5}}]

Δ[{{1, 2}, {3, 4}}, {1, 1, 1, 1, 0}]== 2 (8 m2 - 14 s + 9 d s - d2 s)

Δ[{{2}, {3}, {5}}, {0, 2, 1, 0, 1}]== 16 (-2 m2 + d m2)

Δ[{{1, 2}, {5}}, {1, 2, 0, 0, 1}]== 4 (-8 m2 + 4 d m2 + 4 s - 4 d s + d2 s)

Δ[{{1, 2}, {3}}, {1, 2, 1, 0, 0}]== -4 (-8 m2 + 4 d m2 + 4 s - 4 d s + d2 s)

Δ[{{3, 4}, {5}}, {0, 0, 1, 1, 1}]== 4 (-2 + d)

Δ[{{2}, {4}, {5}}, {0, 1, 0, 1, 1}]==
2 (-4 m2 + 6 s - 5 d s + d2 s)

s
+ 4 (-2 + d) x1,1[{{2}, {4}, {5}}] + 4 (-2 + d) x1,2[{{2}, {4}, {5}}]

Δ[{{2}, {3}, {5}}, {0, 1, 1, 0, 1}]== -
4 (2 m2 + 6 s - 5 d s + d2 s)

s

Δ[{{2}, {3, 4}}, {0, 1, 1, 1, 0}]== -2 (-2 + d)

Δ[{{1}, {4}, {5}}, {1, 0, 0, 1, 1}]==
4 (2 m2 - 2 s + d s)

s

Δ[{{1}, {3}, {5}}, {1, 0, 1, 0, 1}]==
2 (4 m2 + 10 s - 7 d s + d2 s)

s
+ 4 (-2 + d) x1,1[{{1}, {3}, {5}}] + 4 (-2 + d) x1,2[{{1}, {3}, {5}}]

Δ[{{1}, {3, 4}}, {1, 0, 1, 1, 0}]== -2 (-2 + d)

Δ[{{1, 2}, {5}}, {1, 1, 0, 0, 1}]== 4 (-2 + d)

Δ[{{1, 2}, {4}}, {1, 1, 0, 1, 0}]== -2 (-2 + d)

Δ[{{1, 2}, {3}}, {1, 1, 1, 0, 0}]== -2 (-2 + d)

Δ[{{2}, {5}}, {0, 2, 0, 0, 1}]== -4 (4 - 4 d + d2)

Δ[{{2}, {3}}, {0, 2, 1, 0, 0}]== 4 (4 - 4 d + d2)

+ )

+ )

+ )

+ )
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)

Δ[{{2}, {5}}, {0, 1, 0, 0, 1}]==
4 (-2 + d)

s

Δ[{{2}, {3}}, {0, 1, 1, 0, 0}]== -
4 (-2 + d)

s

Δ[{{1}, {5}}, {1, 0, 0, 0, 1}]== -
4 (-2 + d)

s

Δ[{{1}, {3}}, {1, 0, 1, 0, 0}]==
4 (-2 + d)

s

In principle, each of these monomials correspond to an integral in the final decom-
position. However, the properties of dimensional regularization and the invariance of
Feynmam integrals under reparametrization of the loop momenta allow us to reduce
the number of irreducible monomials prior to any IBPs reduction.

First of all, we observe that the integrals associated to ∆10001
15 , ∆01001

25 , ∆02001
25 , ∆11001

125 ,
∆12001

125 , ∆00111
345 vanish in d-dimensions, since they are all proportional to a massless

tapdole. Moreover, by performing shifts of the loop momenta of the type (4.55), we
can determine mappings between the set of denominators of different cuts and, hence,
combine together their residues.

For instance, we have

∫
ddq1

πd/2

ddq2

πd/2

[
∆2345

D2D3D4D5
+

∆1345

D1D3D4D5
+

∆1245

D1D2D4D5
+

∆1235

D1D2D3D5

]
=

∫
ddq1

πd/2

ddq2

πd/2

∆2345 +∆1345 +∆1245∆1235

D1D2D3D5
, (4.70)

where, in the absence of square propagators, we have suppressed the label am . . . an of
∆am...an

m...n .
In this way, we can reduce down to 11 the total number integrals appearing in the

decomposition of the two-loop vacuum polarization, which reads

∫
ddq1

πd/2

ddq2

πd/2
[I1 + I2 + I3] =

∫
ddq1

πd/2

ddq2

πd/2

[
+

∆21
23

D2
2D3

+
∆123

D1D2D3
+

∆121
123

D1D2
2D3

+
∆211

235

D2
2D3D5

+
∆235

D2D3D5
+

∆135

D1D3D5

+
∆1234

D1D2D3D4
+

∆1235

D1D2D3D5

+
∆1211

1235

D1D2
2D3D5

+
∆12345

D1D2D3D4D5

]
, (4.71)

with

∆21
23 =4(d− 2)2

∆211
235 =16m2(d− 2) ,

∆121
123 =4(2− d)(4m2 + s(d− 2)) ,

∆123 =8(2− d) ,

∆235 =4(2− d)(d− 4) ,

∆135 =4(8− 6d+ d2) ,

∆1234 =16m2 − 2(d− 7)(d− 2)s ,

∆1235 =− 40m2 − 2(10− 11d+ 3d2)s+ 8(d− 2)2q2 · p ,
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∆1211
1235 =− 16m2(4m2 + s(d− 2)) ,

∆12345 =4(s− 2m2)(4m2 + s(d− 2)) . (4.72)

From the point of view of the integrand decomposition, the integrals occurring in
eq. (4.71) are to be considered as independent. A further IBPs reduction would bring
down to 5 the final number of master integrals.

4.4.1 An application: muon-electron scattering

As an example of the analytic integrand-level decomposition obtained through Aida,
we consider the NLO and NNLO virtual QED corrections to the muon-electron elastic
scattering

µ−(p1) + e−(p2) → e−(p3) + µ−(p4) . (4.73)

The analytic computation of the two-loop master integrals related to this process, which
will be discussed in chapter 8, is possible, at the present time, only in the limit of van-
ishing electron mass. Therefore, although the integrand reduction can be also obtained
by retaining the full dependence on the masses of both leptons, we will assume from
the very beginning m2

e = 0, in order keep our results more compact. In such limit, the
kinematics of the process is defined by

s = (p1 + p2)
2, t = (p2 − p3)

2, u = −s− t+ 2m2 , (4.74)

with p21 = p24 = m2 and p22 = p23 = 0.

Figure 4.5: µe scattering at tree-level in QED.

The QED crossection for µe scattering is expanded in the fine structure constant
α = e2/4π as

σ = σLO + σNLO + σNNLO + . . . (4.75)

where, schematically,

σLO =

∫
dφ2|M(0)|2 ,

σNLO =

∫
dφ22Re M(0) ∗M(1) +

∫
dφ3|M(0)

γ |2 ,

σNNLO =

∫
dφ2

(
2Re M(0) ∗M(2) + |M(1)

γ |2
)
+

∫
dφ3Re M(0) ∗

γ M(1)
γ +

+

∫
dφ4|M(0)

γγ |2 , (4.76)

with dφn being the n-body phase-space. In eq. (4.76), M(ℓ) indicates the ℓ-loop virtual

contribution to the µe scattering amplitude, which is O(αℓ+1), whereas M(ℓ)
γ and M(ℓ)

γγ
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are, respectively, the amplitudes for the real emission of one and two unresolved photons.

At LO M(0) receives contribution from one single t-channel diagram, which is de-
picted in figure 4.5,

M(0) = ie2
ū(p3)γ

µu(p2) ū(p4)γ
µu(p1)

t
. (4.77)

In the following we apply the adaptive integrand decomposition to the NLO virtual
contribution, which is given by the interference between the one-loop amplitude with
eq. (4.77), and we present some preliminary results for the NNLO interference with the
two-loop virtual diagrams, whose computation is the goal of an ongoing project (for
further details, see chapter 8). All results have been obtained through Aida by starting
from the integrands generated with the help of FeynArts and FeynCalc. In view
of the full NNLO computation, we stress that the same reduction algorithm can be
applied to the decomposition of the square one-loop amplitude |M(1)|2 as well as the

single emission contribution M(0) ∗
γ M(1)

γ .

Muon-electron scattering at one loop

Figure 4.6: Feynman diagrams for µe scattering at one loop.

The one-loop amplitude M(1) for µe scattering receives contribution from the six
Feynman diagrams depicted in figure 4.11. We are interested in the decomposition of
the virtual contribution to σNLO which, according to eq. (4.76), is given by

2ReM(0) ∗M(1) =
(α
π

)3 ∫ ddq

πd/2

6∑

j=1

Ij , (4.78)

where the numerator of each integrand Ij is obtained from the contraction of the cor-
responding diagram of figure 4.11 with the (conjugate) tree-level amplitude (4.77).

The input integrands for Aida,

I = {I1, I2, I3, I4, I5, I6} , (4.79)

can be organized into three groups

I =
3⋃

k=1

Gk , (4.80)

with

G1 = {I1, I6} , G1 = {I3, I2, I5} , G2 = {I4} . (4.81)



88 Chapter 4. Adaptive integrand decomposition

As we can see from eq. (4.81), in the one-loop case, due to the absence of higher powers
of denominators, the parent integrand of each group always corresponds to one of the
elements of I.
We choose the denominators of the parent integrands of each Gk as

G1 : D1 = q2 −m2 ,

D2 = (q + p1)
2 ,

D3 = (q + p1 − p4)
2 −m2 ,

G2 : D1 = q2 ,

D2 = (q + p1)
2 −m2 ,

D3 = (q + p1 − p4)
2 ,

D4 = (q + p1 − p4 − p3)
2 ,

G3 : D1 = q2 ,

D2 = (q + p2)
2 ,

D3 = (q + p2 − p4)
2 −m2 ,

D4 = (q + p1 + p2 − p4)
2 . (4.82)

The integrand reduction is performed for every group individually and the integration
over the transverse components is applied prior to the division. The list of non-vanishing
residues for G1, G2 and G3 is given, respectively, in figures 4.7-4.8. We observe that,
as expected from the general discussion of the adaptive integrand decompostion at one-
loop (see section 4.2), all residues are constant w.r.t. the loop momentum.

By applying proper shifts (4.55) of the loop momentum, we can detect symmetries
between the 30 different sectors emerging from the reduction and reduce down to 13
the number of independent rank-zero integrals that appear in the final decomposition
of eq. (4.78),

2ReM(0) ∗M(1) =
(α
π

)3∫ ddq

πd/2

[
c1

D1D3
+

c2
D1D2D3

]

G1

+

[
c3
D2

+
c4

D1D2
+

c5
D2D4

+
c6

D1D3
+

c7
D1D3D4

+
c8

D2D3D4
+

c9
D1D2D3

+
c10

D1D2D3D4

]

G2

+

[
c11

D2D4
+

c12
D1D3D4

+
c13

D1D2D3D4

]

G3

, (4.83)

where the subscript Gi identifies the sets of denominators defined in eq. (4.82). The
coefficients ci, which depend on s, t and m2, as well as on the space-time dimensions d,
are given by

c1 =
8

(d− 1)t3(4m2 − t)
(4m4(

(
d2 − 2d− 5

)
t2 − 32(d− 3)st+ 32s2)

+
(
d2 − 10d+ 11

)
t2
(
(d− 2)t2 + 4s2 + 4st

)

− 4m2t(2
(
d2 − 18d+ 27

)
st+

(
d3 − 12d2 + 33d− 26

)
t2

− 16(d− 2)s2)− 64m6(4s− (d− 2)t) + 128m8) ,

c2 =− 16

t2
(2m2 − t)

(
(d− 2)t2 + 4m4 − 8m2s+ 4s2 + 4st

)
,

c3 =− 32(d− 2)

(d− 1)t3(4m2 − t)
×
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(m4(2(d− 3)t− 32s)4m2
(
−(d− 7)st+ (d− 2)t2 + 4s2

)

+ t
(
2(d− 3)s2 + 2(d− 3)st− (d− 2)t2

)
+ 16m6) ,

c4 =− 16

t2(m2 − s)(4m2 − t)(m2 − s− t)
(− 8m8(8s− (d− 5)t)

+ 4m6
(
−6(d− 6)st+ (5d− 12)t2 + 24s2

)

− 4m4
(
(44− 6d)s2t+ 4dst2 + 3(2d− 5)t3 + 16s3

)

+m2(−8(d− 10)s3t− 4(d− 16)s2t2

+ 2(7d− 12)st3 + (5d− 12)t4 + 16s4)

− 2st(s+ t)
(
(d− 2)t2 + 4s2 + 4st

)
+ 16m10) ,

c5 =
8

t(m2 − s)
((2(d− 2)m4 +m2((3d− 8)t− 4(d− 2)s)

+ s(2(d− 2)s+ (3d− 8)t))) ,

c6 =− 8

(d− 1)t2(4m2 − t)
×

(16
(
d2 − 10d+ 11

)
m6 − 4

(
d2 − 10d+ 11

)
m4(8s+ t)

+ 4m2(4
(
d2 − 10d+ 11

)
s2 + 6

(
d2 − 10d+ 11

)
st+

(
d3 − 13d2 + 34d− 24

)
t2)− t(4

(
d2 − 10d+ 11

)
s2

+
(
d3 − 14d2 + 37d− 26

)
t2 − 4(7d− 9)st)) ,

c7 =
16

t

(
(d− 4)t2 + 4m4 +m2(4t− 8s) + 4s2

)
,

c8 =
8

t
(m2 − s)(dt+ 8s) ,

c9 =− 32

t(4m2 − t)

(
−(d+ 4)m2t+ 8m4 + t2

)
(2m2 − 2s− t) ,

c10 =
4

t
(m2 − s)

(
(3d− 8)t2 + 16m4 − 32m2s+ 16s2 + 8st

)
,

c11 =− 8

t(−m2 + s+ t)
(2(d− 2)m4

+m2((5d− 16)t− 4(d− 2)s) + (s+ t)(2(d− 2)s− (d− 4)t)) ,

c12 =− 8

t
(−m2 + s+ t)((d− 8)t+ 16m2 − 8s) ,

c13 =
4

t
(m2 − s− t)

(
3dt2 + 16m4 − 16m2(2s+ t) + 16s2 + 24st

)
, (4.84)

and, together with the analytic expression of the one-loop master integrals, which will
derived in chapter 8 through the differential equations method, completely specifies the
(unrenormalized) NLO virtual contribution to µe scattering cross section.
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Δ[{{1, 2, 3}}, {1, 1, 1, 0}]== -
8 (2 m2 - t) 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

t2

Δ[{{2, 3}}, {0, 1, 1, 0}]==

-
8 8 m23 - 4 m22 (4 s + t) + 4 m2 (2 s2 + 4 s t + (-2 + d) t2) - t (4 s2 + 4 s t + (-2 + d) t2)

(4 m2 - t) t2

Δ[{{1, 3}}, {1, 0, 1, 0}]== -
1

(-1 + d) (4 m2 - t) t3

4 -128 m24 + 64 m23 (4 s - (-2 + d) t) - (11 - 10 d + d2) t2 (4 s2 + 4 s t + (-2 + d) t2) -
4 m22 (32 s2 - 32 (-3 + d) s t + (-5 - 2 d + d2) t2) +
4 m2 t (-16 (-2 + d) s2 + 2 (27 - 18 d + d2) s t + (-26 + 33 d - 12 d2 + d3) t2)

Δ[{{1, 2}}, {1, 1, 0, 0}]==

-
8 8 m23 - 4 m22 (4 s + t) + 4 m2 (2 s2 + 4 s t + (-2 + d) t2) - t (4 s2 + 4 s t + (-2 + d) t2)

(4 m2 - t) t2

Δ[{{3}}, {0, 0, 1, 0}]== -
1

(-1 + d) (4 m2 - t) t3

8 (-2 + d) 16 m23 + m22 (-32 s + 2 (-3 + d) t) + t (2 (-3 + d) s2 + 2 (-3 + d) s t - (-2 + d) t2) +
4 m2 (4 s2 - (-7 + d) s t + (-2 + d) t2)

Δ[{{2}}, {0, 1, 0, 0}]==
32 (-2 + d) m22 - 2 m2 s + s (s + t)

(4 m2 - t) t2

Δ[{{1}}, {1, 0, 0, 0}]== -
1

(-1 + d) (4 m2 - t) t3

8 (-2 + d) 16 m23 + m22 (-32 s + 2 (-3 + d) t) + t (2 (-3 + d) s2 + 2 (-3 + d) s t - (-2 + d) t2) +
4 m2 (4 s2 - (-7 + d) s t + (-2 + d) t2)

Figure 4.7: Residues for G1.

Δ[{{1, 2, 3, 4}}, {1, 1, 1, 1}]==
2 (m2 - s - t) 16 m22 + 16 s2 + 24 s t + 3 d t2 - 16 m2 (2 s + t)

t

Δ[{{2, 3, 4}}, {0, 1, 1, 1}]==
1

(4 m2 - t) t
2 -128 m23 + 8 m22 (24 s + (18 + d) t) + t (16 s2 + 24 s t + 3 d t2) -

8 m2 (8 s2 + (16 + d) s t + (3 + 2 d) t2)

Δ[{{1, 3, 4}}, {1, 0, 1, 1}]==
2 (m2 - s - t) (16 m2 - 8 s + (-8 + d) t)

t

Δ[{{1, 2, 4}}, {1, 1, 0, 1}]== -
2 16 m22 + 16 s2 + 24 s t + 3 d t2 - 16 m2 (2 s + t)

t

Δ[{{1, 2, 3}}, {1, 1, 1, 0}]==
2 (m2 - s - t) (16 m2 - 8 s + (-8 + d) t)

t

Δ[{{3, 4}}, {0, 0, 1, 1}]== -
1

(4 m2 - t) (m2 - s - t) t
4 m2

4 (-2 + d) m22 + 4 (-2 + d) s2 + 6 (-2 + d) s t - (-4 + d) t2 + m2 (-8 (-2 + d) s + 2 (-10 + 3 d) t)

Δ[{{2, 4}}, {0, 1, 0, 1}]== -
4 ((-20 + 6 d) m2 + 2 (-2 + d) s - (-4 + d) t)

4 m2 - t

Δ[{{2, 3}}, {0, 1, 1, 0}]== -
1

(4 m2 - t) (m2 - s - t) t
4 m2

4 (-2 + d) m22 + 4 (-2 + d) s2 + 6 (-2 + d) s t - (-4 + d) t2 + m2 (-8 (-2 + d) s + 2 (-10 + 3 d) t)

Δ[{{1, 3}}, {1, 0, 1, 0}]==

-
4 2 (-2 + d) m22 + (s + t) (2 (-2 + d) s - (-4 + d) t) + m2 (-4 (-2 + d) s + (-16 + 5 d) t)

t (-m2 + s + t)

Figure 4.8: Residues for G3.
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Δ[{{1, 2, 3, 4}}, {1, 1, 1, 1}]==
2 (m2 - s) 16 m22 - 32 m2 s + 16 s2 + 8 s t + (-8 + 3 d) t2

t

Δ[{{2, 3, 4}}, {0, 1, 1, 1}]==
2 (m2 - s) (8 s + d t)

t

Δ[{{1, 3, 4}}, {1, 0, 1, 1}]==
2 32 m22 - 64 m2 s + 32 s2 + 24 s t + (-16 + 7 d) t2

t

Δ[{{1, 2, 4}}, {1, 1, 0, 1}]==
2 (m2 - s) (8 s + d t)

t

Δ[{{1, 2, 3}}, {1, 1, 1, 0}]==
1

(4 m2 - t) t
2 -8 m22 (8 s - (-2 + d) t) + 8 m2 (8 s2 - (-8 + d) s t + (-3 + d) t2) - t (16 s2 + 8 s t + (-8 + 3 d) t2)

Δ[{{3, 4}}, {0, 0, 1, 1}]== -
8 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

t2

Δ[{{2, 4}}, {0, 1, 0, 1}]==
4 2 (-2 + d) m22 + m2 (-4 (-2 + d) s + (-8 + 3 d) t) + s (2 (-2 + d) s + (-8 + 3 d) t)

(m2 - s) t

Δ[{{2, 3}}, {0, 1, 1, 0}]==

-
4 m2 4 (-2 + d) m22 + 4 (-2 + d) s2 + 2 (-2 + d) s t + (8 - 3 d) t2 - 2 m2 (4 (-2 + d) s + (14 - 5 d) t)

(m2 - s) (4 m2 - t) t

Δ[{{1, 4}}, {1, 0, 0, 1}]== -
8 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

t2

Δ[{{1, 3}}, {1, 0, 1, 0}]==

-
1

(-1 + d) (4 m2 - t) t2
4 16 (11 - 10 d + d2) m23 - 4 (11 - 10 d + d2) m22 (8 s + t) -

t (4 (11 - 10 d + d2) s2 + 2 (20 - 17 d + d2) s t + (-30 + 42 d - 15 d2 + d3) t2) +
2 m2 (8 (11 - 10 d + d2) s2 + 12 (11 - 10 d + d2) s t + (-58 + 81 d - 29 d2 + 2 d3) t2)

Δ[{{1, 2}}, {1, 1, 0, 0}]==

-
4 m2 4 (-2 + d) m22 + 4 (-2 + d) s2 + 2 (-2 + d) s t + (8 - 3 d) t2 - 2 m2 (4 (-2 + d) s + (14 - 5 d) t)

(m2 - s) (4 m2 - t) t

Δ[{{4}}, {0, 0, 0, 1}]==
8 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

t3

Δ[{{3}}, {0, 0, 1, 0}]== -
4 (-5 + 3 d) 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

(-1 + d) t3

Δ[{{1}}, {1, 0, 0, 0}]== -
4 (-5 + 3 d) 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

(-1 + d) t3

Figure 4.9: Residues for G2.

Muon-electron scattering at two loops

The same procedure can be applied to the NNLO virtual corrections to µe scattering
that originate from the interference term between the tree-level amplitude (4.77) and
the two-loop virtual diagrams

2ReM(0) ∗M(2) =
(α
π

)4 ∫ ddq1d
dq2

πd

69∑

j=1

Ij . (4.85)

As explicitly indicated in eq. (4.85), M(2) receives contribution from 69 distinct di-
agrams. By applying shifts of the loop momenta of the type (4.55), the full set of
diagrams can be organized (in a non-unique way) in 26 different groups Gi, whose par-
ent topologies are depicted in figure 4.10.
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Figure 4.10: Parent topologies of the groups G1,2,...26 for two-loop µe scattering. Red
lines represents massive propagators

I1 I2 I4I3

I5 I6 I7 I8

Figure 4.11: Two-loop Feynman diagrams belonging to G6.

As an example, we consider G6,

G6 = {IG6
1 , IG6

2 , . . . , IG6
8 } , (4.86)

which groups the 8 Feynman diagrams shown in figure 4.11. The integrands belonging
to G6 are given by

IG6
1 ={0 , {D1, D2, D3, D4, D5, D6, D7}, {1, 2, 1, 1, 1, 2, 1}} ,

IG6
2 ={N1 , {D1, D2, D3, D4, D5, D6, D7}, {1, 1, 1, 1, 1, 1, 1}} ,

IG6
3 ={N2 , {D1, D2, D4, D5, D6, D7}, {1, 1, 0, 1, 1, 1, 1}} ,

IG6
4 ={N3 +N4 , {D1, D2, D4, D5}, {1, 2, 0, 1, 1, 0, 0}} ,

IG6
5 ={N5 , {D1, D2, D4, D5, D6}, {1, 2, 0, 1, 1, 1, 0}} ,

IG6
6 ={N6 , {D2, D4, D5, D6, D7}, {0, 1, 0, 1, 1, 2, 1}} ,

IG6
7 ={N7 , {D2, D3, D4, D5, D6, D7}, {0, 1, 1, 1, 1, 2, 1}} ,
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IG6
8 ={N8 , {D1, D2, D3, D4, D5, D6}, {1, 2, 1, 1, 1, 1, 0}} . (4.87)

with Ni being the numerator of the integrand Ii, according to the labelling of figure 4.11.
The loop denominators Di are defined by

D1 = (q1 − p1 + p3 + p4)
2, D2 = (q2 + p1 − p3 − p4)

2, D3 = (q2 − p3 − p4)
2 −m2,

D4 = (q2 − p3)
2, D5 = (q1 + q2)

2, D6 = q22, D7 = q21 . (4.88)

Let us remark that, according to the general discussion of section (4.4), at multi-loop
level the parent topology of each group IGi

1 might not correspond to any Feynman
diagram, due to the presence of higher-powers of denominators. For this reason, in
eq. (4.87) the numerator of IG6

1 has been initialized to zero. In addition, we observe
that I3 and I4 have been grouped together into IG6

4 , since they clearly correspond to
the same topology.

The integrand reduction is performed for every group individually and the integra-
tion over the transverse components is applied prior to the division. As an example, we
show in figure 4.12 the residues corresponding to the integrands IG6

i . Similar results
are have been obtained for their subtopologies, as well as for the integrands belonging
to the other groups.
As expected, at two-loop the residues contain, besides constant terms, monomials in
the ISPs xISP

‖ . The number of independent integrals appearing in the decomposition

can be reduced by applying symmetry relations, IBPs and LIs. In this way, eq. (4.85)
will be expressed as a linear combination of master integrals, whose computation will
be discussed in chapter 8.

Out[76]= Δ[{{1, 7}, {2, 3, 4, 6}, {5}}, {1, 1, 1, 1, 1, 1, 1}] ⩵ 0

Out[77]= Δ[{{1, 7}, {2, 4, 6}, {5}}, {1, 1, 0, 1, 1, 1, 1}] ⩵ 0

Out[78]= Δ[{{1}, {2, 4}, {5}}, {1, 2, 0, 1, 1, 0, 0}] ⩵ -
1

(4 m2 - t) t2

32 x{1,1}[{{1}, {2, 4}, {5}}] -8 m23 + 4 m22 (4 s + t) - 4 m2 2 s2 + 4 s t + (-2 + d) t2 +
t 4 s2 + 4 s t + (-2 + d) t2 + (-4 + d) (4 m2 - t) t2 x{1,1}[{{1}, {2, 4}, {5}}]

Out[79]= Δ[{{1}, {2, 4, 6}, {5}}, {1, 2, 0, 1, 1, 1, 0}] ⩵
1

t2

8 x{2,1}[{{1}, {2, 4, 6}, {5}}] -4 m22 + 8 m2 s - 4 s2 - 4 s t + 2 t2 -
d t2 + -8 m22 + 16 m2 s - 8 s2 + d t2 x{1,1}[{{1}, {2, 4, 6}, {5}}] +
8 m22 + 8 s2 + 8 s t + d t2 - 8 m2 (2 s + t) x{2,1}[{{1}, {2, 4, 6}, {5}}]

Out[80]= Δ[{{7}, {2, 4, 6}, {5}}, {0, 1, 0, 1, 1, 2, 1}] ⩵

-
1

t2
32 4 m22 - 8 m2 s + 4 s2 + 4 s t + (-2 + d) t2

x{1,1}[{{7}, {2, 4, 6}, {5}}] x{2,1}[{{7}, {2, 4, 6}, {5}}]

Out[81]= Δ[{{7}, {2, 3, 4, 6}, {5}}, {0, 1, 1, 1, 1, 2, 1}] ⩵ 0

Out[82]= Δ[{{1}, {2, 3, 4, 6}, {5}}, {1, 2, 1, 1, 1, 1, 0}] ⩵

-
1

t4
8 16 m22 - 32 m2 s + 16 s2 + 8 s t + (-4 + d) t2

((m2 - s) x{1,1}[{{1}, {2, 3, 4, 6}, {5}}] + (-m2 + s + t)
x{2,1}[{{1}, {2, 3, 4, 6}, {5}}] + (2 m2 - t) x{3,1}[{{1}, {2, 3, 4, 6}, {5}}])

(t x{2,1}[{{1}, {2, 3, 4, 6}, {5}}] + (m2 - s - t) x{3,1}[{{1}, {2, 3, 4, 6}, {5}}])

, Figure 4.12: Representative residues for G6.
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4.5 Conclusions

In this chapter, we have presented the adaptive integrand decomposition algorithm,
a simplified version of the multi-loop integrand reduction method which leads to a
decomposition of dimensionally regulated amplitudes in terms of non-spurious integrals,
whose tensor structures strictly correspond to irreducible scalar products between loop
momenta and external momenta. The algorithm does not rely on the usual projection
of the amplitude into form factors and, hence, it is suitable for application to helicity
amplitudes, which may generally enjoy better symmetry properties than the latter.

Beyond one-loop, the number of integrals emerging from the integrand reduction
is not minimal, due to the existence of symmetry relations, Lorentz invariance and
integration-by-parts identities between integrals. Nonetheless, the parametrization in
terms of tensor integrals involving physical irreducible scalar products is particularly
well-suited for the subsequent integral-level reduction.

The adaptive integrand decomposition is formulated in terms of the divide-integrate-
divide algorithm, which exploits the properties of d = d‖+d⊥ representation of Feynman
integrals in order to eliminate the dependence of the integrand on the transverse direc-
tions and to simplify the polynomial division procedure, by eliminating the need for the
explicit computation of Gröbner bases.

These ideas have been put together in Aida, a Mathematica code which imple-
ments the adaptive integrand decomposition of one- and two-loop amplitudes. The code
can perform both numerical and analytical computations. As it stands, Aida can deal
with the numerical reduction independently from the number of different internal masses
and external particles. Although the efficiency of the analytic reduction is obviously
affected by the number of scales of the process under consideration, our preliminary
results suggest a wide applicability to two-loop multi-scale problems [8]. At the present
time, the optimization of the analytic reduction for multi-scale amplitudes through finite
fields techniques [166] is under study. The future application of the prosed decompo-
sition method to the computation of scattering amplitudes at NNLO will require the
systematic organization of a complete reduction chain. To this aim, we are taking steps
towards interfacing Aida, on the input side, with the available automatic amplitude
generators [162–164] and, on the output one, with IBPs reduction codes [167–169] and,
eventually, with libraries containing the analytic expressions of the master integrals (see,
for instance [170]). A valuable option, in the absence of the latter, will be the interface
with codes for the numerical evaluation of Feynman integrals [171, 172].

In this perspective, we believe that the integrand decomposition method, in its
adaptive formulation, will play an important in the multi-loop extension of the existing
automatic frameworks for perturbative calculations, such as [38].

Having addressed the problem of reducing scattering amplitudes to linear combi-
nations of scalar Feynman integrals, we will now move our attention to the available
techniques for the analytic computation of the latter, which will be the main focus of
the remaining parts of this thesis.



Chapter 5

Differential equations for Feynman

integrals

In this chapter we give an introduction to the differential equations method for mas-

ter integrals. Dimensionally regulated Feynman integrals obey first-order coupled

differential equations in the kinematic invariants which can be solved as an expan-

sion for small values of the regulating parameter ǫ in terms of iterated integrals.

We discuss the advantages of determining a canonical basis of master integrals,

which fulfil ǫ-factorized systems of differential equations in dlog-form, and we re-

view the Magnus exponential method, which can be used to find a canonical basis

starting from an ǫ-linear systems. Finally, we recall the main properties of the

iterated integrals that appear in the general solution of such systems and we show

how boundary conditions can be determined from the singularity structure of the

differential equations.

5.1 Reduction to master integrals

The final outcome of the integrand reduction or, alternatively, of the standard form
factor decomposition, consists in the expression of a scattering amplitude as a linear
combination of scalar Feynman integrals of the type defined in eq. (2.9),

Id (ℓ ,n)(a1 , . . . , am ; b1 , . . . , br) =

∫ ℓ∏

j=1

ddqj

πd/2

S−b1
1 · · · S−br

r

Da1
1 · · · Dam

m
. (5.1)

As we throughly discussed in chapters 3-4, a convenient choice of the variables used
to parametrize the integrands can significantly help in the minimization and optimiza-
tion of the integrand basis appearing in the decomposition. However, the corresponding
integral basis is usually not minimal, due to the presence of additional identities, in-
troduced by the integration over the loop momenta, such as symmetry relations, IBPs
and LIs, which have been discussed in chapter 2. Therefore, given the large number
of independent integrands (which, for a typical two-loop computation, can easily reach
O(1000)), it is mandatory, before embarking the non-trivial computation of Feynman in-
tegrals, to determine a minimal basis of independent master integrals (MIs) which spans
the full space of integrals that are needed for the specific process under consideration.

To this aim, we must systematically generate and solve such sets of integral-level
identities. As it is clear from the definition of the most general IBP, given in eq. (2.12),
by modifying the arbitrary values of the powers of denominators and ISPs, we can
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generate an infinite number of linear equations for an infinite number of integrals even
within a single topology. It turns out that the number of equations grows faster than the
number of integrals they involve, so that the thousands, or even millions, of equations
we can generate are mostly redundant [47]. In addition, besides empirical evidence, it
has been proven that it is always possible to solve these systems of equations in terms of
a finite number of MIs [173]. Therefore, the problem of determining a basis of MIs and
expressing all elements of a given space of Feynman integrals in terms of such basis is
conceptually solved, since it reduces to the solution, by Gaussian elimination, of a system
of linear equations that leaves a finite number of free unknowns. However, the inversion
of such huge linear systems and the complexity of the intermediate expressions generated
by the Gaussian substitution, demand for an extensive use of computer algebra resources
and can encounter practical limitations.

First of all, it is obvious that only a (large but) finite number of identities can be
practically be generated, usually by fixing a total power of denominators R =

∑m
i=1 ai

and a total power of ISPs in the numerator, S =
∑r

i=1 bi. Hence, it is essential to find
a correct balance in the ranges of R and S so to allow, on the one hand, the correct
identification of a minimal basis of MIs and, on the other hand, the feasibility of the
algebraic solution of the generated system. In this respect, we should take into account
that, by restricting the generation of IBPs up to some R and S, we are implicitly
assuming that no IBP with higher total powers can further reduce the number of MIs,
which have been determined from the selected subsystem. In addition, as we have
already observed, LIs are not needed in order to identify the minimal set of MIs, since
they are not linear independent from IBPs. However, in many concrete cases, the use
of LIs can consistently speed up the solution of the system, since obtaining them from
IBPs would require the expensive generation of much larger systems of equations.

Once the selected identities have been generated and a basis of MIs has been de-
termined, the last technically relevant issue consists in choosing the order in which
the equations must be solved. In fact, although the final expression of all integrals in
terms of a basis must be independent of such ordering, the complexity of the inter-
mediate expressions can be heavily affected by one choice or another. The Laporta
algorithm [47, 64] provides a set of guiding principles that allow to choose, step-by-
step in the solution, which equations must be inverted in order to keep intermediate
expressions as compact as possible. This algorithm has been implemented and opti-
mized in several public computer codes such as Air [174], Reduze [167], Fire [175],
LiteRed [176] and Kira [169].

Finally let us stress that, given the fixed number of MIs determined from the integral
reduction, the choice of the basis of MIs is by no means unique, since we can pick as
a basis any set of integrals which are linearly independent under symmetry relations,
IBPs and LIs. Of course, different choices must lead to completely equivalent results
but some specific choices can produce huge simplifications both in the complexity of
the reduction identities and in the determination of the analytic expression of the MIs
themselves. We will come back to discuss about the optimal choice of the basis of MIs
once we will have introduced the differential equations method for the computation of
Feynman integrals.

5.2 The differential equations method

Provided that the the solution of the system of IBPs, LIs and symmetry relations has
been successful and all integrals originated from the integrand decomposition of the
amplitude have been expressed in terms of a chosen basis of MIs, the last remaining
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step consists in the explicit evaluation of the latter.
The most natural possibility to analytically computed the MIs consists in performing

suitable manipulations of the integrand in such a way to allow the direct evaluation
of the loop integrals. Examples of such direct integration methods are the Feynman
parameters and the Mellin-Barnes [70–73] representations of loop integrals, which have
been extensively applied to one-loop computations as well as to a number of multi-loop
cases with a restrained number of scales. However, as soon as the number of external legs
and internal masses increases, direct integration methods swiftly becomes unfeasible.

The intrinsic difficulties of explicit integration can be obviated by resorting to in-
direct integration techniques, such as difference equations methods, which determine
functional relations between MIs that differ from a discrete shift of the space-time di-
mensions [75] or of the exponents associated to the loop denominators [64, 74].

Alternatively, the analyticity of Feynman integrals in the kinematic invariants can
be used in order to derive sets of differential equations (DEQs) satisfied by the MIs,
whose solution can be significantly easier to obtain than the direct evaluation of loop
integrals. The DEQs method was first was first proposed by Kotikov in [76], where
Feynman integrals were differentiated w.r.t. the internal masses, and subsequently gen-
eralized to external invariants by Remiddi [77] and Gehrmann and Remiddi [48]. Since
then, DEQs have proven to be an essential tool for the analytic calculation of multi-
loop, multi-scale Feynman integrals.

In order to illustrate the main features of the DEQs method, let us start by con-
sidering internal mass derivatives. In the following we will denote by Fi(ǫ, ~x,m

2
j ),

i = 1, 2, . . . , N the N MIs of a basis which spans the whole space of Feynman in-
tegrals for a particular process. As explicitly indicated, each Fi(ǫ, ~s,m

2
j ) depends on

the space-time dimensions, on the external invariants (we hav collectively labelled with
~x), and on the internal masses.

Each MI is a Feynman integral of the type defined in eq. (5.1) (we hereby omit all
labels referring to the number of loops and external legs, which do not affect the present
discussion). As already observed in section 2.6, if we pick one of the MIs and we assume
that the mass m2

i of its i-th internal propagator is non-degenerate, i.e. it is different
from any other internal mass, we can differentiate the MI with respect to this mass and
obtain

∂m2
i
I(a1 , . . . , ai , . . . , am ; b1 , . . . , br) = aiI(a1 , . . . , ai + 1 , . . . , am ; b1 , . . . , br) ,

(5.2)

as it trivially follows from the definition of the loop denominator Di = l2i −m2
i (note that

an overall sign would change in the case of Euclidean signature). If m2
i is degenerate,

the r.h.s. would include more contributions, according to the number of denominators
which depend on the mass m2

i .
The integral generated by differentiation belongs, by construction, to the same sector

as the starting integral, hence it still lies in the space spanned by the chosen basis of
MIs. Therefore, we can use IBPs in order to express the r.h.s. of eq. (5.2) as a linear
combination of MIs, which include I(a1 , . . . , am ; b1 , . . . , br) and its subtopologies,

∂m2
i
I(a1 , . . . , am ; b1 , . . . , br) =A2

mi
(ǫ, ~x)I(a1 , . . . , am ; b1 , . . . , br)

+ Subtopologies , (5.3)

where the coefficient A2
mi

, as well as the coefficients multiplying the subtopology con-
tributions, is a rational function of the kinematic invariants and of the space-time di-
mensions, as it is inherited from IBPs.
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This construction can be systematically applied to all MIs of the basis, which we
will hereby denote with the vector F(ǫ, ~s,m2

j ). The resulting DEQs can be collected
into a system of coupled first-order DEQs, represented by the matrix equation

∂m2
i
F(ǫ, ~x,m2

j ) = Am2
i
(ǫ, ~x,m2

j )F(ǫ, ~x,m
2
j ) , (5.4)

where Am2
i

is a N ×N matrix with rational entries. If the master integrals F(ǫ, ~x,m2
j )

are ordered by growing number of loop denominators, Am2
i

acquires a natural block-
triangular structure, whose size of the non-trivial blocks is determined by the number
of MIs belonging to a same sector.

Analogous systems of DEQs can be generated by differentiating w.r.t. the external
invariants. First of all, we observe that, given a Feynman integral with n external
legs, momentum conservation allows us to define next = n(n − 1)/2 distinct external
invariants, which we can identify with the scalar products sij = pi · pj ,

~x = {x1 , x2 , . . . , xnext
} = {s11 , . . . , s1 (n−1) , . . . s(n−1) (n−1)} . (5.5)

In the momentum-space representation (5.1), Feynman integrands depend, rather than
on the kinematic invariants ~x, on the external momenta pαi . Therefore, in order to
compute the derivates of the MIs w.r.t. ~x, we need to invert the chain-rule which
expresses the derivatives w.r.t. to the (n − 1) independent momenta in terms of the
invariants,

∂

∂pαi
=

next∑

j=1

∂xj
∂pαi

∂

∂xj
, i = 1, 2, . . . , n− 1 . (5.6)

Eq. (5.6) can be contracted with all possible pαk in order to obtain (n − 1)2 scalar
relations,

pαk
∂

∂pαi
= pαk

next∑

j=1

∂xj
∂pαi

∂

∂xj
, i, k = 1, 2, . . . , n− 1 . (5.7)

We observe that, in the case n > 2, not all derivatives w.r.t. external momenta are
independent (when they are applied to scalar Feynman integrals) due to the existence
of nLI = (n− 1)(n− 2)/2 LIs. The number of independent equations of the type (5.6)
is, hence, reduced to

(n− 1)2 − nLI = next , (5.8)

which exactly matches the number of external invariants ~x. Once a set of independent
relations has been chosen, they can be inverted in order to express the derivatives w.r.t.
each xi in terms of a combination of derivatives w.r.t. the external momenta.

As for the case of mass derivatives, by acting with such differential operators on
the integral representation (5.1), we can express the derivatives of each MI as a linear
combination of integrals belonging its sector and subtopology contributions, which can
be further reduced to a combination of MIs by applying IBPs.

Therefore, if we include the internal masses into the definition of the vector ~x, we
can write, in total generality, the system of DEQs satisfied by the MIs in any of the
kinematic variables xi ∈ ~x as

∂xi
F(ǫ, ~x) = Axi

(ǫ, ~x)F(ǫ, ~x) , (5.9)
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where Axi
are N × N block-triangular matrices with rational entries in ~x and in the

space-time dimensions.

At this level, a few observations on eq. (5.9) are in order:

- It is often convenient to express the dimensionful invariants ~x in terms of dimensionless
variables, which can be obtained, for instance, by choosing one of the variables ~x, say
x1 (which, typically, corresponds to an internal mass) and by building the ratios

x̂i =
xi
x1

, i 6= 1 . (5.10)

The systems of DEQs (5.9) are then totally equivalent to considering the DEQs in x1
and the systems of DEQs in the parameters x̂i,

∂x̂i
F(ǫ, x1, ~̂x) = Ax̂i

(ǫ, ~̂x)F(ǫ, x1, ~̂x) , (5.11)

In this way, the DEQs in the single dimensionful invariant x1 can be solved trivially
and produces the mass scaling of the MIs, which can also be determined by direct
power counting. The dependence of the MIs on x1 can then be removed by a proper
rescaling of the MIs, in such a way to deal with a basis of dimensionless integrals
F(ǫ, ~̂x), whose non-trivial kinematic dependence is fully encoded in the system of
DEQs in the dimensionless variables ~̂x;

- The systems of DEQs in x̂i can be solved sequentially, i.e. by integrating in one
variable at a time and by adding to the resulting solution an integration constant
that depends on the kinematic variables corresponding to the unsolved DEQs. The
continuity of F(ǫ, ~̂x) as a function of the kinematic invariants, which implies the
Schwarz integrability condition

∂x̂i
∂x̂j

F(ǫ, ~̂x) = ∂x̂j
∂x̂i

F(ǫ, ~x) , (5.12)

ensures the convergence of the integration procedure. In fact, if impose (5.12) on
eq. (5.9), we obtain

∂x̂i
Ax̂j

− ∂x̂j
Ax̂i

+ [Ax̂j
,Ax̂i

] = 0 , (5.13)

which states that all non-factorizable terms, i.e. terms that depend on several invari-
ants, are common to all the corresponding DEQs;

- After the systems of DEQs in all variables have been solved, the residual integration
constant is independent of the kinematics and, hence, must be fixed by imposing
suitable boundary conditions. The latter correspond to the analytic values of the MIs
at some specific kinematic point. Thus, their determination through independent
integration methods can be a rather difficult task.

However, it is often possible to fix the boundary constants by imposing physical re-
quirements on the solution obtained from the integration of the DEQs, such as the
regularity or the finiteness of the MIs at kinematic pseudo-thresholds. In such cases,
as we will discuss later on in this chapter, quantitative relations between the bound-
ary constants can be inferred from the qualitative information about the analyticity
properties of the MIs, due to the singularity structure of the very same DEQs. In this
way, the amount of independent input information that is needed for the computation
of MIs trough the DEQs method, is consistently reduced;



100 Chapter 5. Differential equations for Feynman integrals

- According to the above discussion, it seems not possible to apply the DEQs method
to MIs which depend on a single dimensionful kinematic invariant. In fact, in this
case, the solution of the system of DEQs would simply provide the mass dimensions of
each MIs and all relevant information would be enclosed in the boundary constants,
which have to be determined independently. Nonetheless, in some cases (see, for
example, [177–179]) it is possible to evaluate single-scale MIs through the DEQs
method, by introducing an additional auxiliary kinematical invariant, so to produce
a non-trivial system of DEQs. After these DEQs have been solved, the MIs can
be obtained by properly taking the limit of the auxiliary invariant (which restores
the original kinematic configuration) on the resulting solution. The introduction of
auxiliary invariants can also be useful for the fixing of boundary constants, as we will
explicitly see in chapter 8.

- Auxiliary parameters have also been used in [80], where it has been proposed a com-
plementary method to derive a DEQs for MIs, based on the introduction of a smart
rescaling of the external momenta. The differentiation w.r.t. the scaling parameter
allows to obtain a simplified system of DEQs, whose solution provides the expression
of the MIs when the auxiliary parameter is set back to one. This method has been
successfully applied to the computation of the planar five-point two-loop massless MIs
with one off-shell leg [79].

Differential equations in Baikov parametrization

The derivation of the systems of DEQs (5.9) resorted to the expression of the deriva-
tives w.r.t. kinematic invariants in terms of partial derivatives w.r.t. the external mo-
menta, which constitute the natural differentiation variables for Feynman integrals in
momentum-space representation (5.1). It has been recently suggested in [60] an alter-
native way to derived DEQs for MIs based on the Baikov representation of Feynman
integrals, which we introduced in section 2.4.

From the Baikov representation of I(a1 , . . . , am ; b1 , . . . , br) given in eq. (2.101),

I(a1 , . . . , am ; b1 , . . . , br) = C(ℓ ,n)(d) (G(pj))
(1−d⊥)/2

∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2×

z−b1
m+1 · · · z

−bm+1

m+1

za11 · · · zamm
, (5.14)

we can easily realize that the differentiation w.r.t. any kinematic invariant xi only affects
the two Gram determinants G(pj) and G(zj) and yields to

∂xi
I(a1 , . . . , am ; b1 , . . . , br) =

1− d⊥
2

(
∂xi

G(pj)

G(pj)

)
I(a1 , . . . , am ; b1 , . . . , br)+

C(ℓ ,n)(d) (G(pj))
(1−d⊥)/2

∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2 d⊥ − 1− ℓ

2

(
∂xi

G(zj)

G(zj)

)
×

z−b1
m+1 · · · z

−bm+1

m+1

za11 · · · zamm
, (5.15)

where we have immediately recognized that the derivative of G(pj) produces a term
proportional to the original integral. In order to cast the second term on the r.h.s. back
to a Feynman integral of the type I(a′1 , . . . , a

′
m ; b′1 , . . . , b

′
r), we observe that G(zj) is a
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polynomial both in the integration variables and in the kinematic invariants and so are
its derivatives. Hence, we can write down a syzygy equation

v∂xi
G(zj) =

∑

k

vk∂zkG(zj) , (5.16)

whose solutions v and vk allows us to trade the derivatives w.r.t. the external invariant
xi with derivatives w.r.t. the integration variables zi,

∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2 d⊥ − 1− ℓ

2

(
∂xi

G(zj)

G(zj)

)
z−b1
m+1 · · · z

−bm+1

m+1

za11 · · · zamm

=−
∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2 d⊥ − 1− ℓ

2

(
∑

k

vk
v

∂zkG(zj)

G(zj)

)
z−b1
m+1 · · · z

−bm+1

m+1

za11 · · · zamm

=
∑

k

∫ nsp∏

i=1

dzi (G(zj))
(d⊥−1−ℓ)/2 ∂zk

(
vk
v

z−b1
m+1 · · · z

−bm+1

m+1

za11 · · · zamm

)
, (5.17)

where, in the second equality, we have integrated by parts and neglected the vanish-
ing boundary terms. If we assume v to be independent of zi, the explicit differentia-
tion of eq. (5.17) will now originate Feynman integrals belonging to the same space as
I(a1 , . . . , am ; b1 , . . . , br), so that the subsequent application of IBPs would produce a
DEQs consistent with eq. (5.9).

Similar techniques, restricted to the homogeneous part of the DEQs, have been ap-
plied to the Baikov representation (5.14) in [61], in order to define DEQs polynomials
vk∂zk (similar to the IBPs polynomials discussed in section 2.5) which avoid the genera-
tion of integrals with higher power of denominators, in favour of higher-rank numerators
in the ISPs.

5.3 Solution of the differential equations

The block-triangular structure of the systems of DEQs (5.9) suggests a natural bottom-
up solving strategy, where the sectors with lower number of denominators are solved
first. Once their analytic expression is known, the latter is used as input for the inhomo-
geneous part of the DEQs for higher sectors. In order to illustrate this procedure we will
restrict to the case of N master integrals F(ǫ, x) depending on a single (dimensionless)
kinematic invariant x that obey the system of first-order coupled DEQs,

∂xF(ǫ, x) = A(ǫ, x)F(ǫ, x) . (5.18)

In the presence of more than one kinematic invariant, the following discussion is ex-
tended according to the method outlined in the previous section, i.e. by solving the
DEQs in one variable at a time and by fixing the integration constants (that might
depend on the other invariants) by demanding that the resulting solution satisfies all
other systems of DEQs.

Let us now consider the DEQs for one single sector, containing n MIs. We can
distinguish two cases:

• n = 1 : If a sector contains one single MI, Fi(ǫ, x), the latter can be immediately
obtained by applying Euler variations of constants to the first-order inhomoge-
neous DEQ

∂xFi(ǫ, x) = Aii(ǫ, x)Fi(ǫ, x) + S(ǫ, x) , (5.19)
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where the inhomogeneous term S(ǫ, x) collects the contributions from subtopolo-
gies, which we assume to be known. The solution of eq. (5.19) can be written by
first determining the homogeneous solution Hi(ǫ, x), which is simply given by the
integration factor

Hi(ǫ, x) = exp

(∫ x

x0

dt Aii(ǫ, t)

)
, (5.20)

and by substituting the ansatz Fi(ǫ, x) = fi(ǫ, x)Hi(ǫ, x) into the complete equa-
tion, in order to obtain a DEQ for the arbitrary function fi(ǫ, x). The solution of
the latter yields to

Fi(ǫ, x) = Hi(ǫ, x)

[
1 +

∫ x

x0

dt
S(ǫ, t)

Hi(ǫ, t)

]
ci(ǫ) , (5.21)

where ci is an integration constant, which can have a residual dependence on
ǫ, to be fixed by imposing suitable boundary conditions. We remark once more
that, in the multivariate case, the constant ci should be promoted to a function
of the other kinematic variables, and determined by requiring that eq. (5.21) be
a solution of the systems of DEQs in the other invariants. Eq. (5.21) provides,
at least formally, a close form representation of MI Fi(ǫ, x) as a one-fold integral
which retains full dependence in the dimensional regulator ǫ. Although in many
cases this one-fold integral can be evaluated explicitly in terms of known class
of functions, such as hypergeometric functions, the determination of the exact
dependence of Fi(ǫ, x) on ǫ is an unnecessary complication, since we are usually
interested in the expansion of the MIs around four-dimensions, i.e. for ǫ ∼ 0.
Therefore, we can expand Fi(ǫ, x) as a Laurent series in ǫ,

Fi(ǫ, x) =

∞∑

k=kmin

F
(k)
i (x)ǫk , (5.22)

and substitute such expansion into (5.19), in order to obtain directly a set of

chained DEQs for the Laurent coefficients F
(k)
k . These DEQs can be solved sequen-

tially starting from the leading pole F
(kmin)
i . The DEQs for the Taylor coefficients

are usually much simpler, since the dependence on ǫ is completely factorized from
the integration over the kinematic variable x.

