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Summary 
In the last decades, also due to the ever increasing importance assumed by civil air transport and its 
deregulation, the aeronautical structural design results to be characterized by two contrasting needs: 
on the one hand, the reduction of costs, and, on the other hand, the increase of the aircraft 
reliability. The costs minimization often results in fuel saving and, hence, in a mass optimization of 
the airplane; however, this risks to collide with the necessity to maximize the system reliability. The 
probabilistic approach to structural design, as it is proposed by the Reliability-Based Design 
Optimization (RBDO) phylosophy, allows to combine these antithetical requirements. After all, the 
traditional deterministic approach, which is based on the use of safety factors, often proves to be 
inadequate, since it can cause both a structural overweight and an underestimation of risks. 

Probabilistic optimization consists of two separate processes: an external loop of deterministic 
optimization and an internal reliability assessment loop; these two steps are executed repeatedly, 
until the optimal configuration is reached; this condition is such that one or more performances are 
maximized and, at the same time, the feasibility constraints result to be respected with the desired 
level of likelihood. 

Despite the growing interest towards the RBDO methodologies in the aeronautical field, to this day 
some applicative areas remain, which have not been sufficiently treated in literature; one of them is 
the aeroelastic field. Moreover, it is important to higlight that every single applicative case requires 
a deep study at a numerical level, aimed at determining which are the optimization and reliability 
assessment algorithms which are best fit for that particular situation; next, the two chosen 
algorithms have to be interconnected, to create a single probabilistic optimization loop. 

One of the novelties that are proposed in this thesis consists on the use of RBDO in the frame 
design of a wing section, in order to prevent aeroelastic instabilities and to optimize such a 
structure; this optimization methodology, based on the elastic axis, had been previously applied by 
following a deterministic approach only (even though on a three-dimensional case). Another subject 
matter that was treated is essentially numerical: the creation of a simple RBDO algotithm, that was 
then successfully applied to the sizing of a beam. Subsequently, two analyses were carried on, 
aiming at applying RBDO first to the structure of a rectangular wing, and then to a shear web, and 
promising results were obtained in both cases. 

In the future continuation of the present work, the various subject matters that have been treated 
will converge towards the determination of a global, unified procedure for the probabilistic 
optimization of a wing structure. Such an approach, that will also aim to prevent aeroelastic 
phenomena, will be devoted to reproduce as more realistically as possible the system and the 
surrounding environment; therefore, it will reckon with both structural nonlinearities and the forces 
generated by random gusts. 
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Sommario 

Mai come oggi, complice anche la crescente importanza che ricopre il trasporto civile aereo e la 
liberalizzazione di tale mercato, la progettazione strutturale in ambito aeronautico risulta essere 
dominata da due esigenze contrastanti: da un lato, la riduzione dei costi, dall'altro, l'aumento 
dell'affidabilità del velivolo. La minimizzazione dei costi si traduce spesso in una minore spesa di 
carburante e, quindi, in un'ottimizzazione della massa dell'aereo; tuttavia, ciò rischia di scontrarsi 
con l'imperativo di massimizzare l'affidabilità del sistema. L'approccio probabilistico alla 
progettazione, così come proposto dalla filosofia Reliability-Based Design Optimization (RBDO), 
consente di coniugare queste due esigenze fra loro antitetiche. D'altro canto, il tradizionale 
approccio deterministico, basato sui coefficienti di sicurezza, risulta spesso inadeguato, in quanto 
può portare sia ad un eccessivo appesantimento strutturale che, caso opposto, ad una riduzione della 
sicurezza del sistema.  

L'ottimizzazione probabilistica consta di due processi distinti: un loop esterno di ottimizzazione 
deterministica ed un ciclo interno di verifica dell'affidabilità: questa successione continua fino a che 
si converge alla configurazione ottimale, tale cioè da massimizzare una o più performances e, allo 
stesso tempo, che rispetti i vincoli relativi al livello minimo di sicurezza richiesto.  

Nonostante il crescente interesse verso le metodologie RBDO in campo aeronautico, ad oggi 
permangono aree applicative che non sono ancora state sufficientemente trattate in letteratura; tra 
queste, l'ambito aeroelastico. Inoltre, va sottolineato che ogni singolo caso applicativo richiede uno 
studio approfondito, a livello numerico, volto a determinare quali siano gli algoritmi di 
ottimizzazione e di verifica dell'affidabilità che meglio si adattano alla situazione; questi, in seguito, 
vanno interconnessi per creare un unico ciclo di ottimizzazione probabilistica. 

Uno degli elementi di novità che vengono proposti in questa tesi consiste nell'impiego della RBDO 
al progetto strutturale della sezione di un'ala, allo scopo di prevenirne fenomeni di instabilità di 
natura aeroelastica, oltre che di ottimizzarne la struttura; tale metodologia di ottimizzazione, basata 
sull'asse elastico, in precedenza risultava applicata (seppure ad un caso tridimensionale) soltanto in 
maniera deterministica. Un'altra tematica che è stata trattata ha invece una natura essenzialmente 
numerica: la costruzione di un semplice algoritmo di ottimizzazione probabilistica, applicato con 
successo al dimensionamento di una trave. In seguito, è stata affrontata un'analisi volta ad applicare 
la RBDO prima alla struttura di un'ala rettangolare e poi ad un longherone rastremato, con risultati 
promettenti. 

Nella futura prosecuzione del presente lavoro, le varie tematiche affrontate confluiranno nella 
determinazione di una metodologia unitaria per l'ottimizzazione probabilistica della struttura di 
un'ala. Tale approccio, che mirerà anche alla prevenzione di fenomeni aeroelastici, si proporrà di 
riprodurre il sistema e l'ambiente circostante nel modo più fedele possibile, e terrà quindi conto 
delle nonlinearità strutturali e delle sollecitazioni dovute alle raffiche di vento aventi natura 
stocastica. 
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Chapter 1 
 

Introduction 
 
 

1.1. Originality and motivation 
 
 
In the last decades, there has been an ever increasing motivation for aerospace systems to achieve 
both better performances and lower costs and, on the other hand, a higher reliability. The need to 
minimize weight and maximizing performances collides with the costly and fatal conseguences of 
failure, due to the extreme difficulty to perform maintenance during flight. Moreover, a diversified 
amount of uncertainties arises from the system and from the surrounding environment, which 
causes the system performances to change or fluctuate, thus constituting an inherent source of risk. 
Reliability-Based Design Optimization (RBDO) provides an answer to this kind of issues (Yao et 
al., 2011). RBDO is a probabilistic design methodology that allows to reckon with these contrasting 
needs: indeed, it can be used to enhance the reliability of a physical system and to maximize its 
performances, in full compliance with the desired feasibility constraints. In general, a higher 
reliability implies a greater cost, and a lower reliability also implies a greater cost due to failure 
consequences (Du, 2006): this proves the importance of a probabilistic approach in design, in order 
to achieve the desired trade-off between performances and safety. 
In traditional design, to account for uncertainties, safety factors are widely used (Yao et al., 2011); 
anyway, such an approach poses some limitations: indeed, bigger safety factors could result in a 
performance loss; on the other hand, being these coefficients defined based principally on the past 
experience, it could be likely that they don't keep into account all the possible risks, thus leading to 
a potential danger. 

RBDO allows to optimize the desired performances (e.g., the mass minimization of an aeronautical 
device) while limiting the probability of failure to a maximum predefined value. The difference 
between deterministic optimization and probabilistic optimization (performed via RBDO) is 
depicted in Fig. 1.1. We want to design a system (for instance, a beam) so that its mass results to be 
minimized, and let us call �� and ��its geometrical dimensions, that can be varied (as "degrees of 
freedom") to reach the desired goal: for example, the dimensions of the beam rectangular cross-
section. Clearly, the optimization process is limited by some feasibility constraints (see Fig. 1.1), 
such as the yield stress and the maximum allowed deflection. Generally, a deterministic 
optimization loop continues automatically until one of the deterministic constraints is reached: this 
is the case of the red design point of Fig. 1.1; however, this point corresponds to a 50% probability 
of failure, since it is located exactly on the border between the feasible and the infeasible regions. 
Conversely, the reliable optimal solution (i.e., the green design point in Fig. 1.1) could result more 
"prudent", but it meets the predefined reliability level. 
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Figure 1.1: graphical representation of Reliability-Based Design Optimization (from W. Yao et al., 2011). 

 
Despite the probabilistic approach is already practiced in many branches of the aerospace field, at 
present there is an ever increasing interest on the unified approach that is offered by RBDO 
methodologies; moreover, a lack of RBDO literature exists for some particular aerospace 
applications, such as in the aeroelasticity field. In addition, it is important to highlight that, for every 
single different structural contest, one has to build and adapt its correlated RBDO implementation, 
such that it results to be as more accurate and stable as possible, and less time-consuming; to 
achieve this result, one has to investigate the most suitable algorithms for both reliability analysis 
and optimization, and then integrate them into a global unified procedure. 
Huo et al. (2013) proposed a methodology for the wing optimization based on elastic axis, limited 
to a deterministic case, in which the goal of minimizing the structural mass is pursued together with 
the need of preventing aeroelastic instabilities. In the present thesis, such a problem was revisited 
from a reliability-based point of view. Moreover, an investigation of some possible ways to reduce 
the computational time in structural RBDO was made, also by employing Design Of Experiments 
(DOE) and Response Surface Methodology (RSM); a very simple RBDO algorithm is presented as 
well. 

 

 

1.2. Outline 
Chapter 2 provides the prerequisites to be able to deal with reliability assessment; hence, the 
fundamentals of uncertainty modeling are revised, with a particular focus on the fundamentals of 
probability theory and statistics. Then, uncertainty analysis is presented, and some key concepts, 
such as that of reliability and probability of failure, are introduced. In Chapter 3, the main reliability 
assesssment methods are illustrated: Monte Carlo Simulation (MCS), First and Second Order 
Reliability Methods (FORM and SORM), and First Order Second Moment method (FOSM); then, 
such algorithms are tested on some structural examples, in order to evaluate their efficiency. In 
Chapter 4, deterministic optimization is treated, and the various methodologies for implementing it 
are illustrated: the analytical method, the graphical method, the gradient-based numerical methods, 
and genetic algorithms (GA). Chapter 5 serves to describe how Reliability assessment and 
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deterministic optimization converge into Reliability-Based Design Optimization (RBDO); Then, a 
very simple RBDO algorithm that was developed is presented; subsequently, such an algorithm is 
applied to the probabilistic design of a cantilever beam. Finally, two of the best-established RBDO 
algorithms are introduced: Reliability Index Approach (RIA) and Performance Measure Approach 
(PMA). Chapter 6 concerns the application of the reliability-based design to some aeronautical 
structures, and aims to describe the RBDO cases with an increasing level of lifelikeness. In the first 
case, the probabilistic design of a wing airfoil structure is made; the main goals of this analysis are 
mass minimization and the prevention of aeroelastic instabilities. Subsequently, the probabilistic 
design of a rectangular wing is described, in which optimization is performed via a genetic 
algorithm, and Monte Carlo Simulation (MCS) is used to compute the system reliability. The same 
approach is then used for the design of a tapered shear web, in which Response Surface 
Methodology (RSM) is used to simplify the expression of the constraint function and to reduce the 
computational costs. Eventually, Chapter 7 contains the conclusions, in which the main results are 
recapitulated, and some recommendations on the future continuation of the work are briefly 
described. 
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Chapter 2 

 

 Uncertainty modeling and analysis 
 

 

2.1. Introduction 

Uncertainty can be defined as the difference between the complete knowledge of a system and its 
current knowledge. 

While studying a physical system, it is useful to split the lack of knowledge into two major families: 
aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty (or stochastic uncertainty) 
originates from the inherent variability of a system or the surrounding environment under study; it 
is related to natural variability, and cannot be completely eliminated by collecting more 
information. Therefore, aleatory uncertainty is irreducible.  On the other hand, Epstemic uncertainty 
accounts for the incomplete knowledge of nature: this includes the properties of the system under 
study, as well as its time-varying interactions with the external environment.  This lack of 
knowledge can be, at least partially, overtaken through the collection of more data; thus, epistemic 
uncertainty is reducible. 

In the present work, we will focus on aleatory uncertainty. To quantify aleatory uncertainty, 
probability theory is commonly used (Du X., 2006). 

Uncertainties on parameters and model features, as well as numerical errors, have an important 
impact on the system performances. Neglect or uncorrect treatment of uncertainty may lead to low 
quality and reliability, costly warranties, over-designed (conservatively) products, low costumer 
satisfaction, up to catastrophic consequences (Du X., 2006). 

In engineering design, uncertainty can be faced at three complementary levels: modeling, analysis 
and design. 

First level: uncertainty modeling 

The goal of uncertainty modeling is to provide a mathematical quantification of uncertainty. To do 
so, probability theory and statistics are often used, through which the uncertainty is finally 
expressed as a random variable with its probability distribution. The latter is the input to uncertainty 
analysis (second level). 

Second level: uncertainty analysis 

Uncertainty analysis aims to quantify the uncertainty of the design performance (model output) 
given the uncertainty of the model input (which is provided by uncertainty modeling) (Du X., 
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2006). Thanks to uncertainty analysis, it is possible to forecast the influence of uncertainty on the 
design performance, and to evaluate the design reliability. 

 

Third level: design under uncertainty 

The goal of design under uncertainty is to reduce the effects of uncertainty by making appropriate 
design choices. Depending on the design requirements, the attention may be focused on safety, 
robustness or quality. 

Design under uncertainty is an iterative process, and every updated design will undergo uncertainty 
analysis. 

 

2.2. Basics of uncertainty modeling 

Uncertainty modeling aims to quantify uncertainty through mathematical tools. A brief overview of 
some fundamental probability theory and statistics concepts will be presented below. 

Probability 

Probability quantifies the likelihood of occurrence of an event (Du X., 2006). The probability of an 
event E is defined as 

���� = 	
� 
����� �� ���� �
� ���
� � ��
 �����	
� ����� 
����� �� �������� ��������      (2.1) 

 

Probability density function 

Let us consider a spacecraft orbiting around a planet, which experiences a temperature gradient, at 
every orbit, between the perihelion and the aphelion. Let us want to record the maximum 
temperature X which is experienced by a particular instrument at every orbit. One wants to know 
which is the probability for the temperature to be in any given interval, i.e., the probability 
distribution for T. To answer this question, one can record the maximum instrument temperature at 
every orbit and then plot a histogram (Figure 2.1 (a)).  

In order to be more accurate, one can reduce the bin size (Figure 2.1 (b)). In the limit case, the 
histogram becomes a smooth curve (Figure 2.1 (c)), which is the probability density function (pdf), 
or probability distribution, for X. 
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Figure 2.1: if one reduces the bin size of a histogram, the limit case is given by the probability density function (pdf) of 
the random variable under study (from Zhang, 2008). 

 

A mathematical formulation for the pdf is provided below. 

Let X be a continuous random variable. Then, a probability density function (pdf) of X is a function 
f(X) such that, for any two values a and b with � ≤  ,  

��� ≤ ! ≤  � = " #�!�$!��          (2.2) 

 

where P stands for probability. 

The definition above is valid under the two following conditions: 

1) #�!� ≥ 0 for every X 

2) " #�!�$! = 1()*)  

 

Thus, the probability for the instrument to reach a maximum value of tempreature between 60º and 
70º is given by the grey area (Figure 2.2) divided by the total area under the pdf curve. 
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Figure 2.2: the probability for the random variable X to lie in the selected interval is equal to grey area divided by the 
total area under the pdf curve (from Zhang, 2008). 

 

 

Cumulative distribution function 

The cumulative distribution function +��� for a continuous random variable X with probability 
density function f  is defined by 

 

+��� = ��! ≤ �� = " +�!�,*) $!        (2.3) 

 

 

Figure 2.3: probability density function (left) and cumulative distribution function (right) (from B. Schroeder). 

 

where x is meant as a particular value that is assumed by the random variable X. 

An important theorem on cumulative distribution functions is reported below. 
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Theorem: 

Let X be a random variable with cumulative distribution function F. Then, for a real number a, we 
have 

��! > �� = 1 − +���         (2.4) 

 

 

Figure 2.4: the probability, for the random variable X, to be bigger than a real number a is the reciprocal of the 
cumulative distribution function at a (from B. Schroeder). 

 

Mean 

The mean of a continuous random variable X with probability density function #/ is  

0/: = " !()*) #/�!�$!         (2.5) 

 

Variance 

Variance is a measure of how spread a distribution around its mean is, and is expressed as 

2� = " �! − 0/��#/�!�$!()*)         (2.6) 

 

For a finite number N of samples, the variance is calculated by 

3� = �4 ∑ ��� − 0/��4�6�          (2.7) 

 

As N increases significantly, the variance expression is given by 

3� = �4*� ∑ ��� − 0/��4�6�          (2.8) 
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which best approximates the variance value when N approaches infinity. 

 

Percentile value 

Consider a continuous random variable X and a real number α; the percentile value �7 is a value 
below which the probability of the actual values of X being equal or less than �7 is α, i.e. 

