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Abstract 

The discovery and commercialization of a new drug is a long and expensive 
process. Such process is divided into different phases during which the 
phisico-chemical and therapeutic properties of the compounds are determined. In 
particular, the aim of the first phase is to verify whether the compound recognises 
and interacts efficiently with the target protein.  
In the last decade, several computational tools have been developed and used to 
support experimentalists. For this purpose, the scientist have to deal with high 
complex systems that are difficult to study in whole; thus, the methods and 
algorithms developers have to strongly simplify the system treatment. Moreover, 
the time required to obtain the results depends on the computational resources 
(hardware) available. Fortunately, the technological progress have increased the 
computing power at low cost, resulting in new and more complex techniques 
development. 

During this Ph.D. project we were focused on the development and even the 
improvement of in silico methods, which allowed to answer certain questions by 
saving time and money. Furthermore, these methods were implemented in 
software presenting a Graphical Unit Interface (GUI) with the aim to enhance the 
user-friendliness. 

The computational techniques often require a high understanding of the 
methodology theoretical aspects and also a good informatics proficiency, like 
different type files handling and hardware management. For this reason, our 
developed software were organized as pipelines to automatize the entire process 
and to make this tools useful also for non-expert users.  

Finally, these methodologies were applied in several research projects 
demonstrating their usefulness by elucidating, for the first time, interesting 
aspects of the ligand-protein recognition pathway. 
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Sommario 
La scoperta e la commercializzazione di un nuovo farmaco è un processo 

lungo e dispendioso, che si articola in diverse fasi durante le quali vengono 
determinate le proprietà fisiche, chimiche e terapeutiche dei composti investigati. 
In particolare, nella prima fase di questo processo si cerca di verificare che il 
composto riconosca e interagisca efficacemente con la proteina bersaglio.  

A tale scopo, negli ultimi decenni numerosi strumenti computazionali sono stati 
sviluppati e utilizzati per supportare i ricercatori che si adoperano nella parte 
sperimentale. I problemi affrontati presentano un alto livello di complessità, che 
sarebbero difficili da studiare in toto, perciò gli sviluppatori di metodi e algoritmi 
devono necessariamente adottare notevoli semplificazioni. Inoltre, le risorse di 
calcolo (hardware) determinano le tempistiche con le quali è possibile ottenere il 
risultato richiesto. In tal senso, lo sviluppo tecnologico ha portato a un importante 
aumento della potenza di calcolo a costi accessibili, stimolando l’interesse per lo 
sviluppo di tecniche sempre più complesse. 

Durante questo progetto di dottorato ci si è focalizzati sullo sviluppo e il 
miglioramento di metodi in silico, che permettono di rispondere ad alcuni 
interrogativei a costi e tempistiche di molto ridotte. 
Inoltre, tali metodi sono stati implementati in software dotati di interfaccia grafica 
(GUI) al fine di poter aiutare l’utente nel loro utilizzo.  

Le tecniche computazionali spesso richiedono un’elevata conoscenza teorica 
delle metodologie e anche una certa competenza informatica, come la gestione 
di diversi tipologie di file e delle risorse hardware da impiegare. Per questo 
motivo i software da noi sviluppati sono stati organizzati in pipelines, in modo da 
automatizzare l’intero processo e rendere questi strumenti fruibili anhce a 
persone non esperte.  

Infine, l’utilità di queste nuove metodologie è stata comprovata in progetti in cui 
questi strumenti hanno permesso di delucidare aspetti interessanti e fino ad ora 
non ancora accessibili nell’ambito del riconoscimento proteina-ligando. 
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1.1 The drug discovery process 

The drug discovery process aims to identify molecules with specific therapeutic 
effects that can be introduced into the market. 
Historically, the drugs discovered were identified from natural active products and 
serendipitous events. For example morphine and digoxin are drugs extracted 
from opium and Digitalis lanata respectively, whereas the penicillin unearthed by 
Fleming is an example of fortuity discovery. 

Since the beginning of the contemporary medicinal chemistry, it was clear that 
there was a relationship between chemical properties and biological response. 
The previous understanding induces the researchers to synthetize multiple 
molecules, similar to known active compounds, in order to pharmacologically test 
them and finally to identify plausible new candidates for a specific target. 

Nowadays the pharmaceutical companies need more multidisciplinary and 
high-level of planning to accomplish successfully the entire process1. 
Furthermore the market is very competitive and therefore demands for high 
value-added compounds, which needs to have improved characteristics in order 
to be fully beneficial for the healthcare. The modern discovery process consists of 
multiple consecutive steps that can be grouped into two main stages: the 
Preclinical and Clinical stages. 

The early-stage of the discovery usually starts with the identification and 
characterization of a target that can be involved in the treatment of a specific 
disease. The validation of the target is not trivial and can be achieved by 
evaluating the signaling system downstream with different techniques: generation 
of drug-resistance mutant, knockdown or overexpression of the presumed target. 
Afterwards by using a High-Throughput Screening (HTS), the companies attempt 
to identify active compounds (hit compounds). The chemical libraries usually 
contain several hundreds or even thousand of compounds, which can be part of 
in-home chemical library or to be synthetized ex novo(Fig. 1). In the next stage 
the chemical properties of the identified compounds are compared with the 
biological response, in order to determine any relationship between the molecule 
structure and the activity response (SAR).  

Once promising compounds are identified, they are tested to evaluate their 
properties in more details, such as its mechanism of action, effectiveness 
compared with similar drugs and the intrinsic chemical properties. Thus the 
synthesis of different analogs based on the hits obtained previously allow to 
guide the development of optimized ligand (lead compounds.) The data are 
analyzed and the best performed compounds are carried on for the next phase, 
which requires 3-4 years and arise 1.000 compounds (Fig. 1B)2. 

In the preclinical phase (Fig.1) the molecules are previously screened in vitro 
in order to evaluate their properties more in detail and consequently reduce the 
number of compounds to be screened in vivo. The remaining compounds are 
tested in animal models to gather information about the administration route, the 
Absorption, the Distribution, the Metabolism, the Excretion and the Toxicity 
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(ADMET). Afterwards, for the compounds with the best features, the formulation 
development and physiological assay are carried out. The preclinical stage is 
essential to determine the security profile of the entities proposed in order to 
respect the mandatory principle “primum non nocere” (first, do not harm) and this 
stage generally takes two years, promoting only 10 molecules (Fig. 1).  

Afterwards the candidate drugs pass into the clinical phase that is focused in 
humans. The clinical phase can be splitted in three stages, in which different 
aspects are taken into account: 

 
! The Phase I also called Clinical Pharmacology phase, has the purpose to 

gather information about the absorption, the metabolism, and the 
distribution effect in organs and tissues. In addition, the dose-dependent 
side effects are monitored. The results are obtained considering 20-100 
volunteers that have to be healthy, in order to limit the observed side 
effects not relied on the administration.  

! The Phase II or Efficacy phase, aims to elucidate the treatment efficacy, 
the short-term side effects and the optimization of the dose. For this stage 
several hundreds of patients are recruited and splitted into two groups: 
treated and control group. The former is treated with the drug, whereas 
the latter receives a false-drug in which none active compound is present. 
The reason for this procedure is to establish the placebo and nocebo 
effect experienced by the patients. These effects emerge due to the 
therapy expectation of the patients, where the placebo comprehends 
positive effect and the nocebo effect consist in side effects.    

! The Phase III or Multicentric phase, precedes the approval of the drug 
and its consequent release on the market. During this step, up to 
thousands patients are treated with the drug in order to evaluate the 
benefit versus risk ratio, the uncommon and the long-term side effects and 
the preparation of the “Patient information leaflet”, which is made at the 
end of the phase.  

At the end of the clinical phase one compound usually reach the market, but it 
is still monitoring for 2-3 years in order to evaluate rare or long-term side effects.  
The entire process presents a high rate of fails: 5% of the screened compounds 
present suitable characteristics and therefore pass into the preclinical phase; in 
the next step only the 2% of molecules give positive results, whereas in the 
clinical phase the fail ratio is over the 80%3. 

The attrition rate was investigated also by Pranita et al. and they estimated 
that only 1 out of 12 drugs entering in the Clinical phase become a new drug. The 
50% of failure can be ascribed to poor bioavailability, pharmacokinetics or cause 
adverse events. 
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Figure 1 – Drug Discovery Process (DDP): On the left is reported the stages of the drug discovery 
process; on the right the timeline is shown coupled with the amount of compounds usually consider for each 
stage. 

As it was mentioned above, the development of a new drug is a process that 
requires an incredible amount of time and founding, highlighted also by the Tufts 
Center for the Study of Drug Development in a recent study. Such study 
consisted on analyze 10 pharmaceutical companies and 106 randomly selected 
drugs, between 1995 and 20074. From the data, it was estimated that the 
average cost for one medicine is 2.6 billion of dollars and can take longer than 10 
years. In addition $312 million is the average out-of-pocket cost for the post-
approval, Research and Development (R&D), consisting of new indications, 
formulations, dosage strengths and regimens, and for the monitoring of the long-
term side effects required by the U.S. Food and Drug Administration (FDA). 

The Fig. 2 shows how the cost of the R&D has been exponentially increased in 
the last decades due to the dreadful challenge level reached. At the same time, 
the expectation of the high-quality new chemical entities (NCEs) induces the 
companies to enhance their in-home technologies and protocols. In 2002, Bolten 
et al. estimated that R&D spending increased by approximatley 40%, whereas 
new drug approvals dramatically decreased by 50%3. Furthermore, they 
calculated that a pharmaceutical company needs to release on market at least 4 
NCEs per year, each of them with an average revenue of $350 milion for not 
failing. In the same period Oprea et al. evaluated the R&D cost and efficacy in the 
development of new drugs. Indeed, both groups concluded that in order to satisfy 
the investor expectation, the companies need to reduce R&D spending and to 
shorten from the drug design, to its development and finally the launch of the 
drug into the market5. 

In the 2011, Pammolli et al. highlighted the crisis in R&D, by evaluating the 
cost of each stage in the drug discovery; they identified which one presents the 
worst success rate versus cost ratio6. In the time window considered in these 
studies, the pharmaceutical companies experienced an alarming crisis with the 
lowest NCEs that have been approved in the 2007 (19 NCEs) since 1983. Indeed 
this scenarios continuous up to the 2010, thereafter the NCEs approved shown a 
drastic increase with a peak of 41 in the 2014(Fig. 3)7. 
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Figure 2 – Drug Discovery cost: Comparison of the Clinical and Preclinical average costs of drugs in the market, 
from 1970s to 2010s 

It is clear that the drug discovery is a tedious and a time-consuming process. 
In addition, the revenues are constantly decreasing in last decade due to multiple 
reasons, which determine this dramatic scenario, like the patent expiration and 
consequent competition with the generic, the reduced periods of exclusivity and 
price constraints. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – NCE in the market: The number of new chemical entities introduced into the market (y-axis) are 
plotted against the years (x-axis) 

The pharmaceutical companies are constantly improving innovative 
methodologies to shorten and reduce the spending in the discovery cycle. The 
Computational Aided Drug Design (CADD), introduced in the 1980s, is a perfect 
example of methodology that helped to speed up the discovery, with a limited 
investment. This approach depicts perfectly the current main goal of the 
companies that can be summed up as follow: “fail faster, fail cheaper”8. 

1.2 Computational Aided Drug Design (CADD) 
Since the beginning of the 1900s with the receptor theory of “lock-and-key” 

formulated by E. Fisher (1894) and P. Ehrlich (1909)9, the compounds properties 
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become the main focus. It was clear that the complementarity between the 
receptor and a candidate ligand needs to be investigated deeply. Thus, according 
to this theory, the biological response (BR) depends on the ligand structure (S) 
and its physicochemical properties along all the pathway, from the administration 
to the receptor interaction (Fig. 4). 

Undoubtedly multiple properties have to be taken into account to be able to 
evaluate the BR which can roughly be expressed as a function of these 
assumptions1: 

!" = !(!) 
 

                                                           
Figure 6 – Ligand pathway to Biological response: The consequent main steps followed by the ligand 
from the administration to the biological response elicit, is reported.  

Interestingly, it is not possible to establish a priori which physicochemical 
properties have to be considered to explain the BR observed or to distinguish 
between active or inactive compounds.  

The high amount of properties and their ample variety can discourage their 
determinations, especially from an experimentally point of view. Moreover certain 
properties are prohibitive or even impossible to be measured by experimentalists, 
such as the electronic structures or molecular orbital occupancies. Fortunately, 
this limitation could be overcome by computational scientists, which can support 
the understanding by analyzing part of these properties in parallel in order to 
gather useful information. In contrast, bulk properties such as pK and solubility 
are accessible only by experiments. Other properties like partition-coefficient 
(LogP) can be obtained by both experimentalists and computational scientists. 

As it was mentioned above the physicochemical properties of the ligand 
structure could be implied at different stages of the process, thus CADD can be 
employed at different level of the drug discovery, to save time and money. 
However computational methods provide the best performance in the early-stage 
of the process, especially in the lead discovery and lead optimization (Fig. 5). 
Undeniably computational studies are a useful support of the experiments and 
different approaches are available. At this point is important to mention that the 
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methodologies applied are dependent on the information available, such as 
protein structure or known active and inactive compounds. 
 

 
Figure 5 – CADD implications in the early stage of the drug discovery: The sub-stages of the early 
stage of the drug discovery are reported. The CADD implications and methodology are also reported. 

1.3 Lead Discovery 
In the first stage of the drug discovery process the researchers have to collect 

information about the target and its implication in the disease. Therefore the 
planning of the discovery is based on the accessible information about the target 
and from any previous screening. 

                                                
Figure 6 – CADD applications in the drug discovery process: Four scenarios are possible based on the 
compounds activities and 3D structure of the protein available. Moreover the main techniques are reported 
for each case. 

1.3.1 Lead Generation 
1.3.1.a Case 1: Unknown 3D Protein Structure 

In the case of a completely new campaign the researchers can often face the 
scenario in which neither the protein structure nor known active compounds are 
available. In this inauspicious case it is necessary to quickly identify compounds 
that show at least a minimum activity. For this purpose, a set of compounds is 
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collected and a random screening is performed. In the 1990s the combinatorial 
chemistry was introduced as a new methodology that speed up the synthesis of 
millions of compounds in a single process. Consequently the first HTS had to be 
set up in order to test this amount of molecules in a short time. Beyond this 
assay, the selection of the molecules to be included in the chemical library is of 
utmost importance to save time and money during the in vitro tests.  

I) Chemical Library Preparation 
The in-home chemical libraries often contain many analogs with a common 

scaffold structure causing the presence of duplicates and therefore, reducing the 
chemistry diversity ratio of the set to investigate. Although the application of filters 
reduces the amount of molecules to manage, this inevitably decreases the 
chemical space explored. For this reason the strictness of the selection must be 
well balanced in order not to miss possible candidates and, at the same time, not 
to screen too many molecules. 

In that sense, computational scientists play a key role in the building of the 
chemical library by considering different physicochemical properties and similarity 
of the molecules to be included. The compounds of a collection can be compared 
to determine how much similar are the molecules with respect of each other. 
Hence the similarity approach gives the possibility to exclude part of them and to 
enhance the chemical diversity of the library. 

The similarity among the compounds can be determined by computing the 
Jaccard-Tanimoto index10 (eq. 1), which reports the ratio of common elements 
present into two different vectors. In chemical field the arrays are bitmaps 
representing the presence of functional groups (Fig. 7). The Molecular ACCess 
System (MACCS) database collects a total of 166 functional groups that are a set 
of the most accessible medchem chemical space11.  

                                       
Figure 7 – MACCS functional group example: Two compounds are used to show an example of how 
MACCS functional groups are converted into bitmap vectors. 

!". 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'&!!"#$% = !! ∩ !
!!"#" + !!"#"+ ! ∩ ! 

A value of 0.85 for the Tanimoto index is the cutoff commonly used to 
determine the diversity of the molecules. The application of a rational selection of 
the molecules to be included in the chemical library is estimated to reduce the 
amount of the molecules to be screened by approximately 30% without 
threatening the chemical space investigated. Furthermore it was exploited that 
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3.5-3.7 times more compounds need to be considered with the use of a random 
approach to cover the same chemical space of a rational approach12.  

Alternatively the physicochemical properties can be exploited to investigate 
which compounds present a drug-likeness profile. In 1997 Lipinski formulates the 
so called “rule of five” that provides a set of molecules properties that are usually 
observed in small active molecules13,14. The statements of the rules consider the 
molecular weight, the hydrophobicity and the H-bond features: 

• Molecular weight lower than 500 Dalton 
• Log P lower than 5 
• H-bond donors lower than 5 
• H-bond acceptors lower than 10 

Other studies suggest to use even more strict cutoffs in the early hit 
identification, as reported by Hann et al.15. In the same time Oprea et al. analyzed 
a set of lead-drug pairs and they infer that the hit compounds often present 100 
Da, one ring, two flexible bonds and a LogP/LogD unit less than optimized lead16. 
Nevertheless the compounds collection can contain hits that have substructural 
features that arise false positive response. Hence these hits are artifacts whom 
activity is independent from a specific ligand-protein interactions and these 
molecules are defined as “pan-assay interference compounds” (PAINS)17,18. The 
false activity shown by these compounds can be due to different events, such as 
aggregation, chemical decomposition, protein reactivity and fluorescence. Also in 
this case CADD can perform a filtering of the database based on the chemical 
features which induce these assay interferences. 

Recently Vilar et al. proposed a protocol to predict drug-drug interactions 
(DDIs) based on database of known DDIs that are identified by a similarity 
search. In this protocol the MACCS functional groups are used as bitmap vectors 
and the Tanimoto index is used to evaluate the similarity19. 

Finally, the database collects a high chemical diversity of molecules that are 
characterized by drug-like physicochemical properties and without known toxic 
features. The compounds collected are screened and the active molecules are 
deeply investigated in order to identify any similarity of their physicochemical 
properties. Once active compounds are available for a target are available it is 
possible to investigate their properties so as to identify which of them could be 
responsible for the desired pharmacological activity20. Indeed, the more hits are 
known, the more information can be obtained and compared with the aim of 
recognize which parameters are really important. 

II) Ligand-Based Drug Design 
The discovery approach based on the known active compounds is named 

“Ligand-Based Drug Design” or, in alternative, “Indirect drug design”.  
Ligand Based approach attempts to return plausible new candidates from a 
structure activity relationship (SAR). 
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All the techniques comprehended in this field are based on the main concept 

of pharmacophore, which was defined by Ehrlich as: “a molecular framework that 
carries the essential features responsible for a drug’s biological activity”9. By the 
analysis of the ligands features, is possible to build a pharmacophore model in 
which the types, positions and the directions of the features can be encoded and 
the possible steric constrains can be also included21. The features represent the 
substructural fundamental elements like aromatic rings, hydroxyl groups and 
basic amines that are reported as atom types and connectivities. For each 
feature it is possible the conversion into the equivalent geometric object that 
encodes the position and consequently provide three-dimensional properties. 
Moreover the direction can be take into account as vectors or planes in order to 
describe the ligand orientation respect to the receptor (Fig. 8). Then, the 
pharmacophore can be optimized by applying geometric constrains to the 
features, such as distances, angles and torsional angles. 

 
 

 
Figure 8 – Pharmacophore model: In the middle the pharmacophore features are represented by a red ball 
for the aromatic (F1:Aro) and two cyan for the H-bond acceptor (F2 and F3:Ani&Aro). On the right one 
additional feature is included as magenta sphere representing the H-bond donor and several constrains like 
the distances between the atoms are reported.  

Normally more than one pharmacophore model is generated, thus it is 
necessary to identify the most reliable one. For this purpose, another database of 
known active and inactive compounds are used as validation set for the 
generated models, which are accepted only if they are able to distinguish 
between active and inactive ones. 

Finally the accepted pharmacophore model can be used to query any 
compound database available to identify new hits. Indeed the conformations of 
the compounds present in the database could not be the suitable one to right 
match the three-dimensional pharmacophore model, thus a conformations search 
need to be performed. The conformations can be previously generated or 
computed “on the fly”. 

Due to the fact that the bio-active conformation could not be the lowest energy 
one, but surely is not the highest-energy conformation22,23, it is possible to 
perform a simple torsional minimization. By using this technique it is common that 
only the conformations related to the closest local minimum are explored, 
therefore iterating this process by starting from several random conformations 
can enhance the conformation space explored.  
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As an example of drug design from a pharmacophore model we can mention 

the study presented by the group of Lopez-Rodriguez. They focused the study in 
the serotonin receptor (5-HT7R), which is involved in the treatment of sleep 
disorder, believed to have a role in depression as consequence of deregulated 
circadian rhythm. They take advantage of the pharmacophore technique to 
design new derivatives of two known antagonists: Naphtholactam and 
Naphthosultam. Based on these two structures a pharmacophore model was built 
and used to identify new antagonists for the G protein-coupled receptor (GPCR). 
The pharmacophore model consisted of five features: a positive ionizable atom 
(PI), a H-bond acceptor group (HBA), and three hydrophobic regions (HYD). The 
quality of the model was proved by screening the compound designed and 
synthesized based on the pharmacophore model24.  

The brief overview provided here is not certainly exhaustive, but points out 
only the main concepts. For further information, there are several reviews that 
provide more details of the ligand-based approach to discover a lead 
compound21,25,26. The Figure 9 summarizes the classic workflow for the 
identification of a lead compound. 

                                        
Figure 9 – Ligand Based Drug Design workflow: A classical workflow for the Ligand Based Drug Design. 

1.3.1.b Case 2: Known 3D Protein Structure  
 The knowledge of the three-dimensional structure of the protein can provide 

important information that are not accessible with the Ligand-Based approach. In 
the previous century several Nobel Prizes were awarded to researchers for the 
protein structure determinations. In 1936 Debye was the first of them who was 
the pioneer of the x-ray diffraction for the study of molecules structures. 
Afterwards in 1962 Perutz was awarded for the structure determination of 
globular proteins and in the 1964 Hodgkin for vitamin B12 and insulin. Regarding 
membrane proteins, only in 1988 Deisenhofer, Huber and Michel were able to 
solve the photosynthetic reaction center and in the 1997 Walker provide the 
structure of ATP-synthase. 

From 2003 to 2012 Mackinnon , Kornberg,  Steitz and Yonath  and  Kobilka 
and Lefkowitz  won also the Nobel Prize for  protein structure  determinations27. 
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Considering the accessible information from the protein structures, the NIH was 
the first institution which collected these solved structures in the 1980s.  Such 
proteins collection motivated the scientist to focus their effort into the structure 
determination of a large number of drug targets structures by using proteomic 
and genomic techniques28,29. The accessibility of this conspicuous number of 
protein structures was a new starting point of investigation for the drug discovery.    

Nowadays the elucidation of the three-dimensional protein structures are 
obtained by using two techniques: NMR and X-ray crystallography. The former 
has proved its powerfulness in the last decade in the determination of  
polypeptides and small proteins30 (up to 30 KDa). Indeed NMR can provide 
results in the dissolved aggregation state which better reproduce the real 
conditions. Nevertheless the solvent commonly used, such as chloroform and 
dimethylsulfoxide, poor mimic the physiological environmental conditions. One of 
the most important advantage of the NMR is the sampling of flexible regions that 
are withdrawn by the crystallographers and thus, do not contribute to the final 
model. In effect NMR structure determination does not lead to a single “image”, 
but it generates an ensemble of structures possibly depicting different 
conformations. The second technique, X-ray crystallography, takes advantage of 
X-ray diffraction to determine precise location of all the atoms of the molecule 
within the crystal lattice31. 

The positional error of atoms can be approximate to 1/6 of the crystal 
resolution32. Despite of the overall fold of protein in crystalline environment was 
proved to be very similar to the solution one33,34, loops conformation and side-
chains can differ. The reason is mainly due to the effects of crystal packing and to 
potential function or search algorithm. In 2002  Jacobson et al. presented a side-
chain prediction algorithm that takes into account the packing effects (i.e. van der 
Waals interactions), hence the possibility to generate high resolution crystal 
structures35. 

The most popular database where the solved structure are deposited, is “The 
Protein Data Bank”36, which was established in 1971 containing seven structures. 
Owing to the development of efficient techniques, methodologies and efforts 
described above, to date the number of structures deposited rose steeply up to 
114,000 structures. NMR and X-ray crystallography are the world-wild techniques 
used, that account for 9.73% and 89.15% of the structure determined 
respectively. The protein structures solved (106,000) contribute to represent 2222 
superfamilies and 1393 unique folding37. 

Despite of the extraordinary increase of structures deposited in the last decade 
the gap between them and the known annotated sequences (around 550,000) is 
still huge38. Furthermore Levitt et al. highlighted that the structure of novelty of 
proteins, defined as sequence identity lower than 25% from any others, has 
remained constant since 199239. Nevertheless new approaches such as 
structural genomics (SG) provided an important contribution in structural protein 
determination being responsible for the 50% of novel structures deposited in the 
first years of the 2000s39,40. 
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Even though the improvement of NMR, X-ray and SG techniques have 

speeded up the process of the structure determination, the scenario in which 
none experimental structures are available is still real. Therefore computational 
methods to predict three-dimensional structure have even now an important role. 

I) Homology Modeling 
Comparative or Homology Modeling (HM) is the most common methodology 

applied to overcome the lack of experimental three-dimensional structure. The 
technique is a multi-step process, recently summarized in eight stages41. The HM 
approach is basically based on the general observation that proteins with similar 
sequences reveal similar structures. Hence, the first step is the identification of a 
suitable homologous sequence, called template (Fig. 10). The three-dimensional 
structure of the template needs to be known and it is used as reference to build 
the novel model of the target protein. 

The search of the most suitable template is still challenging and thus, different 
approaches have been used to date. In principle, all the algorithms perform an 
alignment of the target sequence to solved protein one, likes the proteins present 
in PDB database. Basic Local Alignment Search Tool (BLAST)42 is one of the 
most common algorithm used to attempt the recognition of a plausible template 
sequence. The algorithm performs very well in finding highly similar structures, 
but the far related templates usually are missed. For this reason several 
implementations and different approaches were developed such as PSI-BLAST43, 
phylogenetic analysis44 and fold-recognition methods45. These search methods 
can return multiple templates from the database query and  thus the retrieved 
structures need to be evaluated. 

The identification of the most suitable template can be achieved considering 
different parameters which can be classified into three main classes: quality of 
the three-dimensional structures, conformation state of the protein and similarity 
with the target. Despite there is not a golden rule, the latter is commonly the first 
aspect that is taken into account. In particular both global and specific local 
identity or similarity of the sequences can be considered. Nevertheless, the 
conformation state of the templates is of utmost importance and the selection 
strictly depends on the purpose of the model application. The second class 
comprehends several different aspects, from the bound-state (unbound or in 
complex with agonist and antagonist) to protein state (active or inactive state) 
being the latter dependently to the presence of any mutation or to the type of 
ligand eventually present. 

The quality of the template structure is measured by different parameters that 
provide evaluation of both the experimental analysis and the model obtained by 
fitting these data: the Resolution (R), the R-factor46, free R-factor47 and real-
space R-factor48. Based on these considerations is feasible to select the most 
suitable template for the purpose and it is even possible to include multiple 
templates in the model generation. 
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Figure 10 – Homology Modeling Process: The sequence of the stages to build and validate a model is 
shown.  

The second step consists on the refinement of the preliminary alignment by the 
application of more precise methodologies and user knowledge. Nowadays the 
vast majority of the software are integrated with a secondary structure predictor, 
such as SSALN49, that fragment the sequence and attempt to assign a secondary 
structure element to each of them. In addition, almost all the software are able to 
perform the multiple sequence alignment in order to identify the conserved 
regions. 

Once the alignment is optimized, the next step is the model building that is a 
multi-step process, basically composed of three stages: backbone generation, 
loop modeling and side-chain modeling.  

The backbone of the target structure is generated based either on the 
coordinates of the templates residues or based on the restrains (h-bond, torsional 
angles) gathered from the templates, that have to be satisfied during residues 
placement. The non-regular secondary structure elements in a protein structure 
are named loops and these regions can present deletions and insertions. For 
these sequence fragments, the atom coordinates need to be guessed. This can 
be overcome by using a knowledge-based or an energy-based approach. 

At this point the backbone of the whole protein is generated and only the 
atoms of the side-chains remain to be predicted. Whenever the template and the 
target share the same residue, the atom coordinates are simply copied. On the 
other hand the side-chains are firstly built from scratch and optimized by using 
conformer libraries. Afterwards, the model geometry is optimized through 
minimization approaches or Molecular Dynamics (MD) simulations. 

At the end, the model is subjected to different analysis in order to analyze the 
quality of the structure generated, such process is called the validation step. This 
evaluation is performed considering the bio-physical properties and divergence 
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from the templates. For the former aspect both the phi-psi plot (Ramachandran 
plot) is analyzed and several web-server application such as Qmean server50, 
can be considered. For the latter, it is commonly computed the Root Mean 
Square Deviation (RMSD) based on the alpha-carbon between the model and the 
templates.  

From the first homology model published by Greer in 198051, implementations 
were developed to enhance the reliability of the model generated by these 
techniques, that are tested by the “Critical Assessment of protein Structure 
Prediction” (CASP) every two years since the 199452. 

II) Target Binding Site Identification 
Keeping in mind the ligand-protein interaction, it is essential the identification 

of the high-affinity binding site. Hence, whenever this information cannot be 
directly obtained by the visual inspection, neither from a related protein, the 
putative binding site must be predicted.  

The scouting of plausible binding sites are performed by using one or multiple 
of the following analysis class: geometric-based, energy-based and 
conformations sampling. The geometric approach attempt to identify concave 
cavities by rolling probes through the surface and thus, their shapes and sizes 
are evaluated. An alternative method aims to probe a validated pharmacophore 
and evaluate its fitting based on the properties and constrains of the 
pharmacophore objects. 

The energy-based approach is closely related with the previous one, but in 
addition different energies are calculated such as van der Waals, electrostatic, 
hydrogen-bonding, hydrophobic and solvent interactions. 

Remembering that the protein structure considered is a single static structure, 
it is even possible to sample different conformations by using MD simulations. 
From the conformations explored during the time, the most different structures 
can be tested. The classic mechanics used in the MD simulation get trap the 
protein in local energy minima impeding an exhaustive sampling of the protein 
conformations. Hence, several methodologies were implemented to overcome 
this problem: tempered accelerated MD53, replica exchange MD54 and meta-
dynamics55 simulations. 

III) Ligand-Protein Recognition 
Once enough information about the protein structure and its binding site 

properties are collected, it is possible to start the molecular recognition of a ligand 
to the protein target.  

The molecular recognition theory has constantly been changed during last 
century, starting from the “lock-and-key”56, continuing with the “induce-fit”57 and 
arriving finally to the “conformation selection”58 models. However, it is important 
to mention that all of them are still considered. 
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Regarding as the key aspects of the ligand-protein binding event, this can be 

described as an equilibrium between the protein and ligand free in the bulk and 
the complex of them (Fig. 11). Firstly both the protein and the ligand interact with 
the solvent, thus the formation of the ligand-protein complex requires the 
desolvation of both molecules. For charged and polar parts of the molecule, this 
process arises a penalty that is only partially balanced by the electrostatic 
interactions and hydrogen-bonds formed. Conversely desolvation of non polar 
fragments produce a favorable gain in the entropy, that was defined as 
“Hydrophobic effect” by Kauzmann59.  

Currently, the common knowledge indicates that hydrophobic effect stabilizes 
the biomolecular complex, whereas the electrostatic interactions and hydrogen 
bonds provide the specificity for a certain target60. Apart from the solvent entropy 
changes, also the solute entropy has to be considered, such as translational, 
rotational, vibrational and dihedral restriction. 

 

                            
Figure 11 – Ligand-Protein binding equilibrium: protein and ligand in aqueous and in complex are 
reported, to describe the equilibrium that is established in a binding event. 

IV) Molecular Docking 
One of the most common tool used to predict ligand-protein complex is named 

molecular docking. This method can provide the correct binding mode by 
comparing the shape and chemical complementarity between the ligand and the 
protein. The description of the complex [RL] (eq. 2) can be obtained by 
considering some factors such as electrostatic, steric complementarity, hydrogen-
bonding and ligand and protein strains, if these are flexible. 

!". 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![!"]!" ⇆ ! !" + [!]!" 

More challenging is the prediction of the binding affinity and the consequent 
possibility to rank the compounds tested. The knowledge of the equilibrium 
established (eq. 3,4,5) is necessary to compute the binding affinity, hence 
entropy factors have also to be taken into account61. 
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Where Ka is the affinity constant, represented by Kon and Koff, Kd is the 
reciprocal of the Ka, meaning the dissociation constant. In fact eq. 5 R is the gas 
constant and T represents the temperature. 

The enthalpy and entropy calculation, necessary to obtain the free energy of 
binding (ΔGbinding), are commonly computed separately. The first contribution is 
gathered directly from the molecular mechanics and the second one can be 
obtained with different methods (eq. 6,7). 

!". 6 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Δ!!"#$"#% = Δ! − !Δ! 
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Where H is the enthalpy, T is the temperature, S is the entropy, EMM the 
energy obtained from the molecular mechanics and Gsol is the free energy value 
of the solvent. 

The computation of the entropy effect is too high-time consuming, thus in the 
hit and lead identification it is usually not considered. However docking simulation 
depends on two aspects: the ligand placement into the binding site and 
evaluation of the complex generated. Due to the fact that usually the active 
conformation is not known, during the docking simulation it is necessary to 
explore the flexibility of the partners enrolled in the recognition. The time required 
to investigate the conformational space highly depends on the degree of freedom 
of the molecules, thus the normal approach keeps the protein fixed and only the 
ligand conformations are sampled. 

Different algorithms have been developed in order to exhaustively explore the 
conformational space and they can be classified into three classes: systematic, 
stochastic and deterministic search.  

The systematic search attempts to explore all the degree of freedom in a 
molecule, generating a combinatorial explosion. To deal with this problem several 
approaches were implemented, like termination criteria and incremental 
construction algorithm.  The latter approach was implemented in several docking 
software and they worked into two different manners: in the first case, multiple 
fragments are docked and later linked together, in the second one, the ligand is 
divided into a core fragment, which is docked into the binding site and then, 
flexible parts are attached the placed core and their conformations are explored.  