Finally, let us point out that, in the Laurent expansion (5.22), the generally nega-
tive power kmin is determined by the convergence properties of Fi(ǫ, x). However,
it is always possible to define a proper normalization of the MIs,such that they
become finite in the ǫ → 0 limit and, hence, they can be Taylor expanded in ǫ.
Therefore, from now on, we will always assume to work with a basis of finite MIs.

• n > 1 : If a sector contains more than one MIs, we must consider the full set of
n coupled first-oder DEQs simultaneously,

∂xF(ǫ, x) = An(ǫ, x)F(ǫ, x) + S(ǫ, x) , (5.23)

where F(ǫ, x) is the vector of the n MIs of the sector, An(ǫ, x) is the n×n submatrix
of the DEQs matrix A(ǫ, x) that corresponds to the homogeneous part of the DEQs
for F(ǫ, x) and, again, S(ǫ, x) stems for known subtopology contributions.

Obviously, if An(ǫ, x) happens to be triangular, the solution of eq. (5.23) can be
obtained, analogously to the case n = 1, integrating by quadrature one MI at
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a time. If this is not case for the chosen set of MIs, we could try to find basis
transformation which brings An(ǫ, x) to a triangular form. The determination of
such basis transformation, which (as we will discuss later on) is related to the
solution of a n-th order homogeneous DEQ, is a highly non trivial task, if the
full dependence on the space-time dimensions is retained. Conversely, the Taylor
expansion of the MIs around ǫ ∼ 0 can significantly simplify the structure of
the DEQs and, in most applications, it has been verified that it is possible to
find, by simple trail and error, a basis of MIs, which triangularizes the DEQs in
ǫ = 0. Hence, in such cases, the expression of the Taylor coefficients of the MIs
can be obtained in closed form by repeated quadrature, as discussed above. In the
following, we will assume this triangularization to be possible, and we postpone
the discussion of the solution of systems of DEQs which remain coupled even in
ǫ = 0 to chapter 9.

5.4 Canonical systems of differential equations

In the previous section we showed that, if the systems of DEQs (5.9) for the MIs F(ǫ, ~x)
become triangular in the ǫ → 0 limit, we are able to determine the coefficients F(k)(~x)
of their Taylor expansion around ǫ = 0 by simple quadrature. If the system of DEQs
for F(ǫ, ~x) is non-triangular, we can try to perform a change of basis, i.e. to find a
similarity transformation B(ǫ, x) such that the new set of MIs I(ǫ, ~x), defined by

F(ǫ, ~x) = B(ǫ, x)I(ǫ, ~x) , (5.24)

obey systems of DEQs

∂xi
I(ǫ, ~x) = Âxi

(ǫ, ~x)I(ǫ, ~x) , (5.25)

with

Âxi
(ǫ, ~x) = B

−1(ǫ, x)[Axi
(ǫ, ~x)− ∂xi

B(ǫ, x)] , (5.26)

such that the transformed matrices Â(ǫ, ~x) become triangular in the ǫ → 0 limit.

Once such basis has been found, the chained systems of DEQs for the Taylor coef-
ficients F(k)(~x) can be solved bottom-up, starting from leading term O(ǫ0). At every
order in the ǫ, the solution can be represented by a one-dimensional integral over the
previous terms in the expansion.

Of course, besides writing the solution as a formal one-fold integral, we must be able
to evaluate it in terms of known special functions. The recursive structure of the Taylor
coefficients of the MIs suggests a natural representation of the solution in terms gener-
alized polylogarithms (GPLs) [82–86] or, more generally, Chen iterated integrals [87].

Before discussing the properties of this class of special functions, we would like to
observe that, as it was first suggested by Henn in [81], the representation of the solution
in terms of iterated integrals is streamlined if we are able to determine a rotation matrix
B(ǫ, ~x) such that ǫ-dependence the coefficient matrices Axi

(~x) of the new systems of
DEQs is completely factorized from the kinematics,

∂xi
I(ǫ, ~x) = ǫAxi

(~x)I(ǫ, ~x) . (5.27)
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In this case, the order-by-order solution of eq. (5.27) is almost trivialized, since all the
DEQs are completely decoupled as ǫ → 0. This implies that, at order zero in the
ǫ-expansion, the MIs are pure constants,

∂xi
I(0)(ǫ, ~x) = 0 −→ I(0)(ǫ, ~x) ≡ I(0)(ǫ, ~x0) , (5.28)

and, while in the case of a triangular system of DEQs the k-th order coefficient is
generally written as an integral involving all the previously determined orders, in the
ǫ-factorized form of eq. (5.27), I(k)(ǫ, ~x) is directly determined as an integral over the
(k − 1)-order term only, since

∂xi
I(k)(ǫ, ~x) = Axi

(~x)I(k−1)(ǫ, ~x) . (5.29)

The simplified structure of ǫ-factorized systems of DEQs is also reflected in the decou-
pling of the integrability condition (5.13), which splits into two equations,

∂xi
Axj

− ∂xj
Axi

= 0 , [Axj
,Axi

] = 0 , (5.30)

that must be individually satisfied.

In multi-scale problems, is often convenient to combine the systems of partial DEQs
into a total differential

dI(ǫ, ~x) = ǫdA(~x)I(ǫ, ~x) , (5.31)

where the matrix A(~x) is defined by

∂xi
A(~x) = Axi

(~x) . (5.32)

When the MIs are expanded around ǫ = 0, eq. (5.31) is reduced to the set of chained
DEQs for the Taylor coefficients,

dI(k)(~x) = dA(~x)I(k−1)(~x) , (5.33)

which can be naturally solved by quadrature as

I(k)(~x) =

∫

γ
dA I(k−1)(~x) , (5.34)

or, equivalently,

I(k)(~x) =

∫

γ
dA . . . dA︸ ︷︷ ︸
k times

I(0)( ~x0) . (5.35)

We will provide a more formal definition of the integration along the path γ in the kine-
matic space introduced in eq. (5.34) in section 5.6. For the moment, let us just stress
that, if the system is in ǫ-factorized form, the bottom-up solving strategy discussed in
section 5.3, which proceeds one block after the other, is streamlined to a pure matrix
multiplication, as dictated by eq. (5.35).

Although it is has been obtained in a straightforward way, the integral representation
of eq. (5.35) is still a purely formal one. However, its evaluation to known iterated



5.4. Canonical systems of differential equations 105

integrals becomes likewise algorithmic if the systems of DEQs (5.31) is in dlog-form,
i.e. if the coefficient matrix A(~x) can be written as

A(~x) =

k∑

i=1

Mi log ηk(~x) , (5.36)

with Mi being completely constant matrices. In such case, the full kinematic depen-
dence of the DEQs is enclosed in exact differentials of the logarithms of the so-called
letters ηk(~x) of the DEQs. We refer to the full set of letters appearing in eq. (5.36)
as the alphabet of the problem. As we will see in section 5.6, eq. (5.36) ensures that
the MIs can be expressed, order-by-order in ǫ, in terms of Chen iterated integrals. In
addition, the specific functional dependence of the alphabet on the kinematic variables
~x can reduce the set of iterated integrals appearing in the solutions to particular classes
of functions, such as GPLs.

In summary, the determination of the general solution of a system of DEQs in terms
of iterated integrals, is rendered almost entirely algorithmic if :

1. The ǫ-dependence is completely factorized from the kinematics, as in eq. (5.31);

2. The coefficient matrix A(~x) is in dlog-form, as defined by eq. (5.36).

In fact, the ǫ-factorization allows to decouple, order-by-order, the DEQs for the Taylor
coefficients I(k)(~x) and the dlog-form of the kinematic matrix provides a straightforward
representation of such coefficients in terms of Chen iterated integrals. For such reasons,
a system of DEQs which satisfies these two requirements is commonly referred to as
canonical system of DEQs.

In light of the above discussion, it is clear that the main difficulty in the computation
of the MIs through the DEQs method lies in the determination of a basis of MIs which
fulfil canonical systems of equations. In this respect, an important observation is that
canonical MIs are pure functions of uniform transcendentality, i.e. order-by-order in
the ǫ-expansion, each MI is expressed as a combination of transcendental functions of
uniform weight [81]. In fact, if we define the weight of a trascendental function as the
number of repeated integrations over a dlog which define it, it is evident from eq. (5.35)
that I(k)(~x) has uniform weight k (provided that the trascendentality properties are not
spoiled by the boundary constants).

Therefore, if we could determine a priori whether an integral is a function of uniform
weight, we could have a practical criterion to construct a basis of putative canonical
MIs. One possibility to test the trascendental weight of a MIs consists in considering
its integral representation and, by performing suitable manipulation of the integrand,
bring it to a form where its trascendentality properties are manifest. For instance, in
relatively simple cases, it is possible to cast the Feynman parameter representation of
a MI (which, a posteriori turns out to be canonical), into an explicit dlog-form [180].

Morevoer, it has been conjectured that integrals with a unit leading singularity are
pure functions with uniform transcendentality [81, 107, 108]. Therefore, the computa-
tion of the leading singularity of an integral, which can be extracted by evaluating its
maximal-cut in a finite number of dimensions, can be used to check whether the integral
has uniform weight and, eventually, to practically define canonical MIs by absorbing
the non-constant terms of the leading singularity. This last point is strictly related to
the possibility of reaching a canonical form by rotating the MIs by the homogeneous
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solution the DEQs in ǫ = 0. This point will be throughly discussed in the next section.

Despite the presence of these guiding criteria, the issue of the existence and, hence,
of the determination, of a canonical basis for a general multi-loop case still remains an
open problem, especially as far as regards its extension to the case of MIs which cannot
be expressed in terms polylogarithmic functions (see chapter 9 for a detailed discussion).
Nonetheless, in the last few years several constructive methods to determine a similarity
transformation B(ǫ, ~x) that brings a basis MIs F(ǫ, ~x) to a canonical form have been
put forward, under a number of different assumptions on the dependence of the DEQs
both on ǫ and ~x:

• The Magnus exponential method proposed [88] can be used to bring to canonical
form systems of DEQs, in an arbitrary number of kinematic variables, with a
linear dependence on ǫ and it is based on the Magnus expansion representation of
the solution of the DEQs at ǫ = 0;

• In [89] the ǫ-linearity requirement is restricted to the homogeneous part of DEQs
for each sector and a bottom-up approach to the construction of a canonical basis,
based on the solution of the homogeneous system at ǫ = 0 for each sector in terms
of rational functions, is proposed. The recursive construction of similarity trans-
formation to a canonical basis through rational ansatzes has been systematized
in [92] and implemented in the code Canonica [181];

• The algorithm proposed in [90, 91], which can be applied to systems of DEQs in
a single variable x, employs balance transformations in order to bring the singu-
larities of the DEQs in x to a fuchsian form and to factor out ǫ from its coefficient
matrices. This algorithm has been implemented in the public codes Fuchsia [182]
and epsilon [183];

• Within the study of the DEQs for MIs which evaluates to elliptic functions (see
chapter 9), in [93] it has been proposed a method, based on the properties of the
Picard-Fuchs operator, to reduce to a minimum size the blocks of a system of
DEQs (admitting expansion in positive powers of ǫ) which remain coupled in the
ǫ → 0 limit. In the case of MIs that evaluate to GPLs, the complete reduction to
blocks of unit size can be used to bring the DEQs in ǫ-factorized form.

In the next section, we describe in some detail the Magnus exponential method, which
has successfully applied to several multi-loop computations [1, 3, 88, 95, 96](that involve
up to three different dimensionless kinematic variables) and that will be used throughout
chapters 6-8.

5.5 Magnus exponential method

Let us start by considering a set of m MIs F(ǫ, x) that depend on a single kinematic
variable x. We assume F(ǫ, x) to fulfil a system of DEQs with a linear dependence on
ǫ,

∂xF(ǫ, x) = [A0(x) + ǫA1(x)]F(ǫ, x) , (5.37)

The entries of A0 ,1(x) are, in general, rational functions of x. Under this assumption,
it is clear from the definition of the similarity transformation given in eq.(5.24) that, if
B(x) is a m×m matrix valued solution of the DEQs at ǫ = 0,

∂xB(x) = A0(x)B(x) , (5.38)
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than the new set of MIs I(ǫ, x), defined through

F(ǫ, x) = B(x)I(ǫ, x) , (5.39)

fulfils an ǫ-factorized system of DEQs

∂xI(ǫ, x) = ǫÂ1(x)F(ǫ, x) , (5.40)

where the new coefficient matrix Â1(x) is given by

Â1(x) = B
−1(x)A1(x)B(x) . (5.41)

Therefore, by starting from ǫ-linear DEQs, the determination of a change of basis which
brings the system to an ǫ-factorized form is rephrased in terms of the solution of the
first-order homogeneous DEQ (5.38) for the linear operator B. In general cases, the
solution of eq. (5.38) is far from being trivial. In cite [88] it has been proposed to
determine the of solution eq. (5.38) of by means of the Magnus exponential [94, 184]

B(x) = eΩ[A0](x) ≡ 1 +Ω[A0](x) +
1

2!
Ω[A0](x) Ω[A0](x) + . . . , (5.42)

where Ω[A0] is a linear operator defined by the infinite series

Ω[A0](x) =

∞∑

n=0

Ωn[A0](x) , (5.43)

whose summands are built from iterated integrals of the nested commutators of the
kernel matrix A0(x). For instance, the first three terms of eq. (5.43) are given by

Ω1[A0](x) =

∫
dx1 A0(x1),

Ω2[A0](x) =
1

2

∫
dx1

∫
dx2 [A0(x1),A0(x2)], (5.44)

Ω3[A0](x) =
1

6

∫
dx1

∫
dx2

∫
dx3 [A0(x1), [A0(x2),A0(x3)]]+[A0(x3), [A0(x2),A0(x1)]].

Such representation of B(x) is useful whenever the Magnus series terminates after a
certain number of terms, i.e. if there exist some finite nmax such that Ωn[A0](x) = 0, for
n > nmax. In such cases, eq. (5.42) provides an exact solution of the DEQ (5.38) and it
can be used to rotate F(ǫ, x) to the canonical MIs I(ǫ, ~x). We observe that the Magnus
series terminates at nmax = 1 for every matrix which commutes with its integral but, in
more general cases, nested commutators appearing in eq. (5.45) can become vanishing
after a larger number of steps. For later convenience, we notice that, if we split A0(x)
into diagonal and off-diagonal parts,

A0(x) = D0(x) + N0(x) , (5.45)

the Magnus exponential with kernel D0(x) is simply given by

eΩ[D0](x) = e
∫

dx1 B0(x1) , (5.46)

and Ω[N0](x) can be equivalently computed by means of the Dyson series [185],

Ω[N0](x) = 1 +
∞∑

n=1

Yn[N0](x) , (5.47)
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with

Yn[N0](x) =

∫
dx1

∫
dx2 . . .

∫
dxnN0(x1)N0(x1) . . .N0(xn) . (5.48)

The correspondence between the summands of the two series is (we give the same kernel
function as understood)

Y1 =Ω1 ,

Y2 =Ω2 +
1

2!
Ω2
1 ,

Y3 =Ω3 +
1

2!
(Ω1Ω2 +Ω2Ω1) +

1

3!
Ω3
1 ,

. . . (5.49)

The Magnus algorithm for differential equations in many variables

The Magnus exponential expansion can be used to bring to an ǫ-factorized form also
systems of DEQs for MIs that depend on more than one kinematic variable.

Let us consider a set m of MIs F(ǫ, ~x) depending on n variables ~x = (x1 , x2 , . . . xn)
which fulfils systems of DEQs of the type

∂aF(ǫ, ~x) = A
[0]
a (ǫ, ~x)F(ǫ, ~x) , a = 1 , 2 , . . . , n , (5.50)

where we have defined ∂a ≡ ∂/∂xa. If A
[0]
a exhibits a linear dependence on ǫ,

A
[0]
a (ǫ, ~x) = A

[0]
0 ,a(~x) + ǫA

[0]
1 ,a(~x) , (5.51)

we can reach an ǫ-factorized form by applying a chain of Magnus rotations built on the

kernel matrices A
[0]
0 ,a. In particular, we can proceed as follows (for ease of notation we

herby give as understood the dependence of all matrices on ~x ):

1. We begin by splitting A
[0]
0 ,1 into diagonal and off-diagonal parts,

A
[0]
0 ,1 = D

[0]
0 ,1 +N

[0]
0 ,1 , (5.52)

and we perform a first change of basis B[1], given by the Magnus exponential of

D
[0]
0 ,1 ,

B[1] = eΩ[D
[0]
0 ,1] −→ A

[1]
a =

(
B
[1]
)−1

(A[0]
a B

[1] − ∂aB
[1]) . (5.53)

This transformation absorbs the diagonal part of A
[1]
0 ,1,

A
[1]
0 ,1 = N

[1]
0 ,1 . (5.54)

2. We iterate the same procedure for all the diagonal parts of the n systems of DEQs.
After n transformations

B
[i] = eΩ[D

[i−1]
0 ,i ] , i = 1 , 2 , . . . , n, (5.55)

we arrive to a set of matrices

A
[n]
a = A

[n]
0 ,a + ǫA

[n]
1 ,a , (5.56)

whose diagonal parts are completely ǫ-factorized, i.e.

A
[n]
0 ,a = N

[n]
0 ,a , ∀a = 1 , 2 , . . . , n . (5.57)
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3. We rotate away the ǫ independent part of A
[n]
1 with the Magnus transformation

B
[n+1] = eΩ[N

[n]
0 ,1] −→ A

[n+1]
a =

(
B
[n+1]

)−1
(A[n]

a B
[n+1] − ∂aB

[n+1]) ,

(5.58)

which can be obtained equivalently through the Dyson series

B
[n+1] = 1 +

∞∑

n=1

∫
dx1

∫
dx2 . . .

∫
dxnN

[n]
0 ,1N

[n]
0 ,1 . . .N

[n]
0 ,1 . (5.59)

In this way A
[n]
1 is completely ǫ-factorized.

4. We repeat the previous steps for all n systems of DEQs, by performing n change
of basis

B
[n+i] = eΩ[N

[n+1−i]
0 ,i ] , i = 1 , 2 , . . . , n, (5.60)

which yields to a final set of matrices of the type

A
[2n]
a = ǫA

[2n]
1 ,a , (5.61)

Therefore, if we rotate the original set of MIs F(ǫ, ~x) as

F(ǫ, ~x) = B(x)I(ǫ, ~x) , with B
[1]

B
[2] · · · B

[2n] , (5.62)

we arrive to a new of DEQs for I(ǫ, ~x) in the desired form,

∂aI(ǫ, ~x) = ǫA
[2n]
1 ,a (x)F(ǫ, ~x) , (5.63)

since, by construction,

∂aB(~x) = A
[0]
0 ,a(~x)B(~x) , a = 1 , 2 , . . . , n . (5.64)

A few important comments on the proposed algorithm are in order:

• The algorithm is based on the assumption that the starting set of MIs F obeys
ǫ-linear system of DEQs and it does not provide any criterion to find such kind
of basis. Hence, F must be determined from IBPs reduction based on experience.
Nonetheless, it should be said that finding an ǫ-linear basis is considerably easier
than directly determining an ǫ-factorized form by trial and error, and it has proven
to be possible in most of the known cases;

• Besides being ǫ-factorized, the system of DEQs obtained in eq. (5.63) are empir-
ically found to be in the dlog-form of eq. (5.36), so that the resulting systems of
DEQs are in truly canonical form;

• The homogeneous solutions at ǫ = 0 might involve irrational functions. Hence, the
transformation to a canonical form can introduce irrational terms in the DEQs.
Provided that the system of DEQs is in dlog-form, the presence of irrational letters
in the alphabet does not prevent us from writing the solution in terms of Chen
iterated integrals. However, especially in view of the analytic continuation and
of a fast and precise numerical evaluation of the MIs, it is advisable, whenever
possible, to perform a change of variables which rationalizes the whole alphabet,
in such a way to be able to express the solution in terms of GPLs;
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• In the above description, we have always assumed that each Magnus exponential
B[i] is convergent, i.e. that the defining series of eq. (5.43) terminates after a
finite number of steps. This is obviously the case for i ≤ n, since the Magnus
exponential of a diagonal matrix D stops at Ω1[D], but it is not generally true
for arbitrary non-diagonal matrices. If this occurs for any of the B[i] defined in
eq.(5.58), then algorithm cannot be used to find the canonical basis, since the
Magnus exponential does not provide an exact solution of the system of DEQs at
ǫ = 0.

The (up to now) few cases where the discussed algorithm is known to be not ap-
plicable are typically associated to systems of DEQs that are non-triangularizable
in ǫ → 0 limit, i.e where there exists some subset of MIs which obey, at ǫ = 0, an
irreducible higher order DEQs. In chapter 9 we will address this issue by propos-
ing a general method, based on the extension of the concept of leading singularity
to irreducible systems of coupled DEQs, which can be used in order to bring to
an ǫ-factorized form also DEQs where the Magnus algorithm, as well as the other
methods discussed in section 5.4 are not applicable.

In chapters 6-8 we will apply the Magnus exponential algorithm in order to determine
a canonical basis for classes of two-loop MIs depending on up to three different vari-
ables. Before discussing these applications, in the next sections we describe the main
features of the general solution of a canonical system of DEQs and the properties of the
transcendental functions that appear in it.

5.6 General solution of canonical systems

We now go back to the formal definition of the general solution of the ǫ-factorized system
of DEQs (5.31) in terms of iterated integrals, which was introduced in eq. (5.34).

Given a set of MIs I(ǫ, ~x) with total differential

dI(ǫ, ~x) = ǫdA(~x)I(ǫ, ~x) , (5.65)

we can express the solution of their systems of DEQs as

I(ǫ, ~x) = P exp

{
ǫ

∫

γ
dA

}
I(ǫ, ~x0) , (5.66)

where I(ǫ, ~x0) is a vector of integration constants depending on ǫ only and the path-
ordered exponential is defined as the series

P exp

{
ǫ

∫

γ
dA

}
= 1 + ǫ

∫

γ
dA + ǫ2

∫

γ
dA dA + ǫ3

∫

γ
dA dA dA + . . . , (5.67)

whose k-th coefficient corresponds to a line integral of the product of k matrix-valued
dA along some piece-wise smooth path γ connecting the point ~x0 and ~x,





γ : [0, 1] ∋ t 7→ γ(t) = (x1(t) , x2(t) , . . . , xn(t))

γ(0) = ~x0

γ(1) = ~x.

(5.68)

The general solution defined in eq. (5.66) must be specialized to the physically mean-
ingful MIs through a proper choice of the integration constants. In this perspective, we
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observe that, in the limit ~x → ~x0, all the line integrals appearing in eq. (5.67) vanish
(since the integration path γ shrinks to a point) and, consequently, I(ǫ, ~x) → I(ǫ, ~x0).
Therefore, the integration constants I(ǫ, ~x0) have a clear interpretation in terms of
boundary constants representing the initial values of the MIs at ~x0, which then evolve
to the arbitrary point ~x under the action of the path-ordered exponential.

By choosing a proper normalization, we can always assume the canonical MIs to be
finite in the ǫ → 0 limit, in such a way that I(~x) admits a Taylor expansion in ǫ,

I(ǫ, ~x) = I(0)(~x) + ǫ I(1)(~x) + ǫ2I(2)(~x) + . . . . (5.69)

In particular, since we have identified I(ǫ, ~x0) with the value of the MIs at ~x0, we can
assume the boundary constants to be Taylor-expanded as well,

I(ǫ, ~x0) = I(0)(~x0) + ǫ I(1)(~x0) + ǫ2I(2)(~x0) + . . . . (5.70)

Therefore, if we combine the definition of the path-ordered exponential given in eq. (5.67)
with eq. (5.70), we immediately see that the k-th order coefficient of the Taylor expan-
sion of the MIs is given by

I(k)(~x) =
k∑

i=0

∆(k−i)
γ [dA] I(i)(~x0), (5.71)

where ∆
(k)
γ is the weight-k integral operator

∆(0)
γ [dA] =1 ,

∆(k)
γ [dA] =

∫

γ
dA . . . dA︸ ︷︷ ︸
k times

, (5.72)

which iterates k ordered integration of dA along the path γ.

Formally, the previous discussion holds for any kind of dependence of the matrix
A(~x) on the kinematic variables ~x. In particular, if A(~x) is in the dlog-form (5.36), we
see that each entry of ∆(k) is a linear combination of iterated integrals of the type

C [γ]
ik,...,i1

=

∫

γ
dlog ηik . . . dlog ηi1 . (5.73)

As we have explicitly indicated in (5.73), each individual iterated integral is, in general,
a functional of the path. However, we observe that the full combinations of integrals
appearing in the entries of ∆(k) must be independent of the particular choice of γ, since
they correspond to integrals of the total differential (5.65).

The theory of the iterated integrals defined in eq. (5.73) was originally formulated
by Chen [87]. In the next section, we give a brief summary of their most relevant
properties.

5.7 Chen iterated integrals

For definiteness, we define the Chen iterated integrals introduced in eq. (5.73) as

C [γ]
ik,...,i1

=

∫

0≤t1≤...≤tk≤1
gγik(tk) . . . g

γ
i1
(t1) dt1 . . . dtk , (5.74)
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where γ is the piecewise-smooth path connecting ~x0 to ~x given in eq. (5.68) and

gγi (t) =
d

dt
log ηi(γ(t)) . (5.75)

We refer to the number k of iterated integrations involved in eq. (5.74) as the weight of

C [γ]
ik,...,i1

. At weight one, the line integral of one dlog produces, as expected,

∫

γ
dlog η =

∫

0≤t≤1

dlog η(γ(t))

dt
dt = log η(~x)− log η(~x0) , (5.76)

which depends on the end-points ~x0 and ~x. At higher weights, eq. (5.74) can be rewritten
in a recursive way,

C [γ]
ik,...,i1

=

∫ 1

0
gγik(s) C

[γs]
ik−1,...,i1

ds , (5.77)

where C [γs]
ik−1,...,i1

is a weight k − 1 iterated integral along the path

γs : [0, 1] ∋ t 7→ ~x = (γ1(s t) , γ2(s t) , . . . γn(s t)) . (5.78)

In addition, the integral representation of C [γs]
ik,...,i1

immediately allows to obtain the
derivative identity

d

ds
C [γs]
ik,...,i1

= gγik(s) C
[γs]
ik−1,...,i1

. (5.79)

Chen iterated integrals obey a number of properties:

• Invariance under path reparametrization: the integral C [γ]
ik,...,i1

does not depend on
the way one chooses to parametrize the path γ.

• Reverse path formula: if γ−1 is the path γ traversed in the opposite direction,
then

C [γ−1]
ik,...,i1

= (−1)kC [γ]
ik,...,i1

. (5.80)

• Shuffle algebra: Chen iterated integrals fulfil shuffle algebra relations. If ~m =
(mM , . . . ,m1) and ~n = (nN , . . . , n1), with M and N natural numbers, we have

C [γ]
~m C [γ]

~n =
∑

shuffles σ

C [γ]
σ(mM ),...,σ(m1),σ(nN ),...,σ(n1)

, (5.81)

where the sum runs over all the permutations σ that preserve the internal order
of ~m and ~n.

• Path composition formula: if α, β : [0, 1] → M are two paths such that α(0) = ~x0,
α(1) = β(0), and β(1) = ~x, then the iterated integral along the composed path
γ = αβ, obtained by first traversing α and then β, satisfies

C [αβ]
ik,...,i1

=

k∑

p=0

C [β]
ik,...,ip+1

C [α]
ip,...,i1

. (5.82)

The composition of an arbitrary number of paths can be obtained by recursively
applying eq. (5.82).
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• Integration-by-parts formula: the computation of eq. (5.74) requires, in principle,
the evaluation of k nested integrals. Nevertheless, we observe that the innermost
integration is always reduced to (5.76), so that we have k − 1 actual integrations
to perform. For instance, at weight k = 2, we have

C [γ]
m,n =

∫ 1

0
gm(t) C [γt]

n dt

=

∫ 1

0
gm(t)(log ηn(~x(t))− log ηn(~x0)) dt , (5.83)

and we are left with a single integral to be evaluated, either analytically or nu-
merically.

Moreover, we can show that the integration involving the outermost weight gk can
be performed by parts and gives

C [γ]
ik,...,i1

= log ηik(~x) C
[γ]
ik−1,...,i1

−
∫ 1

0
log ηik(~x(t)) gik−1

(t) C [γt]
ik−2,...,i1

dt . (5.84)

The combined use of eqs. (5.83) and (5.84) allows a remarkable simplification in
the numerical evaluation of weight k ≥ 3 iterated integrals, since the analytic
calculation of the inner- and outermost integrals leaves only k− 2 integrations to
be performed via numerical methods.

5.8 Generalized polylogarithms

The solution of a canonical system of DEQs in terms of the path-order exponential (5.66)
leads automatically to a representation of the MIs in terms of Chen iterated integrals.
However, if the alphabet is rational and it is possible to determine explicitly its al-
gebraic roots, we can directly integrate the canonical DEQs in terms of generalized
polylogarithms (GPLs) [82–86].

In this case, in fact, we can factor (in general over C) the letters of the dlog-form
w.r.t. each kinematic variable xi,

ηk(~x) =

mk∏

jk=1

(xi − ωjk) , (5.85)

where the weight ωjk can depend on all the other ~x variables. In this way, the coefficient
matrix of the system of DEQs w.r.t. xi can be written in the form

Axi
(~x) =

m∑

j=1

Mj

xi − ωj
, (5.86)

where Mj are constant matrices. Therefore, at any order k in the Taylor expansion of
the MIs, we can solve by quadrature the systems DEQs and obtain, by starting from
x1,

I(k)(~x) =

m∑

j=1

∫ x1

0
dt

Mj

t− ωj
I(k−1)(~x) + C(x2 . . . xn) , (5.87)

where C(x2 . . . xn), which is independent of x1, has to be determined by recursively
substituting the solution (5.87) into the remaining systems of DEQs and integrating
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the latter in a similar way.

Eq. (5.87) can be directly evaluated in terms of GPLs, which are defined in terms
of iterated integrals as

G(~ωn;x) =

∫ x

0
dt

1

t− ω1
G(~ωn−1; t) , n > 0 ,

G(~0n;x) =
1

n!
logn x , (5.88)

where x is a complex variable and ~ωn = (ω1 , ω2 , . . . , ωn) is vector with n complex
indices. The length of ~ωn, which we refer to as the weight of a GPL, corresponds to the
number of nested integrations which define G(~ωn;x). An alternative definition can be
given in terms of the derivates,

∂

∂x
G(~ωn;x) =

1

x− w1
G(~ωn−1;x) , (5.89)

which is clearly equivalent to eq. (5.88).

GPLs, which in principle can depend on an arbitrary number of variables, constitute
a wide class of transcendental functions and contain, as special cases, several families
of polylogarithmic functions occurring in loop computations, including;

• The ordinary logarithm and the classical polylogarithms, which are given in terms
of GPLs as

G(~ωn;x) =
1

n!
logn

(
1− x

ω

)
, for ~ωn = (ω , . . . , ω)︸ ︷︷ ︸

n times

,

G(~0n−1, 1;x) =− Lin(x) . (5.90)

• The harmonic polylogarithms (HPLs) [83, 84, 186], which correspond to one-
dimensional GPLs with ωi ∈ {0,±1}. Due to different conventions in their defi-
nition, the correspondence between GPLs and HPLs is

H(~ω;x) = (−1)pG(~ω;x) , (5.91)

where p is the number of indices +1 contained in ~ω.

• Two-dimensional harmonic polylogarithms (2dHPLs)[187, 188], which correspond
to GPLs with ωi ∈ {0, 1,−y,−1− y} and y ∈ C.

GPLs satisfy a series of fundamental properties, which are inherited from their iterative
structure:

• Shuffle algebra: GPLs fulfil a shuffle algebra relation of the form

G(~m;x)G(~n;x) = G(~m;x)✁G(~n;x) =
∑

~p=~m✁~n

G(~ω;x) , (5.92)

where the shuffle product ~m✁ ~n denotes all possible merges of ~m and ~n which
preserve their internal ordering.
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• Rescale invariance: if the rightmost index ωn of ~ω is different from zero, then
G(~ωn−1;x) is invariant under the rescaling of all its argument by a factor z ∈ C∗,

G(~ωn;x) = G(z ~ωn; z x) , ωn 6= 0 . (5.93)

• Holder convolution: for x = 1, we have

G(ω1 , . . . , ωn; 1) = (−1)nG(1− ωn , . . . 1− ω1; 1) , (5.94)

which is a special case of the Holder convolution.

Besides these basic properties, the linearity of the rational functions which constitute
the integration kernels of the GPLs allows to derive, for instance by manipulating the
integral representation (5.88), a series of additional identities between GPLs of different
argument, series expansion and limiting values.

Finally, we would like to mention that GPLs, equipped with the shuffle algebra (5.92)
can be proven to form a Hopf algebra [189, 190] graded by weight. Such algebra allows
to define the symbol [191] and coproduct [190] maps, which encode important informa-
tion about GPLs, such as their behaviour under differentiation and their discontinuity
across branch cuts and they can be used to systematically determine functional relations
between GPLs.

Connection between GPLs and Chen iterated integrals

If the letters of the dlog-form are rational, it is possible, of course, to establish a con-
nection between the representation of the solution in terms of Chen iterated integrals
and GPLs. In particular, we can convert a Chen integral with rational letters into a
combination of GPLs evaluated at 1.

Such conversion to GPLs is straightforward in the case of an iterated integral whose
letters depend linearly on a single variable x, i.e. if eq. (5.85) simply reads

ηi = x− ωi , ωi ∈ C . (5.95)

In fact, in such case, the integral representations given in eqs. (5.74) and (5.88) can be
used to derive the conversion formula

∫

γ
d log(x− wk) . . . d log(x− w1) = G

(
x0 − wk

x0 − x1
, . . . ,

x0 − w1

x0 − x1
; 1

)
, (5.96)

where x0 and x1 indicate the integration end-points. In order to convert a GPLs with
rational letters depending on an arbitrary number of variables, we can proceed as follows:

1. We connect ~x0 = (x1 ,0, x2 ,0, . . . , xn ,0) to ~x1 = (x1 ,1, x2 ,1, . . . , xn ,1) through a
piecewise linear path γ ≡ γ1 γ2 · · · γn, with





γ1(t) : (x1 ,0 + t(x1 ,1 − x1 ,0), x2 ,0, . . . , xn ,0)

γ2(t) : (x1 ,1 , x2 ,0 + t(x2 ,0 − x2 ,0), . . . xn ,0)

. . .

γn(t) : (x1 ,1, x2 ,1, . . . , xn ,0 + t(xn ,1 − xn ,0)) .

(5.97)

2. We use the path composition formula given in eq. (5.82) and we rewrite C [γ]
ik,...,i1

as

a combination of iterated integrals C [γi]
im,...,in

, where there linear path γi affects the
variable xi and leaves all the others unchanged;
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3. For each C [γi]
im,...,in

, we factor over C all the dlog ηk w.r.t. the variable which changes
along the path γi;

4. We apply the conversion formula (5.96). In the multivariate case, the weights wj

must be evaluated at the constant value of the variables which are left unaffected
by the path γi.

Example 1

Let us illustrate the above conversion procedure on a weight two Chen iterated integral
depending on three variables ~x = (v , z , z̄),

C [γ]
m,n =

∫

γ
dlog ηm dlog ηk (5.98)

with

ηm = v + (1− v)2zz̄ , ηn = v , (5.99)

and where γ is a path connecting ~x0 = (1 , 1 , 1̄) to ~x1 = (v1 , z1 , z̄1). This particular
integral appears in the computation of the two-loop master integrals for the leading
QCD corrections to the coupling X0WW (with X0 = H, γ∗, Z), which will be discussed
in chapter 7.

The path γ can be split into three linear paths γi, i = 1, 2, 3 which affect, respectively
z̄, v and z, and leave the other two variables unchanged,





γ1(t) : (1, 1, 1 + t(z̄1 − 1))

γ2(t) : (1 + t(v1 − 1), 1, z̄1)

γ3(t) : (v1, 1 + t(z1 − 1), z̄1) .

(5.100)

According to the path composition formula given in eq. (5.82), we can write C [γ]
m,n as

C [γ]
m,n = C [γ3]

m,n + C [γ2]
m,n + C [γ1]

m,n + C [γ3]
m

(
C [γ2]
n + C [γ1]

n

)
+ C [γ2]

m C [γ1]
n . (5.101)

We immediately see that C [γ1]
n = 0, since dlog ηn = 0 along γ1. For similar reasons,

C [γ1]
m,n and C [γ2]

m,n vanish as well. Therefore, we are left with

C [γ]
m,n = C [γ2]

m,n + C [γ3]
m C [γ2]

n . (5.102)

We can now apply the conversion formula of eq. (5.96) to the Chen iterated integrals
appearing on the r.h.s, by factoring ηm and ηn w.r.t. the variable affected by γi and
by setting the other two variables to the corresponding constant value. In this way, we
have, for the weight one integrals,

C [γ2]
n =

∫

γ2

dlog v = G

(
1

1− v1
; 1

)
,

C [γ3]
m =

∫

γ2

dlog

(
z +

v1
z̄1(v1 − 1)2

)
= G

(
1 + v1

z̄1(v1−1)2

1− z1
; 1

)
, (5.103)

and, for the weight two integral,

C [γ2]
m,n =

∫

γ2

dlog

(
v − 2z̄1 − 1 +

√
1− 4z̄1

2z̄1

)
dlog v+
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+

∫

γ2

dlog

(
v − 2z̄1 − 1−√

1− 4z̄1
2z̄1

)
dlog v

=G

(
1− 2z̄1−1+

√
1−4z̄1

2z̄1

1− v1
,

1

1− v1
; 1

)
+G

(
1− 2z̄1−1−

√
1−4z̄1

2z̄1

1− v1
,

1

1− v1
; 1

)
.

(5.104)

By combining these results, we obtain the conversion of C [γ]
m,n to GPLs,

C [γ]
m,n =G

(
1− 2z̄1−1+

√
1−4z̄1

2z̄1

1− v1
,

1

1− v1
; 1

)
+G

(
1− 2z̄1−1−

√
1−4z̄1

2z̄1

1− v1
,

1

1− v1
; 1

)

+G

(
1

1− v1
; 1

)
G

(
1 + v1

z̄1(v1−1)2

1− z1
; 1

)
. (5.105)

A similar procedure can be applied to convert any Chen iterated integral with rational
letters (provided that their algebraic root are known) in terms of GPLs evaluated at
1. �

Boundary conditions

Once a representation of the general solution of a system of DEQs has been obtained in
terms of iterated integrals, the full determination of the analytic expression of the MIs
requires the specification of suitable boundary conditions. As we have already stressed,
the boundary constants I(ǫ, ~x0) correspond to the value of the MIs at the integration
base-point ~x0. Therefore one possible (but generally difficult) way of fixing the bound-
ary conditions consists in calculating the boundary values through some independent
integration method. Alternatively, the simple knowledge of the analyticity properties of
the MIs often allows to determine the boundary constants directly from the singularity
structure of the system od DEQs. In this perspective, having a system in canonical
form, can make the boundary fixing even more straightforward.

Let us suppose that the canonical set of MIs I(ǫ, ~x) is regular at the unphysical
threshold ηi(~x), which is part of the alphabet of the dlog form (5.36). In this case,
boundary constants can be fixed by exploiting the relation

lim
ηi→0

MiI(ǫ, ~x) = 0 , (5.106)

which holds order-by-order in the ǫ-expansion. The validity of eq. (5.106) can be easily
proved by induction, based on the iterative structure of the Taylor coefficients I(k)(~x):

- Since at order zero I(0) is a pure constant and, hence, it is finite under every limit, we
start by considering the O(ǫ) term, which is given, according to eq. (5.71), by

I(1)(~x) =

∫

γ
dAI(0)(~x0) + I(1)(~x0) . (5.107)

In the ηi(~x) → 0 limit, the divergent behaviour of I(1)(~x) is given by

lim
ηi→0

I(1)(~x) ∼ lim
ηi→0

∫

γ
dlog ηi MiI

(0)(~x0) . (5.108)
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Therefore, I(1)(~x) is finite only if the coefficients of the logarithmic singularity is set
to zero,

lim
ηi→0

MiI
(0)(~x0) = 0 , (5.109)

which exactly corresponds to the zeroth-order of eq. (5.106) and provides a set of
relations between the boundary constants I(0)(~x0).

- With similar arguments, if we suppose that regularity has been imposed on the solu-
tion up to O(ǫk−2), we see from eq. (5.71) that the potentially singular term of I(k)(~x)
is given by

lim
ηi→0

I(k)(~x) ∼ lim
ηi→0

∫

γ
dlog ηi MiI

(k−1)(~x) . (5.110)

Hence, the finiteness of I(k)(~x) is ensured by

lim
ηi→0

MiI
(k−1)(~x) = 0 , (5.111)

which corresponds to the O(ǫk−1) term of eq. (5.106)

Besides its simple derivation, the regularity condition (5.106) are, in general, easier to
solve than the regularity conditions imposed on non-canonical MIs, since they involve,
at each order in ǫ, only functions of uniform weight.

Finally, we observe that Feynman integrals can have, besides logarithmic divergen-
cies, also power divergencies. In a canonical basis, power divergencies are encoded in
the kinematic prefactors which relate I(ǫ, ~x) to the original basis of MIs F(ǫ, ~x). This
observation provides, sometimes, a very simple condition which can be used in order to
fix boundary constants at all order in ǫ. In fact, if there is kinematic limit where F(ǫ, ~x)
are regular and the prefactors expressing I(ǫ, ~x) in terms of F(ǫ, ~x) are vanishing, then
the canonical MIs must vanish in this limit.

5.9 Conclusions

In this chapter, we have given an overview of the differential equations method [48, 76,
77] for master integrals, which so far has proven to be the most effective technique for
the analytic evaluation of multi-loop, multi-scale Feynman integrals.

Given a basis of MIs which span the space of Feynman integrals related to a partic-
ular process, IBPs allows to derive systems of first-order coupled differential equations
in the kinematic invariants for such MIs. In most cases, when the system of DEQs is
expanded around some integer number of space-time dimensions, i.e. around ǫ ∼ 0, the
substantial decoupling of the DEQs allows to determine the coefficients of the series
expansion in ǫ of the MIs in terms of iterated integrals.

In particular, if the DEQs in ǫ can be cast into a triangular form the formal iterated
integrals can be evaluated in terms of Chen iterated integrals [87], which include as a
special (but, indeed, very common) case the well-studied generalized polylogarithms [82–
86].

In this respect, we have discussed the advantages of finding a basis of MIs which
obey canonical DEQs [81], where the dependence on ǫ is completely factorized from
the kinematics and the total differential of each integral can be written as an exact
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dlog-form. This two features of the canonical DEQs render the evaluation of the MIs
in terms of Chen iterated integrals (of course whenever a representation in terms of
such functions is possible) almost entirely algorithmic and leave only the fixing of the
boundary conditions to a case-by-case analysis.

Among the several methods which have been proposed for the determination of
canonical bases of MIs, we have examined in some details the Magnus exponential
method [88], which can be used in order to bring to canonical form triagularizable
systems of DEQs with a linear dependence on ǫ.

In chapters 6-8, we will apply the Magnus method for the calculation of two-loop
three- and four-point integrals depending on up to three dimensionless kinematic vari-
ables. In all cases, the discussion of the solution of the DEQs for the resulting MIs will
be structured as follows:

- We first define the integral topologies to be reduced to MIs,

∫ ℓ∏

i=1

d̃dki
1

Dn1
1 . . . Dnm

m
, ni ∈ Z , (5.112)

where, in our conventions, the integration measure is defined as

d̃dki =
ddki
(2π)d

(
i Sǫ

16π2

)−1(m2

µ2

)ǫ

, (5.113)

with µ being the ’t Hooft scale of dimensional regularization and

Sǫ = (4π)ǫ Γ(1 + ǫ) ; (5.114)

- We identify, through IBPs reduction, an initial set of MIs F(ǫ, ~x) which fulfils ǫ-linear
systems of DEQs in the kinematic invariants ~x;

- We use the Magnus exponential method in order to rotate F(ǫ, ~x) to a canonical basis
of MIs I(ǫ, ~x);

- We determine the general solution of the canonical systems in terms of iterated inte-
grals (either GPLs or Chen iterated integrals, according to the alphabet of the problem
under consideration);

- We discuss the fixing of boundary conditions.

The resulting analytical expressions of the MIs have been evaluated numerically either
with the help of the computer code GiNaC [192], in the case of GPLs, or with an
in-house implementation of the numerical integration of Chen iterated integrals, and
then checked with the numerical values of the MIs provided by the code SecDec [171].

The problem of the evaluation of MIs obeying systems of DEQs that remain coupled
in the ǫ = 0 limit will be addressed in chapter 9.
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Chapter 6

Master integrals for QCD

corrections to HWW and gauge

couplings ZWW -γ∗WW

In this chapter, we use the differential equations method to analytically evaluate

the two-loop master integrals required for the leading QCD corrections to the

interaction vertex of a massive neutral boson X0, e.g. H,Z or γ∗, with a pair of

W bosons, mediated by a SU(2)L quark doublet composed of one massive and one

massless flavor. All the external legs are allowed to have arbitrary invariant masses.

The Magnus exponential is employed to identify a set of master integrals that

obey canonical systems of differential equations. In their expansion around four

space-time dimensions, the master integrals are expressed in terms of generalized

polylogarithms. In the context of the Standard Model, the considered integrals are

relevant for the mixed EW-QCD corrections to the Higgs decay to a W pair, as well

as to the production channels obtained by crossing, and to the triple gauge boson

vertices ZWW and γ∗WW . The content of this chapter is the result of an original

research done in collaboration with S. Di Vita, P. Mastrolia and U. Schubert, and

it is based on the pubblication [3].

6.1 Introduction

In this chapter, we consider the three-particle reaction

X0(q) → W+(p1) +W−(p2) , (6.1)

where W± are the charged electroweak gauge bosons and X0 is a neutral boson which,
in the Standard Model, can correspond both to the Higgs boson or to the vector bosons
Z and γ. We assume the momenta of all three particles to be off-shell, so that the
kinematics of the process reads

s = q2 = (p1 + p2)
2 and p21 6= p22 6= 0 . (6.2)

In the Standard Model, the coupling between two W bosons and one neutral boson
X0 = H,Z, γ∗ is present in the tree-level Lagrangian. At one-loop, the X0W+W−

interaction receives electro-weak (EW) corrections, either via bosonic- or via fermionic-
loop. Strong (QCD) corrections must proceed through a closed quark-loop so that they
can first occur at the two-loop level.
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ZWW -γ∗WW
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Figure 6.1: Representative two-loop Feynman diagrams contributing to the X0W+W−

interaction, where X0 = H,Z, γ∗. Similar diagrams where t and b quarks are exchanged
are also taken into account.

Two-loop corrections involving massless partons propagating in the loops has been
studied in [193–195], while effects due to finite quark mass are still unknown. In this
chapter, we present the calculation of the two-loop three-point integrals required for
the determination of the leading QCD corrections to the interaction vertex between a
neutral boson X0 with arbitrary mass and a pair of W bosons of arbitrary squared four-
momenta (X0W+W−), mediated by a fermion loop of a SU(2)L quark doublet, with
one massive and one massless flavors. In what follows, we refer to the massive flavor as
to the top (mt = m), and to the massless one as to the bottom (mb = 0). Representative
Feynman graphs for the considered integrals are shown in figure 9.3. The corresponding
four integral families Ti, which are depicted in figure 6.2 can be distinguished in two
sets, according to the flavor that couples to the X0 boson, i.e. either the massless (T1

and T2) or the massive one (T3 and T4),

The present calculation provides the full set of MIs needed for computation of the
O(ααs) corrections to the Higgs decay into a pair of W bosons, and to the triple gauge
boson processes Z∗WW and γ∗WW , with leptonic final states, at e+e− colliders. As
for the latter process with semi-leptonic or hadronic final states, these MIs would only
be a subset of the needed integrals. Likewise, the computed MIs constitute a subset of
the integrals for the computation of the two-loop mixed EW-QCD to crossing-related
processes, such as Higgs production in WW -fusion or in association with a W boson,
as well as to to WW production in higher multiplicity processes. In addition, since
fermionic one-loop diagrams always involve a fermionic doublet with a (nearly) massless
flavor (with the only exception of the approximately degenerate first generation), this
set of MIs can also be used in NNLO EW corrections, where the exchanged gluon is
replaced by a photon. Finally, we observe that several motivated extensions of the
Standard Model feature an extended Higgs sector with Yukawa couplings to the SU(2)
fermion doublets. Although we do not refer explicitly to this possibility, our results is
also applicable to the case X0 = S0, with S0 being any neutral (pseudo) scalar present
in the spectrum of the extended theory.

In the next section we describe the general features of the systems of DEQs obeyed
by the MIs belonging to the integral topologies of figure 6.2 and the properties of the
corresponding solutions. The details of the calculations of the MIs for X0W+W− are
discussed in the section 6.3.

6.2 System of differential equations

The two-loop Feynman diagrams contributing to X0W+W− can be reduced to four
integral topologies, which are depicted in figure 6.2. The integrals belonging to these
topologies depend on the three external invariants p21, p22 and s and on the internal
mass m2. These four variables can be combined into three independent dimensionless
parameters, ~x = (x1, x2, x3), whose explicit definition will be later specified according
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T1 T2 T3 T4

Figure 6.2: Two-loop topologies for X0W+W− interactions. Thin lines represent mass-
less propagators and thick lines stand for massive ones. The dashed external line corre-
sponds to the off-shell leg with squared momentum equal to s. The red and blue lines
respectively represent the two external vector bosons with off-shell momenta p21 and p22.

to the topology under consideration. We evaluate the MIs by solving their systems of
DEQs in the variables ~x. First, by means of IBPs reduction, we identify a set of MIs F

that fulfils a system of DEQs of the type

∂F

∂xa
= (A0xa(~x) + ǫA1xa(~x))F , with a = 1, 2, 3 . (6.3)

Subsequently, with the help of Magnus exponential matrix, we perform a change of basis
to a new set of of MIs I obeying a canonical systems of DEQs,

∂I

∂xa
= ǫÂxa(x1, x2, x3)I . (6.4)

After combining the three systems of DEQs into a single total differential, we arrive at
the following canonical form

dI = ǫdAI , dA ≡ Âxadx
a (6.5)

with a total differential matrix of the form

dA =

n∑

i=1

Mi dlog(ηi) , (6.6)

with Mi being constant matrices.

For all the considered MIs, the alphabet contains only rational letters with algebraic
roots, so that the general solution of eq. (6.5) can be written in terms of GPLs. The
boundary constants, which are needed in order to completely specify the solution, are
fixed by exploiting either the known expression of the MIs at specific kinematic point
or by demanding their regularity at pseudo-thresholds contained in the DEQs. To this
aim, we find convenient, according to the integral topology under consideration, either
to integrate eq. (6.5) directly in terms of GPLs or to first derive a compact representation
of the solution in terms of Chen iterated integrals and then convert it to GPLs (following
the discussion of section 5.8), after the boundary constants have been fixed. In both
cases the MIs are evaluated in the region where all letters ηi are real and positive. In
the final part of this chapter, we will discuss in detail the required prescriptions for the
the analytic continuation of the MIs to the physical region, which can be then obtained
through standard techniques.
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6.3 Two-loop master integrals

In this section, we present the solution of the system of DEQs for the MIs associated to
the four integral topologies Ti depicted in figure 6.2. Since the four topologies can be
mapped into two two distinct integral families, we discuss their evaluation separately.