��! ≤ �7� = +/��7� = " #�!�$! = 8,9*)        (2.9) 

 

 

Figure 2.5: percentile value of a distribution. The grey area is equal to 8 (from Du X., 2006). 

 

 

Normal distribution 

A Normal Distribution (also called Gaussian Distribution or Bell Curve) is a particular kind of 
theoretical frequency distribution, which is symmetric about its mean. The maximum value of the 
pdf is reached at the mean of the random variable, and such function decreases monotonically along 
both directions, so that the function is bell-shaped. The distribution is defined by two parameters: 
the mean (0/) and the standard deviation (2/). Some features regarding the items concentration 
about the mean are shown in Figure 2.6. 

This is the most popular statistical distribution, and will often be used in this work. 
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Figure 2.6: a (standard) normal distribution with some data regarding the items concentration about the mean (from 
faculty.virginia.edu). 

 

Considering a normally distributed random variable X, its normal distribution is determined by a 

mean value Xµ  and a standard deviation Xσ , and its notation is !~;�0/ , 2/�. 

The probability density function (pdf) of a normal distribution is given by:  
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The cumulative distribution function (cdf) is expressed as  
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A normal distribution with zero mean (µ = 0) and unit variance �2� = 1� is called a standard 
normal distribution (Figure 2.6). 

A normal random variable !~;�0/, 2/�  can be transformed into a standard normal variable 
through the following expression: 

= = /*>?@?            (2.12) 

its probability density function A�=� and cumulative distribution function B�=� are given by 

A�=� = �√�D E�F G− �HIJ   −∞ < M < +∞    (2.13) 
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B�=� = " �√�D E�F G− �HIJ $MO*)   −∞ < M < +∞    (2.14) 

 

2.3. Uncertainty analysis 

An engineering system can be schematized through a mathematical model with some inputs and 
outputs. 

The inputs are design variables and random variables. While design variables are under the control 
of the designer (e.g., dimensions or the choice of materials), random variables account for all those 
conditions which can't be modifed by him (e.g., the external temperature or the direction and speed 
of wind gusts). 

The system output or response, on the other hand, can be seen as a performance, such as the stress 
or strain which is experienced by a structure. 

If the input variables X are random, the output variable Y will be random as well. 

A major issue in uncertainty analysis is to evaluate the impact of input parameters uncertainties on 
the system response. From a mathematical point of view, the goal is to evaluate the distribution of a 
response variable given the distributions of the input variables (Du X., 2006). 

 

 

 

Figure 2.7: mathematical model for the probabilistic design of an actual engineering system. 

 

From now on, the mathematical model P = Q�R�  will be called performance function, which 
describes the relation between the response and the input variables. 

The task of uncertainty analysis is to quantify the uncertainty associated with the model output (Du 
X., 2006). 
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2.3.1. Reliability 

Reliability is the likelihood that a component (or a system) will perform its intended function 
without failure for a specified period of time under stated operating conditions (Yao et al., 2011, 
Ingram-Cotton et al., 2007, and MIL-STD-785REVB, 1980). 

For a system to be considered safe, the value of the performance function P = Q�R� has to lie over 
a certain threshold. If it outgoes such a limit, the system cannot be considered safe anymore. The 
threshold value is defined as the limit state, and divides the random variables space into a safe 
region and a failure (or unsafe) region. From now on, P = Q�R� = 0 will be considered as the 
threshold value for the performance function, i.e. the limit state function. Hence, the safe region 
extends where Q�R� > 0, whereas the area with Q�R� < 0 is the unsafe region (Figure 2.8). 

 

 

Figure 2.8: graphical expression of the limit state function for a two-dimensional problem (from Du X., 2006). 

 

A simple engineering example of what has just been presented is the case of a specimen being 
stimulated; in this case, the performance function can be defined as 

P = Q�R� = !� − !�, where !� is the acting stress, and !� is the strength of the material. 

 

The Reliability (R) is expressed as the probability, for the performance function, to be above the 
limit-state value, i.e., 

S = ��Q�R� > 0�          (2.15) 

while the probability of failure TF�U is defined as 

F� = 1 − S = ��Q�R� < 0�         (2.16) 
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In structural applications, the probability of failure is generally low; hence, it is often convenient to 
relate it to the left tail of the performance function (Figure 9). 

This could be the case of the previous example, where the probability of failure is expressed as 

F� = ��Q�R� < 0� = ��!� − !� < 0�       (2.17) 

which reports on the (very low) probability of the stress overtaking the material strenght. 

 

Figure 2.9: pdf of a performance function  V = Q�R�. The shaded area refers to the unsafe region, i.e., the one such that   

V = Q�R� < 0 (from Du X., 2006). 

 

If one needs to improve the reliability of a design, it is possible to do it by shifting the pdf  (through 
varying the value of the mean) and/or by shrinking it (i.e., reducing variance) (see Figure 2.10). 
This can be done by conveniently changing the values of the design variables, and this is one of the 
goals of Reliability-Based Design. 

 

Figure 2.10: reliability can be increased trough acting on the mean and the variance of the pdf(s) (from Du X., 2006). 
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2.3.2. Robustness 

Robustness is the degree of tolerance of a system to be insensitive to variations in both the system 
itself and the environment (Yao et al., 2011). In other words, a design is considered as robust if its 
functionality is not significantly affected by small changes in parameters, models, assumptions and 
in the external environment (IEEE Std. 933-1999). Figure 2.11 depicts the case of the response pdf 
of two different designs: even though the mean is the same, Design 1 is more robust than Design 2, 
because of its lower standard deviation. 

 

Figure 2.11: due to its lower standard deviation, Design 1 is more robust than Design 2 (from Du X., 2006). 

 

Robust Design is mainly concerned with the event distributed near the mean of the probability 
density function (small fluctuations around the normal status, see Figure 2.12), whereas Reliability-
Based Design Optimization is concerned with the performance distribution at the tails of the 
probability density function (extreme events) (Yao et al., 2011). 

 

Figure 2.12: robustness and reliability in terms of probability density function (from Yao et al., 2011). 
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In other words, reliability is mostly focused on safety for preventing catastrophic events, whereas 
robustness deals with the everyday fluctuations and aims mainly to avoid quality loss. 

 

Figure 2.13: domains of application of Robust Design and Reliability-Based Design (from Yao et al., 2011). 

 

2.3.3. Uncertainty analysis algorithms 

The main goal of uncertainty analysis is to compute the probability of failure of a system.  

Let us consider a n-dimensional, joint probability density function #�R� = #�R�, R�, … R
�. The 
probability of failure can be computed by the following integral (Breitung, 1989): 

F� = " #�R�$RX          (2.18) 

where the failure domain D is defined as Q�R� < 0. 

In engineering applications, performance functions are normally complex and nonlinear; 
furthermore, a high number of random variables is usually involved, making multidimensional 
integration computationally prohibitive. In many cases, performance functions are a black box (e.g., 
Finite Element Modeling or Computational Fluid Dynamics codes). Therefore, it is frequently 
almost impossible to find a closed form analytical solution for determining the probability of 
failure.  

To overcome this issue, numerical approximation methods are used. There are three main categories 
for such algorithms: uncertainty analysis methods, sampling-based methods and surrogate models. 
Even though they will be treated in detail in the next chapter, a brief hint to them is made below. 

 

Uncertainty analysis methods 

These algorithms are used to simplify the integrand in Eq. (18) and to approximate the performance 
function Q�R�, in order to obtain an analytical solution for the integral. Among these approximation 
methods, First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) 
are the most widely applied in engineering problems (Yao et al., 2011, and Rackwitz, 2001). 
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Sampling-based methods 

Also known as Monte Carlo Simulation (MCS) methods, they are a class of computational 
algorithms which perform repeated sampling and simulation, in order to compute the statistics of 
the response quantities of interest (Yao et al., 2011, Helton et al., 2006, and Landau et al., 2005), 
like for example the probability of failure. The MCS methods accuracy can be improved by 
increasing the number of samples, up to tend to the theoretically exact solution. 

 

Surrogate models 

When the evaluation of the performance function Q�R� is strongly time-consuming, a great issue to 
deal with is the necessity to reduce the computational overload. This task can be accomplished by 
substituting the original, complex analysis model with a simpler one (i.e., the surrogate model). 
Hence, the related performance functions are more elementary and easier to handle. 

 

 

 

2.4. Conclusions 

In this chapter, a brief review of uncertainty modeling was made, followed by an introduction to 
uncertainty analysis. Uncertainties can be epistemic or aleatory; while the first one can be reduced 
through a better knowledge of the engineering model and its environment, the latter are irreducible. 
A generic engineering system can be schematized by an analysis model, which has some inputs 
(i.e., random variables X and design variables d), and one (or more) output(s) Y (i.e., the system 
response). The uncertainties associated with the model input will be propagated to the model 
output, and this process is describled by one or more performance functions Y = g(X). In 
engineering design, uncertainties have to be managed at three different levels. Firstly, input 
uncertainties must be mathematically quantified through uncertainty modeling, which is performed 
via statistic tools; as a result, each of them can be expressed as a random variable with its 
probability distribution function (pdf). The second step consists in uncertainty analysis, which 
allows to compute the uncertainty associated with the model output, and to determine the system 
reliability; however, in many engineering applications, this can be computationally prohibitive; to 
overcome this issue, numerical approximation methods are used. The third step consists in 
performing design under uncertainty, whose main goal is to reduce the impact of uncertainties in 
the final design by making opportune design choices (i.e., by setting the optimal values for the 
design variables d). 
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Chapter 3 

 

Reliability assessment methods 

 

3.1. Introduction 

To compute the probability of failure of a physical body, one has to deal with non-deterministic 

quantities (i.e., the n random variables X) and, hence, the entity of at least some parameters can't be 

fixed a priori.  

An uncertainty-based approach is given by considering the possible outcomes of some experiments 

(e.g. a quantitative measure) or some physical quantities as random variables that are subject to a 

particular probability distribution; for simplicity, we will henceforth consider normal distribution, 

that is the most commonly used. 

A system reliability is determined by its performance function Q�R�, which returns a negative value 
under system failure conditions, and a positive value when the system is safe. Hence, it can be 
viewed as the difference between resistance, R, and load, S: 

Q�S, 3� = S − 3          (3.1) 

 

Both the resistance and the load of an engineering system depend on random variables; therefore, 
they each have a probability distribution: #Y�S� and #Z�3�. If these two pdfs are combined, they 
give rise to a joint probability density function, i.e., #Y,Z�S, 3� (Figure 3.1). 

Once the joint pdf is known, the probability of failure is calculated by the following integral: 

F� = " " #Y,Z�S, 3�$[$\�]�*)()*)         (3.2) 

Such an equation can be generalized to the n-dimensional case, with n = total number of random 
variables: 

F� = �^Q�R� < 0_ = " #R�R�$R`�R�ab        (3.3) 
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Figure 3.1: joint probability density function, divided between the safe region and the failure region (from 
uniandes.edu.co). 

 

If one performs m experiments (which are depicted in Figure 3.2 as black dots), the probability of 
failure of a system is equal to the probability of falling in the region where the performance 
function is less than zero, i.e., the failure region.  

Therefore, 

F� = cde E[ f# ghEe\ #�iigcQ gc\g$E hℎE klmnopq pqrmsthfh�i cde E[ f# ghEe\  

 

Figure 3.2: let us perform m experiments. The probability of failure is the ratio between the number of items 
falling inside the failure region and the total number of experiments, i.e., m. 
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In order to compute the probability of failure (or the reliability) of a given structure, several 

different methods can be employed. In this chapter, an overview will be made on the most 

commonly used methodologies, which belong to the two families of Uncertainty Analysis methods 

and Monte Carlo Simulation (MCS). 

 

3.2. Monte Carlo Simulation (MCS) 

Although statistical methods are gradually spreading more and more in engineering applications, 

many engineers have only a limited knowledge of probability and statistics. Monte Carlo simulation 

provides a straightforward approach if one doesn’t have a deep theoretical knowledge of statistical 

methods. 

Monte Carlo Simulation (MCS) methods, also called sampling-based methods, are a class of 

algorithms which consists on performing a very large random sampling and making a huge number 

of simulations on computer, so as to compute the statistics of the response quantities of interest.   

Provided a sufficient number of samples, MCS methods can reach the desired level of accuracy; the 

latter tends to the exact solution as the number of experiments approaches infinity. Because of its 

robustness, MCS is often used as a benchmark for evaluating the performance of new uncertainty 

analysis techniques (Yao et al., 2011). 

MCS normally requires a huge number of simulations, and can be computationally demanding. 

Therefore, it may not be suitable for some complex engineering applications, where the need to 

repeatedly execute a lot of complicated calculations would be computationally prohibitive. Hence, 

Monte Carlo Simulation is widely used in engineering applications where the model evaluations are 

not onerous. Alternatively, the computational cost of MCS may be optimized by implementing 

variance reduction techniques, such as Importance Sampling, which allows to strongly reduce the 

number of samples. 

Coming back to crude Monte Carlo, a first, simple application of this methodology consists of 

calculating the area of a circle if one doesn’t know its formula. 

Let us consider a circle that is inscribed inside a square (see Figure 3.3), and let us randomly sample 

some points inside the area of the square. Then, divide the number of the points inside the circle by 

the number of the points that fall outside the square but outside the circle. As the number of the 
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points (i.e. the samples) increases, the result of the division gradually approaches the value of u 4⁄ , 

that is just the ratio between the areas of the two geometric figures.  

 

Figure 3.3: Computing the ratio between the areas of a circle and a square (inside which it is inscribed) through Monte 
Carlo Method (from Fattaruso J.). 

 

Some theoretical basics underlying crude Monte Carlo Method are given below. 

Even if MCS is applicable to both the cases of dependent and independent variables, the present 
dissertation is focused on the case in which only independent random variables are involved. 

Let us consider an engineering model whose operation is expressed by a performance function P = Q�R�, where R is the model input and P is the output.  The process is composed of three steps: 
sampling of input random variables, evaluation of the performance function for each sample, and 
statistical analysis on the model output. 

 

Step 1: Sampling of input random variables 

At the beginning, a random generator produces a sequence of numbers [� inside the interval [0, 1]; 
this way, a uniform random variable R is created.  
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Subsequently, the samples of the [0, 1] uniform variables are transformed into values of a random 
variable !�  which follows the desired probability distribution +,x����  (e.g., a standard normal 

distribution).  

This is accomplished by various methods; one of them is the inverse transformation method. 

Through this technique, the values of the random variable !� are given by 

�� = +,x*��[��           (3.4) 

 

where +,x*� is the inverse of the cumulative distribution function (cdf) of the random variable !� 
(from Du X., 2006). 

 

Figure 3.4: transformation of the samples  from the [0, 1] uniform distribution to a nonuniform distribution (from 
Güneş, 2012). 

 

Step 2: Numerical experimentation 

Let us suppose that, for a particular random variable !y (j = 1, 2..., n), N samples are generated; 

hence, the performance function will be computed for each of the samples: 

V�,y = QT��,yU,  i = 1,2,...,N        (3.5) 

thus, N output samples are generated. 

 

Step 3: statistical analysis on the model output 

For the j-th random variable, Each output sample V�,y = QT��,yU is computed, and is compared to the 

threshold value V = QT!�,yU = 0. 

If ;� is the total number of items such that V < 0, the probability of failure is given by  
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F� = 4z4            (3.6) 

 

where N is the total number of samples. 

Hence, the reliability is given by 

S = 1 − F� = 1 − 4z4           (3.7) 

 

 

 

 

3.3. First and Second Order Reliability Methods 

These techniques are approximation methods, the aim of which is to determine, with an acceptable 
level of accuracy, the numerical value of a system reliability, without the need to analytically solve 
the integral 

S = " #/�R� $R`�R�{b          (3.8) 

 

Eq. (3.8) corresponds to compute the portion of the volume under the joint pdf  which lies in the 
safe region (i.e., Q�R� ≥ 0, see Figure 3.5). 

On the other hand, the probability of failure, which is expressed by 

F� = " #/�R� $R`�R�ab          (3.9) 

corresponds to the volume of the removed part of the joint pdf #/�R� in Figure 3.5. In the same 
figure, the contours of the integrand #/�R� are shown as projected in the X plane. 
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Figure 3.5: the total volume under the joint pdf is 1; hence, reliability is the portion of such volume which lies in the 
safe region (from Du X., 2006). 

 

These methods are used in order to ease the computational difficulties and to reduce the 
computational effort which is required for a complex, multi-dimensional problem. This is done in 
two phases: the first one consists of simplifying the integrand #/�R�, in order to make its contours 
more regular and symmetric; then, as a second step, the integration boundary Q�R� = 0  is 
simplified (Du X., 2006). These two steps allow to provide a simple analytical solution for the 
probability integration. There are two algorithms for doing this, which differ in the way the 
probability integration is approximated: the First Order Reliability Method (FORM) and the Second 
Order Reliability Method (SORM). 