On the other hand, the stochastic search operates random changes, usually a 
single degree of freedom per iteration, and new conformations are evaluated 
based on a pre-defined probability function. However, the major concerning about 
this approach is the uncertainty of convergence, thus to overcome this problem, 
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multiple runs are commonly performed. Two of the most famous algorithms of 
this class are Monte Carlo methods and genetic algorithms.  

Regarding as deterministic search, this kind of simulations comprehends 
methodologies that produce exactly the same results when starting state and 
parameters are the same. The most popular and common used approaches are 
Molecular Dynamics simulation and energy minimization. As it was mentioned 
above MD is often unable to cross high-energy barriers, especially in short 
simulation time, thus only closed local minima of the energy surface are explored.  

The second aspect in a docking simulation is the evaluation and ranking of 
ligand conformations based on designed scoring functions. Indeed these 
functions need to be enough reliable and fast to be able to screen a large amount 
of molecules. For this reason the techniques developed with the aim to accurately 
predict the free energy value are not suitable in this phase of the drug discovery. 
The worldwide scoring functions make assumptions and simplifications in order to 
speed up the process and they can be classified into three types: force field-
based, empirical and knowledge-based. 

The first class, called also Molecular Mechanics-based scoring function, 
estimates the binding free energy as the sum of receptor-ligand interaction 
energy and internal ligand energy (steric strain). These computed energies are 
usually the Coulombic formula for the electrostatic interactions and the van der 
Waals contribution defined by a Lennard-Jones potential function. The 
parameters of the latter potential has been integrated differently as ‘harder’, 12-6 
potential, or ‘softer’, 8-4 potential (eq. 8). 
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Where d is the distance between the atoms, A and B potential parameters, q 
the atoms charge and ε the dielectric constant. 

These calculations are computationally high costly, thus they require the 
introduction of cut-off distances for the treatment of the non-bonded interactions, 
being this distance an arbitrary value that infers the accuracy of the binding 
evaluation. Several software have integrated an additional parameter that takes 
into account a hydrogen bonding term, such as Gold62 and Autodock63 (eq. 9). 
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Where E(t) is the angular weight factor and the other parameters are also 
present in eq. 8.  

An alternative class of docking function contains empirical functions that 
attempt to reproduce experimental data, like binding and conformations energies. 
These functions are a weighted sum of a set of interaction terms some of whom 
have a counterpart in the force field-based approach. In addition, these functions 
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added supplementary penalty terms that represent the amount of rotatable ligand 
bonds. The weights of the parameters are commonly obtained from a regression 
analysis, as it shown here for Chemscore function (eq.10). 
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Finally the knowledge-based scoring functions use a set of defined number of 
atom-type interactions to predict the complex structure by modeling relatively 
simple atomic interaction-pair potentials. As an example Potential of Mean Force 
(PMF)64 evaluates the system energy changes as a function of specific reaction 
coordinates (eq 11). 
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Nowadays, most of the efforts are focused in the development of force field- 
based scoring functions by implementing empirical terms that partially consider 
entropy contributions and their are called semi-empirical scoring functions. 

At the end, the representation of the molecules is a crucial aspect to be 
considered that infer both in the accuracy and in the speeding of the process. 
Because of the ligand flexibility is usually explored, the molecule need to be 
treated in its full atoms representation whereas, the receptor can be considered 
into three ways: atomic, surface or grid representation. 

The atomic representation was the first implemented and nowadays, it is still 
one of the most commonly used. In this approach the pair-wise atomic 
interactions are evaluated determining a non trivial computational complexity. 

Concerning the surface-based representation is especially implemented for 
protein-protein docking tools. Their algorithm operate alignment of points on the 
surfaces and refining their position by minimizing the angle between the surfaces. 

The last type of representation was introduced by Goodford65 in which the 
receptor’s energy contribution (usually electrostatic and van der Waals) are 
stored into grid points. This approach completely neglects the treatment of the  
protein atoms during the docking simulation, speeding up the calculation. 

Apart from the ligand and protein, in several cases an additional actor has a 
crucial role in the ligand-protein recognition: the water molecules. In effect these 
molecules can mediate an interaction between the ligand and the protein, thus it 
is arguable whether the water molecules have to be taken into account in a 
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docking simulation. The treatment of the waters is not simple and can also 
negative affects the posing of ligand compound due to the rigidity-induced of the 
protein side-chain that directly interact with the water molecules. Although most 
of the docking softwares, simply skipped the treatment of the water molecules by 
default, it is possible to analyze multiple crystallographic structures in order to 
evaluate the frequency of the presence of specific molecule. In this case the 
waters can be explicitly integrated as additional partner of the system on study. 

Despite this alternative strategy, several software attempted to generalize the 
treatment of the waters by applying different algorithms. For example Slide 
accepts the pre-placement of the water molecules by the user, but they can be 
replaced by ligand features if the resulting pose is favorable. Differently FlexX 
evaluates the ligand placement and can place water molecules “on the fly” to 
enhance the quality of the complex generated. Another possibility is provided by 
GOLD which allows the user to switch on/off the treatment of the pre-placed 
water molecules and these are able to spin around their main axes with the aim 
to generate more favorable interactions. 

V) Virtual High-Throughput Screening 
The docking protocol is the core of the structure-based virtual high-throughput 

screening (SB-vHTS), that aims to identify putative hits out of huge amount of 
compounds.  

As described above, docking protocols have advantages and disadvantages, 
and in addition, the accuracy is highly dependent on the case study. For this 
reason, docking software have integrated different search algorithms and scoring 
functions that respectively infer the conformational space explored and the rank 
of the pose generated. Due to their diversity, the comparison of the docking 
protocols is really tricky, however, different approaches were attempted to fulfill 
this important aspect66. In the last years two approaches were mostly accepted 
and applied to achieve the protocol docking selection task: a) capability to 
reproduce X-ray ligand pose; b) capability to accurately rank a set of known 
active compounds. 

In the first case, the success of a program is measured by the RMSD between 
the X-ray ligand conformation and the predicted pose of each docking protocol. 
Afterwards, the computed values are statistically treated in different ways, making 
possible for example to evaluate the ratio of poses that have an RMSD lower 
than a certain value, which is unequivocally arbitrary.  

The second approach attempts to evaluate the docking protocols performance 
by the capability to identify known active compounds out of a large set of inactive 
molecules. The calculated value is the enrichment factor which is defined as the 
ratio of the active compounds present in a x% of the ordered list of docking 
results.  The performance of the docking protocols were deeply investigated in 
the last decade and such results were collected in several reviews. One f these 
revies was presented by Wandzikl in 2006, who collects 11 studies in which 
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different software were compared with one of the approaches described above 
(Tab. 1)67. 

Table 1 - The table collects different jobs in which several docking software were compared. The number of 
the protein targets and the performance evaluation used are reported. Apporach A RMSD  computed to the 
co-crystalized ligand; approach B enrichment factor of active compounds out of a set of inactive compounds. 

Program Compared 

 
Number of explored protein targets Ref. Approach A Approach B 

 
 
FlexX, DOCK, GOLD, LigandFit, Glide 
 

69 - 68 

 
GOLD, FlexX, Glide, Surflex 
 

282 - 69 

 
Glide, GOLD, FLexX, DOCK 
 

- 9 70 

 
Glide, FRED, FlexX 
 

- 7 71 

 
AutoDock, DOCK, FLexX, GOLD, ICM 
 

37 11 72 

 
Glide, GOLD, ICM 
 

200 3 73 

 
DOCK, FlexX, FRED, Glide, GOLD, 
Slide, Surflex, QXP 
 

100 1 74 

 
FlexX, GOLD, ICM, LigandFit, DOCK, 
QXP 
 

11 - 75 

 
DOCK, FLexX, GOLD, CDOCKER 
 

41 - 76 

 
DOCK, DockVision, Glide, GOLD 
 

- 5 77 

 
GOLD, QXP 
 

- 1 78 

 
In addition, another important aspect that inevitably has to be considered is the 

time necessary to dock a compound, since the more molecules are included in 
the library, the more is the time required to screen them. For this reason, in the 
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hit-lead identification stage usually it is usually preferred to use a fast docking 
protocol, even if this could threat the accuracy of the complex quality generated. 
The most important information expected from vHTS is the “early recognition”, 
meaning that the active compounds have to be placed in the top-ranked result.  
Due to the fact that a pharmaceutical company usually needs to test more than 1 
million of compounds to identify possible active ones,  it is  expected that vHTS 
reduces  this amount  to few thousands. 

In theory, the placement of the active compounds into the ordered list can 
have the same significance only if the portion of the database experimentally 
tested present all the active compounds. Despite this pragmatic aspect, the vHTS 
reliability highly depends on the ability to rank the best compounds on the top of 
the ordered list. Hence the simplifications commonly used in the docking 
protocols generate false-positives and false-negatives in a vHTS simulation. 

Nowadays, there is not a unique way to evaluate the VS  performance. 
However two of the most famous methods are  the enrichment factor (EF) and 
the Receiver Operating Characteristic (ROC) curve. In both the approaches, it is 
necessary to set up a training set, in particular a library of compounds that has to 
be populated with known active compounds (screened with the same assay) and 
decoys (compounds presumably inactive for the examined target). 

In the EF it is simply computed how many active compounds are found within 
a fraction of the ordered list. Therefore, the EF is dependent on the fraction 
considered and it returns a number that can assume a value from 0 (worst 
performance) to 1 (best performance). The value of 0.5 is the minimum expected 
one indicating that the methodology is able to identify active compounds better 
than a random picking (reference). The result is commonly provided as a plot in 
which the x-axis reported the fraction of the database screened and in the y-axis 
shows the ratio of the active compounds found to the total of the actives present 
in the training set (Fig. 12)76. 

The major advantages of this evaluation is  firstly that it does not weight 
equally all the compounds and secondly, the fact that  it provides information 
about how much is enriched the fraction of compound wished to be screened. 

The second way to evaluate the accuracy of a VS is the abovementioned ROC 
curve. The methodology classifies the compounds into four types, based on their 
activity and their rank in the ordered list: i) true positive (TP); ii) false negatives 
(FN); iii) false positives (FP); iv) true negatives (TN). The analysis returns a plot, 
in which for all possible threshold levels, the sensitivity  is reported on the y-axis 
and the (1-specificity)  is reported on x-axis (Fig. 13). The former is also called 
True Positive Rate (TPR) and the latter is also known as False Positive Rate 
(FPR) (eq. 12,13). 
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Figure 12 – Enrichment factor plot: An enrichment factor is reported for different docking softwares: 
Dock4-Energy (dark blue), Dockit-PMF (blue), FlexX-TotalScore (cyan), Fl0-Mcdock + FreE (green), Fred-
ScreenScore (dark green), Glide-GScore (light green), Gold-Fitness (gold), Ligfit-OFF-Ligscore2 (dark 
orange), MOE-Uncorrected (magenta), MVP (red). In addition an ideal (gray) and a random (black) 
performances are reported. 

An ideal classification generates a curve that immediately reach the top 
possible value and then continues as a line parallel to the x-axis. On the other 
hand, a random classification results in a diagonal line starting from the origin to 
the top right corner. Consequently, an acceptable ROC result provide a curve 
between the previous cases described above (Fig. 13). The ROC approach has 
an important advantage respect to EF, that is less sensible to the ”saturation 
effect”. The latter is defined as the dependency of the performance respect to the 
ratio of active compounds included into the training set (Ra). In particular the EF 
usually shows a wide divergence in the medium range of the fraction considered, 
while ROC only presents a slight divergence in the small-medium range (Fig. 
14)79. The Fig. 14 shows two different studies elaborated by Hevener for the 
ROC80 and by Warren for the EF plot81. 

 The reported methodologies helped to evaluate the performance of the 
different docking protocols in term of capability to identify active compounds out 
of a range of decoys. However they do not provide any information about the 
absolute efficacy difference of active compounds identified. In effect, in these 
statistical considerations the scores are used only to rank them while the specific 
values are not investigated. 
In conclusion, during the hit-lead generation, researchers have to face a variety 
of different starting points which are evaluated to correctly plan the discovery 
process.  As presented above the limiting factor is usually the amount of the 
compounds that need to be screened, thus several approximations have to be 
applied in order to reduce the time that would be required for a deep 
investigation. Due to these considerations a lead generation process can be 
considered an acceptable success if any hit identified present a concentration for 
50% inhibition (IC50) of 10 micromolar82 . 
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Figure 13 – Receiver operating characteristics (ROC) plot: ROC curves are reported for different docking 
approaches: Glide Score (red), F Score (blue), PMF Score (dark red), G Score (violet), D Score (yellow) and 
ChemScore (green). In addition a straight black line represents a random picking. 

 
Figure 14 – ROC and Enrichment factor performances: For ROC and EF the performance is computed 
based on different ratio of  actives present in the training set 

1.3.2 Lead Optimization 
The leads identified during the first stage of the early-phase drug discovery are 

investigated in more detail in order to understand how they can be optimized. The 
process can be considered a success whether the affinity value of any lead is 
reduced by 2/3 folds: IC50 in the nm range. Similarly to the lead generation phase, 
there are two main ways that a researcher can follow to optimize a lead: ligand-
based and structure-based approach. 

1.3.2.a Case 1: Unknown 3D Protein Structure 
At this stage the ligand-based approach should have a disposal of a set of 

compounds and their related activities. In addition an active compounds can be 
modified and tested to investigate the influence of a different substitution to the 
activity (SAR). Since the pharmacophore approach that can infer to identify active 
compounds by evaluating the presence of specific chemical features, 
Quantitative Structure-Activity Relationship (QSAR) model83 attempts to establish 
a relationship between physicochemical properties and the biological activity. 
QSAR has been used as a tool to predict and suggests new leads and also to 
rationalize the chemical modification of a congeneric set of compounds 84–86.  
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The major premise of QSAR is based on the hypothesis that similar structural 

or physicochemical properties elicit similar activity87,88. The model is generated 
from the active compounds available and their activity values. The descriptors, 
which can be both structural and physicochemical properties, are computed and 
analyzed in order to select the most suitable to describe the dependence 
between them and the biological response. Hence, the selected variables need to 
be related with the activity, but they should not represent similar biological or 
chemical parameters. For this reason whether multiple candidate parameters are 
suitable, it is necessary to withdraw any of them in order not to overestimates any 
property.  

Several approaches can be considered to deal with the descriptors selection, 
such as genetic algorithms89,90, principle component analysis (PCA)91, artificial 
neural networks92 and k-nearest neighbor93. Once the descriptor set is 
determined, a mathematical function is required with the aim to describe the 
relationship between the activity index (dependent variable) and the descriptors 
(independent variables). The mathematical models applied can be classified 
mainly into two categories: linear and non-linear models. In the first class the 
most common methods are the partial least squares (PLS)94 and the multiple 
linear regression (MLR)83.  On the other hand, whether the model need to be 
considered in a non-linear way, it is possible to take advantage from a machine 
learning methods like artificial neuronal networks95 or support vector machines96. 
Afterwards the generated model has to be tested in a validation procedure that 
requires the correctly prediction of the activity of either a single or a set of 
compounds. The commonly validation types in this field are internal and external 
validation. The former foresees to exclude one (test compound) from the 
compound from the current training set (test compound), which is used to 
estimate the activity of the test compound. This procedure is iterated for all the 
compounds available. The two alternatives most used to this method are the 
“leave-on-out cross”97 and the k-fold cross validation98.  

The success of the QSAR model is clearly high dependent on the selection of 
the descriptors, thus many efforts were done to improve these crucial elements. 
The most important ones are the molecular field descriptors that are derived from 
the interaction of probes and molecules. This approach was used by several 
groups that developed a variety of methods that are still the most used in QSAR 
studies; the most famous are Comparative Molecular Field Analysis (CoMFA)99, 
Comparative Molecular Similarity Indices (CoMSIA)100 and Comparative 
Molecular Moment Analysis (CoMMA)101. 

CoMFA was the first 3D QSAR method in which the shape-dependent steric 
and electrostatic properties of a molecule are used to correlate the biological 
activity. The method starts with the alignment of the molecules based either on a 
ligand crystal conformation or in the minimum-energy one. The latter is 
considered when none reference conformations are available, and without any 
doubt, this could return erroneous results because in this way it is assumed that 
this minimum energy conformation correspond to the bioactive conformer.  
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Then, the molecules are inserted into a grid defined by points in which the 
electrostatic (Coulombic potential) and the van der Waals contribution (steric 
Lennard-Jones potential) are computed. The use of the previous potentials 
determines unrealistic high energy values and, in addition, they neglect 
hydrophobicity and hydrogen-bond contributions. For this reason, an arbitrary 
cutoff value is integrated in the computation like force-field based scoring 
functions for docking protocols. 

Meanwhile, CoMSIA is an improvement of the previous method, in which the 
probe used to compute the grid points contributions take also into account both, 
the hydrophobicity and hydrogen-bond donor and acceptor terms.  An additional 
difference with CoMFA methodology is the use of a standard probe with a radius 
of 1 Å, and physicochemical properties like charge, hydrophobicity and hydrogen-
bond equal to 1. Hence, the molecules properties calculation returns a value 
representing the similarity index as comparison with the standard probe. 
Moreover, the properties are computed thanks to a Gaussian function that 
smooth the binding interaction result, avoiding the necessity to introduce a cutoff 
as it was seen for CoMFA. 

The last method, CoMMA, handles spatial moment descriptors that are used to 
obtain a unique value as result of the fitting of such parameters.  
Although these approaches were widely used in the past, they still have an 
important role in the current drug discovery process. 

1.3.2.b Case 2: Known 3D Protein Structure 
The optimization of hits and leads with Structure Based (SB) relies its 

usefulness on the three-dimensional knowledge of the protein structure, plus any 
information obtained by previous VS and docking approaches.  From these 
systems, it is possible to evaluate which are the most important residues, proving 
the hypothesis by using wet mutagenesis experiments and computational 
techniques. The parallel use of these approaches can provide useful and 
complementary information to understand the physico-chemical and 
pharmacological implication of mutations in a biological macromolecule102,103.  
The computational approach was used by Cristiani et al. to evaluate 
conformational changes in three variants of Factor VII (FVII)104. In this work, MD 
simulations were performed for both the wild type and the mutant structures. 
Then, the RMSD of alpha-carbon per each residue were computed versus the 
starting conformations. The results were reported as graphical representations 
(RainbowRMSD) in which the residues, the time of the simulation and the related 
RMSD were reported (Fig. 15). The analysis clearly shows how the mutation 
Arg79Gln infers the global flexibility of the protein, even in far region from the 
local mutation. The abovementioned analysis gave further information that can be 
taken into account with the aim to improve the physico-chemical complementarity 
between the ligand and the target protein. From a large amount of compounds, 
the top ranked ones of the VS simulation are analyzed and screened in vitro. 
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Figure 15 – RainbowRMSD graphs: The graphs represent the RMSD (colorimetric scale) of each alpha-
carbon of all the protein residues (x-axis) along the simulation time (y-axis) 

The reduced number of compounds to be studied in the following stage allows 
researchers to add more sophisticated methodologies for their investigation like 
MD related approaches, which are described below. 

In the lead generation process, the docking protocols and in particular scoring 
functions need to use several approximations in order to reduce the time required 
to each calculation. Despite docking have proved to enrich hits better than 
random screening, this methodology arises false positives and false negatives. 
Moreover, docking tool is completely ineffective to grade compounds according to 
the binding affinities105. For this reason, the consideration of the aspects of the 
recognition events neglected by these techniques can improve the accuracy and 
the reliability of the prediction. In effect, a docking simulation is commonly 
performed with rigid protein, none or few water molecules are explicitly 
considered and entropy contribution, such as solvent-related terms, is ignored.  
Thus, different methodologies were applied in order to predict how these aspects 
infer the complex generation. One of the most important tools available is the MD 
simulation that allows the exploration of the motion of both protein and ligand 
along the time. Molecular Dynamics simulation investigates the atoms motion, 
exploring their movement around an equilibrium position or even larger 
fluctuations. The basic theoretical assumption is that the energy of the system is 
a function of the atomic coordinates and their evolution along the time can be 
described by a Newton’s equation. 

!". 14 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = − !!!!"!
= !!!! 

Hence, the force acting on each atom of the system is related to the potential 
energy V, with respect to atom position x, then by solving the equation based on 
a force it is possible to determine atom motions as a function of the time. 
In 1977 Karplus et al. performed the first MD simulation of bovine pancreatic 
trypsin inhibitor. Despite of this simulation was performed in vacuum, these 
researchers introduced to the community a new challenging approach in 
medicinal chemistry. Thus, thanks to the development of new algorithms and the 
increase of the performance of the computational resources, MD is able to treat 
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explicit water molecules and consequently, the solvent effect can be directly 
estimated from the simulation. In 2002 Karplus et al. investigated the role of the 
solvent in protein atomic fluctuations by performing different MD simulations, in 
which a combination of temperatures were applied to the protein and the solvent 
as it is shown in Table 2106. The average Mean Square Fluctuations (MSF) was 
computed for the backbone atoms and all heavy atoms of the protein in order to 
evaluate the dependence of the temperature applied. The Table 2 shows that the 
protein fluctuations highly depend on the solvent motion and this induces the 
internal motion of the protein. In the same work they explained that at 80 K the 
protein could be considered freeze and even if the temperature of the protein is 
set to 300 K, the internal motional barrier is too high and thus, dominates the 
dynamic of the protein.  

Table 2 - The table reported the average mean square deviation of backbone and heavy atoms in different 
MD simulations. The temperature of the solute and solvent are varied 

Average mean square fluctuations 
Temperature1 Backbone (Å2) Heavy Atoms (Å2) 

P300/S300 0.23 0.36 
P180/S300 0.18 0.28 
P300/S180 0.09 0.13 
P180/S180 0.09 0.13 

1Tempereature in Kelvin. ‘P’ refers to protein and ‘S’ to solvent 
 

In the last years, the inferring of the solvent contribution to the ligand 
interactions and binding to a protein was investigated and different approaches 
were proposed, such as “WaterMap” tool by Abel et al107. This approach starts 
from a MD simulation that is used to generate the positions of water sites and for 
each of them, the free energy of the water displacement is computed by 
inhomogeneous solvation theory. The displacement of unfavorable water 
molecules by the ligand can allow the establishment of interactions of 
complementary groups with the protein, and these are known to be the principal 
driving force for the recognition events69. This innovative tool also provide 
information about the so called dry region of an active site of the protein, in which 
the presence of water molecules is so unfavorable that a void is formed. These 
regions return a value under a specified threshold when WaterMap is applied, 
gathering important hot spot for ligand placement. Then, Wang et al. 
implemented an additional attribute to WaterMap function that takes into account 
when ligand atoms occupy these regions108. The relevance of the presence of 
specific water molecules was also investigated by Sabbadin et al. The MD 
simulation of a complex is compared with another Apo-form simulation and the 
fluctuations of the water molecules (RMSF) is monitored. The post-processing 
analysis returns a bidimensional graph, Water Fluid Dynamics (WFD), which 
make easier the identification of the protein hot-spots. Nowadays, Molecular 
Dynamics is extensively used in combination with molecular docking due to the 
fact that MD can neutralize the defects, or at least, reduce the inefficacy beyond 
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the scoring function of the docking. In effect, it is important to remember that the 
ligand protein recognition can be explained only thanks to an ensemble property 
such as binding free energy, whereas docking simulation focus its attention to a 
single snapshot of the protein.  

A post-processing methodology was proposed by Sabbadin et al.109 in which 
the different docking poses were subjected to a 60 ns of MD simulation and three 
aspects were analyzed: i) evolution of interaction fingerprints (dynamic IEFs); ii) 
the ligand fluctuation (RMSD); iii) the cumulative sum of interaction energy 
normalized by the ligand atom coordinates deviation. 

Among all the above aspect, the latter provide the most interesting information 
by evaluating the electrostatic and hydrophobic contributions along all the 
simulation (Fig. 16). The result is presented as a plot in which the x-axis reported 
the time and y-axis reported the sum of the energies for the current frame plus all 
the previous. In addition, these values are normalized on the RMSD of the ligand 
heavy atoms. The slope tendency of the curve describes both the interaction 
strength and the positional deviation of the ligand poses. Thus, a strong binder 
could generate a straight line with a very negative slope value.  

 
Figure 16 – Cumulative energy plots: The sum of cumulative energy normalized by the RMSD of the 
ligand are reported. On the left, the electrostatic contribution is shown, whereas on the right the hydrophobic 
contribution is presented. 

MD simulation combined to molecular docking provides useful information and 
a wise strategy to recognize the most stable complex with respect to ligand 
conformation. Although several alternatives were introduced to enhance the 
prediction accuracy of the docking-based approaches, the scoring functions are 
still poorly or even erroneously able to evaluate binding free energy. For this 
reason, the binding free energy (eq. 15) estimation has been deeply attempted 
and it is still the major focusing of researchers. In these years, several MD-based 
methodologies were developed in order to improve the computational accuracy in 
this field. 

!". 15 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!∆!!"#$ = !!! − !∆!!"#$%& + ∆!!"#$%&' 

The first term is derived from the Force Field, which generally are described by 
the following equation: 
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In the eq. 16 the last term is the sum of the van der Waals and electrostatic 
contributions while the other terms present a constant (Kr, Kϑ, Vn) multiply for the 
difference from the equilibrium stat of the relative term. The other terms of the eq. 
15 can be obtained by using high-time computational methodologies. The most 
famous rigorous approaches that partially address the issue abovementioned 
are: free energy perturbation110 (FEP), thermodynamic integration111 (TI), ligand 
interaction energy approach112,113 (LIE), λ-dynamics114, ligand interactions 
scanning115 and MM-(PB/GB)SA116. 

The FEP and TI are the most rigorous ways and the most used approaches to 
predict the binding free energy. In these methodologies, the difference in the 
binding free energy between two similar states is computing by mutating one 
state to the other one through multiple intermediated states (“Computational 
Alchemy”). The thermodynamic cycle perturbation method (Fig. 17) allows to 
precisely calculate the relative binding free energy properly due to the fact that it 
is a state of function (eq. 17). This process is done for both the complex and the 
ligand free in the bulk solvent. Hence, in this alchemical simulation the potential 
energy function from C1 is slightly converted to C2 during a MD simulation.  

Without any doubt, the accuracy of the result obtained is highly dependent on 
the relevant configurations considered117; thus, the post-docking approach 
described above could be used to retrieve the most suitable starting point. 

Alternative methods such as MM-(GB/PB)SA takes into account the bulk 
solvent effects and its energy can be divided into two terms, nonpolar and polar 
effects that can be calculated separately. 

                                        
Figure 17 – Computational alchemic cycle: The Alchemic cycle for the conversion from one ligand to 
another one is summarized. M, C1 C2 represent respectively the protein target and the two ligand in the bulk 
solvent, while the C1M and C2M are the complex generated. 
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The nonpolar effect is obtained by computing the area of the solute and the 

energy value is estimated as the cost to generate a cavity in the solvent for 
guesting the solute. This energy quantity considers the water molecules that are 
freeze around the solute plus the van der Waals interaction energy between 
solute and solvent.  

On the other hand, the polar solvation is computing with continuum solvent 
approximations provided by either the Poisson-Boltzmann118 equation or the 
generalized Born119,120 equation. 
The application of these calculations allow to treat the third term of the eq. 15 (the 
solvent energy term), as the sum of the abovementioned solvation effects: GPB or 
GGB and GSA (eq.  18). 

!". 18 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !!! − !"!"#$%& + !!"/!" + !!" 

In the MM-(PB/GB)SA methods the solute entropy is approximated by classical 
statistical expression and normal-mode analysis. The computational time 
required to retrieve the results is less demanding than FEP or TI and, at the same 
time, conserves their accuracy121,122. In the last years several groups have 
evaluated the performance of these methods by calculating the correlation with 
experimental measure data123–125.  

As the FEP and TI these, the MM-(PB/GB)SA methods suffer the dependency 
of the set of coordinates provided, thus the selection of the starting complex is of 
utmost importance. The docking pose can directly  provide the starting set of 
coordinates or the conformation can be refined by a minimization or MD 
approach. Thus these strategies allow to select a starting  conformation that can 
be either a local minimum or the most explored one during a simulation. 
Despite of MD scoring functions are more reliable than docking scores they are 
still not perfect and the time require is still too high to be intensively used in a 
vHTS. In addition the solvent models applied are inefficient to evaluate the water 
molecules interactions between solute and solvent interface. 

1.3.3 ADMET 
Once the lead compounds are optimized from a pharmacodynamic point of 

view is necessary to test their pharmacokinetic. The latter consists of Absorption, 
Distribution, Metabolism, Excretion and Toxicity (ADMET). Historically these 
properties have been evaluated by in vitro and in vivo studies that are 
undoubtedly high costly. In 2003 Gilbert et al. estimated that the preclinical phase 
determine the highest attrition rate in the R&D126.  Hence the balance of potency, 
selectivity and ADMET properties need to be balanced to propose a drug 
candidate.  

CADD methodologies were developed also to deal with this aspect of the drug 
discovery process.  
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In silico modeling of ADMET properties can be classified into three main 

categories: i) molecular modeling; ii) physiologically based pharmacokinetic 
modeling; iii) statistical modeling127.   

The pharmacokinetic properties comprehend an high diversity types of 
parameters, which are mostly obtained from descriptors as it was seen previously 
for the Ligand-Based approaches, as seen previously. The descriptors are 
determined from experimental data available and thus, these values are fitted 
with mathematical models such as Partial Least Square (PLS), Multiple Linear 
Regression (MLR), Artificial Neural Networks (ANNs) and Decision Trees (DT). 
As it was mentioned above, several of them are linear techniques (PLS, MLR) 
and others can handle non-linear functions (ANNs). Moreover, the latter is known 
to overtraining the data.  

Molecular modeling approaches can be applied in particular to investigate 
metabolic aspects based on metabolizing enzymes. For example the human 
cytochrome P450 (CYP) enzymes family are one of the most important phase I 
drug-metabolizing enzymes implicated into detoxification of xenobiotic 
compounds, bio-activation of non-toxic and toxic intermediates and pro-
carcinogens.  Moreover CYPs are also involved in drug-drug interactions (DDIs) 
mediated by drug inhibition and induction128. Due to the fact that the 75% of the 
drugs in the market are metabolized by this enzyme family, the researchers have 
made a big efforts to produce as many three-dimensional structures as possible, 
three-dimensional structures. By using the protein structure knowledge is 
possible to apply similar techniques as those seen in the Structure-Based 
approaches. It is clear that the enhancing of the prediction accuracy of these 
methodologies will have a strong impact in the R&D spending of a big 
pharmaceutical industry. 
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The main aim of in this PhD project is based on the application of in silico 

approaches in order to provide answers to different pharmaceutical problems. 
Most of the techniques to be applied come from the Structure-Based field, thus 
the knowledge of the three-dimensional structure is the core of the investigation. 
In several cases the answers to certain questions cannot be obtained by a 
straightforward workflow. Therefore, the computer scientists need to know a large 
variety of softwares, methodologies and even how to manage different type of 
files. These knowledge and skills are an important aspect of the daily research in 
CADD field, thus any implementation or strategy to overcome these difficulties 
are of utmost importance. 
For this reasons we tried to developed different softwares to perform complex 
and exhaustive analysis of diverse aspects of the computational chemistry. 
To retrieve several information is essential the application of an ample variety of 
arduous methodologies, and inevitably the users need to have a good proficiency 
in handling multiple types of files. Moreover, such analysis need to be performed 
for more than one single molecule, thus these simulations are iterated multiple 
times. Hence, a part from the necessary computational time, also the time used 
by user manual procedures has a relevant implication. Consequently, the balance 
between the results accuracy and the time required to achieve the outcomes are 
the main focus in our software development. This task will be addressed by 
creating new as pipelines that guide the user from the input submission to the 
generation of the results likes plots, graphical representations and raw data. 
Indeed such pipelines are thinking to reduce the demanded time to perform the 
analysis and to lighten the proficiency required by the user to achieve the 
outcomes. Finally these new tools would be integrated in our common routine 
analyses, in order to prove their usefulness. 
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During this Ph.D. they were carried out several projects to face different 

pharmaceutical aspects. Particularly, by taking advantage of structure-based 
techniques we provide answers in the field of protein-ligand recognition events. 
Although multiple tools are available nowadays, in several cases these 
methodologies were not completely suitable for the current study. Therefore, 
many efforts were made to develop novel methodologies to overcome the 
deficiency of existing computational software.  

The current chapter contains seven scientific publications, which reflect the 
work done and the main results obtained during these years. The articles are 
organized into two sections: methodology development and computational 
techniques application.  
The former contains the following four articles: 

1. “Implementing the “Best Template Searching” tool into Adenosiland 
platform“ 

2. “Alternative Quality Assessment Strategy to Compare Performances of 
GPCR-Ligand Docking Protocols: The Human Adenosine A2A Receptor as 
a Case Study”  

3. “DockBench: An Integrated Informatic Platform Bridging the Gap between 
the Robust Validation of Docking Protocols and Virtual Screening 
Simulations”  

4. “Deciphering the Complexity of Ligand-protein Recognition Pathways 
using Supervised Molecular Dynamics (SuMD) Simulations.” 