6.3.1 First integral familiy

The topologies T1 and T2 belong to the integral family

∫
d̃dk1d̃dk2

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7

, ni ∈ Z , (6.7)

identified by the set of denominators

D1 = k21, D2 = k22, D3 = (k1 − p2)
2 −m2, D4 = (k2 − p2)

2 −m2,

D5 = (k1 − p1 − p2)
2, D6 = (k2 − p1 − p2)

2, D7 = (k1 − k2)
2 . (6.8)

The integrals belonging to this family can be reduced to a set of 29 MIs which are
conveniently expressed in terms of the dimensionless variables ~x = {u, z, z̄} defined by

− s

m2
= u ,

p21
s

= z z̄ ,
p22
s

= (1− z)(1− z̄) . (6.9)

The same parametrization for p21 and p22 was used also for the massless triangles con-
sidered in [195]. The following set of MIs obeys an ǫ-linear system of DEQs:

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ2 T6 ,
F7 = ǫ2 T7 , F8 = ǫ2 T8 , F9 = ǫ2 T9 ,

F10 = ǫ3 T10 , F11 = ǫ2 T11 , F12 = ǫ2 T12 ,
F13 = ǫ2 T13 , F14 = ǫ2 T14 , F15 = ǫ2 T15 ,
F16 = ǫ3 T16 , F17 = ǫ2 T17 , F18 = ǫ3 T18 ,
F19 = ǫ3 T19 , F20 = ǫ2 T20 , F21 = ǫ3 T21 ,
F22 = ǫ2 T22 , F23 = ǫ3 T23 , F24 = ǫ3 T24 ,
F25 = ǫ4 T25 , F26 = ǫ4 T26 , F27 = ǫ3 T27 ,
F28 = ǫ3 T28 , F29 = ǫ2 T29 , (6.10)

where the Ti are depicted in figure 6.3. We observe that some of integrals Ti are
trivially related by p21 ↔ p22 symmetry,

T4 ↔ T2 , T8 ↔ T5 , T9 ↔ T6 , T14 ↔ T12 , T21 ↔ T16 , T22 ↔ T17 , (6.11)

so that the actual number of independent integrals is reduced to 23. However, in order
to determine the solution of the DEQs by simultaneously integrating the whole system
of equations, one has to consider the full set of integrals given in eq. (6.10).

The Magnus exponential allow us to obtain a set of canonical MIs obeying a system
of equations of the form (6.5)
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29

Figure 6.3: Two-loop MIs T1,...,29 for topologies T1 and T2. Graphical conventions are
the same as in figure 6.2. Dots indicate squared propagators.

I1 = F1 , I2 = −p22 F2 ,

I3 = −sF3 , I4 = −p21F4 ,

I5 = −p22 F5 , I6 = 2m2 F5 + (m2 − p22)F6 ,

I7 = −sF7 , I8 = −p21F8 ,

I9 = 2m2 F8 + (m2 − p21)F9 , I10 = −
√
λF10 ,

I11 = p21 p
2
2 F11 , I12 = p21 sF12 ,

I13 = p42 F13 , I14 = p21 sF14 ,

I15 = s2 F15 , I16 = −
√
λF16 ,

I17 = c16, 17 F16 + c17, 17 F17 , I18 = −
√
λF18 ,

I19 = −
√
λF19 , I20 = c18, 20 F18 + c19, 20 F19 + c20, 20 F20 ,

I21 = −
√
λF21 , I22 = c21, 22 F21 + c22, 22 F22 ,
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I23 = s
√
λF23 , I24 = p22

√
λF24 ,

I25 = −
√
λF25 , I26 = −

√
λF26 ,

I27 = (p22 −m2)
√
λF27 , I28 = (p21 −m2)

√
λF28 ,

I29 = c1, 29 F1 + c2, 29 F2 + c4, 29 F4 + c11, 29 F11 + c27, 29 F27 + c28, 29 F28 + c29, 29 F29 ,
(6.12)

where λ is the Källén function related to the external kinematics,

λ ≡ λ(s, p21, p
2
2) = (s− p21 − p22)

2 − 4 p21 p
2
2. (6.13)

The explicit expressions for the coefficients ci, j for I20 ,22 ,29 are

c16, 17 =
3

2

(√
λ+ s− p21 − p22 + 2m2

)
,

c17, 17 = p21p
2
2 − (p21 + p22)m

2 +m4 +m2s ,

c21, 22 =
3

2

(√
λ+ s− p21 − p22 + 2m2

)
,

c22, 22 = p21p
2
2 − (p21 + p22)m

2 +m4 +m2s ,

c1, 29 =
m2s

(p21 −m2)(p22 −m2)
,

c2, 29 = − m2sp22
(p21 −m2)(p22 −m2)

,

c4, 29 = − m2sp21
(p21 −m2)(p22 −m2)

,

c27, 29 = p21
(
p22 −m2

)
+ p22

(√
λ+m2 + s− p22

)
+m2

(
s−

√
λ
)
,

c28, 29 = p21

(
p22 −

√
λ+m2 + s− p21

)
+m2(

√
λ+ s− p22) ,

c29, 29 = − s
(
p21(p

2
2 −m2) +m2(s+m2 − p22)

)
. (6.14)

The alphabet of the corresponding dlog-form contains the following 10 letters:

η1 = u , η2 = z ,

η3 = 1− z , η4 = z̄ ,

η5 = 1− z̄ , η6 = z − z̄ ,

η7 = 1 + u z z̄ , η8 = 1− u z(1− z̄),

η9 = 1− u z̄(1− z) , η10 = 1 + u (1− z)(1− z̄) . (6.15)

The coefficient matrices Mi are collected in the appendix B.1. All letters are real and
positive in the region

0 < z < 1 , 0 < z̄ < z , 0 < u <
1

z(1− z̄)
, (6.16)

which, for m2 > 0, corresponds to a patch of the Euclidean region, s , p21 , p
2
2 < 0, defined

by

√
−p21

√
−p22 > m2 ,

−
(
p21 −m2

) (
p22 −m2

)

m2
< s < p21 + p22 − 2

√
−p21

√
−p22 . (6.17)



6.3. Two-loop master integrals 127

In the region defined by eq. (6.16), the general solution of the DEQs is expressed di-
rectly in terms of GPLs, with argument depending on the kinematics variables u, z and
z̄. Imposing the regularity of our solutions at the unphysical thresholds, z, z̄ = 0 (cor-
responding to p21 = 0) and z, z̄ = 1 (corresponding to p22 = 0) entails relations between
the boundary constants. These relations allow us to derive all boundary constants from
five simpler integrals I1,3,6,7,15, which are obtained in the following way:

• I1 is a constant to be determined by direct integration and, due to the normaliza-
tion of the integration measure (5.113), it is simply set to

I1(ǫ, ~x) = 1. (6.18)

• I3 can be obtained by direct integration

I3(ǫ, ~x) =
Γ(1− ǫ)2

Γ(1− 2ǫ)
u−ǫ . (6.19)

• Besides being regular in the massless kinematic limit z → 1 (p22 → 0), I6 is reduced,
through IBPs, to a two-loop vacuum diagram,

I6(ǫ, z = 1) = −2ǫ2(1− ǫ)(1− 2ǫ)

m2
. (6.20)

Therefore, by using as an input the analytic expression of the two-loop vacuum
graph,

= −m2Γ(−ǫ)Γ(−1 + 2ǫ)

(1− ǫ)Γ(1 + ǫ)
, (6.21)

we can fix the boundary constants by matching the z → 1 limit of the expression
of I6 obtained from the solution of the DE against the ǫ-expansion of eq. (6.20),

I6(ǫ, z = 1) = −1− 2ζ2ǫ
2 + 2ζ3ǫ

3 − 9ζ4π
4ǫ4 +O(ǫ5). (6.22)

• I7 and I15 can be directly integrated

I7(ǫ, ~x) = − u−2ǫ
(
1− 2ζ2ǫ

2 − 10ζ3ǫ
3 − 11ζ4ǫ

4 +O(ǫ5)
)
, (6.23)

I15(ǫ, ~x) = u−2ǫ

(
1− ζ2ǫ

2 − 2ζ3ǫ
3 − 9

4
ζ4ǫ4 +O(ǫ5)

)
. (6.24)

The prescriptions for the analytic continuation to the other patches of the Euclidean
region (s, p21, p

2
2 < 0) and to the physical regions are given in section 6.4. The results

have been numerically checked, in both the Euclidean and the physical regions, with
the help of the computer codes GiNaC and SecDec.

6.3.2 Second integral family

The topologies T3 and T4 belong to the integral family
∫

d̃dk1d̃dk2
1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7

, ni ∈ Z , (6.25)



128
Chapter 6. Master integrals for QCD corrections to HWW and gauge couplings

ZWW -γ∗WW

defined by the set of denominators

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 − p2)
2, D4 = (k2 − p2)

2,

D5 = (k1 − p1 − p2)
2 −m2, D6 = (k2 − p1 − p2)

2 −m2, D7 = (k1 − k2)
2 . (6.26)

The integrals belonging to this family can be reduced to a set of 31 MIs which are
conveniently expressed in terms of the variables ~x = {v, z, z̄}, defined by

− s

m2
=
(1− v)2

v
,

p21
s

= zz̄,
p22
s

= (1− z)(1− z̄). (6.27)

The following set of MIs obeys a system of DEQs which is linear in ǫ :

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ2 T6 ,
F7 = ǫ2 T7 , F8 = ǫ2 T8 , F9 = ǫ2 T9 ,

F10 = ǫ2 T10 , F11 = ǫ2 T11 , F12 = ǫ2 T12 ,
F13 = ǫ2 T13 , F14 = ǫ2 T14 , F15 = ǫ2 T15 ,
F16 = ǫ2 T16 , F17 = ǫ3 T17 , F18 = ǫ3 T18 ,
F19 = ǫ2 T19 , F20 = ǫ3 T20 , F21 = −ǫ2(1− 2ǫ) T21 ,
F22 = ǫ3 T22 , F23 = ǫ3 T34 , F24 = ǫ2 T24 ,
F25 = ǫ2 T25 , F26 = ǫ2 T26 , F27 = ǫ4 T27 ,
F28 = ǫ3 T28 , F29 = ǫ3 T29 , F30 = ǫ2 T30 ,
F31 = ǫ4 T31 , (6.28)

where the Ti are depicted in figure 6.4. As for the first integral family, some of the
integrals Ti are related by p21 ↔ p22,

T4 ↔ T2 , T9 ↔ T5 , T10 ↔ T6 , T15 ↔ T12 , T22 ↔ T17 , T23 ↔ T18 , T24 ↔ T19 ,
(6.29)

so that the total number of independent integrals is 24. Nonetheless, as discussed al-
ready after eq. (6.11), we work with the complete set of integrals given in eq. (6.28).

With the help of the Magnus exponential, we obtain a set of canonical MIs

I1 = F1 , I2 = −p22 F2 ,

I3 = ρF3 , I4 = −p21F4 ,

I5 = (m2 − p22)F5 + 2m2 F6 , I6 = −p22 F6

I7 = ρF7 +
1

2
(ρ− s)F8 , I8 = −sF8 ,

I9 = −p21 F9 , I10 = 2m2 F9 + (m2 − p21)F10 ,

I11 = p42 F11 , I12 = −p22ρF12 ,

I13 = p21p
2
2 F13 I14 = ρ2 F14 ,

I15 = −p21ρF15 ,

I16 = c2, 16 F2 + c3, 16 F3 + c4, 16 F4 + c16, 16 F16 ,

I17 = −
√
λF17 , I18 = −

√
λF18 ,

I19 = c17, 19 F17 + c18, 19 F18 + c19, 19 F19 , I20 = −
√
λF20 ,
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29 T30

T31

Figure 6.4: Two-loop MIs T1,...,31 for the topologies T3 and T4. Graphical conventions
are the same as in figure 6.2. Dots indicate squared propagators.
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I21 = c5, 21 F5 + c6, 21 F6 + c9, 21 F9 + c10, 21 F10 + c20, 21 F20 + c21, 21 F21 ,

I22 = −
√
λF22 , I23 = −

√
λF23 ,

I24 = c22, 24 F22 + c23, 24 F23 + c24, 24 F24 ,

I25 = c11, 25 F11 + c12, 25 F12 + c13, 25 F13 + c25, 25 F25 ,

I26 = c12, 26 F12 + c14, 26 F14 + c15, 26 F15 + c26, 26 F26 ,

I27 = −
√
λF27 , I28 = −ρ

√
λF28 ,

I29 = (p22 −m2)
√
λF29 ,

I30 = c3, 30 F3 + c12, 30 F12 + c28, 30 F28 + c29, 30 F29 + c30, 30 F30 ,

I31 = −
√
λF31 , (6.30)

which obey a system of equations of the form (6.5). In the above definition, λ is given
as in eq. (6.13) and we have set ρ ≡ √−s

√
4m2 − s. The expression of the coefficients

ci, j for I16 ,19 ,21 ,24 ,25 ,26 ,30 are

c2, 16 = −
p22

(
−m2

(
p22 − s+

√
λ
)
− p21

(
p22 − p21 + s−m2 −

√
λ
))

(p21 − p22)(p
2
1 +m2)− s(p21 −m2)

,

c3, 16 =

√
λ
(
p21(2m

2 − s)−m2(2p22 − s)
)

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

− ρ,

c4, 16 = −
p21

(
m2
(
p22 − s+

√
λ
)
+ p21

(
p22 − p21 + s−m2 −

√
λ
))

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c16, 16 =

√
λ
(
m2(p21 − p22)

2 + s(p21 −m2)(p22 −m2)
)

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c17, 19 =
(
p22 − p21 + 2m2 − s−

√
λ
)
,

c18, 19 =
1

2

(
p22 − p21 + 2m2 − s−

√
λ
)
,

c19, 19 = m2(p22 +m2 − s) + p21(s−m2),

c5, 21 =
m2(p22 −m2)

s+ ρ
,

c6, 21 = − 2m2(p22 +m2)

s+ ρ
,

c9, 21 =
2m2(p21 +m2)

s+ ρ
,

c10, 21 = − m2(p21 −m2)

s+ ρ
,

c20, 21 = − 1

2

√
λ+

1

2s
(s+ p22 − p21)ρ,

c21, 21 = ρ,

c22, 24 = p21 − p22 − s+ 2m2 +
√
λ,

c23, 24 =
1

2
(p21 − p22 − s+ 2m2 +

√
λ),

c24, 24 = m2p21 − (p22 −m2)(m2 − s),

c11, 25 = −
p22

(
m2
(
p22 − s+

√
λ
)
+ p21

(
p22 − p21 + s−m2 −

√
λ
))

(p21 − p22)(p
2
1 +m2)− s(p21 −m2)

,
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c12, 25 =
p22
√
λ
(
s(p21 −m2)− 2m2(p21 − p22)

)

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

+ p22ρ,

c13, 25 =
p21p

2
2

(
p21

(
p22 − p21 + s−m2 −

√
λ
)
+m2

(
p22 − s+

√
λ
))

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c25, 25 = − p22
√
λ
(
m2(p21 − p22)

2 + s(p21 −m2)(p22 −m2)
)

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c12, 26 =
p22ρ

(
p21

(
p22 − p21 + s−m2 −

√
λ
)
+m2

(
p22 − s+

√
λ
))

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c14, 26 = ρ2 +
ρ
√
λ
(
p21
(
2m2 − s

)
+m2

(
s− 2p22

))

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c15, 26 = −
p21ρ

(
p21

(
p22 − p21 − s+

√
λ
)
+m2

(
p22 − s+

√
λ
))

(p21 − p22)(p
2
1 +m2)− (p21 −m2)s

,

c26, 26 =
8
√
λ
(
m2(p21 − p22)

2 + s(p21 −m2)(p22 −m2)
)

(
(p21 − p22)(p

2
1 +m2)− (p21 −m2)s

)
(s− 2m2 + ρ)4

×

×
(
s4 (s+ ρ) + 2m8 (8s+ ρ)−m2s3 (5s+ 4ρ)− 4m6s (11s+ 4ρ)

+ 2m4s2 (17s+ 10ρ)

)
,

c3, 30 = 2(p21 − p22)−
2p22(p

2
1 − p22)

p12 −m2
− s+ ρ ,

c12, 30 = 2p22

(
−2(p21 − p22) +

2p22(p
2
1 − p22)

p22 −m2
+ s− ρ

)
,

c28, 30 = s(p21 + p22 + 2m2 − s)− ρ
√
λ,

c29, 30 =
(
p22(s−m2 − p22) + p21(p

2
2 −m2)−m2s

)
+ (p22 −m2)

√
λ ,

c30, 30 = −m2(p21 − p22)
2 − (p21 −m2)(p22 −m2)s , (6.31)

The alphabet of the corresponding dlog-form contains the following 18 letters

η1 = v , η2 = 1− v ,

η3 = 1 + v , η4 = z ,

η5 = 1− z , η6 = z̄ ,

η7 = 1− z̄ , η8 = z − z̄ ,

η9 = z + v(1− z) , η10 = 1− z(1− v) ,

η11 = z̄ + v(1− z̄) , η12 = 1− z̄(1− v) ,

η13 = v + zz̄(1− v)2 , η14 = v + (1− z − z̄ + zz̄)(1− v)2 ,

η15 = v + z(1− v)2 , η16 = v + (1− z)(1− v)2 ,

η17 = v + z̄(1− v)2 , η18 = v + (1− z̄)(1− v)2 , (6.32)

and the coefficient matrices Mi are collected in the appendix B.1. In this case, all the
letters are real and positive in the region

0 < v < 1 , 0 < z < 1 , 0 < z̄ < z , (6.33)
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which, being m2 > 0, corresponds to a patch of the Euclidean region, s , p21 , p
2
2 < 0,

defined by the following constraint

s < −
(√

−p21 +
√
−p22

)2

< 0 . (6.34)

Since all letters are rational and have algebraic roots, the solution of the DEQs can be
expressed in terms of GPLs. However, for the purpose of fixing the boundary constants,
we find it convenient to first derive a straightforward representation of the solution in
terms Chen iterated integrals and then convert it to GPLs of argument 1 and kinematic-
dependent weights, by following the discussion of sec. 5.8. The boundary constants can
be determined by demanding the regularity of the basis (6.28) for vanishing external
momenta, s = p21 = p22 = 0. In particular, if we choose as a base-point for the integration

~x0 = (1, 1, 1), (6.35)

then the prefactors appearing in the definitions (6.30) of the canonical MIs I vanish,
with the only exceptions of I1,5,10,19,21,24. Therefore, the boundaries of the former MIs
are determined by demanding their vanishing at ~x → ~x0,

Ii(ǫ, ~x0) = 0, i 6= 1, 5, 10, 19, 21, 24. (6.36)

The integrals I1, 5, 10 correspond to I1, 6, 9 of the first integral family, whereas I19, 21, 24
are fixed as follows:

• The boundary constants for I19 and I24 can be determined by imposing regularity
at the pseudothresholds v → 1 (s = p21 = p22 = 0) and, respectively, z → 1, z̄ → 1
(both corresponding to p22 = 0),

I19, 24(ǫ, ~x0) =
1

6
π2ǫ2 − ζ3ǫ

3 +
1

20
π4ǫ4 +O(ǫ5). (6.37)

• The boundary constants for I21 can be fixed by observing that, from (6.30), we
can derive

F21(ǫ, ~x0) = lim
~x→~x0

v

m2(1− v2)
I21(ǫ, ~x0). (6.38)

Therefore, in order for F21(ǫ, ~x0) to be regular we must demand

I21(ǫ, ~x0) = 0 . (6.39)

The prescriptions for the analytic continuation to the other patches of the Euclidean
region and to the physical regions are given in section 6.4. All results have been nu-
merically checked, in both the Euclidean and the physical regions, with the help of the
computer codes GiNaC and SecDec.

6.4 Analytic continuation

In this section, we discuss in detail the variables used to parametrize the dependence of
the MIs on the kinematic invariants. In particular, we elaborate on the prescriptions to
analytically continue our results to arbitrary values of s, p21 an p22. Both integral families
feature two independent kinematic structures:
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1. the off-shell external legs are responsible for the presence in the DEQs of the
square root of the Källén function,

√
λ(s, p21, p

2
2);

2. the presence of massive internal lines can generate square roots in the DEQs, as
in the case of topologies T3 and T4, where one has also

√−s
√
4m2 − s.

In the following we separately discuss the variable changes that rationalize the two types
of square roots.

6.4.1 Off-shell external legs: the z, z̄ variables

To deal with the square root of the Källén function, we begin by choosing one of the
external legs as reference, s, and trading the other squared momenta for dimensionless
ratios

τ1,2 =
p21,2
s

. (6.40)

In the (s, τ1, τ2) variables, the square root of the Källén function is proportional to
√

λ(1, τ1, τ2) =
√

(1− τ1 − τ2)2 − 4τ1τ2 (6.41)

and is rationalized by the following change of variables [195]

τ1 = zz̄ , (6.42)

τ2 = (1− z)(1− z̄) , (6.43)

(see eqs. (6.9) and (6.27)), that leads to

λ (1, τ1(z, z̄), τ2(z, z̄)) = (z − z̄)2 . (6.44)

Without loss of generality, we choose the following root of eq. (6.43)

z =
1

2

(
1 + τ1 − τ2 +

√
λ(1, τ1, τ2)

)
, (6.45)

z̄ =
1

2

(
1 + τ1 − τ2 −

√
λ(1, τ1, τ2)

)
. (6.46)

Varying the pair (τ1, τ2) in the real plane, we identify the following possibilities for z, z̄





z̄ = z∗ λ(1, τ1, τ2) < 0 , τ1, τ2 > 0 (region I)
0 < z̄ < z < 1

√
τ1 +

√
τ2 < 1 , 0 < τ1 , τ2 < 1 (region II)

z̄ < z < 0
√
τ2 > 1 +

√
τ1 , τ1 > 0 (region III)

z > z̄ > 1
√
τ1 > 1 +

√
τ2 , τ2 > 0 (region IV)

z = z̄ = ±√
τ1 τ2 =

(
1±√

τ1
)2

, τ1, τ2 > 0 (region V)
z > 1 , z̄ < 0 τ1, τ2 < 0 (region VI)
0 < z < 1 , z̄ < 0 τ1 < 0 , τ2 > 0 (region VII)
z > 1 , 0 < z̄ < 1 τ1 > 0 , τ2 < 0 (region VIII)

(6.47)

where the first five regions were discussed also in [195]. A graphical representation of
these eight regions in the τ1τ2-plane is shown in figure 6.5.

The variables z, z̄ are complex conjugates in region I, where λ(1, τ1, τ2) < 0, and
real in all the other regions. In regions I-V one has τ1,2 > 0, which requires that either
s, p21, p

2
2 < 0 or s, p21, p

2
2 > 0. The former case defines the Euclidean region. The latter

case, for λ(1, τ1, τ2) > 0, describes 1 → 2 or 2 → 1 processes involving three timelike
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Figure 6.5: Regions of the (τ1, τ2)-plane classified in eq (6.47). Region V, which is
identified by the condition λ(1, τ1, τ2) = 0, corresponds to the blue curve.

particles. Region V is where λ(1, τ1, τ2) = 0, so that z = z̄. Since our expressions are
obtained in general for z 6= z̄, the limit z̄ → z has to be taken carefully. Regions VI-VIII
have at least one of the τi < 0, which requires either two external legs to be spacelike
and the remaining one to be timelike, or vice versa. The former configuration, in the
2 → 1 kinematics, describes the vertex entering the production of a timelike particle
via the “fusion” of two spacelike particles.

In regions other than II, the variables z, z̄ are not in the half of the unit square
where all the letters are real, therefore analytic continuation is required. A consistent
physical prescription is inherited in regions VI-VIII from the Feynman prescription on
the kinematic invariants, and it is naturally extended to the other regions, as we argue
below. For the moment we hold s < 0, and we will discuss later the case s > 0.
In region VI, s < 0 and p21, p

2
2 > 0, then

τi → −|τi|−iε , (6.48)

so that the vanishing imaginary parts outside the square root in eq (6.46) cancel against
each other, and only the one stemming from the square root is left:

z → z + iε , z̄ → z̄ − iε . (6.49)

In region VII, p21 > 0 and s, p22 < 0, then

τ1 → −|τ1|−iε , τ2 → |τ2| , (6.50)

so that

z → z + i
ε

2

(
1 + |τ1|+τ2√
λ(1,−|τ1|, τ2)

− 1

)
≃ z + iε ,

z̄ → z̄ − i
ε

2

(
1 + |τ1|+τ2√
λ(1,−|τ1|, τ2)

+ 1

)
≃ z̄ − iε , (6.51)

where the approximate equalities are allowed because the factor in the bracket is always
positive, and a redefinition of ε is understood.
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In region VIII, p22 > 0 and s, p21 < 0, then

τ1 → |τ1| , τ2 → −|τ2|−iε , (6.52)

so that

z → z + i
ε

2

(
1 + τ1 + |τ2|√
λ(1, τ1,−|τ2|)

+ 1

)
≃ z + iε ,

z̄ → z̄ − i
ε

2

(
1 + τ1 + |τ2|√
λ(1, τ1,−|τ2|)

− 1

)
≃ z̄ − iε , (6.53)

where again the approximate equalities are allowed because the factor in the bracket is
always positive, and a redefinition of ε is understood.
We have so far only discussed the case in which s < 0. It is easy to see that, if instead
s > 0, the prescription on z, z̄ is the opposite.

In regions I-V there is no physical prescription for the analytic continuation of z, z̄.
Indeed, if s, p21, p

2
2 > 0, then the vanishing imaginary parts of the Feynman prescription

cancel out in the ratios τ1 and τ2:

τi →
p2i (1 + iε)

s (1 + iε)
= τi . (6.54)

This cancellation affects also region I, where
√
λ(1, τ1, τ2) < 0 and z∗ = z̄. Indeed,

while this condition fixes the relative sign of their imaginary parts, the sign of Im z
depends on the choice of the branch of the square root in eq. (6.46), which is not fixed.
This last statement holds true also in the Euclidean region.

This ambiguity is resolved by the definite iε prescription in regions VI-VIII discussed
above. In order to have a smooth analytic continuation in the Euclidean region, in region
I we choose the branch of the square root that gives Im

√
λ(1, τ1, τ2) > 0, and in regions

III-IV we assign vanishing imaginary parts for z, z̄ according to the previous discussion.
The opposite prescription should be used if the three external legs are timelike.

Summarizing, according to the sign of s, we choose the following analytic continua-
tion prescriptions for z, z̄ in the whole real (p21, p

2
2) plane

z → z + iε , z̄ → z̄ − iε s < 0 , (6.55)

z → z − iε , z̄ → z̄ + iε s > 0 . (6.56)

6.4.2 Internal massive lines: the u, v variables

For the first integral family, i.e. topologies T1 and T3, the change of variables eq. (6.43)
is actually enough to rationalize the DEQs completely. In eq. (6.9) we simply rescale
s by the internal mass (m2 > 0), −s/m2 = u, to deal with a dimensionless variable.
If s < 0, u > 0. If s > 0, the Feynman prescription s → s + iε fixes the analytic
continuation for u

u → −u′ − iε , with u′ > 0 . (6.57)

In the case of the second integral family, which collects topologies T3 and T4, the
DEQs still contain the square roots related to the s-channel threshold at s = 4m2. They
are rationalized by the usual variable change (see eq. (6.27)),

− s

m2
=

(1− v)2

v
, (6.58)
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of which we choose the following root

v =

√
4m2 − s−√−s√
4m2 − s+

√−s
. (6.59)

For completeness, we discuss how v varies with s. Holding m2 > 0, and keeping in mind
the Feynman prescription for s > 0, one finds the following cases

• For s < 0, v is on the unit interval, 0 ≤ v ≤ 1;

• For 0 ≤ s ≤ 4m2, v is a pure phase, v = eiφ, with 0 < φ < π;

• For s > 4m2, v is on the negative unit interval, and one must replace

v → −v′ + iε , 0 ≤ v′ ≤ 1 . (6.60)

6.4.3 Analytic continuation of the master integrals

As discussed in section 6.3, for all the topologies we start in the patch of the Euclidean
region where the alphabet is real and positive (see eqs. (6.16) and (6.33)), and we solve
the DEQs there. As far as the variables z, z̄ are concerned, the conditions of positivity
of the alphabet are the same for all our topologies,

0 < z < 1 , 0 < z̄ < z , (6.61)

i.e. we start from region II (see eq. (6.47)). Regarding the condition on the variables
associated to s, i.e. u and v (respectively for topologies T1,2 and T3,4), we require

0 < u <
1

z(1− z̄)
, 0 < v < 1 , (6.62)

It is clear from eq. (6.47) that, if these conditions are satisfied, one does not have access
even to the full Euclidean region. Results in the remaining patches of the latter, as well
as in the physical regions, are obtained by analytic continuation using the prescriptions
described in sections 6.4.1 and 6.4.1.

We performed the analytic continuation numerically, i.e. we assigned to u, v, z, z̄ the
vanishing imaginary parts discussed above choosing sufficiently small numerical values.
For convenience, we summarize the analytic continuation prescription for the physically
interesting cases.

• X0 → WW : In this region a particle of mass s > 0 decays in two (possibly off-
shell) particles with invariant masses p21 > 0 and p22 > 0, so that

√
s ≥

√
p21 +

√
p22 . (6.63)

Regarding z, z̄, this corresponds to region II (see eq. (6.47)), therefore no analytic
continuation is needed. Furthermore, for topologies T1 and T2 one must replace

u → −u′ − iε

irrespectively of the value of s, according to eq. (6.57). Instead, for topologies T3

and T4, if 0 < s < 4m2 then v is on the unit circle in the complex plane, while if
s > 4m2, one has to replace

v → −v + iε ,

according to eq. (6.60).
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• W → WX0: This is again a 1 → 2 process involving timelike particles, the only
difference being that now

√
p21 ≥

√
s+

√
p22 > 0 , (6.64)

or
√
p22 ≥

√
s+

√
p21 > 0 . (6.65)

The former case corresponds to region IV, the latter to region III (see eq. (6.47)).
Therefore, in addition to the analytic continuation in u, v discussed already for
the X0-decay, one must further use the replacement (6.56)

z → z − iε , z̄ → z̄ + iε . (6.66)

• WW → X0: Here
p21, p

2
2 < 0 , s > 0 , (6.67)

corresponding to region VI, so that z, z̄ inherit the analytic continuation prescrip-
tion eq. (6.56) from s → s+ iε

z → z − iε , z̄ → z̄ + iε .

Concerning u, v, the discussion is the same as for X0-decay.

• X0W → W : Here
p21, s < 0 , p22 > 0 , (6.68)

or
p22, s < 0 , p21 > 0 , (6.69)

corresponding to region VII and VIII respectively, so that z, z̄ inherit from p2i →
p2i + iε the prescription (6.55)

z → z + iε , z̄ → z̄ − iε .

Since s < 0, no continuation is due on u, v.

6.5 Conclusions

In this chapter, we have computed the two-loop master integrals required for the leading
QCD corrections to the interaction vertex between a massive neutral boson X0, such as
H,Z or γ∗, and pair of W bosons, mediated by a SU(2)L quark doublet composed of one
massive and one massless flavor. We considered external legs with arbitrary invariant
masses. The MIs were computed by means of the differential equation method, by using
the Magnus exponential in order to define set of canonical master integrals. The master
integrals have been expressed as Taylor series in ǫ = (4 − d)/2, up to order four, with
coefficients written as combinations of GPLs.

In the context of the Standard Model, these results are relevant for the computation
of mixed EW-QCD virtual corrections to the Higgs decay to a W pair, which we plan
to address through the adaptive integrand decomposition algorithm Aida, as well as
the production channels obtained by crossing, and to the triple gauge boson vertices
ZWW and γ∗WW .
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Chapter 7

Master integrals for QCD

corrections to massive boson-pair

production

In this chapter we present the computation of a class two-loop master integrals

that appear in the virtual corrections to the production of a pair of massive neu-

tral bosons mediated by a heavy-quark loop. The master integrals are evaluated

through the differential equations method, by using the Magnus exponential in

order to identify a set of canonical integrals. The results, which retain full depen-

dence on the top-mass, are given as a Taylor series in ǫ = (4−d)/2, with coefficients

expressed in terms of Chen iterated integrals. In the context of LHC physics, the

considered master integrals are relevant for the study of NLO QCD corrections to

gg → HH and gg → ZZ. The content of this chapter is the result of an original

research done in collaboration with P. Mastrolia and U. Schubert.

7.1 Introduction

In this chapter, we consider another class of two-loop three-point integrals associated
to the kinematics Q → p1 + p2, with

Q2 = (p1 + p2)
2 ≡ s , p21 = p22 = m2

B, (7.1)

and to the presence of a closed massive loop. The corresponding integral topologies are
depicted in figure 7.1

In this case, two external momenta p1 and p2 share the same on-shell condition, so
that these integrals depend on one kinematic variables less w.r.t. the cases considered
in chapter 6. Nonetheless, as we will see in the following, the presence of a large num-
ber of massive internal propagators makes the computation of the associated MIs more
involved.

The considered class of three-point integrals has a phenomenological interest, as
they enter as subtopologies of the four-point Feynman diagrams for the NLO QCD
corrections to gg → ZZ and gg → HH (representative Feynman diagrams for the
latter process are shown in figure 7.2).

Both processes provide fundamental tests of the Standard Model. On the one hand,
the production of a pair of Higgs bosons [68, 69, 196–208] would probe the Higgs self-
coupling and, hence, the intimate mechanism of the electroweak symmetry breaking.

139
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Figure 7.1: Two-loop vertex topologies for massive boson-pair production. The thin
line represent a massless propagator and thick lines stand for massive ones. Dashed
external lines represent legs with on-shell squared momentum equal to m2

B whereas the
blue line indicates the external leg with off-shell momentum equal to s.

Figure 7.2: Representative two-loop Feynman diagrams for Higgs-pair production,
which includes the consider massive thee-point function as subdiagrams.

On the other hand, the resonant production of a ZZ-pair [209–214] can be used to
test anomalous gauge couplings, while their off-shell production [89, 215–230] plays an
important role in Higgs phenomenology, both in the discrimination of signal from back-
ground and in the study of anomalous Higgs coupling. In addition, a precise theoretical
prediction of ZZ-production can help in constraining the total decay width of the Higgs
boson [231, 232].

As far as regards QCD virtual corrections at two-loop level for both gg → HH and
gg → V V , the coexistence of off-shell external legs and massive internal lines, associated
to a top-quark circulating in the loops, pushes the available technical capability (both
in the solution of IBPs and in the analytic evaluation of the MIs) beyond its limit. The
available results rely either on some approximation, like an expansion in 1/m2

t , on the
use of Effective Field Theory, or on a fully numerical approach to the evaluation of
Feynman integrals. For the case ZZ production, the effect of mt on the total cross sec-
tion has been estimated at the per mille level [214], but asymptotic expansions suggest
the possibility of a larger impact [233, 234], which makes the investigation of the exact
mt dependence a challenging and interesting problem.

With the present computation, we take a first step towards the analytic evaluation of
two-loop integrals with exact mt dependence, by the determining the analytic expression
of the MIs associated to the topologies of figure 7.1.

7.2 System of differential equations

The integral topologies depicted in figure 7.1 belong to a single integral family,

∫
d̃dk1d̃dk2

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7

, ni ∈ Z , (7.2)
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whose 7 denominators are defined by

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 − p2)
2 −m2, D4 = (k2 − p2)

2 −m2,

D5 = (k1 − p1 − p2)
2 −m2, D6 = (k2 − p1 − p2)

2 −m2, D7 = (k1 − k2)
2, (7.3)

The two topologies correspond, respectively, to n3,6 ≤ 0. The MIs are functions of three
kinematic scales, s, the boson mass m2

B and the heavy-quark mass m2. These three
variables can be combined into the dimensionless ratios

x = − s

m2
, y = −m2

B

m2
, (7.4)

and the MIs can be evaluated by studying their DEQs in x and y. According to the
solving strategy discussed in section5.5, we first use IBPs identities in order to identify
an initial set of 27 MIs F that fulfils systems of DEQs which coefficients have a linear
dependence on ǫ

∂xF(ǫ, x, y) =(A0x(x, y) + ǫA1x(x, y))F(ǫ, x, y) ,

∂yF(ǫ, x, y) =(A0 y(x, y) + ǫA1 y(x, y))F(ǫ, x, y) . (7.5)

Subsequently, by means of the Magnus exponential matrix, we perform a change of basis
to a set of MIs I that obey the canonical systems of DEQs,

∂xI(ǫ, x, y) = ǫÂx(x, y)I(ǫ, x, y) , ∂yF(ǫ, x, y) = ǫÂy(x, y)I(ǫ, x, y) , (7.6)

which can be combined in a single total differential

I = ǫdAI , dA ≡ Âxdx+ Âydy . (7.7)

For the problem under consideration the total differential matrix dA reads

dA =

18∑

i=1

Mi dlog(ηi) , (7.8)

where Mi are constant matrices and the 18 letters ηi are

η1 = x , η2 = 4 + x ,

η3 =
√
x+

√
4 + x , η4 = y ,

η5 = 1 + y , η6 = 4 + y ,

η7 =
√
y +

√
4 + y , η8 = x− 4y ,

η9 = x− y(4 + y) , η10 = x2 − y − xy(3 + y) ,

η11 =
√
x+

√
x− 4y , η12 =

√
4 + x+

√
x− 4y ,

η13 =
2x− y(y + 3)− (y + 1)λy

2x− y(y + 3) + (y + 1)λy
, η14 =

√
x(y + 2)−

√
x+ 4λy√

x(y + 2) +
√
x+ 4λy

,

η15 =
−√

xy +
√

(y + 4)(x− 4y)
√
xy +

√
(y + 4)(x− 4y)

, η16 = −
√
x (λy − 1− y) +

√
x− 4y√

x (λy − 1− y)−√
x− 4y

,

η17 =

√
x (λy + 1 + y)−√

x− 4y√
x (λy + 1 + y) +

√
x− 4y

,
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η18 =

(√
x− 4y + y

) (
y
(√

x− 4y +
√
x+ 4 + 4

)
+ 2

(√
x+ 4 + 2

))
(√

x− 4y − y
) (

y
(
−√

x− 4y +
√
x+ 4 + 4

)
+ 2

(√
x+ 4 + 2

)) , (7.9)

where we have introduced the abbreviations

λx =
√
x
√
4 + x , λy =

√
y
√
4 + y . (7.10)

All letters are real positive in the region identified by

0 <x ≤ 1 ,

0 <y <
1

2x

(
(1 + x)

√
1 + 4x− 1− 3x

)
, (7.11)

The alphabet defined in eq. (7.2) is non-rational and we haven’t been able to determine
a change of variables capable of removing all square roots simultaneously. Therefore,
provided that any left-over square root would anyway prevent us from expressing the
complete solution in terms of GPLs, we decided, for the time being, to work in variables
given in eq. (7.4) and write the general solution, in the positivity region defined by
eq. (7.11), in terms of Chen iterated integrals.

Although the resulting representation of the MIs proved to be more than adequate
for numerical evaluation, the possibility of determining a different change of variables
yielding to a more efficient representation is, indeed, to be explored, in particular in view
of the analytic continuation to the physical region and of the use of these results in the
computation of the still unknown four-point integrals for virtual two-loop corrections
to massive boson pair production.

7.3 Two-loop master integrals

In this section, we discuss the details of the solution of the system of DEQs given in
eq. (7.7). The set of 27 MIs that fulfil an ǫ-linear system of DEQs is identified, through
IBPs reductions, as

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ2 T6 ,
F7 = ǫ2 T7 , F8 = ǫ2 T8 , F9 = ǫ9 T9 ,

F10 = ǫ2 T10 , F11 = ǫ2 T11 , F12 = ǫ2 T12 ,
F13 = ǫ3 T13 , F14 = ǫ2 T14 , F15 = ǫ2 T15 ,
F16 = ǫ3 T16 , F17 = ǫ2 T17 , F18 = ǫ2 T18 ,
F19 = ǫ3 T19 , F20 = ǫ3 T20 , F21 = ǫ4 T21 ,
F22 = ǫ3 T22 , F23 = ǫ3 T23 , F24 = ǫ4 T24 ,
F25 = ǫ3 T21 , F26 = ǫ3 T22 , F27 = ǫ3 T23 , (7.12)

where the Ti are depicted in figure 7.3.

With the help of the Manus exponential, we rotate this set MIs to a canonical basis,
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which is given by

I1 = F1 , I2 = m2λy F2

I3 = m2λx F3 , I4 = m2yF4

I5 = m2λy

2
(F4 + 2F5) , I6 = m2xF6

I7 = m2λx

2
(F6 + 2F7) , I8 = m4λ2

yF8

I9 = m2λxyF9 , I10 = m4λxλyF10

I11 = m4λ2
y F11 , I12 = m4λ2

x F12 ,

I13 = m2λxy F13 , I14 = m2λxy F14 ,

I15 =
3

4
m2 λy

y − x(2 + y)
((1 + x)(y F4 − xF6) + 2x(1− x+ 2y)F13)+

+m4 λy

y − x(2 + y)

(
(x2 − x+ 2xy)F14 − (x2 − y − xy(3 + y))F15

)
,

I16 = m2λxy F16 , I17 = m4λxy F17 ,

I18 =
3

2
m2λx F13 +m4λx (F17 + (1 + y)F18) ,

I19 = m4λxyλx F19 , I20 = m4λxyλx F20 ,

I21 = m2λxy F21 , I22 = m4λxyλy F22 ,

I23 =
m2

2
(−xF23 + 2(x− 2y)F21 + 2y F23) +

m4

2
xy F23 ,

I24 = m2λxy F24 , I25 = m4λxyλx F25 ,

I26 = −m4x ((x− 2y)(F20 + F25) + y F27)−m6x (x− y(4 + y)) F26 ,

I27 = m4λxyλy F27 , (7.13)

where we have introduced the additional abbreviation

λxy =
√
x
√
x− 4y . (7.14)

The canonical MIs satisfy a DEQ of the form given in eq. (7.7). The corresponding
coefficient matrices Mi are collected in appendix B.2. The general solution of such
system is expressed, in the positivity region defined in eq. (7.11), in terms of Chen
iterated integrals. In order to completely determine the MIs, we need to specify, for
each of them, a suitable boundary condition.

To this aim, we observe that all MIs of the ǫ-linear basis F defined in eq. (7.12)
are regular when both s and m2

B vanish, i.e. at end-point x = y = 0 of the region
(7.11). Moreover, all kinematic prefactors that appear in the definition of the canonical
basis given in eq. (7.13) vanish in this limit, with the only exception of I1 (which is
nonetheless normalized to 1).

Therefore, the canonical MIs I2···27 vanish when x → 0 and y → 0 and the boundary
constants are trivially given by

Ii(ǫ, ~x0) = δi 1, ~x0 = (0, 0). (7.15)

Through a private implementation of the numerical evaluation of Chen iterated inte-
grals, we have checked the numerical values of all MIs against SecDec.
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T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

T21 T22

(k2-p1-p2)
2-m2

T23 T24

T25 T26 T27

Figure 7.3: Two-loop MIs T1,...,27. Graphical conventions are the same as in figure 7.1.
Dots indicate squared propagators.

7.4 Conclusions

In this chapter, we have discussed the computation of a set of two-loop three-point
integrals which enters as sub-diagram contributions to the QCD virtual corrections to
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the production of a pair of massive neutral bosons, mediated by a heavy-quark loop.
The evaluation of the considered integrals is a first step towards the analytic study of the
finite m2

t effects to the NLO corrections to the production of Higgs- and Z-boson pairs
in the gluon-fusion channel, which are presently unknown. The MIs have been evaluated
through the differential equations method, by using the Magnus exponential in order to
identify a set of canonical integrals. The results, which retains full dependence on the
top-quark mass, have been expressed as a a Taylor series in ǫ, with coefficients given in
terms of Chen iterated integrals.
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Chapter 8

Master integrals for NNLO

corrections to µe scattering

In this chapter we evaluate the master integrals for the two-loop planar box-

diagrams contributing to NNLO virtual QED corrections to muon-electron scat-

tering, which will be part of the theoretical prediction required by the future ex-

periment MUonE. We adopt the method of differential equations and the Magnus

exponential series to determine a canonical set of integrals. The results are given as

a Taylor series in ǫ = (4− d)/2, with coefficients expressed in terms of generalized

polylogarithms. Besides µe scattering, the considered master integrals are relevant

also for crossing-related processes such as muon-pair production at e+e−-colliders,

as well as for the QCD corrections to top-pair production at hadron colliders. The

content of this chapter is the result of an original research done in collaboration

with P. Mastrolia, M. Passera and U. Schubert, and it is based on the pubblica-

tion [1].

8.1 Introduction

In this chapter, we consider the elastic scattering

µ+(p1) + e−(p2) → e−(p3) + µ+(p4) . (8.1)

which we have already discussed in section 4.4.1, in the framework of the adaptive
integrand decomposition algorithm.

At LO in the Standard Model, the process receives contribution from the exchange
of both a photon and a Z-boson. The corresponding differential cross section is given
by

dσ0
dt

= −4πα2

(
m2 +m2

e

)2 − su+ t2/2

t2λ (s,m2,m2
e)

(1 + δZ) , (8.2)

where α is the fine structure constant, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is
the Källen function and s, t and u are the Mandelstam invariants

s = (p1 + p2)
2, t = (p2 − p3)

2, u = (p1 − p3)
2, (8.3)

which satisfy s + t + u = 2m2 + 2m2
e. In eq. (8.2) δZ represents the contribution from

the weak-boson exchange

δZ = − GF t

4πα
√
2

[
(4s2θ − 1)2 − (s− u)t

2 ((m2 +m2
e)

2 − su+ t2/2)

]
, (8.4)
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where GF is the Fermi constant and sθ the sine of the weak-mixing angle. At δZ=0,
eq. (8.2) reduces to the pure QED contribution.

Despite being one the simplest and cleanest processes in particle physics, µe scat-
tering has so far received little attention, both on the experimental and theoretical side.
The available measurements are scarse and go back mainly to the 60s, when µe collisions
were studied in accelerator experiments at CERN and Brookhaven [235–238], as well
as in cosmic-ray experiments [239–242]. The scattering of muons off polarized electrons
was then proposed as a polarimeter for high-energy muon beams in the late 80s [243]
and measured by the SMC collaboration at CERN a few years later [244]. On the theory
side, the few existing studies are mainly focused on NLO QED corrections [245–251]
and tests of the Standard Model [252–254].

Recently, the proposal of the new experiment MUonE, to be realized at CERN,
renewed the interest in µe scattering. MUonE aims at measuring the differential cross
section of the elastic scattering of high-energy (∼ 150GeV) muons on fixed-target elec-
trons as a function of the space-like (negative) squared momentum transfer [97]. This
measurement will provide the running of the effective electromagnetic coupling in the
space-like region and, as a result, a new and independent determination of the leading
hadronic contribution to the muon g-2 [97, 255]. In order for this new determination to
be competitive with the present dispersive one, which is obtained via time-like data, the
µe differential cross section must be measured with statistical and systematic uncertain-
ties of the order of 10ppm. This high experimental precision demands an analogous ac-
curacy in the theoretical prediction. In this respect, while Z-boson effects are estimated
to be negligible, the NNLO QED corrections will have crucial role in the interpretation
of the high-precision data of future experiments like MUonE. Although some of the
two-loop corrections which were computed for Bhabha scattering in QED [256, 257],
for the heavy-to-light quark decay [258–262] and the tt̄ production [98–101] in QCD
can be applied to elastic µe scattering as well, the full NNLO QED corrections are still
unknown.

The genuine two-loop 2 → 2 integral topologies Ti contributing to µe scattering
are represented by the diagrams depicted in figure 8.1. In this chapter we take a first
step towards the calculation of the full NNLO QED corrections to µe scattering by
evaluating the MIs occurring in the decomposition of the planar box-diagrams, namely
all the two-loop four-point topologies for µe scattering except for the crossed double
box diagram T6. Given the small value of the electron mass me when compared to the
muon one m, we work in the approximation me = 0.

It is important to observe that the MIs of the QED corrections to µe → µe scattering
are related by crossing to the MIs of the QCD corrections to the tt̄-pair production at
hadron colliders. The analytic evaluation of the MIs for the leading-color corrections to
pp → tt̄, due to planar diagrams only, was already considered in refs. [98–101]. They
correspond to the MIs appearing in the evaluation of the Feynman graphs associated
to the topologies Ti with i ∈ {1, 2, 3, 7, 8, 9, 10} in figure 8.1, which we recompute
independently. The MIs for the planar topology T4 and T5, instead, would correspond to
the MIs of subleading-color contributions to tt̄-pair production, and were not considered
previously.

In the following section we describe the computation of the MIs through the DEQs
method, by deserving special attention to the fixing of the boundary constants which, for
some MIs, constituted the most challenging part of the computation. In some cases con-
sidered in refs. [98–101], the direct integration of the MIs in special kinematic configura-
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Figure 8.1: Two-loop four-point topologies for µe scattering

tions was addressed by using techniques based on Mellin-Barnes representations [70, 71].
Alternatively, here we exploit either the regularity conditions at pseudo-thresholds or
the expression of the integrals at well-behaved kinematic points. The latter might be
obtained by solving simpler auxiliary systems of DEQs, hence limiting the use of direct
integration only to a simple set of input integrals. Our preliminary studies make us
believe that the adopted strategy can be applied to the non-planar graphs as well. In
particular, anticipating the computation of the non-planar topology T6, we show its
application to the determination of the MIs for the non-planar vertex graph [258–262].

8.2 System of differential equations

In this section, we summarize the properties of the systems of DEQs satisfied by the
MIs that appear in the integral topologies Ti, i ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10} of figure (8.1)
and we describe the adopted solving strategy.

In order to compute the MIs, we first derive their DEQs in the dimensionless vari-
ables −s/m2 and −t/m2. Upon the change of variables

− s

m2
= x, − t

m2
=

(1− y)2

y
, (8.5)

the coefficients of the DEQs become rational functions of x and y. By means of IBPs
reduction, we identify an initial set of MIs F that fulfil systems of DEQs of the type

∂F

∂x
= (A0x(x, y) + A1x(x, y))ǫF ,

∂F

∂y
= (A0 y(x, y) + A1 y(x, y))F . (8.6)
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With the help of the Magnus exponential matrix, we transform such basis of integrals
into a new set of MIs I which obey canonical systems of DEQs,

∂I

∂x
= ǫÂx(x, y)I ,

∂I

∂y
= ǫÂy(x, y)I . (8.7)

After combining both systems of DEQs into a single total differential, we arrive at the
following canonical form

dI = ǫdAI , dA ≡ Âxdx+ Âydy , (8.8)

where the total differential matrix for the considered MIs reads as

dA =
9∑

i=1

Mi dlog(ηi) , (8.9)

with Mi being constant matrices. The alphabet of the problem consists of the following
9 letters:

η1 = x , η2 = 1 + x ,

η3 = 1− x , η4 = y ,

η5 = 1 + y , η6 = 1− y, ,

η7 = x+ y , η8 = 1 + x y,

η9 = 1− y (1− x− y) .

(8.10)

Since the alphabet is rational and has only algebraic roots, the general solution of
eq. (8.8) can be directly expressed in terms of GPLs. The expression of all MIs is
derived in the kinematic region where all letters are real and positive,

x > 0 , 0 < y < 1 , (8.11)

which corresponds to the Euclidean region s < 0, t < 0. The analytic continuation of
the MIs to the physical region can be obtained through by-now standard techniques.