 

3.3.1. First Order Reliability Method (FORM) 

Through this technique, the performance function Q�R� is approximated by the first order Taylor 
expansion, hence the name of the method. 

First phase: simplification of the integral 

In order to obtain such a simplification, the random variables R =  �!�, !�, … , !
� which are 
involved in the problem are transformed into standard normal variables | =  �}�, }�, … , }
�, i.e., 
random variables which follow a standard normal distribution. This can be done by the Rosenblatt 
Transformation, which is based on the condition that the cumulative distribution function remains 
the same before and after the transformation, i.e., 

+/x���� = B�d��          (3.10) 

where B�d�� is the cumulative distribution function (cdf) of the standard normal distribution. 
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As for the random variables, the same formulation will be herein used for standard normal 
variables: }�  generically identifies the continuous variable and its axis on a coordinate system, 
whereas d� is associated to a particular (discrete) value assumed by the variable along the axis. 

It is useful to recall [from Eq. (2.12)] that the relationship between a normal random variable X and 
a standard normal variable U is given by the following expression: 

} = /*>?@?            (3.11) 

After such a transformation, Eq. (3.9) becomes 

F� = " B|�|� $|`�|�ab          (3.12) 

being B|�|�  the joint pdf of U. Recalling that all the random variables are assumed to be 

independent, the resulting joint pdf is equal to the product of every single pdf of its respective 

standard normal distribution, thus resulting  B|�|� = ∏ �√�� exp G− �� u��J��6�         (3.13) 

 

Therefore, the probability integration becomes  F� = " " ∏ �√�� exp G− �� u��J��6� $d�`���,�I,…,���ab $d� … $d
    (3.14) 

 
The transformation does not affect the precision of the integration, i.e., equations (3.3) and (3.14) 

give the same result. Nevertheless, the contours of the integrand ⏀|�|� become concentric circles 

(or hyperspheres, for a bigger dimensional problem; see Fig. 3.6): this makes the pdf  | easier to be 

integrated. 

 

Figure 3.6: probability integration in the random variable space before and after the Transformation from 
random variable space X to standard normal space U (from Du X., 2006). 
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Second phase: approximating the integration boundary 

As previously stated, in FORM the performance function g(U) is approximated by the first order 

Taylor expansion: ��|� ≈ ��|� = Q�o∗� + ∇Q�o∗��| − o∗�	      (3.15) 

 

where L(U) is the linearized performance function, o∗  is the expansion point, T stands for a 

transpose, and ∇Q�o∗� is the gradient of g(U) at o∗ (D. Xiaoping, 2006). 

In order to minimize the accuracy loss, Hasofer and Lind (1974) suggested to expand the 

performance function on its boundary g(U) = 0 and, to be more precise, at the point having the 

maximum value of the joint pdf: this is called the Most Probable Point (MPP) (see Fig. 3.7). 

The analytical expression for locating the MPP is given below: 

�max| ∏ �√�� exp G− �� u��J
�6�Q�|� = 0 �        (3.16) 

 

Figure 3.7: the most probable point corresponds to the highest probability density along the limit-state function Q�|� = 0 (from Du X., 2006). 

 

Since ∏ �√�� exp G− �� u��J
�6� = �√�� exp G− �� ∑ u����6� J,      (3.17) 
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we see that the maximum value of ∏ �√�� exp G− �� u��J
�6�  corresponds to the minimum of ∑ u����6� . 

Hence, Eq. (3.16) can be rewritten as 

�min|‖o‖Q�|� = 0�           (3.18) 

whereof solution is the Most Probable Point, which is indicated as o∗ = �d�∗, d�∗ , … , d
∗ �. As shown 

in Fig. 3.8, the MPP is the shortest distance point of the limit state function g(U)=0 to the origin O 

in U-space. Such a minimum distance was called reliability index β (Hasofer and Lind, 1974), and 

is such that � =  ‖o∗‖. As it will be seen shortly, the knowledge of the shortest distance can be 

used to predict the probability of the limit-state function less than zero (Du X. et al., 2000). 

At the Most Probable Point, g(U) = 0, so eq. (3.15) becomes  
 ��|� = ∑ ��`�|���x �
�6� o∗ �}� − d�∗�        (3.19) 

 
Naming �b and �� the following coefficients: �b = − ∑ ��`�|���x �
�6� o∗ d�∗         (3.20) 

 

Figure 3.8: The Most Probable Point (MPP) as seen in the U-space. As it can be seen, this is the closest point of the 

limit-state function Q�|� = 0 to the origin of the U-space (from Du X., 2006). 

 

and �� = ��`�|���x �o∗ ,           (3.21) 

equation  (3.19)  may be rewritten as 
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��|� = �b + ∑ ��}�
�6�          (3.22) 

 

Hence, L(U) is a linear function of standard normal variables; therefore, L(U) has a normal 

distribution, too. 

Its mean, 0�, is equal to 0� = �b = − ∑ ��`�|���x �
�6� o∗ d�∗        (3.23) 

 

while its standard deviation, Lσ , is 

2� = �∑ ���
�6� = �∑ �� �`��x��x∗��
�6�         (3.24) 

 

Consequently, the probability of failure is given by 

F� ≈ �^��|� < 0_ = B G− > @ J = B
¡
¢£ ∑ � ¤¥¤¦x§o∗�x¨�

�∑ �� ¤¥¤¦x§o∗�I�x¨� ©
ª«     (3.25) 

Naming as 8� the following coefficients, 

8� = � ¤¥¤¦x§o∗
�∑ �� ¤¥¤¦x§o∗�I�x¨�

          (3.26) 

the expression for the probability of failure becomes 

F� ≈ �^��|� < 0_ = B G− > @ J = B
¡
¢£ ∑ � ¤¥¤¦x§o∗�x¨�

�∑ �� ¤¥¤¦x§o∗�I�x¨� ©
ª« = B�∑ 8�d�∗
�6� �   (3.27) 

From (3.21) and (3.26), l = �8�, 8�, … , 8
� = ∇`�o∗�‖∇`�o∗�‖        (3.28) 

which is the unit vector of the gradient of the performance function g(U) at the MPP. 

 

Thus, the probability of failure can also be written as F� ≈ B�∑ 8�d�∗
�6� � = B�∑ ¬o∗­
�6� �       (3.29) 
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Since the MPP is the shortest distance point from the performance function curve g(U)=0 to the 

origin, the MPP is the point of tangency of the curve g(U)=0 and the circle (centred at the origin) 

with a radius equal to β (figure 3.9). Consequently, the MPP vector results to be perpendicular to 

the performance function curve at the MPP. The direction of this vector is expressed by the unit 

vector d∗ ‖d∗‖ = d∗ �⁄⁄ . On the other hand, the direction of the gradient is also perpendicular to the 

curve at the MPP, and its direction can be represented by the unit vector a (see Eq. (3.28)) (Du X., 

2006). 

Hence,  o∗® = −l           (3.30) 

 or, o∗ = −�l           (3.31)  

 

 

Figure 3.9: geometrical situation of the Most Probable Point o∗ (from Du X., 2006). 
 

If one recalls that ll­ = ∑ 8�� = 1
�6�           (3.32) 
 

the probability of failure is eventually expressed as 
 F� = �^��|� < 0_ = B�lo∗­� = B�−�ll∗­� = B�−��     (3.33) 

 
Therefore, the reliability is 
 S = 1 − F� = 1 − B�−�� = B���        (3.34) 
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MPP search 

From Eq. (3.33), the evaluation of the probability of failure is possible once the reliability index β 
has been obtained. The latter can in turn be determined once the MPP has been located. However, 
the MPP search is often impossible to be performed analytically. Such an issue can be overcome by 
using numerical methods. One of them is described in the sequel, which is a recursive algorithm 
where the performance function is linearized. Throughout the iterations, the position of the MPP is 
updated, until its actual location is obtained. 
Let o¯ be the MPP coordinates at the k-th iteration (see Fig. 3.10); the performance function is 
linearized in such a point, and is expressed as 
 Q�o� = QTo¯U + ∇QTo¯UTo − o¯U	

       (3.35) 
 

 
Figure 3.10: MPP search scheme (from Du X., 2006). 

 
 
Let the linearized function QTo¯U be zero; consequently, in the following iteration, the MPP o¯(° 

will lie on the line (the linearized performance function, see Fig. 3.10), i.e, 

 QTo¯(°U = QTo¯U + ∇QTo¯UTo¯(° − o¯U	 = 0      (3.36) 
 

From equation (3.31), one deduces that, at the k-th iteration, o¯ = −�±l¯           (3.37) 

 o¯(° is the shortest distance point from the origin to the line, as depicted in Fig. 3.10. Hence, the 

vector o¯(° is perpendicular to the line and is directed from the origin O to o¯(° (from Du X., 

2006). 
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The versor l¯(° is also perpendicular to the line, and its direction is opposite to that of o¯(°. Since 

the length of the vector o¯(° corresponds to the Euclidean distance from the origin O to the point o¯(° (i.e., the reliability index �), it follows that o¯(° = −�±(�l¯          (3.38) 

 

Substituting o¯ in equation (3.37) and o¯(°in equation (3.38) into equation (3.36), one obtains 

 QTo¯(°U = QTo¯U + ∇QTo¯UTl¯U��± − �±(�� = QTo¯U + ²∇QTo¯U²��± − �±(�� = 0 
            (3.39) 

 
The updated reliability index is then 

�±(� = �± + `To¯U²∇`To¯U²          (3.40) 

 

whose corresponding updated point is 

o¯(° = −l¯ ³�± + `To¯U²∇`To¯U²´         (3.41) 

 

Equations (3.40) and (3.41) are recursive formulae, which can be used to locate the MPP and 

determine the corresponding reliability index. A starting point is required, and the origin oµ = µ is 

often chosen. 

The termination criterion of the MPP search is one of the following: 

1) if ²o¯(° − o¯² ≤ ¶�, stop; or 

2) if ²∇QTo¯(°U − ∇QTo¯U² ≤ ¶�, stop; or 

3) if ²�¯(° − �¯² ≤ ¶·, stop. 

Where ¶�, ¶�, ¶· are very small positive numbers, according to the desired precision level. 

Figure 3.11 depicts the flowchart of the MPP search algorithm that has been presented. 
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Figure 3.11: flowchart of the recursive MPP search (from Du X., 2006). 

 

 

3.3.2. Second Order Reliability Method (SORM) 

The First Order Reliability Method (FORM) often provides a sufficient precision in the 
determination of the probability of failure. However, in some cases, the limit-state function in the 
U-space may be highly nonlinear, and the variance range of uncertain variables could be wide. In 
such cases, the first order approximation of the limit-state function may no longer be adequate, thus 
resulting in a large error in the reliability estimation. The second-order reliability method (SORM) 
was established as an attempt to improve the accuracy of FORM (Zhao et al, 1999); through this 
algorithm, the limit-state  function is approximated at the second term of the Taylor expansion at 
the MPP (Breitung K., 1984). The SORM method is generally more accurate than the FORM, but it 
is also more computationally demanding; indeed, it requires the determination of the second 
derivatives of the performance function. 
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After the random variables X have been transformed into standard normal variables U, the 
performance function g(U) is approximated by the second order Taylor expansion at the MPP. 

The second order approximation gives 

Q�|� ≈ Q�o∗� + ∑ � �`��x�o∗ �}� − d�∗� + ��
�6� ∑ ∑ � �I`��x��¸§o∗ �}� − d�∗�T}y − dy∗U
y6�
�6�  (3.42) 

 

Assuming that Q�o∗� = 0 and writing Eq. (3.42) with a vectorial notation, one obtains 

Q�|� ≈ ∇Q�o∗��| − o∗�	 + �� �| − o∗�∇�Q�o∗��| − o∗�	    (3.43) 

being ∇�Q the Hessian matrix, i.e.,  

∇�Q = ¹ºº
º» �I`�I�� ⋯ �I`������⋮ ⋱ ⋮�I`������ ⋯ �I`�I�� ¿ÀÀ

ÀÁ        (3.44) 

In order to determine the probability of failure, Eq. (3.43) has to be simplified once again, due to the 
second order terms. After linear and orthogonal transformations, Q�|�  becomes a function of 
independent and standard normal variables. Then, following Breitung's formulation (1984), the 
probability of failure is eventually expressed as 

F� = B�−�� ∏ �1 + �Â��*�I
*��6�         (3.45) 

where � is the reliability index and Â� (i = 1, 2, …, n-1) are the principal curvatures of g(U) at the 

MPP (Du X., 2010). By comparison to Eq. (3.33), one can conclude that ∏ �1 + �Â��*�I
*��6�  is a 
corrective term which allows to pass from the First Order Reliability Method (FORM) to the 
Second Order Reliability Method (SORM). 

In order to compute the F� through Eq. (3.45), the values of Â� (i = 1, 2, …, n-1) at the MPP are 

needed. Such principal curvatures are the eigenvalues of a matrix A, whose elements ��y are 

��y = TÃ∇I`�o∗�ÃÄUx¸‖∇`�o∗�‖           (3.46) 

here, R is a c × c  rotation matrix, which, in turn, is attained by applying Gram-Schmidt 
orthogonalization to another matrix Ãµ.  

Ãµ is given by 

Ãµ = ¹ºº
º» 1 00 1 ⋯ 0 00 0⋮ ⋱ ⋮0 0−8� −8� ⋯ 1 0−8
*� −8
¿ÀÀ

ÀÁ       (3.47) 
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where the (n-1) x (n-1) minor is an identity matrix, whereas the last row of Ãµ is the unit vector -a 
that was defined in equation (3.28). 

SORM method is composed by the two following steps: 

1. MPP search. This procedure is exactly the same as in FORM. After the determination of o∗, 
the corresponding values of β, ��o∗�, ∇Q�o∗�, and ∇�Q�o∗� are found. 

2. Determination of matrix R. Let us indicate with [b� and [b the rows of matrices Ãµ and R, 
respectively. Ãµ can be used to get R through the Gram-Schmidt orthogonalization procedure, 
as follows: 
 

� pt = pµtpǢ = pµ¯ − ∑ pÇpµ¯­pÇpÇ­
y6±(� � pÇ, p¯ = pm̄²pm̄ ²,  k = n – 1, n – 2, … , 1.  (3.48) 

3.  Construction of matrix A. Equation (3.46) leads to the determination of matrix A, whose   
 dimensions are (n-1) x (n-1). 

4.  Computation of the principal curvatures. The Â�  are attained through the solution of the 
following eigenvalue problem: 

ÈÉ = ÂÉ           (3.49) 

where É is a vector with n-1 elements. The problem is solved by putting the following condition: 

$Eh�È − ÂÊ� = 0          (3.50) 

where det stands for determinant and Ê is the (n-1) x (n-1)-dimensional identity matrix. 

5.  Computation of the probability of failure. SORM  approximates the limit state surface in U-

space at the MPP by a second-order surface [Fiessler et al, 1979]. In Figure 3.12, a graphical 

comparison between FORM and SORM is depicted. As it can be seen, for a nonlinear limit-state 

function, the SORM is generally more accurate then FORM. However, its accuracy is guaranteed 

only for those cases in which the reliability index β is sufficiently large (Du X. et al., 2010). Since 

SORM requires the computation of the second order derivatives for the performance function, it is 

not as efficient as FORM when the derivatives are evaluated numerically (Du X., 2006). 
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Figure 3.12: Comparison between FORM and SORM (from Du X., 2006). 

 

 

3.3.3. Inverse reliability analysis 

In many engineering applications, it is worthwhile to design a system with a previously settled 
reliability level, rather than computing the probability of failure a posteriori. For this purpose, 
inverse reliability analysis is used, which consists of determining the performance function that 
corresponds to the desired reliability R or probability of failure F�. It may be convenient to work 

with percentile values; this way, the goal is to find the percentile value Q�z which corresponds to 
the target F�, i.e., 

�[ËQ�R� ≤ Q�zÌ = F�         (3.51) 

The latter equation means that the probability, for the performance function, to be below Q�z is 

equal to F�. 

In order to determine the Q�z , the inverse FORM method (iFORM) can be applied; a brief 

introduction to this technique is given below. 

Let us define a new performance function, such that QÆ�R� = Q�R� − Q�z          (3.52) 

 

that, after Rosenblatt's transformation, becomes QÆ�|� = Q�|� − Q�z          (3.53) 

 

From the corresponding limit-state function, i.e., QÆ�|� = Q�|� − Q�z = 0,          (3.54) 
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Let o∗ be the MPP for QÆ�|� = 0; hence, o∗ is also the MPP for QÆ�|� ≤ 0, i.e., for Q�|� ≤ Q�z. 

From the target probability of failure F�, the corresponding reliability index � is given by � = ÍB*�TF�UÍ          (3.55) 

 

The Most Probable Point (MPP) o∗ is the point of tangency of both the circle having radius � and 

the limit-state function QÆ�|� = Q�|� − Q�z = 0 (see Fig. 3.13). Moreover, o∗ is also the point 

having the minimum value of Q�|�  on the circle; that point corresponds to the maximum 

probability of failure, i.e., F�. Therefore, the aim of the inverse FORM is to find the MPP o∗ on the 

β-circle (or β-sphere, or β-hypersphere, for an higher dimensional problem (Du X., 2006)) such that 

the performance function Q�|� is minimized: 

 

Î #gc$ d\. h.min Q �}�‖d‖ = � �           (3.56) 

 

 
Figure 3.13: scheme of the inverse search for the Most Probable Point (MPP). 