The computational techniques section includes three publications, in two of which 
our in-home software called SuMD was applied: 

5. “Exploring the recognition pathway at the human A2A adenosine receptor 
of the endogenous agonist adenosine using supervised molecular 
dynamics simulations“ 

6. “Understanding allosteric interactions in G protein-coupled receptors using 
Supervised Molecular Dynamics: a prototype study analysing the human 
A3 adenosine receptor positive allosteric modulator LUF6000” 

7. “ALK Kinase Domain Mutations in Primary Anaplastic Large Cell 
Lymphoma: Consequences on NPM-ALK Activity and Sensitivity to 
Tyrosine Kinase Inhibitors”  
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3.1 Implementing the “Best Template Searching” tool into 
Adenosiland platform  

Matteo Floris, Davide Sabbadin, Antonella Ciancetta, Ricardo Medda, Alberto Cuzzolin
 
and Stefano 

Moro
 
 

Abstract 

Background: Adenosine receptors (ARs) belong to the G protein-coupled receptors 
(GCPRs) family. The recent release of X-ray structures of the human A2A AR (hA2A 
AR) in complex with agonists and antagonists has increased the application of 
structure-based drug design approaches to this class of receptors. Among them, 
homology modeling represents the method of choice to gather structural information 
on the other receptor subtypes, namely A1, A2B, and A3 ARs. With the aim of helping 
users in the selection of either a template to build its own models or ARs homology 
models publicly available on our platform, we implemented our web-resource 
dedicated to ARs, Adenosiland, with the “Best Template Searching” facility. This tool 
is freely accessible at the following web address: 
http://mms.dsfarm.unipd.it/Adenosiland/ligand.php.  

Findings: The template suggestions and homology models provided by the “Best 
Template Searching” tool are guided by the similarity of a query structure (putative or 
known ARs ligand) with all ligands co-crystallized with hA2A AR subtype. The tool 
computes several similarity indexes and sort the outcoming results according to the 
index selected by the user.  

Conclusions: We have implemented our web-resource dedicated to ARs 
Adenosiland with the “Best Template Searching” facility, a tool to guide template and 
models selection for hARs modelling. The underlying idea of our new facility, that is 
the selection of a template (or models built upon a template) whose co-crystallized 
ligand shares the highest similarity with the query structure, can be easily extended 
to other GPCRs.  

Keywords: G protein-coupled receptors; Adenosine receptors; Receptor modelling; 
Bioinformatics platform; Adenosiland   

Findings  

The template suggestions and homology models pro- vided by the “Best Template 
Searching”tool are guided by the similarity of a query structure (putative or known 
ARs ligand) with all ligands co-crystallized with hA2A AR subtype. The tool computes 
several similarity indexes and sort the outcoming results according to the index 
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selected by the user.  

Background  

Adenosine receptors (ARs) belong to the G protein- coupled receptors (GCPRs) 
family. The known four subtypes, termed adenosine A1, A2A, A2B and A3 receptors, 
are widely distributed in human body and involved in several physio-pathological 
processes1. The release of X-ray structures of the human A2A AR in complex with 
agonists2,3 and antagonists4–8 has enabled to extend structure-based drug design 
approaches to this class of receptors. With the use of homology model- ling 
techniques, indeed, structural information on the other subtypes can also be derived. 
As a key step when building homology models is the selection of a proper template, 
we have developed a tool to guide the user in this crucial choice by implementing the 
“Best Template Searching” facility in our web-resource dedicated to ARs, 
Adenosiland9. This tool is freely accessible at the following web address: 
http://mms.dsfarm.unipd.it/Adenosiland/ligand.php. The underlying idea behind this 
facility is to help the user in selecting the best template or ARs model to get the 
highest quality receptor for further molecular docking studies. A possible strategy 
herein presented is to compute the similarity between a known or putative 
agonist/antagonist and all co-crystallized ARs ligands.  

Table 1 - Values of the in-house validation of the combined similarity index 

Input ligand Suggested template Combined similarity value 
Adenosine 2YDO 0.83 

NECA 2YDO 0.72 
UK-432,097 3QAK 0.37 
ZMA 241385 4EIY 0.69 

T4G 3UZA 0.84 
T4E 3UZC 0.92 
XAC 3REY 0.67 

Caffeine 3RFM 0.98 
 
Tool description  

The “Best Template Searching” tool works as follows: the user is asked to input a 
query molecule either by uploading a SMILES string or by directly drawing the 2D 
structure by using the JME interface; the similarity of the input molecule is then 
computed against all the ligands co-crystallized with the hA2A AR. The following 
similarity indexes are calculated: i) shape similarity (based on the Manhattan 
distance between USR descrip- tors), ii) 2D similarity (based on the Tanimoto and 
Tversky Similarities of Pubchem Fingerprints), iii) phar- macophoric similarity (based 
on the Tanimoto similarity of Pharmacophoric triplets), and iv) a combined similarity 
(derived by the following function: 0.6 * pharmacophoric similarity + 0.4 * shape 
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similarity).  
    The values of the two coefficients composing the latter similarity index have been 
derived by running a preliminary in-house validation based on all available 
crystallographic structures: In particular, the two values have been chosen so that by 
providing as input the structures of the co-crystallized ligand the corresponding 
receptor structure results the best ranked one according to the combined similarity 
index. The values obtained for the structures considered for the internal validation 
are reported in Table 1. For all the structure except one, the suggested template 
results the corresponding crystal structure. The only exception is represented by 
NECA for which the structure co-crystallized with adenosine is suggested as best 
template. Considering the high structural similarity between the two agonist 
structures, the results is in line with the others. Simultaneously to the best template 
searching process, a similarity search screening is also performed against all 
adenosine agonists and antagonists deposited in ChEMBL, release 1410. In more 
details, the query is compared to 760 A1, 469 A2A, 559 A2B and 290 A3 AR ligands 
and the comparison is based on the calculation of the similarity measures previously 
described. The identified compounds are reported in a table along with the 
associated binding data available in literature.  

Tool validation  

    Ligand similarity biased template selection criteria at the basis of the “Best 
Template Searching” tool has been successfully applied to rationalize the Structure 
Activity Relationships (SAR) of a series of [5-substituted-4- phenyl-1,3-thiazol-2-yl] 
furamides as antagonist of the hARs11. The most potent derivative of the furamides 
series, the furan-2-carboxylic acid (4- phenyl-5-pyridin-4-yl-thiazol-2-yl)-amide, has 
been selected as query molecule: As reported in Table 2, a similarity sorting of the 
templates based on the combined similarity criteria has been taken into account to 
select the most suit- able models for receptor-based ligand design. The selected 
workflow is summarized in Figure 1: Starting from the suggested best template, 
namely the structure with the 3UZA PDB ID, co-crystallized with the 6-(2,6-
dimethylpyr- idin-4-yl)-5-phenyl-1,2,4-triazin-3-amine (T4G), we have constructed A1, 
A2B and A3 AR models through homology modeling and used the so derived 
structural information to provide hypotheses of ligand-receptor interaction and 
ligand-receptor selectivity profile11.  
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Figure 1 - Workflow of the homology modeling template selection based on the structure of furan-2-carboxylic 
acid (4-phenyl-5- pyridin-4-yl-thiazol-2-yl)-amide.  

Table 2 -Similarity sorting of human A2A AR templates based on furan-2carboxylic acid (4-phenyl-5-pyridin-4-yl-
thiazol-2-yl)-amide query ligand 

Ligand PDB ID 
Templ. 

Shape  
simil. 

a2D 
simil. 

b2D 
simil. 

aPharmac. 
simil. 

bPharmac. 
simil. 

Combined 
simil. 

(Shape & FP) 

T4G 3UZA 0.33 0.86 0.89 0.46 0.65 0.52 

ZM 
241385 3PWH 0.58 0.90 0.93 0.27 0.42 0.48 

T4E 3UZC 0.37 0.84 0.89 0.44 0.54 0.47 

ZM 
241385 4EIY 0.34 0.90 0.93 0.27 0.43 0.39 

ZM 
241385 3EML 0.35 0.90 0.93 0.27 0.42 0.39 

NECA 2YDV 0.51 0.82 0.87 0.17 0.31 0.39 

ZM 
241385 3VG9 0.32 0.90 0.93 0.27 0.43 0.38 

XAC 3REY 0.21 0.89 0.94 0.25 0.48 0.37 

ZM 
241385 3VGA 0.28 0.90 0.93 0.27 0.42 0.36 

Adenosi
ne 2YDO 0.33 0.82 0.86 0.18 0.31 0.31 

Caffeine 3RFM 0.26 0.81 0.85 0.21 0.34 0.30 

UK-
432,097 3QAK 0.16 0.87 0.93 0.14 0.35 0.27 

a Tanimoto  b Tversky 
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Methods  

    The “Best Template Searching” tool is part of the Adenosiland infrastructure, 
based on Ubuntu 9.10 Linux operating system, which is a patchwork of several 
informatics tools (for more details see Floris et al. 2013). The similarity indexes are 
calculated by using different approaches: 2D similarity based on Tanimoto and 
Tversky indexes12,13 are calculated from Pubchem Fingerprints (CDK 
implementation), the shape similarity is calculated by using an in-house 
implementation of the Ultrafast Shape Recognition method14,15, and the 
pharmacophoric features of the pharmacophore-based similarity index are described 
by Gaussian 3D volumes16.  

Conclusions  

    We have implemented a novel tool, called “Best Template Searching” to provide 
template suggestions and homology models of all four hARs based on the similarity 
between a query structure provided by the user and all co-crystallized ARs ligands. It 
is well known that ligand-driven induced fit of the receptor is a key feature to facilitate 
the identification or the optimization of novel potent and selective agonists and 
antagonists, in particular through molecular docking studies. We therefore believe 
that choosing as template the structure co-crystallized with the ligand that shares the 
highest structural similarity with the scaffold of interest may represent an effective 
strategy. This is in facts the under- lying idea of our platform implementation: By 
using the “Best Template Searching” option, users can upload a SMILES string or 
directly draw the 2D structure by using the JME interface of the scaffold of interest 
and search the most similar ligand co-crystallized so far with the hA2A AR. Several 
similarity indexes are calculated by using different approaches such as a 2D 
similarity, shape similarity, pharmacophore-based similarity, and simple consensus 
shape- and pharmacophore-based similarity index. We are also confident that the 
proposed strategy can be easily and effectively extended to other GPCRs.  

Abbreviations  

ARs:   Adenosine receptors 

GPCRs:  G protein-coupled receptors 

NECA:   N-ethyl-5′-carboxamido adenosine;  

T4E:   4-(3-amino-5-phenyl-1,2,4-triazin-6-yl)-2- chlorophenol;  

T4G:   6-(2,6-dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine;  

ZM 241385:  4-(2-(7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-yl-amino) ethyl)phenol;  

XAC:   N-(2-aminoethyl)-2-[4-(2,6-dioxo-1,3-dipropyl- 2,3,6,7- tetrahydro-1H-purin-8-yl)ph 
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3.2 Alternative Quality Assessment Strategy to Compare 
Performances of GPCR-Ligand Docking Protocols: The 
Human Adenosine A2A Receptor as a Case Study  

Antonella Ciancetta, Alberto Cuzzolin, and Stefano Moro* !  

Abstract 
The progress made in the field of G protein-coupled receptors (GPCRs) structural 
determination has increased the adoption of docking-driven approaches for the 
identification or optimization of novel potent and selective ligands. In this work, we 
compared the performances of the 16 different docking/scoring combinations using 
the recently released crystal structures of the human A2A AR (hA2A AR) in complex 
with both agonists and antagonists. The proposed evaluation strategy encompasses 
the use of three complementary “quality descriptors”: a) the number of conformations 
generated by a docking algorithm having a RMSD value lower than the crystal 
structure resolution (R); b) a novel consensus-based function defined as “protocol 
score”; and c) the interaction energy maps (IEMs) analysis, based on the 
identification of key ligand−receptor interactions observed in the crystal structures. 

Introduction 
The progress made in the field of G protein-coupled receptors (GPCR) structural 

determination has increased the adoption of docking-driven approaches for the 
identification or the optimization of novel potent and selective ligands1-8. As routinely 
demonstrated, docking programs are usually successful in generating multiple poses 
that include binding modes similar to the crystallographically determined bound 
structure, whereas scoring functions are much less successful at correctly identify 
the corresponding “bioactive” binding mode9. This intrinsic limitation generally 
implies the need for the calibration of the docking protocol through benchmark 
studies prior to applying it. Traditionally, these benchmarks have focused on 
redocking the cognate ligand of a crystallographic receptor−ligand complex to 
measure geometric pose prediction accuracy10-12. 

In this work, we propose an alternative quality assessment strategy to compare 
the performances of the 16 different docking/scoring combinations using the recently 
released crystal structures of the human A2A AR (hA2A AR) in complex with both 
agonists and antagonists, as summarized in Table 113-19. Among them, one is 
cocrystallized with the endogenous agonist adenosine (PDB ID: 2YDO15), one with 
its synthetic analogue NECA (N-ethyl-5′-carboxamido adenosine, PDB ID, 2YDV15), 
and the remaining eight with five antagonists, namely, ZM 241385 (4- (2- (7-amino-
2- (2-furyl) (1,2,4) triazolo-(2,3-a) (1,3,5) triazin-5-yl-amino)ethyl) phenol, PDB IDs 
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3EML13, 3PWH16, 3VGA17, 4EIY19); T4G (6- (2,6-dimethyl- pyridin-4-yl) -5-phenyl-
1,2,4-triazin-3-amine, PDB ID 3UZA18); T4E (4-(3-amino-5-phenyl-1,2,4-triazin-6-yl)-
2-chlorophenol, PDB ID 3UZC18); caffeine (PDB ID 3RFM27); and XAC (N-(2-
aminoethyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahy-dro-1H-purin-8-yl)phenoxy] 
acetamide, PDB ID 3REY16). The structures of the cocrystallized ligands are shown 
in Figure 1. The pharmacology of adenosine receptors and the potential applications 
of their agonists and antagonists have already been extensively described and 
recently reviewed20. The performances of all docking/scoring combinations were 
evaluated using an alternative assessment strategy defined by three complementary 
“quality descriptors”: a) the number of conformations generated by the docking 
algorithm having a root mean square deviation (RMSD) value lower than the crystal 
structure resolution (R); b) a novel consensus-based function defined as “protocol 
score”; and c) the interaction energy maps (IEMs) analysis, based on the 
identification of key ligand−receptor interactions observed in the crystal structures.  

Table 1 - hA2A AR Crystall Structures Available to Date 

PDB ID Release 
date R (Å) Ligand 

name 
Ligand name 

abbr.b 
Crystal. 
Strategy 

Ligand 
type 

3EML 08/10/14 2.60 ZM 241385 ZMA T4 lysozime 
fusionc Antagonist 

2QAKA 11/03/09 2-71 UK-432,097 UKA T4 lysozime 
fusionc Agonist 

2YDO 11/05/18 3.00 Adenosine ADO StaRd Agonist 
2YDY 11/05/18 2.60 NECA NEC StaRd Agonist 
3PWH 11/09/07 3.30 ZM 241385 ZMA StaRe Antagonist 
3REY 11/09/07 3.31 XAC XAC StaRe Antagonist 
3RFM 11/09/07 3.60 Caffeine CFF StaRe Antagonist 

3VG9A 12/02/01 2.70 ZM 241385 ZMA Fab2838 
complexf Antagonist 

3VGA 12/02/01 3.10 ZM 243815 ZMA Fab2838 
complexf Antagonist 

3UZA 12/03/21 3.27 T4G T4G StaRe Antagonist 
3UZC 12/03/21 3.34 T4E T4E StaRe Antagonist 

4IEY 12/07/25 1.80 ZM 241385 ZMA 
ApoCytochrom

e b562RIL 
chimerag 

Antagonist 

a Structures not considered in this study. b Three letter code assigned in the PDB file. c A2AAR-
T4L-ỎC: IL3 replaced by T4 and C-Term deleted. d A2A AR-GL31- ỎC: thermostabilizing 
mutations (L48A, A54L, T65A and Q89A), N154A mutation and C-Term deleted. e A2A AR-
StaR2- ỎC: thermostabilizing mutations (A54L, T88A, K122A, V239A, R107A, L202A, L235A 
and S277A), N154 mutation and C-Term deleted. f A2A AR-Fab2838- ỎC complex with mouse 
monoclonal-antibody Fab fragment (Fab2838), N154 mutation and C-Term deleted. g A2AAR-
BRIL- ỎC: IL3 replaced by apocytochrome b562RIL and C-Term, deleted. 

The comparison of IEMs enables a fast and graphical selection of the 
conformations based on the quality of the interactions (in terms of the number of 
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established interactions and their relative strength) occurring between each docking 
pose and selected key residues. This type of analysis was proposed in the past by 
several authors and in different forms but rarely applied due to the lack of 
automation and the subjectivity of interactions selection21-24. Both limitations have 
been over- come by developing an in house python script.  

 
Figure 1 – Structures of hA2A AR cocrystalized ligands used to perform the docking benchmark study. 

Materials and Methods  

Numbering and Name Conventions. The residues of the hA2A AR are indicated 
according to the following scheme: the three letter residue name is followed by the 
residue number and the Ballesteros and Weinstein notation reported in brackets25. 

The latter nomenclature scheme, generally indicated by “TM ± 50”, identifies the 
residues by the helix number (TM) followed by the position relative (±) to a reference 
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residue among the most conserved amino acids in that helix, to which the number 50 
is arbitrarily assigned. Compound names correspond to the ligands three letter 
codes assigned in the PDB file, whereas protein identifiers are the corresponding 
PDB entries. Docking protocols are named according to the following scheme: 
“program name abbreviation-scoring function/search algorithm”.  

Computational Facilities. Energy calculations and analyses of docking poses were 
performed with the Molecular Operating Environment (MOE, version 2012.10) 
suite26. Extraction and analysis of docking results were performed by using in-house 
bash and python scripts. Maps and graphs were created with Gnuplot, version 4.427.  

Protein Structures Selection and Preparation. Of the 12 hA2A AR crystal 
structures available, listed in Table 1, the following structures were used to perform 
the benchmark study (PDB IDs): 2YDO15, 2YDV15, 3EML13, 3PWH16, 3REY16, 

3RFM16, 3UZA18, 3UZC18, 3VGA17, and 4EIY19. The structures identified by the 
3QAK14 and 3VGA17 PDB IDs were not considered: We excluded from our analysis 
the ligand cocrystallized in the 3QAK structure because it has a high number of 
heavy atoms and a number of rotatable bonds exceeding the cutoff allowed for some 
of the in-house available docking programs; the inverse agonist cocrystallized in the 
3VGA structure was not considered because it has low occupancy in the PDB 
structure. The selected structures were retrieved from the RCSB PDB database 
(http://www.rcsb.org)28. Before the preparation procedure, all the proteins were 
aligned and superimposed to a selected reference structure (3EML13). Antibody 
portions, ions, and crystallization solvents were removed, whereas water molecules 
and cocrystallized ligands were retained for the hydrogen atoms assignment step 
and then removed. Fused proteins (lysozime and apocytochrome in the specific 
cases) as well as point mutations were retained, and the structures were not 
subjected to any conformational changes. Missing loop domains, N-terminal and C-
terminal, were not modeled. Ionization states and hydrogen positions were assigned 
with the “Protonate-3D” tool29, as implemented in the MOE suite. Then, to minimize 
contacts among hydrogen atoms, the structures were subjected to energy 
minimization with Amber99 force field30 until the root mean square (RMS) of the 
conjugate gradient was <0.05 kcal·mol-1 Å-1, by keeping the heavy atoms fixed at 
their positions. After the protonation step, for each structure, the coordinates of the 
binding site center (barycenter of cocrystallized ligand) were determined and saved, 
then ligand and water molecules were removed and protein atoms partial charges 
computed with the Amber99 force field30. 

Ligand Structures. Co-crystallized ligands were extracted from the corresponding 
crystallographic complex and checked for errors. Hydrogen atoms were added, and 
the protonation state (pH 7.4) was assigned. The structures were not subjected to 
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energy minimization, so that for each ligand the starting conformation is the same 
one observed in the crystal structure. Partial charges on ligands atoms were 
computed on the basis of the PM3/ESP semiempirical Hamiltonian31,32.  

Docking Settings. The performances of the following six docking programs were 
assessed: Autodock33, GOLD34, Glide35, PLANTS36, Molegro Virtual Docker37, and 
MOE- dock36. The versions of the programs were the most up to date available at 
the time we performed the calculations. Among all the scoring functions and search 
algorithms available in the considered programs, we discarded those that did not 
allow us to return a user-defined number of output conformations without duplicates 
and postdocking refinement. In the end, a total amount of 16 different docking 
algorithm/scoring function combinations were assessed, as detailed in Table 2. To 
make the results obtained with different protocols as homogeneous as possible, we 
set the common settings reported in Table 3.  

Docking Stages. Each ligand structure was first docked into the corresponding 
crystal structure with the different docking protocols (cognate ligand docking). Then, 
for the protocols giving the best performances in the cognate ligand docking stage, 
we performed ensemble docking runs to assess whether the protocol is able to 
assign to each ligand (or ligand conformation in case of ZMA) the corresponding 
cocrystallized structure by selecting it among all the tested proteins. For the 
ensemble docking step, three different strategies for the definition of the binding site 
center have been evaluated. In particular, the binding site center was set as i) the 
centroid of the barycenters of the ligands; ii) the ZMA barycenter in 3EML structure; 
and iii) the barycenter of each ligand in its corresponding crystal structure. Finally, 
we evaluated the effect of two additional parameters on the docking outcomes: the 
reconstruction of the second extracellular loop (EL2) and the starting conformation.  

Analysis of Docking Results. To judge the performances of the different tested 
protocols, the RMSD values between predicted and crystallographic poses were 
calculated. In the case of the XAC ligand, which has a highly flexible solvent- 
exposed tail, the RMSD values were computed only for the heavy atoms of the 
aromatic cores. The performances of the docking protocols were evaluated on the 
basis of the lowest, highest, and average RMSD values (RMSDmin, RMSDmax, and 
RMSDave, respectively) as well as the highest number of conformations with a RMSD 
value lower than the corresponding X-ray resolution (R), N(RMSD<R).  
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Table 2 - List of docking programs along with Search Algorithm (or Placing Method) and Scoring Function used 
to perform the docking benchmark study 

Programs Search Algorithm 
 (+ placing method) Scoring Function Abbr. 

Autodock 4.2 

Genetic algorithm 

Lamarkian GA 

Local search 

AutoDock SF 

AutoDock SF 

AutoDock SF 

AD-GA 

AD-LGA 

AD-LSa 

Glide 5.8 Glide algorithm Standard Precision Glide-SP 

GOLD 5.1 

Generic algorithm 

Generic algorithm 

Generic algorithm 

Generic algorithm 

Goldscore 

Chemscore 

ASP 

PLP 

Gold-Gold 

Gold-Chem 

Gold-ASP 

Gold-PLP 

PLANTS 1.2 

ACO algorithm 

ACO algorithm 

ACO algorithm 

ChemPLP 

PLP95 

PLP 

Plants-PLP 

Plants-
PLP95 

Plants-PLP 

MOE 2012.10 

Systematic search + alpha 
triangle 

Systematic search + alpha 
PMI 

Systematic search + triangle 
matcher 

London dG 

London dG 

London dG 

MOE-AT 

MOE-APMI 

MOE-TM 

Molegro Virtual 
Docker 5.5 

Iterated simplex 

MolDock optimizer 

MolDock simplex 

MolDock SF 

MolDock SF 

MolDock SF 

MVD-IS 

MVD-MDO 

MVD-MDSE 

 

Protocol Score. To compare at a glance the performances of the different protocols 
tested, we merged the above- discussed parameters and in particular the RMSDave 
and the N(RMSD<R) in a unique statistical value, that we called protocol score, defined 
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as follows: a) one point is assigned to each protocol that has the RMSDave value 
lower than R; b) one point is assigned to each protocol that generates at least 10 
conformations having RMSD values with respect to the X-ray binding mode lower 
than R; and c) two points are assigned to the protocols that satisfy both of the 
above-mentioned requirements. Moreover, to discern the best protocols among the 
good ones, three points are assigned to the protocols that give the lowest RMSDave 
value and, at the same time, returns the highest number of conformers with a RMSD 
value lower than R. The protocol score assignment criteria are summarized in Table 
4.  

Table 3 - Common docking settings for the evaluated protocols 

Parameter Value/Setting 

Ligand input conformation X-ray binding mode 

Ligand initial partial charges PM3/ESP 

Water molecules Excluded 

Output 20 conformations 

RMSD threshold 1.0 Å 

Binding cavity center Ligand barycenter in X-ray structure 

Binding cavity radius 20 Å 

Grid spacing (for grid-based calculations) 0.3 Å 

Refinement and rescoring Turned off 

 

Table 4 - Protocol Score Assignment Criteria 

Condition Score 

RMSDave<R 1 

N(RMSD<R)>10 1 

RMSDave<R and N(RMSD>R)>10 2 

Protocol returns: Min(RMSDave) and Max(N(RMSD>R)) 3 

 

Analysis of Ligand−Receptor Interactions. To analyze the ligand−receptor 
interactions, we calculated the individual electrostatic and hydrophobic contributions 
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to the interaction energy (hereby denoted as IEele and IEhyd, respectively) of key 
residues involved in the binding with the ligands, as emerged from detailed analyses 
and comparisons among the different crystallographic binding modes. In particular, 
the electrostatic contribution is computed on the basis of the nonbonded electrostatic 
interaction energy term of the force field38, whereas the hydrophobic contributions is 
calculated by using the directional hydrophobic interaction term based on contact 
surfaces as implemented in the MOE scoring function26. As a consequence, energy 
(expressed in kcal/mol) is associated with the electrostatic contribution, whereas a 
score (the higher the better) is related to the hydrophobic contribution. The analysis 
of these contributions have been reported as “interaction energy maps” (hereby 
indicated as IEMs), graphically displayed as heat-like maps reporting the key 
residues involved in the binding with the considered ligands along with a quantitative 
estimate of the occurring interactions. 

Results and Discussion 

Overview of X-ray Binding Modes. Prior to discussing the results of our docking 
benchmark, we briefly report an overview of the binding modes observed in the 
ligand-hA2A AR complexes under study. It has to be pointed out that the analysis 
herein reported lacks water mediated interactions, as we intentionally did not include 
water molecules in our docking simulations. We instead briefly addressed this topic in 
a recent study39, and a deeper investigation of the role of water molecules in hA2A AR 
ligand binding is the focus of a study being currently conducted in our research 
group40.  

Figure 2 depicts the IEM (for more details, see the Materials and Methods 
section) of the ligands under study. The map has been derived stepwise (see Figure 
S1, Supporting Information). We first computed for all the ligands the individual 
contribution of each residue to the interaction energy (per residue analysis). From a 
comparison of the results of the per residue analyses, we then identified the key 
residues involved in the binding with all ligands and reported the occurring 
interaction in the IEM in Figure 2. The common interaction pattern for all ligands 
involves an aromatic π−π stacking with the conserved Phe168, located in the 
second extracellular loop (EL2), and additional hydrophobic contacts with Leu249 
(6.51) and Ile274 (7.39) side chains. Strong polar interactions are established with 
the side chain of the conserved Asn253 (6.55)41. The IEM along with the three-
dimensional representation of the corresponding binding modes (Figure S2, 
Supporting Information) helps in appreciating the different extent (and type) of 
interaction networks and the different sizes of the ligands by allowing a direct 
comparison of all ligands to each other, between pairs of structurally related 
compounds and different conformations of the same molecule. With respect to the 
antagonists structures, agonists (NECA and adenosine) interact through fewer 
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hydrophobic interactions while establishing hydrogen bonds with two additional 
residues, namely, Thr88 (3.36) and Ser277 (7.42), mediated by the ribose moiety. 
With respect to the latter interaction, it has to be pointed out that Thr88 (3.36) and 
Ser277 (7.42) are mutated to alanine in the so-called “StaR2” structures (3PWH, 
3REY, 3RFM, 3UZC, and 3UZA), and therefore for those constructs, the interaction 
with these residues cannot be detected. Among the antagonist structures, the 
differences in the binding patterns between ZMA and caffeine reflect their binding 
affinities to the hA2A AR: ZMA shows an extended pattern with strong polar and 
hydrophobic interactions, whereas caffeine establishes fewer and less intense 
interactions.  

All of the above-described interactions are consistent with the available 
mutagenesis data: in particular, the far back known role of Asn253 (6.55) and the 
more recent mutagenesis data highlighting the roles of Phe168 (EL2) and Leu249 
(6.51) for both agonist and antagonist binding and that of Thr88 (3.36) for agonist 
binding42.  

 

Figure 2 – Interaction energy map (IEM) for the hA2A AR cocrystallized ligands under study. Ligands are 
identified by the three letter codes assigned in the PDB file followed by the PDB IDs. 

Workflow. The workflow of the computational protocol is shown in Figure 3. Starting 
from the protein−ligand complexes (PDB files, see Table 1), the protein and ligand 
structures were prepared and docking simulations run with the selected protocols, 
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listed in Table 2. Then, for each protein structure, the RMSD values of the 
conformations generated by the different docking protocols with respect to the ligand 
cocrystallized binding modes were calculated and statistical analyses performed. As 
detailed in the Materials and Methods section, during the protein preparation step, 
water molecules and cocrystallized ligands were retained. Once the hydrogen atoms 
were added and minimized, water molecules were removed and no longer 
considered. Complexed antibody portions, ions, and crystallization solvents were 
removed, whereas fused proteins as well as point mutations were retained. 
Unsolved protein regions (loops, N-terminal, and C- terminal) were not remodeled, 
and the structures were not energy minimized. Ligand structures were extracted 
from the original PDB files and checked for errors, and hydrogen atoms were added. 
The structures were not energy minimized in order to retain for each ligand the X-ray 
observed conformation. As it is generally accepted that the performances of docking 
protocols, especially those relying upon genetic algorithms, can be affected by the 
starting conformation, we also run test calculations on selected cases by supplying 
different random generated conformations as input and evaluated their effects on the 
performances of the docking protocols. The results are discussed in the following 
text.  

After the protein and ligand preparation steps, we run the different docking 
protocols listed in Table 2: the assessed scoring functions include knowledge-based 
(Gold-ASP), force- field-based (AutodockSF and GoldScore), and empirical scoring 
functions, whereas tested algorithms comprise both deterministic (MOE and Glide) 
and stochastic search method approaches. Moreover, the variety of tested protocols 
also encompasses different types of protein representation, such as grid (Autodock 
and Glide) and all atom. We defined common settings (summarized in Table 3) for 
the different programs in order to ascribe the differences in the performances to the 
selected combination of search algorithms (or placing method) and scoring 
functions. In particular, we chose the same settings for the binding cavity (center, 
radius, and grid spacing for grid- based calculations), the ligand input (conformation 
and partial charges), and the program output (number of saved conformations, 
RMSD threshold value, refinement, and rescoring).  

The results of the docking calculation were collected, and RMSD values with 
respect the cocrystallized ligand were computed for all conformations generated by 
the protocols. 

The performances were evaluated on the basis of lowest, highest, and mean 
RMSD values as well as the highest number of conformations with a RMSD value 
lower than the corresponding X-ray resolution, N(RMSD<R). As the considered crystal 
structures range from high (4EIY, 1.8 Å) to low (3RFM, 3.6 Å) resolutions, to 
evaluate the latter statistical parameter (N(RMSD<R)) we decided to compare each 
structure with its own R value rather than setting a fixed threshold. 
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Figure 3 – Workflow of the benchmark study. 

With this procedure, we intrinsically take into account the quality of the 
experimental data to be reproduced: the less confidence we have in the atomic 
coordinates experimentally determined, the less strictly we judge the performances 
of a protocol in reproducing them. 

Cognate Ligand Docking. The results of the cognate ligand docking step are 
reported in Table S1 (Supporting Information), and the most relevant statistical 
parameters are graphically summarized in Figure 4. In the map in Figure 4A, the 
minimum RMSD value (RMSDmin) of all the tested docking protocols are reported for 
each considered crystal structure: At first glance, it can be noted that there are 
protocols, such as Gold-ASP; Gold-Gold; Gold-PLP; and Plants-PLP, able to 
generate at least one pose that reproduces the X-ray binding mode with satisfying 
accuracy regardless of the specific structure under consideration. From the map, it is 
also straightforward that agonist binding poses are predicted better than antagonist 
ones and in particular that the caffeine binding mode is the most challenging to be 
reproduced. As we also highlighted in our recent membrane molecular dynamics 
simulations of caffeine docking poses39, the dynamical evolution of different starting 
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binding modes involves a consistent number of water molecules in rapid exchange 
around the ligand structure as a consequence of the weak interactions established 
with the receptor. This feature makes it challenging to reproduce the crystallographic 
binding mode without taking into account the dynamical behavior of surrounding 
water molecules. The difficulty is even increased if water molecules are not 
considered at all, as in this specific docking exercise.  

The ability to reproduce at least once the X-ray observed binding mode is not a 
sufficient criterion to judge the quality of the docking protocols. Indeed, when 
extending the analysis by computing the average RMSD value (RMSDave, Figure 
4B), some of the above-mentioned protocols worsen their performances. Moreover, 
other protocols that accurately reproduced at least in one conformer the X-ray 
binding mode (Gold-Chem, MVD-IS) show RMSDave values well over the structure 
resolutions. These data are consistent with the well-known limit of the docking 
procedure. Although search algorithms are usually successful at generating poses 
that include binding modes crystallographically observed, the scoring functions 
developed to date are much less successful at identifying and ranking the correct 
binding pose9. The best protocol would be the one that is able to accurately 
reproduce the X-ray binding mode and rank the conformations with the lowest 
RMSD values at the top of the list. 

 
Figure 4 – Results of the cognate ligand docking procedure. 
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This is also in view of the application of the docking protocol in a virtual screening 
framework, where only a selected percentage of the top generated conformations is 
considered and further processed. Whit this in mind, we defined an additional 
parameter by computing for each protocol the number of conformers having a RMSD 
value lower than the X-ray structure resolution (N(RMSD<R)), which represents 
somehow the best accuracy one might expect from a computational procedure 
based on experimental data. From the map in Figure 4C, it can be evinced that there 
are only a few protocols able to generate a high number of conformations close to 
the crystallographic binding mode and that only in a few cases (Gold-ASP/2YDO; 
Gold-ASP/3EML; Gold-Gold/3EML: Gold-PLP/3EML; AD- LGA/3UZA; MOE-
APMI/3UZC) all of the conformations generated by the protocol have RMSD values 
below the structure resolution.  

We therefore tried to merge all of the above-discussed parameters in a unique 
statistical value that we called protocol score, defined as detailed in the Materials 
and Methods section and summarized in Table 4. The map in Figure 4D graphically 
displays the scores assigned to all of the tested protocols. The obtained results 
suggest that it is not possible to identify the best protocol for low resolution 
structures (R > 3.00) and that the protocols that perform better for most structures 
are represented by the docking program Gold combined with the GoldScore and 
ASP scoring functions.  