Constant GPLs

The boundary constants of most of the considered MIs have been determined by tak-
ing special kinematics limits on the general solution of the DEQs written in terms of
GPLs. Through this procedure, the boundary constants are expressed as combinations
of constant GPLs of argument 1, with weights drawn from six different sets:

• {−1, 0, 1, 3,−(−1)
1
3 , (−1)

2
3 },

• {−1
2 ,−2

7 , 0,
1
7 ,

1
2 ,

4
7 , 1,−1

2(−1)
1
3 , 12(−1)

2
3 } ,

• {−1,−1
2 , 0,

1
2 , 1, 2, 3, 4,

1
2(−1)

1
3 ,−1

2(−1)
2
3 } ,

• {−1,−1
2 , 0,

1
4 ,

1
2 , 1,

7
4 ,

1
2(−1)

1
3 ,−1

2(−1)
2
3 } ,

• {−2,−1
2 , 0,

1
2 , 1, 4, 7,−1

2(−1)
1
3 , 12(−1)

2
3 } ,

• {−2,−1,−1
2 , 0,

1
4 , 1,

7
4 , 2,−2(−1)

1
3 , 2(−1)

2
3 } .
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Each set arises from a different kinematic limit imposed on the alphabet given in eq.
(8.10). We used GiNaC to numerically verify that, at each order in ǫk, the corresponding
combination of constant GPLs is proportional to Riemann ζk. Examples of the found
identities are

ζ2 = − 1

2
G(−1; 1)2 +G(0,−2; 1) +G(0,−1

2
; 1) , (8.12)

−59ζ4 = π2
(
G(−1; 1)2 − 2G(0,−(−1)

1
3 ; 1)− 2G(0, (−1)

2
3 ; 1)

)
− 21 ζ3G(−1; 1)

−G(−1; 1)4 − 18G(0, 0, 0,−(−1)
1
3 ; 1)− 18G(0, 0, 0, (−1)

2
3 ; 1)

+12G(0, 0,−(−1)
1
3 ,−1; 1) + 12G(0, 0, (−1)

2
3 ,−1; 1)

+12G(0,−(−1)
1
3 ,−1,−1; 1) + 12G(0, (−1)

2
3 ,−1,−1; 1) + 24G(0, 0, 0, 2; 1) .

(8.13)

For related studies we refer the reader to [263–265].

8.3 One-loop master integrals

e

µ

e

µ

Figure 8.2: One-loop four-point topology for µe scattering

Before entering the details of the computation of the two-loop MIs, we briefly discuss
the computation of the MIs for the relevant one-loop four-point topology,

∫
d̃dk1

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4

, ni ≥ 0 , (8.14)

where the loop denominators are defined to be

D1 = k21 −m2 , D2 = (k1 + p1)
2 ,

D3 = (k1 + p1 + p2)
2 , D4 = (k1 + p4)

2 . (8.15)

The corresponding Feynman diagram is depicted in figure 8.2. From the IBPs reduction,
we determine a set of 5 MIs which satisfy ǫ-linear DEQs,

F1 = ǫ T1 , F2 = ǫ T2 , F3 = ǫ T3 , F4 = ǫ2 T4 , F5 = ǫ2 T5 , (8.16)

where the Ti are depicted in figure 8.3. With the help the Magnus algorithm, we identify
the corresponding canonical basis, which is given by

I1 = F1 , I2 = −sF2 ,

I3 = −tF3 , I4 = λt F4 ,

I5 = (s−m2)tF5 .

(8.17)

with λt =
√−t

√
4m2 − t.
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Figure 8.3: One-loop MIs T1,...,5.

This set of MIs satisfies canonical DEQs of the form given in eq. (8.8), whose coef-
ficient matrices read (in this case M3 and M9 vanish),

M1 =




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, M2 =




0 0 0 0 0
−1 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
2 4 0 0 −2



, M4 =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
1 0 −1 0 0
1 2 0 0 0



,

M5 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0



, M6 =




0 0 0 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 2 0 −2



, M7 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 −1 1



,

M8 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 −2 −1 1 1



. (8.18)

The integration of the DEQs in terms of GPLs as well as the fixing of boundary constants
is straightforward. I1,3 are input integrals, obtained by direct integration,

I1(ǫ) =1 , I3(ǫ, y) =

(
(1− y)2

y

)−ǫ (
1− ζ2ǫ

2 − 2ζ3ǫ
3 +O

(
ǫ4
))

, (8.19)

whereas the boundary constants for I2, I4 and I5 can be fixed by demanding regularity,
respectively, at pseudothresholds s → 0, t → 4m2, and s = −t → m2/2. The final
expressions of these MIs are,

Ii(ǫ, x, y) =
2∑

k=0

I
(k)
i (x, y)ǫk +O(ǫ3) , (8.20)

with

I
(0)
2 (x) =0 ,

I
(1)
2 (x) =−G(−1;x) ,

I
(2)
2 (x) =2G(−1,−1;x)−G(0,−1;x) , (8.21)

I
(0)
4 (y) =0 ,

I
(1)
4 (y) =0 ,

I
(2)
4 (y) =− 4ζ2 −G(0, 0; y) + 2G(0, 1; y) , (8.22)

I
(0)
5 (x, y) = 2 ,

I
(1)
5 (x, y) =− 2G(−1;x) +G(0; y)− 2G(1; y) ,
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I
(2)
5 (x, y) =− 5ζ2 + 2G(−1;x) (2G(1; y)−G(0; y)) . (8.23)

These MIs and their related crossings, which can be obtained from the above analytic
expressions through a suitable permutations of the Mandelstam invariants s, t, and
u can be used in the decomposition of the one-loop amplitude derived in eq. (4.83)
with the integrand reduction method, in order to obtain the analytic expression of the
(unrenormalized) one-loop virtual QED correction to µe scattering. For completeness,
we observe that the knowledge of the full analytic expression of eq. (4.83) requires the
evaluation of additional two- and three-point integrals with two massive internal propa-
gators, which are not included in the integral family defined by eq. (8.14). Although we
do not evaluate the missing integrals explicitly, their expression can be easily found in
the literature, or it can be anyway obtained with the same technique discussed above.

8.4 Two-loop master integrals

In this section, we discuss the details of the evaluation of the planar the two-loop MIs
contributing to the NNLO corrections to µe scattering. The 9 topologies corresponding
to the planar diagrams of figure 8.1 can be mapped into two distinct integral families,
which group, respectively, T1, T2, T3, T7, T8 and T4, T5, T9, T10. We describe the
computation of the MIs for each integral family separately.

8.4.1 The first integral family

The first two-loop integral family, which includes the topologies T1, T2, T3, T7 and T8

of figure 8.1, is defined as
∫

d̃dk1d̃dk2
1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, ni ∈ Z , (8.24)

where the 9 denominators are chosen to be

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 + p1)
2, D4 = (k2 + p1)

2,

D5 = (k1 + p1 + p2)
2, D6 = (k2 + p1 + p2)

2, D7 = (k1 − k2)
2,

D8 = (k1 + p4)
2, D9 = (k2 + p4)

2 . (8.25)

Each of the topologies Ti corresponds to a particular choice of the ISPs, i.e. of the
set of negative exponents nk. The IBPs reduction returns 34 MIs and it is possible to
determine a basis which fulfils an ǫ-linear system of DEQs,

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ2 T6 ,
F7 = ǫ2 T7 , F8 = ǫ2 T8 , F9 = ǫ2 T9 ,

F10 = ǫ3 T10 , F11 = ǫ3 T11 , F12 = ǫ3 T12 ,
F13 = ǫ3 T13 , F14 = ǫ2 T14 , F15 = ǫ2 T15 ,
F16 = ǫ3 T16 , F17 = ǫ4 T17 , F18 = ǫ3 T18 ,
F19 = ǫ4 T19 , F20 = ǫ2(1 + 2ǫ) T20 , F21 = ǫ4 T21 ,
F22 = ǫ3 T22 , F23 = ǫ3 T23 , F24 = ǫ2 T24 ,
F25 = ǫ3 T25 , F26 = ǫ3(1− 2ǫ) T26 , F27 = ǫ3 T27 ,
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Figure 8.4: Two-loop MIs T1,...,34 for the first integral family.
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F28 = ǫ4 T28 , F29 = ǫ3(1− 2ǫ) T29 , F30 = ǫ4 T30 ,
F31 = ǫ4 T31 , F32 = ǫ4 T32 , F33 = ǫ4 T33 ,
F34 = ǫ4 T34 , (8.26)

where the Ti are depicted in figure 8.4.
Through the Magnus exponential, we rotate this set of integrals to the canonical

basis

I1 = F1 , I2 = −sF2 ,

I3 = −tF3 , I4 = m2 F4 ,

I5 = −sF5 , I6 = 2m2 F5 + (m2 − s)F6 ,

I7 = −tF7 , I8 = s2 F8 ,

I9 = t2F9 , I10 = −tF10 ,

I11 = (m2 − s)F11 , I12 = λt F12 ,

I13 = λt F13 , I14 = λtm
2 F14 ,

I15 = (t− λt)

(
3

2
F13 +m2F14

)
−m2 tF15 , I16 = −t λt F16 ,

I17 = (m2 − s)F17 , I18 = m2(m2 − s)F18 ,

I19 = λt F19 , I20 =
λt − t

2
(F12 − 4F19)+

−m2tF20 ,

I21 = (m2 − s− t)F21 , I22 = −m2 tF22 ,

I23 = s tF23 , I24 = −m2 tF23+

+ (s−m2)m2 tF24 ,

I25 = −(m2 − s) tF25 , I26 = λt F26 ,

I27 = −(m2 − s) tF27 , I28 = (m2 − s)λt F28 ,

I29 = −2tF21 − (m2 − s)(2(λt − t)F28 − F29) , I30 = −(m2 − s)2tF30 ,

I31 = (m2 − s)2 F31 , I32 = (m2 − s) t2 F32 ,

I33 = −λt tF33 , I34 = −m2 t2 F32 + t2 F34 .
(8.27)

This set of MIs I satisfies a system of DEQs of the form given in eq.(8.8). The corre-
sponding 34×34 coefficient matrices are collected in appendix B.3. The general solution
of such the system of DEQs is written in terms of GPLs and the boundary constants
are fixed either by using as an input the values of the MIs at some special kinematic
point or by demanding the absence of unphysical thresholds that appear in the alphabet
defined in eq. (8.10).
More specifically, the boundary constants are determined as follows:

• The boundary values of I1,3,4,7,9 are obtained by direct integration,

I1(ǫ) = 1, (8.28)

I3(ǫ) =

(
(1− y)2

y

)−ǫ(
1− ζ2ǫ

2 − 2ζ3ǫ
3 − 9

4
ζ4ǫ

4 +O(ǫ5)

)
, (8.29)

I4(ǫ) = −1

4
− ζ2ǫ

2 − 2ζ3ǫ
3 − 16ζ4ǫ

4 +O
(
ǫ5
)
, (8.30)
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I7(ǫ, y) =

(
(1− y)2

y

)−2ǫ (
−1 + 2ζ2ǫ

2 + 10ζ3ǫ
3 + 11ζ4ǫ

4 +O
(
ǫ5
))

, (8.31)

I9(ǫ) =

(
(1− y)2

y

)−2ǫ (
1− 2 ζ2 ǫ

2 − 4 ζ3 ǫ
3 − 2 ζ4 ǫ

4 +O(ǫ5)
)
, (8.32)

I10(ǫ) =

(
(1− y)2

y

)−2ǫ(
1

4
− 2 ζ3 ǫ

3 − 3 ζ4 ǫ
4 +O(ǫ5)

)
. (8.33)

• The boundary constants of I2,8,11,23 are fixed by demanding finiteness in the limit
s → 0.

• In the regular limit s → 0, I5 and I6 become, respectively,

I5(ǫ, 0) = 0 ,

I6(ǫ, 0) = ǫ2m2 (2F5(ǫ, 0) + F6(ǫ, 0)) . (8.34)

F5(ǫ, 0) and F6(ǫ, 0) correspond to two-loop vacuum diagrams which can be re-
duced via IBPs to a single integral that can be analytically computed,

F5(ǫ, 0) =
2ǫ(2ǫ− 1)

m4
,

F6(ǫ, 0) = −2(ǫ+ 1)(2ǫ− 1)

m4
. (8.35)

In this way, we obtain the boundary values

I5(ǫ, 0) = 0 , I6(ǫ, 0) = −1− 2ζ2ǫ
2 + 2ζ3ǫ

3 − 9ζ4ǫ
4 +O

(
ǫ5
)
. (8.36)

• The integration constants of I12...16,19,20,26,27,32,33 are fixed by demanding finiteness
in the t → 4m2 limit and by demanding that the resulting boundary constants
are real.

• The integrals I17 and I18 are regular in the s → 0 limit. By imposing the regularity
on their DEQs we can only fix the constant of one of them, say I18. The boundary
constants of I17 must be then computed in an independent way. We observe that
the value of I17(ǫ, 0) can be obtained in the limit p21 → m2 of a similar vertex
integral with off-shell momentum p21 and s ≡ (p1 + p2)

2 = p22 = 0,

I17(ǫ, 0) = ǫ4m2 lim
p21→m2

. (8.37)

As we discuss at the end of this section, the limit appearing in the r.h.s of eq. (8.37)
is smooth and gives,

I17(ǫ, 0) = −27

4
ζ4ǫ

4 +O
(
ǫ5
)
. (8.38)
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• The regularity of the four-point integrals I21,22,25,28 ... ,31 in either s → 0 or t → 4m2

provides two boundary conditions, which can be complemented with additional
relations obtained by imposing the regularity of the integrals at s = −t = m2/2.

• The boundary constants of integral I24 are determined by demanding regularity
in the limit s → −m2 and t → 4m2.

• The boundary constants of I34 are found by demanding finiteness in the limit
u → ∞.

All results have been numerically checked with the help of the computer codes GiNaC

and SecDec.

Auxiliary vertex integral for eq. (8.37)

We conclude this section by showing how the boundary value of I17 at s = 0 can be
extracted from the solution of the system of DEQs for the auxiliary vertex integrals

∫
d̃dk1d̃dk2

Dn6
6 Dn7

7

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

, ni ≥ 0 , (8.39)

identified by the set of denominators

D1 = k21 −m2, D2 = k22 −m2, D3 = (k1 + p1)
2, D4 = (k2 + p1 + p2)

2,

D5 = (k1 − k2)
2, D6 = (k2 + p1)

2, D7 = (k1 + p1 + p2)
2, (8.40)

and by external momenta p1, p2 and p3 satisfying

p22 = 0 , p23 = (p1 + p2)
2 = 0 . (8.41)

All integrals belonging to this family can be reduced to a set of 8 MIs, whose dependence
on p21 is parametrized in terms of the dimensionless variable

x = − p21
m2

. (8.42)

The basis of integrals

I1 =ǫ2 , I2 = −ǫ2p21 , I3 = −ǫ2p21 ,

I4 = ǫ2 2m2 + ǫ2(m2 − p21) ,

I5 = ǫ(1− ǫ)m2 , I6 = −ǫ3p21 ,

I7 = −ǫ4 p21 , I8 = ǫ3 p21(p
2
1 −m2) (8.43)
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fulfils a canonical system of DEQs,

dI = ǫ dA I , (8.44)

where

dA = M1 dlog x+ M2 dlog(1 + x) , (8.45)

with

M1 =




0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 −1

4 −1
2 0 0 1

4
1
2

3
4

0 −1
2 −1 0 0 1

2 −1 5
2




, M2 =




0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0
0 0 −2 −1 0 0 0 0
0 0 −4 − 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1

2 − 3 0 0
0 0 0 0 0 0 0 0
1 2 0 0 −1

2 − 3 0 −4




. (8.46)

In the Euclidean region x > 0, the general solution of this system can be expressed in
terms of harmonic polylogarithms (HPLs) [83] and the boundary constants of all MIs,
with the only exception of I1 = 1 and

I5(ǫ) = 1 + 2ζ2ǫ
2 − 2ζ3ǫ

3 + 9ζ4ǫ
4 +O

(
ǫ5
)
, (8.47)

can be fixed by demanding their regularity at x → 0. In particular, for the I7(ǫ, x) we
obtain

I7(ǫ, x) = (−2ζ2H(0,−1;x)−H(0,−1,−1,−1;x) +H(0,−1, 0,−1;x)) ǫ4 +O(ǫ5).
(8.48)

This expression, when it is analytically continued to the region x < 0, has a smooth
limit for x → −1 ( p21 = m2 ),

I7(ǫ,−1) =
27

4
ζ4ǫ

4 +O(ǫ5) , (8.49)

which has been used in eq. (8.38) (the overall minus sign is due to the different kinematic
factors relating the canonical MIs Ii to the corresponding Fi, as defined by eq. (8.27)
and eq. (8.43)).

8.4.2 The second integral family

The second two-loop integral family, which includes the topologies T4, T5, T9 and T10

of figure 8.1, is defined as
∫

d̃dk1d̃dk2
1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, ni ∈ Z , (8.50)

where the 9 denominators are

D1 = k21 −m2, D2 = k22, D3 = (k2 + p2)
2, D4 = (k1 + p2)

2,

D5 = (k2 + p2 − p3)
2, D6 = (k1 + p2 − p3)

2 −m2, D7 = (k1 − p1)
2,

D8 = (k2 − p1)
2 −m2, D9 = (k1 − k2)

2 −m2 . (8.51)

As in the previous case, different topologies Ti corresponds to different choices of the
set of negative exponents nk. From IBPs reduction, we select a set of 42 MIs which
satisfy an ǫ-linear system of DEQs:

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
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F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ2 T6 ,
F7 = ǫ2 T7 , F8 = ǫ2 T8 , F9 = ǫ2 T9 ,

F10 = ǫ2 T10 , F11 = ǫ2 T11 , F12 = ǫ3 T12 ,
F13 = ǫ2 T13 , F14 = ǫ2 T14 , F15 = ǫ3 T15 ,
F16 = ǫ2 T16 , F17 = ǫ2 T17 , F18 = ǫ3 T18 ,
F19 = ǫ3 T19 , F20 = ǫ2 T20 , F21 = ǫ3 T21 ,
F22 = ǫ2 T22 , F23 = ǫ3 T23 , F24 = ǫ2 T24 ,
F25 = ǫ3 T25 , F26 = (1− 2ǫ)ǫ3 T26 , F27 = ǫ3 T27 ,
F28 = ǫ2 T28 , F29 = ǫ3 T29 , F30 = ǫ2 T30 ,
F31 = (1− 2ǫ)ǫ3 T31 , F32 = ǫ3 T32 , F33 = ǫ4 T33 ,
F34 = ǫ3 T34 , F35 = ǫ3 T35 , F36 = ǫ4 T36 ,
F37 = ǫ4 T37 , F38 = ǫ3 T38 , F39 = ǫ4 T39 ,
F40 = ǫ4 T40 , F41 = ǫ4 T41 , F42 = ǫ4 (T26 + T42) ,

(8.52)

where the Ti are depicted in figure 8.5. Through the Magnus exponential, we identify
the corresponding canonical basis:

I1 = F1 , I2 = −tF2 ,

I3 = λtF3 , I4 = −tF4 ,

I5 =
1

2
(λt − t)F4 − λt F5 , I6 = −sF6 ,

I7 = 2m2 F6 + (m2 − s)F7 , I8 = m2 F8 ,

I9 = m2F9 , I10 = −sF10 ,

I11 = −t λt F11 , I12 = −tF12 ,

I13 = −tm2 F13 , I14 = −m2(λt − t)

(
3

2
F12 + F13

)
+

−m2 λt F14 ,

I15 = λt F15 , I16 = m2 λt F16 ,

I17 = m2(t− λt)

(
3

2
F15 + F16

)

−m2 tF17 , I18 = λt F18 ,

I19 = (m2 − s)F19 , I20 = m2 (m2 − s)F20 ,

I21 = (m2 − s)F21 , I22 = −3

2
sF9 + (s2 −m4)F22 ,

I23 = λt F23 , I24 =
1

4

(
4m2 − t+ λt

)
(F4 + 2F5)+

+m2(4m2 − t)F24 ,

I25 = λt F25 , I26 = −tF26 ,

I27 = s tF27 , I28 = −m4 tF27 −m2(m2 − s) tF28 ,

I29 = −s λt F29 , I30 = m4λt F29 +m2 (m2 − s)λt F30 ,

I31 = −(m2 − s)F31+

− (m2 − s) (4m2 − t+ λt)F32 , I32 = (m2 − s)λtF32 ,
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I33 = (m2 − s− t)F33 , I34 = (m2 − s)λt F34 ,

I35 = 2
m4(m2 − s)

2m2 − t− λt
F34 +m2 (m2 − s)F35 , I36 = λt F36 ,

I37 = −t (4m2 − t)F37 , I38 = −(m2 − s) tF38 ,

I39 = −(m2 − s) tF39 , I40 = −(m2 − s) t λt F40 ,

I41 = tλt (F40 − F41) ,

I42 = (m2 − t+ λt)×(
2

3
F3 +

1

4
F4 +

1

2
F5 −

1

2
tF11 +

5

2
F12 +

5

3
m2F13 +

5

3
m2F14

+2F36 −
1

2
(m2 + s)F40 + tF41

)
+

+m2

(
1

3
F3 −

1

2
tF11 +

1

2
F12 +

1

3
m2F13 +

1

3
m2F14 +

1

2
F18 −

1

2
F40

)
+

− t (m2 − s)F11 − 2
m4

2m2 − t− λt
F15 + tF26 +

m2(m2 − s)(t+ λt)

2m2 − t− λt

(
2

3
F29−F34

)
+

− 2

3

m2 s (t− λt)

2m2 − t− λt
F29 + 2tF33 +

4

3
tm4m

2 − s

λt + t
F30 − tF42 , (8.53)

which satisfies a system of DEQs of the form given in eq. (8.8). The corresponding
42× 42 matrices are collected in appendix B.3. We observe that I1,2,6,7,8,10,15,16,17,27,28
correspond, respectively, to I1,3,5,6,4,2,13,14,15,23,24 of integral family (8.24) previously dis-
cussed. The boundary constants of the remaining integrals can be fixed in the following
way:

• The integration constants of I3,4,5,11,...,14,18,23,24,26,29...,35 are determined by de-
manding regularity in the limit t → 0.

• The boundary values of I9 can be obtained by direct integration and is given by

I9(ǫ) =− ζ2
2
ǫ2 +

1

4
(12ζ2 log(2)− 7ζ3) ǫ

3

+

(
−12Li4

(
1

2

)
+

31

40
ζ4 −

log4(2)

2
− 6ζ2 log

2(2)

)
ǫ4 +O

(
ǫ5
)
. (8.54)

• The boundary constants of I19,21 can be fixed by demanding regularity when
s → 0.

• The boundary constants of I20,22,25 are determined by demanding regularity, re-
spectively, when s → −1

2

(
2m2 − t−λt

)
, s → −m2, and t → 4m2.

• Finally, the boundary constants of I36...42 can be determined by demanding regu-
larity in the simultaneous limits t → 9

2m
2 and s → −2m2.

All results have been numerically checked with the help of the computer codes GiNaC

and SecDec.
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Figure 8.5: Two-loop MIs T1,...,42 for the second integral family.

8.4.3 The non-planar vertex integral

The complete computation of the NNLO virtual QED corrections to µe scattering re-
quires the evaluation of one last missing four-point topology, which corresponds to the
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non-planar diagram T6 of figure 8.1. In view of future studies dedicated to this last class
of integrals, we hereby show how the previously adopted strategy, based on differential
equations, Magnus exponential and regularity conditions, can be efficiently applied to
compute the MIs of a simpler vertex integral belonging to same family.

We consider the non-planar vertex depicted in fig. 8.6, whose integral family is
defined as

∫
d̃dk1d̃dk2

Dn4
4

Dn1
1 Dn2

2 Dn3
3 Dn5

5 Dn6
6 Dn7

7

, ni ≥ 0 , (8.55)

where the loop propagators are chosen to be

D1 = k21 −m2 , D2 = k22 −m2 , D3 = (k1 + p1 + p2)
2 , D4 = (k2 + p1 + p2)

2 ,

D5 = (k1 − k2 + p3)
2 , D6 = (k2 + p4)

2 , D7 = (k1 − k2)
2 . (8.56)

p4

p3

p1

p2

Figure 8.6: Non-planar two-loop three-point topology.

The MIs belonging to this integral family, which will be part of the full set of MIs
needed for the computation of T6, have been already considered in the literature [258–
262]. In all previous computations, the determination of the boundary constants re-
sorted either to the fitting of numerical values to trascendental constants [258–260] or
to Mellin-Barnes techniques [262]. With the present calculation, we show that they can
be fixed equivalently by imposing the regularity of the solution at specific kinematic
pseudo-thresholds and by matching a particular linear combination of integrals to their
massless counterpart.

In order to determine the MIs belonging to the integral family (8.55), we derive
their DEQs in the dimensionless variable x. We identify a set of 14 MIs which fulfil an
ǫ-linear system of DEQs,

F1 = ǫ2 T1 , F2 = ǫ2 T2 , F3 = ǫ2 T3 ,
F4 = ǫ2 T4 , F5 = ǫ2 T5 , F6 = ǫ3 T6 ,
F7 = ǫ2 T7 , F8 = ǫ3 T8 , F9 = ǫ2 T9 ,

F10 = ǫ2 T10 , F11 = ǫ2(2ǫ− 1) T11 , F12 = ǫ4 T12 ,
F13 = ǫ3 T13 , F14 = ǫ4 T14 , (8.57)

where the Ti are depicted in figure 8.7. By making use of the Magnus exponential, we
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Figure 8.7: Two-loop MIs T1,...,14 for the non-planar vertex.

can transform these MIs into the canonical basis

I1 = F1 , I2 = −sF2 ,

I3 = −sF3 , I4 = 2m2 F3 + (m2 − s)F4 ,

I5 = m2F5 , I6 = (m2 − s)F6 ,

I7 = m2(m2 − s)F7 , I8 = (m2 − s)F8 ,

I9 = m2
(
3F8 + (2m2 − s)F9 + 2m2 F10

)
, I10 = m2(m2 − s)F10 ,

I11 =
1

(s+m2)

(
−2m4 F5 + (s−m2)sF11

)
, I12 = (m2 − s)F12 ,

I13 = m2(m2 − s)F13 , I14 = (m2 − s)2 F14 ,

(8.58)

which satisfies a system of DEQs of the form,

dI = ǫ (M1 dlog(x) + M2 dlog(1 + x) + M3 dlog(2 + x)) I , (8.59)

where Mi are the constant matrices

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 1 1

2 0 3 2 0 0 0 0 0 0 0
1
2 0 1

2
1
2 0 3 2 0 0 0 0 0 0 0

1
2 0 0 0 2 0 0 1 1 0 0 0 0 0
3
2 1 0 0 6 0 0 3 3 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 2 0 0 0
1
4 0 0 1

4 1 0 0 0 0 0 1
2 3 2 0

1
2

1
2

1
2

1
2 0 0 0 0 0 0 0 6 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0




, M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0
0 0 4 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 3 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0
3
2 1 0 0 6 0 0 6 4 2 0 0 0 0
0 0 0 0 0 0 0 3 0 2 0 0 0 0
0 0 0 0 4 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 6 4 0
1 1 4

3
2
3 4 3 4 0 2 2 1 2 2 2




,
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M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (8.60)

The 3 letters are real and positive in the range x > 0, which corresponds to the Euclidean
region s < 0. The general solution of the system can be written in terms of one-
dimensional GPLs. In order to completely determine the solution of the DEQs, we fix
the boundary constants as follows:

• I1,2,3,4,5 correspond, respectively, to I1,2,5,6,4 of the first integral family, defined in
eq. (8.24).

• I6,7 correspond, respectively, to I19,20 of the second integral family, defined in
eq. (8.50).

• The regularity at s → 0 of I8,9,10 can be used to fix the boundary constants of one
single MIs, which we choose to be I9. The boundary values I8(ǫ, 0) and I10(ǫ, 0)
can be obtained in the limit p24 → m2 of similar vertex integrals with off-shell
momentum p24 and s ≡ (p1 + p2)

2 = p23 = 0,

I8(ǫ, 0) = ǫ3m2 lim
p24→m2

, I10(ǫ, 0) = ǫ2m4 lim
p24→m2

(8.61)

The computation of the auxiliary vertex integrals is discussed at the end of this
section and leads to

I8(ǫ, 0) =

(
5ζ3
4

− 3ζ2 log(2)

)
ǫ3 +

(
8Li4

(
1

2

)
− 33

8
ζ4 +

log4(2)

3
− 2ζ2 log

2(2)

)
ǫ4 ,

I10(ǫ, 0) =
ζ2
2
ǫ2 +

(
ζ3
4

+ 3ζ2 log(2)

)
ǫ3

+

(
−8Li4

(
1

2

)
+

65

4
ζ4 −

log4(2)

3
+ 2ζ2 log

2(2)

)
ǫ4 +O

(
ǫ5
)
. (8.62)

• The boundary constant of I11 is determined by imposing regularity when s → 0.

• I12 corresponds to I17 of the integral family (8.24) and the boundary constant of
I13 can be fixed by demanding regularity when s → 0.

• The boundary condition for I14 is determined from the m → 0, or equivalently
s → ∞ behaviour of the solutions, where all the internal lines of the diagrams
become massless. In this regime, we search for a combination of integrals which
behaves as

lim
z→0

∑

i

ciIi = zaǫF (ǫ) , a ∈ Z , (8.63)
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where F (ǫ) is finite as z → 0.

Following the ideas outlined in [266], we begin by performing a change of variables
z = 1/x = (−m2/s) that yields to a total differential of the form,

dI = ǫ
(
M1 dlog(z) + M2 dlog(1 + z) + M3 dlog(1 + 2z)

)
I , (8.64)

where Mi are the constant matrices

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 −1 1

2 0 1 2 0 0 0 0 0 0 0
−12 0 1

2 − 1
2 0 0 0 0 0 0 0 0 0 0

1
2 0 0 0 2 0 0 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0

−14 0 0 −14 −1 0 0 0 0 0 −12 1 2 0
1
2

1
2 −12 1

2 0 0 0 0 0 0 0 0 0 0
−1 −1 −43 −23 −4 −3 −4 0 −2 2 −1 −2 −2 2




, M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
0 0 −4 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 − 3 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0

−32 −1 0 0 −6 0 0 −6 −4 −2 0 0 0 0
0 0 0 0 0 0 0 −3 0 −2 0 0 0 0
0 0 0 0 −4 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 −6 −4 0
1 1 4

3
2
3 4 3 4 0 2 −2 1 2 2 −2




,

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 −1 −2 0 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

(8.65)

Around the z = 0 singularity, the system reduces to

dI ≈ ǫ M1 dlog(z)I . (8.66)

We perform a Jordan decomposition of M1, identifying the matrices J and S,
related by J ≡ SM1S

−1,

J =




0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2




, S =




5
2 1 0 0 3 0 −1 0 3

2 −1 0 0 −1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

−12 −12 1
2 −12 0 0 0 0 0 0 0 0 1 0

5
4 1 −1 1 1 0 0 0 0 0 0 0 −2 0

−12 −12 0 0 0 0 0 0 0 1 0 0 0 0
−12 0 0 0 0 0 0 0 −1 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

3
2 3 −83 25

6 0 3 6 0 0 0 0 0 0 0
−14 1

4 −16 2
3 −12 3

4
3
2 0 0 0 1

4
1
2 1 0

1
2

1
2 −12 1

2 0 0 0 0 0 0 0 0 0 0
−32 −2 2

3 − 8
3 −1 −3 −5 0 − 3

2 1 −1 −2 −3 1
0 0 0 −14 0 0 0 0 0 0 − 1

2 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
1
2

1
2 0 0 1 0 0 1 1

2 1 0 0 0 0




.

(8.67)

The latter can be used to define a change to a new integral basis H ≡ SI which,
by construction, obeys a system of DEQs in Jordan form,

dH = ǫ J dlog(z)H . (8.68)

In particular, the truly diagonal elements Hi, say i = 2, 3, 4, 6, 10, 11, 12, 13, 14
(not belonging to any block-diagonal sector), obey a trivial first-order DEQ of the
form,

dHi

dz
= ǫ

Jii

z
Hi . (8.69)

Therefore, their expression is of the type

Hi = zJiiǫHi,0 , (8.70)
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where Hi,0 is a boundary constant which might still depend on ǫ. Among the
possible choices of i, we look at the element i = 11,

H11 = S11,jIj = z2ǫ H11,0 , (8.71)

from which we infer the behaviour around z = 0 of the following combination of
canonical integrals,

H11,0 = lim
z→0

z−2ǫ

(
−3

2
I1 − 2I2 +

2

3
I3 −

8

3
I4 − I5 − 3I6 − 5I7+

−3

2
I9 + I10 − I11 − 2I12 − 3I13 + I14

)
, (8.72)

that involves the integral I14. On the other hand, H11 can be computed by taking
the limit z → 0 on the r.h.s. of eq. (8.72) directly at the integrand-level, i.e. by
evaluating the integrals I in the limit m → 0. To this aim, we need to pull out
the prefactor m4ǫ coming from the integration measure defined in eq. (5.113), and
consider the definition of the canonical integrals I in terms of the linear-ǫ basis F
given in eq. (8.58),

H11,0 = (−s)2ǫ
(
2sF3 + 3sF6 − sF11 + 2sF12 + s2F14

)∣∣∣
m=0

. (8.73)

In the latter equation, we took into account the vanishing of the massless tad-
pole in dimensional regularization and the symmetries arising from the massless
limit of the F integrals. After applying the IBPs to the massless integrals, the
contributions due to all subtopologies cancel and the contribution of the massless
non-planar vertex F14|m=0 [256] is the only one left,

H11,0 = (−s)2+2ǫ F14|m=0 , (8.74)

where

F14|m=0 = (−s)−2−2ǫ F(ǫ) (8.75)

with

F(ǫ) ≡ 1− 7 ζ2 ǫ
2 − 27 ζ3 ǫ

3 − 57

2
ζ4 ǫ

4 +O(ǫ5) . (8.76)

Therefore,

H11,0 = F(ǫ) . (8.77)

Finally the boundary constant of integral I14 can be determined by demanding
the equality of eq. (8.72) and eq. (8.77).

All results have been numerically checked with the help of the computer codes GiNaC

and SecDec.

Auxiliary vertex integral for eq. (8.61)

We conclude this section by showing how the boundary value of I8 and I10 at s = 0 can
be extracted from the solution of the system of DEQs for the auxiliary vertex integrals

∫
d̃dk1d̃dk2

Dn5
5 Dn6

6 Dn7
7

Dn1
1 Dn2

2 Dn3
3 Dn4

4

, ni ≥ 0 , (8.78)
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identified by the set of denominators

D1 = k21, D2 = k22 −m2, D3 = (k1 + p1)
2 −m2, D4 = (k1 + k2 + p1 + p2)

2,

D5 = (k1 + p2)
2, D6 = (k2 + p1)

2, D7 = (k2 + p1 + p2)
2, (8.79)

and by external momenta p1, p2 and p3 satisfying

p21 = p22 = 0 , (p1 + p2)
2 = p23 . (8.80)

All integrals belonging to this family can be reduced to a set of 5 MIs, whose dependence
on p23 is parametrized in terms of the dimensionless variable

x = − p23
m2

. (8.81)

The basis of integrals

I1 = ǫ2 , I2 = −ǫ2p23 ,

I3 = ǫ2 2m2 + ǫ2(m2 − p23) ,

I4 =− ǫ3 p23 , I5 = −ǫ4 p23m
2 , (8.82)

fulfils a canonical system of DEQs,

dI = ǫ dA I , (8.83)

where

dA = M1 dlog x+ M2 dlog(1 + x) + M3 dlog(1− x) , (8.84)

with

M1 =




0 0 0 0 0
0 1 0 0 0
0 4 0 0 0
0 0 0 1 0
0 1

2 0 −2 −2



, M2 =




0 0 0 0 0
0 −2 −1 0 0
0 −4 −2 0 0
0 0 0 0 0
0 0 0 0 0



, M3 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1

2 1 −1
2 −2 −2

1
2 −1 1

2 2 2



. (8.85)

In the Euclidean region x > 0 the general solution of the system of DEQs can be
expressed in terms of HPLs. The boundary constants I4,5, which are the only MIs ap-
pearing for the first time in this computation, can be fixed by demanding their regularity
at x → 0. In this way, we obtain

Ii(ǫ, x) =
4∑

k=2

I
(k)
i (x, y)ǫk +O(ǫ5) , (8.86)

with

I
(2)
4 (x) = 0 ,
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I
(3)
4 (x) =− ζ2H(1;x) + 2H(1, 0,−1;x) ,

I
(4)
4 (x) = ζ3H(1;x)− ζ2H(0, 1;x) + 2H(0, 1, 0,−1;x)− 8H(1, 0,−1,−1;x) , (8.87)

and

I
(2)
5 (x) =

1

2
H(0,−1;x) ,

I
(3)
5 (x) = ζ2H(1;x)− 2H(0,−1,−1;x)− 1

2
H(0, 0,−1;x)− 2H(1, 0,−1;x)) ,

I
(4)
5 (x) =− ζ3H(1;x) + ζ2H(0,−1;x)8H(0,−1,−1,−1;x)− 3H(0,−1, 0,−1;x)

+ 2H(0, 0,−1,−1;x) +
3

2
H(0, 0, 0,−1;x) + 8H(1, 0,−1,−1;x) . (8.88)

The analytic continuation of these expressions to x → −1 ( p23 = m2 ) produces the
smooth limits

I4(ǫ,−1) =−
(
5ζ3
4

− 3ζ2 log(2)

)
ǫ3 −

(
8Li4

(
1

2

)
− 33

8
ζ4 +

log4(2)

3
− 2ζ2 log

2(2)

)
ǫ4 ,

I5(ǫ,−1) =− ζ2
2
ǫ2 −

(
ζ3
4

+ 3ζ2 log(2)

)
ǫ3

−
(
−8Li4

(
1

2

)
+

65

4
ζ4 −

log4(2)

3
+ 2ζ2 log

2(2)

)
ǫ4 +O

(
ǫ5
)
, (8.89)

which have been used in eq. (8.62), where the different overall sign is due to the kinematic
factors relating the canonical MIs Ii to the corresponding Fi, as defined by eq. (8.58)
and eq. (8.82)).

8.5 Conclusions

In this chapter, we have considered the two-loop planar box-diagrams contributing to
the two-loop virtual QED correction to the elastic muon-electron scattering. By working
in the massless electron approximation, we employed the method of differential equa-
tions and the Magnus exponential series to identify a canonical set of master integrals.
Boundary conditions were derived from the regularity requirements at pseudothresh-
olds, or from the knowledge of the integrals at special kinematic points, which have
been evaluated by means of auxiliary, simpler systems of differential equations. The
resulting MIs are expressed, in their expansion around four space-time dimensions, in
terms of generalized polylogarithms.

The scattering of energetic muons on atomic electrons has been recently proposed
as an ideal framework to determine the leading hadronic contribution to the anomalous
magnetic moment of the muon. The ambitious measurement of the differential cross
section of the µe → µe process with an accuracy of 10ppm, aimed by the future exper-
iment MUonE, requires, on the theoretical side, the knowledge of the QED corrections
at NNLO. The present calculation represents the first step towards the analytic com-
putation of the NNLO corrections to differential cross section for µe scattering. At the
time being, we are working towards the evaluation of the missing non-planar integral
topology. Once the analytic expressions of all relevant MIs is available, they will be em-
ployed in the computation of the two-loop virtual amplitude, which will be addressed
through the adaptive integrand decomposition algorithm Aida.



Chapter 9

Maximal Cuts and Feynman

integrals beyond polylogarithms

In this chapter we discuss the solution of systems of differential equations for master

integrals which remain coupled in the ǫ → 0 limit. In such cases, the master inte-

grals obey irreducible higher-order differential equations and they are not express-

ible in terms of polylogarithmic functions. The standard solving strategy consists

in first determining the homogeneous solutions at ǫ = 0, and then applying Euler

variation of constants in order to obtain the ǫ-expansion of the master integrals

in terms of iterated integrals. However, no general technique for finding the ho-

mogeneous solutions of higher-order differential equations exists. We hereby show

that the maximal-cuts of the master integrals, when computed along integration

contours compatible with IBPs, provides, by definition, a full set of homogeneous

solutions. We argue that such maximal-cuts constitute a natural generalization

of the concept of leading singularity, for coupled system of equations. We discuss

several two-loop examples, whose homogeneous solutions are expressed in terms of

elliptic integrals and. Finally we apply these techniques to the three-loop massive

banana graph in d = 2 − 2ǫ, which satisfy an irreducible third-order differential

equation. The content of this chapter is based on the publications [2, 4], in collabo-

ration with L. Tancredi, and on original research in collaboration with P. Mastrolia

and U. Schubert.

9.1 Coupled differential equations for Feynman integrals

In this last chapter, we turn our attention back to the general structure of the first-order
DEQs satisfied by the MIs, which was discussed in chapter 5. For simplicity, we discuss
systems of DEQs in one single variables but the following discussion equally applies to
multi-scale problems. In particular, we reconsider the DEQs (5.23) for the sector of
n > 1 MIs F(ǫ, x),

∂xF(ǫ, x) = A(ǫ, x)F(ǫ, x) + S(ǫ, x) , (9.1)

where the inhomogeneous term S(ǫ, x) stems for the contributions of MIs from lower
sectors, which we assume to be known. As usual, we suppose the MIs to be normalized
in such a way that the matrix A(ǫ, x) admits an expansion in positive powers of ǫ,

A(ǫ, x) = A0(x) +
∑

k>0

Ak(x)ǫ
k . (9.2)

169
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According to the discussion of chapter (5), the solution of eq. (9.1) is streamlined if we
are able to determine a n× n matrix G(x) that solves the DEQ in ǫ = 0.

∂xG(x) = A0 G(x) . (9.3)

In fact, G(x) can be used to define a new set of MIs I(ǫ, x),

F(ǫ, x) = G(x) I(ǫ, x) , (9.4)

which satisfy a simplified system of DEQs,

∂xI(ǫ, x) = Â(ǫ, x)I(ǫ, x) + Ŝ(ǫ, x) , (9.5)

with

Â(ǫ, x) = G
−1(x)A(ǫ, x)G(x) , Ŝ(ǫ, x) = G

−1(x)S(ǫ, x), (9.6)

which allows to decouple, order-by -rder in ǫ, the DEQs for the coefficients of the Taylor
expansion of the MIs around ǫ = 0.

The solution of eq. (9.5) is particularly straightforward if Ak(x) = 0, for k > 1,

A(ǫ, x) = A0(x) + ǫA1(x) . (9.7)

In this case, if we assume the MIs and the inhomogeneous term to be Taylor expanded
as

I(ǫ, x) =

∞∑

k=0

I(k)(x)ǫk ,

S(ǫ, x) =
∞∑

k=0

S(k)(x)ǫk , (9.8)

we can integrate independently eq. (9.5) for all coefficients I(k)(x),

∂xI
(k)(x) = Â1(x)I

(k−1)(x) + Ŝ(k)(x) , (9.9)

with

Â1(x) = G
−1(x)A1(x)G(x) , Ŝ(k)(x) = G

−1(x)S(k)(x) (9.10)

and obtain

I(0)(x) =c0 +

∫ x

x0

dt Ŝ(0)(t) ,

I(k)(x) =ck +

∫ x

x0

dt Â1(t)I
(k−1)(t) +

∫ x

x0

dt Ŝ(k)(t) . (9.11)

where x0 is an arbitrary integration base-point and ci are integration constants to be
fixed by imposing suitable boundary conditions.

If A0(x) is triangular, there is no actual need to separate the solution of the DEQs
for F(ǫ, x) from the rest of the system, and we can determine, both F(ǫ, x) and their
subtopologies at once, has we have seen in several cases throughout chapters 6-8. How-
ever, the picture changes dramatically if A0(x) has no triangular form (and no change
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of basis which triangularizes it is found). In such cases, the MIs obey irreducible DEQs
of degree n.

Let us consider, as an example, a sector with two MIs F1(ǫ, x) and F2(ǫ, x) fulfill-
ing a non-triangular system of DEQs in the ǫ → 0 limit. If we denote by H(x) the
homogeneous solutions of the DEQs obeyed by F(ǫ, x) at ǫ = 0,

{
∂xH1(x) = a11(x)H1(x) + a12(x)H2(x)

∂xH2(x) = a21(x)H1(x) + a22(x)H2(x) .
(9.12)

we can differentiate both sides of the first of eqs. (9.12) and make use of

H2(x) =
1

a12
(∂xH1(x)− a11H1(x)) , (9.13)

in order to obtain a second-order DEQ for H1(x),

∂2
x H1(x) =

(
a11 +

∂xa12 + a12a22
a12

)
∂xH1(x)+

+

(
∂xa11 + a12a21 −

∂xa12 + a12a22
a12

)
H1(x) . (9.14)

Therefore, solving the 2× 2 coupled system of first-order DEQs (9.12) is equivalent to
solve a second-order homogeneous DEQ for H1(x). Once a solution for H1(x) is known,
H2(x) can be obtained in terms of H1(x) and ∂xH1(x), as prescribed by eq. (9.13).
This equivalence generalizes to n× n systems, which can be cast into n-th order DEQ
for the homogeneous solution one of the MIs, say H1(x)

∂(n)
x H1(x) =

(n−1)∑

j=0

bi ∂
i
xH1(x) , (9.15)

and a set of relations expressing the others (n− 1) MIs in terms of H1(x) and its first
(n− 1) derivatives,

Hi(x) =

n−1∑

j=0

cij ∂
(j)
x H1(x) , i = 2 , . . . , n , (9.16)

where ∂
(0)
x H1(x) ≡ H1(x) and the coefficients bi and bij are rational functions of the

entries aij of A0(x) and their derivatives.

Eq.(9.15) admits n independent solutions H
(i)
1 (x), i = 1, . . . , n. The corresponding

n solutions for H
(i)
j (x), j > 1, are fixed by eq. (9.16). Hence, the solution of the

system (9.1) requires the determination of a non-sparse n× n matrix G(x), defined by

G(x) =




H
(1)
1 (x) ... H

(n)
1 (x)

... ... ...

H
(1)
n (x) ... H

(n)
n (x)


 . (9.17)

We stress once more that only n out of the n × n entries of G(x) are independent
and actually need to be computed, since the knowledge of one row of G(x) allows to
determine all others. As we can see from eq. (9.11), the kernels of the iterated integrals
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that define the Taylor expansion of the inhomogeneous solution around ǫ = 0, depend
on G(x), A0(x), and on the inverse matrix G−1(x),

G
−1(x) =

1

W (x)
adj(G(x)) , (9.18)

where W (x) = det(G) is the Wronskian determinant and adj(G(x)) is the adjugate
matrix. The entries of the adjugate matrix are defined through the co-factors of G(x)

and, therefore, they can be written in terms of the homogeneous solutions H
(j)
i as well.

For instance, in a 2× 2 case, we have

G
−1(x) =

1

W (x)

(
H

(2)
2 −H

(2)
1

−H
(1)
2 H

(1)
1

)
. (9.19)

In addition, if we recall that for any invertible matrix B(x)

∂x(detB) = tr
(
B
−1∂xB

)
detB , (9.20)

we can use eq. (9.3) in order to derive a DEQ for W (x),

∂xW (x) = tr
(
G
−1∂xG

)
W (x) = tr

(
G
−1

A0(x)G
)
W (x) = tr (A0(x))W (x) , (9.21)

where, in the last equality we have used the ciclic invariance of the trace.Such equation
can be easily solved by quadrature and yields to

W (x) = W (x0)e
∫ x
x0

dt tr(A0(t)) , (9.22)

which is known as Abel theorem. Therefore, regardless of the complexity of the entries
of G(x), the Wronskian can be expressed in terms of simple functions, since it always
fulfils a first order DEQ. In particular we observe that, if we perform a trivial rescaling
of the MIs,

F(x) = e
∫ x
x0

dt tr(A0(t))F̃(x) (9.23)

we obtain a homogeneous system of DEQs

∂xH̃(x) =
(
A0(x)− e

∫ x
x0

dt tr(A0(t))
1

)
H̃(x) ≡ Ã0(x)H̃(x) , (9.24)

where Ã0(x) is a traceless matrix. Hence, according to eq. (9.21), we have

∂xW (x) = 0 → W (x) = W0 , (9.25)

i.e. it is always possible choose a basis of MIs whose homogeneous solutions have con-
stant Wronskian (which, however, cannot be determined directly from Abel theorem).
This simple observation, together with eq. (9.18), implies that the inhomogeneous so-
lution is determined through a nested integration of (products of) the homogeneous so-

lutions H
(j)
i (x), convoluted with rational functions originating from the entries of A0(x).

In summary, in the presence of a sector of n MIs that obey systems of coupled DEQs,
we can determine their Taylor expansion around ǫ = 0 in two steps:

- We first determine a complete set of solutions G(x) associated to a homogeneous
system at ǫ = 0, and we then perform a change of basis of the type (9.4) in order to
bring the DEQs into an ǫ-factorized form;
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- We recursively determine the Taylor expansion of the inhomogeneous solutions by iter-
atively integrating over kernel functions that involve the entries of G(x), as prescribed
by eq. (9.11).

This strategy is not different from the one applied in chapter 5 to the full set of MIs:
by choosing, within a non-trivial sector, a basis of MIs F(ǫ, x) that obey ǫ-linear homo-
geneous DEQs, we can rotate away the O(ǫ) term of homogeneous solution and define
a new basis of MIs I(ǫ, x) whose system of DEQs decouples order-by-order in the ǫ-
expansion. Let us observe that, although the full ǫ-factorization of the system requires
a starting matrix A(ǫ, x) of the type (9.7), in case of a polynomial dependence of on ǫ
the rotation of the MIs through the homogeneous solution matrix is anyway enough to
decouple, at each order in ǫ, the coefficients of the Taylor expansion of the MIs.
The whole complexity of a coupled system in ǫ = 0 dwells in the determination of
the homogeneous solution matrix G(x). In fact, as we have already observed in sec-
tion 5.5, if A0(x) is non-triangular, series representation of the homogeneous solution,
such the the Magnus exponential, cannot be used to define G(x), since they cannot be
re-summed. One possible way (and, up to now, the only available one) to determine

H
(j)
i (x) is to attempt a solution of the n-th order homogeneous DEQ (9.15). However,

unless eq. (9.15) can be cast into the standard form of some well-studied class of DEQs,
this is indeed a difficult task, since no general strategy for the solution of higher-order
DEQs is available. In the next section, we propose a systematic way to determine,
independently on the size n of the system of DEQs, an integral representation of the
complete set of homogeneous solutions.