 

Once the MPP o∗ has been found, the F�-percentile value Q�z is computed at that point, i.e., Q�z = Q�o∗�           (3.57) 

 

 

3.4. A basic structural example 
 

The example that is now presented will be solved by following the different methods which have 
been seen in sections 3.2 ad 3.3; this will result in a useful comparison of the various approaches.  
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Let us consider a statically indeterminate structure, composed of a horizontal beam and a soft 
vertical support over its right tip, represented as a spring; such a structure, which experiences a 
vertical force F, is subject to some uncertainties; therefore, we are interested on assessing its 
reliability.  

 

 

Figure 3.14: statically indeterminate structure. 

 

The data of the problem are the following: 

Geometrical features (see Fig. 3.14): L = 300 mm; t = 20 mm; w = 10 mm;  

acting force (see Fig. 3.14): F = 1500 N; 

Young Modulus: E = 71700 N/ 2mm  (Nominal value) - Material: Al 7075-T6 (from 
www.matweb.com);  

Beam section moment of inertia with respect to the w direction: I = 6667 4mm (Nominal value); 

δ = vertical displacement of the point where the force F is acting. 

Two physical quantities are non-deterministic, and follow a standard normal distribution:  

-Bending stiffness of the horizontal beam:fR = E*I.  

 fR ≈N (478* 66 10*6.95,10 ) N* 2mm  

-Compressive stiffness of the spring: K ≈  N (40, 8)  
mm

N
. 

Using the flexibility method, the expression of the vertical displacement δ is found to be 

3

3

**3

*

lKR

lF

f +
=δ           (3.58) 

As for the constraint, the vertical displacement δ has not to exceed a given value of, say, 0δ =25 

mm. Such a value would be overtaken if either the beam or the spring failed. 

From equation (3.58), one can easily compute δ in these two extreme cases: 
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- without the spring:  
fR

lF

*3

* 3

=δ = 28.24 mm > 25 mm; 

- without the beam: 
K

F=δ  = 37.5 mm > 25 mm.  

The goal of this analysis is to assess the probability of failure of the structure, defined as the 
probability of the maximum allowable value of the tip displacement to be greater than the actual tip 
displacement, namely 
 













≥
+

−== 0
**3

*
3

3

0 lKR

lF
gPp

f
f δ        (3.59) 

 
 
 
 

3.4.1. Solving with MCS 

Let us implement a simple computer program with Matlab®, to observe the progress of the outputs 
with an increasing number of simulations. Figures 3.15 to 3.18, that differ by the number of the 
samples, plot all the couples ( KRf , ) that were sampled during the simulations. 

It can be clearly seen that the probability of failure F� gradually converges to a value of 0.006417 
(0.6417 %); thus, the reliability R converges to about 99.3583 % . 

R = 1 - fp → 0.993583 

The straight line in figures 3.15 to 3.18 represents the equation for g = 0, expressed as a function of 
the two variables fR  and K: 

60*
10*9

1
6

+−= fRK  

where  
610*9

1−   is the slope of the line. 
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Figure 3.15: 103  simulations – probability of failure = 0.004. 

 

Figure 3.16: 104  simulations –probability of failure = 0.0071. 
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Figure 3.17: 105  simulations – probability of failure = 0.00674. 

 

Figure 3.18: 106  simulations – probability of failure = 0.006417. 



52 

 

The accuracy of Monte Carlo Simulation depends on the number of simulations N. The higher the 
number of simulations, the more accurate the estimate will be. As the number of simulations N 
approaches infinity, the solution of Monte Carlo simulation will converge to the true probability 
that is under estimation. Monte Carlo is computationally robust: with a sufficient number of 
simulations, it always converges (Du X., 2006). 
 
 
 

3.4.2. Solving with FORM 

First, the normally distributed variablesfR and K  are transformed into the standard normal 

variables: R = TS� , ÐU = �0Y + 2Y}Y , 0Ñ + 2Ñ}Ñ�       (3.60) 

or 

| = �}Y , }Ñ� = GYz*>Ò@Ò , Ñ*>Ó@Ó J        (3.61) 

The transformed performance function in the U-space becomes 

Q = Ôb − Õ�ÖË·�>Ò(@Ò�Ò�(�>Ó(@Ó�Ó��ÖÌ        (3.62) 

 

The gradient of g(U) is given by 

∇Q�|� = G ·@ÒÕ�ÖË·�>Ò(@Ò�Ò�(�>Ó(@Ó�Ó��ÖÌI , @ÓÕ�×Ë·�>Ò(@Ò�Ò�(�>Ó(@Ó�Ó��ÖÌIJ    (3.63) 

 

The starting point for the search of the Most Probable Point (MPP) is set to ob = �0, 0�. 

 

Iteration 1 

At ob = �0, 0�, Q� ob� = 8.8902, ∇Q� ob� = �1.838, 1.384�, 

‖∇Q� ob�‖ = Ü�−1.838�� + �−1.384�� = 2.301,  

�b = ∇`T oÝU‖∇`� oÝ�‖ = �0.799, 0.601�, 

and �b = ‖ob‖ = 0  

 

Iteration 2 

o� = −lb à�b + Q� ob�‖∇Q� ob�‖á = �−3.087, −2.322� 
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At o� = �−3.087, −2.322�, Q� o�� = −10.93, ∇Q� o�� = �9.15, 6.89�, 

‖∇Q� o��‖ = 11.45, �� = ∇`T o�U‖∇`� o��‖ = �0.799, 0.602�, 

and �� = ‖o�‖ = 3.863 

 

Iteration 3 

o� = −l� ã�� + `T o�U‖∇`� o��‖ä = �−2.33, −1.75�, 

At o�, Q� o�� = −2.59, ∇Q� o�� = �5.39, 4.06�, 

‖∇Q� o��‖ = 6.75, �� = ∇`T oIU‖∇`� oI�‖ = �0.799, 0.602�, 

and �� = ‖o�‖ = 2.91 

 

The process continues until the solution converges. The search ends after 9 iterations. The complete 
convergence history is shown in table 3.1. 

 

Iteration β g g∇  ( yx UU , ) 

1 0 8.8902 (1.838, 1.384) (0, 0) 
2 3.863 -10.93 (9.15, 6.89) (-3.087, -2.322) 
3 2.91 -2.59 (5.39, 4.06) (-2.33, -1.75) 
4 4.17 -14.8 (11.2, 8.46) (-3.33, -2.51) 
5 3.11 -4.00 (5.96, 4.49) (-2.49, -1.87) 
6 2.57 -0.46 (4.59, 3.46) (-2.06, -1.54) 
7 2.490 0.022 (4.42, 3.33) (-1.99, -1.49) 
8 2.492 -0.02 (4.44, 3.34) (-1.995, -1.496) 
9 2.49036 -0.002 (4.42668, 3.3339) (-1.9923,-1.4942)  
Table 3.1: the MPP search history. 

 

The MPP is found at o∗= (-1.9923,-1.4942), and the reliability index is β = 2.49036. The probability 
of failure is then 

006380.0)4904.2()( =−Φ=−Φ= βfp  

and the reliability is 

R = 1 - fp = 1 – 0.006380 = 0.99362 

If the probability of failure obtained from Monte Carlo simulation with 610 simulations can be 
considered as an accurate solution, the output given by First Order Reliability Method offers a good 
approximation (Table 3.2) of the real value; at the same time, from a computational point of view, 
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FORM allows to save time and means, as it is not computationally expensive like Monte Carlo 
Method. 
 
Method Monte Carlo FORM 
Number of iterations 610  9 
Probability of failure 
(output) 

0.006417 0.006380 

Table 3.2: Comparison between Monte Carlo Simulation and FORM. 
 

 

3.4.3. Solving with SORM 

In section 3.4.2, the MPP o∗ = (-1.9923,-1.4942), the gradient of the limit-state function at the MPP ∇Q� o∗� = (4.42668, 3.3339), the unit vector  l� o∗� = (0.8, 0.6), and the reliability index β = 
2.49036 were obtained.  

The Hessian matrix )( *2 u∇  requires second derivatives, which are given by 

å�Qå}Y� = −182Y��i·Ë3�0Y + 2YdY� + �0Ñ + 2ÑdÑ�i·Ì� 

å�Qå}Ñ� = −22Ñ��iæË3�0Y + 2YdY� + �0Ñ + 2ÑdÑ�i·Ì· 

 å�Qå}Yå}Ñ = −62Y2Ñ�içË3�0Y + 2YdY� + �0Ñ + 2ÑdÑ�i·Ì· 

 

Thus, the Hessian Matrix results 

è� o∗� = é−1.5675 −1.1806−1.1806 −0.88912ê  
 

Determination of  matrix R 

First, matrix is Ãµ constructed: 

 Ãµ = ³ 1 0−8� −8�´ = é 1 0−0.8 −0.6ê 
Let us now compute the rows of matrix R. pë = pµë = �−0.8, −0.6� 
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p°Ê = pµ° − ì pÇpµ°­pÇpÇ­ pÇ = pµ° − pëpµ°­pëpë­ pë = �1,0� − �−0.8, −0.6��1, 0��−0.8, −0.6��−0.8, −0.6�	 �−0.8, −0.6� =�
y6�= �0.36, −0.48� 

and 

pµ° = p°Ê²p°Ê ² = �0.6, −0.8� 

Therefore,  

Ã = ép°pëê = é 0.6 −0.8−0.8 −0.6ê 
 

Determination of  matrix A Ã∇�Q�o∗�Ã­‖∇�Q�o∗�‖ = é −1.588 ∙ 10*ç −8.8991 ∙ 10*î−8.8991 ∙ 10*î −0.4433 ê 
ïmqnðñòóóóô õ = Ë−1.588 ∙ 10*çÌ 

Computation of the principal curvature Â� 

Let us solve the following eigenvalue problem: 

      ÈÉ = ÂÉ $Eh�È − ÂÊ� = $EhË−1.588 ∙ 10*çÌ = 0 

 

Hence,  the eigenvalue is Â� = −1.588 ∙ 10*ç. 

 

Computation of F� 

The probability of failure is  

( ) 006380012.0)]10*588.1(*49036.21[*)49036.2(*1*)( 62

1
1

1

=−+−Φ=+−Φ= −
−−

=
∏
n

i
i

SORM
f kp ββ  

that is very close to the value that was found by using FORM ( FORM
fp  = 0.00638). 

 

Table 3.3 summarizes the outputs which were obtained by solving the example with the three 
different methods presented above. 
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Method Monte Carlo FORM SORM 

Number of iterations 610  9 9 + 1 

Probability of failure 
(output) 

0.006417 0.006380 0.006380 

Table 3.3: Comparison between Monte Carlo Simulation and FORM/SORM. 

 

In this particular case, one can notice a posteriori that there would not have been the necessity to 
use the SORM method, as the greater computational effort has not resulted in a significant 
improvement in the accuracy level that had been previously achieved by using FORM. 

 

 
 
3.5. Risk analysis of a simple aeronautical structure 

 

 

Figure 3.19: the case study consists of a NACA 4415 airfoil. 

 

Reliability assessment will now be applied to the case of a structure which experiences aerodynamic 
forces (see Fig. 3.19); in this model, some data are deterministic, whereas others (i.e. the air speed 
and the lift coefficient) follow a random distribution. Prior to perform reliability analysis to the 
present application, the model has been studied from a deterministic point of view, and the results 
are reported in Appendix A. 

A NACA 4415 airfoil constitutes the cross-section of a rectangular wing of 1.5 m chord and 9 m 
depth, which passes through an air stream at a given value of the angle of attack α. Such a wing is 
bound to a statically determinate structure in two nodes, called A and B. The aerodynamic forces 
generate stresses on rods a, b, and c. The goal of the simulation is to assess the probability of 
yielding of the front rod, i.e., the probability, for the stress on beam a, to be greater than the yield 
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stress of the material (Al 7075-T6), i.e. Yσ = 462 MPa. Due to the constancy of the cross-section 
along the wingspan, the problem can be considered as two-dimensional. 

 

Problem data: 

Profile NACA 4415: 

Chosen angle of attack: α = 0°; 

Lift coefficient: Lc = N (0.4,0.1) (normally distributed); 

Drag coefficient: =Dc  0.075; 

Moment coefficient at a quarter of the chord (i.e. ≈ the position of the aerodynamic center):  ö� = −0.1; 

 

Air flux : 

Density ρ = 1.225 ÂQ e·⁄ ; 

Velocity ∞V = N(150,30) e \⁄  (N = normally distributed); 

Wing architecture: 

e = 0.225 m (see figure 3.19); 

f = 0.675 m (see figure 3.19); 

Wing surface area S = 13.5 e�; 

Length of the chord: c = 1.5 m; 

Section area of rod  a: ÷� = 452.39 ee�;  

Section area of rods b and c: ÷� = ÷� = ÷�� = 176.71 ee�; 

From equation (A.12) (see Appendix A), the limit-state function is defined, in [MPa], by 

 

( ) ( )













=−









−−



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



+
−+

−=−= =
= 0462*2

**2*
***

2

2
),,( 0

02
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Yaa fe

ecc
SV

A
VG ααπααπρσσαρ

             (3.64) 

 The following substitution (which is valid for the range of interest of the lift coefficient): 2u�8 − 8�6b� = ö�           (3.65) 

and some rearrangements lead to
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

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YaLa ρσσ     (3.66) 

 

3.5.1. Solving the problem with Monte Carlo Method (MCS) 

The execution of 810  iterations lead to a probability of failure 0801.0=fp , which corresponds to a 

reliability index β = 1.405. Nevertheless, a good approximation of the fp  value is reached after 
610  iterations, leading to fp  = 0.0805. 

 

Figure 3.20: The blue cloud of points represents the 610  MCS simulations. The performance function 

0),( =VcG La  is shown in green. The cloud is centered at the average values of the lift coefficient and of the 

velocity. 

 

The limit-state function (3.66) has been used to divide the safe zone from the failure zone.  

 

 

3.5.2. Solving the problem with FORM 

To execute the simulation with the First Order Reliability Method, it is necessary to compute the 
gradient of the limit-state function. Before doing this, Rosenblatt Transformation is made, in order 
to have random variables that follow a standard normal distribution: 

( ) ( ) ( )VCLVVCLCLL UUUUVc *30150,*1.04.0*,*, ++=++= σµσµ    (3.67) 
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By substitution of the so expressed Lc  and V into eq. (3.66) and after rearranging, the limit-state 
function comes to the following form: 

���|� = ���ö� , ø� = 2� − 2ù = − √��úû ü3�150 + 30}ý�� ³�þ�*Tb.î(b.��� U∙��(� ´ − 462 = 0 

            (3.68) 

The gradient of ),( VcG La  is given by the derivatives of such a function by each of the different 

(here, they are only two) standard normal variables: 

( ) ( )2*30150
**20

***2),(
V

aCL

VCLa U
feA

fS

U

UUG
+

+
=

∂
∂ ρ

      (3.69) 

 

( ) ( )[ ]fUcCU
feA

S

U

UcG
CLmV

aV

VLa **1.04.0**30150
)(*

**2*30),(
+−+

+
−=

∂
∂ ρ

  (3.70) 

 

Hence, 

Q[�$�|� = Q[�$T}�  , }ýU = ���ûT��  ,��U��  , ��ûT��  ,��U�ý � =ã √��Z��búû��(�� �150 + 30}ý��, − ·b√��Zúû��(�� �150 + 30}ý�	ö�ö − T0.4 + 0.1}� U ∙ #
ä  (3.71) 

 

The implementation of FORM method brought to convergence at MPP = (0.57125, 1.24315). 

The resulting reliability index is then  

� = �}� � + }ý� = √0.57125� + 1.24315� = 1.3681     (3.72) 

As reported in Table 3.4, the convergence criterion on the MPP location, i.e., 

if ‖o±(� − o±‖ ≤ ¶�, stop        (3.73) 

was satisfied. 

Anyway, the other two alternative convergence criteria were satisfied, which are: 

if ‖∇Q�o±(�� − ∇Q�o±�‖ ≤ ¶�, stop; or     (3.74) 

if ‖�±(� − �±‖ ≤ ¶·, stop        (3.75) 

 

Once the reliability index � is known, the probability of failure is immediately derived: 

085637.0)3681.1()( =−Φ=−Φ= βfp        (3.76) 
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Figure 3.21: MPP search using FORM. As it can be clearly seen, quasi-convergence is reached after 3 iterations. 

 

 

Figure 3.22: zoom on the MPP, located at u = (0.57125, 1.24315). 