Consensus Scoring. A well-known technique to improve the performances of the 
scoring functions is to combine the results of different functions into a consensus 
score43. Moreover, it has been demonstrated that combining different types of 
scoring functions increases the accuracy, as each scoring function compensates for 
the weaknesses of the other one. We therefore combined the results of the two 
scoring functions performing at best for the majority of the considered structures 
(ASP and GoldScore) and evaluate the performances of the thus obtained 
consensus scoring function (Table 5). As can be noted, the consensus score 
improves the overall prediction accuracy and gives good performances for all the 
structures (protocol score = 2). Moreover, for several protein structures, such as 
2YDV, 3EML, 3PWH, 3UZC, and 4EIY, the consensus score represents the best 
performing protocol (protocol score = 3).  
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Table 5 - Consensus Score Resultsa 

 Consensus protocol Best single prtocol 

PDB ID RMSDave 

[Å] 
N(RMSD<R) Score RMSDave 

[Å] N(RMSD<R) Score 

2YDO 0.694 20 2 0.593 20 3 

2YDY 0.415 20 3 0.600 19 3 

3EML 0.783 20 3 0.853 20 3 

3PWH 2.661 17 3 2.861 16 2 

3REY 2.719 11 2 3.266 9 2 

3RFM 3.661 12 2 3.163 14 2 

3UZA 2.969 14 2 1.033 20 3 

3UZC 1.081 19 2 1.489 20 2 

3VGA 2.766 16 2 2.470 18 3 

4EIY 1.127 19 3 1.156 19 3 

a For each protein structure, the best protocols among all the tested ones in this study are reported in bold face text. 

Ensemble Docking. For the above-described consensus protocol, we run ensemble 
docking calculations to assess whether the protocol is able to assign to each ligand 
(or ligand conformation in the case of ZMA) the corresponding cocrystallized 
structure by selecting it among all the considered proteins. For ensemble docking, 
we evaluated three different strategies for the definition of the binding site center by 
setting it as i) the centroid of the barycenters of the ligands; ii) the ZMA barycenter in 
the 3EML structure (upon which all of the other structures were aligned at the 
beginning of the docking procedure); and iii) the barycenter of each ligand in its 
corresponding crystal structure. The results collected in Table 6 report the 
percentage of protein selection for the generation of 20 conformers for each ligand. 
As can be noted, the definition of the binding site center does not significantly affect 
the outcomes. In all of the considered cases, the protocol preferentially selects three 
proteins, namely, the 4EIY, 2YDO, and 2YDV structures. These structures are 
characterized by high to low resolution (1.8, 2.6, and 3.0 Å, respectively) and the 
complete resolution of the second extracellular loop (EL2). We therefore ascribe the 
preference of the docking protocol for these structures to their completeness rather 
than to their resolution.  
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Table 6 - Percentage of protein selection of the ensemble docking runs 

PDB ID Strategy 1 Strategy 2 Strategy 3 

2YDV 28.00 26.00 27.50 

2YDO 24.50 25.50 22.50 

3EML 1.00 2.00 1.50 

3PWH 2.00 1.50 1.00 

3REY 0.00 0.00 0.00 

3RFM 1.50 1.50 1.00 

3UZA 1.00 0.00 0.50 

3UZC 1.00 0.00 0.00 

3VGA 0.50 0.00 0.00 

4EIY 40.50 43.50 46.00 

 
Evaluation of Additional Parameters. IEMs Inspection. As mentioned in the 
Introduction section, we employed a complementary metrics to evaluate the protocol 
performance, that we called IEMs. In our implementation, the IEMs are based on the 
analysis of key ligand-binding interactions observed in the crystal structures (Figure 
2) and enable a fast and graphical selection of the conformations generated by the 
docking algorithms. The selection is guided by the quality, in terms of the number of 
established interactions and their relative strength, of the interactions occurring 
between each docking pose and selected key residues. The identification of key 
residues can be either knowledge-based, such as a comparison with available 
protein−ligand crystal structures (in our case) or mutagenesis data, or blind. In the 
latter case, the IEMs are computed for all residues surrounding the binding site 
within a user-defined radius and are devoid of any subjectivity. Moreover, to solve 
the automation issue that has been previously pointed out by several authors21-24, 
we developed a python script that automatically generates the IEMs from the 
computed interactions. 

Figure 6A depicts the IEMs of the output conformations generated by the 
consensus protocol for the 3UZA structure. A first glance at the map highlights the 
presence of two clusters of conformations. 
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Figure 5 – Effect of starting conformation on consensus RMSDave. Structure resolution is depicted as a dotted 
line. 

The comparison with the interaction energy computed for the cocrystallized ligand 
(representing the lowest row of the map) suggests that poses 2, 6, 8, 9, 12, and 13 
considerably differ from the binding mode observed in the crystal structure. A 
superimposition of the poses (Figure 6B, Video S7, Supporting Information) reveals 
that those structures are placed far away from the binding site by the docking 
protocol and therefore have a higher RMSD with respect to the cocrystallized ligand. 
In this specific case, the IEM inspection helped in identifying pose clusters according 
to the types of interaction they establish with the receptor. The comparison of IEMs 
relative to the conformation generated by the same protocols for different structures 
(Figures S4−S8 and Videos S1−S10, Supporting Information) helps in evaluating 
protocol performances as well as the reproducibility of a crystal binding mode. By 
comparing panels A and B of Figure S5 (Supporting Information), it is straightforward 
that the binding mode of ZMA in the 3PWH structure (Video S4, Supporting 
Information) is more challenging to be reproduced as compared to the one observed 
in the 3EML structure (Video S3, Supporting Information). However, the irregularity 
of the interactions in the IEMs of the 3PWH, 3REY, and 3VGA structures (Figures 
S5B; S6A; and S8A; and Videos S4; S5; and S9, respectively, Supporting  
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Figure 6 – (A) IEM o the conformations generated by the consensus protocol for the 3UZA structure. (B) The 
two clusters of conformations are superimposed to the crystal structure (red sticks): the poses with the lower 
RMSD values are represented in magenta wires, whereas poses with higher RMSD are depicted as purple wires. 

Information) mirrors the higher average RMSD obtained for those structures. The 
same conclusions can be drawn by comparing the performances of different 
protocols on the same structure (data not shown). 

We therefore believe that the IEMs can represent a complementary metrics that 
can help in evaluating the results of docking calculations in a fast graphic way. 
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Reconstructed EL2. The results obtained in the ensemble docking procedure show 
that the protocol preferentially selects complete structures. We therefore decided to 
evaluate the effect of the reconstruction of the second extracellular loop (EL2) for the 
structures that have this portion not completely solved. The loop has been 
reconstructed by using the “Paste Fragment” tool implemented in MOE. The missing 
portion of the EL2 (see Table S2, Supporting Information) has been copied from the 
4EIY structure and pasted into the others, by using the “graft” options, that fits the 
fragment by superposing the flanking residues of the missing sequence and 
performs a short minimization. This method represents the least computationally 
expensive choice and resulted in the most meaningful option in our specific case, as 
three of the available crystal structures have been solved with complete EL2 and 
structure superposition highlights very high structural similarity among them (see 
Figure S3, Supporting Information).  

We repeated the cognate ligand docking calculations for the thus-obtained 
structures by comparing the performances of the consensus protocol prior to and 
after loop reconstruction (Table 7).  

Table 7 - Results of consensus protocol for structures with reconstructed EL2 

PDB ID 

Original structure Reconstructed EL2 

RMSDave 

[Å] 
N(RMSD<R) score RMSDave 

[Å] N(RMSD<R) score 

3EML 0.783 20 3 1.680 20 2 

3PWH 2.661 17 3 2.998 15 2 

3REY 2.719 11 2 3.490 8 0 

3RFM 3.661 12 2 3.684 0 0 

3UZA 2.969 14 2 2.376 15 2 

3UZC 1.081 19 3 0.811 20 3 

3VGA 2.766 16 2 2.939 14 2 

 

    As can be noted, the reconstruction of the EL2 worsens the performance of the 
consensus protocol for the 3REY and 3RFM structures. The 3UZC structure, on the 
contrary, benefits from loop reconstruction, whereas the performances of other 
structures are only slightly affected. These results suggest that it is not possible to 
draw a general conclusion about the benefits of loop reconstruction. We therefore 
recommend when selecting a crystal structure for docking studies to pay attention to 
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the completeness of the structure in the surroundings of the binding cavity. In case 
none of the available structures is completely solved, different loop reconstruction 
methods should be tested.  

Starting Ligand Conformation. To evaluate the effects of the starting structure on 
the docking outcomes, we carried out test calculations by supplying different 
conformations as input. We performed the analysis by considering 25 different 
conformations of ZMA as initial structures: 24 conformations were obtained through 
a stochastic conformational search by leaving the default setting in the MOE 
conformational search (apart from the RMSD threshold that was increased to 1.0 Å), 
and another conformation was generated by simply performing an energy 
minimization. In both cases, the starting point was a structure designed with the 
MOE builder tool. We evaluated the performances of the consensus protocol for the 
3EML, 3PWH, 3VGA, and 4EIY structures (Figure 5). As can be noted, the 
performances of the consensus protocol are less affected by the starting 
conformation, and the RMSDave values remain well below the crystal structure 
resolution for the 4EIY and 3EML structures, whereas for the 3PWH and to a greater 
extent for the 3VGA structures the performances are considerably worse. In the case 
of the 3VGA structure, all of the RMSDave values are all above the structure 
resolution. In all cases, no consistent trend is evidenced.  

Conclusion  

We have presented here an alternative assessment strategy to compare the 
performances of GPCR-ligand docking protocols based on complementary “quality 
descriptors”: a) the number of conformations generated by a docking algorithm 
having a RMSD value lower than the crystal structure resolution (N(RMSD<R)); b) a 
novel consensus-based function defined as protocol score; and c) the IEM analysis, 
based on the identification of key ligand−receptor interactions observed in the crystal 
structures. We have selected as test case the hA2A AR in complex with different 
ligands and evaluated the perform- ances of 16 different docking/scoring 
combinations in generating poses close to the conformations observed in the X-ray 
structures. Common settings among the different selected docking programs have 
been defined, and two issues potentially affecting the docking outcomes, such as the 
input conformation and the reconstruction of protein missing portions around the 
binding site, have been tested and discussed.  

The conclusions of our analysis can be summarized into a few points: i) as 
expected, no universal docking protocol exists that can reproduce with satisfying 
accuracy all of the observed X-ray binding modes even when relative to the same 
receptor subtype cocrystallized with structurally related ligands; ii) in the analyzed 
test case, the overall performances of the docking protocols benefit from the use of a 
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consensus scoring function and are not considerably affected by the input 
conformation as well as by EL2 reconstruction. Exceptions to those general 
considerations have been observed for low resolution structures and for structures 
cocrystallized with low affinity ligands.  

In view of the obtained results, we suggest using complementary metrics and 
additional statistical parameters to the traditional RMSD value to judge and compare 
the performances of docking protocols.  

  
 

 
    

  

 

 

 

 

Abbreviations  
ARs   adenosine receptors  

EL2   second extracellular loop 

GPCRs   G protein-coupled receptors 

 NECA   N-ethyl-5′- carboxamido adenosine 

 T4E   4-(3-amino-5-phenyl-1,2,4-tria- zin-6-yl)-2-chlorophenol 

 T4G   6-(2,6-dimethylpyridin-4-yl)-5- phenyl-1,2,4-triazin-3-amine 

 TM   transmembrane; ZM 241385, 4-(2-(7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)- triazin-5-yl-   
amino)ethyl)phenol 

XAC   N-(2-aminoethyl)-2-[4- (2,6-dioxo-1,3-dipropyl- 2,3,6,7-tetrahydro-1H-purin-8-yl)- 
phenoxy]acetamide  
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3.3 DockBench: An Integrated Informatic Platform 
Bridging the Gap between the Robust Validation of 
Docking Protocols and Virtual Screening Simulations  

Alberto Cuzzolin †, Mattia Sturlese †, Ivana Malvacio †, Antonella Ciancetta  and Stefano Moro*  

Abstract  

Virtual screening (VS) is a computational methodology that streamlines the drug 
discovery process by reducing costs and required resources through the in silico 
identification of potential drug candidates. Structure-based VS (SBVS) exploits 
knowledge about the three-dimensional (3D) structure of protein targets and uses 
the docking methodology as search engine for novel hits. The success of a SBVS 
campaign strongly depends upon the accuracy of the docking protocol used to 
select the candidates from large chemical libraries. The identification of suitable 
protocols is therefore a crucial step in the setup of SBVS experiments. Carrying out 
extensive benchmark studies, however, is usually a tangled task that requires 
users’ proficiency in handling different file formats and philosophies at the basis of 
the plethora of existing software packages. We present here DockBench 1.0, a 
platform available free of charge that eases the pipeline by automating the entire 
procedure, from docking benchmark to VS setups. In its current implementation, 
DockBench 1.0 handles seven docking software packages and offers the 
possibility to test up to seventeen different protocols. The main features of our 
platform are presented here and the results of the benchmark study of human 
Checkpoint kinase 1 (hChk1) are discussed as validation test.  

Introduction  

Virtual screening is a computational methodology aimed at streamlining the drug 
discovery process through the in silico identification of novel hits from large 
chemical libraries1. After emerging in the late 1990s2 as a strategy to reduce the 
time and cost of chemical synthesis and in vitro testing, VS nowadays represents 
an integral part of the drug discovery pipeline both in industry and in academic 
environments3. The main purpose of a VS campaign is to select appropriate 
compounds while removing unsuitable structures, thus significantly reducing costs 
and required resources. Depending on the amount of information available about 
the system of interest, VS is historically classified into two main categories4: ligand-
based VS (LBVS) and structure-based VS (SBVS). SBVS exploits knowledge 
about the three-dimensional (3D) structure of the target gathered either 
experimentally by X-ray crystallography or NMR spectroscopy, or computationally 
through homology modeling and performs docking calculations to rank candidates 
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on the basis of estimated binding affinity or complementarity to the binding site5.  
Consequently, the success of a SBVS campaign strongly depends upon the 

accuracy of the engine used to generate, place, and rank the conformation of 
candidates into a target binding site6. A crucial step in the setup of a SBVS 
experiment is therefore the selection of a proper docking protocol, i.e., the 
combination of search algorithm and scoring function that yields the best accuracy 
achievable.  

The comparison of different docking protocols is not a trivial task7, as it requires 
expertise in handling the different philosophies behind the large variety of available 
software packages. As a result, non-expert users are usually discouraged in 
enriching the pool of docking programs to test due to difficulties in input and output 
formats syntax comprehension, conversion and management. Moreover, the time 
required in merging and comparing the results arising from different protocols 
usually is incompatible with the requests of the experimental counterpart.  
Within this framework, we have recently proposed8 a strategy to compare the 
performances of docking protocols based on two quality metrics: The “Protocol 
Score”, and the number of conformations generated by the docking protocol with a 
RMSD value below the resolution (R) of the crystal structure “N(RMSD<R)”. With the 
aim to broaden their exploitation also by non-expert users, we have proposed the 
presentation of the results as coloured maps of immediate interpretation in a 
benchmark study focused on the human adenosine 2A receptor.  

In the present work, we move a step forward and present DockBench 1.0, a 
platform available free of charge upon request that fully automates the entire 
procedure from the setup of docking benchmarks to VS campaigns. In its current 
implementation, DockBench 1.0 handles seven different docking software 
packages and provides the user with the possibility to test up to seventeen 
protocols. A GUI guides the user step-by-step throughout all the stages required to 
perform the entire pipeline, from the choice of the docking protocol to assess to the 
VS of large chemical libraries. The results are expressed in terms of the above 
mentioned quality metrics and returned as easy to interpret coloured maps. The 
outputs of the different software packages are returned in a unique format and are 
analysed with a standardized procedure to avoid software related biases.  

We describe as validation case a docking benchmark study focused on human 
checkpoint kinase 1 (hChk1). hChk1 is a serine/threonine kinase responsible for 
the arrest of the cell cycle that allow DNA repair in tumour cells in response to a 
damage9. Therefore, hChk1 inhibition represents a strategy to increase the 
therapeutic efficacy of anticancer drugs, thus enhancing the apoptosis induced by 
alkylating agents10,11.  

 



Scientific Publications 87 
 

Published - Cuzzolin, A.; Sturlese, M.; Malvacio, I.; Ciancetta, A.; Moro, S. Molecules 2015, 20 (6), 
9977–9993. 

Results and Discussion  

DockBench General Features  

The Flowchart of the DockBench 1.0 platform is reported in Figure 1. All the 
functionalities are embedded in a graphical user interface (GUI, Figure 2) and are 
organized into five main tabs, corresponding to the tasks required to carry out a 
complete pipeline, from docking benchmark studies to VS experiments: (1) Input 
Settings; (2) Docking Protocols Settings; (3) Results Visualization; (4) Plots 
Visualization; (5) Virtual Screening Settings. The main features of each tab are 
discussed in the following. DockBench 1.0 is available free of charge and can be 
requested at the project page12.  

 
Figure 1 - DockBech 1.0 workflow. The platform is accessed through a GUI, the different stages of the pipeline 
are highlighted with different colours.  
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Figure 2 - DockBench GUI tabs: (1) Input Settings; (2) Docking Protocols Settings; (3) Results Visualization; 
(4) Plots Visualization; (5) Virtual Screening Settings.  

Input Settings  

DockBench 1.0 significantly eases benchmark and VS procedures and allows 
the user to submit jobs with the different implemented software packages at once. 
The user is asked to provide a few files including ligands and receptors structures 
in Tripos .mol2 format and receptor structures .pdb format as retrieved from the 
Protein Data Bank (PDB)13 (Figure 1, grey boxes). The supplied structures, apart 
from original pdb files, must be prepared in advance. In particular, hydrogen atoms 
need to be added by setting the correct protonation states for both the ligand and 
the protein structures. Moreover, the user must take care of generating proper 
ligands tautomeric and stereoisomeric states. Once the structures have been 
uploaded, the R values, ligand names and pdb codes are automatically extracted 
from PDB Remark section, displayed in a table on the GUI and saved for 
subsequent use for files nomenclature and results visualization. Available binding 
data information for the co-crystallized ligands are directly retrieved from PDB 
source page and displayed. In case several data are available, the following 
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selection hierarchy is applied: Ki, Kd, and IC50.  
After the input structures have been uploaded, the coordinates of ligands 

centroids are computed according to Equation 1) and set as the binding cavity 
centre for the subsequent docking simulations. To avoid biases due to input 
conformations, a ligands preparation step (Figure 1, blue boxes) is performed with 
the obminimize14 tool, as detailed in the Methods section.  

Docking Protocols Settings  

In the protocol selection tab all the implemented docking software packages are 
listed. In case a docking program is not available to the user, it will be automatically 
set as inactive. DockBench 1.0 offers the possibility to select up to 17 different 
protocols, sorted alphabetically as reported in Table 1. Briefly, AutoDock15 is 
embedded with three different global optimizer approaches coupled with the 
AutoDock Scoring Function: Genetic algorithm (GA), Lamarkian genetic algorithm 
(LGA), and local search (LS). AutoDock Vina16 is included with its standard 
optimization algorithm and standard scoring function. Glide17,18, is implemented 
with the Standard Precision mode. Four scoring functions are available for the 
GOLD suite (ASP, Chemscore, Goldscore and PLP)19. Plants20 is available with 
three different scoring functions21 (ChemPLP, PLP, PLP95) that are coupled to the 
Ant Colony Optimization (ACO) algorithm. The Triangle Matcher placing method of 
the MOE docking tool is implemented along with three different scoring functions 
(Affinity dG, London dG, GBVI/WSA)22. rDock23 can be run with or without 
desolvation potential term with its standard scoring function. Each protocol is 
managed independently by providing the user with the possibility to select all of 
them or individual ones. 

Several advanced options (Figure 1, green trapezoids) can be customized by 
the user prior to running the docking simulations: The number of output poses 
(default 20), the threshold RMSD value to define unique poses (default 1.0 Å, not 
available for AutoDock Vina and rDOCK), and the radius (default 20 Å) of the 
binding site. As several software packages describe the binding site using inclusion 
spheres (GOLD, PLANTS, rDOCK), the sphere radius r is set as common 
parameter to define the cavity. Nevertheless, to maintain comparable volumes for 
the protocols adopting parallelepiped-shaped cavities, the cube side l is scaled 
according to Equation (2). Along with the options pertaining to the configuration 
files, DockBench 1.0 allows the user to optimize calculations performances by 
setting distributed computing and licenses management features. This functionality 
is designed to take advantage of multicore CPUs and makes a sophisticated use of 
semaphores, as implemented in GNU Parallel24. In details, all the jobs (docking 
runs) are classified and redirect to hardware resources according to two 
parameters: The total number of cores to be used—that is automatically detected 
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by DockBench 1.0 but that can be edited by the user (i.e., in case the calculations 
will run on a remote machine with a different cores number)—and the number of 
licenses available for commercial software packages. According to a classification 
based on the presence of licenses, the jobs are launched in different “traffic lines”: 
Protocols without license limits are redirected to the same traffic line, whereas to 
each licensed program a unique traffic line will be reserved. 
Table 1 - List of docking protocols available in DockBench 1.0 

Program Search Algorithm/Placing 
Method Scoring Function Protocol 

Abbreviation 

Autodock 4.2 

Local Search 

Lamarkian GA 

Genetic Algorithm 

AutoDock SF 

AutoDock SF 

AutoDock SF 

AUTODOCK-ls 

AUTODOCK-lga 

AUTODOCK-ga 

AutoDock Vina 
1.1.2 

Monte Carlo + BFGS local 
search Standard Vina SF VINA-std 

Glide 6.5 Glide Algorithm Standard Precision GLIDE-sp 

GOLD 5.2 

Generic Algorithm 

Genetic Algorithm 

Generic Algorithm 

Genetic Algorithm 

Goldscore 

Chemscore 

ASP 

PLP 

GOLD-goldscore 

GOLD-chemscore 

GOLD-asp 

GOLD-plp 

MOE 2014.09 

Triangle Matcher 

Triangle Matcher 

Triangle Matcher 

London-dG 

Affinity-dG 

GBIVIWSA 

MOE-londondg 

MOE-affinitydg 

MOE-gbiviwsa 

PLANTS 1.2 

ACO Algorithm 

ACO Algorithm 

ACO Algorithm 

PLP 

PLP95 

ChemPLP 

PLANTS-plp 

PLANTS-plp95 

PLANTS-chemplp 

rDock 2013.1 

Genetic Algorithm + Monte 
Carlo + Simplex 

minimization 

Genetic Algorithm + Monte 
Carlo + Simplex 

minimization 

Standard rDock 
master SF 

Standard rDock 
master SF + 

desolvation potential 

RDOCK-std 

RDOCK-solv 
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The number of licenses defines the width of the unique traffic lines, i.e., how 
many jobs will simultaneously run for a given program. Therefore, the traffic lines 
reserved for licensed software packages will be subtracted from total number of 
cores and saturated by non-licensed jobs. For instance, on a workstation equipped 
with an eight core/threads CPU, DockBench1.0 (with default settings) will run 
simultaneously one GLIDE job, one GOLD job, and one MOE job. The remaining 
five cores will be saturated by the protocols not limited by licenses (AutoDock, 
AutoDock Vina, PLANTS, and rDOCK).  

Results Visualization  

At the end of the docking simulations (Figure 1, green boxes), DockBench1.0 
converts all the output files from formats specific to each docking software package 
to structure-data files (.sdf). A check is performed to detect any missing output, 
thus automatically identifying job failures. A summary of the chosen options as well 
as details on considered ligand-protein systems and tested protocols is reported in 
a format table on the GUI. For each structure-docking protocol pair, minimum 
(RMSDmin), maximum (RMSDmax) and average RMSD (RMSDave) values with 
respect to the X-ray binding mode are calculated (Equation (3), Experimental 
Section) and a text file summarizing all these results is produced (Figure 1, red 
boxes). These value are then used to compute the quality metrics8 N(RMSD<R) and 
the Protocol Score. At this stage, protocol and protein ranks are drafted and 
displayed in tabular format on the GUI according to the computed Protocol Score 
values. Protocol based ranks are derived by summing up the scores obtained by 
each protocol for all the considered protein structures. Protein based ranks are 
compiled by listing in descending orders the protein structures with higher sums of 
protocol scores. The GUI allow the user to shift from one rank to another according 
to which piece of information is considered more relevant.  

Plots Visualization  

DockBench 1.0 provide the users with the possibility to graphically display the 
results as easy to interpret coloured maps. In the plot visualization tab, four plots 
depicting the RMSDmin, RMSDave, N(RMSD<R) and Protocol Score trends are 
displayed. These graphs along with the above mentioned ranks are intended to 
guide the user in the selection of the best performing protocols as well as in the 
protein structure yielding more robust results for the subsequent VS jobs. In 
particular, each plot returns the list of tested protocols against the considered 
systems and display the analysed value (RMSDmin, RMSDave, N(RMSD<R) or Protocol 
Score) with a colour code. To ease the interpretation of the results, colour codes 
have been devised so that blue spots identify the best results obtained for each 
value.  
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Virtual Screening Settings  

As anticipated, DockBench 1.0 offers the possibility to perform VS campaigns by 
selecting one or more of the previously evaluated docking protocols (Figure 1, 
orange box). The user is asked to upload a molecular database in .sdf format and 
has the possibility to automatically include the ligands used for the benchmark 
study (useful for enrichment analyses), and to define the number of posed to be 
returned for each ligand. Depending on the size of the loaded library and on the 
performance of the selected protocol detected during the benchmark procedure, an 
estimate of the time required to screen the whole library is provided. Similarly to 
the benchmark calculations, the VS scheme takes advantage of GNU parallel24. 
Calculation can be performed on a single workstation as well as on a cluster, by 
indicating the hostname and the number of cores to be used for each node. The 
jobs are monitored and in case of interruption, a restart input file is provided. To 
further speed up the calculations, the loaded library is splitted according to its size 
into more sdf files with an in-house python script implemented in the code. At the 
end of the VS procedure, the resulting conformers are merged and a global ranking 
is performed.  

Case Study  

The results of our validation test are reported in Figure 3. The RMSDmin analysis 
highlights the protocols (VINA-std; GOLD-plp; GOLD-goldscore; GOLD-asp and 
AUTODOCK-ga) able to generate at least one pose that reproduces the X-ray 
observed binding mode with significant accuracy (Figure 3A). Some of these 
protocols, however, worsen their performances when RMSDave values are 
inspected (Figure 3B). Conversely, other protocols that accurately reproduced at 
least once the crystallographic pose for a given structure (GOLD-asp/c73-3PA5) 
show RMSDave values over the structures resolutions.  

By analysing the data in terms of N(RMSD<R), it emerges that there are few 
protocols able to generate a high N(RMSD<R) and that only in the 10% of the 
examined cases (32/340) all the conformations generated by the protocol have 
RMSD value below the structure resolution (N(RMSD<R)= 20, blue spots in Figure 
3C).  

The inspection of the Protocol Score results (Figure 3D) reveals that some 
protocols (RDOCK-solv, GOLD-plp, GOLD-goldscore, GOLD-asp and 
AUTODOCK-lga) generate the highest score for at least one protein structure.  

At a first glance, these results suggest that it is not possible to identify the best 
docking protocol for all the considered structures. Therefore, the selection of a 
proper protocol for subsequent docking simulations depends upon the selected 
protein structure. 
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Figure 3 – Results of the docking benchmark study on human checkpoint kinase 1. (A) Minimum RMSD 
values (RMSDmin) returned by the tested docking protocol (y-values) for the considered X-ray structures (x-
values); (B) Average RMSD values (RMSDave); (C) Numbers of conformations returned by each docking 
protocol having a RMSD value lower than the X.ray structure resolution (N(RMSD<R)); (D) Protocol Score. RMSD 
is expressed in Å, whereas the Protocol Score ona 0-3 points scale. Values are rendered with a colour code, 
blue spots identify the best obtained results. Exclamation marks warn that an error occurred during docking 
calculations. 
 

For instance, GOLD-goldscore could be used coupled to structures 
corresponding to PDB codes 1ZYS and 1NVS, whereas AUTODOCK-lga could be 
used in conjunction with the 1NVR structure. Overall, AUTODOCK-lga and GOLD-
goldscore represent the protocols yielding the highest scores for a greater number 
of different proteins. 

DockBench 1.0 Performances  

To evaluate the performances of the distributed computing system we integrated in 
DockBench 1.0, we have tested the efficiency in the jobs management by 
DockBench 1.0 as compared with a traditional one by one job routine. In Table 2, 
the average execution time and the total calculation time for each protocol are 
reported. The docking calculation of the whole hChk1 case study (20 proteins; 17 
Protocols) was achieved by the traditional routine in 16 h and 54 min. To complete 
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the same task, DockBench 1.0 spent in 2 h 24 min, by using two licenses for 
GOLD, two licenses for GLIDE, two licenses for MOE and no license limit for the 
other software packages. It has to be pointed out that the DockBench 1.0 
performances in this comparison were mainly affected by the low number of 
licenses used. A more reliable comparison has been drawn by running the same 
case study by using only non-licensed protocols (AutoDock, PLANTS, rDock, 
Vina). In this case, the traditional routine spent 11 h 13 min whereas DockBench 
1.0 carried out the calculations in 27 min.  

Table 2 - Cont. 

Abbreviation Average Execution 
Time(s) 

Total Time (s) 

AUTODOCK-ga 973.5 20,445.3 

AUTODOCK-lga 633.3 13,299.1 

AUTODOCK-ls 7.45 156.58 

GLIDE-sp 46.8 984.2 

GOLD-asp 133.4 2,801.8 

GOLD-chemscore 136.2 2,860.4 

GOLD-goldscore 401.7 8,436.5 

GOLD-plp 98.6 2,071.9 

PLANTS-chemplp 61.4 1,290 

PLANTS-plp 23.3 958.1 

PLANTS-plp95 16.6 348.3 

MOE-affinitydg 17.6 352.5 

MOE-londondg 18.4 368.4 

MOE-gbviwsa 131.9 2,638.8 

RDOCK-std 20.0 426.2 

RDOCK-solv 31.9 671.0 

VINA-std 132.7 2,786.7 
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Experimental Section  

Computational Facilities  

All computations were performed on a 200 cores cluster based on Ubuntu OS 
(14.04, 64 bit) and under the network file system (NFS) service. Performance 
timing of DockBench 1.0 was performed on a single HP ProLiant server DL585G7, 
equipped with four AMD Opteron Processor 6282 servers, for a total of 64 CPU 
cores.  

DockBench 1.0 Platform  

Programming Languages and Software Dependencies  

DockBench 1.0 is written in Python and patches several Bash scripts to launch 
and analyse molecular docking simulations. To integrate the MOE docking tool22, 
in-house built Scientific Vector Language (SVL) scripts have been embedded in the 
code. DockBench 1.0 also integrates third party applications and the following 
packages are required to fully utilize the platform features: OpenBabel chemical 
toolbox 2.3.214, GNU parallel 2013092224 and Gnuplot 4.6.  

Names Conventions  

All the files generated by DockBench 1.0 are named according to the following 
scheme: “Ligand abbreviation—protein identifier—protocol abbreviation”. Ligands 
abbreviations correspond to the three letter codes assigned in the PDB files, 
whereas proteins identifiers are the corresponding PDB entries. Docking protocols 
abbreviations (Table 1) are named according to the following scheme: “Program 
name abbreviation-scoring function/search algorithm”.  

Implemented Docking Protocols and Standard Settings  

In its current implementation, DockBench 1.0 handles the following docking 
software packages for a total of 17 different protocols (see Table 1 for more 
details): AutoDock 4.2.5.1 [15], AutoDock Vina1.1.2 [16], Glide 6.5 [17,18], GOLD 
5.2 [25], MOE 2014.09 [22], PLANTS 1.2 [20], rDock [21]. Several common options 
among the different protocols have been set (Table 3).  
The coordinates of the binding cavity centre (centroid) are computed as the 
weighted centre of mass of all ligand atoms (Equation (1)):  
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Table 3 - Common docking settings for the evaluated protocols 

Parameter Value/Setting 

Ligand input conformation Structures generated by minimization 

Ligand initial partial charges Provided by the user 

Water molecules Excluded 

Output 20 conformations (customizable) 

RMSD threshold 1.0 Å (customizable) 

Binding cavity centre (Centroid) Ligand barycenter in X-ray structure 

Binding cavity radius (r) 20 Å (customizable) 

Grid spacing (for grid-based calculations) 0.475 Å 

Refinement and re-scoring Turned off 

 

To maintain similar cavity volumes for the protocols defining the binding cavity 
with a parallelepiped, we set cubes having similar volume to the sphere by scaling 
the side, l, according to Equation (2): ︎! ︎! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !!
! !

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

Moreover, at variance with the previously published procedure8, a pre-
processing step of the input conformations has been implemented to avoid biases 
arising from ligand input conformation. The input structures are therefore 
minimized with the minimize tool14, using the conjugate gradient algorithm and a 
maximum of 2500 steps to reach convergence criteria of 1e-16 based on the 
MMFF94 force field26. Finally, RMSD values with respect to the co-crystallized 
ligands are calculated as reported in Equation (3) with an in-house built Python 
script. Given two sets of n heavy atoms a and b:  
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Case Study Input Files Preparation  

Protein Structures  

Among the 108 available X-ray structures for the hChk1, the following 20 ligand-
protein complexes were selected for the docking benchmark (PDB IDs): 3TKH27, 
3TKI27, 1ZYS28, 4HYI29, 4HYH29, 3OT330, 2HY031, 2HXL31, 2QHN32, 3PA333, 
3PA433, 3PA533, 1ZLT34, 3OT835, 1NVR36, 1NVS36, 2YEX37, 2YER37, 2YDI38, 
2YM739. The structures were retrieved from the RCSB PDB database13 and 
selected on the basis of their X-ray resolution (R, selection criterion = R < 1.8 Å). 
Before the preparation procedure, all the proteins were aligned and superimposed 
to a selected reference structure. Crystallization solvent and ions were removed, 
whereas water molecules and co-crystallized ligands were retained for the 
hydrogen atoms assignment step and then removed. Ionization states and 
hydrogen positions were assigned with the ‘Protonate-3D’ tool40, as implemented in 
the Molecular Operating Environment (MOE, version 2014.09) suite22. Then, the 
structures were subjected to energy minimization with Amber99 force field41, by 
keeping the heavy atoms fixed at their positions. Finally, ligand and water 
molecules were removed and protein atoms partial charges computed with the 
Amber99 force field41.  