9.2 Maximal-cuts and homogeneous solutions

In order to understand how to compute the solutions of the homogeneous system of
DEQs of the type (9.3), let us go back to the definition of generalized cut of Feynman
integrals (2.140), which was introduced in chapter 2. In particular, we consider maximal-
cuts (2.141), i.e. the simultaneous cut of all denominators that characterize the integral.
The maximal-cut of a m-denominator Feynman integral with all propagators raised to
power one,

I(ǫ, x; 1 , . . . , 1 ; b1 , . . . , br) =

∫ ℓ∏

i=1

d̃dkj
Sb1
1 · · · Sbr

r

D1 · · · Dm
, (9.26)

corresponds to the integral

MCut[I(ǫ, x; 1, 1 , . . . , 1 ; b1 , . . . , br)] =

∫ ℓ∏

i=1

d̃dkj S
b1
1 · · · Sbr

r δ(D1) · · · δ(Dm) ,

(9.27)

and we have seen in section 2.6 how to obtain consistent operative extensions of such
definition which accommodate higher powers of the loop propagators, for instance by
introducing the Baikov representation of the Feynman integral, as in eq. (2.147). It is an
obvious consideration that the same m-denominator cut would vanish if applied to any
of the subtopologies of I(ǫ, x; 1, 1 , . . . , 1 ; b1 , . . . , br). In fact, the full set of δ-functions
cannot be supported by integrals with fewer denominators. Despite its simplicity, this
consideration has striking consequences. If we imagine to apply a maximal-cut to both
sides of an IBP and, consequently, of a DEQ of the type (9.1), we would be left with

∂xMCut[F(ǫ, x)] = A(ǫ, x)MCut[F(ǫ, x)] , (9.28)
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since all the inhomogeneous terms related to subtopologies would drop,

MCut[S(ǫ, x)] = 0 . (9.29)

Therefore, the maximal-cut of a Feynman integral is, by construction, a homogeneous
solution of the DEQs satisfied by the uncut integral. The connection between unitarity
cuts and DEQs is not new. In [102], for example, the second order DEQ satisfied by
the two-loop massive sunrise was solved by inferring the homogeneous solution from the
calculation of the imaginary part of the graph, which is indeed related to its maximal-
cut. More in general, this connection has been largely exploited in the so-called reverse
unitarity method [267], while a new way of solving IBPs using the information coming
from the unitarity cuts has been proposed in [58]. Finally, in [268] it was observed that
maximal-cuts constitute as well homogeneous solutions of the dimensional recurrence
relations satisfied by Feynman integrals.

The crucial observation, which, to our believe, has not been fully exploited before,
is that the computation of the maximal-cuts can be used as a systematic method to de-
termine an explicit integral representation of the homogeneous solutions, independently
on the complexity and of the order of the DEQs under consideration.

However, as argued in the previous section, the definition of the matrix G(x) requires
the knowledge of n independent solutions and the maximal-cut defined in eq. (9.27)
provides, apparently, only one of them. Nonetheless, we observe that eq. (9.27) is an
incomplete definition of the maximal-cut operation, since it lacks a proper specification
of the integration bounds. In fact, as we have discussed in chapter 4, at one-loop the
simultaneous cut of all propagators corresponds to a maximum-cut, since the number of
linear constraints imposed by the on-shell conditions always corresponds to the number
of loop variables. Therefore, by replacing each denominator with a δ-function, the loop
integral is completely localized.
As already observed in section 2.6, this is not true anymore in the general multi-loop
case, where the number of loop variables is larger than the number of constraints im-
posed by the maximal-cut. This means that, after cutting all propagators, we still have
to integrate the cut-integrand over the non-trivial region spanned by the unlocalized
variables. Therefore, a more precise definition of the maximal-cut of a ℓ loop Feynman
integral with m denominators is

MCut[I(ǫ, x; 1, 1 , . . . , 1 ; b1 , . . . , br)] =

∫

R

ℓ∏

i=1

d̃dkj S
b1
1 · · · Sbr

r δ(D1) · · · δ(Dm) ,

(9.30)

where R is the hypersurface in the space spanned by the loop momenta identified by
the condition D1 = . . . = Dm = 0. As we are about to argue, R can be generally
decomposed in different patches Ri, R = R1 ∪R2 ∪ . . . ∪Rn, such that the integration
over each patch still provides a definition of the maximal-cut that obeys the correct
homogeneous IBPs and ensures eq. (9.29) to be satisfied. Thus, the computation of the
maximal-cut over different regions Ri can provide an integral representation of different
homogeneous solutions.

In order to understand what are the admissible integration bounds, let us consider
the general expression of a d-dimensional maximal-cut after all δ-functions have been
evaluated,

MCut[Fi(d, x)] = C(d, x)

∫

Ci
da1 da2 . . . danP (x; a1 , a2 , . . . , an)

d−α
2 , (9.31)
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where C(d, x) is some function of the space-time dimensions and of the external kine-
matics x, the integration variables ai correspond to the ISPs, and α is some integer
number, which depends on the topology of the integral, i.e. the number of loops and
external legs. Finally, Ci is the integration contour in the (generally complex) space
spanned by the ai, which corresponds to the integration region Ri in the momentum-
space representation of eq. (9.30). This general structure of the maximal-cut, which
is common to all the integration methods adopted to perform the cuts, is particular
transparent in the Baikov parametrization, where P (x; a1 , a2 , . . . , an) corresponds to
the Gram-determinant of internal and external momenta, evaluated in the origin zi = 0
of the hyperplane spanned by the denominators. In particular, in the following dis-
cussion, we assume eq. (9.31) to be a representation of the maximal-cut of Fi(d, x) in
terms of a minimum number of integration variables. When using phase-space integra-
tion techniques, such a minimal representation is obtained by integrating away all the
irrelevant angular directions. Conversely, in the Baikov representation the minimum
number of integration variables can obtained through a loop-by-loop parametrization
of the integration momenta, as the one derived in [60].

From eq. (9.31) we see that, in an arbitraryl number of dimensions (and, in partic-
ular, in the integer dimensions d = 2, 4 we are typically interested in) the integrand is
a multivalued function with a root-type polydromy. In general the branch cuts of the
integrand can have a rather complicated structure, since the position of the branching
points ā(j)(x),

ā(j)(x) = {ā(j)1 (x) , ā
(j)
2 (x) , . . . , ā(j)n (x)} , (9.32)

which are determined by the zeroes of P (x; a1 , a2 , . . . , an) ,

P (x; ā
(j)
1 , ā

(j)
2 , . . . , ā(j)n ) = 0 , (9.33)

migrates in the n-dimensional complex manifold described by the ai, according to the
value of the kinematic variable x, as explicitly indicated in eq. (9.32). It is exactly this
branch-cut structure that determines what are the admissible integration contours Ci.
In fact, we observe that any contour which is delimited by the curves defined by (9.32)
and which does not cross any branch cut of the integrand is a a valid integration path,
since eq. (9.33) ensures the vanishing of any surface terms that might arise from a total
derivative of the cut integrand. Hence, the maximal-cut evaluated along the contour
Ci satisfies the homogeneous part of the IBPs and DEQs of the corresponding uncut
integral.

Due to the potential symmetries of P (x; a1 , a2 , . . . , an) under reparametrization of
the integration variables ai (which in turn is inherited from the invariance of the integral
under redefinition of the loop momenta) some of the Ci might be equivalent. However,
we conjecture that, given a MIs Fi(x) satisfying an irreducible n-th order homogeneous
DEQ, it is always possible to determine n independent contours Ci which correspond to
a complete set of solutions of the homogeneous DEQs. In particular, in ǫ = 0, where
the homogeneous eq. (9.28) becomes (F(x) ≡ F(0, x))

∂xMCut[F(x)] = A0(x)MCut[F(x)] , (9.34)

we can identify the j-th homogeneous solution associated to the MI Fi(x) with

H
(j)
i (x) = MCutCj [Fi(x)] , j = 1, 2, . . . n . (9.35)
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Thus, the homogeneous solution matrix (9.17) can beoperatively identified as

G(x) =




MCutC1 [F1(x)] ... MCutCn [F1(x)]
... ... ...

MCutC1 [Fn(x)] ... MCutCn [Fn(x)]


 . (9.36)

Let us stress once more that we always assume all F(ǫ, x) to be well behaved at ǫ = 0,
so that the integration over the loop momenta and the limit ǫ → 0 commute and the
cuts (9.35) correspond to the limit ǫ → 0 of eq. (9.31).

Analogous conjectures have been put forward in [62, 63] and, indeed, they are sup-
ported by the existence of a connection between the number of MIs of a given sector
(which, in the case of a maximally coupled systems, corresponds to the degree of the
of DEQs satisfied by the MIs) and the number of inequivalent contours in cut complex
manifold identified by eq.(9.33) [269]. In [60, 62, 63] maximal-cuts of several one and
two-loop integrals were computed by retaining the full dependence on d. It should be
remarked that the DEQs of a sector of MIs are usually maximally coupled, even when
A0(x) is triangular. Therefore, the d-dimensional homogeneous matrices G(ǫ, x) that
have been derived, for instance, in [62] are always non-sparse, even in the cases where
the MIs are expressible in terms of polylogarithms. Nevertheless it can be checked
that, consistently with the triangular form of A0(x), G(ǫ, x) becomes a sparse matrix at
ǫ = 0 and its non-zero entries match (up to some trivial similarity transformation) the
homogeneous solutions that can be obtained through the Magnus exponential. In this
respect, we stress once more that the whole complexity of the analytic expression of a
MI originates from the behaviour of its DEQs in the ǫ → 0 limit.

The determination of the number of independent contours and their explicit localiza-
tion is, mathematically speaking, related to the study of the dimension of the so-called

cohomology group associated to the variety identified by P (x; ā
(j)
1 ) = 0 . The formal

mathematical treatment of this problem is beyond the scope of the present discussion
but, in all considered cases, the independent contours could be always determined from
considerations based on elementary complex analysis.

Example

Let us consider a paradigmatic example, which we will encounter in several two-loop
computations. We suppose that the calculation of a maximal-cut in some finite number
of space-time dimensions yields to a one-fold integral of the type

MCut (F(x)) =

∫

C

da√
±R4(a, x)

, (9.37)

where R4(a, x) is a fourth-degree polynomial in a with four distinct roots,

R4(a, x) = (a− ā1(x))(a− ā2(x))(a− ā3(x))(a− ā4(x)) , (9.38)

where ai(x) are real-valued function of x. The ai(x) correspond to the branching points
of the integrand and their ordering on the real axis depends on the value of x. In the
following we will assume, without loss of generality,

ā1 < ā2 < ā3 < ā4 . (9.39)

These four branching points must be connected through branch cuts. Figure 9.2 shows
(in red) one possible choice of the branch cuts, according to the sign we pick in the
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C1

C1
ā1 ā2 ā3 ā4 Re(a)

Im(a)

C3

ā1 ā2 ā3 ā4

Im(a)

Re(a)

C2

Figure 9.1: Left panel: The contours C1, C3 and C∞. The branches of the integrand for
the positive sign in the root in Eq. (9.96) are drawn in red. Right panel: The contour
C2. The branches of the integrand for the negative sign in the root in Eq. (9.96) are
drawn in red.

definition of the integrand (9.37). By following the above reasoning, we can identify
three possible contours, C1, C2, C3, which enclose a branch cut (i.e. that are limited by
a couple of branching points), without crossing the other one. Therefore eq. (9.37),
when it is evaluated along any of these contours, provides a solution of the homogeneous
DEQ satisfied by F(x). However, it is easy to show that C1 and C3 are not independent.
In fact, as it was already observed [102], we can introduce a fourth auxiliary contour
C∞, which, as shown in figure 9.2, encloses the point a = ∞. The integral along C∞ is
vanishing, since the integrand goes as 1/a2 when a → ∞,

∮

C∞

da√
R4(a, x)

= 0 . (9.40)

Moreover, the integrand is analytic everywhere but along the branch cuts. Therefore,
we can to shrink C∞ to encircle the two branch cuts and obtain from eq. (9.40)

∮

C∞

da√
R4(a, x)

=

∮

C1

da√
R4(a, x)

+

∮

C3

db√
R4(b, x)

= 0 , (9.41)

which proves the equivalence between C1 and C3. In this way, we are left with two
independent contours, say C1 and C2, that provide precisely two independent solutions
of the DEQ satisfied by F(x). Now, by shrinking C1 and C2 around the corresponding
branch cuts, we find an equivalent representation of the homogeneous solutions as one-
dimensional real integrals,

MCutC1 [F (x)] =

∮

C1

da√
R4(a, x)

= 2 i

∫ ā2

ā1

da√
−R4(a, x)

= −2 i

∫ ā3

ā3

da√
−R4(a, x)

,

MCutC2 [F (x)] =

∮

C2

da√
−R4(a, x)

= 2 i

∫ ā3

ā2

da√
R4(a, x)

= 2 i

(∫ ā1

−∞
+

∫ ∞

ā4

)
da√

R4(a, x)
,

(9.42)

where the sign of the roots on the r.h.s. in order to keep the integrals real-valued.
Finally, we observe that the integrals defined in eqs. (9.42) can be expressed in terms
elliptic integrals of the first kind,

K(w) =

∫ 1

0

dz√
(1− z2)(1− w z2)

with ℜ(w) < 1 , (9.43)
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In fact, by performing the change of variables

t2 =
(ā4 − ā2)(a− ā1)

(ā2 − ā1)(ā4 − a)
,

t2 =
(ā1 − ā3)(a− ā2)

(ā3 − ā2)(ā1 − a)
, (9.44)

which map, respectively, the integration ranges [ā1, ā2] and [ā2, ā3] into [0, 1], we obtain

MCutC1 [F (x)] =
2√

(ā3 − ā1)(ā4 − ā2)
K (w) , (9.45)

MCutC2 [F (x)] =
2√

(ā3 − ā1)(ā4 − ā2)
K (1− w) , (9.46)

where

w =
(ā2 − ā1)(ā4 − ā3)

(ā3 − ā1)(ā4 − ā2)
. (9.47)

The fact that eqs. (9.45) are solutions of the same DEQ is consistent with the theory of
complete elliptic integrals, which shows that K(w) and K(1 − w) are two independent
solutions of the same second-order DEQ,

∂2
w K(w) +

(
1

w
− 1

1− w

)
∂2
w K(w)− 1

4

(
1

w
+

1

1− w

)
K(w) = 0 . (9.48)

�

As we will see in the next sections, all the known cases of two-loop integrals that do
not evaluate to multiple polylogarithms (or, more generally, to Chen iterated integrals),
are found to admit a representation of their maximal-cut of the type given in eq. (9.37)
and, hence, to fulfil a second-order DEQ which fall in the class of eq. (9.48). This
evidence might suggest that, at least at two-loop level, the theory of elliptic integrals
could be sufficient to provide the homogeneous solutions to all coupled systems of DEQs.

Nonetheless, at higher-loop level one can encounter larger systems of coupled DEQs,
the first example being the three-loop massive banana graph, which requires the solution
of 3×3 system of coupled DEQs. In its generality, the proposed method can be used to
determine a representation of the homogeneous solutions of a coupled system of DEQs,
independently on the size of the system and, even more importantly, it provides an
explicit integral representation of the homogeneous solution also when the properties of
the corresponding higher-order DEQ are unknown.

9.2.1 Unit leading singularity

Before moving to the study of some explicit examples, we conclude this section with a
simple observation on the connection between the leading singularity of a set of coupled
MIs and the solution of their homogeneous system of DEQs. For simplicity, let us
consider a 2× 2 case, and let us invert the relation between the ǫ-linear basis F(x) and
the ǫ-factorized basis I(x), given in eq. (9.4),

(
I1(x)
I2(x)

)
=

1

W (x)

(
H

(2)
2 −H

(2)
1

−H
(1)
2 H

(1)
1

)(
F1(x)
F2(x)

)
, (9.49)
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with W (x) = H
(1)
1 H

(2)
2 −H

(2)
1 H

(1)
2 . If we recall that, by definition, MCutCj [Fi] = H

(j)
i ,

we can cut both sides of eq. (9.49) along the first contour and obtain

(
MCutC1 [I1(x)]
MCutC1 [I2(x)]

)
=

1

W (x)

(
H

(2)
2 −H

(2)
1

−H
(1)
2 H

(1)
1

)(
H

(1)
1

H
(1)
2

)
=

(
1
0

)
. (9.50)

Similarly, by cutting on the second contour, we have

(
MCutC2 [I1(x)]
MCutC2 [I2(x)]

)
=

1

W (x)

(
H

(2)
2 −H

(2)
1

−H
(1)
2 H

(1)
1

)(
H

(2)
1

H
(2)
2

)
=

(
0
1

)
. (9.51)

This result obviously extends to systems of arbitrary size: the maximal-cuts of the the
MIs I(x) along any of the n contours Ci is either 1 or 0. More precisely, we have

MCutCi [Ij(x)] = δij . (9.52)

As we have seen in section 5.4, in [81] it was conjectured that MIs with unit leading
singularity obey canonical system of DEQs. In this perspective, eq. (9.52) can be in-
terpreted as a generalization of such conjecture to the case of coupled DEQs. In the
presence of n coupled DEQs, we can associate to each MI n distinct leading singular-
ities, corresponding to the maximal-cut of the MI evaluated along the n independent
integration contours, that is to say to the n independent solutions of the correspond-
ing homogeneous equation. Therefore, if we identify the maximal-cut matrix G(x) as
the leading-singularity matrix, we immediately see from eq. (9.52) that a basis of MIs
with leading singularity matrix equal to the identity matrix satisfies an ǫ-factorized
homogeneous system of DEQs.

9.3 One-loop maximal-cuts

In this section, we compute the maximal-cut of a series of massive one-loop integrals and
we show that they obey the homogeneous part of the DEQs satisfied by the correspond-
ing MIs. At one loop, for any topology, we always find at most one MIs. This implies
that one-loop integrals satisfy at most first-order DEQs. Consistently, the maximal-cut
of a one-loop integral provides a unique homogeneous solution, since it localizes com-
pletely the loop momentum without leaving any additional integration to be performed.
The maximal-cuts discussed in this section are first derived in arbitrary continuous di-
mension d and their value at integer dimensions d = 2 , 4 (where they happen to be
finite) is then derived from the ǫ → 0 limit of the resulting expressions. The results
hereby derived will be used in the next section for the computation of maximal-cuts of
two-loop integrals which contain the considered one-loop topologies as sub-loops.

One-loop massive bubble

As a first elementary example, we consider a one-loop bubble with arbitrary masses,

F(d; s,m2
1,m

2
2) = p

m2

m1

=

∫
d̃dk

1

(k2 −m2
1)((k − p)2 −m2

2)
, (9.53)

where p2 = s. This integral satisfies first-order DEQs in s, m2
1 and m2

2.
In arbitrary d the one in s reads

∂sF(ǫ; s,m
2
1,m

2
2) = S(d, s,m2

1,m
2
2)
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+
1

2

(
3− d

(m1 −m2)2 − s
+

3− d

(m1 +m2)2 − s
+

2− d

s

)
∂sF(ǫ; s,m

2
1,m

2
2) ,

(9.54)

where the inhomogeneous term S(d, s,m2
1,m

2
2) depend on the tadpoles with masses m1

and m2. The homogeneous part of eq. (9.54)

∂sH(d, s,m2
1,m

2
2) =

1

2

(
3− d

(m1 −m2)2 − s
+

3− d

(m1 +m2)2 − s
+

2− d

s

)
H(d, s,m2

1,m
2
2) (9.55)

can be easily integrated and yields to

H(d, s,m2
1,m

2
2) = c (−s)1−

d
2

(
m4

1 − 2m2
1

(
m2

2 + s
)
+
(
m2

2 − s
)2) d−3

2
, (9.56)

where c is a multiplicative constant. This result can be recovered by computing the the
d-dimensional maximal-cut of the one-loop bubble,

MCut




p
m2

m1


 =

∫
d̃dk δ(k2 −m2)δ((k − p)2 −m2) . (9.57)

The integral can be evaluated either by moving to the rest frame of the external particle,
pα = (

√
s,~0), or by introducing the Baikov representation of the bubble integral,

p
m2

m1

= (−s)1−
d
2

∫
dz1dz2
z1z2

(
−4s(m2

1 + z1) + (m2
1 −m2

2 + s+ z1 − z2)
2
) d−3

2 ,

(9.58)

where we have omitted the irrelevant overall constant and labelled the denominators as
z1 = k2 −m2

1 and z2 = (k − p)2 −m2
2. The maximal-cut of F (d, s,m2

1,m
2
2) is obtained

from eq. (9.58) by replacing 1/zi → δ(zi),

MCut




p
m2

m1


 = (−s)1−

d
2

(
m4

1 − 2m2
1

(
m2

2 + s
)
+
(
m2

2 − s
)2) d−3

2
, (9.59)

and it correctly reproduces the homogeneous solution H(d, s,m2
1,m

2
2), given in eq. (9.56).

A comment on eq. (9.59) is in order. In general, if a Feynman integral depends on more
than one kinematic scale, the solution of the DEQ in one single invariant cannot capture
the full dependence on all the remaining scales. For instance, in the present case, if we
had solved only homogeneous DEQ in m2

1, we would have not been able to determine
the overall dependence on (−s)(1−d/2) of eq. (9.59). Nevertheless, the maximal-cut pro-
vides, by definition, the homogeneous solution of the DEQs in all kinematic invariants
and, hence, it resolves its dependence on the whole set of scales.

Finally, for later convenience, we extract the maximal-cut of an equal-mass bubble
in d = 2. Since the massive bubble integral is well behaved in two-dimensions, we can
read such maximal-cut directly form eq. (9.56), by setting d = 2 and m1 = m2 = m,

H(d = 2, s,m2,m2) =
1√

s(s− 4m2)
. (9.60)
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One-loop massive triangle

As a second example, we consider a one-loop triangle in d = 4 − 2ǫ with two massive
internal propagators,

F1(ǫ; q
2, q21, q

2
2,m

2
a,m

2
b) =

q

q1

q2

ma

mb

=

∫
d̃dk

1

D1D2D3
, (9.61)

where the denominators are defined as

D1 = k2 −m2
a , D2 = (k − q1)

2 , D3 = (k − q1 − q2)
2 −m2

b , (9.62)

and, in total generality, q2 6= q21 6= q22 6= 0. IBPs reduction allow us to obtain first-order
DEQs for F1 in any of the external invariants. For instance, if we differentiate w.r.t.
q2, we obtain (by neglecting all the inhomogeneous terms),

∂q2 H1(ǫ; q
2, q21, q

2
2,m

2
a,m

2
b) =

(q21 + q22 − q2)

q41 − 2q21(q
2
2 + q2) + (q22 − q2)2

H1(ǫ; q
2, q21, q

2
2,m

2
a,m

2
b)

+ ǫ C(q2, q21, q
2
2,m

2
a,m

2
b)H1(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b) , (9.63)

where C(q2, q21, q
2
2,m

2
a,m

2
b) is a cumbersome rational function.

In the simpler case where mb = ma = m, the latter reads

C(q2, q21,q
2
2,m

2) = C(q2, q21, q
2
2,m

2,m2)

=
((m2 + q21)(q

2
1 − q22) + q2(m2 − q21))((m

2 + q22)(q
2
1 − q22) + q2(q22 −m2))

2
(
q41 − 2q21(q

2
2 + q2) + (q22 − q2)2

) (
q2(m2 − q21)(m

2 − q22) +m2(q21 − q22)
2
) .

(9.64)

The solution eq. (9.63) can determined by computing the d-dimensional maximal-cut of
F1(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b). In this case, it is particularly convenient to adopt the Baikov

parametrization and rewrite eq. (9.61) as

q

q1

q2

ma

mb

= G(q1, q2)
3−d
2

∫
dz1dz2dz3G(k, q1, q2)

d−4
2

1

z1z2z3
, (9.65)

where zi = Di and G(v1 , . . . , vn) is the Gram determinant of the vectors v1 , . . . , vn.
In particular, for G(q1, q2), we have (omitting normalization factors)

G(q1, q2) = −1

4

(
(q2 + q21 − q22)

2 − 4 q21 q
2
2

)
. (9.66)

By using the definition of the denominators given in eq. (9.3), we can write the scalar
products k2, k · q1 and k · q2 in terms of the zi variables and express G(k, q1, q2) as a
polynomial in the latter,

G(k, q1, q2) =
1

4
(q21
(
m2

a + q21 + z1 − z2
) (

m2
b + q21 − q2 − z2 + z3

)

+ q22
(
m2

a + q21 + z1 − z2
) (

m2
b + q21 − q2 − z2 + z3

)

− q2
(
m2

a + q21 + z1 − z2
) (

m2
b + q21 − q2 − z2 + z3

)
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− q22
(
m2

a + q21 + z1 − z2
)2

+ 2q21q
2
2

(
m2

a + z1
)

− q41
(
m2

a + z1
)
− q42

(
m2

a + z1
)
+ 2q21q

2
(
m2

a + z1
)

+ 2q22q
2
(
m2

a + z1
)
− q4

(
m2

a + z1
)

− q21
(
m2

b + q21 − q2 − z2 + z3
)2

) . (9.67)

The maximal-cut F1(ǫ; q
2, q21, q

2
2,m

2
a,m

2
b) is obtained by simply replacing 1/zi→ δ(zi)

in eq. (9.65),

MCut




q

q1

q2

ma

mb


 = G(q1, q2)

3−d
2

∫
dz1dz2dz3G(k, q1, q2)

4−d
2 δ(z1)δ(z2)δ(z3)

=
(
(q2 + q21 − q22)

2 − 4 q21 q
2
2)
) 3−d

2 × (m2
a(m

2
b(q

2
1 + q22 − q2)

+ q22(q
2
1 − q22 + q2)) + q21q

2(m2
b − q22)−m2

bq
2
1(m

2
b + q21 − q22)−m4

a q
2
2)

d−4
2 . (9.68)

By direct computation, we can immediately verify that eq. (9.68) is exactly a solution
of (9.69), as well as of the DEQs in the other invariants.

Although in this simple case we are able to determine a closed expression for the
maximal-cut in arbitrary dimensions, it is interesting to see what happens in the ǫ → 0
limit. Quite remarkably, we observe that, in such limit, that entire dependence on the
masses ma and mb disappears from the homogeneous DEQ,

∂q2 H(0; q2, q21, q
2
2,m

2
a,m

2
b) =

(q21 + q22 − q2)

q41 − 2q21(q
2
2 + q2) + (q22 − q2)2

H(0; q2, q21, q
2
2,m

2
a,m

2
b) ,

(9.69)

which can be readily solved by quadrature,

H1(0; q
2, q21, q

2
2,m

2
a,m

2
b) =

c√
(q2 + q21 − q22)

2 − 4 q2 q21
, (9.70)

where c is an arbitrary integration constant. This result is, of course, in agreement
with the four dimensional limit of eq.(9.68): the full dependence of the maximal-cut on
the internal masses is retained in G(k, q1, q2), which is raised to the power (d − 4)/2.
Therefore, we obtain

MCut




q

q1

q2

ma

mb



∣∣∣∣∣
ǫ=0

=
1√

(q2 + q21 − q22)
2 − 4 q21 q

2
2

, (9.71)

which exactly corresponds to H1(0; q
2, q21, q

2
2,m

2
a,m

2
b). This result has some important

consequences.
Let us consider a similar three-point integral, but with one of the two massive

propagators raised to power to, for example

F2(ǫ; q
2, q21, q

2
2,m

2
a,m

2
b) = q

q1

q2

ma

mb

=

∫
d̃dk

1

D2
1D2D3

(9.72)

such that
F2(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b) = ∂m2

a
F1(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b) .
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By following the prescriptions given in section (2.6) for computing the maximal-cut in
the presence of higher powers of denominators, we can identify

MCut
[
F2(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b)
]
= ∂m2

a
MCut

[
F1(ǫ; q

2, q21, q
2
2,m

2
a,m

2
b)
]
. (9.73)

Thus, if we specialize the above identity to ǫ = 0 and make use of eq. (9.71), we obtain

MCut


 q

q1

q2

ma

mb



∣∣∣∣∣
ǫ=0

= ∂m2
a

1√
(q2 + q21 − q22)

2 − 4 q2 q21
= 0 . (9.74)

We should stress once more that this result is strictly valid in four dimensions. In fact,
we see from eq. (9.65) that by taking a derivative w.r.t. m2

a we produce an overall factor
(d− 4), which goes to zero as ǫ → 0.

A similar conclusion can be drawn inspecting the integration by parts identities.
For simplicity, let us consider again the equal mass case, mb = ma = m. From IBPs we
can show that

q

q1

q2

ma

ma

=
(d− 4)((m2 + q22)(q

2
2 − q21) + q2(m2 − q22))

2q2(m2 − q21)(m
2 − q22) + 2m2(q21 − q22)

2 q

q1

q2

ma

ma

+ subtopologies . (9.75)

Clearly, when we apply the maximal-cut to the r.h.s. of eq. (9.75), all subtopologies
drop and we are left with

MCut




q

q1

q2

ma

ma


 =

ǫ((m2 + q22)(q
2
2 − q21) + q2(m2 − q22))

2q2(m2 − q21)(m
2 − q22) + 2m2(q21 − q22)

2
MCut


 q

q1

q2

ma

ma


 .

(9.76)

This identity, together with the ma = mb limit of eq. (9.68), allows us to compute the
d-dimensional maximal-cut of the triangle integral with a squared propagator. Consis-
tently, since the r.h.s. of eq. (9.76) is proportional to ǫ, the four-dimensional limit we
find again

MCut


 q

q1

q2

ma

mb



∣∣∣∣∣
ǫ=0

= 0 , . (9.77)

One-loop massive box

As a last one-loop example, we consider a massive box in d = 4− 2ǫ,

F(ǫ; s, t, p22, q
2
3, q

2
4,m

2) =
p1

q4

q3

p2

=

∫
d̃dk

1

D1D2D3D4
, (9.78)

where the denominators are chosen to be

D1 = k2 −m2 , D2 = (k − p1)
2 −m2 ,
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D3 = (k − p1 − q3)
2 −m2 , D4 = (k − p1 − q3 − p2)

2 −m2 , (9.79)

and the kinematics is p21 = 0, p22 6= q23 6= q24. The Mandelstam invariants are given by

s = (p1 + q3)
2 , t = (q3 + p2)

2 , u = (p1 + p2)
2 = −s− t− p22 − q23 − q24 . (9.80)

IBPs reduction allow us to obtain, in arbitrary d, first-order DEQs in any of the external
invariants as well as in m2, which we do not report explicitly. The corresponding
homogeneous solution can determined by computing the d-dimensional maximal-cut of
F(ǫ; s, t, p22, q

2
3, q

2
4,m

2).
In Baikov parametrization, eq. (9.78) is rewritten (up to an irrelevant overall con-

stant) as

p1

q4

q3

p2

= G(p1, q3, p2)
4−d
2

∫
dz1dz2dz3dz4G(zi)

d−5
2

1

z1z2z3z4
, (9.81)

where zi = Di and

G(p1, q3, p2) =
1

4
(p22(q

2
3 − s)(q24 − t)− (q23 + q24 − s− t)(q23q

2
4 − st)) . (9.82)

For brevity, we do not give the explicit expression of the polynomial G(zi), which can
be easily obtained by rewriting the Gram determinant G(k, q1, q2) in terms of the zi
variables. The maximal-cut F(ǫ; s, t, p22, q

2
3, q

2
4,m

2) is now obtained by simply replacing
1/zi→ δ(zi),

MCut
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q4
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 = G(p1, p2, q3)

4−d
2

∫
dz1dz2dz3dz4G(zi)

d−5
2 δ(z1)δ(z2)δ(z3)δ(z4)

=
(
p22(q

2
3 − s)(q24 − t)− (q23 + q24 − s− t)(q23q

2
4 − st)

) 4−d
2 ×

(4m2(p22(q
2
3−s)(q24−t)− (q23+q24−s−t)(q23q

2
4−st)) + (q23q

2
4−st)2)

d−5
2 . (9.83)

By direct computation, we have verified that eq. (9.83) solves the DEQs in the all
kinematic invariants. Finally, since the box integral is well-behaved in four-dimensions,
we can extract the value of the four-dimensional maximal-cut from the smooth ǫ → 0
limit of eq. (9.83). At ǫ = 0 the contribution of G(p1, q3, p2) drops and we are left with

H(0; s, t, p22, q
2
3, q

2
4,m

2) =
1√

P (s, t, p22, q
2
3, q

2
4)

, (9.84)

where we have defined

P (s, t, p22, q
2
3, q

2
4) =4m2(p22(q

2
3−s)(q24−t)−(q23+q24−s−t)(q23q

2
4−st)) + (q23q

2
4−st)2 .

(9.85)

9.4 Two-loop maximal-cuts

In this section, we consider a few examples of two-loop integrals which fulfil irreducible
second-order DEQs and we show how to obtain a complete set of homogeneous solutions
by computing the maximal-cut of the MIs along different, independent contours. Once
the homogeneous solutions are known, Euler variation of constants can be used in order
to write down an integral representation of the full inhomogeneous solution.
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The elliptic sunrise

We start by discussing the homogeneous solutions the two-loop sunrise with equal
masses, which was the first discovered example of Feynman integral that does not eval-
uate to multiple polylogarithms [102].

The integral family of the two-loop sunrise is defined as (ai ≥ 0)

p

m

m

m

= Ia1 a2 a3 a4 a4 =

∫
d̃dk1d̃dk2

(k1 · p)a4(k2 · p)a5
(k21−m2)a1(k22−m2)a2((k2−k1+p)2−m2)a3

.

(9.86)

The three-denominator integrals belonging to the family (9.86) are reduced to two MIs
F(ǫ, x) via IBPs. We choose to work with the basis

F1(ǫ, x) = (1 + 2ǫ)I1 1 1 0 0 , F2(ǫ, x) = m2I2 1 1 0 0 . (9.87)

We study the DEQs in d = 2− 2ǫ, since the expansion of these MIs around d = 2 turns
out to be simpler than the one around d = 4. The latter which can be nevertheless
recovered by means of dimensional recurrence relations [270].

If we neglect the subtopology I2 0 2 0 0, the two MIs satisfy an ǫ-linear coupled system
of DEQs in the variable x = s/m2 (we hereby indicate with H the vector of homogeneous
solutions associated to F), whereA_i(x)are2 ×2 matrices that do not depend on ǫ,

A0(x) =




− 1
x − 3

x

− 1
4(x−1) +

1
3x − 1

12(x−9) − 1
x−1 + 1

x − 1
x−9


 ,

A1(x) =




− 2
x − 6

x

− 3
4(x−1) +

1
x − 1

4(x−9) − 2
x−1 + 3

x − 2
x−9


 . (9.88)

In ǫ = 0 the system reduces to (H(0, x) ≡ H(x))

∂xH(x) =A0(x)H(x) , (9.89)

and, according to eq. (9.14), it can be rephrased as second-order homogeneous DEQ for
one of the two MIs, say H1(x),

[
∂2
x +

(
1

x
+

1

x− 1
+

1

x− 9

)
∂x +

(
− 1

3x
+

1

4(x− 1)
+

1

12(x− 9)

)]
H1(x) = 0 ,

(9.90)
and a linear relation which expresses H2(x) in terms of H1(x) and its derivative,

H2(x) = −1

3
(1 + x∂x)H1(x) . (9.91)

The two independent solutions of eq. (9.90) can be found from the direct computation
of the maximal-cut of F1(x),

MCut
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m

m

m

 =

∫
d̃2k1δ(k

2
1 −m2)

∫
d̃2k2δ(k

2
2 −m2)δ

(
(k2 − k1 + p)2 −m2 ) .

(9.92)
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Has we have explicitly indicated in eq. (9.92), we can proceed by first using two δ-
functions in order to localize the integral over k2. This amounts to compute the
maximal-cut of a one-loop bubble with external momentum (p− k1). Hence, according
to eq. (9.60), we have

MCut




p

m

m

m

 =

∫
d̃2k1

δ(k21 −m2)√
(k1 − p)2 ((k1 − p)2 − 4m2)

. (9.93)

The residual integrand depends on k21 and k1 · p. Therefore, we can adopt the Baikov
parametrization of a one-loop two-point function for k1. This nested computation of
the cut of multi-loop Feynman integrals is equivalent to the loop-by-loop construction
of Baikov parametrization, which has been introduced in [60]. In addition, since F1(x)
is well behaved in d = 2, we can obtain the two-dimensional result directly from the
d → 2 limit of the d-dimensional expression,

MCut
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m

m

m

 = lim

d→2
(s)

2−d
2

∫
dz1dz2

δ(z1)√
z2(z2 − 4m2)

G(z1, z2)
d−3
2 , (9.94)

where we have introduced z1 = k21 −m2 and z2 = (k1 − p)2. In eq. (9.94), G(z1, z2) is
the polynomial in zi originated from the Gram determinant G(k1, p),

G(z1, z2) = 4s(z1 +m2)− (m2 + s+ z2 − z2)
2 . (9.95)

The integration over z1 has now become trivial. By defining a = z2/m
2, we obtain

MCut (S(u)) =

∮
da√

±a (a− 4) (a− (
√
u− 1)2) (a− (

√
u+ 1)2)

=

∮

C

da√
±R4(a, x)

,

(9.96)
which matches the integral of eq. (9.37).

The position of the four branching-points of R4(a, x) depends on the values of x. If
we suppose, for definiteness, x > 9, their ordering is

0 < 4 < (
√
x− 1)2 < (

√
x+ 1)2 , (9.97)

so that, according to eq. (9.45), the two independent solutions of the second-order DEQ
(9.90) are

H
(1)
1 (x) =

∫ (
√
x−1)2

0

da√
−R4(a, x)

,

H
(2)
1 (x) =

∫ (
√
x+1)2

(
√
x−1)2

da√
R4(a, x)

. (9.98)

With the change of variables (9.44), we can rewrite these solutions in terms of complete
elliptic integrals of the first type,

H
(1)
1 (x) =

1√
(
√
x+ 3)(

√
x− 1)3

K(ω) ,

H
(2)
1 (x) =

1√
(
√
x+ 3)(

√
x− 1)3

K(1− ω) , (9.99)
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with

ω =
16
√
x√

(
√
x+ 3)(

√
x− 1)3

. (9.100)

Finally, we can obtain the corresponding homogeneous solutions for H2(x) by applying
the differential operator (9.91) to eq. (9.99),

H
(1)
2 (x) =

(−x+ 2
√
x+ 3)K(ω) + (

√
x− 1)

2
E(ω)

4 (x− 2
√
x− 3)

√
x2 − 6x+ 8

√
x− 3

,

H
(2)
2 (x) =

4K(1− ω)− (
√
x− 1)

2
E(1− ω)

4 (x− 2
√
x− 3)

√
x2 − 6x+ 8

√
x− 3

, (9.101)

where E(ω) is the complete elliptic integral of the second kind

E(w) =

∫ 1

0
dz

(1− w z2)√
(1− z2)

with ℜ(w) < 1 . (9.102)

In summary, the computation of the maximal-cut of F1(x) along two independent con-
tours, which are determined by the singularity structure of the integrand, allowed us to
build the 2× 2 matrix of homogeneous solutions

G(x) =

(
H

(1)
1 −H

(2)
1

H
(1)
2 H

(2)
2

)
, (9.103)

whose independence can be checked a posteriori from the computation of the Wronskian
determinant,

W (x) =− 1

4(x− 9)(x− 1)
(E(ω)K(1− ω) + E(1− ω)K(ω)−K(ω)K(1− ω))

= − π

8(x− 9)(x− 1))
, . (9.104)

In the second equality we have used the Legendre relation between elliptic integrals,

E(ω)K(1− ω) + E(1− ω)K(ω)−K(ω)K(1− ω) =
π

2
. (9.105)

Despite the complexity of the individual entries of G(x), W (x) has a remarkably simple
form which is, indeed, consistent with Abel theorem. In fact, according to eq. (9.21),
we have

∂xW (x) =

(
− 1

x− 1
− 1

x− 9

)
W (x) , (9.106)

which gives, in complete agreement with eq. (9.104),

W (x) = c0
1

(x− 9)(x− 1)
. (9.107)

The analytic continuation of the homogeneous solution (9.103) to all kinematic regions
and the derivation of the ǫ-expansion (9.11) of the inhomogeneous solution has been
studied in detail in [271].
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A two-loop elliptic triangle

As a second example, we consider a two-loop non-planar triangle with two off-shell
legs and four massive propagators, which enters the non-planar corrections to H + jet
production mediated by a massive fermion loop. The integral family (ai ≥ 0)

Ia1 a2 a3 a4 a5 a6 a7 =
q

p1

p2

∫
d̃dk1 d̃dk2

Da7
7

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5 Da6

6

, (9.108)

is dentified by the set of denominators

D1 = (k1 − p1)
2, D2 = (k2 − p1)

2 −m2, D3 = (k1 + p2)
2,

D4 = (k1 − k2 + p2)
2 −m2, D5 = (k1 − k2)

2 −m2, D6 = k22 −m2, D7 = k21 ,
(9.109)

and by the external kinematics p21 = 0, p22 6= 0 and q2 = (p1 + p2)
2 = s 6= 0. The

six-denominator integrals belonging to the family (9.143) can be reduced to two MIs
via IBPs, which we choose to be

F1 = (s− p22)
2I1 1 1 1 1 1 0 , F2 =

(s− p22)
2(s+ 16m2)

2(1 + 2ǫ)
I1 2 1 1 1 1 0 . (9.110)

If we neglect all subtopologies, the latter satisfy two sets of ǫ-linear DEQs in the variables
x = −s/m2 and y = −p22/m

2,

∂xF(ǫ, x, y) = (A0 ,x(x, y) + ǫA1 ,x(x, y))F(ǫ, x, y) ,

∂yF(ǫ, x, y) = (A0 ,y(x, y) + ǫA1 ,y(x, y))F(ǫ, x, y) , (9.111)

where A0 ,i(x, y) and A1 ,i(x, y) are 2× 2 matrices that do not depend on ǫ,

A0 ,x(x, y) =




0 16x
(x−16)(y−x)2

+ 8
(x−16)(y−x)

(x−16)(x+y)
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− 3
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(x−16)x


 ,

A1 ,x(x, y) =




2
y−x

32x
(x−16)(y−x)2

+ 16
(x−16)(y−x)

2(x−16)(x+y)
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− 2(x−y−8)
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− 4
y−x − 2

x


 ,

A0 ,y(x, y) =




0 − 16x
(x−16)(y−x)2

16−x
x2−2xy−16x+y2

2(x−y)
x2−2xy−16x+y2

+ 3
y−x


 ,

A1 ,y(x, y) =




2
x−y − 32x

(x−16)(x−y)2

− 4(x−16)
x2−2x(y+8)+y2

− 2x2−4xy−64x+2y2

(x−y)(x2−2x(y+8)+y2)


 . (9.112)

In ǫ = 0 the systems become

∂xF(x, y) =A0 ,x(x, y)F(x, y) ,
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∂yF(x, y) =A0 ,y(x, y)F(x, y) , (9.113)

and, according to eq. (9.14), they can be rephrased as second-order homogeneous DEQs
for one of the two MIs.

For F1(x, y) such equations read

∂2
x F1(x, y) +

(
1

y − x
− 1

x+ y
+

1

x
+

2(x− y − 8)

x2 − 2xy − 16x+ y2

)
∂x F1(x, y)

+

(
1

x(y − x)
+

1

(y − x)2
− y + 4

x (x2 − 2xy − 16x+ y2)

)
F1(x, y) = 0 ,

(9.114)

and

∂2
y F1(x, y)−

(
1

y − x
+

2(x− y)

x2 − 2xy − 16x+ y2

)
∂y F1(x, y)

+

(
1

(y − x)2
− 1

x2 − 2xy − 16x+ y2

)
F1(x, y) = 0 . (9.115)

The two independent solutions of this set of second-order DEQs can be found by direct
computation of the maximal-cut of F1(x, y). We start by computing the maximal-cut
of one of the two sub-loops, namely k2, which corresponds to a one-loop massive box of
the type studied in section 9.3. In this way, using eq. (9.84), we obtain

MCut


 q

p1

p2


 =(s− p22)

2

∫
d̃4k1 δ

(
(k1 − p1)

2
)
δ
(
(k1 + p2)

2
)

× 1√
P
(
k21, (k1 − p1 + p2

)2
, p22, 0, 0)

, (9.116)

with P being the polynomial defined in eq. (9.85) and where we have used that, when
the two additional cuts are applied, (k1 − p1)

2 = (k1 + p2)
2 = 0. The two remaining

δ-functions can be solved by introducing the d-dimensional Baikov parametrization of
a one-loop triangle for k1,

MCut


 q

p1

p2


 = (s− p22)

2 lim
d→4

G(p1, p2)
3−d
2

∫
dz1dz2dz3

δ(z1)δ(z2)√
P (zi)

G(zi)
d−4
2 ,

(9.117)

where z1 = D1, z3 = D5 and the ISP z3 is defined as z3 = (k2 + p22 − s)/2. In
eq. (9.117) G(zi) stems for the polynomial in the zi variables which originates from the
Gram determinant G(k1, p1, p2), whose explicit form is not reported for ease of writing.
From eq. (9.117) we see immediately that, in the four-dimensional limit, there is no
contribution from G(zi) and that the maximal-cut is simply obtained by evaluating
P (zi) at z1 = z2 = 0,

MCut


 q

p1

p2


 =(s− p22)

∫

C
dz3

1√
P (zi)
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z1,2=0



190 Chapter 9. Maximal Cuts and Feynman integrals beyond polylogarithms

=(s− p22)

∫

C
da

1√
(1− a2)

(
16m2s+ (1− a2) (s− p22)

2
)

=
(s− p22)√

p42 − 2 p22 s+ s(s+ 16m2)

∫

C

da√
(1− a2) (1− ω a2)

.

(9.118)

In the second equality we have performed the change of variables z3 = (s − p22)a and
omitted, as usual, all multiplicative constants. In the last equality we have defined

ω =
(s− p22)

2

p42 − 2 p22 s+ s(s+ 16m2)
. (9.119)

As for the case of the two-loop sunrise, the final integral is in the form (9.37) and, conse-
quently, its evaluation along the two independent contours identified by the branching-
points ±1 and ±1/

√
ω yields to elliptic integrals of the first kind.

In particular, we immediately recognize, in the kinematic region ω < 1,

∫ 1

−1

da√
(1− a2) (1− ω a2)

= 2

∫ 1

0

da√
(1− a2) (1− ω a2)

= K(ω) . (9.120)

Therefore, the two homogeneous solutions read

H
(1)
1 (x, y) =

(s− p22)√
p42 − 2 p22 s+ s(s+ 16m2)

K(ω)

=
(x− y)√

x2 − 2x(y + 8) + y2
K

(
(x− y)2

x2 − 2(y + 8)x+ y2

)
,

H
(2)
1 (x, y) =

(s− p22)√
p42 − 2 p22 s+ s(s+ 16m2)

K(1− ω)

=
(x− y)√

x2 − 2x(y + 8) + y2
K

(
− 16x

x2 − 2(y + 8)x+ y2

)
. (9.121)

By direct computation, we have checked that H
(1)
1 (x, y) and H

(2)
1 (x, y) solve both

second-order DEQs (9.114) and (9.115). Finally we observe that, in the limit p22 → 0,
we have

lim
y→0

H
(1)
1 (x, y) =

x√
x(x− 16)

K

(
x

x− 16

)
, (9.122)

which provides the homogeneous solution for the differential equations of the corre-
sponding non-planar two-loop triangle with only one off-shell leg. This integral enters
the two-loop corrections to tt̄ production in gluon-fusion, mediated by a massive-quark
loop. In [104], the analytic continuation of the homogeneous solution to the physical
region as been studied throughly and it has been used to derive a one-fold integral
representation of the inhomogeneous solution.

A two-loop elliptic box

As a final example, we consider the planar six-denominator box computed in [103], in
the framework of two-loop virtual corrections to H + jet. The corresponding integral



9.4. Two-loop maximal-cuts 191

family (ai ≥ 0),

p1

p2

p3

p4

= Ia1 a2 a3 a4 a5 a6 a7 a8 a9 =

∫
d̃dk1 d̃dk2

(k1 · p3)a7(k2 · p1)a8(k2 · p2)a9
Da1

1 Da2
2 Da3

3 Da4
4 Da5

5 Da6
6

,

(9.123)

is identified by the denominators

D1 = k21−m2, D2 = (k1−p1)
2−m2, D3 = (k1−p1−p2)

2−m2,

D4 = (k1−k2+p3)
2, D5 = k2−m2, D6 = (k2−p1p2−p3)

2−m2, (9.124)

and by external momenta p21 = p22 = p23 = 0, p24 = (p1+p2+p3)
2 = m2

h. The Mandelstam
invariants are defined as

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p2 + p3)
2 = m2

h − s− t. (9.125)

The IBPs reduction of the integral family of eq. (9.123) returns four six-denominator
MIs, which we choose to be

F1 =I1 1 1 1 1 1 0 0 0 , F2 = I1 2 1 1 1 1 0 0 0

F3 =I1 1 1 1 2 1 0 0 0 , F4 = I1 1 1 1 1 1−1 0 0. (9.126)

The master integrals F fulfil systems of first-order DEQs in the kinematic invariants.
We have verified that, in d = 4, the DEQs for F4 are completely decoupled. Therefore,
in the limit ǫ → 0, we can restrict our analysis to the homogeneous systems for the first
three MIs, which read





∂xF1(~x) = a11(~x)F1(~x) + a12(~x)F2(~x) + a13(~x)F3(~x)

∂xF2(~x) = a21(~x)F1(~x) + a22(~x)F2(~x) + a23(~x)F3(~x)

∂xF3(~x) = a33(~x)F3(~x) ,

(9.127)

where x ∈ ~x = {s, t,m2
h,m

2} and aij(~x) are rational functions of the Mandelstam
invariants. We immediately see from eq. (9.127) that also the third MIs is decoupled,
since none of its homogeneous DEQs contains terms proportional to either F1(~x) or
F2(~x). In this respect, it is interesting to observe that F3(~x) has vanishing maximum-
cut in four-dimensions. In fact, F3(~x) contains as sub-loop a one-loop triangle with one
massive square denominator. In the previous section, we have seen that the maximal-
cut of such triangle vanishes in ǫ = 0. Hence, as a direct consequence of eq. (9.74), we
trivially get

MCut




p1

p2

p3

p4


 =

∫
d̃4k1 δ(k

2
1 −m2)δ((k1−p1)

2−m2)δ((k1−p1−p2)
2−m2)

× MCut




p4

q3

q4


 = 0. (9.128)

A zero maximal-cut provides, indeed an obvious solution to the DEQs for F3(~x), since
it is decoupled from F1(~x) and F2(~x). However, MCut (F3(~x)) = 0 does not prevent
such DEQs to admit another non-trivial solutions which, although it is not captured by
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the maximal-cut, can be obtained independently by quadrature. This example reveals
a close connection between the decoupling of the DEQ for a MI and the vanishing of
its maximal-cut. In fact, precisely a vanishing maximal-cut could be seen as the hint
of the decoupling of the DEQ, since only a decoupled equation would be automatically
satisfied by a zero solution without imposing strong constraints on the maximal-cuts of
the other MIs.

After decoupling F3(~x), we are left with two homogeneous first-order DEQs for the
MIs F1 and F2,

{
∂xH1(~x) = a11(~x)H1(~x) + a12(~x)H2(~x)

∂xH2(~x) = a21(~x)H1(~x) + a22(~x)H2(~x) .
(9.129)

These systems can be rephrased as a second-order DEQs for one of the two integrals.
For instance, if we choose F1(~x) and we differentiate w.r.t. the internal mass, we have

∂2
m2H1(~x) =

s2
(
48m4 − 16m2(t+m2

h) + (t−m2
h)

2
)
+ 48m4t2 + 16m2st(6m2 − t+m2

h)

m2
(
(m2

h − 4m2)2s2 + t2(s− 4m2)2 − 2(4m2 +m2
h)st(s− 4m2)

) ∂m2H1(~x)

− 2
(
s2(−6m2 + t+m2

h) + st(−12m2 + t−m2
h)− 6m2t2

)

m2
(
(m2

h − 4m2)2s2 + t2(s− 4m2)2 − 2(4m2 +m2
h)st(s− 4m2)

)H1(~x) , (9.130)

Other three similar equations can be determined by taking derivatives w.r.t. s, t and m2
h.