 

To make a comparison, recall that, with Monte Carlo Simulation (MCS), 0801.0=fp . The 

precision here achieved with FORM corresponds to that of MCS after about 3000 iterations. 
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Iteration # 
CLU  VU  

1 0 0 
2 0.6073 1.5115 
3 0.5927 1.2434 
4 0.5698 1.2440 
5 0.5714 1.2431 
6 0.5712 1.2431 
7 0.5712 1.2431 

Table 3.4: the MPP search ( CLU  and VU  are in the first and second column, respectively) reaches convergence (with 

an accuracy of 10e-4)  after 6 iterations.  

 

 

3.5.3. Solving the problem with SORM 

In order to increase the accuracy that is obtainable from the Reliability Analysis Methods, the 
Second Order Reliability Method (SORM) was performed.  

In order to build the Hessian Matrix, the second order derivatives of ���|� = ���ö� , ø� are needed: 
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Thus, the Hessian Matrix is 

è�o∗� =
¹ºº
º» 0 3√2ü3#÷��E + #� �150 + 30}ý�

3√2ü3#÷��E + #� �150 + 30}ý� − 900√2ü3÷��E + #� 	ö�ö − T0.4 + 0.1 ∙ }� U ∙ #
¿ÀÀ
ÀÁ =

= é 0 21.786121.7861 23.7065ê 
 

Construction of matrix R 

First, one constructs matrix Ãµ: 

Ãµ = ³ 1 0−8� −8�´ = é 1 0−0.4175 −0.9087ê 
 

Let us now compute the rows of matrix R. 
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pë = pµë = �−0.4175, −0.9087� 

 

p°Ê = pµ° − ì pÇ ∙ pµ°­pÇ ∙ pÇ­
�

y6� ∙ pÇ = pµ° − pë ∙ pµ°­pë ∙ pë­ ∙ pë = �0.1743, 0.3794� 

and  

p° = p°Ê²p°Ê ² = �0.4175, 0.9087� 

Therefore,  

Ã = ép°pëê = é 0.4175 0.9087−0.4175 −0.9087ê 
All the elements needed to compute matrix A have now been obtained.  

Hence,  Ã ∙ �ër�o∗�‖�ër�o∗�‖ = é 0.2217 −0.2217−0.2217 0.2217 ê 
 

The 1x1 upper-left minor of the latter matrix is matrix A: 

A = [0.2217] 

 

Let us now compute the principal curvature 1k : 

The following eigenvalue problem has to be solved: 

 

A*Z = k*Z 

 

then, 

det(A-k*I) = det[ ]1*2217.0 k−  = 0 

that returns 

1k =0.2217 

which is the needed eigenvalue. 

As a final step, the probability of failure is determined: 



63 

 

( ) 07501.0]2217.0*3681.11[*)3681.1(*1*)( 5.02
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that is slightly closer to the MCS solution than SORM method is. 

Table 3.5 makes a comparison between the results provided by MCS, FORM and SORM. If the 
output obtained through MCS can be considered as the theoretically exact solution, it can be 
observed that the esteem of the probability of failure which was done by SORM is more precise of 
approximately 12% than the one computed by FORM. 

 

Method Monte Carlo FORM SORM 

Probability of failure 
(output) 

0.0801 0.085637 0.075013 

Table 3.5: comparison between the probability of failure as esteemed by MCS, FORM and SORM.  

 

 

3.5.4. First Order Second Moment method (FOSM) 

The FOSM method (also known as Mean Value method) is based on a first order Taylor series 
expansion of the performance function; it is evaluated at the mean values of the random variables, 
and only uses means and covariances of the random variables (Swiler L.P. et al., 2011). 
Differently from FORM and SORM, FOSM method is performed analytically, and so it does not 
need iterations. A brief introduction to this algorithm is made in the sequel. 

Let ∑�R� be the covariance matrix (see Appendix B) of a generic vector of random variables R; let 
us define the vector l as l = Q[�$��Q�|
          (3.77) 

 

i.e., the average value of the gradient of the performance function. 

It can be proved that, if R ∈ ;�0/, ∑�!�� (i.e. if X follows a normal distribution), then 

à 0` = Q�
R�2̀� = l ∙ ∑�R� ∙ l­ �          (3.78) 

 

As 

>¥@¥ = � ,           (3.79) 

the probability of failure can be immediately obtained: 
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F� =  B�−�� = B �− >¥@¥�         (3.80) 

 

When g(X) is linear and the input variables are normal, the mean value method gives exact results 
(Swiler L.P. et al., 2011). 
 
To employ this method to the current example, let ( )∑ VcL ,  be the 2x2 covariance matrix of the 

two random variables involved in the present simulation: 

∑�ö� , ø� = é0.0100 00 899.9533ê        (3.81) 

 

 From Eq. (3.78), 

à0` = ��Tö�,��`, ø��`U2̀� = l ∙ ∑�ö�, ø� ∙ l­ �         (3.82) 

where 0` = ��Tö�,��`, ø��`U is the value of the performance function when Lc and V assume their 
average values, i.e., 0.4 and 150 m/s, respectively. 

The first equation of  (3.82) then gives 

( ) MPaGag 59.190150,4.0 −==µ  

To determine the standard deviation gσ (second member of Eq. (3.82)), partial derivatives of the 

performance function (3.66) are calculated with respect to Lc  and V : 

( )[ ]feA

fSV

c

G

aL

a

+
=

∂
∂

**2

****2 2ρ
         (3.83) 

( )
( )fe

fcccSV

V

G Lma

+
−−

=
∂
∂ ******2 ρ

       (3.84) 

 

Using (3.83) and (3.84), 

l = �Q[�$Ë���ö� , ø�Ì|
 = �G��û��  , ��û�ý J�� 6b.îý6��b = �436.2, 3.6188�    (3.85) 

 

Then, from the second equation of the system (3.82), 

2̀ = �él ∙ ì�ö� , ø� ∙ l­ê = 116.9993 

Hence, 
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F� = B �− 0`2̀ � = 0.05166 

      

This result is farther from the theoretically exact solution than FORM and SORM are. The reason 
could be the nonlinearity of the performance function, which significantly reduces the accuracy of 
FOSM. 

 

3.5.5. A modified FOSM 

In order to improve its accuracy, FOSM classical method was modified as follows. In equation 
(3.80), the mean performance function was approximated as a function of the mean values of the lift 
coefficient and the aircraft speed.  

Let us now compute the real value of μ(g) as referred to n samples: 

0` = ∑ �ûT� ,x,ýxU

�6�          (3.84) 

rather than 0` = Q�
R� 

 

The same is done for the mean of the performance function gradient: 

l� = ∑ `���	�ûT� ,x,ýxU


�6�         (3.85)
 

rather than 

l = �Q[�$Ë���ö� , ø�Ì|
 = ��å��åö� , å��åø �§� ,û�¥6b.îýû�¥6��b  

From (3.84) and (3.85),  0` = −179.6014 ���, and  l = �453.9596,3.6192� 

Which were computed by considering c = 10ç in both Eqs. (3.84) and (3.85). 

Then, from the second equation of the system (3.80), 2̀ = 117.6839 

 

( ) 0635.09365.016839.117,6014.179,01 =−=−−=⇒ normcdfp f     

This result is substantially more accurate than the one obtained with standard FOSM method. 
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3.5.6. Comments 

The following table is to compare the proposed FOSM methods with the previously implemented 
methods; here, they are ordered from the most accurate to the least accurate. 

 

Method Probability of failure 
Monte Carlo 0.0801

 
FORM 0.085637

 
SORM 0.075013

 
FOSM (modified) 0.0635 

FOSM 0.05166 
Table 3.8: comparison between the probability of failure obtained with FOSM methods with the ones previously  

computed via MCS, FORM and SORM. 

 

As stated previously, the result from Monte Carlo Method can be taken as the correct solution, due 
to the huge number of simulations that were performed. FORM method gives an approximation 
with an error of about 0.55%, whereas SORM method brought, in this case, to a relatively poor 
improvement, if compared with the first order approximation: indeed, using SORM, the error is 
0.5%, i.e. only 0.06% closer to the true solution than FORM (with an improvement in accuracy of 
12%).  This fact suggests that, for this particular application, the bigger computational cost for 
performing SORM is not fully repayed in terms of improved accuracy, if compared with FORM.  

As regards FOSM methods, they resulted to be the least accurate one between the methods that 
were applied to this example. On the other hand, due to the lack of iterations, the FOSM and 
modified FOSM are often recommended for complex systems, where a huge number of 
computations would be otherwise needed. In this way, a considerable amount of time can be saved.  

 

 

3.6. Conclusions 
This chapter was devoted to the description and evaluation of some of the main reliability 
assessment algorithms. The issue to be solved is the computation of the reliability of a system, 
which, from an analytical point of view, derives from the integration of the joint probability density 
function (jpdf) of the random variables inside the safe domain, i.e., that part of the random variables 
space in which the structure is expected to survive under predefined (usually extreme) events. The 
most immediate and easy to use technique is Monte Carlo Simulation (MCS). Provided a sufficient 
number of simulations, MCS results to be the most accurate method for computing the probability 
of failure of a system, so much so that it is often used as a benchmark for the validation of other 
algorithms. On the other hand, MCS is not suitable for repeatedly performing complex 
computations like those which are concerned with many engineering applications; therefore, 
approximated methods are often used. Among these ones, the most popular ones are First and 
Second Order Reliability Methods (FORM  and SORM), which simplify the expression of the jpdf 
(i.e., the integrand), and, on the other hand, simplify the integration domain through approximating 
the limit-state function g(X) = 0 at the Most Probable Point (MPP) with a Taylor Expansion of the 
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first or second order, respectively. These methods were tested first on an elementary, statically 
indeterminate, structure, and then on an aerofoil which is constrained to the ground through a 
statically determinate structure. Considering the probability of failure computed via MCS (after 
10^6 and 10^8 iterations, respectively) as the exact solution, the execution of FORM brought to an 
error of 0.0037% and 0.55%, respectively. Compared to FORM, the subsequent implementation of 
SORM determined an accuracy improvement only in the second case (of 12%), whereas the output 
relative to the first case remained unchanged. This suggests that the use of SORM method should be 
considered with a grain of salt, i.e., in compliance with the accuracy needs, and by taking into 
account that the desired improvement in accuracy (compared to FORM) can be not so significant, 
and that, in any case, there will be an increase in the computational burden. Anyway, the use of 
SORM results to be convenient when the performance function is highly nonlinear. While studying 
the second applicative cases, First Order Second Moment (FOSM) method and a modified version 
of the latter were applied; when g(X) is linear and the random variables are normal, FOSM provides 
the mathematically exact solution; however, this is not the case of the airfoil simulation, in which 
these techniques resulted therefore to be significantly less accurate than FORM and SORM. 

To sum up, among the reliability assessment methods that have been seen and tested in this chapter, 
the author’s opinion is that the First Order Reliability method (FORM) resulted to be perhaps the 
one that offers the best compromise between accuracy and computational costs. 
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Chapter 4 

 

Deterministic optimization 

 
 

4.1. Introduction 
In engineering design, optimization is a technque which allows to satisfy the need of maximizing 
(or minimizing) a certain performance, while complying with some feasibility requirements. Indeed, 
in a design, the choice of the dimensions of the system to be realized are normally limited to some 
predefined intervals; moreover, safety requirements impose additional limitations to the system 
properties, in order to prevent any form of failure, or even danger for the surrounding environment. 
The latter conditions are met through the use of some appropriate constraint functions. From a 
mathematical point of view, optimization is the solution of a constrained extrema problem inside a 
selected subspace. The analytical formulation of the problem is as follows: 

 

���
�� �gcgegME #�$�, $�, … , $
� \d �Eöh hfQ��$�, $�, … , $
� ≤ 0, g = 1,2, … , c�ℎy�$�, $�, … , $
� = 0, � = 1,2, … , c�$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�       (4.1) 

 

where �$�, $�, … , $
� is the vector of the design variables that will be determined during the design; #�$�, $�, … , $
� is the design objective function (or fitness function) which has to be minimized; Q��$�, $�, … , $
�  are the inequality constraints, which limit the space to a feasible domain; ℎ��$�, $�, … , $
�  are equality constraints; $±�  and $±�  are, respectively, the lower and the upper 
bound for each of the k design variables. In other words, the problem can be understood as: find the 
set of design variables d which minimizes the performance function  f while respecting the design 
constraints. 

To sum up, an optimization model is normally composed of three main components: the design 
objective, the design variables and the design constraints. Let us now analyze in detail each of 
them. 

  

Design variables 

The design variables are under the control of the designer, and every different combination of them 
determines a different design. The goal of the design optimization is to find the best combination of 
design variables that optimizes the designer’s preference (design objective) and maintains certain 
requirements (constraints) (Du X., 2006). A typical engineering example of design variables 
managing is the choice of the geometric dimensions of a structure. 



69 

 

Design variables are normally in one of the following forms: 

- continuous variables; 

- integers, e.g. the number of heat pipes in a cooling system for a spacecraft instrument, or the 
number of teeth in a gear; 

- a discrete variable, which can take values only from a discrete set (for example, a catalogue). 

 

Design objective 

The design objective represents the designer's goals. The mathematical representation for the design 
objective is the objective function (or fitness function), which is represented in terms of design 
variables. Typical examples of objective functions include weight and costs, or aerodynamic 
efficiency. From a computational point of view, the fitness function is normally expressed as a 
quantity to be minimized. However, if one wants to maximize the fitness function #�$�, $�, … , $
� 
in equation (4.1), the design objective can be expressed as  

���gegME^−#�$�, $�, … , $
�_ 
i.e., with a change of sign. 

In many complex design problems, more than one performance have to be optimized; to solve this 
kind of problems, multiobjective optimization is performed. 

 

Design constraints 

Constraints are function of the design variables, and limit the domain of the possible solutions; they 
have to be strictly satisfied. Some examples of design constraints include the maximum allowed 
deflection or stress in a beam, or the minimum required level of reliability. 

  

4.2. Optimization algorithms 
Several kinds of algorithms can be used to solve an optimization problem; they can be divided into 
some main categories: analytical methods, graphical methods, and numerical methods; in the latter 
group, the gradient-based algorithms and the genetic algorithms (GA) are the most used. 

 

4.2.1. Analytical method 

This kind of method requires the solution of the Karush-Kuhn-Tucker conditions, which are a 
generalization of the Lagrange Multipliers Method (which allows only equality constraints) and are 
reported below:  
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���
�����ð���x + ∑ �y �`¸�ð���x + ∑ �± �
��ð���x = 0, g = 1,2, … , c
�±6�
xy6��yQy�ð� = 0,   #f[ � = 1,2, … , c��y ≥ 0, #f[ � = 1,2, … , c�  ℎ±�ð� = 0,   #f[ Â = 1,2, … , c�

�    (4.2) 

 

where �y and �± are undetermined constants (from Du X., 2006). 

Due to the computational complexities that arise when equations (4.2) are nonlinear, the analytical 
solution is limited to very simple cases only.  

 

4.2.2. Graphical method 

For very simple problems involving up to two variables, the optimal point can be found through the 
following method: 

- plot the constraint boundaries to define the feasible and the infeasible regions; 
- plot the contours of the objective function, and find the direction along which the objective 

function increases or decreases; 
- identify the optimal point, i.e., that point whose coordinates �$�, $��  correspond to the 

optimal design solution. This point is related to the minimum value of the fitness function 
inside the allowed region, and it is usually located along one of the constraint boundaries; it 
often coincides with the tangency point between a contour of the objective function and one 
of the constraints, as depicted in Fig. 4.1. 

 

Figure 4.1: example of optimization through the graphical method. The limit-state function  Q�$�, $�� = Q� , ℎ� = 0  
(in magenta) divides the space into the feasible region and the infeasible region. Each of the blue curves indicates a 

particular value of the objective function f. 
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4.2.3. Gradient-based numerical method 

Due to the high complexity level, most of the engineering problems cannot be solved by analytical 
or graphical methods. One of the alternatives is given by gradient-based numerical methods. With a 
numerical method, the optimal design starts from an initial design point (starting point) that 
represents an initial design. The numerical optimizer evaluates the objective function, the constraint 
functions and their derivatives and, based on their values, the optimizer generates a search direction 
along which the objective function will be likely to descend (see Fig. 4.2). A step size along the 
descent direction will be searched such that the objective function will decrease to the lowest 
possible value without violating any constraint. Then, at the following iteration, the current design 
point moves along the search direction with the specified step size. A new design point is then 
obtained. The optimizer evaluates the objective function and the constraint functions again at the 
new design point and checks whether the solution converges (from Du X., 2006). If convergence is 
not reached, the optimizer generates a new search direction and the relative step size for the 
following iteration. This procedure continues until an optimal solution is found. 