Ligand Structures  

Co-crystallized ligands were extracted from the corresponding crystallographic 
complex and checked for errors. Hydrogen atoms were added and the protonation 
state (pH: 7.4) was assigned. Partial charges on ligands atoms were computed on 
the basis of the PM3/ESP semiempirical Hamiltonian42,43. The structures have 
been then subjected to the ligand preparation procedure of the DockBench 1.0 
platform. A full list of ligands considered in this study along with their structures and 
names is reported in Table 4.  

Table 4 - Cont. 

Structure IUPAC Name Ligand 
Abbreviation 

 

3-[5-(piperidin-1-ylmethyl)-1H-indol-2-yl]- 
6-(1H-pyrazol-4-yl)-1H-quinolin-2-one  306-2HY0 
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3-[5-[[4-(aminomethyl)piperidin-1- 
yl]methyl]-1H-indol-2-yl]-1H-indazole-6- 
carbonitrile  

422-2HXL 

 

5-ethyl-3-methyl-1H-pyrazolo[4,5- 
c]quinolin-4-one  582-2QHN 

 

2-(4-chlorophenyl)-4-[[(3S)-piperidin-3- 
yl]amino]thieno[2,3-d]pyridazine-7- 
carboxamide  

C70-3PA3 

 

2-(4-chlorophenyl)-4-[[(3S)-piperidin-3- 
yl]amino]thieno[3,2-c]pyridine-7- 
carboxamide  

C72-3PA4 

 

2-(aminocarbonylamino)-5-(4- 
chlorophenyl)-N-[(3S)-piperidin-3- 
yl]thiophene-3-carboxamide  

C73-3PA5 

 

(4Z)-4-(2-amino-5-oxo-3H-imidazol-4- 
ylidene)-2,3-dichloro-1,5,6,7- 
tetrahydropyrrolo[2,3-c]azepin-8-one  

Hym-1ZLT 
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3-(1-methyl-1H-pyrazol-4-yl)-N-(3-methyl- 
1,2-thiazol-5-yl)-5-[(3R)-piperidin-3- 
yl]pyrazolo[1,5-a]pyrimidin-7-amine  

Mi5-3OT8 

 

N-(2-azanylethyl)-5-[2-[(4-morpholin-4- 
ylpyridin-2-yl)amino]-1,3-thiazol-5- 
yl]pyridine-3-carboxamide  

S25-3TKI 

 

(5S,6R,7R,9R)-6-methoxy-5-methyl-7- 
(methylamino)-6,7,8,9,15,16-hexahydro-
17- oxa-4b,9a,15-triaza-5,9 
methanodibenzo[b,h]cyclonona[jkl]cyclope 
nta[e-as-indacen-14(5H)-one  

Stu-1NVR 

 

5-(hydroxymethyl)-8-(1H-pyrrol-2- 
yl)[1,2,4]triazolo[4,3-a]quinolin-1(2H)-one  Tq1-2YER 

 

(5R,8S)-5,6,7,8-tetrahydro-13H-5,8-epoxy- 
4b,8a,14- 
triazadibenzo[b,h]cycloocta[1,2,3,4- 
jkl]cyclopenta[e]-as-indacene-13,15(14H)- 
dione  

Ucm-1NVS 

 

2-(carbamoylamino)-5-{4-[2- 
(dimethylamino)ethoxy]phenyl}thiophene- 
3-carboxamide  

Ydi-2YDI 
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5-methyl-8-(1H-pyrrol-2-yl)-2H- 
[1,2,4]triazolo[4,3-a]quinolin-1-one  Yex-2YEX 

 

5-((6-((piperidin-4- 
ylmethyl)amino)pyrimidin-4- 
yl)amino)pyrazine-2-carbonitrile  

Ym7-2YM7 

 

1-morpholin-4-yl-2-[4-[2-[(5-pyridin-3-yl- 
1,3-thiazol-2-yl)amino]pyridin-4- 
yl]piperazin-1-yl]ethanone  

07s-3TKH 

 

N-{5-[4-(4-methylpiperazin-1-yl)phenyl]- 
1H-pyrrolo[2,3-b]pyridin-3-yl}pyridine-3- 
carboxamide  

199-1ZYS 

 

2-indazol-1-yl-N-(2-piperazin-1-ylphenyl)- 
1,3-thiazole-4-carboxamide  1a0-4HYI 

 

2-(6-methoxy-1-oxoisoindolin-2-yl)-N-(4- 
(piperazin-1-yl)pyridin-3-yl)thiazole-4- 
carboxamide  

1am-4HYH 

 

5-[(1R,3S)-3-azanylcyclohexyl]-6-bromo-3- 
(1-methylpyrazol-4-yl)pyrazolo[1,5- 
a]pyrimidin-7-amine  

22k-3OT3 

 

 



Scientific Publications 101 
 

Published - Cuzzolin, A.; Sturlese, M.; Malvacio, I.; Ciancetta, A.; Moro, S. Molecules 2015, 20 (6), 
9977–9993. 

Conclusions  

We have introduced here DockBench 1.0, a platform available free of charge 
that fully automates the pipeline from docking benchmarks to VS campaigns 
setups. Currently, DockBench 1.0 implements seven different docking software 
packages (including commercial and freely available ones) and provides the user 
with the possibility to test up to seventeen protocols. The platform has been 
devised with the aim to minimize the user’s required expertise by overcoming the 
main issues related to docking benchmark procedures: The management of 
input/output formats and the time required in running,  
merging and comparing the results arising from different software packages. To 
this aim, a GUI guides the user step-by-step throughout all the stages from docking 
protocol assessment to VS of large chemical libraries. The outputs of the different 
software packages are returned in a unique format and are analysed with a 
standardized procedure to avoid biases. The distributed computing philosophy 
based on GNU parallel semaphores has been integrated in the platform, thus 
allowing the users to speeds up the calculations while cleverly using the available 
resources. As validation case, we have reported on the benchmark study of 20 
hChk1 structures by testing all the protocols available in the platform. DockBench 
1.0 is available free of charge and can be requested at the project web page12.  
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3.4 Deciphering the Complexity of Ligand-protein 
Recognition Pathways using Supervised Molecular 
Dynamics (SuMD) Simulations. 

Alberto Cuzzolin, Mattia Sturlese, Giuseppe Deganutti, Veronica Salmaso, Davide Sabbadin, 
Antonella Ciancetta and Stefano Moro* 

Abstract 

Molecular recognition is a crucial issue in interpreting the mechanism of known 
active substances as well as in the development of novel active candidates, since 
both thermodynamic and kinetic aspects greatly affect the understanding of ligand-
mediated signal transmission in living organisms or whether a chemical compound 
can be transformed in a drug candidate. The physicochemical bases governing the 
optimization of thermodynamic aspects of ligand binding are relatively well 
understood, but they remain still poorly comprehend for binding kinetics. 
Unfortunately, simulating this binding process is still a challenging task because it 
requires classical MD experiments in a long microsecond time scale that is 
affordable only with a high-level computational capacity. In order to overcome this 
limiting factor, we have recently implemented an alternative MD approach, named 
supervised molecular dynamics (SuMD) specifically in the field of G protein-coupled 
receptors (GPCRs). SuMD enables the investigation of ligand-receptor binding 
events independently from the starting position, chemical structure of the ligand, and 
also from its receptor binding affinity.  
In this Article, we would like to present an extension of SuMD application domain 
including different types of proteins compared to GPCRs. In particular, we decided to 
deeply analyze the ligand-protein recognition pathways of six different case studies 
that we grouped into two different classes: globular and membrane proteins. 
Moreover, we would like to introduce the SuMD-Analyzer tool that we have 
specifically implemented to help the user in the analysis of the SuMD trajectories. 
Finally, we will emphasize the limit of SuMD applicability domain as well as its 
strengths in analyzing the complexity of ligand-protein recognition pathways.  

Introduction  
The essential features of ligand-protein interaction are very often summarized 

under the expression "molecular recognition" incorporating both thermodynamic 
aspects (quantified by the Kd , the equilibrium dissociation constant) and kinetic 
aspects of ligand binding (reflected by the rate constants kon and koff). Consequently, 
molecular recognition is thus a crucial issue in interpreting the mechanism of known 
active substances as well as in the development of novel active candidates, since 
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both thermodynamic and kinetic aspects greatly affect the understanding of ligand-
mediated signal transmission in living organisms or whether a chemical compound 
can be transformed in a drug candidate1.  

The physico-chemical bases governing the optimization of thermodynamic 
aspects of ligand binding are relatively well understood but, unluckily, they remain 
still poorly comprehend for binding kinetics. In fact, the equilibrium dissociation 
constant value depends on the free energy difference between the ligand-protein 
bound and unbound states, both of which are chemically stable and generally 
experimentally observable. On the contrary, kon and koff rate constants depend on 
the height of the free energy barrier separating those states and, in particular, the 
highest free energy barrier defined as transition state characterized only by a fleeting 
existence2. Consequently, the major challenge in the optimization of the kinetics 
parameters is the complexity in characterizing all plausible approaching pathways of 
the ligand to its protein. In fact, different approaching pathways can be characterized 
by different metastable intermediate states (referred also as meta-binding sites)3 

connected to each other, and to the final bound state, by different transition states. 
Understanding the molecular interactions between ligand and protein during the 
approaching pathways is thus central to the deep understanding and to the rational 
control of ligand binding kinetics. Even though experimental techniques for 
measuring the kinetic parameters of ligand binding have existed for decades, all of 
them only provide indirect evidence about transient structures visited along a ligand-
binding pathway2. Alternatively, computational methods, and in particular molecular 
dynamics (MD) simulations, can provide detailed structural information on 
metastable intermediate states (meta-binding sites) and transition states at the 
atomistic level of detail4. Due to increases in computational power, it has recently 
become possible to simulate the full process of spontaneous ligand-protein 
association which typically occurs on the microsecond timescale, providing direct 
access to detailed information on binding mechanisms that have been difficult to 
access experimentally4,5. Unfortunately, simulating this binding process is still a 
challenging task because it requires classical MD experiments in a long microsecond 
time scale that is affordable only with a high-level computational capacity. However, 
the probability of reproduce ligand- protein binding or unbinding event on an 
accessible timescale can be enhanced through the introduction of biased potentials 
that facilitate the crossing of energy barriers or the application of external forces on 
the ligand, respectively6. An alternative strategy that does not require the 
introduction of biases or external forces and enables to explore the ligand-protein 
approaching path in nanosecond simulation time scale has been recently proposed 
by us specifically in the field of G protein-coupled receptors (GPCRs)7,8 The 
“supervised molecular dynamics” (SuMD) approach exploit a tabu-like algorithm to 
monitor the distance between the center of masses of the ligand atoms and the 
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protein binding site in short (600 ps) standard MD simulations (Figure 1, left panel). 
According to this strategy, an arbitrary number of distance points is collected “on the 
flight” at regular intervals and fitted into a linear function f(x)=mx. If the slope (m) is 
negative, the ligand-receptor distance is likely to be shortened and the simulation is 
restarted from the last set of coordinates. Otherwise, the simulation is restored from 
the original set of coordinates and started over. The supervision is repeated until the 
ligand-receptor distance is less than 5 Å. The results of a SuMD simulation are 
displayed in a graph reporting the interaction energy toward the distance between 
the ligand and the binding site (Figure 1, right panel). We have recently applied the 
SuMD approach to interpret at the molecular level: i) the binding of different 
antagonists at the human A2A adenosine receptor (hA2A AR) by detecting and 
characterizing a possible energetically stable meta-binding site7 , ii) the binding of 
the natural agonist adenosine at the hA2A AR by detecting and characterizing a 
possible energetically stable meta-binding site9, iii) the positive allosteric modulation 
mediated by LUF6000 toward the human A3 adenosine receptor (hA3 AR) by 
suggesting at least two possible mechanisms to explain the available experimental 
data10, and iv) the binding of different ligands at the human P2Y12 receptor by 
detecting and characterizing again possible energetically stable meta-binding site11.  

 
Figure 1 - a) Schematic representation of Supervised Molecular Dynamics (SuMD) algorithm (left) and the 
outcoming ligand−protein interaction energy landscape. Interaction Energy values: kcal mol-1  

In the present work, we would like to present an extension of SuMD application 
domain including different types of proteins compared to GPCRs. In particular, we 
decided to deeply analyzed the ligand-protein recognition pathways of six different 
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case studies that we grouped into two different classes of proteins : globular and 
membrane proteins, as summarized in Table 1. Moreover, we would like to introduce 
the SuMD-Analyzer tool that we have specifically implemented to help, also a non 
expert user, in the analysis of the SuMD trajectories.  
Table 1 - Structural summary of the selected ligand-protein PDB ID are reported 

Globular System 

PDB Protein Ligand Resolution 
[Å] Affinity Ligand MW Ref. 

2ZJW CK2 Ellagic Acid 2.40 Ki=0.04 μM 302.197 41 

13GS GSTP1-1 SASP 1.90 Ki=24 μM 398.39 44 

4K7I PRDX5 Benzen-1,2-
diol 2.25 Ki=1500μM 110.11 45 

2VDB HSA (S)-naproxen 2.25 Ki=1.2-1.8μM1 230.25 49,58 

Transmembrane Systems 

PDB Protein Ligand Resolution 
[Å] Affinity Ligand MW Ref. 

3GWW LeuT (S)-dluoxetine 2.46 IC50=355mM 345.79 51 

2YDV hA2AAR NECA 2.60 Ki=13.8nM 308.29 55 

 

Materials and Methods  

General.   

All computations were performed on a hybrid CPU/GPU cluster. MD simulations 
were carried out with the ACEMD engine12 on a GPU cluster equipped with four 
NVIDIA GTX 580, two NVIDIA GTX 680, three NVIDIA GTX 780, and four NVIDIA 
GTX 980. Before running SuMD simulations, the following preliminary phases were 
carried out: i) protein-ligand system preparation; ii) ligand parameterization; iii) 
solvated system setup and equilibration. Two different protocols based on 
AMBER1213/General Amber Force Filed (GAFF)14 and the CHARM2715/CHARMM 
General Force Field (CGenFF), force fields combinations were adopted for globular 
and transmembrane systems, respectively16,17.  
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Systems Preparation.  

Protein-ligand complexes were retrieved from the RCSB PDB database18. 

Proteins  structures were prepared with the protein preparation tool as implemented 
in MOE19: hydrogen atoms were added to the complex and appropriate ionization 
states were assigned by means of the Protonate-3D tool20. Missing atoms in protein 
side chains were built according to either the AMBER1213 or the CHARM2715 force 
field topology. Missing loops were modeled by the default homology modelling 
protocol implemented in the MOE protein preparation tool. Non- natural N-terminal 
and C-terminal were capped to mimic the previous residue. For each considered 
system, the conformer with highest occupancy was selected whenever available. To 
avoid protein-ligand long range interactions in the starting geometry, the ligand was 
then moved at least 15 Å from any protein atom.  

Ligand Parametrization.  

Globular systems. For the MD simulations based on the AMBER12 force field13, 

the ligands were subjected to two energy minimization steps with MOPAC201221 

using PM6 method22 and Gaussian 0923 (basis set: HF/6-31G*). After geometry 
minimization, ligand parameters were derived with GAFF14  as implemented in 
ambertools201413  by using antechamber and parmchk tools. RESP partial charges 
where calculated with Gaussian 0923 following the procedure suggested by 
antechamber.  

Transmembrane systems. For the MD simulation based on the CHARMM27 force 
field24, initial parameters for the ligands were retrieved from the paramchem service 
and subsequently optimized consistently to CGenFF16,25 at the MP2/6-31G* level of 
theory26 by using Gaussian 0923 and the Force Field Toolkit27 implemented in the 
VMD engine28.  

Solvated System Setup and Equilibration  

Globular Systems. Protein-ligand complexes were assembled with tleap tool using 
AMBER14SB29 as force field for the protein29. The systems were explicitly solvated 
by a cubic water box with cell borders placed at least 12 Å away from any protein or 
ligand atom using TIP3P as water model30. To neutralize the total charge Na+/Cl- 
counter-ions were added to a final salt concentration of 0.150 M. The systems were 
energy minimized by 2000 step with conjugate-gradient method, then 50000 step of 
NVE (100 ps) followed by 1 ns of NPT simulation were carried out, both using 2 fs as 
time step and applying an harmonic positional constrain on protein and ligand atoms 
gradually reduced with a scaling factor of 0.1. Pressure was maintained at 1 atm 
using a Berendsen barostat31.  
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The Langevin thermostat was set with a low damping constant of 1 ps-1 32. Bond 
lengths involving hydrogen atoms were constrained using the M-SHAKE algorithm33. 

The MD productive runs were conducted in a NVT ensemble. Long-range Coulomb 
interactions were handled using the particle mesh Ewald summation method (PME) 
setting the mesh spacing to 1.0 Å34. A non-bonded cut-off distance of 9 Å with a 
switching distance of 7.5 Å was used.  

Transmembrane Systems. Transmembrane proteins were embedded in a 1-
palmitoyl-2- oleoyl-snglycero-3-phosphocholine (POPC) lipid bilayer according to the 
suggested orientation reported in the Orientations of Proteins in Membranes (OPM) 
database35. The systems were solvated with TIP3P30 water using the program 
Solvate 1.036 and neutralized by Na+/Cl- counterions to a final concentration of 0.154 
M.  The systems were then equilibrated through a two steps procedure: in the first 
stage, after 2000 cycles of conjugate-gradient minimization algorithm (in order to 
reduce steric clashes produced by the system manual setting), 10 ns of MD 
simulation were performed in the NPT ensemble, restraining ligand and protein 
atoms by a force constant of 1 Kcal mol-1 Å-2. The temperature was maintained at 
298 K using a Langevin thermostat with a low damping constant of 1 ps-1 32 pressure 
was maintained at 1 atm using a Berendsen barostat31, bond lengths involving 
hydrogen atoms were constrained using the M-SHAKE algorithm33 with an 
integration timestep of 2 fs. In the second stage, once water molecules diffused 
inside the protein cavity and the lipid bilayer reached equilibrium, the force constant 
was gradually reduced to 0.1 Kcal mol-1 Å-2 for the next 10 ns of MD simulation.  

Supervised Molecular Dynamics (SuMD)  

SuMD is a command line tool written in python, tcl, and bash that operates the 
supervision of MD trajectories according to the algorithm that has been previously 
described7. The program exploits Visual Molecular Dynamics (VMD) and Gnuplot 
functionalities28,37. In its current implementation, SuMD is interfaced with the 
ACEMD12 engine and supports AMBER and CHARMM force fields.  

SuMD Input files. SuMD requires a configuration file (selection.dat, Figure S1) 
organized in three major sections containing information about: i) the system; ii) the 
supervision procedure; and iii) the simulation settings. In the system settings section, 
the following details about the molecular system need to be provided: i) the pdb file 
name containing the starting coordinates; ii) the 3-letter code name of the ligand; 
and iii) the residues describing the target binding site. In the supervision settings 
section, the following values are declared: i) the slope threshold (default value: 0); 
and ii) the number of maximum consecutive failed steps (default value: 33) to stop 
the simulation. In the simulation settings section, the following details must be 
specified: i) the force field to use; ii) the parameter file; iii) the GPU device ID to 
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which the calculation will be addressed. In this section, a Boolean operator manages 
the introduction of a randomization step that varies the position of the ligand through 
a 600 ps of non-supervised MD simulation. In the same directory where SuMD is 
launched, a file containing the cell dimension as well as a parameter file (prmtop/psf 
with the same name of the pdb) must also be provided.  

SuMD Main Code. The workflow of the SuMD main code is reported in Figure 2A. 
As depicted, at the beginning of the simulation SuMD detects the atoms that identify 
the ligand and the target binding site, to define the distance between their mass 
centers dcm(L-R)  that will be monitored. Then, a series of 600 ps classical MD 
simulations are performed. After each simulation, five dcm(L-R) distance points are 
collected at regular intervals of 75ps. Using these points, the slope value (m) is 
derived by a linear fitting. As previously described, if the resulting  slope m is 
negative or below the user selected threshold (i.e. the distance dcm(L-R) is 
decreasing), the next simulation step starts from the last set of coordinates 
produced, otherwise the simulation is restarted by randomly assigning the atomic 
velocities. To avoid problematic starting geometries (i.e. geometries prone to lead to 
dead-end pathway), in the first simulation step,  SuMD supervises the distance 
dcm(L-R) with a maximum threshold  of 31 failed attempts (Preliminary Run). In the 
case this threshold is reached, SuMD callbacks a randomization process on the set 
of coordinates supplied by the user by a classical 600 ps MD simulation.   

During the following steps, the simulations are perpetuated under the supervision 
rules. In particular, the first time a slope value below the threshold is recorded, the 
program enters the so- called “SuMD Run”. When the distance dcm(L-R) drops below 
5 Å the supervision is disabled and the simulation proceeds though a classical MD 
simulation. At the end of the simulation, only the productive steps are saved, 
chronologically numbered and stored in a separate directory.  

SuMD log file. At each SuMD simulation step, a log file (Figure 1S) is updated 
collecting information about: i) the step number; ii) the dcm(L-R) distance; iii) the slope 
value (m); iv) the electrostatic and van der Waals potential energy contributions of 
the ligand-receptor interaction energy (IE). A counter keeps trace on how many 
times each SuMD step has been attempted. Furthermore, three counters 
corresponding to the dcm(L-R) distance ranges 0-2 Å, 2-5 Å, and 5-9 Å are reported. 
These distances monitors how many times the binding site is approached, i.e. how 
often the dcm(L-R) distance lies below the long-range interaction cutoff. These 
counters determine the program termination criteria (see following section) and, 
according to the binding site definition supplied by the user, they might represent: 
the target binding site, its neighbors, and putative allosteric/meta-binding sites, 
respectively.  
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Figure 2 – (A) Workflow of the SuMD main code (B) Workflow of the SuMD-Analyzer tool. 

SuMD Termination Criteria.  

A SuMD simulation is terminated when one of the following criteria is satisfied: i) 
no negative slope (m) values are recorded for a user-selected number of steps (33 
consecutive steps by default); ii) one of the distance counters reaches a maximum 
value of 19 (i.e. the dcm(L-R) lies in the same region for 11.5 nonconsecutive 
nanoseconds). 

SuMD-Analyzer Tool  

The SuMD-Analyzer is a standalone tool written in python, tcl, and bash to 
analyze the SuMD trajectories (Figure 2B). The tool is integrated with VMD28 and 
UCSF Chimera38 for the graphical visualization and exploits Wordom39 and 
Gnuplot37 functionalities. The provided analyses cross over four different aspects: i) 
the ligand position, ii) the IE, iii) the per residue interactions, and iv) the replicas 
comparison.  

When the SuMD-Analyzer is launched, the trajectories produced by SuMD are 
merged and aligned to the starting reference structure using the RMSD tool in VMD 
by using alpha-carbon atoms for the superposition. The merged trajectory is 
subjected to a striding procedure picking one frame every 5 through the VMD 
animate module.  
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Ligand Position. Two analyses follow the coordinates explored by the ligand during 
the SuMD trajectory (Figure 2B, green boxes): i) the Root Mean Square Deviation 
(RMSD); and ii) the so-called “Pollicino Analysis”. If a reference complex structure is 
available, the RMSD between the ligand and the reference coordinates supplied is 
computed along the trajectory. The calculation is performed on the heavy atoms of 
the ligand using the measure rmsd function implemented in VMD and the data 
obtained are plotted against the time using Gnuplot37 (Figure 2B, left green box).  

The Pollicino Analysis is a representation that graphically renders the recognition 
pathway explored by the ligand. At the end of each SuMD step, the coordinates of 
the ligand mass center are collected and clustered according to their dcm(L-R) using a 
threshold value of 2 Å. The coordinates belonging to the same cluster are averaged 
and represented by a sphere which radius depends on the population of the cluster. 
Arrows indicate the chronological order onto which the regions where the sphere 
reside are approached by the ligand mass center (Figure 2B, right green 22 box).  

Interaction Energy. The ligand-protein interaction is analyzed by means of the 
mdenergy function embedded into VMD. The electrostatic and van der Waals 
contributions to the potential energy are calculated for each frame and summed to 
obtain the total IE. With this value, two graphs are derived (Figure 2B, blue boxes): i) 
the “Interaction Energy Landscape”, and ii) the “Cumulative Interaction Energy”. The 
former chart displays the total IE profile with respect to the dcm(L-R)  through a 
colorimetric scale representing the IE value. Each point displayed in the chart 
represents the last position of the corresponding SuMD step (Figure 2B, left blue 
box). The  latter plot shows the cumulative sum of the total IE values for each frame 
against the time. Therefore, each point is the sum of all previous IE values. Changes 
in the observed trend highlight how the variation of ligand conformation/position 
affects the IE (Figure 2B, right blue box).  

Per Residue Interactions.A further set of analyses was developed to highlight the 
most important residues involved in the ligand recognition pathway (Figure 2B, upper 
magenta boxes): i) the “Protein-ligand Contacts Count”, and the ii) “Ligand-Protein 
Recognition Map”. In the first graph (Figure 2B, upper left magenta box), the 
residues more frequently approached by the ligand during the trajectory are reported 
and for each residue the total number of established contacts is rendered as 
histograms. In this representation, at each SuMD frame only the residues lying within 
a distance of 4 Å from any ligand atoms are considered. In the second graph (Figure 
2B, upper right magenta box), the residue approached by the ligand are depicted 
with respect to the simulation time. In particular, each dot in the map represents a 
trajectory frame colored according to the total number of contacts the ligand has 
established with a particular residue. White dots means that, at the considered 
frame, the residue atoms are farther then 4 Å from ligand atoms, while green dots 
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correspond to a contact event and the sum of the contact is coded by the light-green 
to dark-green scale.  

To support the user in the topological localization of the residues mainly 
interacting with the ligand during the trajectory, molecular 3D representations of the 
protein are automatically set using USF Chimera38 (Figure 2B, lower magenta 
boxes). In particular, the number of ligand- protein contacts is normalized and stored 
into the B-factor field of the involved residue in the protein pdb file. In the protein 3D 
representation “Chimera_count” (Figure 2B, lower left magenta box) the ribbons are 
colored according the so-derived B-factor values. A similar representation, 
“Chimera_time” (Figure 2B, lower right magenta box), is available with the color code 
(blue-to-violet) reflecting the chronological order onto which the residues have been 
approached by the ligand for the first time.  

Replicas Analysis. The “Replicas Analysis” (Figure 2B, violet box) is a manager 
that compares the molecular recognition event occurred in different SuMD replicas. 
The manager extracts from each trajectory the data regarding the ligand position and 
the IE, merges the data for each analysis in graphs colored according the replica 
number to better appreciate the differences.  

Results and Discussion  

Case Studies Selection  

An already anticipated, in this work SuMD applicability domain has been extended 
using six different case studies, grouped into two major protein classes: i) globular 
systems, and ii) transmembrane systems (as summarized in Table 1). Specifically, 
considering the globular proteins we selected: a) the human Caseine Kinase 2 (CK2) 
in complex with Ellagic acid; b) the P1-1 isoform of Glutathione S-transferase 
(GSTP1-1) in complex with Sulphasalazine (2-hydroxy-(5-{[4-(2-
pyridinylamino)sulfonyl]phenyl}azo) benzoic acid, SASP); c) the human 
Peroxiredoxin 5 (PRDX5) in complex with a benzen-1,2-diol; and d) the human 
Serum Albumin (HSA) in complex with (S)-naproxen. Considering the membrane 
proteins, we selected: a) the Leucine transporter (LeuT) from Aquifex aeolicus in 
complex with (S)-fluoxetine; and b) the 

 
human Adenosine A Receptor (hA2A AR) in 

complex with the synthetic agonist 5'-N-Ethylcarboxamidoadenosine (NECA). An 
overview of the structural features of the considered ligand-protein complex is 
reported in Figure 3 and briefly described in the following.  



Scientific Publications 117 
 

Submitted - Cuzzolin, A.; Sturlese, M.; Deganutti, G.; Salmaso, V.; Sabbadin, D.; Ciancetta, A.;    
Moro, S. J. Med. Chem.!

 
Figure 3 – Overview of the X-ray protein-ligand complexes used as validation cases. On the top: Acid Ellagic-
CK2, SASP-GSTP1-1, Benzen-1,2-diol-PDRX5; On the bottom: (S)-naproxen-HAS, (S)-fluoxetin-LeuT, NECA-
hA2AAR. 

CK2 is a ubiquitous and constitutively active serine/threonine kinase (PK) that 
phosphorylates more than 300 substrates. It is involved in the regulation of 
numerous cellular process such as cycle progression, apoptosis, transcription and 
viral infection40. The catalytic alpha subunit is composed by two lobes connected by 
a small loop called “hinge region”. The N- terminal lobe presents five β-strands and 
the α-helix C involved in the substrate recognition, whereas the C-terminal lobe is 
composed of α-helices. All PKs present a glycine rich loop (P-loop), an activation 
loop, and a catalytic loop40. The X-ray complex highlights that the inhibitor binds to 
Lys49, Ser51and His160 as shown in Figure 3A41.  
Glutathione S-transferases (GSTs) are homodimeric phase II detoxification 
enzymes, active in the bioconjugation of glutathione (GSH) to a wide range of both 
endogenous and exogenous molecules. The catalytic region of GSTs is topologically 
subdivided in two different site: i) the G-site, selective for GSH recognition and highly 
conserved crosswise GSTs isoforms, and ii) the H-site, less conserved and 
responsible for the binding of electrophilic molecules42. Isoform P1-1 probably 
represents the most studied GST and has been related to the development of 
tumors resistance towards numerous anti-cancer drugs43. SASP, which is able to 
inhibit GSTs without acting as a co-substrate for the conjugation reaction with GSH, 
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has been co-crystallized with GSTP1-1 and represents a starting point for structure-
based design of new anticancer drugs44. The X-ray complex (Figure 3B) highlights 
that the inhibitor binds to a hydrophobic pocket formed by Phe8, Val10, Val35, Ile104 
and Tyr108 side-chains. SASP phenyl ring and salicylic acid moiety are engaged in 
π−π stacking interactions with the aromatic side-chain of Phe8 and Tyr108, 
respectively, while the ligand carboxylate is involved in an electrostatic interaction 
with the Arg13 side chain.  

To extend the SuMD capabilities on low affinity ligand we selected the recently 
solved structure of PRDX5 in complex with a benzen-1,2-diol45. PRDX5 belongs to 
the ubiquitary peroxiredoxin family which role relies on the hydrogen peroxide and 
alkyl hydroperoxides reduction. PRDX5 plays a remarkable role in post-ischemic 
inflammations in the brain46,47. 

The catechol was identified by a fragment based screening and the dissociation 
constant was estimated in the millimolar range (Kd=1.5 +/- 0.5mM). More 
interestingly, the system was extensively characterized by NMR spectroscopy both 
with structure-based experiments and ligand-based experiments, resulting in a solid 
model system for a low-affinity binding event45. In the X-ray complex (Figure 3C) the 
catechol ring is localized to the N-terminus of the second helix establishing a 
hydrogen-bond network with the backbone nitrogen of Gly46 and Cys47 residues. 
The sidechain of Arg127 is oriented towards the hydroxyl moiety and contributes to 
the binding with an additional hydrogen bond. Similarly, the thiol group of Cys47 is 
faced to the catechol. The Pro40, Leu116 and Phe120 establish hydrophobic 
interactions with the aromatic ring.  

The Human Serum Albumin (HSA) is a deeply investigated protein for its ability in 
bind  a wide range of different molecules in human plasma. (S)-naproxen strongly 
binds HSA and more interestingly in different sites depending on the presence of 
other small molecules (e.g. hormones, xenobiotic, fatty acids)48,49. The only structure 
available for this complex was  obtained in presence of decanoic acid driving the 
accommodation of the naproxen molecule in  the IB site, a vast and hydrophobic 
pocket where a multitude of different ligand can be hosted49.  In the IB site (S)-
naproxen inserts its naphthalene scaffold within the hydrophobic pocket and 
interacts directly with the aliphatic tail of decanoic acid and the residues Ile142, 
Phe157 and Tyr161 (Figure 3D). The carboxylic group is partially exposed to the 
solvent but is surrounded by several charged residue forming the entrance of the 
pocket: Arg145, Lys 190 and in particular Arg186.  

Neurotransmitter sodium symporter (NSS) family includes the human serotonin 
transporter (SERT), norepinephrine transporter (NET) and dopamine transporter 
(DAT)50. To date, there is a lack of focused information about the structure of these 
important therapeutic targets. In recent past, the crystallographic structure of the 
LeuT from Aquifex aeolicus (a NSS family member) has been disclosed with the aim 
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of better understand the basis for selective  serotonin re-uptake inhibitors (SSRIs) 
activity towards serotonin transporters51. LeuT-(S)-fluoxetine X-ray complex (Figure 
3E) highlights hydrophobic contacts between the inhibitor and Leu29, Arg30, Tyr108 
and Phe253 side chains. (S)-fluoxetine secondary amino group points towards the 
extracellular space and engage Asp401 in an electrostatic interaction, while the 
extracellular gate is locked by the salt bridge between Asp404 and Arg30.  