The two independent solutions of this set of second-order DEQs can be found by
direct computation of the maximal-cut of F1(x). As in the previous examples, we
start by computing the maximal-cut of one of the two sub-loops, namely k2, which
corresponds to a one-loop triangle with three off-shell legs of the type studied in 9.3. In
this way, using eq. (9.69), we obtain

MCut




p1

p2

p3

p4


 =

∫
d̃4k1 δ(k

2
1 −m2)δ((k1 − p1)

2 −m2)δ((k1 − p1 − p2)
2 −m2)

× 1√
P2(k2, k · p3)

, (9.131)

where we defined

P2(k
2, k · p3) = m4 + ((k1 + p3)

2 −m2
h)

2 − 2m2((k1 + p3)
2 +m2

h) . (9.132)

The three remaining δ-function can be easily solved by introducing the d-dimensional
Baikov parametrization of a one-loop box for k1,

MCut




p1

p2

p3

p4


 = lim

d→4
G(p1, p2, p3)

4−d
2

∫
dz1dz2dz3dz4

δ(z1)δ(z2)δ(z3)√
P2(zi)

G(zi)
d−5
2 ,

(9.133)

where zi = Di, i = 1, 2, 3 and the ISP z4 is defined as z4 = s − k1 · (p1 + p2 + p3).
In eq. (9.133) G(zi) stems for the polynomial in the zi variables which originates from
the Gram determinant G(k1, p1, p2, p3), whose explicit form is not reported for ease
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of writing. From eq. (9.133) we see immediately that in four dimensions there is no
contribution from the external Gram determinant G(p1, p2, p3), and the maximal-cut is
simply obtained by evaluating the integrand in the origin of the hyperplane spanned by
the denominators z1, z2 and z3,

MCut




p1

p2

p3

p4


 =

∫

C
dz4

1√
P2(zi)

√
G4(zi)

∣∣∣∣
z1,2,3=0

=
1

s

∫

C
da

1√
R4(a, ~x)

,

(9.134)

where R4(a, ~x) is a fouth-degree polynomial of the type (9.38), whose roots are given
by

a4 =
1

2

(
s+ t− 2

√
−t um2

s

)
, a2 =

1

2

(
s+ t+ 2

√
−t um2

s

)
,

a3 =
s+m2

h − 2
√
m2

hm
2

2
, a4 =

s+m2
h + 2

√
m2

hm
2

2
. (9.135)

If we suppose to be in the kinematic region a4 < a2 < a3 < a4 (any other region can
be reached by analytic continuation), the two homogeneous solutions for F1(~x) are,
according to eq. (9.42),

H
(1)
1 (~x) =

∫ a2

a4

dz4√
−R4(a, ~x)

,

H
(2)
1 (~x) =

∫ a3

a2

da√
R4(a, ~x)

. (9.136)

With the usual change of variables (9.44), we can express the two solutions in terms of
complete elliptic integrals of the first kind,

H
(1)
1 (~x) =

1√
Y
K(ω) ,

H
(2)
1 (~x) =

1√
Y
K(1− ω) (9.137)

with

ω =
16m2

√
−s t um2

h

Y
,

Y =s
(
m2

h − t
)2 − 4m2

(
m2

h(s− t) + t(s+ t)− 2
√
−s t um2

h

)
. (9.138)

We observe that H
(1)
1 (~x) has a smooth behaviour in the limit of vanishing internal mass

m2 → 0,

H
(1)
1 (~x) =

m2→0

1

s(m2
h − t)

, (9.139)

which reproduces the correct result for the maximal-cut of a six-denominator box with
massless propagators. In addition, we have verified explicitly that eqs. (9.137) satisfy
the second-order DEQ (9.130), as well as the ones in the Mandelstam invariants s, t
and m2

h. An alternative representation has been determined, in the physical region
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s ,m2
h > 0, t , u < 0 in [60].

In this respect, we would like stress that different (but equivalent) representations of the
homogeneous solutions can be obtained by exploiting the symmetry properties of the
DEQ (9.48) satisfied by K(ω), for instance under the transformation ω → 1/ω. In fact,
if K(x) and K(1 − x) are solutions of (9.48), then another couple of solutions is given
by 1/

√
xK(1/x) and 1/

√
xK(1 − 1/x). However, since any second-order DEQ admits

only two independent homogeneous solutions, we must have

1√
x
K

(
1

x

)
=c1K(x) + c2K(1− x) ,

1√
x
K

(
1− 1

x

)
=c3K(x) + c3K(1− x) (9.140)

for some (complex) constants ci. Of course, since K(x) develops a branch cut when
x > 1, one should assign a small imaginary part to x, which determines the sign of
the imaginary parts of the coefficients ci. For example, if we adopt the prescription
x → x+ i 0+ and we assume 0 < x < 1, we find

1√
x
K

(
1

x

)
= K(x)− iK(1− x) ,

1√
x
K

(
1− 1

x

)
= K(1− x) . (9.141)

This means that we can equivalently take as homogeneous solutions of eq. (9.130) iether

H
(1)
1 (~x) and H

(2)
1 (~x) defined above or the two new solutions

H̃
(1)
1 (~x) =

1√
sm2(−s t um2

h)
1/4

K

(
1

ω

)
,

H̃
(2)
1 (~x) =

1√
sm2(−s t um2

h)
1/4

K

(
1− 1

ω

)
. (9.142)

The arguments of the elliptic integrals appearing in eq. (9.142) match the ones found
in [103], where the second order DEQs were solved by parametrizing the Mandelstam
variables in terms of an additional dimensionless parameter and by matching the second-
order DEQ w.r.t. such parameters with the elliptic DEQ (9.48).

9.5 The three-loop massive banana graph

In this final section, we apply the DEQs method to calculation of the three-loop massive
banana graph in d = 2 − 2ǫ space-time dimensions. This problem constitutes a clean
–yet valuable– test of the generality of the method proposed in section 9.2 for the
computation of the homogeneous solutions as it involves the solution of a genuine third-
order DEQ. For related related studies on this integral, we refer the reader to [105, 106].

9.5.1 System of differential equations

We consider the three-loop two-point integral family defined by (ai ≥ 0)

p
m

m

m
m

= Ia1 a2 a3 a4 a5 a6 a7 a8 a9
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=

∫
d̃dk1 d̃dk2d̃dk3

(k1 · p)a6(k2 · p)a7(k3 · p)a8(k1 · k2)a9
Da1

1 Da2
2 Da3

3 Da4
4

, (9.143)

where p2 = s 6= 0 and the loop denominators are given by

D1 = k21 −m2 , D2 = k22 −m2 ,

D3 = (k1 − k3)
2 −m2 , D4 = (k2 − k3 − p)2 −m2 . (9.144)

Our integration measure is defined as

∫
d̃dk =

(m2)
4−d
2

iπd/2Γ
(
4−d
2

)
∫

ddk

(2π)d
, (9.145)

in such a way that the one-loop tadpole integral reads

∫
d̃dk

k2 −m2
=

2m2

d− 2
. (9.146)

The three-denominator integrals belonging to the family (9.143) are usually referred to
as three-loop banana graphs or three-loop sunrise graphs. Besides one single subtopol-
ogy (which corresponds to the three-loop tadpole), IBPs reduction returns three inde-
pendent MIs, which we choose as

F1(ǫ, x) =(1 + 2ǫ)(1 + 3ǫ)(m2)−2I1 1 1 1 0 0 0 0 0 ,

F2(ǫ, x) =(1 + 2ǫ)(m2)−1I2 1 1 1 0 0 0 0 0 ,

F3(ǫ, x) =I2 2 1 1 0 0 0 0 0 , (9.147)

where the normalization factors have been defined for later convenience. For the three-
loop tadpole we chose, instead, the master integral F0 = I2 2 2 0 0 0 0 0 0, which in our
normalization becomes simply

F0(ǫ;m
2) = I2 2 2 0 0 0 0 0 0 = 1 . (9.148)

We study the DEQs satisfied by the MIs in the dimensionless variable

x =
4m2

s
, (9.149)

and, as for the case of the two-loop sunrise, we work in d = 2 − 2ǫ, since the scalar
massive bubbles are both IR finite and UV finite in two dimensions. The ǫ-linear system
of DEQs in x satisfied by F1(x), F2(x) and F3(x) is

∂xF(ǫ, x) = (A0(x) + ǫA1(x))F(ǫ, x) + S(x) , (9.150)

where Ai(x) are 3× 3 matrices that do not depend on ǫ,

A0(x) =




1
x

4
x 0

− 1
4(x−1)

1
x − 2

x−1
3
x − 3

x−1
1

8(x−1) − 1
8(4x−1)

1
x−1 − 3

2(4x−1)
1
x − 6

4x−1 + 3
2(x−1)


 , (9.151)

A1(x) =




3
x

12
x 0

− 1
x−1

2
x − 6

x−1
6
x − 6

x−1
1

2(x−1) − 1
2(4x−1)

3
x−1 − 9

2(4x−1)
1
x − 12

4x−1 + 3
x−1


 , (9.152)
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(9.153)

and S(x)i s the inhomogeneous term originated from the massive tadpole (9.148),

S(x) =




0
0

− 1
2(4x−1)


 . (9.154)

In ǫ = 0 the system becomes (as usual, we denote by H(x) the vector of homogeneous
solutions associated to the MIs F(ǫ, x)),

∂xH(x) = A0(x)H(x) , (9.155)

and it can be rephrased in terms of a third-order DEQ for one of the MIs, say H1(x),

[
∂3
x +

3(8x− 5)

2(x− 1)(4x− 1)
∂2
x +

4x2 − 2x+ 1

(x− 1)x2(4x− 1)
∂x +

1

x3(4x− 1)

]
H1(x) = 0 . (9.156)

Once the solutions of eq. (9.156) are known, H2(x) and H3(x) can be expressed in terms
of H1(x) and its first two derivatives,

H2(x) =
1

4
[x∂x − 1]H1(x) , (9.157)

H3(x) =
1

12

[
x2(1− x)∂2

x − (1 + x)x∂x + 1
]
H1(x). (9.158)

Eq. (9.156) admits three independent solutions. Our goal is to build, starting from the
maximal-cut of F1(x), a 3× 3 matrix of homogeneous solutions,

G(x) =




H1
1 (x) H

(2)
1 (x) H

(3)
1 (x)

H
(1)
2 (x) H

(2)
2 (x) H

(3)
2 (x)

H
(1)
3 (x) H

(2)
3 (x) H

(3)
3 (x)


 , (9.159)

which can then be used in order to bring the system (9.150) into an ǫ-factorized form. We
observe that the singularity structure of eq. (9.156), or equivalently of the system (9.155)
is rather simple, as it is characterized by only four regular singular points x = 0, x = 1/4,
x = 1 and x = ±∞, which correspond, respectively, to s = ±∞, s = 16m2, s = 4m2 and
s = 0. This structure closely resembles the one of the two-loop massive sunrise, given
in eq. (9.90), whose solutions have been expressed in terms of complete elliptic integrals
of the first and second kind. Therefore, it is particularly interesting to investigate the
class of functions that appear in the solution of eq. (9.156) and how they generalize the
ones required for the integration of the two-loop sunrise graph. We anticipate that, as
we will see in the next section, the three-loop case can be solved in terms of products

of complete elliptic integrals of first and second kind.
Before entering the detailed discussion of the computation of the maximal-cuts, let

us recall that, in order to transform the system of DEQs (9.150) to the ǫ-factorized
form,

∂xI(ǫ, x) =ǫ Ã1(x)I(ǫ, x) + S̃(x) , (9.160)

with F(ǫ, x) = G(x)I(ǫ, x) and

Ã1(x) = G
−1(x)A1(x)G(x) , S̃(x) = G

−1(x)S(x) , (9.161)
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we need, besides the homogeneous matrix G(x), its inverse.G−1(x) can be directly de-
termined from the entries of G(x) as dictated by eq. (9.18),

G
−1(x) =

1

W (x)


H
(3)
3 H

(2)
2 −H

(3)
2 H

(2)
3 H

(3)
1 H

(2)
3 −H

(3)
3 H

(2)
1 H

(3)
2 H

(2)
1 −H

(3)
1 H

(2)
2

H
(1)
3 H

(3)
2 −H

(1)
2 H

(3)
3 H

(1)
1 H

(3)
3 −H

(1)
3 H

(3)
1 H

(1)
2 H

(3)
1 −H

(1)
1 H

(3)
2

H
(1)
2 H

(2)
3 −H

(1)
3 H

(2)
2 H

(1)
3 H

(2)
1 −H

(1)
1 H

(2)
3 H

(1)
1 H

(2)
2 −H

(1)
2 H

(2)
1


 , (9.162)

where W (x) is the Wronskian determinant. As we have already discussed, Abel theorem
allows us to obtain, up to an overall constant, the expression of W (x) independently
from the actual expression of G(x). In fact, according to eq. (9.21), W (x) satisfies the
first-order DEQ,

∂xW (x) =
8x2 − 17x+ 6

2x(x− 1)(4x− 1)
W (x) , (9.163)

which immediately yields to

W (x) =
c0x

3

√
(1− 4x)3(1− x)

. (9.164)

9.5.2 The maximal-cut of the banana graph

In this section, we compute the maximal-cut of the scalar banana graph F1(x) in d = 2,
which is defined by the ǫ → 0 limit of eq. (9.147). As for the two-loop examples discussed
in section 9.4, we can evaluate the maximal-cut of the graph by cutting individual sub-
loops first, in order to reuse the information on the maximal-cuts of integral topologies
with a lower number of loops, and obtain a representation of the maximal-cut in terms
of a minimal number of integration variables.

In particular, we observe that F1(x) can be written as an integral over two one-loop
bubbles,

F1(x) =

∫
d̃2k3

∫
d̃2k1

1

(k21 −m2)((k1 − k3)2 −m2)

×
∫

d̃2k2
1

(k22 −m2)((k2 − (k3 + p))2 −m2)
. (9.165)

Therefore, we can localize the integrals over k1 and k2 independently, by using the
expression (9.60) of the maximal-cut of a one-loop massive bubble in d = 2,

MCut[F1(x)] =

∫

C

d2k3√
k23(k

2
3 − 4m2)

√
(k3 + p)2 ((k3 + p)2 − 4m2)

. (9.166)

The choice of the integration contour C will be specified later on.
The simultaneous cut of the four propagators left us with a two-fold integral over

the loop momentum k3, which can be conveniently parametrized by decomposing both
the loop momentum and the external one in terms of two arbitrary massless momenta
pµ1 and pµ2 ,

pµ = pµ1 + pµ2 , kµ3 = a pµ1 + b pµ2 , (9.167)

with p21 = p22 = 0. In this way, the scalar products appearing in eq. (9.166) are written
as

k23 = a b s (k3 + p)2 = (a+ 1)(b+ 1) s , (9.168)
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and the integration measure becomes
∫

C
d̃2k3 =

s

2

∫

C
da db , (9.169)

where, in the r.h.s., C represents a still unspecified contour in the space spanned by
the components a and b. In this parametrization, the maximal-cut becomes (up to a
multiplicative constant)

MCut[F1(x)] = x

∫

C′

da db√
R8(a, b, x)

, (9.170)

where R8(a, b, x) is the rank-eight polynomial in the variables a and b

R8(a, b, x) = a b (a b− x)(a+ 1)(b+ 1) ((a+ 1)(b+ 1)− x) . (9.171)

We now need to understand what are the possible integration bounds that correspond
to the independent solutions of eq. (9.156). According to the reasoning of section 9.2,
any portion of any region (9.174) which is delimited by the zeroes of R8(a, b, x) (and
the point at infinity) is a valuable solution to the homogeneous DEQ, since it ensure
the vanishing of all boundary terms. The analysis is simpler if we consider one integral
at a time.

Let us analyse first with the integral over a1, by rewriting eq. (9.170) as

MCut[F1(x)] = x

∮

Cb

db

b(b+ 1)

∮

Ca

da√
(a− a1) (a− a2) (a− a3) (a− a4)

, (9.172)

where we introduced the abbreviations

a1 = −1 , a2 =
x

b+ 1
− 1 , a3 = 0 , a4 =

x

b
. (9.173)

From eq. (9.172) we see that the integral in da is an integral over a square root of a
quartic polynomial of the type studied in section 9.2, whose branching-points ai, which
are defined in eq. (9.173) vary as a function of b and x. Thus, for a fixed value of x each
branching-point identifies different curves in the ba-plane, which we draw in different
colours in figure 9.2. Moreover, if we suppose, without loss of generality, 1/2 < x < 1
(i.e. 4m2 < s < 8m2) we can divide the ba-plane into five different regions, depending
on the value of the variable b,

I : b ∈ (−∞,−1) , II : b ∈ (−1,−x) ,

III : b ∈ (−x, x− 1) , IV : b ∈ (x− 1, 0) ,

V : b ∈ (0,∞) . (9.174)

which correspond to a particular ordering of the branching-points (9.173). Therefore,
when moving within each of these regions, no branch cut is crossed, since the sign of
argument of the square root in eq. (9.172) is fixed.

According to eq. (9.42), for each of the regions (9.174) J = I , II , , . . . ,V, we can
define two independent functions fJ

i (x), i = 1, 2, by varying the integration range of a.
Hence, we have a total of 10 putative homogeneous solutions,

f I
1(x) =x

∫ −1

−∞
db

∫ −1

x/(b+1)−1

da√
−R8(a, b, x)

,

1Notice that the starting integral is symmetric in a and b, so the following analysis can be equally

repeated by inverting the role of the two variables.
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Figure 9.2: Solide lines represent the set of points where the argument of the square
root in eq. (9.170) changes sign.

f I
2(x) =x

∫ −1

−∞
db

∫ x/b

−1

da√
R8(a, b, x)

, (9.175)

f II
1 (x) =x

∫ −x

−1
db

∫ x/b

−1
da

da√
−R8(a, b, x)

,

f II
2 (x) =x

∫ −x

−1
db

∫ 0

x/b

da√
R8(a, b, x)

, (9.176)

f III
1 (x) =x

∫ x−1

−x
db

∫ −1

x/b

da√
−R8(a, b, x)

,

f III
2 (x) =x

∫ x−1

−x
db

∫ 0

−1

da√
R8(a, b, x)

, (9.177)

f IV
1 (x) =x

∫ 0

x−1
db

∫ −1

x/b

da√
−R8(a, b, x)

,

f IV
2 (x) =x

∫ 0

x−1
db

∫ x/(b+1)−1

−1

da√
R8(a, b, x)

, (9.178)

fV
1 (x) =x

∫ ∞

0
db

∫ x/(b+1)−1

−1

da√
−R8(a, b, x)

,

fV
2 (x) =x

∫ ∞

0
db

∫ 0

x/(b+1)−1

da√
R8(a, b, x)

. (9.179)
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The sign in the square-root has been chosen in such a way that every fJ
i (x) is real. We

should notice that many of these functions are related to each other by simple symmetry
transformations.

First of all, the integrand in eq. (9.170) is symmetric under {a ↔ b} and {a →
−a− 1, b → −b− 1} (and, hence, under a combination of these two symmetries). It is
easy to see that under the transformation {a → −a− 1, b → −b− 1} the regions I and
V, and the regions II and IV are mapped into each other. Consistently, we find

f I
1(x) = fV

1 (x) , f I
2(x) = fV

2 (x) , f II
1 (x) = f IV

1 (x) , f II
2 (x) = f IV

2 (x) . (9.180)

The effect of the symmetry {a ↔ b} is less immediate. Let us consider fV
1 (x) as an

example. By using R8(a, b, x) = R8(b, a, x), we can rename a and b, exchange the order
of integration, and obtain

fV
1 (x) = x

∫ ∞

0
da

∫ x/(a+1)−1

−1

db√
−R(a, b, x)

= x

∫ x−1

−1
db

∫ x/(b+1)−1

0

da√
−R8(a, b, x)

= x

∫ −x

−1
db

∫ x/(b+1)−1

0

da√
−R8(a, b, x)

+ x

∫ x−1

−x
db

∫ x/(b+1)−1

0

da√
−R8(a, b, x)

= f III
1 (x) + f IV

1 (x) . (9.181)

In the last step, we used eq. (9.180). With a similar calculation we can show that

fV
2 (x) =

1

2
f III
2 (x) + f IV

2 (x) . (9.182)

The six linear relations (9.180)-(9.181)(9.182) reduce down to four the number of inde-
pendent functions, which we can choose to be

fV
1 (x) , fV

2 (x) , f IV
1 (x) , f IV

2 (x) . (9.183)

Although we have found four independent functions, they are not yet guaranteed to
be actual solutions of the DEQ(9.156). In fact, a solution is obtained only when the
maximal-cut is integrated over a region of the ba-plane bounded by branching-points. It
is easy to see from figure 9.2 and from the definition of the functions (9.178, 9.179) that,
while fV

1 (x) and fV
2 (x) indeed fulfil this requirement, f IV

1 (x) and f IV
2 (x) apparently do

not. Nonetheless, we should remind that, for any given region in b, different choices
of the integration boundaries in a can produce equivalent results, as summarized in
eq. (9.42).

Let us look more closely at figure 9.2, where the integration region corresponding
to the four functions are represented by the shaded areas 1 and 2. For both region IV
and V, the integration over the areas 1 and 3 produce equivalent results. For instance,
if we specialize eq. (9.2) to region IV,

∫ −1

x/b

da√
−R(a, b, x)

=

∫ 0

x/(b+1)−1

da√
−R(a, b, x)

,

we get

f IV
1 (x) = x

∫ 0

x−1
db

∫ −1

x/b

da√
−R8(a, b, x)

= x

∫ 0

x−1
db

∫ 0

x/(b+1)−1

da√
−R8(a, b, x)

,

(9.184)
As it is clear from the figure, the second integral representation in (9.184) is now inte-
grated in a region bounded by the branching-points. As a consequence, f IV

1 (x) is a a
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solution of the third-order DEQ. The same cannot be said of f IV
2 (x), which cannot be

rewritten as an integral over a region bounded by branching-point only.
The complete set of three independent solutions is therefore given by fV

1 (x), fV
2 (x)

and f IV
1 (x). Interestingly, if we want to build a viable solution of the homogeneous

DEQ which involves the function f IV
2 (x), we should consider the combination

f(x) = f II
2 (x) + f III

2 (x) + f IV
2 (x). (9.185)

As this function is defined by integrating in a region delimited by the branching-points
of R8(a, b, x), it must be a solution of the third-order DEQ. On the other hand, we have
already determined three independent solutions. Hence, it must be possible to write
f(x) as a linear combination of fV

1 (x), fV
2 (x) and f IV

1 (x). Consistently, if we make use
of eqs. (9.180), (9.181) and (9.182) we find

f(x) = f III
2 (x) + 2 f IV

2 (x) = 2 fV
2 (x), (9.186)

which proves that f(x) is not independent from the chosen homogeneous solutions.

The homogeneous solutions

The above analysis allowed us to determine three independent homogeneous solutions
in form of the two-fold integral representations

f IV
1 (x) , fV

1 (x) , fV
2 (x) , (9.187)

which are defined in eqs. (9.178) and (9.179). In the following, we show that these
integrals can be evaluated in terms of known functions.

First of all we perform the integral in da which is type defined in eq. (9.37) ad yields,
in all cases, to a complete elliptic integral of the first kind. By using the change of
variables (9.44), we obtain

f IV
1 (x) = 2x

∫ 0

x−1

db√
b(b+ 1)

√
b(b+ 1) + x

K

(
1− x2

b(b+ 1) + x

)
, (9.188)

fV
1 (x) = 2x

∫ ∞

0

db√
b(b+ 1)

√
b(b+ 1) + x

K

(
x2

b(b+ 1) + x

)
, (9.189)

fV
2 (x) = 2x

∫ ∞

0

db√
b(b+ 1)

√
b(b+ 1) + x

K

(
1− x2

b(b+ 1) + x

)
. (9.190)

These one-fold integral representations are already more convenient for numerical evalu-
ation than the original two-fold ones. Nonetheless, with some less trivial manipulation,
we can evaluate analytically also the integrals over db. We will work out in detail the
expressions for fV

1 (x) and fV
2 (x). A similar calculation can be performed also for the

first function, f IV
1 (x) butwe will not need its explicit expression in order to build the

matrix of homogeneous solutions, as it will soon become clear.
Let us consider eqs. (9.188) (9.189)) and perform the change of variables

b(b+ 1) = y2 ,

∫ ∞

0
ddb =

∫ ∞

0

2y√
1 + 4y2

dy , (9.191)

so that the two integrals become

fV
1 (x) = 2x

∫ ∞

0

dy√
(y2 + x) (y2 + 1/4)

K

(
x2

y2 + x

)
, (9.192)
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fV
2 (x) = 2x

∫ ∞

0

dy√
(y2 + x) (y2 + 1/4)

K

(
y2 + x(1− x)

y2 + x

)
. (9.193)

Next, we introduce three parameters α, β and Γ, which are implicitly defined by

(α+ β)2 = x , (α− β)2 = x(1− x) , Γ =
1

2
. (9.194)

In general, for a given value of x, four different pairs of solutions exist to these equations,
and we can choose any of these. For definiteness, we pick

α =

√
x+

√
x(1− x)

2
, β =

√
x−

√
x(1− x)

2
, (9.195)

where we are assuming 0 < x < 1. For any given pair of solutions, fV
1 (x) and fV

2 (x)
read

fV
1 (x) = 2x

∫ ∞

0

dy√
(y2 + (α+ β)2)(y2 + Γ2)

K

(
2αβ

y2 + (α+ β)2

)
, (9.196)

fV
2 (x) = 2x

∫ ∞

0

dy√
(y2 + (α+ β)2)(y2 + Γ2)

K

(
y2 + (α− β)2

y2 + (α+ β)2

)
. (9.197)

The integrals (9.196)-(9.197) are now in a standard form. In particular, the calculation
of (9.197) is discussed in [272] (see eq. (33) therein). Suitable extensions of the methods
described there allow us to compute also the integral (9.196). As a result, fV

1 (x) and
fV
2 (x) are both expressed in terms of products of complete elliptic integrals of the first

kind,

fV
1 (x) = 2xK(k2−)K(k2+) (9.198)

fV
2 (x) = 4x

(
K(k2−)K(1− k2+) + K(k2+)K(1− k2−)

)
, (9.199)

where we have defined

k± =

√
(Γ + α)2 − β2 ±

√
(Γ− α)2 − β2

2Γ
with k− =

(α
Γ

) 1

k+
=

2α

k+
.

(9.200)

The explicit derivation of eqs. (9.198)-(9.198) is given in appendix D.
It is easy to prove by direct calculation that these functions solve the third-order

DEQ (9.156) for every choice of α, β and, in particular, for the choice we made in
eq. (9.195).

Although we have computed only two of the solutions, we can easily identify from
eqs. (9.198)-(9.199) three independent solutions of the third-order DEQ (9.156) as the
three functions

H
(1)
1 (x) =xK

(
k2+
)
K
(
k2−
)
,

H
(2)
1 (x) =xK

(
k2+
)
K
(
1− k2−

)
,

H
(3)
1 (x) =xK

(
1− k2+

)
K
(
k2−
)
. (9.201)

These results allow us to fix completely the first row of the matrix G(x). The other two
rows, which correspond to the homogeneous solutions of F2(x) and F3(x), can then be
obtained from eqs. (9.157), (9.158). We do not report the results here for brevity, but
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we have checked that the Wronskian of these solutions agrees with the result of Abel
theorem (9.164),

W (x) = − π3x3

512
√
(1− 4x)3(1− x)

. (9.202)

By inspecting the three solutions, it is natural to wonder what happens if we consider
one further products of elliptic integrals,

H
(4)
1 (x) = xK

(
1− k2+

)
K
(
1− k2−

)
. (9.203)

It is simple to prove by direct calculation that also eq. (9.203) solves the homogeneous
DEQ (9.156). Of course, since a third-order DEQ admits only three independent solu-
tions, this last solution cannot be linearly independent from the previous three. The
linear dependence can be checked numerically, for instance through the PSLQ algo-
rithm. Since the four functions develop imaginary parts for x < 0 or x > 1/4, the
exact relation between the solutions depends on the value of the variable x and on the
convention for their analytic continuation. With the choice (9.195) and by and taking
0 < x < 1

4 (where all solutions eqs. (9.201,9.203) are real valued), we find

H
(4)
1 (x)|0<x< 1

4
=

1

3
H

(1)
1 (x)|0<x< 1

4
. (9.204)

One last comment is in order. We have computed explicitly two out of the three in-
tegrals (9.187) and we have nonetheless been able to extract a representation for all

three independent solutions of the DEQ. Indeed, if f IV
1 (x) is also a solution of the the

DEQ, and if the solutions chosen in eq. (9.201) are independent, it must be possible to
write f IV

1 (x) as a linear combination of the latter. Consistently, if we consider the range
1/4 < x < 1, where f IV

1 (x) is real-valued, and we adopt the prescription x → x+ i 0+,
we find

f IV
1 (x) = 4

(
H

(1)
1 (x) + iH

(2)
1 (x)− iH

(3)
1 (x)

)
, (9.205)

which, as expected, shows that also f IV
1 (x) is a solution of the third-order DEQ satisfied

by the banana graph.

9.5.3 The third-order differential equation as a symmetric square

In the previous section we showed that the independent solutions of the third-order
DEQ (9.156) can be found by integrating the maximal-cut of the three-loop massive
banana graph along independent contours. In [105], an alternative representation of the
solutions was found, in a different context, by observing that eq. (9.156) is a symmetric
square.
A third-order differential operator L3(x),

L3(x) = ∂3
x + c2(x)∂

2
x + c1(x)∂x + c0(x) , (9.206)

is said to be a symmetric square if three independent solutions gi(x) of the corresponding
homogeneous equation can be written as

g1(x) = (f1(x))
2 , g2(x) = f1(x) f2(x) , g3(x) = (f2(x))

2 , (9.207)

where the two functions f1(x) and f2(x) are in turn solutions of the second-order DEQ
defined by the differential operator

L2(x) = ∂2
x + a1(x)∂x + a0(x) . (9.208)
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Testing whether a third-order differential operator is a symmetric square and building
the corresponding second-order differential operator is very simple. By starting from
the coefficients of L3(x) in eq. (9.206) we can build the following two combinations

α1(x) =
1

3
c2(x) , α0(x) =

c1(x)− α′
1(x)− 2α2

1(x)

4
, (9.209)

where α′
1(x) = ∂xα1(x). Now, if the following relation is satisfied

4α0(x)α1(x) + 2
dα0(x)

dx
= c0(x) , (9.210)

then the differential operator L3(x) is the symmetric square of the second-order differ-
ential operator

L2(x) =
d2

d2x
+ α1(x)

d

dx
+ α0(x) . (9.211)

It is straightforward to check that the third-order DEQ (9.156) is a symmetric square.
Given the coefficients

c2(x) =
3(8x− 5)

2(x− 1)(4x− 1)
, c1(x) =

4x2 − 2x+ 1

(x− 1)x2(4x− 1)
, c0(x) =

1

x3(4x− 1)
,

(9.212)

we find

α1 =
8x− 5

2(x− 1)(4x− 1)
, α0 = − 2x− 1

4(x− 1)x2(4x− 1)
, (9.213)

which indeed satisfy

4α0(x)α1(x) + 2 ∂xα0(x) =
1

x3(4x− 1)
= c0(x) . (9.214)

Therefore the DEQ obeyed by the three-loop banana graph can be written as symmetric
square combinations of the two independent solutions of the second-order DEQ

[
d2

d2x
+

8x− 5

2(x− 1)(4x− 1)

d

dx
− 2x− 1

4(x− 1)x2(4x− 1)

]
f(x) = 0 , (9.215)

Eq. (9.215) can be solved in terms of a class of special functions known as it Heun
functions and it can be shown that such functions can be rewritten as a product of
elliptic integrals

H(1)
1 (x) = K (ω+)K (ω−) ,

H(2)
1 (x) = K (ω+)K (1− ω−) ,

H(3)
1 (x) = −1

3
K (1− ω+)K (1− ω−) , (9.216)

where we defined

ω± =
1

4x

(
2x+ (1− 2x)

√
x− 1

x
±
√

4x− 1

x

)
. (9.217)
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For a detailed derivation of these results, we refer the reader to [105] and references
therein, where it is also shown that the solutions (9.216) are explicitly real for for x >
and that the elliptic integrals K(ω±) satisfy

K(ω+) =

(√
4− 4

x
−
√

1− 1

x

)
K(ω−) , x > 1 . (9.218)

Being solutions of the same DEQ, the representations (9.201) and (9.216) must be
equivalent, although they look quite different. Proving by algebraic manipulations this
equivalence is highly non-trivial, in particular since the exact relations among the two
depends on the particular kinematic region. In fact, every time we cross a singular
point of the DEQ (9.156), each of the three solutions (9.216) gets mapped to a linear
combination of the three functions Hi

To give an example, we consider he region x > 1 where the functions (9.216) are
real and we use the prescription x → x + i0+ to analytically continue the solutions
found in (9.201). By making use of the PSLQ algorithm we can verify (with virtually
arbitrary precision) that

H(1)
1 (x) = 2 iH

(1)
1 (x)−H

(2)
1 (x) +H

(3)
1 (x) ,

H(2)
1 (x) = −2 iH

(1)
1 (x) + 3H

(2)
1 (x)−H

(3)
1 (x) ,

H(3)
1 (x) = −iH

(2)
1 (x) + iH

(3)
1 (x) , (9.219)

which shows the equivalence between the two sets of solutions.
With this representation of the homogeneous solutions of F1(x), we can determine

the other two rows of the matrix G(x) by differentiating (9.201) as in eq. (9.158) .
Obviously, the Wronskian of this new matrix G(x) still satisfies Abel Theorem (9.164),

W (x) =
π3x3

64
√
(4x− 1)3(x− 1)

. (9.220)

In the last two sections, we have obtained two equivalent representations of the matrix
G(x) defined in eq. (9.159). In both cases, however, the homogeneous solutions are
well-defined only on a limited interval of the x-axis, since they have branching-points
in all the four singular points x = 0, x = 1/4, x = 1 and x = ∞ of the DEQ (9.156). In
particular, it can be verified that the solutions built in this section are real for x > 1 but
they develop an imaginary part whenever x < 1. In addition, they have discontinuities
in all other singular points. On the other hand, the solutions found in (9.201) turn out
to be real only for 0 < x < 1/4. In order to properly analytically continue the results for
every value of x, we need to build other sets of solutions, similar to (9.216) or (9.201), but
real-valued in in the remaining regions (−∞, 0), (1/4, 1), and then match the different
real representations of G(x) across the singular points. Indeed, in every patch (a, b)
real solutions can be built from simple linear combinations of (9.201) or (9.216). Many
different combinations are possible and we refer to appendix C for the details of one
possible choice. In order to distinguish these different sets of real-valued solutions we

introduce the notation H
[i; (a,b)]
(k) (x), which stems for the k-th homogeneous solution of

i-th MI which is real for a < x < b. The corresponding matrix of solutions is then
indicated as G(a,b)(x). Finally, we normalize the homogeneous solutions for all values of
x in such a way that the corresponding Wronskian W (a,b)(x) is equal to (9.220), up to a
possible overall factor i, which appears when the argument of the square-root becomes
negative.
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9.5.4 The inhomogeneous solution

In this section, we make use of the procedure described in section 9.1 in order to com-
pute the series expansion around d = 2 of the solution of the system (9.150). The
following discussion holds for any of the kinematic regions a < x < b located by the
four singular points of the DEQs and, hence we keep giving as understood the subscript
(a, b).

Both bases of MIs Fi(x) and Ii(x) are finite in d = 2 and they can be Taylor-
expanded as

Fi(ǫ, x) =
∞∑

k=0

F
(k)
i (x)ǫk , Ii(ǫ, x) =

∞∑

k=0

I
(k)
i (x)ǫk i = 1, 2, 3. (9.5.1)

By substituting eq. (9.5.1) into (9.160), we obtain a particularly simple set of chained

first-order DEQs for the coefficients I
(k)
i (x),

∂x




I
(0)
1

I
(0)
2

I
(0)
3


 =G

−1(x)




0
0
1

2(1−4x)


 (9.5.2)

and

∂x




I
(n)
1 (x)

I
(n)
2 (x)

I
(n)
3 (x)


 = ǫG

−1(x)A1(x)G(x)




I
(n−1)
1 (x)

I
(n−1)
2 (x)

I
(n−1)
3 (x)


 , n > 0. (9.5.3)

From eq. (9.5.3) we see that the MIs I(x) have a manifest iterative structure (see
eq. (9.11)), since each coefficient I(n)(x) can be simply written as an integral of the
lower order term I(k−1)(x), convoluted with the integration kernel G−1(x)A1(x)G(x).
Together with the integration of the lowest order (9.5.2), this kernel specifies the class
of functions required at every order in ǫ.

Once I(n)(x) have been determined, the corresponding term of the ǫ-expansion of
the original MIs F(x) can be obtained by applying the rotation matrix G(x) back to
the integrals I(x), according to the definition (9.4),




F
(n)
1 (x)

F
(n)
2 (x)

F
(n)
3 (x)


 = G(x)




I
(n)
1 (x)

I
(n)
2 (x)

I
(n)
3 (x)


 . (9.5.4)

In the remaining part of this section, we will limit ourselves to the determination of
the order zero terms F(0)(x). Of course, this does not provide a complete solution to
the problem, as the calculation of the leading term of the ǫ-expansion does not require
to integrate over the kernel G−1(x)A1(x)G(x). Although the method described in this
section can be used to provide a representation suitable for numerical evaluation also
for the higher orders terms, it would be advisable to first study and classify the prop-
erties of the functions defined by repeated integrations over the kernel above, in order
to have analytic control over the solution. This problem will be addressed in future work.
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The DEQs (9.5.2) can be readily solved by quadrature,

I
(0)
1 (x) = c

(0)
1 +

∫ x

x0

dt
1

1− 4t
R1(t) ,

I
(0)
2 (x) = c

(0)
2 +

∫ x

x0

dt
1

1− 4t
R2(t) ,

I
(0)
3 (x) = c

(0)
3 +

∫ x

x0

dt
1

1− 4t
R3(t) , (9.5.5)

where the integration base-point x0 can be arbitrarily chosen and the integration con-

stants c
(0)
i have to be fixed by imposing suitable boundary conditions. The integrands

Ri(x) are combinations of products of two homogeneous solutions, which originate from
the entries of G−1(x) (see eq. (9.162)),
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1 (x)

]
. (9.5.6)

Therefore eqs. (9.5.5) and (9.5.6) completely specify the inhomogeneous solution at or-

der zero once the boundary constants c
(0)
i have been fixed, for instance by imposing the

regularity of the solutions at specific kinematic points.
We have already observed that the system (9.150), or equivalently the third-order
DEQ (9.156), have regular singular points at x = 1 and x = ±∞, which correspond,
respectively, to the pseudo-thresholds s = 4m2 and s = 0 of the equal-mass banana

graph. We can show that demanding the regularity of F
(0)
i (x) at such points is suffi-

cient to fix the three integration constants c
(0)
i . In fact, by imposing regularity directly

on the system of DEQs, we can determine three independent linear relations, which must
be satisfied by the MIs at the pseudo-thresholds. In particular, regularity at x → 1±

requires

lim
x→1±

(
F
(0)
3 (x) +

2

3
F
(0)
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12
F
(0)
1 (x)

)
= 0 , (9.5.7)

whereas at x → ±∞, we find

lim
x→±∞

(
F
(0)
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1

4
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(0)
1 (x)

)
= 0 , (9.5.8)

lim
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F
(0)
3 (x)− 1

16
F1(x)

(0)

)
=

1

8
. (9.5.9)

It is worths observing that, since x → ±∞ corresponds to s → 0±, the two conditions
(9.5.8, 9.5.9) consistently reproduce the IBPs identities between the three-loop vacuum
diagrams to which the MIs are reduced in the zero-momentum limit.

It is particularly convenient to fix explicitly the boundary constants by working in
the region 1 < x < ∞, since the end-points of this region corresponds exactly to the
two pseudo-thresholds. If we specify eq. (9.5.5) to the interval (1,∞) and apply the
rotation (9.5.6), we get
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where we have chosen as integration base-point x0 = 1 and re-introduced the superscript
(1,∞) for all quantities that require analytic continuation. We remark that, when ap-

plied to eq. (9.5.10), the definition (9.5.6) of the function R(1,∞)
i (x) must be interpreted

in terms of the homogeneous solutions G(1,∞)(x), which are defined in (C.1.4). Due to
the choice of the integration base-point, in the x → 1+ limit all integrals appearing in
the r.h.s. of (9.5.10) vanish and the MIs become

lim
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)
. (9.5.11)

The limiting behaviours of the homogeneous solutions at the two pseudo-thresholds are
discussed in appendix C and it is easy to verify that, when the expansions at x → 1+

(C.2.4) are plugged into eq. (9.5.11), the regularity constraint (9.5.7) is satisfied by
demanding

c
(0)
3 = −3c

(0)
1 . (9.5.12)

In a similar way, we can impose regularity at x → +∞ by making use of the expansions
(C.2.6). Remarkably, due to the presence of logarithmic divergences ln(1/x) in the
expansion of the homogeneous solutions which must cancel in the expression of the

MIs, eq. (9.5.8) allows us to fix at once c
(0)
1 and c
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2 ,
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. (9.5.13)

In the second equalities, we have simply performed the change of variable t → 1/y in
order to map the integration range to 0 < y < 1. As a consistency check, we have
verified that these values of the integration constants are in agreement also with the
regularity condition for the third master, given by eq. (9.5.9).
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Figure 9.3: Real part (left panel) and imaginary part (right panel) of the finite term
of the three MIs for the three-loop banana graph. The imaginary part is non-vanishing
only in the range 0 < x < 1/4, which corresponds to s > 16m2. The numerical
evaluation of the integral representation (9.5.10) (solid curves) is compared against the
values obtained with SecDec (dots).

Although we were not able to determine an analytic expression of the boundary
constants, their representation as definite integrals (9.5.13) allows a high-precision nu-
merical evaluation,

c
(0)
1 =− 1.2064599496517629858762117245910770452963348722...

c
(0)
2 =+ 2.5819507507087486799289938331551672385057488393... (9.5.14)

The representation (9.5.10) of the MIs, which is now fully determined, is valid for
1 < x < ∞. The expression of F(0)(x) in the other kinematic regions (and in particular
in 0 < x < 1/4, where the MIs develop an imaginary part) can be obtained by analytic
continuation of eq. (9.5.10), along the line of the discussion of [271], as we illustrate
in appendix C. As a summary of the results there presented, let us just stress that
the determination of a set of explicitly real solutions G(a,b)(x) in each region and the
study of their leading behaviour in the proximity of the singular points can be used to
define, for any value of x, a representation of the solutions which involves individually
real-valued integrals and, therefore, allows a fast and accurate numerical evaluation. A
plot of the numerical results obtained through our representation, compared against the
computer code SecDec [67] is shown in figure 9.3.

9.6 Conclusions

In this chapter, we have addressed the problem of the solution of systems of differential
equations which remain coupled in the ǫ → 0 limit. In this cases, the only available
solving strategy consists in first determining a complete set of independent homogeneous
solutions of the system of DEQs in ǫ = 0 and then using Euler method of the variation
of constants in order to reconstruct the complete inhomogeneous solution.

In practice, not dissimilarly from the case of triangular systems of DEQs, if we can
start from a coupled system with a linear dependence on ǫ, the redefinition of the MIs
through a rotation matrix built from the homogeneous solutions absorbs the O(ǫ0) part
of the DEQs and brings the system into an ǫ-factorized form. The latter hugely facilitate
the expression of the MIs as series expansion around ǫ = 0 in terms of iterated integrals.
Hence, when dealing with a system of n coupled first-order DEQs, which can always
be rephrased in terms of a n-th order DEQ for one of the MIs, the main difficulty lies



210 Chapter 9. Maximal Cuts and Feynman integrals beyond polylogarithms

exactly in the determination of the complete set of n homogeneous solutions, since no
general theory for higher-order DEQs is available.

Based on the simple observation that the maximal-cut of a Feynman integral fulfils,
by construction, the homogeneous part of the corresponding DEQ, we have proposed
to algorithmically determine a closed-form representation of the homogeneous solutions
from the direct computation of the maximal-cuts of the coupled MIs [4].

At multi-loop level, the simultaneous cut of all denominators does not localize the
integrand completely, so that the homogeneous solution is represented as a (multi-fold)
integral over the region of the loop momentum space deformed by on-shell conditions
of the loop denominators. Very interestingly, the integration domain can be split into
different subregions, localized by the branch-cut structure of the integrand, which are
still compatible with the homogeneous DEQs.

This observation suggests that it is possible to determine n-independent integra-
tion domains, which correspond to the n-independent solutions of the coupled system
of DEQs [2, 62]. Hence, the computation of the maximal-cuts completely solves the
problem of bringing the DEQs in ǫ-factorized form, independently from the size of
the non-triangular blocks. This conjecture is supported by a growing number of ex-
amples of two-loop cases of 2 × 2 system of coupled DEQs, where the homogeneous
solutions turn out to be evaluated in terms of complete elliptic integrals. In this chap-
ter, we have successfully tested the proposed strategy on the three-loop massive banana
graph, which constitute the simplest known example of MI obeying a genuine third-
order DEQ [105, 106]. In this case, the computation of the maximal-cut has provided
three independent solutions, which have been expressed in terms of products of complete
elliptic integrals.

Having at disposal a closed integral representation of the homogeneous solutions is
the first, fundamental step in the determination of the complete solution of the DEQs
but, of course, is not the final one.

The solution of the homogeneous DEQs allows to write ǫ-expansion of the MIs in
terms of iterated integrals over kernel functions which involve products of homogeneous
solutions. Although a rather efficient numerical evaluation of such integrals is possible,
a full analytic control of the solution is indeed advisable, both from a practical and a
theoretical point of view.

To this aim, we need to understand and classify the properties of the new classes of
functions which emerge from the nested integration over elliptic (and, presumably, even
more complicated) kernels. Although very little is known about higher-order cases, a
broad literature has been produced in the attempt of classifying the properties of the
inhomogeneous solutions built from elliptic integrals, and many proposal for elliptic
extensions of generalized polylogarithms have been put forward [102, 109–123].

These studies, which will be at the basis of the possibility to extend the concept of
dlog-form to systems of coupled DEQs will deepen our understanding of the mathemat-
ical properties of Feynman integrals and they will definitely constitute one of the most
fascinating subjects for future developments at the intersection between mathematics
and particle physics.
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Conclusions

The stunning precision of the experimental measurements produced by the ongoing Run
II of the Large Hadron Collider demands accurate theoretical predictions of the observed
phenomena in order to test the fundamental mechanisms of the Standard Model and
investigate possible indirect signals of new physics. Such accurate predictions require the
evaluation of higher-order terms in the perturbative expansion of scattering amplitudes.
The latter involve the computation of many loop integrals, which depend on a large
number of external particles and mass-scales.

In this thesis, we have investigated new techniques for the analytical evaluation
of multi-loop scattering amplitudes that proceeded by exploiting the wide range of
consequences of the unitarity of the scattering matrix in Quantum Field Theory.

The basic concept of the so-called generalized unitarity methods consists in retrieving
information about the mathematical properties of scattering amplitudes by analyzing
their behaviour on multiple cuts, i.e. by enforcing the on-shell condition of their internal
propagators.

Building upon this idea, we have employed generalized unitarity in the multi-loop
extension of the integrand decomposition method and in the solution of differential equa-
tions for Feynman integrals.

In the first part of this thesis, we have presented the adaptive integrand decompo-
sition, a new and simplified reduction algorithm that is suitable for both analytic and
numerical application to general multi-loop amplitudes.

The integrand-level reduction of a multi-loop amplitude to a linear combination
of scalar integrals entails the iterative multivariate polynomial division of integrand
numerators modulo Gröbner basis of the ideal generated by the corresponding set of
loop denominators.

With the present work, we have shown that this elaborate division procedure can
be drastically simplified by replacing the expensive computation of Gröbner bases with
the solution of systems of linear equations. This simplification is made possible by
the introduction of a parametrization of Feynman integrands in terms of longitudinal
and transverse variables. The first ones belong to the portion of space-time spanned
by momenta of the external particles, while the the latter lie in the complementary,
orthogonal space whose dimension acts as a regulator of loop divergencies.

The loop denominators are independent of the transverse coordinates and, as a con-
sequence, the set of on-shell conditions that characterize a multiple-cut are linearized.
In addition, the polynomial dependence of the numerator on the transverse components
reveals the hyperspherical geometry of the transverse space, which allows their algorith-
mic integration through the expansion of the integrand in terms of Gegenbauer poly-
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nomials. The systematic integration over the transverse variables eliminates spurious
contributions step-by-step in the reduction procedure and thins down the intermediate
expressions generated by the recursive structure of the algorithm.

These features depend exclusively on the external kinematics and are insensitive
to the presence of internal masses and to the (non-)planar structure of the loop de-
nominators. Therefore, they can be adaptively applied to all integrand topologies that
contribute to an amplitude.

The outcome of integrand decomposition in the longitudinal and transverse space
is the reduction of any multi-loop amplitude to a sum of irreducible integrands which
are free from any spurious contribution and whose tensor numerators are expressed in
terms of irreducible scalar products between loop momenta and external ones.

The overall simplified structure of this new reduction algorithm allowed, for the
first time, the automation of the analytic integrand decomposition of one- and two-loop
amplitudes, which we have implemented in the Mathematica code Aida (Adaptive
Integrand Decomposition Algorithm). The code was used to test the feasibility of the
full reduction chain on the calculation of the two-loop QED virtual corrections to the
elastic scattering µe → µe, which constituted the first non-trivial proof of concept of the
applicability of the adaptive integrand decomposition method to multi-loop, multi-scale
amplitudes.

In light of these results, we believe that integrand decomposition, in its adaptive
formulation, is finally in the position to become an efficient and powerful tool for the
computation of scattering amplitudes beyond one loop. In the perspective of an upcom-
ing NNLO revolution, we are taking steps towards embedding the proposed algorithm
into automated frameworks for next-to-next-to-leading order calculations.

In the second part of this thesis, we have explored the consequences of maximal-
unitarity on the solution of the differential equations for Feynman integrals.

The differential equations method proved to be the best available tool for the an-
alytic calculation of dimensionally regulated loop integrals. It allows to determine the
expression of the master integrals as a series expansion around small values of the regu-
lating parameter ǫ = (4−d)/2 by solving their coupled first-order differential equations
in the kinematic invariants.

In most of the known cases, it is possible to decouple such differential equations in
the four-dimensional limit and express the coefficients of the ǫ-expansion of the master
integrals in terms of Chen iterated integrals, i.e. repeated integrals over derivatives of
logarithmic functions.

Such iterative structure of the solution is made manifest by the introduction of
a canonical basis of master integrals, that is to say a basis of integrals which fulfils
ǫ-factorized systems of differential equations in dlog-form.

In all respects, the determination of a canonical basis amounts the solution of the
system of differential equations at ǫ = 0. If the system of differential equations can be
cast into an ǫ-linear form, such a solution can be used to define a similarity transfor-
mation of the integral basis which factorizes the ǫ-dependence of the system.

The solution of the differential equations at ǫ = 0 can be efficiently computed
through its Magnus exponential series which, for triangularizable systems, can be re-
summed into a closed analytic form. Besides defining the similarity transformation
of the master integrals to a canonical form, the Magnus exponential determines their
analytic expression in the whole phase space by acting as kinematical evolution operator
on an arbitrary boundary value of the integrals.

In this thesis, we have applied the Magnus exponential method to determine two-
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loop three- and four-point integrals that depend on up to four kinematic scales. The
considered integrals enter QCD corrections to the triple gauge couplings ZWW and
γ∗WW , to the Higgs boson decay into an off-shell W -boson pair, H → WW , and to the
massive boson-pair production in the gluon-fusion channel, gg → HH and gg → WW .
In addition, we have computed all planar four-point integrals for the two-loop QED cor-
rections to the elastic scattering µe → µe. These integrals constitute an important part
of the theoretical input needed for the determination of the leading hadronic contribu-
tion to the muon g − 2, which is the goal of the recently proposed experiment MUonE
to be realized at CERN. The same integrals are also useful for virtual corrections to
tt̄-production at colliders. Future studies will include the application of the techniques
presented in this thesis to the evaluation of the last missing non-planar integral for
µe scattering and to the computation, through the adaptive integrand decomposition
algorithm, of the full virtual amplitude.