Let us now consider a simple two-dimensional case of optimal point search, in which the design 
point after k iterations is ð¯ (see Fig. 4.3); to determine the next iteration, i.e, ð¯(°, the search 
direction ¬¯ and the step size �¯ are generated, so that the new design point is 

ð¯(° = ð¯ + �¯¬¯ 

As for the termination criteria, two of the most popular ones are the following: 

1) The distance between two consecutive design points has to be less than a tolerance ¶�: ²ð¯(° − ð¯² ≤  ¶� 

2) The difference between the fitness functions relative to two consecutive design points has to be 
less than a tolerance ¶�: Í#Tð¯(°U − #Tð¯UÍ ≤  ¶� 

To perform gradient-based optimization, the available numerical routines are normally used, where 
the search process is fully automatic. 
One of the limits of this kind of methods is that they can converge to local minima rather than 
global minima (see Fig. 4.4); therefore, to obtain the optimal solution, a different starting point 
should be used. 
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Figure 4.2: example of a a gradient-based optimization procedure to look for a minimum value (from S. Kozola, 2009). 

 

Figure 4.3: example of the k-th iteration of an optimal point search: the new design point ð¯(° is found from the 
previous design pont ð¯ by making a �¯ move along the ¬¯ direction (from Du X., 2006). 
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Figure 4.4: this case, in which a single design variable d involved, is useful to highlight how the choice of the starting 
design point is crucial: indeed, for some starting points such as $�b and $�b, the gradient-based numerical method can 

converge to a local minimum (i.e., $�∗ or $�∗), rather than to the global minimum $·∗  (from Du X., 2006). 

 

 

4.2.4. Genetic algorithms (GA) 

This kind of algorithms act in an heuristic way that mimics the process of natural selection. They 
are based on the classic view of a chromosome as a string of genes (Holland, 2012).  In the selective 
breeding of plants or animals, for example, offspring are sought to have certain desirable 
characteristics, which are determined at the genetic level by the way the parents’ chromosomes 
combine. By using this concept, R.A. Fisher (1958) contributed to the development of mathematical 
genetics by providing a theory specifying the rate at which particular genes would spread through a 
population. In the case of GAs, a population of strings is used, and these strings are often referred to 
in the GA literature as chromosomes. The elements of a string correspond to genes, and the values 
assumed by  those genes correspond to alleles. The concept of evolution is carried out through a 
generation-by-generation process where, at each stage, a population of individuals produces a set of 
offspring that indeed constitutes the next generation. Then, a fitness function is associated to each 
of the new strings, in order to assign the number of offspring which that chromosome will 
contribute to during the next generation. Starting from the parent chromosomes, the recombination 
of such strings is carried out by using simple analogies of genetic crossover and (to a lesser extent) 
mutation, and the search is guided by the results of evaluating the objective function f for each 
string in the population. Based on this evaluation, strings that have higher fitness (i.e., represent 
better solutions) can be identified, and these are given more opportunity to breed (C. Reeves, 2003). 

Let us now focus on the processes of recombination. 
Crossover is a way of substituting some of the genes in one parent by corresponding genes of the 
other. Crossover in its simplest form (i.e., one-point crossover) can be defined as follows: given the 
parents P1 and P2, let us define the crossover point X: the pieces lying on the left of that point are 
exchanged between the two chromosomes, giving rise to a pair of offspring chromosomes O1 and 
O2 (see Fig. 4.5) . 
Mammals’ offspring exhibit a mix of their parents’ characteristics mainly due to crossover 
(Holland, 2012). 
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P1 1 1 1 1 1 1 1 

 
       X 
 

P2 0 0 0 0 0 0 0 
 
 
 
 

O1 1 1 1 0 0 0 0 
 

O2 0 0 0 1 1 1 1 
 

 
Figure 4.5: parent strings (P1 and P2) undergoing crossover, from which the offspring (O1 and O2) is generated. 
 
 
In mutation, on the other hand, a subset of genes is chosen randomly, and the allele value of the 
chosen genes is changed. In the case of binary strings, this simply means complementing the chosen 
bits (C. Reeves, 2003). For example, the string O2 (see Figure 4.5), with genes 2 and 7 mutated, 
would become 0 1 0 1 1 1 0. 
If the new population of strings doesn't satisfy the convergence conditions, the recombination 
process will continue, as shown in the template that follows. 
 
 
 
 
Choose an initial population of chromosomes; 

while termination conditions not satisfied do 

 repeat 

  if crossover conditions not satisfied then 

  ^select parent chromosomes �; 
  choose crossover parameters; 

  �perform crossover_; 

  if mutation condition satisfied then 

  ^choose mutation points;� 
  �perform mutation_; 

  evaluate fitness of offspring 

 until sufficient offspring created; 

select new population; 

endwhile 
 
 

Figure 4.6: general template for a genetic algorithm (from Reeves C., 2003). 
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Figure 4.7: evolution flow of a genetic algorithm (from Liao and Sun, 2001). 

 

 

4.3. Deterministic examples 

4.3.1. Statically determined airfoil 

As an introductory example to optimization design, a simple case, applied to a statically determinate 
profile (nearly the same that was analyzed in Chapter 3) will be herein presented. In this case, the 
performance of a gradient-based algorithm will be observed. 

Compared to the case of Chapter 3, the only difference is that: the distance �E + #� between nodes 
A and B is no more constant, due to the fact that f is now considered as one of the design variables; 
therefore, the position of the aerodynamic center (a.c.) is no more fixed a priori. 

The goal of the present simulation is to minimize the ratio between f (i.e., the distance between the 
aerodynamic centre and node B) and the airplane velocity V, with the constraint about the yield 
strength that has not to be overtaken. The minimization of the f/V ratio is made with the aim of 
optimizing the performances while, at the same time, minimizing the wing obstruction (and, hence, 
its mass). 

Anyway, the values of these two variables have to lie inside two intervals, which are, respectively: 

- for the length f: [0.35 m; 1 m]; 
- for the velocity V: [100 m/s; 200 m/s]. 

Remember that, during the reliability analyses, the value for f  was constant and equal to 0.675 m. 
For the rest, the model data are the same of Chapter 3. 
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Figure 4.8: the airfoil structure which was optimized. While the airfoil depicted in figure 3.19 has a fixed geometry, in 
the present application the length  f  is a design variable. 

 

The optimization model is given by 

���
�� �gc �ý\. h.���ö� , ø� = 2� − 2ù ≤ 00.35 e ≤ # ≤ 1 e100 e \⁄ ≤ ø ≤ 200 e \⁄

�        (4.3) 

 

Where 2ù = 462 ��� is the yield strength of the material (Al7075-T6). 

A commercial routine implementing the gradient-based method was used. 

The Matlab codes used  - partially influenced by Du X. (2006) - are given in appendix C.1. 

Analysis of the results 

The results from Matlab are reported in Appendix C.1. The initial value of (f,V) was set to (0.675 m; 
150 m/s). With such a starting point, the optimization process converges to: 

V(opt) f(opt) f/V (opt) (l(opt) [safe if ≤ 
0] 

Tension on rod a 

150.0015 m/s 0.35 m 0.0023333 -168.6713 MPa 293.33 MPa 
Table 4.1: outputs of the gradient-based optimization, when the starting points were set to f = 0.675 mm and V=150 

m/s. 

The optimal point - i.e. the minimum of the f/V ratio - is obtained for a value for a tension of 293.33 
MPa, i.e. well under the yield limit of 462 MPa. The optimal value for the velocity is 150.0015 m/s: 
it lies inside the interval of [100m/s; 200 m/s], but it is extremely close to the value chosen for the 
starting point (150 m/s); on the other hand, the value of the distance f corresponding to the 
minimum is 0.35 m, i.e. on the lower limit of the interval. Subsequent simulations showed that such 
an optimal point is only a local minimum, and it is far from the global minimum.  
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Then, a global minimum search was performed, which consisted in varying the starting values of f 
and V, until it was found that, while the optimal point is independent on the initial value of f, it 
strongly depends on the initial value of V. 

The point of global minimum is  �#, ø�`��� ��
 = �0.35 e, 188.25 e/\� 

which corresponds to the limit value of the performance function, i.e., ���ö� , ø� = 2� − 2ù = 0. 

Such an optimal point, that corresponds to the performance function reaching zero (i.e., the material 
yielding), is obtainable by initializing the velocity with a value between 188.25 m/s and about 199 
m/s. For a starting velocity of 188.24 m/s (i.e. 0.01 m/s less than the value of V which corresponds 
to the optimal f/V ratio), the optimum is not reached; this fact indicates that, in the present example, 
the utilized gradient-based routine is efficient only on the right neighbourhood of the point 
corresponding to optimum.  

The results referring to the case in which the initialization of (f,V) was set to (0.36 m; 199 m/s) are 
reported in Appendix C.1. 

 

The performance function 

The trend of the performance function inside the interval is reported in Fig. 4.9. There, the red plane 
represents the limit case in which the acting tension equals the yield stress of the material: thus, the 
intersection between the coloured surface and the red plane represents the limit case in which the 
acting forces are equal to the yield stress of the material: the part of the performance function that 
lies above such a plane is connected to the deterministic failure of the structure.  

 

 
Figure 4.9: The intersection between the coloured performance function and the red plane locates the limit-state 

function G(V,f) = 0. The portion of the performance function which lies above such a limit (i.e., on the right) identifies 
the configurations (couples of V and f) which bring to failure. 
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Looking for minimum points 

 

Figure 4.10: the trend of the objective function f/V inside the selected interval. 

 

As it can be seen from Fig. 4.10, there is only one minimum in the domain that was chosen: as it 
can be easily computed, the minimum of f/V in the domain is found for the minimum value of  f  by 
the maximum of V, i.e. 0.35/200 = 0.00175. Moreover, there isn’t any stationary point (i.e., where 
the Hessian Determinant is zero): this suggests that, ideally, a gradient-based algorithm would have 
to converge to (f,V) = (200,0.35) for whichever starting point on the domain.  Nevertheless, one has 
also to remember the presence of the constraints (namely, the unsafe region in Fig. 4.9), which 
circumscribes the optimum point search to the allowed region only.  Hence, (V, f) = (188.25 m/s, 
0.35 m) is the constrained global minimum point. 

 

4.3.2. Cantilever beam 

A cantilever beam having a rectangular section and a fixed length is subjected to a pure bending 
force on its tip, whose components are �,  and �� . Let us want to dimension the cross-sectional 
geometry, such that the beam mass results to be minimized, while respecting the constraint on the 
maximum allowable stress (i.e., the yield stress). Due to the constant section and the homogeneous 
density, the mass minimization problem can be reduced to the minimization of the cross-sectional 
area of the beam, which is expressed as A = b*h (see Fig. 4.11).  

 
Figure 4.11: cantilever beam subjected to a pure bending force on its tip. 
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Nevertheless, the section base b and heigth h values have to lie inside predefined intervals.  

 

Problem data: 

L = 2540 mm; 

E = 200,000 MPa; �, = 2227 ;; �� = 4454 ;; 

3ù = 241.3 ��� (yield strength); 

 � ≤  ≤  �  Ë � = 25.4 ee,  � = 254 eeÌ; 
ℎ� ≤ ℎ ≤ ℎ�  Ëℎ� = 25.4 ee, ℎ� = 508 eeÌ; 

The constraint is deterministically expressed as the performance function g (Equation 4.4); from a 
deterministic point of view, this function has to be negative, i.e. the acting stress has not to overtake 
the yield stress S of the material, i.e., 

QT�,, ��U = ç��
 GÕ*� + Õ+
 J − 3ù ≤ 0        (4.4) 

or, QT�,, ��U = 3 − 3ù ≤ 0         (4.5) 

To summarize, the optimization problem is given by: 

���
�� min ÷\. h.QT��, �VU = 3 − 3P ≤ 0 � ≤  ≤  �ℎ� ≤ ℎ ≤ ℎ�

�         (4.6) 

 

The starting point for the optimization process is set to (b,h) = (50.8, 50.8) mm. 

 

Optimization 

Optimization is performed by using the the same gradient-based routine which was used in section 
4.3.1, and the chosen algorithm follows interior point method. The iterations data and the final 
results are reported in Appendix C.1. The first optimization loop provides the following results: 

(b,h) = (52.0055, 104.011) mm 

Objective function = 5409.14 2mm  
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Approaching the problem from a different starting point 

To assess the stability of the gradient-based method in the present application, a new starting point 
was settled at d=(203.2, 50.4) mm. 

 

Optimization: 

The optimal objective function results to be  ÷��� = 5409.14 ee�, the optimal point being  � , ℎ����=  (52.0055, 104.011) mm. 

One can notice that the optimization outputs are exactly the same as in the previous case [i.e., 
starting from (b,h)=(50.8,50.8) mm].  

 

Changing again the starting point 

Other starting points were selected as input for the optimization problem, namely: 

(b,h)=(228.6, 533.4) mm; 

(b,h)=(251.5, 505.5) mm; 

(b,h)=(25.65, 25.65) mm; 

(b,h)=(127, 381) mm; 

 

nevertheless, all of them leaded to the same result, namely 

 � , ℎ����=  (52.0055, 104.011) mm ÷��� = 5409.14 ee� 

 

Inspecting the force-geometry correlation along x and y directions 

In the last paragraphs, it was noticed that optimization results brought to beam sections in which the 
ratio between the horizontal and the vertical side of the section was always equal to 0.5.  In order to 
understand the reason for this, the values of the acting forces xP and yP  were changed, in order to 

state whether there is any law which defines the optimal geometry of the section. 

In all the optimization cycles that have been performed up to now, the ratio between the acting force 

along x direction and the one along y was equal to 5.0
4454

2227 ==
N

N

P

P

y

x .  

 

The optimization cases that follow were performed in the hypothesis that the starting geometry was 
(b,h)=(50.4, 50.4) mm, and with all the numerical assumptions that have been made up to now. 
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Varying the acting forces in intensity and in their mutual ratio 

- If one chooses xP = yP
 
= 4454 N, the optimal result is: 

 ���= ℎ��� = 82.517 mm 

That is to say, to a 
y

x

P

P
 ratio equal to1, the routine returns a  ��� ℎ���⁄  ratio equal to 1. 

- If 8908=xP  N and yP = 44.54 N, the optimal section is the one with:  ��� = 150.92 mm, ℎ��� = 25.4 mm. 
In this last case, the optimization was limited by the fact that the lowest allowed value for h 
was reached. 
 

Changing the allowed intervals for b and h: 
 

The lower and upper bounds for the design variables have been, up to now: 
25.4 mm ≤ b ≤ 254 mm    and 
25.4 mm ≤ h ≤ 508 mm; 
Such values will be herein changed. 

 
- Let us now choose  8908=xP  N and yP = 44.54 N again, but with a different set of allowed 

intervals for the sizes of b and h, namely 
25.4 mm ≤ b ≤ 254 mm    and 
0 mm ≤ h ≤ 508 mm; 

the optimal section results to be the one with:  ��� = 25.4 mm, ℎ��� = 9.8334 mm. 
In this last case, the optimization was limited by the fact that the lowest allowed value for b 
was reached. 
 

- The bounds of the design variables were changed again, keeping the same values of the 
acting forces: 
25.4 mm ≤ b ≤ 1270 mm and 
0 ≤ h ≤ 508 mm; 
 
the optimal section geometry is then given by:  ���= 607.98 mm, ℎ��� = 3.04 mm;  ÷��� = � ∙ ℎ���� = 1848.2 2mm . 
 
It was found that  ��� ℎ���⁄  = 200, the same ratio existing for the acting forces:  

xP / yP   = 8908/445.4 = 200. 

 
It is important to notice that, in this case, the limit bound(s) were not reached.  
 

- As a further proof of this trend, another different set of forces was chosen: 





=
=

NP

NP

y

x

17107

5010
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with  
25.4 mm ≤ b ≤ 1270 mm and 
0 ≤ h ≤ 508 mm; 
 
Notice that xP / .3295.0=yP  

The optimization brought to  
 �  ��� = 56.99 eeℎ��� = 172.97 ee� 
 
and the  ��� ℎ���⁄  ratio is 0.3295, i.e., exactly equal to the ratio between the external acting 
forces.  
  
 

Comments 

As far as it has been seen during the present investigation, whenever the optimal geometry doesn’t 
involve any limit bounds for the section allowed sizes, the ratio between  ��� (the side along x axis) 
and ℎ��� (the side along y axis) resulted to be equal to xP / yP , i.e. to the ratio between the acting 

force along x and the one along y.  

 

4.3.2.1. Verifying the results through Graphical optimization 

In the last sections, it was shown that the gradient-based  function brought to the exact solution.  
The goal of the present paragraph is to perform the optimization from a graphical point of view, in 
order to compare it with the numerical results. 

As it is shown in Fig. 4.12, every value of the objective function f is associated to a different 
hyperbole f = b* h = A.  

 

Figure 4.12: several curves of the performance function b * h = f, in which every hyperbole has a constant value of  f. 
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On the other hand, Fig. 4.13 shows (highlighted in magenta) the limit-state function g(b,h)=0.  

 

Figure 4.13: limit-state function g(b,h)=0  (in magenta) and several objective functions (in blue). 

Figure 4.13 shows that the performance function curve potentially intersects more than one 
objective curves.  

This means that the limit-state function follows a path that potentially continues to change 
“altitude”, according to every of its particular couple of coordinates (b,h). Therefore, the optimal 
value for the objective function along the limit-state function is reached at the point having the 
minimum f value, which corresponds also to the tangency point with the connected objective 
function itself (see Fig. 4.14). 