Moving to the last key study, adenosine receptors (ARs) belong to the G protein-
coupled receptors (GPCRs) superfamily. The known four subtypes, termed 
adenosine A1, A2A, A2B and A3 receptors, are widely distributed in human body, 
involved in several physio-pathological processes and represent potential targets for 
the treatment of several diseases52. In the last decade, X-ray structures of the hA2A 
AR in complex with agonists and antagonists have been released thus offering the 
basis for molecular modeling investigation53 including also SuMD simulations7,54,10 . 
Here we focus on the complex with NECA55 (Figure 3F) that features a strong  polar 
interaction between the exocyclic amine group of NECA and the side chain of the 
conserved Asn253 residue; a hydrogen bond with the nitrogen atom of NECA 
acetamide moiety and the Thr88 side chain; and an aromatic π-π stacking with the 
conserved Phe168, located in the second extracellular loop (EL2), and hydrophobic 
contacts with, among others, the Leu249 side chain.  

Globular Systems  

Acid Ellagic-CK2 recognition pathway. In the starting geometry the ligand was 
placed at a distance of 50 Å from the binding site. After the initial randomization step, 
the distance reduced to 43 Å. As depicted in Figure 4A and shown in Video S1, the 
first interaction between the ligand and the protein is established after 2 ns of 
productive trajectory and is mediated Lys49 that directs the ligand to the P-loop of 
the kinase. As shown by the Pollicino analysis (Figure 4B), the ellagic acid 
approaches the region of the P-loop and mostly interacts with the Arg47, Lys49, 
Glu53 and the Lys71 (Figure 4A). These residues describe an interaction site, at 
10.5 Å where the ligand resides for about 6 ns. In facts, the ligand RMSD plot 
(Figure 4C) records stable values in the 2-8 ns time lapse. The IE with the protein in 
this site is about -20 kcal/mol (Figure 4D at dcm(L-R)= 10 Å); the Per Residue 
Contacts Count graph (Figure 4E) highlights that the above mentioned residues are 
those establishing the greatest number of contact, whereas the corresponding 3D 
models helps in identifying their location (Figure 4F) and  the chronological order at 
which they have been approached by the ligand (Figure 5A). Approximately after 7 
ns of simulation the ligand moves toward the orthosteric site, where Leu45 stabilizes 
its conformation and the side-chain of His160 hampers its passage. Through an 
interaction mediated by Arg43 the ligand overcomes the His160 gate and reaches 
new interaction site described by Asp120, Arg47, and Met163.  
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Figure 4 – Acid Ellagic-CK2 recognition pathway. (A) Ligand-Protein Recognition Map (B) Pollicino Analysis (C) 
Ligand RMSD (D) IE Landscape (E) Ligand-Protein Contacts Count (F) Chimera contacts. 
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The permanency in this site is about of 2 ns with an interaction energy of -51 
kcal/mol (Figure 4C-D). Consistently, the RMSD plot presents another plateau in the 
time range 8-10 ns (Figure 4C) that corresponds to the swarm of dots in the IE 
Landscape at dcm(L-R) = 11 Å (Figure 4D). A further stabilizing interaction with the 
Asn118 induces a shift in the ligand position that places the ring system parallel to 
the β7-β8 strands (Video S1). 

 
Figure 5 – Acid Ellagic-CK2 recognition pathway. (A) Chimera time (B) Cumulative IE (C) Cumulative IE 
electrostatic contribution (D) Cumulative IE van der Waals contribution (E) Superimposition between SuMD 
endpoint conformation and X-ray binding mode. 
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As shown in the Cumulative Ligand-Protein IE (Figure. 5B) and its corresponding 
decomposition into electrostatic and van de Waal contribution, (Figure 5C and D, 
respectively) the change in the slope indicates that new conformation has a lower 
interaction energy than the previous one.  

In particular, as highlighted by the comparison of the graphs relative to the 
electrostatic and van der Waals contribution (Figure 5C and D, respectively), the 
stabilization can be ascribed by the establishment on an electrostatic interaction with 
Asp175. As result of the new interaction the ligand moves into the orthosteric site 
(Figure 5E) and interacts with Lys159, Val66, Val117, Val53, His115 and Lys68 by 
maintaining the same position is maintained till the end of the SuMD simulation. The 
RMSD plot shows another plateau from 10 ns to the end, whereas the IE Landscape 
indicates that in this time lapse the ligand is at a distance around 2.5 Å with an IE 
between -40 to -70 kcal/mol. 

The simulation was replicated three times and Replicas Analysis results are 
reported in Figure 6. In particular, the RMSD plot indicates that one replica does not 
reach the orthosteric site (Figure 6A, green line), whereas the others reach the same 
final RMSD value.  

 

Figure 6 – Acid Ellagic-CK2 recognition pathway (A) Per Replica Ligand RMSD (B) Per Replica Pollicino 
Analysis (C) Per Replica IE Landscape (D) Per Replica cumulative IE. 
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The same conclusion arises from the investigation of the Pollicino analysis where 
the ligand pathway of the two replicas converge in proximity of the protein (Figure 
6B, red and blue spheres). 

The Per Replica IE Landscape helps in explaining why the third replica does not 
reach the orthosteric site: as indicated by the green dots in Figure 5C the ligand 
reaches a different interaction site with an IE of -60 kcal/mol, a value close to the IE 
of the replicas that converge into in the orthosteric site (Figure 6C, red and blue 
dots). This consideration is confirmed by the trend of the Per Replica Cumulative IE 
that highlights a more negative slope for the third replica (Figure 6D, green line), 
indicating a very strong interaction.  

SASP-GSTP1-1 recognition pathway. During the SuMD simulation the SASP 
reaches the GSTP1-1 catalytic H site in less than 6 ns (Video S2). The IE landscape 
highlights the formation of the first protein-ligand stabilizing interaction when the 
ligand and protein H site distance is 15 Å (point a, Figure 7A and 7B). 
In this preliminary complex, SASP engages the Gly205 backbone oxygen in a 
hydrogen bond interaction through its sulfamide nitrogen atom and establishes an 
aromatic π-π stacking interaction between the salicylic moiety and Tyr108 
(interactions corresponding to the first continues lines in the Protein-Ligand 
Recognition Map, Figure 7C). This situation anticipates a ligand positional shift that 
allows the SASP salicylic carboxylate to approach the positively charged Arg13 side 
chain, while the benzene ring replaces the salicylic aromatic moiety in the π-π 
stacking interaction with Tyr108 (point b, Figure 7A). 

The energy stabilization of the complex increases and, after 8 ns of simulation, 
SASP proceeds toward a farther conformation, able to gain a more favourable 
electrostatic interaction geometry with Arg13 side chain, after the displacement of 
two water molecules from the solvation sphere of the positively charged residue. 

This new pose (point c, Figure 7A and Figure 7B) is retained until the end of 
SuMD simulation, with the exception of conformational changes occurring to 
thepyridylsulfamoyl moiety, able to fit in the hydrophobic pocket delimited by Phe8, 
Val35 Trp38. During the SASP - GSTP1-1 recognition event GSH remain in the 
catalytic G site of the enzyme, not interacting with the inhibitor. Figure 7D highlights 
all the residues involved in the interaction with SASP during the SuMD simulations: 
the selective contacts towards only one enzymatic subunit, as well as the 
topologically restricted area interested, are well defined by the ribbon colorations. 

Considering the SASP crystallographic conformation as geometrical reference, 
the ligand RMSD analysis (Figure 7E) reaches a minimum after 15 ns of simulation 
(Figure 7F), before level out at a value of about 5 Å. Figure S2 reports other ligand-
protein interaction energy analysis. 
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Figure 7 – SASP-GSTP1-1 recognition pathway. (A) IE Landscape (B) Pollicino Analysis (C) Ligand-Protein 
Recognition Map (D) Chimera contacts (E)  Ligand RMSD (F) Superimposition between SuMD endpoint 
conformation and X-ray binding mode. 
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The Replicas Analysis (Figure S3) depicts a recognition event with no meta-stable 
binding sites and characterized by almost a univocal pathway. Nevertheless, in one 
replica, in the final complex SASP is rotated by 180° (as highlighted by the higher 
RMSD value) and loses the electrostatic stabilization between its salicylic moiety and 
Arg13 side chain.  

Benzen-1,2-diol−PDRX5 recognition pathway. The simulation were repeated on 
both monomeric and dimeric form yielding similar results. However, here we will 
focus on the dimeric form according to solution NMR studies, in which the authors 
stated the protein as dimer56 . At the beginning of randomization step the fragment 
was placed at 78 Å from PDRX5 binding site (dcm(L-R)= 78 Å). As reported in figure 
8A, 8B (point b) and 8C, after nearly 3 ns the fragment approaches the protein in a 
region located at around 30 Å from the primary binding site (Video S3).  

This meta-binding site lies in the opposite monomeric subunit with respect to the 
primary binding site and it is defined by residues Leu62, Lys63, Val69, and Val70. As 
shown by the IE landscape and the Pollicino Analysis (Figure 8A and 8B, 
respectively), this site engages the ligand with favorable interactions for a couple of 
nanoseconds. In particular, the formation of a hydrogen bond between the hydroxyl 
groups of catechol and the carbonyl moiety of the backbone amide of residue Lys95 
stabilizes this conformation. After nearly 6 ns the fragment is released by this site 
and fluctuates to finally reach the primary binding site thought a series of molecular 
interaction, including residues (chronologically sorted): Glu91, Glu16, Glu18, Phe79 
belonging to the first monomer unit (SI figure S4). Finally, the fragment accesses to 
the binding site where fluctuates experimenting different conformations in 
accordance with its affinity in the millimolar range. The fluctuations of the fragment in 
the binding site are also evident in the Protein-Ligand Energy profiles, in which the 
energy wavers around the value of -20 kcal/mol (SI figure S4). 

During the fluctuation, the catechol enters in contact with most of the residue 
forming the site, in particular (sorted by number of molecular contacts during the 
trajectory): Thr146, Thr44, Arg127, Phe120, Leu116, Gly46 and Cys47 (Figure 8C, 
8D). The main conformation observed corresponds to the crystallographic one, as 
reported in Figure 8E and 8F where the RMSD reaches a minimum value 0.69 Å at 
17.3 ns.  

The simulation was repeated in three times randomizing the position of the ligand. 
The Replicas Analysis is reported in Figure S5. Briefly, in each replica the fragment 
reached the primary binding site experiencing the conformation reported in the 
crystallographic data with the best RMSD respectively of 1.12 and 1.24 Å for the 
replica 2 and 3.  
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Figure 8 –Benzen-1,2-diol-PDRX5 recognition pathway. (A) IE Landscape (B) Pollicino Analysis (C) Ligand-
Protein Recognition Map (D Chimera contacts. (E) Ligand RMSD (F) Superimposition between SuMD endpoint 
conformation and X-ray binding mode. 
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(S)-naproxen-HAS recognition pathway. SuMD simulation was performed 
maintaining decanoic ligand in the IB site according the crystallographic geometries. 
(S)-naproxen was separated from HSA-decanoid acid complex by 32 Å from IB site 
(point a in Figure 9A and 9B). In the first SuMD step the ligand fluctuate till 50 Å from 
the IB site. As reported in Figure 9C after a couple of nanosecond the ligand 
approaches the first protein site in its trajectory by engaging Lys510 and Thr564 
(Video S4). Shortly after, the ligand establishes a network of 

 
interaction for 1 ns 

(from 2.3 ns to 3.2) in a site located at around dcm(L-R)= 20 Å (point b in Figure A), 
defined by residues: Val116, Pro118, Val122, Thr133 and Phe134. Then, the 
Naproxen molecule approach a second, where it fluctuates for about 3 ns by 
establishing strong interaction with residues Leu115, Pro118, Lys137, and Ile142 (as 
also evident from Protein-Ligand Interaction energy in figure S6 in SI).  

 
Figure 9 – (S)-naproxen-HAS recognition pathway. (A) IE Landscape (B) Pollicino Analysis (C) Ligand-Protein 
Recognition Map (D Chimera contacts.  
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Figure 9 (continuation)- (E) Ligand RMSD (F) Superimposition between SuMD endpoint conformation and X-ray 
binding mode. 

This meta-binding site is located in front of the principal binding site to which is 
separated by the presence of a long extended loop (residue 106 to 119) that acts as 
a gate for the IB site. Finally after 6 ns, (S)-naproxen is able to pass behind the 
extended loop and reach the IB site (residues Leu115, Ile142, Phe157, Tyr161) as 
show by Figure 9B and 9E. Within the primary site, the ligand is able to place the 
methyl ether group in the proximity of Phe152 very similarly to the orientation of 
crystal structure. On the other hand, the naphthalene core and in particular the 
carboxylic group adopt a different orientation due to the presence of the extended 
loop. This different orientation abolishes the ionic interaction between the carboxyl 
group and the Arg112 observed in the crystallographic structure (Figure 9F). At the 
end of the simulation the RMSD fluctuates around 5 Å, reaching the lowest value of 
4.76 at 12.70 ns (Figure 9E and 9F).  

Interestingly, in the other replicas (Figure S7) the ligand reaches the IB site by 
approaching the extended loop from a different position and occupies a slightly 
different location in the vast IB site. This suggests the loop might have a crucial role 
in the recognition process (Figure S7). 

Transmembrane Systems  

(S)-fluoxetine-LeuT recognition pathway. The (S)-fluoxetine recognition pathway 
highlights, after 1 ns of SuMD simulation, a first electrostatic interaction between Asp 
158 side chain and the ligand charged secondary amine group (Video S5). The 
energetic stabilization characterizing this complex corresponds to the IE landscape 
minimum reported in the Figure 10A, point a and Figure 10B. This preliminary 
complex is able to favor the ligand approach towards an inner pocket of LeuT, 
topologically defined by Tyr 471 and the aliphatic chains of Lys 474 and Glu 478, 
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reciprocally involved in an ionic interaction. Hydrophobic contacts stabilize this 
intermolecular complex for about 2 ns, before a conformational change allows (S)-
fluoxetine to establish a more favorable electrostatic interaction whit Glu 402 side 
chain. This scenario anticipates the ligand repositioning inside an inner hydrophobic 
site, where the ligand engages for almost 7ns Tyr471, Trp406, Ile475 and Phe405 
side chains in lipophilic interactions through its phenyl ring (point b, Figure 10A and 
Figure 10B). During the remaining simulation time, the inhibitor makes contacts with 
Ala319 (EL4) and the side chains of the key residues Asp404 and Arg30 (point c, 
Figure 10A and Figure 10B and continuous lines corresponding to the last 4ns of 
SuMD simulation in Figure 10C), both located at the protein extracellular gate and 
involved in a ionic lock that 10terically obstructs the SSRIs binding site disclosed by 
LeuT crystallographic structure.  

 
Figure 10 – (S)-fluoxetin-LeuT recognition pathway. (A) IE Landscape (B) Pollicino Analysis (C) Ligand-Protein 
Recognition Map (D Chimera contacts.  
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Figure 10 (continuation) – (E) Ligand RMSD (F) Superimposition between SuMD endpoint conformation and X-
ray binding mode. 

Figure 10D summarizes all the amino acids involved in the SFX recognition event 
during the SuMD simulation.  

The RMSD plot (Figure 10E) outlines the inhibitor difficulty in reproducing the 
experimental pose (Figure 10F). Investigation on LeuT crystal structure without co-
crystallized inhibitor reveale an alternative conformation of Arg30 side chain, and the 
absence of the gate ionic lock (Figure S12)57 : it is possible to speculate that the 
LeuT extracellular gate, during SuMD  simulation timescale, is able to remain in a 
stable conformation, previously induced by the inhibitor binding and retained even 
after the removal of the ligand during the system preparation for SuMD. 

Replicas analysis (Figure S9) highlights two alternative recognition pathways 
through the extracellular vestibule, unable to enable SFX to reproduce the binding 
mode observed in the crystallographic complex and characterized by accentuated 
energy variations in proximity of the extracellular transporter gate.  

NECA−hA2A AR recognition pathway. NECA establishes the first stabilizing 
contacts with hA2A AR after about 4ns of SuMD simulation (Video S6). During this 
initial scenario (point a, Figure 11A and Figure 11B) the ligand approaches the 
protein topological structure defined by ECL2 N-terminus and the residues located at 
top of TM5 and TM6. More precisely, NECA engages Phe257 (6.59) side chain in a 
π-π stacking interaction through its purine scaffold and locates the N-
ethylcarboxamido moiety towards a pocket delimited by Trp143 (ECL2), Pro173 
(ECL2), and Asn175 (TM5) side chains, as highlighted by the first stripes in Figure 
11C and the yellow and violet ribbon coloration in Figure 11D.  
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Figure 11 – NECA-hA2A AR recognition pathway. (A) IE Landscape (B) Pollicino Analysis (C) Ligand-Protein 
Recognition Map (D) Chimera contacts (E) Ligand RMSD (F) Superimposition between SuMD endpoint 
conformation and X-ray binding mode. 
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This complex anticipates a repositioning that allows the ligand to reach a meta-
stabile binding site, mainly characterized by a π-π stacking interaction with His264 
(EL3) side chain, an hydrophobic contact in the direction of Met174 (TM5) side 
chain, and an hydrogen bond interaction between its C2’ hydroxide group and 
Asn253 (TM6) (point b, Figure 11A and Figure 11B).  

During the time slot rising from 14 ns to 20 ns of SuMD simulation, the agonist 
reaches a deeper position inside the orthosteric binding site and explores different 
conformations (included a temporary anti-syn transition about the glycoside linkage), 
until engages Phe168 (ECL2) side chain in a π-π stacking interaction and Asn253 
(TM6) side chain in hydrogen bond interactions through its exocyclic amine and the 
N7 position of the purine scaffold (point c, Figures 11A and Figures 11B). This 
complex orientation (associated with the minimum RMSD value in Figure 11E, with 
respect to the NECA crystallographic conformation) is followed by an alternative 
stabilized conformation (point d, Figure 11A and Figure 11B) which involves also 
hydrophobic interactions with Leu249 (TM6), Leu85 (TM3) and Val84 (TM3).  

During the remaining SuMD simulation time, the protein-ligand complex geometry 
remain almost unaltered, with the exception of a reorientation of the N-
ethylcarboxamidoribose moiety, pointing toward TM4, and the loss of the aromatic 
π-π interaction due to a conformational change occurring to Phe168 (EL2) side 
chain. In Figure 10S are reported other ligand-protein energy interaction analysis.   

At the minimum RMSD value, NECA pyrimidine scaffold coincides with the 
crystallographic orientation, while the ribose moiety is oriented in an alternative 
conformation (Figure 11F).  
Replicas Analysis (Figure 11S) highlights also a different NECA recognition pathway, 
which involves residues located at the ECL2 and characterized by comparable 
energetic stabilizations.  

Conclusion 
In the present work, we have demonstrated the general applicability of SuMD 

simulations using different types of proteins, including both globular and membrane 
proteins. Moreover, we have presented the SuMD-Analyzer tool that helps, also a 
non expert user, in the analysis of the SuMD trajectories. Even if various other MD 
methods have also been used to characterize binding pathways, SuMD has the 
great advantage of being able to explore the ligand-protein approaching path in 
nanosecond simulation time scale. Furthermore, SuMD simulations enable the 
investigation of ligand-protein binding events independently from the starting 
position, chemical structure of the ligand, and also from its target binding affinity. As 
described for each key study, SuMD simulations are able to characterize multiple 
ligand-protein binding pathways identifying a variety of metastable intermediate 
states (meta-binding sites). These information may be an interesting starting point 
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for further argumentations regarding the pharmacological consequences of that 
specific ligand-protein recognition process. Moreover, it is worthy to underline that, 
contrary to expectations, not all SuMD trajectories converge to the structure of the 
complex obtained crystallographically. Indeed, there are several plausible reasons 
that may be argued to describe this particular unexpected aspect: a) the 
crystallographically pose of the ligand is not the only minimum of the potential 
energy surface described by the force field during the SuMD simulations; b) the 
crystallographically conformation of the protein in its bound state is remarkably 
different respect its apo-form. This could be interpreted as the sign of an important 
induce-fit process during the ligand recognition; and c) the boundary conditions that 
led to the formation of the crystallographically ligand-protein complex (solvent and 
co- solvent, pH, ionic strength, or temperature just as a few examples) are not well 
described during the SuMD simulations. This must always be kept in mind when any 
conjecture is made starting from the analysis of SuMD trajectories. Currently, a 
major effort is underway to estimate, from SuMD simulations, binding kinetics 
properties (in particular on-rate values) in approximate agreement with experimental 
measurements.  

Hopefully, the future of drug design will involve detailed characterization of not 
only the bound state but also the whole ligand–protein network of recognition 
pathways, including all metastable intermediate states (meta-binding sites). With 
such a complete understanding we hope expand our perspectives in several 
scientific areas from molecular pharmacology to drug discovery.  
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Abbreviations   

3D  three-dimensional  
CK2  caseine kinase 2  
CPU  central processing unit  
GPCRs  G protein-coupled receptors  
GPU   graphics processor unit 
GSTP1-1  P1-1 isoform of glutathione S-transferase  
hA2AAR  human A2A adenosine receptor  
HSA   human serum albumin  
IE   interaction energy  
Kd   equilibrium dissociation constant 
Koff   dissociation rate constants 
Kon   association rate constants  
LeuT  leucine transporter 
MD   molecular dynamics 
NECA   5'-N-ethylcarboxamidoadenosine  
PDB   protein data bank 
POPC   1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine 
PRDX5  eroxiredoxin 5  
RMSD   root-mean-square deviation 
SASP   sulphasalazine  
SuMD   supervised molecular dynamics  
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3.5 Exploring the recognition pathway at the human A2A 
adenosine receptor of the endogenous agonist adenosine 
using supervised molecular dynamics simulations  

Davide Sabbadin, Antonella Ciancetta, Giuseppe Deganutti, Alberto Cuzzolin and Stefano Moro*  

Abstract 

Adenosine is a naturally occurring purine nucleoside that exerts a variety of 
important biological functions through the activation of four G protein-coupled 
receptor (GPCR) isoforms, namely the A1, A2, A2B and A3 adenosine receptors 
(ARs). Recently, the X-ray structure of adenosine-bound hA2A AR has been solved, 
thus providing precious structural details on receptor recognition and activation 
mechanisms. To date, however, little is still known about the possible recognition 
pathway the endogenous agonist might go through while approaching the hA2A AR 
from the extracellular environment. In the present work, we report the adenosine-
hA2A AR recognition pathway through the analysis of a series of Supervised 
Molecular Dynamics (SuMD) trajectories. Interestingly, a possible energetically 
stable meta-binding site has been detected and characterized.  

Introduction  

Adenosine is a naturally occurring purine nucleoside that forms primarily from the 
metabolism of adenosine triphosphate (ATP), both intracellularly and extracellularly1. 

Consequently, the extracellular levels of adenosine are regulated by its synthesis, 
metabolism, release and uptake1,2. Adenosine exerts pleiotropic functions 
throughout the body. In the central nervous system (CNS), the nucleoside plays 
important functions, such as modulation of neurotransmitter release, synaptic 
plasticity and neuroprotection in ischemic, hypoxic and oxidative stress events1,3,4. In 
addition, adenosine plays different roles in a large variety of tissues. In the 
cardiovascular system, adenosine produces either vasoconstriction or vasodilation of 
veins and arteries. Moreover, adenosine regulates T cell proliferation and cytokine 
production, inhibits lipolysis and stimulates bronchoconstriction1,3,4.  

Adenosine mediates its biological effects by recognizing four G protein-coupled 
receptor (GPCR) isoforms, namely the A1, A2A, A2B and A3 adenosine receptors 
(ARs). Each subtype has a unique pharmacological profile, tissue distribution and 
effector coupling1,4. Considering receptor sequence similarity, among the human 
ARs (hARs), the most similar are the A1 and A3 ARs (49% similarity), and the A2A 
and A2B ARs (59% similarity). Conversely, the A1, A2A and A3 ARs possess relatively 
high affinity for adenosine whereas the A2B AR shows relatively lower affinity for 
adenosine, as summarized in Table 1.  



142 Scientific Publications 

!

Published - Sabbadin, D.; Ciancetta, A.; Deganutti, G.; Cuzzolin, A.; Moro, S. Med Chem Commun 
2015, 6 (6), 1081–1085. 

Recently, the crystallographic structure of adenosine- bound hA2A AR has been 
solved (PDB code: 2YDO)5. Although this structural data is extremely precious to 
interpret both receptor recognition and activation mechanisms of the endogenous 
agonist, little is still known about the possible recognition pathway between 
adenosine coming from the extracellular environment and the hA2A AR embedded in 
the cytoplasmic membrane.  

Table 1 - Adenosine affinities at the four receptor subtypes 

 hA1 , Ki (nM) hA2A, Ki (nM) hA2Ba hA3 

Adnosine ca. 100  310 15,000 290 

a
 Data from functional studies. b ref. 4 

In this context, Supervised Molecular Dynamics (SuMD) has been recently 
presented as an alternative computational method that allows the exploration of 
ligand–receptor recognition pathway investigations on a nanosecond (ns) time 
scale6. In addition to speeding up the acquisition of the ligand–receptor recognition 
trajectory, this approach facilitates the identification and the structural 
characterization of multiple binding events (such as meta-binding, allosteric, and 
orthosteric sites) by taking advantage of the all-atom MD simulation accuracy of a 
GPCR–ligand com- plex embedded into an explicit lipid–water environment6.  
In the present study, in order to better understand how adenosine approaches the 
orthosteric binding site of the hA2A AR, its recognition pathway has been described 
through the analysis of a series of SuMD trajectories. Interestingly, a possible 
energetically stable meta-binding site has been detected and characterized. The 
meta-binding site concept was introduced several years ago to describe those 
binding events that chronologically anticipate the orthosteric binding event7.  

Results and discussion  

As anticipated, recently the crystallographic structure of adenosine-bound hA2A 
AR has been solved. The attempt to apply MD methodology to address the problem 
of ligand dissociation from its receptor is subjected to some limitations. First of all, 
ligand dissociation dynamics is usually a slow event in comparison to the timescales 
accessible to current simulation techniques and computer resources. This does not 
mean necessarily that the actual event of ligand dissociation takes so long, but it is 
clear that conformational sampling cannot be done effectively in a conventional MD 
simulation. On the other hand, the recognition process between a ligand and its 
receptor is a very rare event to describe at the molecular level and, even with the 
recent GPU-based computing resources, it is necessary to carry out classical 
molecular dynamics (MD) experiments on a long microsecond time scale6. For this 
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reason, in order to better under- stand how adenosine approaches the orthosteric 
binding site of the hA2A AR, its recognition pathway was explored using a SuMD 
study (Video 1).  

In particular, following the ligand recognition pathway emerged by the analysis of 
SuMD trajectories (Fig. 1 and Video 1), the third extracellular loop (EL3) of hA2A AR 
plays an essential role in directing the agonist toward the orthosteric binding site. In 
particular, His264, Ala265, Pro266 (EL3) and Leu267 (7.32) (Fig. 1, panel A) 
establish favourable hydrophobic contacts with the adenine core of adenosine. Such 
interactions orient the ribose ring towards the entrance of the orthosteric binding site. 
The hydroxyl group in the C3' position of the ribose ring is engaged in a direct 
hydrogen bond interaction with Glu169 (EL2). Not surprisingly, the described 
extracellular site corresponds to the previously reported meta-binding site located in 
EL36,7, which enables high-potency hA2A AR antagonists, such as ZM 241385, 6-
IJ2,6- dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine (T4G), and 4-IJ3-amino-5-
phenyl-1,2,4-triazin-6-yl)-2-chlorophenol (T4E), to reach the orthosteric binding cleft 
from the extracellular vestibule. As already described, once the antagonists reach 
the orthosteric binding site, they adopt binding conformations that match the 
geometric positions observed in the corresponding X-ray structures6.  

  
Figure 1 (Panel A to D) - Overview of multiple adenosine binding conformation inside the hA2A AR binding 
pocket generated from SuMD simulation trajectories in comparison with X-ray crystal structure, PDB ID: 2YDO 
(wheat sticks). Stick colouring scheme is based on simulation progression (time). Hydrogen atoms are not 
displayed, whereas hydrogen bond interactions are highlighted as yellow dashed lines. (Panel E and G) 
Overview of multiple discrete binding states that occur during ligand–receptor recognition. Arrow colouring 
scheme is based on simulation progression (time). Receptor ribbon representation is viewed from the membrane 
side facing transmembrane domain 6 (TM6) and transmembrane domain 7 (TM7). (Panel F) Ligand−receptor 
interaction energy landscape for the nonbiased adenosine-hA2A AR recognition process. The most energetically 
stable binding conformations of adenosine inside the hA2A AR binding pocket are highlighted by arrow. 
Interaction energy values are expressed in kcal mol-1.  
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By approaching the orthosteric binding site, adenosine explores receptor-bound 
states that only partially overlap – RMSD < 3.5 Å – (Fig. 1, panel B–C) with the 
crystallographic bound conformation. In such conformational states, the ribose 
moiety explores the bottom part of the binding pocket ("ribose-down" conformation) 
and is in close contact with Thr88 (3.36). Glu169 (EL2) and Asn53 (6.55) are 
involved in key polar interactions with the endo and exocyclic nitrogen atoms of the 
aromatic core. Hydrophobic interactions are established with Met174 (5.35), Met177 
(5.38), Ala59 (2.57), Ala63 (2.61), Val84 (3.32) and Ile160 (El2). In particular, 
Phe168 (EL2) is involved in π-stacking interaction with the adenine core.  
Notably, the role of several key residues (such as Thr88 (3.36), Phe168 (EL2) and 
Met177 (5.38)) herein highlighted is consistent with the available mutagenesis data 
for agonist binding, which have been recently analysed and clarified by means of 
MD/FEP calculations8.  

As reported in Fig. 1, panel D–F, once inside the orthosteric site, adenosine 
dynamically flips between two different binding modes: the one above reported – the 
so-called “ribose-down” conformation – and the “ribose-up” conformation (Fig. 1, 
panel D) where the ribose moiety is directed towards the extracellular space. The 
hydroxyl group, attached at the C2' position of the ribose ring, establishes a 
hydrogen- bond interaction with Glu169 (EL2) and the exocyclic nitro- gen atom of 
the adenine ring interacts with the Ser67 (2.65) side chain. The agonist aromatic ring 
is involved in a π-stacking interaction with Phe168 (EL2). Val84 (3.32), Ala63 (2.61) 
and Met174 (5.35) are responsible of the majority of non-polar ligand–receptor 
contacts.  

Therefore, although the described ligand–receptor contacts provide sufficient 
energetic protein–ligand complex stabilization to reach the global protein–ligand 
interaction energy minimum (Fig. 1, panel F), the recognition of the agonist is not 
accompanied by subsequent stabilization of the ligand conformation within the 
orthosteric site, as adenosine dynamically flips between the “ribose down” and 
“ribose up” binding modes (Fig. 1, panel E). Therefore, as also elucidated by a 
clustering analysis of the space explored by adenosine during the binding pathway, 
the agonist recognition process does not show the same behaviour of potent hA2A 
AR antagonists. The adenosine binding profile, instead, is more similar to the one 
observed for a weak binder such as caffeine (Fig. 1, panel F)6. Moreover, this 
peculiar conformational landscape along with the emerged major interaction sites, 
which anticipate the orthosteric binding site, is independent from ligand placement 
and orientation at the beginning of the SuMD simulation (Fig. 1, panel G).  
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Experimental  

General  

The numbering of the amino acids follows the arbitrary scheme by Ballesteros 
and Weinstein: each amino acid identifier starts with a helix number, followed by the 
position relative to a reference residue among the most conserved amino acids in 
that helix, to which the number 50 is arbitrarily assigned9.  

Trajectory analysis and figure and video generation have been performed using 
several functionalities implemented by Visual Molecular Dynamics10, WORDOM11, 

the PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC 
(http://www.pymol.org/) and the Gnuplot graphic utility (http://www.gnuplot.info/). 
Ligand-hA2A AR interaction energies were calculated by extrapolating the non-
bonded energy interaction term of CHARMM27 Force Field12 using NAMD13.  

Computational facilities  

All computations were performed on a hybrid CPU/GPU cluster. Molecular 
dynamics simulation has been performed with a 2 NVIDIA GTX 680 and 3 NVIDIA 
GTX 780 GPU cluster engineered by Acellera14.  

Human A2A adenosine receptor–ligand complex preparation  

The selected agonist-bound crystal structures (PDB IDs: 2YDO5) and the FASTA 
sequence of the hA2A AR (Uniprot ID: P29274) were retrieved from the RCSB PDB 
database15 (http://www.rcsb.org) and the UniProtKB/Swiss-Prot16,17, respectively. 
The co-crystallized ligand structure was extracted from the orthosteric binding site 
and randomly placed in the space above the receptor, at least 40 Å away from 
protein atoms. Ionization states and hydrogen positions were assigned by using the 
MOE-sdwash utility (pH 7.0). The FASTA sequence was aligned, using BLAST 
(Blosum 62 matrix)18, with the template sequence. Backbone and conserved residue 
coordinates were copied from the template structure, whereas newly modelled 
regions and non-conserved residue side chains were modelled and energetically 
optimized by using CHARMM 27 force field12 until a r.m.s. of conjugate gradient 
<0.05 kcal mol-1 Å-1 was reached. Missing loop domains were constructed by the 
loop search method implemented in the Molecular Operating Environment (MOE, 
version 2012.10) program19 on the basis of the structure of compatible fragments 
found in the Protein Data Bank. N-terminal and C-terminal were deleted if their 
lengths exceeded those found in the crystallographic template. The “Protonate-3D” 
tool20 was used to appropriately assign ionization states and hydrogen positions to 
the build models. Then, the structures were subjected to energy minimization with 
CHARMM 27 force field12 until the r.m.s. of conjugate gradient was <0.05 kcal mol-1 

Å-1. Protein stereochemistry evaluation was then performed by employing several 
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tools (Ramachandran and χ plots measure j/ψ and χ1/χ2 angles, clash contact 
reports) implemented in the MOE suite19.  