If the system of differential equations cannot be decoupled in four dimensions, the
master integrals obey irreducible higher order differential equations. So far the lack of
a general strategy for determining their homogeneous solutions has made their compu-
tation particularly challenging.

Based on the observation that maximal-cuts of Feynman integrals fulfil the homo-
geneous part of the full differential equations satisfied by the uncut integrals, we have
proposed a general method to derive an integral representation of the homogeneous
solutions by systematically computing the maximal-cut of the master integrals along
different, independent contours. Remarkably, the number of such contours proved to
correspond to the order of the differential equations satisfied by the master integrals
and, therefore, to be sufficient for the determination of the complete set of homogeneous
solutions. These solutions can then be used to define a change of basis which brings the
coupled system of differential equations into an ǫ-factorized form. Consequently, the
full inhomogeneous solution is determined by iterative integration over the homogeneous
kernels.

In the last part of this work, we have applied this method to the determination of
the homogeneous solutions of the master integrals for three- and four-point functions
that enter two-loop corrections to gg → gg and gg → gH with the inclusion of finite
top-quark mass effects. In all cases, the solutions of the corresponding homogeneous
second-order differential equations turned out to be expressed in terms of complete el-
liptic integrals. In addition, as a proof of the generality of this technique, we have
computed the leading term of the ǫ-expansion of the massive three-loop banana graph,
which constitute the first remarkable example of Feynman integral satisfying an irre-
ducible third-order differential equation.

As a whole, this thesis puts in a new light the role of unitarity in higher-order
computations in perturbation theory. Generalized unitarity is revealed as the unifying
leitmotiv of all the steps that lead to the prediction of scattering amplitudes beyond
leading order. With this work we have shown that, far from being a pure computational
tool, generalized unitarity methods provide strong insights into the connections of par-
ticle physics with the most advanced branches of mathematics, which include algebraic
and differential geometry, and number theory. We have no doubt that further investi-
gations of these connections will lead in the near feature to a deeper understanding of
the structure of fundamental interactions.
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Appendix A

Longitudinal and transverse space

for Feynman integrals

A.1 Spherical coordinates for multi-loop integrals

In this appendix, we derive the the d = d‖ + d⊥ representation defined in eq. (2.43) for
the multi-loop Feynman integral

Id (ℓ ,n)a1...am [N ] =

∫ ℓ∏

j=1

ddqj

πd/2

N (qi)

Da1
1 Da2

2 · · · Dam
m

, ai ∈ N . (A.1.1)

We start by studying the properties of a set of auxiliary integrals of the type

Iκℓ =

∫ ℓ∏

i=1

dmλiIℓ(λi) , (A.1.2)

where λi are vectors of an Euclidean space, which dimension m is first assumed to be
an integer and then analytically continued to complex values. In particular, assuming
the vectors λi to be decomposed w.r.t. an orthonormal basis {vi},

λi =
m∑

j=1

ajivj , (A.1.3)

we are interested in the case where the integrand Iκℓ depends explicitly, besides on the
scalar products λi · λj , on a finite number κ < m− 1 of components of each vector λi,
which, without loss of generality, we can choose to be aji, with j ≤ κ. These auxiliary
integrals will be later identified with the transverse integrals of the ℓ-loop Feynaman
integrals (A.1.1). We will derive explicit formulae up to ℓ = 3 and we will then deduce
the general expression for an arbitrary number of loops.

• Let us start by considering the one-loop case, which involves the evaluation of
integrals of the type

Iκ1 =

∫
dmλ1 I1(λ1) . (A.1.4)

We assume λ1 to be decomposed with respect to an orthonormal basis {vi} as

λ1 =

m∑

i=1

ai1vi. (A.1.5)
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Regardless of the symmetries of the integrand, we can reparametrize I1 in terms of
spherical coordinates in m dimensions which, being {vi} orthonormal, are defined
by the well-known change of variables





a11 =
√
λ11 cos θ11,

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1

i=1 sin θi1,

(A.1.6)

where
√
λ11 ∈ [0,∞) and all angles range over the interval [0, π], except for

θ(m−1) 1 ∈ [0, 2π]. Hence, by introducing the differential solid angle in M di-
mensions

dΩM−1 = (sin θ1)
M−3dcos θ1(sin θ2)

M−4dcos θ2 . . . dθM−1, (A.1.7)

such that

ΩM−1 =

∫
dΩM−1 =

2π
M
2

Γ
(
M
2

) , (A.1.8)

we can write (A.1.4) as

Iκ1 =
1

2

∫ ∞

0
dλ11(λ11)

m−2
2

∫
dΩm−1I1(λ11, cos θi1, sin θi1). (A.1.9)

If the integrand is rotational invariant, i.e. it depends on λ11 = λ1 · λ1 only, we
can integrate over all angular variables in such a way to obtain, by specifying
eq. (A.1.8) for M = m,

I01 =
π

m
2

Γ
(
n
2

)
∫ ∞

0
dλ11(λ11)

m−2
2 I1(λ11). (A.1.10)

However, in general cases, the integrand can show an explicit dependence on a
subset of κ < m − 1 components of λ1 which, with a suitable definition of the
reference frame, can always be chosen to correspond to {a11, . . . , aκ1}. In this
way, according to eq. (A.1.6), the integrand solely depends on Λ = {λ11} and
Θ⊥ = {θ11, . . . , θκ1}, while all angles θi1 with i > κ can be still integrated out
by using (A.1.8) with M = m− κ. Therefore, we have

Iκ1 = Ω(m−κ−1)

∫
dΛ

∫
dκΘ⊥I1(Λ,Θ⊥), (A.1.11)

where we have defined
∫

dΛ =

∫ ∞

0
dλ11(λ11)

m−2
2 , (A.1.12)

and

∫
dκΘ⊥ =

κ∏

i=1

∫ 1

−1
d cos θi1(sin θi1)

m−i−2. (A.1.13)
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• In the two-loop case, we are interested in integrals of the type

Iκ2 =

∫
dmλ1d

m
λ2I2(λ1,λ2) . (A.1.14)

Also in this case, we assume the two vectors λi to be decomposed in terms of a
common orthonormal basis {vi},

λ1 =
m∑

i=1

ai1vi, (A.1.15a)

λ2 =
m∑

i=1

ai2vi , (A.1.15b)

and suppose that the integrand depends explicitly only on the first κ components
aij of each vector, as well as on λ

2
1, λ

2
2 and λ1 ·λ2. We would like to map all inte-

grals associated to this subset of components of each vectors into angular integrals.
For Iκ1 , due to the choice of an orthonormal basis, this mapping was immediately
achieved by parametrizing the integral in terms of spherical coordinates. In this
case, there is an additional direction, corresponding to λ12 = λ1 · λ2, we need to
trace back after the change of coordinates is performed, since the integrand will
generally depend on it. The simultaneous factorization of the integral over the
relative orientation λ12 and over all relevant components of the two vectors can
be obtained by expressing λ2 into a new orthonormal basis {ei}, which contains
the vector e1 ∝ λ1. From (A.1.15a) we see that, indeed, the set of vectors

{v′
i} = {λ1,v1, ...,vm−1} (A.1.16)

is a basis, although it is not an orthogonal one. Nevertheless, we can apply the
Gram-Schimdt algorithm to pass from the arbitrary basis {v′

i} to an orthonormal
one {ei}, given by

e1 =
u1

|u1|
, u1 = v′

1,

ek =
uk

|uk|
, uk = v′

k −
k−1∑

j=1

(v′
k · ej)ej , k 6= 1. (A.1.17)

By construction, the first vector of the new basis exactly corresponds to the di-
rection of λ1. Applying the change of basis to (A.1.15b), we get

λ2 =
m∑

i=1

bi2ei, (A.1.18)

where the coefficients {bi2} are related to the components of both λ1 and λ2 with
respect to {vi} by





b12 = λ12√
λ11

b22 = a12λ11−a11λ12√
λ11

√
λ11−a211

· · ·
bk2 =

ak−1 2(λ11−
∑k−2

i=1 a2i1)−ak−1 1(λ12−
∑k−2

i=1 ai1bi2)
√

λ11−
∑k−2

i=1 a2i1

√

λ11−
∑k−1

i=1 a2i1

· · ·
bm2 =

am1am−1 2−am−1 1am 2√
a2m1+a2m−1 1

.

(A.1.19)
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Provided that both λ1 and λ2 are now decomposed in two different -yet- orthonor-
mal bases, we can introduce the change of variables





a11 =
√
λ11 cos θ11

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1

i=1 sin θi1 ,

(A.1.20)

and




b12 =
√
λ22 cos θ12

· · ·
bk2 =

√
λ22 cos θk2

∏k−1
i=1 sin θi2

· · ·
bm2 =

√
λ22
∏m−1

i=1 sin θi2 ,

(A.1.21)

and express the integral Iκ2 into spherical coordinates as

Iκ2 =
1

4

∫ ∞

0
dλ11dλ22(λ11)

m−2
2 (λ22)

m−2
2

∫
dΩ(m−1)dΩ(m−1)I2(λij , cos θij , sin θij).

(A.1.22)

By combining eq. (A.1.19) with the transformations (A.1.21)-(A.1.20), we imme-
diately see that, as expected,

λ12 =
√

λ11λ22 cos θ12. (A.1.23)

In addition, with some more algebra, we can express back the components of λ2

with respect to {vi} in terms of the angular variables,




a12 =
√
λ22(cθ12cθ11 + cθ22sθ11sθ12)

. . .

ai2 =
√
λ22[cθ12cθi1

∏i−1
j=1 sθj1 + cθi+1 2

sθi1
∏i

j=1 sθj2
−cθi1

∑i
k=2 cθk2cθk−1 1

∏k−1
j=1 sθj2(δik + (1− δik)

∏i−k
l=1 sθk+l−1 1

)] ,

(A.1.24)

where, for ease of notation, we have denoted sθij = sin θij and cθij = cos θij . In
this way, the integral over each component ai1 /∈ {am−1 1, am 1} of λ1 is mapped
into the integral over the angular variable θi1 whereas each component ai2 /∈
{am−1 2, am 2} of λ2 can be expressed in terms of the angles θj1 with j ≤ i and
θj2 with j ≤ i+ 1.

Therefore, if we are dealing with an integrand depending on the first κ < m − 1
components of both vectors, we can integrate out all angular variables θi1, j > κ
and θi2, j > κ+ 1. Specifically, if introduce the labelling

ΘΛ ={θ12},
Θ⊥ ={θ11, . . . , θκ1, θ22, . . . , θκ+12}, (A.1.25)

we can rewrite Iκ2 as

Iκ2 =Ω(m−κ−1)Ω(m−κ−2)

∫
d3Λ

∫
d2κΘ⊥I2(Λ,Θ⊥), (A.1.26)
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where we have defined
∫

d3Λ =

∫ ∞

0
dλ11dλ22(λ11)

m−2
2 (λ22)

m−2
2

∫
dΘΛ , (A.1.27)

with
∫

dΘΛ =

∫ 1

−1
d cos θ12(sin θ12)

m−3 , (A.1.28)

and

∫
d2κΘ⊥ =

∫ 1

−1

κ∏

i=1

dcos θi1dcos θi+12(sin θi1)
m−i−2(sin θi+12)

m−i−3 . (A.1.29)

• For the three-loop case, we study the auxiliary integral

Iκ3 =

∫
dmλ1d

m
λ2d

m
λ3I3(λ1,λ2,λ3) . (A.1.30)

As usual, we assume the vectors λi to be initially decomposed in terms of the
same orthonormal basis {vi},

λ1 =

m∑

i=1

ai1vi, λ2 =

m∑

i=1

ai2vi, λ3 =

m∑

i=1

ai3vi. (A.1.31)

When moving to spherical coordinates, we want to keep trace of the three relative
orientations

λ12 = λ1 · λ2, λ23 = λ2 · λ3, λ13 = λ3 · λ1, (A.1.32)

together with the subset of κ components aij , j ≤ κ, of each vector. The proper
transformation to spherical variables is reached in two steps:

1. First, we express the vectors λ2 and λ3 in terms of the basis {ei} defined by
eq.(A.1.17), which contains the vector e1 ∝ λ1,

λ2 =

m∑

i=1

bi2ei, (A.1.33a)

λ3 =

m∑

i=1

bi3ei, (A.1.33b)

where, similarly to (A.1.19), {bi2} and {bi3} are defined in terms of the
components with respect to the basis {vi} as





b12 = λ12√
λ11

b22 = a12λ11−a11λ12√
λ11

√
λ11−a211

· · ·
bk2 =

ak−1 2(λ11−
∑k−2

i=1 a2i1)−ak−1 1(λ12−
∑k−2

i=1 ai1bi2)
√

λ11−
∑k−2

i=1 a2i1

√

λ11−
∑k−1

i=1 a2i1

· · ·
bm2 = am1am−1 2−am−1 1am2√

a2m1+a2m−1 1

.

(A.1.34)
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and




b13 = λ13√
λ11

b23 = a13λ11−a11λ13√
λ11

√
λ11−a211

· · ·
bk3 =

ak−1 3(λ11−
∑k−2

i=1 a2i1)−ak−1 1(λ13−
∑k−2

i=1 ai1ai3)
√

λ11−
∑k−2

i=1 a2i1

√

λ11−
∑k−1

i=1 a2i1

· · ·
bm3 = am1am−1 3−am−1 1am3√

a2m1+a2m−1 1

.

(A.1.35)

2. We build a new (non-orthogonal) basis

e′i = {λ2, e1, . . . , em−1} (A.1.36)

and we apply the Gram-Schmidt algorithm, in such a way to obtain an
orthonormal basis {fi},

f1 =
w1

|w1|
, w1 = e′1,

fk =
wk

|wk|
, wk = e′k −

k−1∑

j=1

(e′k · fj)fj , k 6= 1, (A.1.37)

which first element is f1 ∝ λ2. At this level, we can decompose λ3 as

λ3 =
m∑

i=1

ci3fi, (A.1.38)

with




c13 = λ23√
λ22

c23 = b13λ22−b12λ23√
λ22

√
λ22−b212

· · ·
ck3 =

bk−1 3(λ22−
∑k−2

i=1 b2i2)−bk−1 2(λ23−
∑k−2

i=1 bi2bi3)
√

λ22−
∑k−2

i=1 b2i2

√

λ22−
∑k−1

i=1 b2i2

· · ·
cm3 = bm2bm−1 3−bm−1 2bm 3√

b2m2+b2m−1 2

.

(A.1.39)

Eqs.(A.1.31), (A.1.33a) and (A.1.38) give us a decomposition of the three vectors
λi in terms of three different orthonormal basis. Hence, we can introduce spherical
coordinates for λ1,





a11 =
√
λ11 cos θ11

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1

i=1 sin θi1 ,

(A.1.40)
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for λ2, 



b12 =
√
λ22 cos θ12

· · ·
bk2 =

√
λ22 cos θk2

∏k−1
i=1 sin θi2

· · ·
bm2 =

√
λ22
∏m−1

i=1 sin θi2

(A.1.41)

and for λ3, 



c13 =
√
λ33 cos θ23

· · ·
ck3 =

√
λ33 cos θk3

∏k−1
i=1 sin θi3

· · ·
cm3 =

√
λ33
∏m−1

i=1 sin θi3 .

(A.1.42)

and rewrite Iκ3 as

Iκ3 =
1

8

∫ ∞

0
dλ11(λ11)

m−2
2

∫ ∞

0
dλ22(λ22)

m−2
2

∫ ∞

0
dλ33(λ33)

m−2
2 ×

∫
dΩ(m−1)

∫
dΩ(m−1)

∫
dΩ(m−1)I3(λij , cos θij , sin θij). (A.1.43)

By construction, the relative orientations of between the vectors λi are mapped
into

λ12 =
√
λ11λ22 cos θ12,

λ23 =
√
λ22λ33 cos θ13,

λ31 =
√
λ11λ33 (cos θ12 cos θ13 + sin θ12 sin θ13 cos θ23) , (A.1.44)

and, by inverting (A.1.35) and (A.1.39), we can obtain the expressions of ai2 and
ai3 as polynomials in sθij and cθij . In particular, one can verify that each integral
over ai1 /∈ {am−1 1, am 1} is mapped into the integral over the angular variable θi1

and, as for I
(k)
2 , each component ai2 /∈ {am−1 2, am 2} can be expressed in terms of

the angles θj1 with j ≤ i and θj2 with j ≤ i+1. Finally, each ai3 /∈ {am−1 3, am 3}
turns out to be function of the angles θj1 with j ≤ i, θj2 with j ≤ i + 1 and θj3
with j ≤ i + 2. Therefore, if we are dealing with an integrand depending on the
first κ < m − 1 components of all λi, we can integrate out all angular variables
θi1, j > κ, θi2, j > κ+ 1 and θi3, j > κ+ 2. In particular, if we introduce

ΘΛ ={θ12 , θ13 , θ23},
Θ⊥ ={θ11 , . . . , θκ1 , θ22, . . . , θκ+12 , θ33, . . . , θκ+23}, (A.1.45)

we can write

Iκ3 =
3∏

i=1

Ω(m−κ−i)

∫
d6Λ

∫
d3κΘ⊥I3(Λ,Θ⊥) , (A.1.46)

where we have defined
∫

d6Λ =

∫ ∞

0
dλ11dλ22dλ33(λ11)

n−2
2 (λ22)

n−2
2 (λ33)

m−2
2

∫
d3ΘΛ , (A.1.47)
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with
∫

d3ΘΛ =

∫ 1

−1
dcθ12dcθ13dcθ23(sθ12)

n−3(sθ12)
m−3(stheta23)

n−4 , (A.1.48)

and
∫

d3κΘ⊥ =

∫ 1

−1

κ∏

i=1

dcθi1dcθi+1 2
dcθi+2 3

(sθi1)
m−i−2(sθi+1 2

)m−i−3(sθi+2 3
)m−i−4.

(A.1.49)

• The strategy adopted in the previous cases ca be generalized to ℓ-loop integrals
of the type

Iκℓ =

∫ ℓ∏

i=1

dmλiIℓ(λj), (A.1.50)

in order to define a change of variable which maps a subset of κ components of
each λi, as well as their ℓ(ℓ−1)/2 relative orientations λij , into angular variables.
Starting from the decomposition of all vectors in terms of a single orthonormal
basis, one can define, by recursively applying the Gram-Schimdt algorithm, (ℓ−1)
auxiliary orthonormal basis carrying information both on κ ≤ m− 1 components
of the original basis and on the relative orientations λij . After all vectors have
been decomposed into the proper orthonormal basis, we introduce m-dimensional
polar coordinates and, we express the components of all λi with respect to {vi}
in terms of the angular variables. The final transformation has the form

{
λij → P [λll, sin[ΘΛ], cos[ΘΛ]] , i 6= j

aji → P [λll, sin[Θ⊥,Λ], cos[Θ⊥,Λ]] , j ≤ κ,
(A.1.51)

where P indicates a general polynomial and ΘΛ and Θ⊥ label the sets of angles

ΘΛ ={θij}, 1 ≤ i < j ≤ ℓ,

Θ⊥ ={θij}, j ≤ i ≤ ℓ+ κ− 1, 1 ≤ j ≤ ℓ. (A.1.52)

Therefore, if the integrand Iκℓ solely depends on κ components of each λi, all
angles θij , i ≥ j + κ can be integrated out, yielding to

Iκℓ =
ℓ∏

i=1

Ω(m−κ−i)

∫
d

ℓ(ℓ−1)
2 Λ

∫
dℓκΘ⊥Iℓ(Λ,Θ⊥), (A.1.53)

where we have defined

∫
d

ℓ(ℓ+1)
2 Λ =

∫ ∞

0

ℓ∏

i=1

dλii(λii)
m−2

2

∫
d

ℓ(ℓ−1)
2 ΘΛ , (A.1.54)

with

∫
d

ℓ(ℓ−1)
2 ΘΛ =

∫ 1

−1

ℓ∏

1≤i<j≤ℓ

dcos θij(sin θij)
m−2−i , (A.1.55)

and

∫
dℓκΘ⊥ =

∫ 1

−1

κ∏

i=1

ℓ∏

j=1

dcos θi+j−1 j(sin θi+j−1 j)
m−i−j−1. (A.1.56)



A.2. One-loop transverse integrals 225

Having derived eq. (A.1.53), we can finally turn our attention to the arbitrary ℓ loop
integral defined in eq. (A.1.1) and, by introducing the qαi = qα‖ i+λα

i parametrization of
the loop momenta discussed in sec. 2.3, we can rewrite it as

Id (ℓ)n [N ] =

∫ ℓ∏

1=1

dn−1q‖ i
πd/2

∫
dd−n−1λi

N (qα‖ i, λ
α
i )∏

j Dj(qα‖ i, λij)
, (A.1.57)

where we have explicitly indicated that the denominators depend on the d‖-dimensional
momenta q‖ i and on the scalar products λij between the transverse vectors living in d⊥
dimensions. Moreover, as observed in sec. 2.3, the numerator does not depend explicitly
on components of λα

i lying in the −2ǫ portion of the transverse space, but rather on the
scalar products λij and on the four-dimensional components xij , i > d‖,

N (qα‖ i, λ
α
i ) ≡ N (qα‖ i, λij , xd‖+1 i, . . . , x4i). (A.1.58)

It is now clear that the integral over the transverse vectors λα corresponds to a d⊥-
dimensional integral of the type Iκℓ with κ = 4−d‖. Therefore, by substituting (A.1.53)
in (A.1.57), we obtain

Id (ℓ)n [N ] =Ω
(ℓ)
d

∫ ℓ∏

i=1

dn−1q‖ i

∫
d

ℓ(ℓ+1)
2 Λ

∫
d(4−d‖)ℓΘ⊥

N (qi ‖,Λ,Θ⊥)∏
j Dj(q‖ i,Λ)

,

Ω
(ℓ)
d =

ℓ∏

i=1

Ω(d−4−i)

2π
d
2

, (A.1.59)

which is exactly the d = d‖ + d⊥ parametrization introduced in eq. (2.43).

A.2 One-loop transverse integrals

In this appendix, we give explicit formulae for the d = d‖ + d⊥ parametrization of
one-loop integrals introduced in eq. (2.43) and, for every d‖ = 0 , . . . 3, we provide a
catalogue of transverse space integrals.

Four-point integrals (ℓ = 1, d‖ = 3) :

I
d (1)
4 [N ] =

∫
ddq

πd/2

N (q)

D1D2D3D4
, (A.2.1)

- Loop momentum decomposition, qα = qα‖ + λα:

qα‖ =

3∑

i=1

xie
α
i , λα = x4e

α
4 + µα, (A.2.2)

- Transverse variable:

x4 =
√
λ2 cos θ1, (A.2.3)

- d = d‖ + d⊥ parametrization:

I
d (1)
4 [N ] =

1

π2Γ(d−4
2 )

∫
d3q‖

∫ ∞

0
dλ2(λ2)

d−5
2

∫ 1

−1
dcos θ1(sin θ1)

d−6×

N (q‖, λ
2, cos θ1)

D1D2D3D4
, (A.2.4)
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- Transverse tensor integrals (n4 ∈ N):

I
d (1)
4 [x2n4+1

4 ] =0 ,

I
d (1)
4 [x2n4

4 ] =
(2n4 − 1)! !∏n4
i=1(d− 5 + 2i)

I
d (1)
4 [λ2n4 ]

=
(2n4 − 1)! !

2n4
I
d+2n4 (1)
4 [ 1 ] . (A.2.5)

In the last equality, we have identified additional powers of λ2 in the numerator with
higher dimensional integrals.

Three-point integrals (ℓ = 1, d‖ = 2) :

I
d (1)
3 [N ] =

∫
ddq

πd/2

N (q)

D1D2D3
, (A.2.6)

- Loop momentum decomposition, qα = qα‖ + λα:

qα‖ =
2∑

i=1

xie
α
i , λα =

4∑

i=3

xie
α
i + µα, (A.2.7)

- Transverse variables:
{

x3 =
√
λ2 cos θ1

x4 =
√
λ2 sin θ1 cos θ2,

(A.2.8)

- d = d‖ + d⊥ parametrization:

I
d (1)
3 [N ] =

1

π2Γ(d−4
2 )

∫
d2q‖

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
dcos θ1dcos θ2×

(sin θ1)
d−5(sin θ2)

d−6N (q‖, λ
2, {cos θ1, sin θ1, cos θ2})

D1D2D3
, (A.2.9)

- Transverse tensor integrals (ni ∈ N):

I
d (1)
3 [xm3

3 xm4
4 ] =0 if m3 ∨m4 odd,

I
d (1)
3 [x2n3

3 x2n4
4 ] =

∏4
i=3(2ni − 1)! !∏n3+n4

i=1 (d− 4 + 2i)
I
d (1)
3 [λ2(n3+n4) ]

=

4∏

i=3

(2ni − 1)! !

2ni
I
d+2(n3+n4) (1)
3 [ 1 ]. (A.2.10)

In the last equality, we have identified additional powers of λ2 in the numerator with
higher dimensional integrals.

Two-point integrals with p2 6= 0 (ℓ = 1, d‖ = 1) :

I
d (1)
2 [N ] =

∫
ddq

πd/2

N (q)

D1D2
, (A.2.11)
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- Loop momentum decomposition, qα = qα‖ + λα:

qα‖ =x1e
α
1 , λα =

4∑

i=2

xie
α
i + µα, (A.2.12)

- Transverse variables:




x2 =
√
λ2 cos θ1

x3 =
√
λ2 sin θ1 cos θ2,

x4 =
√
λ2 sin θ1 sin θ2 cos θ3,

(A.2.13)

- d = d‖ + d⊥ parametrization:

I
d (1)
2 [N ] =

1

π2Γ(d−4
2 )

∫
dq‖

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
dcos θ1dcos θ2dcos θ3×

(sin θ1)
d−4(sin θ2)

d−5(sin θ3)
d−6×

N (q‖, λ11, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3)

D0D1
, (A.2.14)

- Transverse tensor integrals (ni ∈ N):

I
d (1)
2 [xm2

2 xm3
3 xm4

4 ] =0 if m2 ∨m3 ∨m4 odd,

I
d (1)
2 [x2n2

2 x2n3
3 x2n4

4 ] =

∏4
i=2(2ni − 1)! !∏n2+n3+n4

i=1 (d− 3 + 2i)
I
d (1)
2 [λ2(n2+n3+n4) ]

=

4∏

i=2

(2ni − 1)! !

2ni
I
d+2(n2+n3+n4) (1)
2 [ 1 ] . (A.2.15)

In the last equality, we have identified additional powers of λ2 in the numerator with
higher dimensional integrals.

Two-point integrals with p2 = 0 (ℓ = 1, d‖ = 2) :

I
d (1)
2 [N ]|p2=0=

∫
ddq

πd/2

N (q)

D0D1
, (A.2.16)

- Loop momentum decomposition, qα = qα‖ + λα:

qα‖ =
2∑

i=1

xie
α
i , λα =

4∑

i=3

xie
α
i + µα, (A.2.17)

- Transverse variables:
{

x3 =
√
λ2 cos θ1

x4 =
√
λ2 sin θ1 cos θ2,

(A.2.18)

- d = d‖ + d⊥ parametrization:

I
d (1)
2 [N ]|p2=0=

1

π2Γ(d−4
2 )

∫
d2q‖

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
dcos θ1(sin θ1)

d−5×
∫ 1

−1
dcos θ2(sin θ2)

d−6N (q‖, λ
2, {cos θ1, sin θ1, cos θ2})

D1D2
, (A.2.19)
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- Transverse tensor integrals (ni ∈ N):

I
d (1)
2 [xm3

3 xm4
4 ]|p2=0=0 if m3 ∨m4 odd,

I
d (1)
2 [x2n3

3 x2n4
4 ]|p2=0=

(2n3 − 1)! ! (2n4 − 1)! !∏n3+n4
i=1 (d− 4 + 2i)

I
d (1)
2 [λ2(n3+n4) ]|p2=0

=
4∏

i=3

(2ni − 1)! !

2ni
I
d+2(n3+n4) (1)
3 [ 1 ]|p2=0. (A.2.20)

In the last equality, we have identified additional powers of λ2 in the numerator with
higher dimensional integrals.

One-point integrals (ℓ = 1, d‖ = 0) :

I
d (1)
1 [N ] =

∫
ddq

πd/2

N (q)

D1
, (A.2.21)

- Loop momentum decomposition, qα = λα:

qα ≡ λα =
4∑

i=1

xαi e
α
i + µα, (A.2.22)

- Transverse variables:




x1 =
√
λ2 cos θ1,

x2 =
√
λ2 sin θ1 cos θ2,

x3 =
√
λ2 sin θ1 sin θ2 cos θ3

x4 =
√
λ2 sin θ1 sin θ2 sin θ3 cos θ4,

(A.2.23)

- d = d‖ + d⊥ parametrization:

I
d (1)
1 [N ] =

1

π2Γ(d−4
2 )

∫ ∞

0
dλ2(λ2)

d−2
2

∫ 1

−1
dcos θ1dcos θ2dcos θ3d cos θ4×

(sin θ2)d−3(sin θ2)
d−4(sin θ3)

d−5(sin θ4)
d−6×

N (λ2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3, cos θ4)

D1
, (A.2.24)

- Transverse tensor integrals (ni ∈ N):

I
d (1)
1 [xm1

1 xm2
2 xm3

3 xm4
4 ] =0 if m1 ∨m2 ∨m3 ∨m4 odd,

I
d (1)
1 [x2n1

1 x2n2
2 x2n3

3 x2n4
4 ] =

∏4
i=1(2ni − 1)! !∏n1+n2+n3+n4

i=1 (d− 3 + 2i)
I
d (1)
2 [λ2(n1+n2+n3+n4) ]

=

3∏

i=1

(2ni − 1)! !

2ni
I
d+2(n1+n2+n3+n4) (1)
2 [ 1 ]. (A.2.25)

In the last equality, we have identified additional powers of λ2 in the numerator with
higher dimensional integrals.
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A.3 Two-loop transverse integrals

In this appendix, we give explicit formulae for the d = d‖ + d⊥ parametrization of
two-loop integrals introduced in eq. (2.43) and, for every d‖ = 0 , . . . 3, we provide a
catalogue of transverse space integrals.

For ease of notation, we will denote sθij = sin θij and cθij = cos θij . In all cases, the
relative orientation of the transverse vectors is defined as

λ12 =
√
λ11λ22 cos θ12. (A.3.1)

Four-point integrals (ℓ = 2, d‖ = 3) :

I
d (2)
4 [N ] =

∫
ddq1d

dq2
πd

N (q1, q2)

D1 . . . Dn
, (A.3.2)

- Loop momenta decomposition, qα = qα‖ i + λα
i :

qα‖ i =
3∑

j=1

xjie
α
j , λα

i = x4ie
α
4 + µα

i , (A.3.3)

- Transverse variables: {
x41 =

√
λ11cθ11

x42 =
√
λ22(cθ11cθ12 + sθ11sθ12cθ22),

(A.3.4)

- d = d‖ + d⊥ parametrization:

I
d (2)
4 [N ] =

2d−6

π5Γ(d− 5)

∫
d3q‖ 1d

3q‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

∫ 1

−1
dcθ12dcθ22dcθ11 (sθ12)

d−6 (sθ11)
d−6(sθ22)

d−7 N (q1, q2)

D1 . . . Dn
, (A.3.5)

- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
4 [x4ix4j ] =

1

(d− 3)
I
d (2)
4 [λij ] ∀i, j,

I
d (2)
4 [x44i ] =

3

(d− 3)(d− 1)
I
d (2)
4 [λ2

ii] ∀i, j,

I
d (2)
4 [x34ix4j ] =

3

(d− 3)(d− 1)
I
d (2)
4 [λ12λii],

I
d (2)
4 [x241x

2
42 ] =

3

(d− 3)(d− 1)
I
d (2)
4 [ 2λ2

12 + λ11λ22],

I
d (2)
4 [x64i ] =

15

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ3

ii],

I
d (2)
4 [x54ix4j ] =

1

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ12λ

2
ii],

I
d (2)
4 [x44ix

2
4j ] =

3

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λii(4λ

2
12 + λ11λ22)],

I
d (2)
4 [x342x

3
41 ] =

3

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ12(2λ

2
12 + 3λ11λ22)]. (A.3.6)

Moreover, in general, we have

I
d (2)
4 [xα4

41x
β4
42 ] =0, if α4 + β4 = 2n+ 1. (A.3.7)
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Three-point integrals (ℓ = 2, d‖ = 2) :

I
d (2)
3 [N ] =

∫
ddq1d

dq2
πd

N (q1, q2)

D1 . . . Dn
, (A.3.8)

- Loop momenta decomposition, qα = qα‖ i + λα
i :

qα‖ i =
2∑

j=1

xjie
α
j , λα

i =
4∑

j=3

xjie
α
i + µα

i , (A.3.9)

- Transverse variables:




x31 =
√
λ11cθ11

x41 =
√
λ11sθ11cθ21

x32 =
√
λ22(cθ12cθ11 + sθ12cθ22sθ11)

x42 =
√
λ22[cθ12cθ21sθ11 + sθ12(cθ32sθ21sθ22 − cθ11cθ21cθ22)],

(A.3.10)

- d = d‖ + d⊥ parametrization:

Id3 [N ] =
2d−6

π5Γ(d− 5)

∫
d2q‖ 1d

2q‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−4
2 (λ22)

d−4
2 ×

∫ 1

−1
dcθ12dcθ11dcθ21dcθ22dcθ32 (sθ12)

d−5 (sθ11)
d−5×

(sθ21)
d−6(sθ22)

d−6(sθ32)
d−7 N (q1, q2)

D1 . . . Dn
, (A.3.11)

- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
3 [x3ix3j ] =I

d (2)
3 [x4ix4j ] =

1

(d− 2)
I
d (2)
3 [λij ] ∀i, j,

I
d (2)
3 [x43i ] =I

d (2)
3 [x44i ] =

3

(d− 2)d
I
d (2)
3 [λ2

ii],

I
d (2)
3 [x33ix3j ] =I

d (2)
3 [x34ix4j ] =

3

(d− 2)d
I
d (2)
3 [λiiλij ],

I
d (2)
3 [x231x

2
32 ] =I

d (2)
3 [x241x

2
42 ] =

1

(d− 2)d
I
d (2)
3 [ 2λ2

12 + λ11λ22],

I
d (2)
3 [x23ix

2
4j ] =

1

(d− 3)(d− 2)d
I
d (2)
3 [−2λ2

12 + (d− 1)λ11λ22],

I
d (2)
3 [x23ix4ix4j ] =I

d (2)
3 [x24ix3ix3j ] =

1

(d− 2)d
I
d (2)
3 [λ12λii],

I
d (2)
3 [x31x41x32x32 ] =

1

(d− 3)(d− 2)d
I
d (2)
3 [ (d− 2)λ2

12 − λ11λ22]. (A.3.12)

Moreover, in general, we have

I
d (2)
3 [xα3

31x
α4
41x

β3
32x

β4
42 ] =0, if αi + βi = 2n+ 1. (A.3.13)
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Two-point integrals with p2 6= 0 (ℓ = 2, d‖ = 1) :

I
d (2)
2 [N ] =

∫
ddq1d

dq2
πd

N (q1, q2)

D1 . . . Dn
, (A.3.14)

- Loop momenta decomposition, qα = qα‖ i + λα
i :

qα‖ i =x1ie
α
1 , λα

i =
4∑

j=2

xjie
α
i + µα

i , (A.3.15)

- Transverse variables:




x21 =
√
λ11cθ11 ,

x31 =
√
λ11sθ11cθ21 ,

x41 =
√
λ11sθ11sθ21cθ31 ,

x22 =
√
λ22(cθ12cθ11 + sθ12cθ22sθ11)

x32 =
√
λ22 [cθ12cθ21sθ11 + sθ12( cθ32sθ21sθ22 − cθ11cθ21cθ22 )]

x42 =
√
λ22[cθ12cθ31sθ11sθ21 + sθ12(cθ42sθ31sθ22sθ32

−cθ11cθ31cθ22sθ21 − cθ21cθ31cθ32sθ22)],

(A.3.16)

- d = d‖ + d⊥ parametrization:

Id2 [N ] =
2d−6

π5Γ(d− 5)

∫
dq‖ 1dq‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−3
2 (λ22)

d−3
2 ×

∫ 1

−1
dcθ12dcθ11dcθ21dcθ31dcθ22dcθ32dcθ42×

(sθ12)
d−4 (sθ11)

d−4(sθ21)
d−5(sθ31)

d−6(sθ22)
d−5×

(sθ32)
d−6(sθ42)

d−7 N (q1, q2)

D1 . . . Dn
, (A.3.17)

- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
2 [x2ix2j ] =I

d (2)
2 [x3ix3j ] = I

d (2)
2 [x4ix4j ] =

1

(d− 1)
I
d (2)
2 [λij ], ∀i, j,

I
d (2)
2 [x42i ] =I

d (2)
2 [x43i ] = I

d (2)
2 [x43i ] =

3

(d− 1)(d+ 1)
I
d (2)
2 [λ2

ii],

I
d (2)
2 [x32ix2j ] =I

d (2)
2 [x33ix3j ] = I

d (2)
2 [x34ix4j ] =

3

(d− 1)(d+ 1)
I
d (2)
3 [λiiλ12],

I
d (2)
2 [x22ix

2
2i ] =I

d (2)
2 [x23ix

2
3i ] = I

d (2)
2 [x24ix

2
4i ]

=
1

(d− 1)(d+ 1)
I
d (2)
2 [ 2λ2

12 + λ11λ22],

I
d (2)
2 [x22ix

2
3i ] =I

d (2)
2 [x22ix

2
4i ] = I

d (2)
2 [x23ix

2
4i ] =

1

(d− 1)(d+ 1)
I
d (2)
2 [λ2

ii],

I
d (2)
2 [x22ix

2
3j ] =I

d (2)
2 [x22ix

2
4j ] = I

d (2)
2 [x23ix

2
4j ]

=
1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [−2λ2

12 + dλ11λ22],
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I
d (2)
2 [x22ix3ix3j ] =I

d (2)
2 [x22ix4ix4j ] =

1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x23ix2ix2j ] =I

d (2)
2 [x23ix4ix4j ] =

1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x24ix2ix2j ] =I

d (2)
2 [x24ix3ix3j ] =

1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x21x31x22x32 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22],

I
d (2)
2 [x21x41x22x42 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22],

I
d (2)
2 [x31x41x32x42 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22]. (A.3.18)

Moreover, in general we have

I
d (2)
2 [xα2

21x
α3
31x

α4
41x

β2
22x

β3
32x

β4
42 ] =0, if αi + βi = 2n+ 1. (A.3.19)

,

Two-point integrals with p2 = 0 (ℓ = 2, d‖ = 2) :

I
d (2)
2 [N ]|p2=0=

∫
ddq1d

dq2
πd

N (q1, q2)

D1 . . . Dn
, (A.3.20)

- Loop momenta decomposition, qαi = qα‖ i + λα
i :

qα‖ i =
2∑

j=1

xjie
α
j , λα

i =
4∑

j=3

xjie
α
i + µα

i , (A.3.21)

- Transverse variables:




x31 =
√
λ11cθ11

x41 =
√
λ11sθ11cθ21

x32 =
√
λ22(cθ12cθ11 + sθ12cθ22sθ11)

x42 =
√
λ22[cθ12cθ21sθ11 + sθ12(cθ32sθ21sθ22 − cθ11cθ21cθ22)],

(A.3.22)

- d = d‖ + d⊥ parametrization:

Id3 [N ] =
2d−6

π5Γ(d− 5)

∫
d2q‖ 1d

2q‖ 2

∫ ∞

0
dλ11dλ22(λ11)

d−4
2 (λ22)

d−4
2 ×

∫ 1

−1
dcθ12dcθ11dcθ21dcθ22dcθ32 (sθ12)

d−5 (sθ11)
d−5×

(sθ21)
d−6(sθ22)

d−6(sθ32)
d−7 N (q1, q2)

D1 . . . Dn
, (A.3.23)

- Transverse tensor integrals (unless specified we assume i 6= j):

I
d (2)
2 [x3ix3j ]|p2=0=I

d (2)
2 [x4ix4j ]|p2=0=

1

(d− 2)
I
d (2)
2 [λij ]|p2=0 ∀i, j,
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I
d (2)
2 [x43i ]|p2=0=I

d (2)
2 [x44i ]|p2=0=

3

(d− 2)d
I
d (2)
2 [λ2

ii]|p2=0,

I
d (2)
2 [x33ix3j ]|p2=0=I

d (2)
2 [x34ix4j ]|p2=0=

3

(d− 2)d
I
d (2)
2 [λiiλij ]|p2=0,

I
d (2)
2 [x231x

2
32 ]|p2=0=I

d (2)
2 [x241x

2
42 ]|p2=0=

1

(d− 2)d
I
d (2)
2 [ 2λ2

12 + λ11λ22]|p2=0,

I
d (2)
2 [x23ix

2
4j ]|p2=0=

1

(d− 3)(d− 2)d
I
d (2)
2 [−2λ2

12 + (d− 1)λ11λ22]|p2=0,

I
d (2)
2 [x23ix4ix4j ]|p2=0=I

d (2)
2 [x24ix3ix3j ] =

1

(d− 2)d
I
d (2)
2 [λ12λii]|p2=0,

I
d (2)
2 [x31x41x32x32 ]|p2=0=

1

(d− 3)(d− 2)d
I
d (2)
2 [ (d− 2)λ2

12 − λ11λ22]|p2=0. (A.3.24)

Moreover, in general, we have

I
d (2)
2 [xα3

31x
α4
41x

β3
32x

β4
42 ]|p2=0=0, if αi + βi = 2n+ 1. (A.3.25)

One-point integrals (ℓ = 2, d‖ = 0) :

I
d (2)
1 [N ] =

∫
ddq1d

dq2
πd

N (q1, q2)

D1 . . . Dn
, (A.3.26)

- Loop momenta decomposition, qαi = λα
i :

λα
i =

4∑

j=1

xjie
α
i + µα

i , (A.3.27)

- Transverse variables:




x11 =
√
λ11cθ11

x21 =
√
λ11sθ11cθ21

x31 =
√
λ11sθ11sθ21cθ31

x41 =
√
λ11sθ11sθ21sθ31cθ41

x12 =
√
λ22(cθ12cθ11 + sθ12cθ22sθ11)

x22 =
√
λ22[cθ12cθ21sθ11 + sθ12(cθ32sθ21sθ22 − cθ11cθ21cθ22)]

x32 =
√
λ22[cθ12cθ31sθ11sθ21 + sθ12(cθ42sθ31sθ22sθ32

−cθ11cθ31cθ22sθ21 − cθ21cθ31cθ32sθ22)]

x42 =
√
λ22[cθ12cθ41sθ11sθ21sθ31 + sθ12(cθ52sθ41sθ22sθ32sθ42

−cθ11cθ41cθ22sθ21sθ31 − cθ21cθ41cθ32sθ22sθ31
−cθ31cθ41cθ42sθ22sθ32)],

- d = d‖ + d⊥ parametrization:

Id1 [N ] =
2d−6

π5Γ(d− 5)

∫ ∞

0
dλ11dλ22(λ11)

d−2
2 (λ11)

d−2
2 ×

∫ 1

−1
dcθ12dcθ11dcθ21dcθ31dcθ41dcθ22dcθ32dcθ52×

(sθ12)
d−3 (sθ11)

d−3(sθ21)
d−3(sθ31)

d−5(sθ41)
d−6×

(sθ22)
d−4(sθ32)

d−5dcθ42(sθ42)
d−6(sθ52)

d−7 N (q1, q2)

D1 . . . Dn
, (A.3.28)
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- Transverse tensor integrals:

I
d (2)
1 [x1ix1j ] =I

d (2)
1 [x2ix2j ] = I

d (2)
1 [x3ix3j ] = I

d (2)
1 [x4ix4j ] =

1

d
I
d (2)
1 [λij ], ∀i, j.

(A.3.29)

Moreover, in general, we have

I
d (2)
1 [xα1

11x
α2
21x

α3
31x

α4
41x

β1
12x

β2
22x

β3
32x

β4
42 ] =0, if αi + βi = 2n+ 1. (A.3.30)

A.4 Gegenbauer polynomials

In this appendix, we recall the most relevant properties of Gegenbauer polynomials.

Gegenbauer polynomials C
(α)
n (x) are orthogonal polynomials over the interval [−1, 1]

with respect to the weight function

ωα(x) = (1− x2)α−
1
2 (A.4.1)

and they can be defined through the generating function

1

(1− 2xt+ t2)α
=

∞∑

n=0

C(α)
n (x)tn. (A.4.2)

These polynomials obey the orthogonality relation

∫ 1

−1
dx ωα(x)C

(α)
n (x)C(α)

m (x) = δmn
21−2απΓ(n+ 2α)

n! (n+ α)Γ2(α)
. (A.4.3)

The explicit expression of the first Gegenbauer polynomials is given by

C
(α)
0 (x) = 1,

C
(α)
1 (x) = 2αx,

C
(α)
2 (x) = −α+ 2α(1 + α)x2,

· · · (A.4.4)

and it can inverted in order to express arbitrary powers of the variable x in terms of
products of Gegenbauer polynomials,

x =
1

2α
C

(α)
0 (x)C

(α)
1 (x),

x2 =
1

4α2
[C

(α)
1 (x)]2,

x3 =
1

4α2(1 + α)
C

(α)
1 (x)[αC

(α)
0 (x) + C

(α)
2 (x)],

x4 =
1

4α2(1 + α)2
[αC

(α)
0 (x) + C

(α)
2 (x)]2,

· · · (A.4.5)

These identities can be used in order to evaluate the integral of any polynomial in
x, convoluted with the weight function ωα(x), by means of the orthogonality relation
(A.4.3).
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A.5 Four-dimensional bases

In this appendix, we provide the explicit definitions of the four-dimensional basis E =
{eαi } used throughout chapters 2-4 to decompose the four-dimensional part of the loop
momenta q[4] i,

qα[4] i = pα0 i + x1ie
α
1 + x2ie

α
2 + x3ie

α
3 + x4ie

α
4 . (A.5.1)

In the following, for any pair of massless vectors qα1 and qα2 , we denote by εαq1,q2 the
spinor product

εαq1 q2 =
1

2
〈q1|γα|q2]. (A.5.2)

d = 4− 2ǫ bases

In the d = 4 − 2ǫ parametrization of Feynman integrals, we choose, independently
from the number of external legs, a basis of massless vectors E defined in terms of two
adjacent external momenta p1 and p2 by

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ), eα2 =

1

1− r1r2
(pα2 − r2p

α
1 ), eα3 = εαe1 e2 , eα4 = εαe2,e1 ,

(A.5.3)

where

ri =
p2i
γ

with γ = (p1 · p2)
(
1 +

√
1− p21p

2
2

(p1 · p2)2

)
. (A.5.4)

In the case of two-point integrals, p1 corresponds to the external momentum and p2
is an arbitrary massless vector. In the case of one-point integrals, both p1 and p2 are
chosen to be arbitrary massless vectors.

d = d‖ + d⊥ bases

In the d = d‖ + d⊥ parametrization of Feynman integrals with n ≤ 4 external legs, the
four-dimensional basis E is chosen in such a way to satisfy the requirements

ei · pj = 0, i > n− 1, ∀j = 1, . . . n− 1, (A.5.5a)

ei · ej = δij , i, j > n− 1, (A.5.5b)

where {p1, p2, . . . , pn−1} is the set of independent external momenta.

• Four-point integrals

In case of four-point integrals E is defined as

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ),

eα2 =
1

1− r1r2
(pα2 − r2p

α
1 ),

eα3 =
1

i
√
β

[
(εe2 e1 · p3) εαe1 e2 + (εe1 e2 · p3) εαe2 e1

]
,

eα4 =
1√
β

[
(εe2 e1 · p3) εαe1 e2 − (εe1 e2 · p3) εαe2 e1

]
. (A.5.6)

with r1,2 given by (A.5.4) and β = 2e1 · e2 (εe1 e2 · p3) (εe1 e2 · p3).
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• Three-point integrals

For three-point integrals E is defined as

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ), eα2 =

1

1− r1r2
(pα2 − r2p

α
1 ),

eα3 =
1

i
√
2e1 · e2

(
εαe1 e2 + εαe2 e1

)
, eα4 =

1√
2e1 · e2

(
εαe1 e2 − εαe2,e1

)
, (A.5.7)

with r1,2 given by (A.5.4).

• Two-point integrals with p2 6= 0
For a two-point integral with massive external momentum p, we introduce two
massless vectors q1 and q2 satisfying

pα =qα1 +
p2

2q1 · q2
qα2 (A.5.8)

and we define the massive auxiliary momentum q

qα =qα1 − p2

2q1 · q2
qα2 . (A.5.9)

The basis E is therewith defined as

eα1 =
1√
p2

pα, eα2 =
1

i
√
p2

qα,

eα3 =
1

i
√
2q1 · q2

(εαq1 q2 + εαq2 q1), eα4 =
1√

2q1 · q2
(εαq1 q2 − εαq2 q1). (A.5.10)

• Two-point integrals with p2 = 0
In the case of two-point integrals with massless external momentum p, we intro-
duce a massless auxiliary vector q1 and we define the basis E as

eα1 =pα, eα2 =qα1 ,

eα3 =
1

i
√
2p · q1

(εαp q1 + εαq1 p), eα4 =
1√

2p · q1
(εαp q1 − εαq1 p). (A.5.11)

• One-point integrals

For one-point integrals, we introduce two arbitrary independent massless vectors
q1 and q2 and we build a completely orthonormal basis E ,

eα1 =
1√

2q1 · q2
(qα1 + qα2 ), eα2 =

1

i
√
2q1 · q2

(qα1 − qα2 ),

eα3 =
1

i
√
2q1 · q2

(εαq1 q2 + εαq2 q1), eα4 =
1√

2q1 · q2
(εαq1 q2 − εαq2 q1). (A.5.12)



Appendix B

dlog-forms

In this appendix we collect the coefficient matrices of the dlog-forms for the master
integrals discussed in chapters 6-8.

B.1 dlog-forms for X0WW

We list below the coefficients matrix of the dlog-form for the master integrals of the
first and second integral families, respectively defined by eqs. (6.7,6.25).