 

Figure 4.14: The green curve represents the optimal objective function, i.e. the only one that is tangent to the limit-state 
function (coloured in magenta). 
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To better understand the separation between the admitted and the forbidden regions, let’s have a 
tridimensional look to the objective function and to the performance function (see Figures 4.15 and 
4.16).  

 

 
Figure 4.15: The objective function  f = b * h increases for increasing values of b and h. 

 

Figure 4.16: The performance function g(b,h) sharply increases while getting closer to the origin. 
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Let us look for the optimal values of b and h. Considering the expressions for the two curves in 
figure 4.14:  

 

( )







===

=






 +−=
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0
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        (4.7)

 

 

From the second expression of the system: 

b

c
h =

            (4.8)
 

And, by inserting such a value in Eq. (4.7), one obtains the expression of the limit-state function as 
a function of b as the only variable: 

0
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        (4.9)

 

Then,
 

0***6***6** 22 =−− bYLcXLcbS
       (4.10)

 

The equation is now expressed as a second-degree polynomial of the only variable b: 

0*
**6

* 2
2 =+−

Y

Xc
b

YL

cS
b

         (4.11) 

 

The law to find the two solutions is 

      (4.12) 

 

 

But, remembering that there is only one solution (tangency), the term 

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(i.e. the so-called Δ) is necessarily equal to zero. Hence, 
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From the last expression, it is possible to determine the value of c = f : 

07.5404
***144

3
2

2

==
S

YXL
c

        (4.14)
 

 

From equations (4.12) and (4.14), it is possible to find that  ��� = 51.981 

And, recalling that 
b

f

b

c
h == , 

ℎ���= 103.963 mm 

 

These results confirm the validity of the optimal point that was found using the gradient-based 
method. 

 

Further improving the objective function 

The value of the performance function at the optimal point that was found earlier is 

g(b,h) = g(51.981 mm, 103.962 mm) = 0 

 

Several points along the optimal objective function were chosen in the neighbourhood of the point 
that was found to be the optimal one (both by the graphical method and  by fmincon), in order to see 
if there was any couple of coordinates (b,h) having a greater value of the performance function, i.e. 
farther to the limit condition and therefore “safer”. 

It was found that, if  b = 51.841 mm, 

 

mm
b

f
h opt 24.104

841.51

07.5404 ===  

and 

g(b,h)=g(51.841,104.24) = 40.27 > 0 

 

For less than truncation errors, this last point would be safer than the point that was found earlier, 
i.e. (51.981, 103.962), for which the performance function is zero. 

Notice that, in this last case,  
2

1
4973.0

24.104

841,51 ≠==
h

b
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4.4. Conclusions 

In the present chapter, an introduction to optimization was made, which, together with reliability 
assessment, constitutes the basis for the comprehension and the implementation of Reliability-
Based Design Optimization, as it will be hereinafter seen. Anyway, for the purposes of this chapter, 
purely deterministic optimization was examined. In a structural design, the objective of 
optimization is to find the optimal values of a set of design variables such that a certain (or more 
than one) performance is maximized, while respecting some predefined feasibility constraints. The 
most elementary problems, which can be expressed through a very simple mathematical form and 
which involve a limited number of design variables, can be solved in an analytical or a graphical 
way. Apart from these rare cases, optimization is carried on via numerical methods, the most 
popular ones being gradient-based methods and Genetic Algorithms. A couple of applicative 
examples have then been examined. In the first one, the objective was to optimize the ratio between 
the performances and the dimensions of a wing airfoil; to do so, a gradient-based method was used. 
In this application, such an algorithm proved to be susceptible to the value of the starting point: 
indeed, convergence to the global optimal solution is attained only if the starting point is located 
inside a precise subset of the design variable space allowed region. The second applicative example 
concerns the geometrical sizing of a cantilever beam, in order to minimize its mass while 
accounting for the constraint on the material yield stress. This time, the gradient-based method 
converged to the global optimum, and its stability was proved by varying the initial beam geometry 
and the values of the forces acting on its tip. The exactness of the solution was also proved via 
graphical optimization, with whom the same optimal point was found. In conclusion, it was verified 
that gradient-based methods not always converge, and are generally strongly dependent on the 
choice of the starting point. 
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Chapter 5 

 

Reliability-Based Design Optimization 
 

 
 

5.1. Introduction 

In Chapter 4, deterministic optimization was treated; this methodology is used to minimize or 
maximize an objective function f, while maintaining design constraints; however, it doesn't 
incorporate uncertainties, and thus may result in risky or conservative designs (see Fig. 5.1). 
Reliability-Based Design Optimization (RBDO) is a methodology that considers uncertainty during 
the design process. Uncertainty is due to the presence of random parameters, i.e., those random 
variables which cannot be controlled by the designer (Du X., 2006). The need to obtain a trade-off 
between a higher safety and a lower cost is normally satisfied by fixing a minimum required 
reliability R, or a maximum allowed probability of failure F� for each of the constraints, the latter 
being expressed through a set of c� probabilistic performance functions Q�. 
 
 

 
 

Figure 5.1: comparison between deterministic optimization and Reliability-Based Design Optimization (from R. 
Haftka, 2010). 
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The analytical formulation of the problem is 

 

���
�� �gcgegME #�ð, 
R� \d �Eöh hf�[^Q��ð, R� ≤ 0_ ≥ S�, g = 1,2, … , c�Qy�ð� ≤ 0, � = 1,2, … , c�$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�       (5.1) 

 

where Q�  are the probabilistic constraints, S�  are their related required reliabilities, Qy  are the 

deterministic constraints, and 
R is the vector of the mean values of random variables X; $±�  and $±� 
are, respectively, the lower and the upper bound for each of the n design variables ð =�$�, $�, … , $
�. 

To solve a RBDO problem, a reliability analysis loop is nested into an external optimization loop 
(see Fig. 5.2). In the outer loop, the optimum search is executed. After every iteration of the 
optimization algorithm, the inner loop uncertainty analysis is performed to evaluate the design 
safety, which is normally based  either on Monte Carlo Simulation (MCS) or on Reliability 
Methods (i.e., FORM or SORM). Due to its trade-off between efficiency and accuracy, FORM 
method is often preferred. 

 

Figure 5.2: General scheme of the double loop-procedure for Reliability-Based Design Optimization (from Du X., 
2006). 
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Equation (5.1) refers to the case of Direct Reliability-Based Design; in such a model, the the actual 
reliability of each reliability constraint is evaluated (Du, 2006), and FORM method is normally 
used. For every probabilistic constraint, the Most Probable Point is located by using the following 
model, which is analogous to that of Eq. (3.18): 

�min�� = egc|}�|\. h.Q��ð, }� � = 0 �          (5.2) 

in which the coordinate system U refers to the standard normal random variables (namely, after 
Rosenblatt transformation). The solution of Eq. (5.2) is the MPP om∗ or, equivalently, the reliability 
index ��. The corresponding reliability is given by 

�[ËQ��ð, R� ≤ 0Ì = B����         (5.3) 

However, the computational efficiency of Direct Reliability-Based Design model is limited, mainly 
due to the necessity to compute the probability of failure for each of the reliability constraints Q��ð, R�. Moreover, some of the probabilistic constraints may have very high reliabilities, which 
will never be critical during the optimization process; nevertheless, the evaluations of their 
reliabilities will unfortunately dominate the computational effort in the RBD process (Du, 2006). 
Furthermore, direct reliability analysis exposes to the risk of singularity problems. 
To work out such an issue, one can set a priori a minimum required reliability, rather than 
computing it a posteriori: by doing this, the reliability assessment is performed only to the 
necessary level, i.e., just enough to meet the design requirements. For this purpose, Inverse 
Reliability-Based Design was introduced. In this model, the probabilistic constraints-based 
formulation is substituted with the concept of percentile performance function. Recalling Eq. (3.51) 
(but reversing the signs, in order to improve the clarity), the percentile value Q�z which corresponds 
to the target F� is 

�[ËQ�R� ≥ Q�zÌ = F�         (5.4) 
 
or, equivalently,  
 �[ËQ�R� ≤ QYÌ = S          (5.5) 

The latter equation means that the probability, for the performance function, to be less or equal to 

the R-percentile performance function QY is equal to the target reliability R, which is equal to the 

area in magenta in Fig. 5.3. 
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Figure 5.3: graphical expression of an R-percentile performance function from Du X., 2006). 

In other words, in the Inverse Reliability-Based Design approach, the probabilistic constraints are 
transformed into R-percentile performance functions that have to be satisfied. Therefore, rather than 
computing the actual reliability �[ËQ��ð, R� ≤ 0Ì, the location of QYwill determine whether the 
probabilistic constraint are satisfied or not. The percentile constraints are expressed as 

QY�ð, R� ≤ 0           (5.6) 

Another advantage of this procedure is that it allows to avoid the singularity problems that can be 
met while performing direct reliability analysis through FORM or SORM.  

A general RBDO problem implementing inverse reliability analysis can be expressed as: 

��
�
�� �gcgegME #�ð,
R� \d �Eöh hfQ�Yx�ð, R� ≤ 0, g = 1,2, … , c�Qy�ð� ≤ 0, � = 1,2, … , c�$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�        (5.7) 

 

where S� Tg = 1,2, … , c�U is the target reliability for the i-th percentile constraint. The percentile Q�Yx  is determined by inverse reliability analysis, and inverse First-Order Reliability Method 

(iFORM) (Tu et al., 1997) can be used: 

Î #gc$ |egc Q��ð, |�\. h. ‖|‖ = ��
�          (5.8) 

whose solution is the MPP om∗ which, after its transformation into ,m∗ in the original space, can be 
used to determine the value of the percentile performance function: 

Q�Yx�ð, R� = Q��ð,,m∗�         (5.9) 

Therefore, the inverse RBDO analytical model of Eq. (5.7) can be expressed as 
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���
�� �gcgegME #�ð,
R� \d �Eöh hfQ��ð,,m∗� ≤ 0, g = 1,2, … , c�Qy�ð� ≤ 0, � = 1,2, … , c�$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�        (5.10) 

 

5.2. A simple RBDO algorithm 

In order to examine in depth the interaction of the two contrasting goals of maximizing 
performances and respecting reliability constraints, an elementary Reliability-Based Design 
algorithm was developed; subsequently, it was applied to a simple RBDO example. The algorithm 
is described below. 

Nomenclature: 

f  = objective function; 

Q�R� = Performance function (safe if ≥ 0); 

X = random variables vector; 


, = vector of the mean values of the random variables; 

d = vector of the design variables, which are interval variables, s.t. $±� ≤ $± ≤ $±�,   Â = 1,2, … , c; 

design parameters = set of specific numerical values assumed by the design variables for a 
particular design configuration; 

S = -��� = target reliability corresponding to the target relaibility index �; 

�� = -�−�� = target probabilty of failure. 

 

The RBDO problem to be solved is the following one: 

��
�
�� #gc$ ð\. h.  min #�ð, R�  �[ËQ�ð, R� < 0Ì = ��

$±� ≤ $± ≤ $±�,   Â = 1,2, … , c
�        (5.11) 

Step 1: deterministic optimization: 

During the optimization process, the random variables are given a constant value, i.e., the value of 
their means, namely  R = 
R: 
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��
� �gcgegME #�ð,
R� \d �Eöh hfQ�ð,
R� ≤ 0$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�        (5.12) 

As a result of optimization, the first attempt optimal design parameters are ð = ð°. 

 

Step 2: inverse reliability analysis: 

In the expression of the performance function Q�R�, the new set ð° of the design parameters is 
used, and the percentile performance function QY�ð°, R�  is determined by inverse First-Order 
Reliability Method (iFORM): 

Î #gc$ |egc Q�ð°, |�\. h. ‖|‖ = ��          (5.13) 

whose solution is the MPP o∗ which, after its transformation into ,m∗ in the original space, gives the 
value of the percentile performance function: 

QY�ð°, R� = Q��ð°,,m∗�         (5.14) 

 

QY�ð°, R� is such that 

�[ËQ�ð°, R� ≥ QY�ð°, R�Ì = S        (5.15) 

Now, let us define a new performance function, such that 

QÆ�ð°, R� = Q�ð°, R� + QÃ�ð°, R�        (5.16) 

which equals zero when the target reliability R is reached. Compared to Eq. (3.52), a different norm 
for the signs is used in Eq. (5.16). 

The new performance function QÆ�ð°, R� will be used during the next optimization cycle. 

 

Step 3: deterministic optimization: 

Again, as for each determinstic optimization cycle, the random variables are given the value of their 
means, i.e.,  R = 
R: 

���
�� �gcgegME #�ð°, 
R� \d �Eöh hfQÆ�ð°, R� ≥ 0$±�,� ≤ $±� ≤ $±�,�,   Â = 1,2, … , c

�        (5.17) 
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As a result of the optimization loop, the optimal design parameters are updated: ð = ðë, which 

satisfy the new constraint function, i.e., QÆ�ð°, R� ≥ 0. 

 

Step 4: inverse reliability analysis: 

Similarly to step 2, the new values ð = ðë  of the design parameters are used to update the 
performance function. By using iFORM: 

Î #gc$ |egc Q�ðë, |�\. h. ‖|‖ = ��          (5.18) 

whose solution is the MPP o∗ which, after its transformation into ,m∗ in the original space, gives the 
value of the percentile performance function: 

QY�ðë, R� = Q��ðë,,m∗�         (5.19) 

 

Now, let us introduce the updated performance function QÆ′�ðë, R�: 

QÆ′�ðë, R� = Q′�ð°, R� + QÃ�ðë, R�        (5.20) 

which equals zero when the target reliability R is reached.  

 

Next steps: 

As for steps 3 and 4, sequential optimization and inverse reliability loops are executed until ðt(° = ðt (convergence). 

 

5.2.1. An applicative example 

To test the proposed RBDO method, let us consider the simple structure that was analyzed in 
section 4.3.2 (even though, in that case, only deterministic optimization was carried out). A 
cantilever beam with homogeneous mass density is stimulated on its tip by a pure bending forces, 
whose components are �, and ��, which are not deterministic, but follow a probabilistic normal 
distribution. The goal of this design problem is the beam mass minimization while guaranteeing a 
minimum reliability level to prevent yielding. Let us imagine the beam section being constant and 
rectangular, with dimensions b and h. The beam length is fixed. Thus, due to the homogeneous 
mass density, the objective of optimization is to minimize the cross-sectional area, i.e. b*h. 
Therefore, b and h will be the design variables which have to lie inside some predefined intervals. 
On the other hand, a reliability level of 99.87% is required, which corresponds to a reliability index 
β = 3, i.e. to a cumulative distribution function Φ = 3σ. This constraint is satisfied by respecting the 
probabilistic constraint function g on the maximum allowable stress at the fixed end of the beam. 
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Figure 5.4: cantilever beam subjected to a pure bending force on its tip. 

 

Problem data: 

L = 2540 mm;  � = 25.4 ee ≤   ≤ 254 ee =   �; ℎ� = 25.4 ee ≤ ℎ ≤ 508 ee =  ℎ�; ð = � , ℎ� = vector of the design variables; # = f �Eöhg�E #dcöhgfc = min  ∙ ℎ; �, ≈ �2227, 445.4� ; (force acting along x direction); �� ≈ �4454, 445.4� ;; (force acting along y direction); 

R = T�, , ��U = �!, P� = vector of the random variables; 0,, 0�= mean values of the random variables; 2,, 2�= standard deviations of the random variables; 

β = 3  (required reliability index); 

S = 241.3 MPa  (yield strength of the material); 

 

The constraint is expressed as the performance function QT�,, ��U; from a deterministic point of 
view, this function has to be negative, i.e. the acting stress has not to overtake the yield stress S of 
the material. 

Q�ð, R� = QT�,, ��U = ç��
 GÕ*� + Õ+
 J − 3 ≤ 0      (5.21) 

Before executing inverse reliability analysis, the normal random variables will be transformed into 
standard normal variables through Rosenblatt transformation; hence, the performance function 
becomes: 
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Such a constraint has to be respected with the required 99.87% level of reliability (i.e., β = 3) or, 
equivalently, with a maximum 0.13%  probability of failure. 

To summarize, the reliability-based optimization problem is given by: 

��
�
�� #gc$  , ℎ\. h.min  ∙ ℎ  �[ËQ�ð, R� > 0Ì = �� � ≤  ≤  �ℎ� ≤ ℎ ≤ ℎ�

�         (5.23) 

 

The first step consists of performing an optimization cycle through a routine employing the 
gradient-based method. During the inverse reliability analysis that follows (performed through 
iFORM method), the most probable point corresponding to the target reliability R is found, which 
will be used to update the constraint function that will be employed during the subsequent further 
optimization cycle. The optimization–inverse reliability analysis sequence continues till 
convergence is reached. During each deterministic optimization cycle, xP  and yP  will be 

considered constant and equal to their average values, i.e., 0, and 0�. For a greater clarity, xP  and 

yP  will be henceforth called as X and Y. 