Receptor membrane embedding and system preparation  

Receptors were embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine 
(POPC) lipid bilayer (85 × 85 Å wide) and placed into the membrane according to 
the suggested orientation reported in the “Orientations of Proteins in Membranes 
(OPM)” database21 for the hA2A AR in a complex with the antagonist T4G (PDB ID: 
2YDV7). Overlapping lipids (within 0.6 Å) were removed upon insertion of the protein. 
The prepared systems were solvated with TIP3P water22 using the program Solvate 
1.023 and neutralized with Na+/Cl- counterions to a final concentration of 0.154 M. 
The total number of atoms per system was approximately 75,000. Membrane MD 
simulations were carried out on a GPU cluster with the ACEMD program using the 
CHARMM27 Force Field18 and periodic boundary conditions. Initial parameters for 
the ligands were derived from the CHARMM General Force Field for organic 
molecules24,25. The system was equilibrated using a stepwise procedure. In the first 
stage, to reduce steric clashes due to the manual setting up of the membrane–
receptor system, a 500 step conjugate-gradient minimization was performed. Then, 
to allow lipids to reach equilibrium and water molecules to diffuse into the protein 
cavity and to avoid ligand–receptor interaction in the equilibration phase, protein and 
ligand atoms were restrained for the first 8 ns by a force constant of 1 kcal mol-1 Å-2. 
Then side chains were set free to move, while gradually reducing the force constant 
to 0.1 kcal mol-1 Å-2 to the ligand and alpha carbon atoms up to 9 ns. Temperature 
was maintained at 298 K using a Langevin thermostat with a low damping constant 
of 1 ps-1, and the pressure was maintained at 1 atm using a Berendsen barostat. 
Bond lengths involving hydrogen atoms were constrained using the M-SHAKE 
algorithm26 with an integration time step of 2 fs. Harmonical constraints were then 
removed and Supervised MD was conducted in a NVT ensemble. Long-range 
Coulomb interactions were handled using the particle mesh Ewald summation 
method (PME)27 with grid size rounded to the approximate integer value of cell wall 
dimensions. A non-bonded cutoff distance of 9 Å with a switching distance of 7.5 Å 
was used. In order to assess the biophysical validity of the built systems, the 
average area per lipid headgroup (APL) and bilayer thickness measurements for 
each built system were measured using Grid-MAT-MD28. The corresponding 
calculated averaged area per lipid headgroup of the extracellular and intracellular 
leaflet during the production phase for all simulations was in agreement with the 
experimental values measured for 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine 
(POPC) lipid bilayers29.  
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Conclusions  

In the present work, we have carried out SuMD experiments to elucidate the 
recognition pathway of the naturally occurring purine nucleoside adenosine by the 
hA2A AR. The analysis of the SuMD trajectories revealed that residues located in the 
third extracellular loop play an essential role in orienting the ribose ring of agonist 
toward the entrance of the orthosteric site, thus representing a possible energetically 
stable meta-binding site.  

Our analysis has also revealed that, once the orthosteric site is reached, 
adenosine experiences a dynamic flip between two different binding modes: the 
"ribose-down" and the “ribose-up” conformation, with the ribose moiety pointing 
towards the intracellular and extracellular space, respectively. Consequently, the 
adenosine binding profile resulting from our analysis resembles that of a weak binder 
rather than the one previously observed for potent hA2A AR antagonists.  

Further work is underway in our lab to better elucidate the role of the meta-binding 
site that has been detected and characterized in this study. In particular, SuMD 
simulations with adenosine-hA2A AR 2:1 stoichiometry are currently under 
evaluation. Moreover, we are carrying out a comprehensive SuMD exploration of the 
recognition pathway of adenosine against all other adenosine receptor subtypes to 
clarify the experimental selectivity profile provided by the natural agonist.  
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3.6 Understanding allosteric interactions in G protein-
coupled receptors using Supervised Molecular Dynamics: 
a prototype study analysing the human A3 adenosine 
receptor positive allosteric modulator LUF6000 

Giuseppe Deganutti, Alberto Cuzzolin, Antonella Ciancetta, Stefano Moro*  

Abstract  

The search for G protein-coupled receptors (GPCRs) allosteric modulators 
represents an active research field in medicinal chemistry. Allosteric modulators 
usually exert their activity only in the presence of the orthosteric ligand by binding to 
protein sites topographically different from the orthosteric cleft. They therefore offer 
potentially therapeutic advantages by selectively influencing tissue responses only 
when the endogenous agonist is present. The prediction of putative allosteric site 
location, however, is a challenging task. In facts, they are usually located in regions 
showing more structural variation among the family members. In the present work, 
we applied the recently developed Supervised Molecular Dynamics (SuMD) 
methodology to interpret at the molecular level the positive allosteric modulation 
mediated by LUF6000 toward the human adenosine A3 receptor (hA3 AR). Our data 
suggest at least two possible mechanisms to explain the experimental data 
available. This study represent, to the best of our knowledge, the first case reported 
of an allosteric recognition mechanism depicted by means of molecular dynamics 
simulations.  

Introduction  
Besides the orthosteric site, which conventionally recognizes endogenous 

ligands, most G protein-coupled receptors (GPCRs) possess topographically distinct 
allosteric sites that can be recognized by small molecules and accessory cellular 
proteins. Pharmacologically speaking, an allosteric modulator does not have any 
activity by itself, thus needing the orthosteric binder to exhibit its action. Although the 
modulatory character of allosteric binders is not always clear-cut, true allosteric 
modulators increase or decrease the action of an agonist or an antagonist 
recognising the allosteric site(s) on the receptor. In facts, ligand binding to allosteric 
sites promotes a conformational reorganization in the GPCR that can alter 
orthosteric ligand affinity and/or efficacy. Although an allosteric modulator may not 
possess efficacy by itself, it can provide a powerful therapeutic advantage over 
orthosteric ligands, as they selectively influence tissue responses only when the 
endogenous agonist is present. Consequently, allosteric modulation of GPCRs has 
stimulated an intensive identification campaign for new classes of hit-candidates 
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different from conventional agonists and antagonists. This has been the subject of 
several recent reviews1–3. 

However, natural allosteric sites are very difficult to identify because they are 
usually located far from the orthosteric sites. Moreover, allosteric sites resides in 
regions of the receptor that show more structural variation among family members 
and, consequently, this implies a general lack of success in predicting the locations 
of potential binding regions. Albeit the crystallographic structure of the M2 receptor 
simultaneously bound to the orthosteric agonist iperoxo and the positive allosteric 
modulator LY2119620 has been recently reported4, little is known about the possible 
allosteric control regarding the activation mechanism of other GPCRs.  

Within this framework, we have recently reported on an alternative computational 
method – the Supervised Molecular Dynamics (SuMD) – that allows to investigate 
the ligand– receptor recognition pathway in a nanosecond (ns) time scale5. In 
addition to speeding up the acquisition of the ligand–receptor recognition trajectory, 
this approach facilitates the identification and the structural characterization of 
multiple binding events (such as meta-binding, allosteric, and orthosteric sites) by 
taking advantage of the all-atom MD simulations accuracy of GPCR– ligand 
complexes embedded into explicit lipid–water environment5.  

Interestingly, adenosine receptors (ARs) were among the first GPCRs discovered 
to be allosterically regulated and, in particular, allosteric enhancers for A1 and A3 
ARs have been widely investigated1,2,6. Among the most interesting allosteric 
enhancers for the A3 AR, N-(3,4-dichlorophenyl)-2-cyclohexyl- 1H-imidazo[4,5-
c]quinolin-4-amine (LUF6000, see Fig. 1) has been deeply characterized7,8. 

LUF6000 potentiates the maximum efficacy of the agonist Cl-IB-MECA by 45–50%, 
enhances agonist efficacy in functional assays and decreases the agonist 
dissociation rate without influencing agonist potency. Moreover, LUF6000 has been 
reported to act as allosteric enhancer of the maximal effect exerted by structurally 
diverse agonists at the A3 AR, being more effective for low-efficacy than for high-
efficacy agonists.  

Very recently, in vivo studies have reported the ability of LUF6000 to act as 
allosteric modulator of rat and mice A3 ARs by allowing the endogenous ligand 
adenosine to bind to the receptor with higher affinity9.  

With the aim to interpret at the molecular level the positive allosterism mediated 
by LUF6000 toward the human A3 AR (hA3 AR), possible recognition pathways have 
been explored by performing SuMD simulations in the absence and in presence of 
the natural agonist adenosine (Fig. 1). Interestingly, our results suggest two possible 
mechanisms by which LUF6000 might exert its positive allosteric modulator effects: 
according to the outcomes of our simulations, the ligand might either induce a loop 
rearrangement that stabilizes agonist placement into the orthosteric site, or form a 



Scientific Publications 153 
 

Published - Deganutti, G.; Cuzzolin, A.; Ciancetta, A.; Moro, S. Bioorg. Med. Chem. 2015, 23 (14), 
4065–4071. 

ternary complex with the agonist bound receptor state, thus acting as orthosteric 
pocket cap.  

 
Figure 1 – Structures of the endogenous hA3 AR agonist adenosine (left) and the positive allosteric 

modulator LUF6000 (right). 

SuMD Simulations  

LUF6000-hA3 AR recognition mechanism.  

The imidazoquinolinamine allosteric modulator LUF6000 enhances agonist 
efficacy in functional assays and decreases agonist dissociation rate without 
influencing agonist potency7,8. Besides, LUF6000 presents a weak antagonist 
activity (ca. 45% inhibition at 10 µM)7. To explore LUF6000 attitude to recognize the 
orthosteric binding site of the hA3 AR, we analysed its recognition pathway by 
performing SuMD experiments.  

During the SuMD simulations, LUF6000 reached the orthosteric binding site in 
less than 20 ns. The corresponding energy landscape (Fig. 2A) highlights two major 
interaction sites (a and b). Prior reaching the orthosteric site, LUF6000 interacts with 
residues located in a region between the second and third extracellular loops (EL2 
and EL3, respectively). Met151 (EL3), Thr154 (EL2), Met174 (5.35) side chains and 
the aliphatic portion of Arg173 (EL2) establish hydrophobic contacts with the 
imidazoloquinoline core of LUF6000, whereas the ligand exocyclic nitrogen atom is 
involved in a hydrogen bond interaction with the backbone of Lys152 (EL2) (a in Fig. 
2A, Fig. 2B, Video S1). While reaching the orthosteric site, the Val169 (EL2) side 
chain facilitates ligand reorientation providing favourable hydrophobic contacts. The 
most stable conformation observed (b Fig. 2A, Fig. 2C, Video S1) is characterized 
by hydrophobic contacts with Phe168 (EL2), Met174 (5.35), Leu246 (6.51), Leu264 
(7.35), Leu268 (7.39) and Trp243 (6.48), whereas Asn250 (6.55) is engaged in a 
hydrogen bond with the exocyclic nitrogen of the ligand. At the maximum energetic 
stabilization, the formed complex is characterized by energetic values of about -50 
kcal/mol, a value previously observed for weak ARs binders. This is consistent with 
the LUF6000 antagonist activity observed through functional assays at the hA3 AR8. 
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Figure 2 – (A) Interaction Energy landscape for the recognition pattern of LUF6000 by the hA3 AR.(B) LUF6000 
binding mode in the meta-binding site.(C) LUF6000 binding mode in the orthosteric binding site. Ligand is 
displayed as orange stick, side chains of residues interacting through hydrogen bond or π-π stacking are 
depicted as grey stick, whereas side chains of residues interacting through hydrophobic contacts are rendered as 
coloured surfaces. 
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Adenosine-hA3 AR recognition mechanism  

Recently, the crystallographic structure of adenosine in complex with the hA2A AR 
has been solved10. This structural piece of information aid elucidating both the 
recognition and activation mechanisms of the ARs by their endogenous agonist 
adenosine. Although in principle the interaction pattern of the adenosine-hA2A AR 
complex can be transferred to the other ARs subtypes, in order to better understand 
how adenosine approaches the orthosteric binding site of the hA3 AR, its recognition 
pathway as described by the obtained SuMD trajectories has been analysed.  

In our SuMD experiments, adenosine reached the orthosteric binding site in less 
than 20 ns. The corresponding energy landscape is reported in Fig. 3A. During the 
recognition pathway (Video S2), EL3 engages the ligand ribose moiety in favourable 
hydrogen bonds mainly through Val259 (EL3) and Gln261 (EL2) backbone atoms (b 
in Fig. 3A, Fig. 3B). This situation anticipates a change of adenosine orientation, 
triggered by hydrophobic contacts between the ligand purine core and Leu264 
(7.35), Ile268 (7.39), Ile253 (6.58), and Ile249 (6.54) side chains. Once the 
orthosteric pocket is reached, adenosine interacts with the side chain of Trp185 
(5.46), Leu246 (6.51) and conserved residues Asn250 (6.55), Phe168 (EL2), Trp243 
(6.48), Ile268 (7.39) (Fig. 3C, Video S2). As already observed for adenosine 
recognition pathway by the hA2A AR11, the agonist explores different conformational 
states once inside the pocket. In particular, adenosine experiences a dynamic flip 
between two different binding modes: the above described "ribose-down" and the 
"ribose-up" conformation, with the ribose moiety pointing towards the intracellular 
and extracellular space, respectively. The ribose down conformation (b in Fig. 3A, 
Fig. S1) is characterized by additional electrostatic interactions with Glu19 (1.39) and 
Ser73 (2.65) and represents the most energetically stable ligand-receptor complex 
observed in the analysed trajectories.  

LUF6000-hA3 AR (in complex with adenosine) recognition mechanism  

With the aim to reproduce the experimental conditions that allow to measure 
LUF6000 PAM activity, SuMD simulations were performed considering the hA3 AR 
receptor in complex with adenosine. LUF6000 was randomly placed 60 Å at least 
away from the barycentre of the orthosteric binding site. The starting adenosine-hA3 
AR complex was extracted from the previously described SuMD trajectory, and 
selected on the basis of its similarity with the X-Ray crystallographic conformation 
observed for the complex with the hA2A AR10.  

The LUF6000 recognition energy landscape is reported in Fig. 4A. The pathway 
described by the SuMD trajectories highlights three main situations: i) LUF6000 not 
interacting with the adenosine-hA3 AR complex (point a in Fig.4A); ii) LUF6000 
interacting with a meta-binding site (b in Fig. 4A); and iii) LUF6000 interacting with 
the orthosteric pocket (c in Fig. 4A).  
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Figure 3 – (A) Interaction Energy landscape for the recognition pattern of adenosine by the hA3 AR.(B) 
Adenosine binding mode in the meta-binding site.(C) Adenosine binding mode in the orhtosteric binding site. 
Ligand is displayed as tan stick, side chains of residues interacting through hydrogen bond or π-π stacking are 
depicted as grey stick, whereas side chains of residues interacting through hydrophobic contacts are rendered as 
coloured surfaces 
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Figure 4 – (A) Interaction Energy landscape for the recognition pattern of LUF6000 by the hA3 AR-adenosine 
complex. (B) hA3 AR-adenosine interaction energy. 
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Moreover, during the SuMD simulations, the interaction energy between adenosine 
and the hA3 AR has been computed (Fig. 4B). 

The endogenous agonist reaches a stability maximum approximately after 10 ns 
of simulation (point B in Fig. 4B), which correspond to LUF6000-hA3 AR meta 
binding site complex formation. The ligand approaches EL2 (Fig. 5A) by recruiting 
Tyr157 (EL2) and His158 (EL2) side chains, and establishing contacts with Arg173 
(EL2), Met174 (5.35), Ile253 (6.58), Tyr254 (6.59) (Fig. 4B, Video S3). This loop 
rearrangement is accompanied by conformational changes in residues located 
farther in EL2, included Phe168 (EL2), that loses the capability of stabilizing 
adenosine through π-π stacking interactions. As a consequence, adenosine moves 
deeper in the orthosteric pocket (Fig. S2) and establishes favourable interactions 
with Leu246 (6.51), Trp243 (6.48), Ser247 (6.52), and Thr94 (3.36). The overall 
protein conformational and adenosine positional changes that occur after the 
interaction between LUF6000 and the hA3 AR EL2 (i.e. system evolution from point a 
to point b) are reported in Fig. S3.  

Once the complex with the meta binding site is formed, approximately after 14 ns 
of simulations, LUF6000 moves to establish hydrophobic interactions with Tyr254 
(6.59), Met174 (5.35), Val169 (EL2) and Ile253 (6.58), located at the top of 
orthosteric binding site. This allows the ligand to directly interact with adenosine. 
Simultaneously, the previously evidenced π-π stacking interaction between 
adenosine and Phe168 (EL2) is restored. In the tertiary complex just formed, the 
energy interaction between adenosine and the hA3 AR is stabilized at values slightly 
lower than the starting complex, with the exception of a transitory stabilization after 
21 ns (C in Fig. 4B, Fig. 5B). LUF6000 is therefore able to stabilize the interaction 
energy between adenosine and the hA3 AR and to lock the agonist inside the 
orthosteric pocket for the remaining simulation time. A similar behaviour has been 
observed also for the tertiary complex formed with a LUF6000 close analogue 
LUF6069 (See Supplementary Information, Fig. S4-S5 and Video S4). 

Conclusion  
In the present work, we have utilized SuMD5, a computational approach we have 

recently developed, with the aim to characterize and rationalize the activity of 
LUF6000, a hA3 AR PAM, at a molecular level. We have analysed the ligand-
receptor recognition pattern, both for LUF6000 and the endogenous agonist 
adenosine separately and also considering the recognition pathway of the PAM by 
the hA3 AR in complex with adenosine. This represent, to date, the first case 
reported of an allosteric mechanism investigated by means of MD simulations.  

Our results have highlighted that LUF6000 is able to establish favourable 
interactions with conserved residues located in the orthosteric binding site of the hA3 
AR, consistently with the experimentally observed weak inhibitor activity at this 



Scientific Publications 159 
 

Published - Deganutti, G.; Cuzzolin, A.; Ciancetta, A.; Moro, S. Bioorg. Med. Chem. 2015, 23 (14), 
4065–4071. 

receptor subtype. The analysis of the interaction pathway of the endogenous agonist 
adenosine suggests a key role played by residues located in the EL2 in engaging the 
agonist and energetically promoting its approach to the orthosteric pocket.  

The inspection of the interaction pathway obtained by simulating LUF6000 
approaching the hA3 AR in complex with the endogenous agonist adenosine 
suggests two possible mechanisms to explain the experimentally observed positive 
allosteric modulation7,8. According to our analysis, the ligand could: i) trigger 
conformational changes in the EL2 that would enable the agonist to form more 
energetically favourable interactions with residues located deeper in the orthosteric 
binding site; ii) establish a ternary complex with the agonist and the receptor, thus 
acting as orthosteric pocket cap.  

 
Figure 5 – (A) LUF6000 binding mode in the hA3 AR meta-binding site.(B) LUF6000 binding mode in the hA3 AR 
orthosteric binding site occupied by adenosine. LUF6000 and adenosine are displayed as orange and tan stick, 
respectively. Side chains of residues interacting through hydrogen bond or π-π stacking are depicted as grey 
stick, whereas side chains of residues interacting through hydrophobic contacts are rendered as coloured 
surfaces. 
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The mutagenesis data available to date12 apparently confute the first hypothesis, 
as it has been reported that the mutation of some residues located in the upper 
region of the receptor does not affect the allosteric activity of the imidazoquinoline 
compound DU124183 and the pyridinylisoquinoline compound VUF545510.  

However, it is well accepted that a PAM activity is strictly depending on the 
structure of the agonist considered to perform the experiments. 

Experimental Section  
General  

All computations were performed on a hybrid CPU/GPU cluster. Molecular 
dynamics simulation have been performed with GPU cluster equipped with 3 NVIDIA 
GTX 780 and 3 NVIDIA GTX 980. 

Trajectory analysis, Figures and videos generation have been performed using 
several functionalities implemented by Visual Molecular Dynamics13, WORDOM14, 
the PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC 
(http://www.pymol.org/) and the Gnuplot graphic utility (http://www.gnuplot.info/). 
Ligand-hA3 AR interaction energies were calculated extrapolating the non-bonded 
energy interaction term of CHARMM27 Force Field15 using NAMD16. All molecular 
dynamics simulations have been carried out using ACEMD engine 
(http://www.acellera.com/).  

The numbering of the amino acids follows the arbitrary scheme proposed by 
Ballesteros and Weinstein17: each amino acid identifier starts with the helix number 
(1-7), followed by a dot and the position relative to a reference residue among the 
most conserved amino acids in that helix, to which the number 50 is arbitrarily 
assigned.  

Homology Model of hA3 AR  

As, to date, no crystallographic information about the hA3 AR is available, we 
used a previously build homology model deposited in our web platform dedicated to 
ARs, Adenosiland18,19. In particular, among all the currently available crystallographic 
structures of the hA2A AR we selected the model built upon the complex with the 
endogenous agonist adenosine (PDB code: 2YDO, 3.00 Å resolution)10.  

Receptor membrane embedding and system preparation.  

Receptors were embedded in a 1-palmitoyl-2-oleoyl-sn- glycero-3-phosphocholine 
(POPC) lipid bilayer (85x95 Å wide) and placed into the membrane according to the 
suggested orientation reported in the “Orientations of Proteins in Membranes (OPM)” 
database20 for the hA2A AR in complex with the endogenous agonist adenosine 
(PDB ID: 2YDO )10. Overlapping lipids (within 0.6 Å) were removed upon insertion of 
the protein. The prepared systems were solvated with TIP3P water21 using the 
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program Solvate 1.022 and neutralized by Na+/Cl- counter-ions to a final 
concentration of 0.154 M. The total number of atoms per system was approximately 
110000. Membrane MD simulations were carried out on a GPU cluster with the 
ACEMD program using the CHARMM27 Force Field15 and periodic boundaries 
conditions. Initial parameters for the ligands were derived from the CHARMM 
General Force Field for organic molecules. The system was equilibrated using a 
stepwise procedure. In the first stage, to reduce steric clashes due to the manual 
setting up of the membrane-receptor system, a 2500 steps conjugate-gradient 
minimization was performed. Then, to allow lipids to reach equilibrium, water 
molecules to diffuse into the protein cavity and to avoid ligand-receptor interaction in 
the equilibration phase, protein and ligand atoms were restrained for the first 8 ns by 
a force constant of 1 kcal/mol•Å2. Then, force constant was gradually reduced to 0.1 
kcal/mol•Å2 for the next 9 ns. Temperature was maintained at 298 K using a 
Langevin thermostat with a low damping constant of 1 ps-1 and the pressure was 
maintained at 1 atm using a Berendensen barostat. Bond lengths involving hydrogen 
atoms were constrained using the M-SHAKE algorithm23 with an integration timestep 
of 2 fs.  

SuMD simulations  

After the equilibration procedure, harmonical constraints were removed and 
SuMD simulations were conducted in a NVT ensemble. As previously described, the 
supervision of the trajectory is perpetuated until ligand-receptor distance is lower 
than 5 Å without introducing bias to the simulations. Long-range Coulomb 
interactions were handled using the particle mesh Ewald summation method 
(PME)24 with grid size rounded to the approximate integer value of cell wall 
dimensions. A non-bonded cut-off distance of 9 Å with a switching distance of 7.5 Å 
was used. Ligand parametrization procedure and methodological insights on the 
quantitative estimate of the electrostatic and hydrophobic occurring ligand-protein 
interaction maps have been reported previously5.  
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Abbreviations 

 ARs   adenosine receptors 

 ATP   adenosine triphosphate 

 hA3AR   human A3 adenosine receptor 

 EL2  second extracellular loop 

 EL3   third extracellular loop 

 LUF6000  N-(3,4-dichlorophenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-amine 

 LUF6096  N-{2-[(3,4- dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarboxamide 

GPCRs   G protein-coupled receptors 

GPU   graphics processing unit 

PAM   positive allosteric modulator 

RMSD   root mean square deviation 

SAR   structure-affinity relationship; 

TM   transmembrane; ZM 241385, 4-[2- [7-amino-2-(2-furyl)-1,2,4-triazolo[1,5-
a][1,3,5]triazin-5-yl-amino]ethylphenol.  
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3.7 ALK Kinase Domain Mutations in Primary Anaplastic 
Large Cell Lymphoma: Consequences on NPM-ALK 
Activity and Sensitivity to Tyrosine Kinase Inhibitors  

Federica Lovisa*, Giorgio Cozza, Andrea Cristiani, Alberto Cuzzolin, Alessandro Albiero, Lara 
Mussolin, Marta Pillon, Stefano Moro, Giuseppe Basso, Angelo Rosolen† Paolo Bonvini  

Abstract  

ALK inhibitor crizotinib has shown potent antitumor activity in children with 
refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include 
ALK inhibitors in first- line therapies is oncoming. However, recent studies suggest 
that crizotinib-resistance mutations may emerge in ALCL patients. In the present 
study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL 
patients at diagnosis to identify point mutations and gene aberrations that could 
impact on NPM-ALK gene expression, activity and sensitivity to small-molecule 
inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single 
point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 
25 in all the patients, and 7 splicing-related INDELs in a variable number of them. 
The functional impact of missense mutations and INDELs was evaluated. Point 
mutations were shown to affect protein kinase activity, signalling output and drug 
sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative 
effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional 
heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib 
inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant 
reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity 
induced by both point mutations and structural rearrangements were resolved by 
molecular modelling and dynamic simulation analysis, providing novel insights into 
ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-
ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. 
These mutations occur randomly within the ALK kinase domain and affect protein 
activity, while preserving responsiveness to crizotinib.  

Introduction  

Anaplastic Large Cell Lymphoma (ALCL) represents a distinct subset of T-cell 
non-Hodgkin lymphoma (NHL), accounting for about 10–15% of childhood 
lymphomas1. The relative rarity of this tumour has limited the number of large 
prospective clinical trials for treatment optimization, and current therapeutic 
strategies are still based on the use of combined intensive chemotherapy. Despite 
current treatments achieve an event-free survival around 75%, the out- come of 
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relapsed patients is less than 60%2 and more effective therapeutic strategies are 
demanding.  

Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase that was 
originally described in t(2;5)(p23;q35)-positive ALCL as part of the NPM-ALK fusion 
protein3. Although the physiological function and regulation of full-length ALK 
receptor is still poorly characterized, aberrant expression of constitutively activated 
NPM-ALK has been clearly established as the leading cause of ALK-positive ALCL4. 
Tumours bearing ALK gene translocations, amplification or activating point 
mutations, other than ALCL, have been also identified, including non-small cell lung 
cancer (NSCLC)5, Inflammatory Myofibroblastic Tumour (IMT)6 and neuroblastoma7. 
Compelling studies have indicated that all these malignancies are partially or fully 
dependent on ALK kinase activity for proliferation and survival7,8,9, as inhibition of 
ALK or downregulation of its expression yields potent anti-tumour efficacy both in 
vitro and in vivo10.  

In this context, the ALK kinase inhibitor crizotinib has been approved for the 
treatment of ALK-rearranged malignancies, and is now considered the standard of 
care for both early- and advanced-stage NSCLC patients11,12. More recently, 
crizotinib has entered Phase I/II clinical trial for the treatment of young patients with 
relapsed or refractory solid tumors and ALCL (ClinicalTrials.gov, NCT00939770, 
Children’s Oncology Group, United States), given to the favourable toxicity profiles 
and objective response rate demonstrated13. For these reasons, the opportunity to 
use crizotinib as part of first-line therapy in children with ALCL is presently being 
considered, although failure after treatment, like that reported in a small number of 
NSCLC and IMT patients11,12,14, or described by other previous clinical 
experiences15,16,17, cannot be overlooked. With kinases, in fact, relapse may be 
linked to drug- resistance mutations in the catalytic domain, both when acquired de 
novo and resulting from selection of pre-existing subdominant clones18,19,20. The 
knowledge gained about drug resistance in cancer has shown that minor mutated 
cell populations can be identified in patients before the onset of treatment, including 
those that simply promote tumour progression or con- tribute to resistance21. 
Secondary mutations associated with resistance via reduced inhibitor binding22,23,24 
or increased kinase activity have been described in ALK-positive ALCL as well25,26,27. 
However, their presence at diagnosis has never been investigated, likewise their 
evolution and impact.  

In the present study we performed mutational analysis of NPM-ALK kinase 
domain in paediatric ALCL tumours, to identify point mutations and gene aberrations 
that could result in changes of NPM-ALK expression and oncogenic activity. 
Detection of variants was performed by ultra-deep sequencing, in order to assess, at 
the time of diagnosis, the presence of subclonal mutations not distinguished by 
conventional Sanger sequencing.  
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The results of this study demonstrated that aberrations of NPM-ALK gene, 
although uncommon in naïve patients, included both missense and INDEL 
mutations, which generated low-active and inactive fusion proteins. Functional 
validation of selected mutants was per- formed by expressing recombinant proteins 
in the presence or absence of active NPM-ALK kinase, coupled to structure-based 
computational analysis of ALK catalytic domain. Biochemical results and molecular 
modelling data confirmed the predicted silent nature of INDELs, and revealed new 
insights on ALK conformational changes upon single amino acid substitution. 
Nevertheless, we also found that INDEL mutations present at the time of diagnosis 
affected constitutive NPM-ALK kinase activity in vitro, by forming nonfunctional 
heterocomplexes and increasing the sensitivity to specific inhibition.  

Materials and Methods  

Patients, samples and cell lines  

A total of 36 tissue samples from ALK-positive ALCL patients, enrolled between 
December 2000 and September 2010 in AIEOP-LNH-97 or ALCL-99 treatment 
protocols, were included in this retrospective analysis. The study was approved by 
the ethic committee of Azienda Ospedaliera di Padova. In compliance with the 
Helsinki Declaration, informed written consent was obtained from parents or legal 
guardians on behalf of the children enrolled in the study28. Diagnosis was centrally 
reviewed by the AIEOP pathologists and further characterized by means of RT-PCR 
for t(2;5)(p23;q35) translocation29. Median age at diagnosis was 9.1 years (range 
between 3.6 months to 17.5 years), 23 cases were males and 13 females. Most of 
the cases represented common type ALCL (42%) and, based on St Jude 
classification, 92% were stage III-IV30. For the functional studies, COS7 and HEK-
239T cells were grown in RPMI 1640 and DMEM medium, respectively, 
supplemented with 10% FCS, 2 mM glutamine (Gibco, Life Technologies Co., 
Carlsbad, CA, USA), 100U/ml penicillin and 100 µg/ml strepto- mycin (SIGMA-
Aldrich Co., St. Louis, MO, USA).  

Reagents and antibodies  

PF-02341066 (Crizotinib) and NVP-TAE684 (TAE684) were purchased from 
Selleckchem (Selleck Chemicals, Houston, TX, USA), dissolved in DMSO and 
stored at -20°C. The antibodies used for Western blot analysis were specific for 
STAT3Y705, ALKY1604, ALKY1278/Y1282/Y1283, c-myc epitope (rabbit) (used at 1:1000 
dilution, Cell Signaling Technology, Inc., Danvers, MA, USA); STAT3 (1:1000, Santa 
Cruz Biotechnology, Inc., Santa Cruz, CA, USA); ALK, V5 epitope, c-myc epitope 
(mouse) (1:2000, Invitrogen, Life Technologies Co); γ-tubulin (1:5000, SIGMA-
Aldrich). DAPI nucleic acid stain, and fluorophore-conjugated goat anti-rabbit 
Alexa488 and goat anti-mouse Alexa546 antibodies were bought from Molecular 
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Probes (1:500, Molecular Probes, Life Technologies Co.). Horseradish peroxidase-
conjugated sheep anti-mouse or donkey anti-rabbit antibodies, used at 1:2000 
dilution, were purchased from GE Healthcare (GE Healthcare Life Sciences, 
Uppsala, Sweden). Protein G-sepharose Fast-Flow beads were from GE Healthcare 
as well. For Western blot analysis, proteins were quantified by BCA protein assay 
(Pierce Chemical, Co., Rockford, Illinois, USA), transferred to nitrocellulose 
membranes (Whatman, GE Healthcare Life Sciences) and visualized by using 
PerkinElmer chemiluminescence reagents (PerkinElmer Inc., Waltham, MA, USA), 
Amersham Hyper-film ECL (GE Healthcare Life Sciences) and Carestream Kodak 
Autoradiography chemicals (Sigma-Aldrich).  

RT-PCR and amplicon library preparation  

Total RNA was isolated using TRIzol reagent (Invitrogen) and RT-PCR was 
performed as reported previously29. ALK kinase domain coding region, 
corresponding to exons 22–25, was amplified using fusion primers, consisting in a 
target-specific sequence on the 3’-end, an adapter sequence on the 5’-end and a 
different MID sequence for each primer pair, according to manufacturer’s guidelines 
(S1 Table and S2 Table). Negative and positive controls for mutated ALK gene used 
were commercially available human ALCL (KARPAS-299) and neuroblastoma (SH-
SY5Y) cell lines, respectively. Amplicon products were quantified using Quantity One 
software (Bio-Rad Laboratories Inc., Hercules, CA, USA) and pooled at an equimolar 
ratio. Each sample was run on agarose gel, purified by QIAquick gel extraction kit 
(Qiagen Co., Hilden, Germany) and diluted to a final concentration of 107 PCR 
fragment molecules/µl.  

Next-generation sequencing  

Amplicon ultra-deep sequencing was performed using Roche 454 Genome 
Sequencers GS FLX and GS Junior (Roche Applied Science, Penzberg, Germany). 
The amplicon-PCR-derived fragments were annealed to carrier beads and clonally 
amplified by emulsion PCR (emPCR), ac- cording to the manufacturer’s protocol. 
The beads carrying single-stranded DNA templates were enriched, counted and 
deposited into the PicoTiterPlate for sequencing.  
454 sequence data have been deposited in the European Nucleotide Archive (ENA, 
http:// www.ebi.ac.uk/ena/data/view/) under the accession numbers ERS622534 and 
ERS622535.  

Data analysis and detection of variants  

All data were generated using the GS Sequencer software version 2.5.3 (Roche 
Applied Science), and amplicon pipeline analysis was performed using default 
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settings of the GS Run- Browser software version 2.5.3 (Roche Applied Science). 
Sequence alignments and variant detection was performed using GS Amplicon 
Variant Analyzer (AVA) 2.7 (Roche Applied Sci- ence), in combination with a blast-
based pipeline for low frequent large INDELs detection (CRIBI Genomics, University 
of Padova, Padova, Italy). AVA software filters were set to dis- play sequence 
variances represented even by a single read, using human NPM-ALK kinase mRNA 
sequence (GenBank U04946.1) for reference. Point mutations (single nucleotide 
polymorphisms, SNPs) were accepted when present with a frequency of at least 
0.5% in both for- ward and reverse reads, whereas INDELs were considered when 
validated by both software, regardless of frequency. INDEL consensus sequences 
were analyzed using the mRNA-to-genomic alignment program Spidey 
(http://www.ncbi.nlm.nih.gov/spidey) and manually reviewed.  