First integral family

For the first integral family, given in eq. (6.7) we have

dA = M1 dlog(u) + M2 dlog(z) + M3 dlog(1− z)

+ M4 dlog(z̄) + M5 dlog(1− z̄) + M6 dlog(z − z̄)

+ M7 dlog(1 + u z z̄) + M8 dlog (1− u z(1− z̄))

+ M9 dlog (1− u z̄(1− z)) + M10 dlog (1 + u(1− z)(1− z̄)) , (B.1.1)

with

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 1

2 −3
2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −3

2 −2 1
2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 1
2 0 0 0 0 0 1

2
1
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −2 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −2 1 2 0
0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




, (B.1.2)
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M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2 −1
2 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −1

2 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 1
2 0 0 −1

2 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1

2 0 −1
2 −1

2 0 1
2 −1

2 0 0 −1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 −1 1

2 0 −1
2

0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 −1

2
3
2 0 0 0 −2 0 0 0 0 −2 −1 0 0 0 1 0 0 0 0 −2 1 0 −1

0 2 0 −2 2 1 −3 0 0 0 0 0 0 0 0 4 2 0 0 0 −2 0 0 0 0 4 −2 0 2




, (B.1.3)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2 0 −1
2 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 −3
2 0 3

2 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 −1

2 0 1
2 0 0 −1 0 0 0 0 0 2 1 1 1 1 0 0 0 0 0 0 0

0 1
2 0 1

2
1
2 0 −1

2
1
2 0 0 1 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 0 1
2

1
2

0 0 0 1 0 0 −3
2 1 1

2 0 2 0 0 0 0 1 0 0 0 0 1 1 0 0 0 −2 0 1 1
0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 2 0 0 −3 2 1 0 0 0 0 0 0 2 0 0 0 0 2 2 0 0 0 −4 0 2 2




, (B.1.4)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1

2
1
2 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 3
2 −3

2 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 1

2 0 1 −1
2 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 2 −1
2 0 0 1

2 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −1

2 0 −2 1
2 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 1
2

1
2 0 −1

2
1
2 0 0 1 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 −1 −1
2 1 1

2
0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1

2 −3
2 0 0 0 2 0 0 0 0 1 1 0 0 0 1 0 0 0 0 −2 −1 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.5)

M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1

2 0 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 1

2 0 −1
2 0 0 1 0 0 0 0 0 0 0 −1 −2 −1 0 0 0 0 0 0 0

0 −1
2 0 −1

2 −1
2 0 1

2 −1
2 0 0 −1 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 1 −1
2 −1

2
0 0 0 −1 0 0 3

2 −1 −1
2 0 −2 0 0 0 0 1 0 0 0 0 −2 −1 0 0 0 −2 2 −1 −1

0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.6)
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M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2 0




, (B.1.7)

M7 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1

2
3
2 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
1 2 0 2 0 0 0 2 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0




, (B.1.8)

M8 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 −1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 3 0 0 −1 1 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0 0 0
0 0 −1 0 −3 0 0 1 −1 0 0 0 0 0 0 0 0 −1 1 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 2 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 −3 −1 0 0 0 0 −2 0 1
1 2 0 2 0 0 0 0 0 0 4 0 0 0 0 −3 −1 0 0 0 0 0 0 0 0 0 −2 0 1
−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 6 2 0 0 0 0 0 0 0 0 0 2 0 −1




, (B.1.9)

M9 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 −3 0 0 1 −1 0 0 0 0 0 0 0 0 −3 −3 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 −1 0 −1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 −1
−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 −1
−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −2 −1




, (B.1.10)



240 Appendix B. dlog-forms

M10 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3

2 −1 −1
2 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 2 2 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0




. (B.1.11)

Second Integral family

For the second integral family, given in eq. (6.25) we have

dA = M1 dlog(v) + M2 dlog(1− v) + M3 dlog(1 + v) + M4 dlog(z)

+ M5 dlog(1− z) + M6 dlog(z̄) + M7 dlog(1− z̄)

+ M8 dlog(z − z̄) + M9 dlog (z + v(1− z)) + M10 dlog (1− z(1− v))

+ M11 dlog (z̄ + v(1− z̄)) + M12 dlog (1− z̄(1− v))

+ M13 dlog
(
v + zz̄(1− v)2

)
+ M14 dlog

(
v + (1− z − z̄ + zz̄)(1− v)2

)

+ M15 dlog
(
v + z(1− v)2

)
+ M16 dlog

(
v + (1− z)(1− v)2

)

+ M17 dlog
(
v + z̄(1− v)2

)
+ M18 dlog

(
v + (1− z̄)(1− v)2

)
, (B.1.12)

with

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 5 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 −1 −2 4 0 0 0 0 0 0 0 0 −1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 −2 4 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

2 0 −1
2 0 0 0 0 0 −1

2 −1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 −2 0 0 0 2 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 2 1 2 0 0
1 2 4 0 0 −2 −2 1 2 0 0 4 0 0 0 0 0 0 0 0 2 0 −2 −2 0 0 4 2 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2




, (B.1.13)



B.1. dlog-forms for X0WW 241

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 −4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 −4 0 4 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 −4 0 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 4




, (B.1.14)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1

2 1 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.15)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 −1
2 1 0 −1

2 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 −1 −1
2 1 0 −1

2 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 0 0 0 −3
2 1 −1

2 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 3

2 0 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0 3

2 −2 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 3

2 −2 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1

2 −1 0 2 −1 1
2 0 0 −1 0 0 0 −1 −1 1 0 0 2 1 1 0 0 0 0 0 0 0




, (B.1.16)



242 Appendix B. dlog-forms

M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 1

2 −1 0 3
2 0 0 0 0 0 0 0 0 −2 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

−1
2 0 0 0 −1

2 0 0 −3
2 0 0 0 0 0 0 0 0 2 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 −2 0 3
2 0 0 0 0 0 0 0 0 −2 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 1

2 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

1
2 1 0 0 0 0 0 1

2 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 −1
2 0 −1

2
1
2 0 0 1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 −1 1
2 1 −1

2 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 1 0 0 0 0 −3
2 2 −1

2 0 2 0 0 0 0 0 0 0 1 0 −1 −1 −1 0 0 −2 1 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 −1

2 1 0 −2 1 −1
2 0 0 1 0 0 0 2 1 −1 0 0 −1 −1 −1 0 0 0 0 0 0 0




, (B.1.17)

M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 1

2 −1 0 1
2 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 0 1 1

2 −1 0 1
2 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

3
2 0 0 1 3

2 −3 0 3
2 0 0 0 0 0 0 0 0 −3 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 3

2 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1
2 0 0 0 0 0 0 −3

2 0 −1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 0 0 0 −3
2 2 −1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 −3 4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
−1 0 0 0 −1

2 1 0 −2 1 −1
2 0 0 1 0 0 0 1 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0




, (B.1.18)

M7 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 −1
2 1 0 −3

2 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 1

2 0 0 3
2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 0 0 0 −1
2 1 −1

2 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0
−1

2 −1 0 0 0 0 0 −1
2 1 −1

2 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0
3
2 1 0 0 0 0 0 3

2 −3 3
2 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1

2 0 0 1
2 0 1

2 −1
2 0 0 −1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 −1 −1
2 0 1

2 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 −1 0 0 0 0 3

2 −2 1
2 0 −2 0 0 0 0 0 0 0 1 0 1 0 1 0 0 −2 −1 0 1 0

1 0 −2 0 0 0 0 3 −4 1 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 0 −4 −2 0 2 0
1 0 0 0 1

2 −1 0 2 −1 1
2 0 0 −1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0




, (B.1.19)



B.1. dlog-forms for X0WW 243

M8 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 2 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2




, (B.1.20)

M9 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 −1 −1 2 0 0 0 0 0 0 0 0 −3 −3 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 −1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 −3 −3 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 −2 −2 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 −1 0 0 1 0 0 4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 −1 0
0 0 −2 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0
0 0 2 0 0 −2 0 0 2 0 0 4 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.21)

M10 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 −1 1 1 0 0 0 0 0 0 0 0 −3 −3 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 −1
2 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 1 −2 1 −1 0 0 0 0 0 0 0 0 0 0 0 −3 −3 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 −2 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 −1
2 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 −2 −2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.22)



244 Appendix B. dlog-forms

M11 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 −1 1 1 −2 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 −1 1 1 −2 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0
−1 −1 0 0 0 0 −1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 1 0 0 −1 0 0 −4 0 0 0 0 0 0 0 2 −1 0 0 0 0 0 0 −2 0 1 0
0 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −1 0
0 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.23)

M12 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 −1 1 −1 −1 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 −1 1 −1 −1 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1

2 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 −1 2 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0
−1 −1 0 0 0 0 1 −2 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1

2 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 −3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.24)

M13 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 −1
2 2 0 −3

2 0 0 0 0 0 0 0 0 2 1 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 −2




, (B.1.25)
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M14 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 0 0 0 −3
2 2 −1

2 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −2 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 −2 0 1 2 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 −2




, (B.1.26)

M15 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.27)

M16 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.28)
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M17 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.1.29)

M18 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (B.1.30)

B.2 dlog-forms for massive boson-pair production

The dlog-form for the master integrals belonging to the integral family defined by
eq. (7.2) is given by

dA = M1 dlog(x) + M2 dlog(4 + x) + M3 dlog(
√
x+

√
4 + x) + M4 dlog(y)

+ M5 dlog(1 + y) + M6 dlog(4 + y) + M7 dlog(
√
y +

√
4 + y)

+ M8 dlog(x− 4y) + M9 dlog(x− y(4 + y)) + M10 dlog(x2 − y − xy(3 + y)),

+ M11 dlog(
√
x+

√
x− 4y) + M12 dlog(

√
4 + x+

√
x− 4y),

+ M13 dlog

(
2x− y(y + 3)− (y + 1)λy

2x− y(y + 3) + (y + 1)λy

)
+ M14 dlog

(√
x(y + 2)−

√
x+ 4λy√

x(y + 2) +
√
x+ 4λy

)

+ M15 dlog

(
−√

xy +
√
(y + 4)(x− 4y)

√
xy +

√
(y + 4)(x− 4y)

)
+ M16 dlog

(
−
√
x (λy − 1− y) +

√
x− 4y√

x (λy − 1− y)−√
x− 4y

)

+ M17 dlog

(√
x (λy + 1 + y)−√

x− 4y√
x (λy + 1 + y) +

√
x− 4y

)
+

M18 dlog

( (√
x− 4y + y

) (
y
(√

x− 4y +
√
x+ 4 + 4

)
+ 2

(√
x+ 4 + 2

))
(√

x− 4y − y
) (

y
(
−√

x− 4y +
√
x+ 4 + 4

)
+ 2

(√
x+ 4 + 2

))
)
,

(B.2.1)



B.2. dlog-forms for massive boson-pair production 247

with λy =
√
y
√
4 + y and

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 1
2 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.2)

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.3)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 −4 −4 0 0 0 0 0 0 −4 0 0 0
0 0 −4 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.4)



248 Appendix B. dlog-forms

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −12 0 −12 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −12 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

4 0 −14 0 0 0 0 0 0 −1 −2 0 0 0 0 0 0 −2 0 2 0 0 0 0
0 0 0 0 0 1

2 0 0 0 0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 −1 0 −12 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 −1 2 2 0 −1 0 0 0 0 0 0 0 2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.5)

M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −2 2 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 3 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.6)

M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1




, (B.2.7)



B.2. dlog-forms for massive boson-pair production 249

M7 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 9
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 −4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −7 −6 0 2 8 0 0 0 0 0 0 −4 0 0 0




, (B.2.8)

M8 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




, (B.2.9)

M9 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 −12 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32 −2 0 0 0 0 0 0 0 0 0 0
0 0 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 −1 0 1

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1




, (B.2.10)



250 Appendix B. dlog-forms

M10 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −34 0 3

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.11)

M11 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.12)

M12 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −4 −4 0 2 0 0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.13)
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M13 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

8 0 −38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.14)

M14 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0




, (B.2.15)

M15 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −12 0 0 1

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0




, (B.2.16)
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M16 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −34 0 3

4 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

4
1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −34 0 3

4 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.17)

M17 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −34 0 3

4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −34 −12 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3

4 0 −34 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −34 0 3

4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




, (B.2.18)

M18 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (B.2.19)

B.3 dlog-forms for µe scattering

We list below the coefficients matrix of the dlog-forms

dA = M1 dlog(x) + M2 dlog(1 + x) + M3 dlog(1− x)
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+ M4 dlog(y) + M5 dlog(1 + y) + M6 dlog(1− y)

+ M7 dlog(x+ y) + M8 dlog (1 + x y)

+ M9 dlog (1− y(1− x− y)) , (B.3.1)

for the master integrals in the first and second integral family, respectively defined in
eqs. (8.24,8.50).

First integral family

For the first integral family, given in eq. (8.24), we have (M3 is vanishing for this integral
family):

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 1

2 0 1
4 0 0 0 0 1 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 −12 0 0 1
2 −12 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −12 0 9

2
11
6 −43 21

8 −1 0 0 −3 1
4 0 0 0 0 0 1 −1 −12 −10 −6 0 0 −43 0 0 2 1 1 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.3.2)

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 −1 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 2 −2 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 −4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 −6 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 4 2 −1 0 0 0 0 0 0 0 0 0 0 8 0 0 0 −4 0 0 0 0 0 0 0 −2 0 0 0 0 0

−1 −4 0 0 −103 −53 0 −4 0 0 −8 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0
1 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0
0 0 0 −12 −8 2 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 24 16 4 4 0 0 4 0 0 0 0 −4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 18 12 −3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 −36 −24 −4 −4 0 0 −6 0 0 0 0 2 0 0




, (B.3.3)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 −12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 −4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 3 0 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 6 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 2 0 0 1

4 0 0 0 0 1
2 0 0 0 0 0 0 −4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −3 0 0 −34 0 0 0 0 1
2 0 0 0 0 0 0 16 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 −1 1
2 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 1 −1 3
4 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 2 −12 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 −1 1 0 0 0 0 0 0 −3 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −12 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 0 0 0 2 0 0 0 −13 0 0 4 1 0 0 0 0 0

−1 −2 0 4 2 −1 0 0 0 0 −2 2 0 0 0 0 8 0 0 0 −8 0 0 0 2
3 0 0 −16 −4 0 0 0 0 0

−12 −2 0 0 −53 −56 0 −2 0 0 −4 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
1
2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −6 −4 1 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 12 8 2 2 0 0 2 0 0 0 0 0 0 0
0 0 −2 9 6 −32 3 0 1 3 0 0 6 4 4 2 0 0 0 0 −18 −8 −2 0 0 0 −2 0 0 0 0 1 1 2
0 0 0 9 6 −32 9

2 0 0 0 0 3 0 0 0 1 0 0 0 0 −18 −12 −2 −2 0 3 −3 0 0 0 0 1 1 2




, (B.3.4)



254 Appendix B. dlog-forms

M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.3.5)

M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −3 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 −3 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 4

3 −13 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 3 2 2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0
1 2 0 −4 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 2 0 0 0 0 0
0 0 0 −6 −4 1 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 12 8 0 0 4 0 0 0 0 −4 0 0 0 0

−12 −2 0 12 19
3 −176 21

4 −2 0 0 −4 1
2 0 0 0 0 2 2 −2 −1 −24 −12 0 0 −4 0 0 0 0 2 2 0 0 0

0 0 0 0 0 0 −3 0 −2 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 −2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 −4




, (B.3.6)

M7 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1

3 −13 1
4 0 0 0 0 −12 0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −3 −1 1 −34 0 0 0 0 3
2 0 0 0 0 0 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −3 −2 1
2 0 0 0 0 0 0 −3 −2 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 3 1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −34 0 0 0 3 −32 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1

3
1
6 0 0 0 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 −12 0 0 0 0 0 0 0

0 0 0 0 −1 −12 0 0 0 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

2
3
2 0 0 0 0 0 0 0

0 0 0 −32 −13 7
12 −38 0 0 0 1 −14 0 0 0 0 −2 −2 1 1

2 3 1 0 0 0 0 0 1 0 0 0 0 0 0
1
2 1 0 1 −13 −23 3

4 0 0 0 −2 1
2 0 0 0 0 0 4 0 −1 −6 −2 0 0 0 0 0 0 1 0 0 0 0 0

1
2 2 0 3 11

3
1
3

3
2 2 0 0 4 0 0 0 0 0 −2 −2 0 0 −6 −4 0 0 −2 0 0 −2 0 2 2 0 0 0

−14 −1 0 −6 −196 17
12 −218 −1 0 0 2 −14 0 0 0 0 −1 −1 1 1

2 12 6 0 0 2 0 0 2 0 −1 −1 0 0 0
0 0 0 6 4 −1 9

2 0 1 3 0 3 −3 −4 0 1 0 0 0 0 −12 −8 −2 −2 0 0 −2 0 0 0 0 2 −1 1
0 0 −1 9 6 −32 3 0 0 0 0 0 3 2 2 1 0 0 0 0 −18 −10 −2 −2 0 0 −2 0 0 0 0 1 0 1
0 0 0 −9 −6 3

2 −92 0 −1 0 0 3 0 0 0 0 0 0 0 0 18 10 2 2 0 3 3 0 0 0 0 −1 1 0




, (B.3.7)



B.3. dlog-forms for µe scattering 255

M8 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1

3 −13 1
4 0 0 0 0 1

2 0 0 0 0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 −1 1 −34 0 0 0 0 −32 0 0 0 0 0 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 −2 1

2 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 3 1 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −34 0 0 0 3 3

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −13 −16 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 1
2 0 0 0 0 0 0 0

0 0 0 0 −1 −12 0 0 0 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32 3

2 0 0 0 0 0 0 0
0 0 0 3

2
1
3 − 7

12
3
8 0 0 0 −1 1

4 0 0 0 0 2 2 −1 −12 −3 −1 0 0 0 0 0 1 0 0 0 0 0 0
1
2 1 0 −5 −53 5

3 −34 0 0 0 2 −12 0 0 0 0 −8 −4 0 1 6 2 0 0 0 0 0 0 1 0 0 0 0 0
1
2 2 0 3 11

3
1
3

3
2 2 0 0 4 0 0 0 0 0 −2 −2 0 0 −6 −4 0 0 −2 0 0 2 0 2 2 0 0 0

−14 −1 0 −6 −196 17
12 −218 −1 0 0 2 −14 0 0 0 0 −1 −1 1 1

2 12 6 0 0 2 0 0 −2 0 −1 −1 0 0 0
0 0 0 6 4 −1 9

2 0 1 3 0 −3 3 4 0 −1 0 0 0 0 −12 −8 −2 −2 0 0 −2 0 0 0 0 2 1 1
0 0 1 −9 −6 3

2 −3 0 0 0 0 0 −3 −2 −2 1 0 0 0 0 18 10 2 2 0 0 2 0 0 0 0 −1 0 −1
0 0 0 −9 −6 3

2 −92 0 −1 0 0 −3 0 0 0 0 0 0 0 0 18 10 2 2 0 −3 3 0 0 0 0 −1 −1 0




, (B.3.8)

M9 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (B.3.9)

Second integral family

For the second integral family, given in eq. (8.50), we find:

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 0 0 0 0 1 −12 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 −12 1

2 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −12 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −32 1 0 0 0 0 0 0 0 0 0 0 −3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −12 1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−14 0 0 0 0 1 −14 0 0 0 0 0 0 0 0 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.3.10)



256 Appendix B. dlog-forms

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 −1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 2 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 −4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0 2 0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −4 0 0 0 0 0 0 0




, (B.3.11)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (B.3.12)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −4 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0 0 3 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −6 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 −4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 3 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 6 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −2 0 0 0 −4 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 0 0 −2 1 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 −12 3 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 −3 0 0 0 0 0 0 −3 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 0 0 0 0 2 −12 0 0 0 0 3 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 −1 1 0 0 0 0 −3 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −5 10 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 6 0 0 0 0 0 0 0 0 0 0
0 0 0 −14 1

2 0 −12 1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 0 0 0 0 0 0 0

0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 −4 0 0 0 0 0 0 0
0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 −6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 0 0 1

2 0 0 0 0 0 0 0 −12 0 0 0 0 0 0 0 0 0 0 −12 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 1 0 0 0 3 2 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 −2 0 0 0 0 0 0 0 0
0 1

3 −43 −12 0 0 0 0 0 0 −1 6 16
3 −103 4 2

3
2
3 −1 0 0 0 0 0 0 0 −1 −23 −43 −103 −83 0 0 0 2 0 −8 0 0 0 2 4 2

0 1
3

5
3 −2 0 0 0 0 0 0 1 −5 −83 8

3 −3 2
3

2
3 3 0 0 0 0 0 0 0 0 −23 2

3
2
3

4
3 0 0 6 1 0 4 −2 0 0 −1 −2 −1




, (B.3.13)



B.3. dlog-forms for µe scattering 257

M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 −2 0 0
0 0 0 1 −2 0 0 0 0 0 0 0 0 0 −4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 −2 0
0 0 −43 1

2 −1 0 0 0 0 0 −1 5 10
3 −103 3 0 0 −2 0 0 0 0 0 0 0 0 0 0 −43 −23 0 0 0 1 0 −4 2 0 0 1 2 0




, (B.3.14)

M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 3 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 3 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 1
2 1 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 2 −4 0 0 0 0 0 0 0 0 0 0

0 0 0 −12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 −12 0 0 1

2 −1 0 0 0 0 0 0 0 0 0 0 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 −4 1 −2 0 0 0 0 0 0 0
0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −12 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 6 −3 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 −12 0 1 −1 3 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 1 0 0 0 0 0 0 6 −1 2 0 1 0 −2 0 0 0
0 0 0 1

2 −1 0 0 0 0 0 −2 0 0 0 −2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 −2 −2 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
0 0 −23 9

4 −12 1 −1 3 0 0 −1 2 2
3 −23 2 0 0 −52 3 4 0 0 0 0 0 0 0 0 4

3
2
3 0 0 6 −1 2 −2 1 0 0 0 1 −2




, (B.3.15)

M7 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 1

2 −3 0 0 0 0 0 0 −3 −2 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1 −1 3 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −3 −2 1 0 0 0 0 −3 −2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−12 0 0 0 −1 0 0 0 −32 −1 0 0 0 0 0 0 0 0 0 0 1 1 −1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2 −1 0 0 0 −32 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1

8
1
4 0 1

4 −12 0 0 0 0 0 0 0 0 0 1
4

1
2 1 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 −1 0 0 0 0 0 0 0

0 0 0 1
2 −1 1 −1 3 0 0 0 0 0 0 0 0 0 0 −3 −4 0 0 0 0 0 0 0 0 0 0 0 0 6 1 2 0 0 0 0 0 0 0

0 0 0 −38 −34 0 −34 3
2 0 0 0 0 0 0 0 0 0 −34 −32 −3 0 0 0 0 0 0 0 0 0 0 0 0 6 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1

8
1
4 −12 1

2 −32 0 0 0 0 0 0 1
2 0 0 −14 −32 −2 0 0 0 0 0 −12 0 0 0 0 0 0 −3 0 −1 −1 −12 0 1 0 0 0

0 −13 4
3

1
4

3
2 −2 2 −6 0 0 2 −9 −283 10

3 −1 −23 −23 −12 −6 −8 0 0 0 0 0 0 2
3 −23 −23 −43 0 0 −12 1 −4 2 −3 0 0 1 −1 −2

0 1
3 −43 −12 −1 1 −1 3 0 0 −2 6 16

3 −103 2 2
3

2
3 0 3 4 0 0 0 0 0 0 −23 2

3
2
3

4
3 0 0 6 −1 2 −4 2 0 0 0 2 2

0 −13 1
3

1
2 0 −1 1

2 −2 0 0 1 −2 −43 4
3 −2 −23 −23 0 −2 −2 0 0 0 0 0 0 2

3 −23 −23 −43 0 0 0 1 0 2 −1 0 0 0 −1 −1




, (B.3.16)



258 Appendix B. dlog-forms

M8 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 1

2 −3 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1 −1 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−12 0 0 −12 0 0 0 0 3

2 −1 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 3

8 −14 0 1
4 −12 0 0 0 0 0 0 0 0 0 −14 1

2 1 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 −1 0 0 0 0 0 0 0
0 0 0 1

2 −1 −1 1 −3 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 −6 3 −2 0 0 0 0 0 0 0
0 0 0 −58 −14 −1 1

4 −32 0 0 0 0 0 0 0 0 0 3
4

3
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 3

8 −14 −12 1
2 −32 0 0 0 0 0 0 −12 0 0 1

4 −32 −2 0 0 0 0 0 −12 0 0 0 0 0 0 −3 1 −1 1 −12 0 1 0 0 0
0 1

3 −43 −34 −12 2 −2 6 0 0 0 9 28
3 −103 3 2

3
2
3 −12 6 8 0 0 0 0 0 0 −23 2

3 −103 −83 0 0 12 −1 4 −6 3 0 0 3 3 2
0 −13 4

3
1
2 1 −1 1 −3 0 0 0 −6 −163 10

3 −2 −23 −23 0 −3 −4 0 0 0 0 0 0 2
3 −23 10

3
8
3 0 0 −6 −1 −2 4 −2 0 0 −2 −2 −2

0 0 0 −34 1
2 0 −12 1 0 0 0 0 0 0 0 0 0 1

2 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 6 −2 2 0 0 0 0 0 0 1




, (B.3.17)

M9 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix C

Analytic continuation of the

three-loop banana graph

In this appendix, we describe the analytic continuation of the MIs derived in sec. 9.5.4
to arbitrary values of x = 4m2/s. We start from the analytic continuation of the
homogeneous solutions by first defining, for each kinematic region a < x < b, a set
of real-valued homogeneous solutions G(a,b)(x) and then by matching their limiting
behaviours in order to link them across the singularities of the DEQs. Finally, we apply
these results to eq. (9.5.10) and obtain the analytic continuation of the inhomogeneous
solution.

C.1 Homogeneous solutions

In sections 9.5.2-9.5.3 we have obtained, through different approaches, two different
representation of the homogeneous solutions, corresponding to eqs. (9.201) and (9.216).
Although the two representations have been shown to be completely equivalent, we
decide to work with the latter, since it leads to more compact expressions. Therefore,
we consider homogeneous solutions written in terms of products of complete elliptic
integrals with arguments

ω± =
1

4x

(
2x+ (1− 2x)

√
x− 1

x
±
√

4x− 1

x

)
. (C.1.1)

The solutions (9.216) are explicitly real in the region (1,∞). In order to define a set
of real solutions in the other three regions, (−∞, 0), (0, 1/4) and (1/4, 1), we can make
use of well-known identities between complete elliptic integrals, such as

K

(
1

z

)
=
√
z (K (z)− iK(1− z)) , with z → z + i0+ , (C.1.2)

which establish linear relations between elliptic integrals with different reality domains.
Therefore, by extending the set of building-blocks of the homogeneous solutions to the
elliptic integrals

K(ω±) , K(1− ω±) , K

(
1

ω±

)
, K

(
1

1− ω±

)
, K

(
1− 1

ω±

)
, (C.1.3)

one can easily obtain, for each region (a, b), a matrix of homogeneous solutions G(a,b)(x)
with real entries. In the following we list, for each region, one possible choice of real

259
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solutions for the first master integral, which correspond to the first row of G(a,b)(x).
As we have already observed, the other two rows can be obtained by applying the
differential operators (9.157, 9.158) to the first one.

• −∞ < x < 0:

H
(1)
[1; (−∞,0)](x) =K (ω+)K (ω−) ,

H
(2)
[1; (−∞,0)](x) =

1

2
[K (ω+)K (1− ω−) + K (1− ω+)K (ω−)] ,

H
(3)
[1; (−∞,0)](x) =

1√
1− ω−

√
1− ω+

K

(
1

1− ω+

)
K

(
1

1− ω−

)
. (C.1.4)

with Wronskian

W (−∞,0)(x) =
π3x3

64
√

(1− 4x)3(1− x)
. (C.1.5)

• 0 < x < 1/4:

H
(1)
[1; (0,1/4)](x) =

1

2
[K (ω+)K (1− ω−) + K (1− ω+)K (ω−)] ,

H
(2)
[1; (0,1/4)](x) =− 1

2
[K (ω+)K (ω−) + K (1− ω+)K (1− ω−)] ,

H
(3)
[1; (0,1/4)](x) =K (ω−)

[
K(ω+) +

1√
ω+

K

(
1

ω+

)]
, (C.1.6)

with Wronskian

W (0,1/4)(x) =
π3x3

64
√

(1− 4x)3(1− x)
. (C.1.7)

• 1/4 < x < 1:

H
(1)
[1; (1/4,1)](x) =

1

2
[K (ω+)K (ω−) + K (1− ω+)K (1− ω−)] ,

H
(2)
[1; (1/4,1)](x) =

1√
ω+

K(ω−)K

(
1− 1

ω+

)
,

H
(3)
[1; (1/4,1)](x) =− 1√

1− ω+
√
ω−

K

(
1

1− ω+

)
K

(
1

ω−

)
, (C.1.8)

with Wronskian

W (1/4,1)(x) =
π3x3

64
√

(4x− 1)3(1− x)
. (C.1.9)

• 1 < x < ∞:

H
(1)
[1; (1,∞)](x) =K (ω+)K (ω−) ,

H
(2)
[1; (1,∞)](x) =K (ω+)K (1− ω−) ,

H
(3)
[1; (1,∞)](x) =− 1

3
K (1− ω+)K (1− ω−) , (C.1.10)

with Wronskian

W (1,∞)(x) =
π3x3

64
√
(4x− 1)3(x− 1)

. (C.1.11)
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C.2 Analytic continuation of the homogeneous solution

Once real homogeneous solutions G(a,b)(x) have been found in each region (a, b), we
must match them across the four singular points x = 0, 1/4, 1 and x = ±∞ in order
to analytically continue the homogeneous solutions the whole real axis −∞ < x < ∞.
Given the matrices (a,b)(x) and G(b,c)(x) of real solutions defined in the adjacent intervals
(a, b) and (b, c), the analytic continuation amounts to define a matching matrix M(b) ,

G
(b,c)(x) = G

(a,b)(x)M(b) , (C.2.1)

which allows to continue G(a,b)(x) to the region b < x < c. The matrix M (b) can be
obtained by assigning a small imaginary part to x → x − i0+ (the sign of which is
inherited from the Feynman prescription s → s + i0+) and by equating the x → b+

limit of the two sides of (C.2.1).
This procedure leads to the four matching matrices

M
(0) =




0 1 −1
2 −3i 3i
−i −1/2 0


 , M

(1/4) =




0 1 −1
−1 −2i 0
0 −i 0


 ,

M
(1) =




1 0 −1/3
2i 3 2/3i
i/2 0 i/6


 , M

(∞) =




1 −i −3
0 −1/3 2i
0 0 −3


 , (C.2.2)

which, consistently with eq. (C.2.1), satisfy

M
(0)

M
(1/4)

M
(1)

M
(∞) = 1 . (C.2.3)

The limits of the homogeneous solutions (C.1.4 -C.1.10) close to the singular points,
which have been used to obtain (C.2.2), can be easily calculated with the help of com-
puter algebra system such as Mathematica and, therefore, we will not write them
down explicitly. As an example, we will just list below the leading behaviour of the
homogeneous solutions (C.1.10) at the end-points of the region (1,∞), which have been
also used in sec. 9.5.4 in order to fix the boundary constants of the inhomogeneous
solution.

The limit of G(1,∞)(x) for x → 1+ is

lim
x→1+

H
(1)
[1; (1,∞)](x) =K (r+)K (r−) +O

(√
x− 1

)
,

lim
x→1+

H
(2)
[1; (1,∞)](x) =K (r+)K (r+) +O

(√
x− 1

)
,

lim
x→1+

H
(3)
[1; (1,∞)](x) =− 1

3
K (r+)K (r−) +O

(√
x− 1

)
,

lim
x→1+

H
(1)
[2; (1,∞)](x) =

1

26
√
x− 1

(
E (r−)

(
6E (r+) +

(√
3− 9

)
K(r+)

)

−K(r−)
((

9 +
√
3
)
E (r+)− 6K (r+)

))
+O

(√
x− 1

)
,

lim
x→1+

H
(2)
[2; (1,∞)](x) =

1

6

((√
3− 3

)
K(r+)

2 − 2
(√

3− 3
)
K(r+) E (r+)− 6E (r+)

2
)

+O
(√

x− 1
)

lim
x→1+

H
(3)
[2; (1,∞)](x) =

1

12
√
x− 1

(K (r+) (K (r−)− E (r−))−K(r−) E (r+))+
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1

18

((
3 +

√
3
)
K(r−) E (r+)− E (r−)

((√
3− 3

)
K(r+) + 6E (r+)

))

+O
(√

x− 1
)
,

lim
x→1+

H
(1)
[3; (1,∞)](x) =

1

8
√
x− 1

(K (r−)E (r+) + K (r+) (E (r−)−K(r−)))+

136
(
K(r−)

(
4
(
3 +

√
3
)
E (r+)− 3K (r+)

)

− 4E (r−)
((√

3− 3
)
K(r+) + 6E (r+)

)
+O

(√
x− 1

)
,

lim
x→1+

H
(2)
[3; (1,∞)](x) =

1

36

((
9− 4

√
3
)
K(r+)

2 + 8
(√

3− 3
)
K(r+)K (r+) + 24E (r+)

2
)

+O
(√

x− 1
)
,

lim
x→1+

H
(3)
[3; (1,∞)](x) =

1

24
√
x− 1

(K (r−)E (r+) + K (r+) (E (r−)−K(r−)))+

1

108
(4E (r−)

(
6E (r+) +

(√
3− 3

)
K(r+)

)

+K(r−)
(
3K (r+)− 4

(
3 +

√
3
)
E (r+)

)
) +O

(√
x− 1

)
,

(C.2.4)

where we have defined

r± ≡ lim
x→1+

ω± =
2±

√
3

4
. (C.2.5)

The leading behaviour of G(1,∞)(x) for x → +∞ is, instead,

lim
x→+∞

H
(1)
[1; (1,∞)](x) =

π2

4
+O (1/x) ,

lim
x→+∞

H
(2)
[1; (1,∞)](x) =

3

4
π (4 ln 2− ln (1/x)) +O (1/x) ,

lim
x→+∞

H
(3)
[1; (1,∞)](x) =

1

2
(ln (1/x)− 4 ln 2)2 +O (1/x) ,

lim
x→+∞

H
(1)
[2; (1,∞)](x) =− π2

16
+O (1/x) ,

lim
x→+∞

H
(2)
[2; (1,∞)](x) =

3π

16
(1− 4 ln 2 + ln (1/x)) +O (1/x) ,

lim
x→+∞

H
(3)
[2; (1,∞)](x) =

1

16
(4 ln 2− ln (1/x)− 2)(4 ln (1/x)− ln (1/x)) +O (1/x) ,

lim
x→+∞

H
(1)
[3; (1,∞)](x) =− π2

64
+O (1/x) ,

lim
x→+∞

H
(2)
[3; (1,∞)](x) =

3π

128
(−2 ln (1/x)− 3 + 8 ln 2) +O (1/x) ,

lim
x→+∞

H
(2)
[3; (1,∞)](x) =

x

24
− 1

64
(4 ln 2− ln (1/x)− 3)(4 ln 2− ln 2) ln (1/x) +O (1/x) .

(C.2.6)

C.3 Analytic continuation of the inhomogeneous solution

We are finally in the position to analytically continue the inhomogeneous solutions to ar-
bitrary values of x. As it is explicitly shown by eq. (9.5.10), the inhomogeneous solution
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is defined, for x > 1, in terms of integrals of the functions R(1,∞)
i (x) which, in turn,

depend on the homogeneous solutions G(1,∞)(x) and on their Wronskian W (1,∞)(x).
Therefore, in order to extend the integral representation (9.5.10) to the other kinematic
regions, it is sufficient to analytically continue the elements of G(1,∞)(x) appearing in

the definition (9.5.6) of R(1,∞)
i (x), by making use of the matching matrices M(b), as

prescribed by eq. (C.2.1). In this way, all imaginary parts (whenever they are present)
are made explicit and, as a result, we obtain a representation of the solution which
involves, for any x, the evaluation real integrals only.

We start by considering the analytic continuation to 1/4 < x < 1. The matching
matrix M(1), which has been defined in eq. (C.2.2), can be used in order to express the
homogeneous solutions G(1,∞) in terms of the set of real solutions defined in (1/4, 1),

G
(1,∞)(x) = G

(1/4,1)(x)M(1). (C.3.1)

In addition, it is easy to see that, with the Feynman prescription x → x − iǫ, the
Wronskian is analytically continued for 1/4 < x < 1 as

W (1,∞) =
π3x3

64
√

(4x− 1)3(x− 1)
=

iπ3x3

64
√
(1− 4x)3(1− x)

= iW (1/4,1) . (C.3.2)

By acting with eqs. (C.3.1) and (C.3.2) on the inhomogeneous solution (C.2.2), we can
write the MIs in region (1/4, 1) in terms of individually real-valued integrals as

F
(0)
1 (x) = H

(1)
[1; (1/4,1)](x)

(
c
(0)
1 +

∫ 1

x

dt

1− 4t
R(1/4,1)

1 (t)

)

+H
(2)
[1; (1/4,1)](x)

(
c
(0)
2 +

∫ 1

x

dt

1− 4t
R(1/4,1)

2 (t)

)

+H
(3)
[1; (1/4,1)](x)

(
c
(0)
3 +

∫ 1

x

dt

1− 4t
R(1/4,1)

3 (t)

)
,

F
(0)
2 (x) = H

(1)
[2; (1/4,1)](x)

(
c
(0)
1 +

∫ 1

x

dt

1− 4t
R(1/4,1)

1 (t)

)

+H
(2)
[2; (1/4,1)](x)

(
c
(0)
2 +

∫ 1

x

dt

1− 4t
R(1/4,1)

2 (t)

)

+H
(3)
[2; (1/4,1)]

(
c
(0)
3 +

∫ 1

x

dt

1− 4t
R(1/4,1)

3 (t)

)
,

F
(0)
3 (x) = H

(1)
[3; (1/4,1)](x)

(
c
(0)
1 +

∫ 1

x

dt

1− 4t
R(1/4,1)

1 (t)

)

+H
(2)
[3; (1/4,1)](x)

(
c
(0)
2 +

∫ 1

x

dt

1− 4t
R(1/4,1)

2 (t)

)

+H
(3)
[3; (1/4,1)](x)

(
c
(0)
3 +

∫ 1

x

dt

1− 4t
R(1/4,1)

3 (t)

)
, (C.3.3)

where R(1/4,1)
i (x) are combinations of homogeneous solutions defined by

R(1/4,1)
1 (x) =

i

4W (1/4,1)(x)

[
2H

(1)
[1; (1/4,1)](x)H

(2)
[2; (1/4,1)](x)

− 2H
(1)
[2; (1/4,1)](x)H

(2)
[1; (1/4,1)](x)+
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i
(
H

(3)
[2; (1/4,1)](x)H

(2)
[1; (1/4,1)](x)−H

(3)
[1; (1/4,1)](x)H

(2)
[2; (1/4,1)](x)

)]
,

R(1/4,1)
2 (x) =− 1

6W (1/4,1)(x)

[
H

(1)
[2; (1/4,1)](x)

(
H

(3)
[1; (1/4,1)](x) + 4H

(2)
[1; (1/4,1)](x)

)
−

H
(1)
[1; (1/4,1)](x)

(
H

(3)
[2; (1/4,1)](x) + 4H

(2)
[2; (1/4,1)](x)

)]
,

R(1/4,1)
3 (x) =

3i

4W (1/4,1)(x)

[
2H

(1)
[1; (1/4,1)](x)H

(2)
[2; (1/4,1)](x)

− 2H
(1)
[2; (1/4,1)](x)H

(2)
[1; (1/4,1)](x)+

i
(
H

(3)
[1; (1/4,1)](x)H

(2)
[2; (1/4,1)](x)−H

(3)
[2; (1/4,1)](x)H

(2)
[1; (1/4,1)](x)

)]
.

(C.3.4)

We can now continue the solution to 0 < x < 1/4, where the master integrals
develop an imaginary part. The region (0, 1/4) must be linked to (1,∞) by passing
through the region (1/4, 1). This means that, according to the definition (C.2.1), the
homogeneous solutions G(1,∞)(x) are continued in terms of the real-valued solutions
defined for 0 < x < 1/4 as

G
(1,∞)(x) = G

(0,1/4)(x)M(1/4)
M
(1) , (C.3.5)

where M(1/4) and M(1) are the matching matrices given in eq. (C.2.2). In this case, the
Wronskian is trivially continued,

W (1,∞) =
π3x3

64
√
(4x− 1)3(x− 1)

=
π3x3

64
√

(1− 4x)3(1− x)
= W (0,1/4) , (C.3.6)

and, by making use of eqs. (C.3.5) and (C.3.6), we can write the master integrals in
region (0, 1/4) as

F
(0)
1 (x) = H

(1)
[1; (0,1/4)](x)

(
b
(0)
1 +

∫ x

1/4

dt
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1 (t)
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H
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3 +
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dt
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1 (t)
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+H
(2)
[2; (0,1/4)](x)
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2 +

∫ x

1/4

dt

1− 4t
R(0,1/4)

2 (t)

)

+H
(3)
[3; (0,1/4)](x)

(
b
(0)
3 +

∫ x

1/4

dt

1− 4t
R(0,1/4)

3 (t)

)
,

F
(0)
3 (x) = H

(1)
[3; (0,1/4)](x)

(
b
(0)
1 +

∫ x

1/4

dt

1− 4t
R(0,1/4)

1 (t)

)

+H
(2)
[3; (0,1/4)](x)

(
b
(0)
2 +

∫ x

1/4
d

dt

1− 4t
R(0,1/4)

2 (t)

)
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+H
(3)
[3; (0,1/4)](x)

(
b
(0)
3 +

∫ x

1/4

dt

1− 4t
R(0,1/4)

3 (t)

)
, (C.3.7)

where the integration constants b
(0)
i are defined by

b
(0)
i = c

(0)
i +

∫ 1

1/4

dt

1− 4t
R(1/4,1)

i (t) , (C.3.8)

and R(0,1/4)
i (x) are the combinations of homogeneous solutions

R(0,1/4)
1 (x) =

1

4W (0,1/4)(x)

[
H

(1)
[1; (0,1/4)](x)(H

(3)
[2; (0,1/4)](x) + 4H

(2)
[2; (0,1/4)](x))

−H
(1)
[2; (0,1/4)](x)

(
H

(3)
[1; (0,1/4)](x) + 4H

(2)
[1; (0,1/4)](x)

)

− 2i
(
H

(3)
[2; (0,1/4)](x)H

(2)
[1; (0,1/4)](x)−H

(3)
[1; (0,1/4)](x)H

(2)
[2; (0,1/4)](x)

)]
,

R(0,1/4)
2 (x) =

1

6W (0,1/4)(x)

[
4H

(3)
[2; (0,1/4)](x)H

(2)
[1; (0,1/4)](x)− 4H

(3)
[1; (0,1/4)](x)H

(2)
[2; (0,1/4)](x)

+ 3i
(
H

(1)
[2; (0,1/4)](x)H

(2)
[1; (0,1/4)](x)−H

(1)
[1; (0,1/4)](x)H

(2)
[2; (0,1/4)](x)

)]
,

R(0,1/4)
3 (x) =

3

4W (0,1/4)(x)

[
H

(3)
[1; (0,1/4)](x)H

(1)
[2; (0,1/4)](x)−H

(3)
[2; (0,1/4)]H

(1)
[1; (0,1/4)](x)

+ 2i
(
H

(3)
[2; (0,1/4)](x)H

(2)
[1; (0,1/4)](x)−H

(3)
[1; (0,1/4)](x)H

(2)
[2; (0,1/4)](x)

)]
.
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Finally, the expression of the master integrals in the Euclidean region x < 0 can be
obtained by matching the homogeneous solutions at infinity, according to eq. (C.2.1),

G
(1,∞)(x) = G

(−∞,0)(x)
(
M
(∞)
)−1

, (C.3.10)

with the matching matrix M(∞) defined in eq.(C.2.2). The Wronskian can be directly
continued to negative values of x,

W (1,∞) =
π3x3

64
√
(4x− 1)3(x− 1)

=
π3x3

64
√
(1− 4x)3(1− x)

= W (−∞,0) , (C.3.11)

and by acting again with (C.3.10) and (C.3.11) on eq. (9.5.10), we obtain the expression
of the master integrals in region (−∞, 0),

F
(0)
1 (x) = H

(1)
[1; (−∞0)](x)

(
d
(0)
1 +

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

1 (1/y)

)

+H
(2)
[1; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y)

+H
(3)
[1; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) ,

F
(0)
2 (x) = H

(1)
[2; (−∞0)](x)

(
d
(0)
1 +

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

1 (1/y)

)
+
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H
(2)
[2; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y)

+H
(2)
[2; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) ,

F
(0)
3 (x) = H

(2)
[3; (−∞0)](x)

(
d
(0)
1 +

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

1 (1/y)

)

+H
(2)
[3; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

2 (1/y)

+H
(3)
[3; (−∞0)](x)

∫ −1/x

0

dy

y(1 + 4y)
R(−∞,0)

3 (1/y) , (C.3.12)

where d
(0)
1 is the integration constant

d
(0)
1 = c

(0)
1 +

∫ 1

0

dy

y(y − 4)
R(1,∞)

1 (1/y) , (C.3.13)

and R(−∞,0)
i (x) are the combinations of homogenous solutions

R(−∞,0)
1 (x) =

1

2W (−∞,0)(x)

[
H

(2)
[1; (−∞,0)](x)

(
3H

(1)
[2; (−∞,0)](x) +H

(3)
[2; (−∞,0)](x)

)

−H
(2)
[2; (−∞,0)](x)

(
3H

(1)
[1; (−∞,0)](x) +H

(3)
[1; (−∞,0)](x)

)

+ i
(
H

(1)
[1; (−∞,0)](x)H

[2; (−∞,0)]
(3) (x)−H

[2; (−∞,0)]
(1) (x)H

[1; (−∞,0)]
(3) (x)

)]
,

R(−∞,0)
2 (x) =

1

6W (−∞,0)(x)

[(
H

(1)
[1; (−∞,0)]H

(3)
[2; (−∞,0)](x)−H

(1)
[2; (−∞,0)](x)H

(3)
[1; (−∞,0)](x)

)

+ 6i
(
H

(1)
[1; (−∞,0)](x)H

(2)
[2; (−∞,0)](x)−H

(1)
[12 (−∞,0)](x)H

(2)
[1; (−∞,0)](x)

)]
,

R(1/4,1)
3 (x) =

1

6W (−∞,0)(x)

[
H

(1)
[2; (−∞,0)](x)H

(2)
[1; (−∞,0)](x)−H

(1)
[1; (−∞,0)](x)H

(2)
[2; (−∞,0)]

]
.

(C.3.14)

We stress here that similar results in the region (−∞, 0) could be obtained by
matching the solutions in x = 0. This point, nevertheless, is more delicate, due to the
divergence in the Wronskian, 1/W (x) ∼ 1/x3 as x → 0, and, hence we preferred to
continue passing through x = ±∞.



Appendix D

Bessel moments and elliptic

integrals

In this appendix, we give a brief derivation of eqs. (9.198)-(9.199). We first reproduce
the proof of eq. (9.199), which was first presented in [272] (see eq.(33) therein), and
then we use similar arguments to derive eq. (9.198).
The evaluation of eq. (9.197) requires the study of the integral

π

∫ ∞

0

dt√
(t2 + (a+ b)2)(t2 + c2)

K

(
t2 + (a− b)2

t2 + (a+ b)2

)
(D.0.1)

The analytic expression of (D.0.1) can be obtained by first studying the following aux-
iliary integral

I1(ω) =
2

π

∫ ∞

0
dtdz1dz2K0(az1)K0(bz1)K0 (cz2) cos (tz1) cos ((ω + t)z2) , (D.0.2)

where K0(x) is the modified Bessel function of the second kind,

K0(x) =

∫ ∞

0
dt

cos (xt)√
t2 + 1

, (D.0.3)

which satisfies the identity
∫ ∞

0
dtK0(at) cos(ωt) =

2

π

1√
a2 + ω2

. (D.0.4)

Eq. (D.0.4) allows to trivially perform the integration over z2,

I1(ω) =

∫ ∞

0
dt

1√
(ω + t)2 + c2

∫ ∞

0
dz1K0(az1)K0(bz1) cos (tz1) . (D.0.5)

The integral over z1 is now in standard form (see for instance eq.2.16.36.2 of [273]) and
it can be evaluated in terms of an elliptic integral of the first kind,

I1(ω) = π

∫ ∞

0

dt√
t2 + (a+ b)2

√
(ω + t)2 + c2

K

(
t2 + (a− b)2

t2 + (a+ b)2

)
, (D.0.6)

from which we immediately see that eq. (D.0.4) corresponds to the value of the auxiliary
integral (D.0.2) at ω = 0. In order to evaluate I1(0), we go back to eq. (D.0.2) and we
start by performing the t integration, for which we can use of the distribution identity

∫ ∞

0
dt cos (tz1) cos ((ω + t)z2) =

π

2
cos(ωz1) (δ(z1 − z2) + cos(ωz1)δ(z1 + z2)) .

(D.0.7)
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The term proportional to δ(z1 + z2) in the r.h.s. of eq. (D.0.7) has no support in the
region where I1(ω) is defined, therefore we have

I1(ω) =

∫ ∞

0
dz1K0(az1)K0(bz1)K0 (cz2) cos (ωz1) , (D.0.8)

which, if we set ω = 0, reduces to

I1(0) =

∫ ∞

0
dz1K0(az1)K0(bz1)K0 (cz2) . (D.0.9)

This last integral is connected to the master formula (see eq(3.3) of [274])
∫ ∞

0
dtIµ(at)K0(bt)K0(ct) =

1

4c
Wµ(k+)Wµ(k−), (D.0.10)

where Iµ(z) is the modified Bessel function of the first kind, the function Wµ(k) is

related to associated Legendre polynomial P
µ/2
−1/2,

Wµ(k) =

√
πΓ
(
1+µ
2

)

(1− k2)1/4
P

µ/2
−1/2

(
2k2

2
√
1− k2

)
, (D.0.11)

and the arguments k± are defined by

k± =

√
(c+ a)2 − b2 ±

√
(c− a)2 − b2

2c
. (D.0.12)

The expansion of eq.(D.0.10) around µ = 0 allow us to express a set of integrals of three
Bessel functions as a product of two complete elliptic integrals. In fact, by making use
of

Iµ(x) =I0(x)− µK0(x) +O(µ2),

Wµ(k) =2K(k2)− µπK(1− k2) +O(µ2), (D.0.13)

one can easily check that that eq. (D.0.10) implies
∫ ∞

0
dtI0(at)K0(bt)K0(ct) =

1

c
K(k2−)K(k2+), (D.0.14)

∫ ∞

0
dtK0(at)K0(bt)K0(ct) =

π

2c

(
K(k2−)K(1− k2+) + K(k2+)K(1− k2−)

)
. (D.0.15)

Thanks to eq. (D.0.15), we can finally evaluate I1(0),

I1(0) =
π

2c

(
K(k2−)K(1− k2+) + K(k2+)K(1− k2−)

)
, (D.0.16)

which proves eq. (9.199).

The proof of eq. (9.199), which requires the evaluation of the integral

∫ ∞

0

dt√
(t2 + (a+ b)2)(t2 + c2)

K

(
2ab

t2 + (a+ b)2

)
, (D.0.17)

proceeds along the same lines. We start from the auxiliary integral

I2(ω) =
2

π

∫ ∞

0
dtdz1dz2 I0(az1)K0(bz1)K0 (cz2) cos (tz1) cos ((ω + t)z2) , (D.0.18)
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which, by using in order (D.0.4), becomes

I2(ω) =
∫ ∞

0
dt

1√
(ω + t)2 + c2

∫ ∞

0
dz1 I0(az1)K0(bz1) cos (tz1). (D.0.19)

As in the previous case, the integral over z1 can be evaluated in terms of an elliptic
integral of the first kind (see for instance eq.2.16.36.2 of [273]),

I2(ω) =

∫ ∞

0

dt√
t2 + (a+ b)2

√
(ω + t)2 + c2

K

(
t2 + (a− b)2

t2 + (a+ b)2

)
, (D.0.20)

from which we see that eq. (D.0.17) corresponds to I2(0). Therefore, in order to de-
termine the value of the auxiliary integral at zero, we first make use of (D.0.7) in
eq. (D.0.18) in order to integrate over t

I2(ω) =

∫ ∞

0
dz1 I0(az1)K0(bz1)K0 (cz2) cos (ωz1). (D.0.21)

and then, after setting ω = 0,

I2(0) =

∫ ∞

0
dz1 I0(az1)K0(bz1)K0 (cz2) , (D.0.22)

we make use eq. (D.0.14) and obtain

I2(0) =
1

c
K(k2−)K(k2+) , (D.0.23)

which proves eq. (9.198).
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