Molecular modelling and dynamics simulation  

ALK mutants were analyzed through the MOE Protein Align tool with BLOSUM 62 
as substitution matrix. The homology models were obtained through the MOE 
homology modelling tool, using human wild-type (WT) and mutants R1275Q and 
F1174L ALK crystallographic structures (PDB code 3LCT, 4FNX and 4FNW, 
respectively) as homologous templates31. The models have been generated using 
AMBER99 forcefield, in the presence of ADP docked to the template active site, 
while water molecules and other cofactors have been removed.  

The protonation state of ALK R308-Ins8 and R308-Ins12 tyrosine kinase models 
were evaluated with Protonate3D (T = 300K, pH = 7) within MOE and Protonate 
within Amber- Tools 1.5.  

The missing residues of WT and R1275Q structures were built using the same 
approach described above. We used tLeap and Amber FF99SB to parameterized 
the 'Ins' protein models and solvated them in TIP3P water boxes, adding counterions 
(Na+; Cl-), whereas the point mutant models were parameterized with CHARMM27 
forcefield. ClickMD has been used as molecular dynamic platform for NAMD 2.9 
minimization (100,000 step, conjugated-gradient method), equilibration (0.5 ns, 
alpha carbon positional restrains) and production phase (100 ns NVT, P = 1atm, T = 
300K) of the molecular systems through 100,000 conjugated gradients method. 
ACEMD v2728 has been used as molecular dynamics engine on nVidia GeForce 
GTX680 computational platform. Finally, the analysis of the resulting trajectories was 
based on RMSD overtime, RainbowRMSD, heatmaps and distance analysis 
employing VMD 1.9.1, RMSD Tra- jectory Tools 2.01, RAINBOWRMSD and 
NRGPLOT.  
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Generation of mutant constructs  

The pcDNA3 plasmid containing WT NPM-ALK was obtained from the original 
pSRα-tkneo-NPM-ALK plasmid (a kind gift from Dr. S. Morris, S. Jude Research 
Hospital, Memphis, TN, USA), whereas all the other mutants were generated by site-
directed mutagenesis, using the Phusion site-directed mutagenesis kit (Thermo 
Fisher Scientific Inc., Waltham, MA, USA). To co-express WT and mutant NPM-ALK 
kinase in COS7 or HEK-293T cells, a double cassette vector pBudCE4.1 (Invitrogen) 
was used, in which WT NPM-ALK was subcloned into the EF- 1α multiple cloning 
site (MCS) and fused to the V5 epitope, whereas NPM-ALK mutants were subcloned 
into the CMV MCS and fused to myc tag.  

The full-length human ALK cDNA was purchased from ATCC and subcloned into 
the mammalian expression vector pcDNA3.1. Point mutations F1174L and R1275Q 
were introduced by site-directed mutagenesis, as previously indicated.  

Transfection, treatments and immunofluorescence  

To evaluate the effects of NPM-ALK mutations generated, exponentially growing 
HEK-239T cells were transiently transfected with WT and/or mutated NPM-ALK 
constructs using Lipofectamine 2000 reagent (Invitrogen), according to 
manufacturer’s instructions. NPM-ALK expression and activity were analyzed in the 
presence or absence of the ALK-specific inhibitors crizotinib and TAE684, as 
described in the manuscript.  

In the same manner, HEK-293T were transfected with WT or mutated ALK 
constructs and full-length receptor expression and activity were measured. To 
assess localization of WT and mutant NPM-ALK proteins, COS7 cells (0.2 x 105) 
were plated on 8-well chamber slides, transfected with 0.5 µg of respective plasmids 
and processed for immunofluorescence as described previously32.  

Cell lysis, immunoblotting and immunoprecipitation  

To assess protein expression and activity, the cells were washed twice in ice-cold 
1X phosphate-buffered saline (PBS) and lysed by addition of Triton X-100 sample 
buffer as reported previously33. Binding of WT NPM-ALK to INDEL mutants was 
performed by incubating protein lysates with 1–2 µg of specific antibodies (α-V5, α-
myc or α-phospho-ALK) at 4°C overnight, and resulting immunocomplexes to 20 µl 
of Protein G-Sepharose beads for 2 h at 4°C. The immunoadsorbed pellets were 
washed 4 times with 1% Triton X-100 lysis buffer and heated at 95°C in 1X reducing 
Laemmli loading buffer. Aliquots of cell lysates (50 µg) and immunoprecipitates were 
fractionated by 10% SDS-PAGE and transferred to nitrocellulose membranes for 
Western blot analysis. Proteins were visualized by chemiluminescence. Films were 
scanned and analyzed by using image analysis software ImageJ (National Institute 
of Health, Bethesda, MD, USA).  
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Results  

NPM-ALK mutational analysis  

ALK kinase domain mutational status was investigated in ALCL tumour 
specimens by 454 amplicon ultra-deep sequencing. About 99,000 sequences 
aligned with ALK exons 22–25 were obtained (mean of 2,234 ± 734 sequences per 
sample) and an overall of 686 sequence variants, 300 SNPs and 386 INDELs, were 
detected by Roche AVA software. Among these, a total of 7 SNPs were represented 
with the same frequency of at least 0.5% on both forward and reverse reads and, 
thus, accepted, whereas 10 deletions and 3 insertions (INDELs), with the highest 
detection frequency, were identified and validated by an additional blast-based 
pipeline specifically designed for INDELs detection and quantification. Of the 7 SNPs 
detected, 5 were silent point mutations, while 2, namely R335Q (c.1004G>A) and 
R291Q (c.872G>A), were missense mutations (Table 1, S1 Fig.). With respect to 
INDELs, 9 variants represented alternative spliced transcripts. Two of them, a 
deletion of ALK exon 25 first 2 nucleotides (c.923-924del) and of the whole exon 23 
(c.696-825del), were common to all patients (frequency ranges 0.03–4% and 0.1–
12.8% respectively), whereas 7 were expressed in a variable number of patients at 
lower frequency (~0.5%) (Table 1, S1 Fig.). Finally, in 4/9 INDELs the mutation 
resulted in an out of frame (OOF) transcript.  

R291Q and R335Q point mutations affect NPM-ALK activity and drug 
sensitivity  

Deep sequencing of NPM-ALK kinase domain identified 2 missense mutations in 2 
distinct samples, representing the amino acid changes R335Q and R291Q. Residue 
R335 lied within the activation loop of ALK kinase domain and corresponded to 
amino acid R1275 in full-length ALK receptor, whereas R291, corresponding to ALK 
R1231, was localized on the C-terminal lobe (Fig. 1A). To find out more about these 
2 point mutations, we generated NPM-ALK R291Q and R335Q constructs and 
transfected HEK-293T cells. We found that NPM-ALK R291Q displayed a tyrosine 
phosphorylation level similar to its WT counterpart, whereas the R335Q mutation 
markedly reduced ALK kinase phosphorylation both at C-terminal (Y664) and in the 
activation loop (Y338/342/343) (Fig. 1B). In contrast, downstream STAT3 target 
phosphorylation was reduced at similar extent, suggesting that both mutants had a 
lower signalling potential compared to WT NPM-ALK kinase. Indeed, when exposed 
to crizotinib, a more pronounced dose- and time-dependent inhibitory effect was 
observed with respect to WT NPM-ALK, which in turn exhibited a progressive 
recovery overtime (Fig. 1C and D, p-NPM-ALK and p-STAT3). Conversely, the 
introduction of F234L mutation markedly reduced NPM-ALK drug sensitivity (Fig. 
1C), in line with the activating nature of this mutation12.  
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Table 1 - NPM-ALK gene mutations found in ALCL patients by ultra-deep sequencing of exons 22-25.  

 cDNA variant Description Protein 
change 

Amino 
Acids Patients Freq 

1 c.872G>A Missense point 
mutation p.R291Q 680 1/36 0.6 

2 c.1004G>A Missense point 
mutation p.R335Q 680 1/36 0.5 

3 c.747C>T Silent point mutation - 680 1/36 0.8 

4 c.825G>A Silent point mutation - 680 1/36 0.5 

5 c.894G>A Silent point mutation - 680 1/36 0.8 

6 c.909C>T Silent point mutation - 680 1/36 0.5 

7 c.975G>A Silent point mutation - 680 1/36 0.6 

8 c.923-924del Exon 25 first 2 bases 
as 3’ splice site 

p.D309H-
OOF 342 36/36 0.03-

4 

9 c.696-825del Exon 23 skipping p.S232R-
OOF 273 36/36 0.1-

12.8 

10 c.696-923del Exon 23-24 skipping p.Ỏ232-307 604 16/36 0.04-
0.6 

11 c.826-923del Exon 24 skipping p.P276R-
OOF 310 18/36 <0.5 

12 c.733-825del 
Exon 23 partial 

deletion, alternative 5’ 
splice site 

p.Ỏ245-275 649 7/36 <0.5 

13 c.826-894del 
Exon 24 partial 

deletion, alternative 3’ 
splice site 

p.Ỏ276-299 657 4/36 <0.5 

14 c.924ins24 
Intron 24 partial 

retention, alternative 
3’ splice site 

p.R308ins8 688 10/36 <0.5 

15 c.924ins36 
Intron 24 partial 

retention, alternative 
3’ splice site 

p.308ins12 692 4/36 <0.5 

16 c.924ins106 
Intron 24 partial 

retention, alternative 
3’ splice site 

p.D309H-
OOF 312 10/36 0.04-

0.6 
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Exposure of cells to a second ALK inhibitor, NVP-TAE684 (TAE684), confirmed 
these observations (S2 Fig.), providing additional evidence of the different enzymatic 
properties imparted by these mutations to NPM-ALK kinase activity. 

R1275Q-induced structural changes affect ALK receptor activity  

In the wide spectrum of ALK mutations, R1275Q and F1174L are the most frequently 
reported mutations in cancer that result in dysregulation of ALK activity and 
signalling9,34. However, while F1174L is a point mutation that enhances ALK kinase 
activity and oncogenic potential per sé12, gain-of-function properties of R1275Q are 
less clear and somehow depend on the model system employed9,35. Therefore, to 
confirm our findings, we introduced F1174L and R1275Q mutations into full-length 
ALK background and expressed the corresponding constructs into HEK-293T cells. 

   

Figure 1 - NPM-ALK point mutations R291Q and R335Q affect kinase activity and sensitivity to crizotinib. (A) 
Cartoon representation of ALK kinase domain, showing positions of NPM-ALK R291 (ALK R1231), R335 (ALK 
R1275) and F234 (ALK F1174) amino acids (PDB 3LCT). Glycin-rich loop, yellow; activation loop, orange; α-C 
helix, red; hinge region, magenta. (B) Relative protein expression and phosphorylation of wild-type (WT) and 
mutant (R291Q; R335Q) NPM-ALK in HEK-293T transfected cells. The effects of R291Q and R335Q point 
mutations were assessed on NPM-ALK and STAT3 phosphorylation (p-NPM-ALKY664 or p-NPM-ALKY338-342-343 

and p-STAT3, respectively). γ-tubulin was included as loading control. (C) Dose-dependent effect of crizotinib on 
NPM-ALK expression and activity in HEK-293T cells transfected with WT or mutant (R291Q, R335Q, F234L) 
NPM-ALK constructs. NPM-ALK and STAT3 phosphorylation levels were determined and compared to total 
protein expression. (D) Time-course analysis of NPM-ALK and STAT3 expression and phosphorylation in HEK-
293T cells exposed to 1 µM crizotinib over 24 h.  
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As for F234L and R335Q mutations in NPM-ALK, F1174L ALK exhibited high 
levels of phosphorylation when ectopically expressed, whereas R1275Q ALK was 
poorly phosphorylated and less active (p-STAT3) compared to WT and F1174L 
kinases (Fig. 2A). Besides, ligand-independent receptor activation resulting from 
protein overexpression, as observed for WT ALK, was not noted in R1275Q ALK 
expressing cells, providing further evidences of the kinase defective nature of this 
mutant36. 

Indeed, molecular dynamics simulation analysis of F1174L and R1275Q ALK 
kinase domain demonstrated significant perturbations in the kinase domain of 
R1275Q ALK compared to WT (Fig. 2B, R1275Q—WT, closed arrowhead) coupled 
to a high grade of misfolding of the activation loop moiety (Fig. 2B, cartoon aside, A-
loop and Subdomain VII α-helix, open and close arrowheads, respectively; S1 Movie 
and S2 Movie: F1174L in yellow, R1275Q in red, WT in grey).  

 
Figure 2 - F1174L and R1275Q molecular dynamics simulation. (A) Effect of F1174L (NPM-ALK F234L) and 
R1275Q (R335Q) point mutations on full-length ALK receptor expression (ALK), phosphorylation (p-ALKY1604 and 
Y1278-1282-1283) and signalling (p-STAT3) in HEK-293T cells. (B) Alpha carbon "Rainbow Differential RMSD 
analysis" between F1174L or R1275Q ALK KD and WT over time (1000 ns) (RMSD_F1174L—RMSD_WT, 
upper panel; RMSD_R1275Q —RMSD_WT, lower panel). The differential RMSD of each position is encoded by 
a chromatic scale: negative values (from green to blu) identify regions in which the WT ALK KD is more flexible 
than the mutant one; positive values (from yellow to magenta) identify regions in which the WT KD is less flexible 
than mutant KD. Cartoon representation of ALK KD colored by the corresponding differential RMSD values 
(RMSD_mutant—RMSD_WT) are shown on the right.  
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Molecular modelling and expression analysis of NPM-ALK INDEL variants  

By using an approach of cDNA-based amplicon sequencing, we could detect the 
presence of NPM-ALK alternative spliced transcripts as well. As mentioned above, 
we identified 13 INDEL mutations, 9 of which resulting from either exon skipping or 
partial intron retention (Table 1). In 6 of 9 splicing variants, the mutations were 
associated with extensive deletion of regions crucial for ALK kinase activity, while in 
3 variants the structural rearrangements were compatible with ALK enzymatic 
activity.  

We focused on the 2 most common deletions found in pa- tients (c.923-924del, 
p.D309H-OOF; c.696-825del, p.S232R-OOF) and on the 3 in frame INDELs that 
conserved most of the residues critical for ATP binding and hydrolysis (c.826- 
894del, p.Δ276–299; c.924ins24, p.R308-Ins8; c.924ins36, p.R308-Ins12) (S3 Fig.).  
To examine the functional implication of these variants, each mutant was subcloned 
and tagged using a double cassette vector designed for simultaneous expression of 
2 genes, and expression was assessed in the presence or absence of recombinant 
WT-V5 NPM-ALK (Fig. 3A). As shown in figure, all mutants were expressed in HEK-
293T cells, although low expression levels were observed for extensively deleted 
S232R-OOF and D309H-OOF INDELs (Fig. 3B, left panels, short and long 
exposure). Besides, all mutants were catalytically inactive (Fig. 3B, right panels, p-
NPM-ALK and p-STAT3), including those initially predicted to be functional based on 
their conserved sequences. These results were unexpected particularly for R308-
Ins8 and R308-Ins12, since the insertions preserved all determinants crucial for ALK 
kinase activity, including the catalytic Asp308 and the adjacent Arg307 residue (S4A 
Fig., R and D in colour). Therefore, to provide a molecular explanation to these 
findings, we performed molecular dynamics simulation on R308-Ins8 and R308-
Ins12 mutants and compared time-dependent con- formational changes of mutant 
KD to that of WT NPM-ALK. While WT kinase showed major conformational 
changes in the P-loop moiety during the selected time frame (S4B Fig.), R308-
Ins8/12 exhibited a pronounced modification of the A-loop in close proximity to the 
inserted regions (S4C–D Fig., right panels). These structural rearrangements 
supported novel polar interactions between Ins8/12 motifs and key residues for ATP 
binding and hydrolysis, having an inhibitory influence on the whole catalytic process 
(S4C–D Fig., left panels).  

myc-tagged INDELs bind and inactivate V5-tagged NPM-ALK kinase  

In cells co-expressing native and catalytically inactive alleles, the formation of 
heterocomplexes may impact on native protein activity. A kinase inactive mutant, in 
fact, exhibits a dominant- negative effect on the active allele but also can interfere 
with drug-induced kinase inhibition37.  
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Figure 3 - NPM-ALK INDEL mutants expression and activity in HEK-293T cells. (A) Schematic representation of 
NPM-ALK constructs generated into pBudCE4.1 expression vector according to the in vivo mutational analysis. 
The figure represents each NPM-ALK construct with the corresponding INDEL (left) and summarizes the features 
of the pBudCE4.1 vector (right). (B) Protein expression analysis of WT and D309H-OOF, Δ276–299, S232R-
OOF or R308-Ins8 NPM-ALK constructs in HEK-293T cells by Western blotting. Mutants were detected using an 
anti-myc specific antibody (NPM-ALK-myc, left panels), whereas WT NPM-ALK was visualized with an anti-V5 
antibody (NPM-ALK-V5, right panels). NPM-ALK and STAT3 phosphorylation was also measured by 
immunoblotting (right panels, p-NPM-ALK and p-STAT3, respectively), using γ-tubulin as loading control.  

To functionally test this hypothesis, we introduced WT NPM-ALK and INDEL 
mutants into HEK-293T cells (Fig. 4A) and assessed NPM-ALK kinase activity upon 
simultaneous ex- pression. Fresh cell lysates were then immunoprecipitated using 
either anti-V5 or-myc anti- bodies, and reciprocal immunoblottings were performed. 
As expected, myc-tagged mutants associated with V5-tagged NPM-ALK (Fig. 4B, 
upper panel), and vice versa (Fig. 4B, middle panel), irrespective of their mutational 
status and activity. However, when a phospho-specific ALK antibody was used to 
purify expressed proteins, the immunocomplexes contained WT-V5 NPM-ALK (Fig. 
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4C, upper panel, closed arrowhead) but not myc-tagged proteins (Fig. 4C, middle 
panel, open arrowheads). Indeed, higher levels of phospho-NPM-ALK were found in 
cells expressing WT NPM-ALK kinase alone (Fig. 4C, lower panel). These data dem- 
onstrated that INDELs exert a dominant-negative effect on WT NPM-ALK kinase 
throughout the formation of inactive protein heterocomplexes.  

 
Fig 4. INDEL mutants exert a dominant negative effect on wild-type NPM-ALK kinase activity. (A) Subcellular co-
localization (merge) of WT NPM-ALK (α-V5, green) and D309H-OOF, S232R-OOF or R308-Ins8 mutants (α-
myc, red) in COS7 cells. Cell nuclei are in blue (DAPI dye). (B) NPM-ALK WT/INDEL complex formation in HEK-
293T co-transfected cells (+), by reciprocal immunoprecipitation. Anti-V5 and anti-myc antibodies were used to 
precipitate WT NPM-ALK (upper panel) or D309H-OOF, Δ276–299, S232R-OOF and R308-Ins8 mutants (middle 
panel), respectively, before reciprocal immunoblotting. Untagged WT NPM-ALK (lane 1) was also expressed in 
these cells and used for quality control of non-specific binding. Total NPM-ALK expression is shown in the lower 
panel. (C) Immunoprecipitation of active NPM-ALK with anti-p-ALKY1604 antibody (α-pALK) in co-transfected (+) 
HEK-293T cells. Phospho-ALK immunocomplexes were probed for V5- (α-V5, WT NPM-ALK) or myc-tagged (α-
myc, INDELs) proteins. Compared to WT NPM-ALK (upper panel, closed arrowhead), INDEL mutants are not 
phosphorylated (middle panel, lanes 3–6, open arrowheads), thought they reduce basal phosphorylation of WT 
NPM-ALK kinase (upper and lower panels). Asterisks indicate immunoglobulin (IgG) heavy chain, whereas 
arrows distinguish relative protein position.  
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NPM-ALK INDELs expression increases native NPM-ALK sensitivity to 
crizotinib  

Finally, to investigate whether INDELs may affect drug sensitivity, HEK-293T cells 
expressing WT NPM-ALK, either alone or in combination with myc-tagged mutants, 
were exposed to in- creasing concentrations of crizotinib, and steady-state of total 
and phosphorylated NPM-ALK was assessed.  

Immunoblotting experiments showed a significantly higher sensitivity of WT NPM-
ALK to crizotinib in cells co-transfected with mutated NPM-ALK constructs, as co-
expression led to a complete inhibition of NPM-ALK phosphorylation (p-NPM-ALK) 
even at the lowest dose administered (Fig. 5A).  

             

Figure 5 - INDEL mutants increase NPM-ALK sensitivity to crizotinib. HEK-293T cells were transfected with WT 
NPM-ALK alone or in combination with D309H-OOF, Δ276–299, S232R-OOF and R308-Ins8 mutants. (A) Total 
and phosphorylated NPM-ALK levels are shown before and after exposure to crizotinib (0.5, 1 and 5 µM) for 6 
hours, and band densities, where indicated, are reported as folds of control (-). (B) Crizotinib inhibits NPM-ALK 
phosphorylation and downstream signalling in a time-dependent manner. NPM-ALK was expressed in HEK-293T 
cells either alone (WT) or in combination with INDEL mutants (WT/D309H-OOF, WT/Δ276–299, WT/S232R-
OOF, WT/R308-Ins8) and exposed to 1 µM Crizotinib for increasing time intervals. Steady-state of 
phosphorylated NPM-ALK (p-NPM-ALK) and STAT3 (p-STAT3) proteins was determined by Western blotting 
and reported in graph as fold(s) of control (time exposure 0).  
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Consistently, time-dependent NPM-ALK inhibition showed a brisk reduction of 
kinase autophosphorylation after 30’ of drug exposure, both in the presence or 
absence of inactive INDELs (Fig. 5B, left). However, a progressive recovery of 
phosphorylated NPM-ALK was observed in HEK-293T cells expressing either WT 
alone or in combination with S232R-OOF mutant, providing additional evidence of a 
stronger NPM-ALK activity when expressed alone or with unstable mutants. In 
accordance with these observations, drug- induced inhibition of NPM-ALK-
dependent STAT3 phosphorylation was more prominent when INDEL mutants were 
co-expressed, due to the higher amount of non-functional hetero- dimers formed 
(Fig. 5B, right). 

Discussion  

Tyrosine kinase inhibitors have become the gold standard therapy of tumour 
types expressing oncogenic forms of protein tyrosine kinases. However, clinical 
studies indicate that a significant portion of patients treated with tyrosine kinase 
inhibitors develop clinical resistance, due to the selection of cancer cells carrying 
mutations on target kinase.  

In NSCLC, primary resistance mechanism of ALK-fusion positive tumours has 
been mostly secondary mutations within the kinase domain of EML4-ALK, either 
when compromising drug binding (L1196M, G1269A) or when affecting enzyme 
conformation and activity (C1156Y, I1171T)11,38. 

In IMT tumours, instead, acquired resistance to ALK inhibitors has shown to occur 
upon clonal selection of cells harbouring the F1174L activating mutation, in virtue of 
the important effects this substitution has on ALK tertiary structure12. NSCLC and 
IMT tumours harbouring these 2 types of mutation, however, do not display 
significant changes in ALK constitutive activity and, therefore, might be positively 
selected in vivo only in the presence of ALK inhibitors. In contrast, missense 
mutations associated with familial and sporadic neuroblastoma are mainly activating 
mutations affecting ALK kinase activity and transforming capability and their 
detection can occur at diagnosis39. The prognostic significance of these mutations, 
however, is not known yet13, although for some (G1128A, I1171N, F1174L and 
F1174V) compound sensitivity has been predicted or experimentally test- ed, or 
reported in other tumour types (i.e. F1174V in NSCLC and F1174L in IMT)12,38. 
These findings suggest that acquired resistance mutations likely occur in oncogene-
driven malignancies, whereas activating site substitutions are more frequent in 
oncogene-positive tumours. However, extensive clinical experience with BCR-ABL 
inhibitor imatinib has proven that at least a portion of relapsing patients already 
harbour the same relapse mutations at diagnosis20,40,41,42.  
In the last few years, the advent of massive parallel next-generation sequencing 
technologies has greatly enhanced the scope and the speed of molecular cancer 
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research, offering a powerful solution for mutation discovery in tumour samples 
when mutations are not “fixed” and resistant clones have not emerged yet21,43. Early 
detection of resistance mutations is, therefore, important to predict response to 
treatment, but also for the impact their identity, frequency and evolution have on 
clinical course.  

Taking advantage of ultra-deep sequencing technology, we amplified exons 22–
25 from ALK cDNA, to ensure high sensitive detection of mutations from the 
expressed translocated NPM-ALK allele in ALCL patients. We aimed at discovering 
pre-existing NPM-ALK mutations, when also barely expressed, to evaluate their 
potential impact on NPM-ALK transform- ing activity and drug inhibitor sensitivity.  
Two point mutations were identified at diagnosis in 2 distinct cases: a G!A transition 
at nucleotide 872 and a G!A substitution at nucleotide 1004, which corresponded to 
R291Q and R335Q amino acid substitution, respectively. R291Q and R335Q 
corresponded to full-length ALK R1231Q and R1275Q substitutions in 
neuroblastoma patients39,44. We showed here that both residue mutations affected 
NPM-ALK signalling and drug inhibitor sensitivity. R291Q NPM-ALK kinase 
displayed catalytic activity similar to WT kinase, whereas R335Q mutation was 
shown to decrease NPM-ALK autophosphorylation capacity. These data 
corroborated previous published observations26,34,35, although they were different 
from the putative activating nature of this substitution assigned by others9,44,45. 
However, when R1275Q residue mutation was generated in full-length ALK receptor 
kinase, catalytic activity was reduced compared to WT and F1174L, due to 
conformational changes in the active site cavity, as sustained by molecular dynamics 
simulation.  

Although our principal aim was the identification of KD mutations potentially 
relevant for acquired drug resistance, our approach of cDNA-based ultra-deep 
sequencing provided information on alternative-spicing events in NPM-ALK kinase 
domain as well. Herein, we identified INDEL mutations resulting from exons skipping 
or partial intron retention events, including common deletions and more rare in-frame 
variants previously described in other tumour types46,47. An important question 
addressed in this study was how INDELs expression could affect NPM-ALK activity 
and drug responsiveness, since oncogenic function of NPM-ALK is strictly 
dependent on its own dimerization and trans-phosphorylation capacity. Previous 
studies have shown that insertion/deletion aberrations may have profound effects on 
protein function, affecting kinase activity or drug-binding affinity. In NSCLC tumours, 
recurrent EGFR mutations are localized within the catalytic domain and comprise 
both INDELs and point mutations. However, whereas point mutations are usually 
activating, INDELs may favor or not the active state of EGFR kinase, depending on 
size and position. Indeed, whereas NSCLC patients with exon 19 insertions or 
deletions are responsive to EGFR inhibitors, in- frame insertions in exon 20 confer 
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drug resistance both in vitro and in vivo48,49. Both types of mutation are likely to 
stabilize the active conformation of the kinase. However, while exon 19 insertions 
increase EGFR affinity for its inhibitors, insertions in exon 20 result in a significant 
reduction of it50. As a consequence, patients with INDELs resulting in reduced EGFR 
kinase activity are among the best responders to EGFR inhibitors and have a 
favourable out- come during treatment51,52.  

In this scenario, we found that all INDELs had a dominant-negative effect on WT 
NPM-ALK and, by forming nonfunctional heterodimers, they significantly reduced the 
overall kinase activity while increasing sensitivity to specific inhibition. In cells 
expressing WT NPM-ALK, signal processing was strongly reduced, albeit minimally 
maintained. In cells co-expressing NPM-ALK kinase and INDEL variants, instead, 
cell signalling was totally averted both in a time- and dose-dependent manner.  
In summary, our study demonstrated that NPM-ALK mutations are uncommon in 
ALCL patients at diagnosis. These mutations result in single amino acid substitutions 
or more complex structural rearrangements of NPM-ALK kinase. Whether these 
subclonal mutations coexist in the same cell with the WT allele, expand or are lost 
for natural selection is not know yet. However, their identification and 
characterization may be helpful to identify the most appropriate therapy for each 
patient, preventing either over-treatment or relapse.  
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In this PhD project different methodologies and techniques were applied with 

the aim to correctly deal with the proposed problems. Moreover, in most of the 
cases these approaches were slightly modified and improved to enhance their 
usefulness for the cases study. This was the example for the ALK project in 
which two mutants (F1174L and R1275Q) of the protein were investigated 
through MD simulations. Then, the Root Mean Square Deviation (RMSD) was 
computed for these two mutants and the wild type (wt). The results were 
presented by using a graphical plots derived from the RainbowRMSD, that was 
called delta-RainbowRMSD. In this new representation, the x-axis presents the 
protein residues, the y-axis presents the simulation time and the colorimetric 
scale indicates the RMSD difference between the mutants and the wt. The 
analysis provided a plausible explanation, from an atomistic point of view, for the 
different phosphorylation performance of the mutants kinase, from an atomistic 
point of view.  

Besides these practical projects, we were more focused in the developments 
of methods, algorithms and software which have also been integrated in other 
projects and now they are in-home used as canonical procedure. Two of the 
developed software reached the last stage of validation: DockBench-v1.0 and 
SuMD-v1.0.  The former has already been released and it is a tool to perform a 
docking benchmark simulations. The software handles seven docking software 
for a total of 17 docking protocols. The docking simulations and the relative 
results are automatically generated for an easy interpretation. Moreover the 
software allows the user to perform a Virtual Screening (VS) simulation based on 
the results provided by the software. Recently the tool was applied in D3R Grand 
Challenge, which foresaw to determine six ligand-protein complexes of the 
HSP90. 

Regarding Supervised Molecular Dynamics (SuMD), this tool is intended to 
accomplish the study of the ligand-protein recognition mechanism through a cycle 
of short MD simulations (600 ps length). The software was also integrated with a 
trajectory manager, which automatically process the generated trajectory and 
provide plots, graphical representations and raw data in for publishing quality. 
Despite the tool has not already been released, it was used in different 
publications proving its powerfulness. 

Apart from the stand alone software developed, we proposed a web tool called 
Adenosiland that provides three-dimensional structure of the adenosine 
receptors. The platform contains all the solved adenosine structure that can be 
used in a drug discovery process. Due to the fact that the ligand-driven induced 
fit of the receptor is a key feature in the ligand-protein interaction, a search 
algorithm was implemented to select the most suitable structure. This tool was 
called “Best Template Searching” and suggests a protein structure based on the 
similarity between a query ligand structure and the co-crystalized ligand with 
adenosine receptor. 

 The development of new and alternative methodologies is of utmost 
importance for the future of the drug discovery process. Indeed, the 
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Computational Aided Drug Design (CADD) has proved its usefulness in the last 
decades, however the computational methods accuracy needs to be improved. 
For this reason, researchers invest most of the efforts in the development of 
methodologies and algorithms to better support the experimentalists. Moreover, 
the required time to perform the analysis and the user-friendliness of the 
proposed new tools, are crucial aspects in any drug discovery process. 
Consequently, computational efforts were made in order to make easier and to 
speed up the generation of results. As an example the implementation of the 
easy-to-use Graphical Unit Interface (GUI), to generate high-quality graphical 
images (e.g. Pymol or Chimera), has determined a wildly spreading of these 
pictures in the publications. Based on these considerations, we provided 
computational tools, which perform complex methodology with a limited relative 
expertise.  

The tendency to developed easy-to-use software will spread the application of 
sophisticated methodologies to non-expert users.  

Nowadays, most of the modelers are hired with the aim to help experimental 
collaborators by confirming their design idea with computational techniques. 
Hence, in the next future the CADD scientists should be able to focus their efforts 
in higher-value-added works, instead of being unfairly treated as ‘docking 
slaves’1.  

The beneficial scenario described above will lead to the implementation of new 
methodologies, technologies and techniques, which would provide more accurate 
predictions. On the other hand, the technology progress is usually faced by the 
researchers with high expectation, that inevitably gives rise to an overreaction to 
immature technologies.  In 1993 Bezdek proposed a theory that explains the 
expectations of a new technology along a period of time2 . In Fig. 1 it is reported 
the famous curve representing the Bezdek theory which describes the common 
reaction to a new proposed technology. 

The understanding of the tendency described by this theory can be useful to 
avoid the common overreaction to a new technology experienced by the 
researchers. Hence, CADD scientists should invest part of their time to better 
review new computational techniques in order to correctly determine their scope 
and to reduce their misleading applications. Undoubtedly this situation will reduce 
the false-expectation reaction experienced by the scientific community and will 
accelerate the ‘true user benefit’ stage. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!1Van Drie J. H. – Computer-aided drug design: the next 20 years. – J. Comput Aided Mol 
Des 2007 21:591-601. 
 
2 Bezdek, J.C - Fuzzy models—What are they, and why? - Fuzzy Systems, IEEE Transactions 
on 2011 1:1-6 
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Figure'1'–'Bezdek'expectation'curve:'The!Bezdek!expectation!curve!shows!the!common!reaction!to!a!new!
technology.!

In the next future we want to focus our efforts into the development of specific 
Structure-Based techniques and software which will ease routine tasks. In 
particular we want to create novel methods to be able to deal with certain 
problems that are still unaffordable with SB approaches. In effect, as it was 
highlighted in the introduction, in absence of a protein target co-crystalized with a 
ligand, the SB starts with an important disadvantage. For this reason we would 
attempt to develop a methodology that will provide an alternative starting point to 
properly set up SB approaches and consequently reduce or even delete the 
drawback.  

Another possible aspect to be improved would the investigation of the ligand 
selectivity among a protein family members, with the aim to limit side-effects of 
drug candidate due to off-target interaction. 

Concluding, the available computational resources and methodologies are 
able to generate results fast and thus, integrate docking and MD approaches 
easily and efficiently. Indeed, the combination of these two approaches can 
respectively neutralize the intrinsic defects and limitations of each other, 
providing more reliable results.  

 
 