 

Step 1: deterministic optimization 

The gradient-based method is run by using a numerical routine, and the chosen algorithm follows 
the interior point method. A starting point for the optimization process is required, which is set to 
(b,h) = (50.4, 50.4) mm. 

The first optimization cycle provides the following results: 

 � �, ℎ�� = (52.0055, 104.011) mm 

Objective function = f  =  ∙ ℎ = 5409.14 2mm  

 

The optimization outputs are the new values of b and h; their product, b*h, which has to be 
minimized, is the objective function, (also called fitness function or obj). The new values of b and h, 
namely,  � and ℎ�, are used to update the constraint function g that will be used during the  inverse 
reliability analysis cycle that follows. 

The objective of the inverse reliability analysis cycle is to find out the value of the performance 
function that corresponds to the desired reliability, i.e., the percentile function Rg  (in the present 

example, %87.99ggR = ).  
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Step 2: inverse Reliability Analysis cycle: 

Inverse reliability analysis is executed in order to guarantee the needed 99.87% reliability. For 
computational reasons, the additive inverse of the performance function will be used during inverse 
reliability analysis, and it will be indicated as –g. Starting from equation (5.21), updating the limit-
state function with the new values of b and h that were obtained through optimization, and finally 
changing the sign in the equation in order to perform inverse Reliability Analysis, one gets: 

−Q�!, P� = 3 − ç���
� G /�� + ù
�J        (5.24) 

 

After making Rosenblatt transformation: 

−QT},, }�U = 3 − ç���
� G>*(@*�*�� + >+(@+�+
� J      (5.25) 

 

And, by inserting the numerical values: 

−QT},, }�U = 241.3 − 2.82 G>*(@*�*��.bb�� + >+(@+�+�bî.b�� J      (5.26) 

 

Let us compute g∇ , g∇  and a, which in this example are constant: 

 

     (5.27) 

 

 l = �−0.8945, −0.4472� 

 

Starting by o� = �0, 0�, Q�ob� = −0.794 o� = −�l = −3l = �2.6835, 1.3417� = o∗ = Td,∗ , d�∗ U     (5.28) 

 

Convergence to the MPP o∗ is reached after only one iteration. 

By making Rosenblatt Transformation backwise, one gets the values of X and Y that correspond to 
the limit-state case for a  99.87-percentile reliability.  

The corresponding values of X and Y are 
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   (5.29) 

 

In other words, ��∗, V∗� = ��Y , VY� = ��ææ./0%, Vææ./0%�  is the minimum force which brings to 
failure in the presence of a 99.87% reliability (i.e., a reliability index � = 3). As it could be forecast 

%87.99X  and %87.99Y  are greater than the corresponding mean values (2227 N and 4454 N, 
respectively). 

 

By using ��∗, V∗� = ��Y , VY�, the value of the percentile performance function is obtained: 

QY�ð°, R� = Q��ð°,,∗� =  Q�� �, ℎ�, �∗, V∗� = −81.39 ��� = Qææ./0% = QY  (5.30) 

Now, as in Eq. (5.16), let us define the new performance function Q��ð°, R� 

Q��ð°, R� = Q�ð°, R� − QY�ð°, R� = 6� ℎ �0, � + 0�ℎ�� − 241.3 + 81.39 = 

= ç��
 G>*�� + >+
�J − 159.91         (5.31) 

 

Compared to Eq. (5.16), a different norm for the signs was used for QY�ð°, R� in the last equation. 

 

Step 3: deterministic optimization: 

Compared to the previous optimization cycle, this one differs for the new value of QY = Qææ./0%, 
that in the first optimization was necessarily equal to zero, the value of initialization. 

The corresponding expression for the performance function is now given by Eq. (5.31). The second 
optimization cycle was run by using fmincon function, with � �, ℎ�� = (52.0055, 104.011) mm as 

starting values, and with Q��ð°, R� = ç��
 G>*�� + >+
�J − 159.91 as updated limit-state function.  

This further optimization gives the following output values for the design parameters: � �, ℎ�� = (59.568, 119.136) mm, and  # = f � =  � ∙ ℎ� = 7096.7 ee�. 

 

Next steps: 

The optimization-reliability assessment sequence is performed repeatedly until the following 
criteria are satisfied: 

���2�*����2� � < 10*î, and         (5.32) 
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�
�2�*
�
�2� � < 10*î          (5.33) 

These criteria result to be satisfied after the 11�
 iteration, and the resulting geometry is  = 57.31 ee; ℎ = 114.61 ee. 

Hence, the objective function (i.e., the cross-sectional area) is # = f � =  ∙ ℎ = 6568.3 ee�. 

 

Assessing the reliability with FORM and MCS 

In order to verify whether the output of the last optimization cycle respects the reliability 
requirement of β = 3 (and, hence, R = 0.9987), a direct reliability analysis cycle is performed with 
First Order Reliability Method (FORM). It is important to remember that the new performance 
function, i.e. ( )( )RI gXgg −−=− , equals zero when reliability R is 99.87%. If ( )yx UU ,  converges 

to (0,0), this requirement will be satisfied.  

Indeed, if ( ) )0,0(, =yx UU , then ( ) 0, == yx
I UUβ ; Iβ  = σ = 0 corresponds to the mean value, μ 

(see figure 7). 

 

 
Figure 5.5: standard normal distribution. 

 

Performing the reliability analysis, FORM method effectively converges at ( ) )0,0(, =yx UU : thus, 

convergence is reached.  

To confirm the dependability of the results, the reliability of the structure was computed via Monte 
Carlo Simulation (MCS) too. After 10ç iterations, the reliability-based design outputs resulted to be 
verified, with an error of 0.48% on the desired 99.87% reliability. 

 



101 

 

Comments 

The outputs of the RBDO method were compared to the geometrical parameters relative to both the 
deterministic optimization and the initial configuration, and are reported in Table 5.1. Even though 
the reliable optimum would appear a bit less high performance than the deterministic optimal 
solution, the latter does not have the desired level of reliability, which, by definition, is equal to 
50%. 

 

 3 4 5 = 3 ∙ 4 Reliability 
Initial 

configuration 
50.80 ee 50.80 ee 2581 ee� << 50% 

After 
deterministic 
optimization 

52.006 ee 104.011 ee 5409 ee� 50% 

After 
probabilistic 
optimization 

57.31 ee 114.61 ee 6568.3 ee� 99.87% 

Table 5.1: design parameters (b and h) and objective function f related to the initial configuration, the deterministic 
optimization (see chapter 4) and probabilistic optimization. 

 

The utilization of different solving algorithms (i.e. trust-region reflective, active-set or sequential-
quadratic programming) does not change the outputs of the optimization cycles.  

About the reciprocal correlation between the two section edges b and h, the reason for the fixed b/h 
ratio (equal to 2) was explained from a physical point of view.  While performing RBDO, a 
numerical reason for the constancy of this ratio can be highlighted: it is due to the constancy ofg∇ , 

g∇  and a.  

 

 

5.3. Reliability Index Approach and Performance Measure 
 Approach 

To solve complex RBDO problems, it is better to resort to some of the best-established methods, 
which supply an high level of both computational efficiency and reliability. Two main approaches 
are used to carry out RBDO: Reliability Index Approach (RIA) and Performance Measure 
Approach (PMA) (see Fig. 5.6), which are often based on First Order Reliability Method (FORM). 
The reliability index β associated with the limit state function Q� is defined as the distance from the 
origin to the most probable point (MPP) of the failure surface in the standard normal space (see Fig. 
5.6) (Frangopol D.M. et al., 2014). While RIA employs direct reliability analysis for assessing the 
probability of failure, PMA is based on inverse reliability analysis. 
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Figure 5.6: Comparison between Reliability Index Approach and Performance Measure Approach. 

 

The RIA method computes the probability of failure by the reliability index; it aims to minimize ‖d‖ = �, i.e. to find the reliability index which corresponds to Q��R� = 0 (i.e., the failure surface). 
Being u = uËð�R�Ì the vector of the design variables (which are function of the random variables), 
the RBDO problem (5.1) using RIA can be defined as 
 

���
�� �gcgegME #�ð,
R� \d �Eöh hf��,� − �� ≤ 0, g = 1,2, … , c�Qy�ð� ≤ 0, � = 1,2, … , c�$±� ≤ $± ≤ $±�,   Â = 1,2, … , c

�        (5.34) 

 
where ��,� is the minimum required reliability index for the i-th probabilistic constraint, and Qy�ð� 

is the j-th deterministic constraint. 
Anyway, it can not be guaranteed that the RIA optimization problem has a solution for any given 
design during the design-optimization process (Frangopol D.M. et al., 2005). Indeed, in some cases 
there may be no solution u such that Q� = 0 (i.e, on the failure surface). 
 
A very efficient alternative to RIA for performing RBDO is the Performance Measure Approach 
(PMA). For a given target reliability index ��, the maximum value for the limit state function is 
computed by solving the following optimization problem in the standard normal space u: 

6 max Q��o�\. h.�o	o��I − �� = 0�          (5.35) 

 

The value of the limit state function at the optimum of formulation (5.35) represents the worst 
possible performance for a required reliability index �� (Frangopol D.M. et al., 2005).Compared to 
the RIA approach, the constraint in eq. (5.35) can always be satisfied. 

A general RBDO problem implementing PMA is given by 
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��
�
�� #gc$ ð\. h.  �gc #�ð; 
R�Q�Õz,x�ð; R� ≤ 0,   g = 1,2, … , c� Qy�ð� ≤ 0, � = 1,2, … , c�    $±� ≤ $± ≤ $±� , Â = 1,2, … , c 

�          (5.36) 

 

where Q�Õz,x is the ��,�-th percentile value for the i-th performance function Q�, i.e. 

� éQ�Õz,x�ð, R� ≥ 0ê = ��,� 
in which ��,�  is the corresponding target probability of failure. The percentile Q�Õz,x  can be 

determined by inverse reliability analysis, and inverse First-Order Reliability Method (iFORM) (Tu 
et al., 1997) is often used. 

PMA is numerically more efficient and stable than RIA. 

 

 

5.4. Conclusions 

In this chapter, the theoretical basics of Reliability-Based Design Optimization (RBDO) were 
presented. The aim of RBDO is to maximize a given performance (optimization) while 
guaranteeing a minimum, predefined, level of reliability. To manage such conflicting goals, one has 
to deal with an external optimization loop and an internal reliability assessment loop. The 
achievement of the desired safety level in reliability-based design can be pursued via two alternative 
ways, namely, direct reliability analysis and inverse reliability analysis. The first case is referred as 
Direct Reliability-Based Design, and an algorithm which employs such a methodology is the 
Reliability Index Approach (RIA). On the other hand, the second case is called Inverse Reliability-
Based Design, and is based on setting a minimum, predefined reliability level; such a methodology 
is employed by the Performance Measure Approach (PMA) algorithm. Inverse Reliability-Based 
Design has generally proved to be more stable and less computational demanding than Direct 
Reliability-Based Design. An elementary Inverse Reliability-Based Design algorithm was 
developed, in which optimization and reliability analysis loops are executed sequentially, and the 
latter is performed via inverse First Order Reliability Method (iFORM). This algorithm was applied 
to the design of a cantilever beam which is subject to perpendicular forces (subject to gaussian 
distribution) acting on its tip. The objective was to minimize the beam mass, while respecting the 
probabilistic constraint on the maximum acting stress with a 99.87% reliability, which corresponds 
to a reliability index � = 3. The RBDO outputs were the geometrical dimensions of the structure 
which fulfill the problem requirements; to confirm the reliability of such a configuration, MCS was 
used, which verified the results, with an error of 0.48% on the required reliability. 
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Chapter 6 

 

RBDO of aeronautical structures 

 

6.1. Introduction 

In chapter 5, a theoretical introduction to Reliability-Based Design Optimization was made, with a 
particular emphasis from an analytical and numerical point of view. In the present chapter, the 
stress will be on the particular kind of application; the systems that will be presented are concerned 
with aeronautic structural applications. To begin with, the probabilistic structural design of a wing 
airfoil (considered as a part of a rectangular wing) was made, with the aim of minimizing the wing 
mass and preventing aeroelastic instabilities; In order to combine both the simultaneous needs for 
optimizing the structure and attaining the desired levels of reliability on the probabilistic 
constraints, the airfoil structural design is performed via a double-loop RBDO algorithm. Here, the 
reliability assessment is performed by inverse reliability analysis (inner loop), which is nested into 
the optimization process (outer loop). The probabilistic optimization is then extended to a three-
dimensional case involving a rectangular wing, in which the probabilistic constraints concern both 
the wingtip displacement and the maximum allowable stress (at the wing root); in this application, 
Genetic Algorithms (GA) will be used for performing the optimization. Subsequently, the 
reliability-based design will be performed on the main shear web of a tapered wing, which is 
subject to an elliptical lift distribution. The spirit of these simulations is to come to an ever 
increasingly realistic approach on the probabilistic design of a wing. 
 
 

6.2. Probabilistic optimization based on elastic axis 1 
 
In the present paper,  a probabilistic optimization approach to the structural design of an airfoil is 
described. Such an activity is to be considered as the first step towards the structural design of a 
high aspect ratio, flexible wing. The structure modeling of the latter is based on the work done by 
Cesnik and Brown (2002) and Brown (2003), in which the wing is analyzed as a one-dimensional 
beam experiencing three-dimensional bending and twisting deformations, whereas the extensional 
and shear deformations are considered as negligible (see Appendix D). In order to highlight the 
forces that originate from random gusts, the theory of Peters et al. (1994) and Peters et al. (1995) 
will be followed when the analysis will be extended to the three-dimensional case. To consider the 
present application, the deterministic optimization scheme introduced by Huo et al. (2013) is 
described in Appendix E, which stresses the importance of the elastic axis position in the aeroelastic 
stability of a wing; this is valid also for a two-dimensional case. After having verified that the 
divergence instability is more likely to occur for high values of the distance between the 
aerodynamic center and the elastic axis, such a distance was considered by Huo et al. (2013), 

                                                           
1
 Partly based on: Coccon, Menegozzo and Galvanetto, 4th Royal Aeronautical Society Aircraft Structural Design 

Conference, Conf. Proc., 7th-9th October, 2014, Belfast, Northern Ireland. 
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together with the wing mass, to define the design objective function which has to be minimized. 
This work inspired the definition of the objective function in the study that is proposed in the 
present section, in which a reliability assessment is integrated inside the optimization process. The 
reliability-based design is carried out by means of a Performance Measure Approach (PMA) 
(Frangopol et al., 2005, and Tu et al., 1999), which uses inverse First Order Reliability Method 
(iFORM) to evaluate the probabilistic constraints on the maximum allowable strain and stress over 
the wing span. To solve this kind of problems, the use of sampling-based methods (e.g., Monte 
Carlo Simulation) is not suitable, because they require a very high computational effort. 
Conversely, the proposed algorithm represents a good compromise between precision requirements 
and computational costs. Even though the development of this optimization procedure is still in 
progress, some preliminary results are presented, limited to the design of a single airfoil. 
 
 
 

6.2.1. RBDO of a wing airfoil 
 
The goal of this probabilistic design is to minimize its cross-sectional area, together with the 
distance between the aerodynamic center and the shear center. The thicknesses of the shear webs 
and their position along the chord are considered as design variables. The constraint functions 
concern the minimum allowable values for bending stiffness and twisting stiffness, and the target 
reliability index β is set to one, which corresponds to a target probability of failure of 15.87%. 
As it was proved by Huo et al. (2013, see Appendix E), the divergence dynamic pressure 7X on a 
wing is expressed as 
 q9 = ±:�Z���  �7⁄ �          (6.1) 

 

where Â; is the twist elastic coefficient, e is the distance between the elastic axis (EA) and the 
aerodynamic center (AC), S is the wing surface area, <� is the lift coefficient, and α is the airfoil 
angle of attack, which is the sum of the initial angle of attack, 8b, and the twist angle, θ. From Eq. 
(6.1), one deduces that, for increasing values of e, divergence instability is more likely to occur. 
Hence, the location of the elastic axis has a direct impact on the wing divergence velocity.  

 

Figure 6.1: optimization design based on elastic axis. 

In their work, Huo et al. (2013) set the wing mass and the distance between the elastic axis and the 
aerodynamic center as the two objective functions, which define the following global fitness 
function f: 
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# = =�>>þû* + =I��           (6.2) 

where M is the wing mass after optimization, ���,  is the maximum wing mass in the design 
variable interval, c is the cross section chord, whereas ?� and ?� are the weight coefficients. The 
deterministic optimization process described above can be extended to a RBDO analysis, where the 
fitness function in Eq. (6.2) is minimized while considering the uncertainties introduced by the 
randomness on the material properties as well as on the aerodynamic loads (random gusts). In the 
present section, a reliability-based methodology is proposed for the optimization of the high-aspect 
ratio wing model of Appendix D, and some preliminary results are presented, limited to a wing 
section, and considering the material properties only as the random variables. 

The structure of the wing cross-section is sketched as a thin walled structure with a single cell 
closed section, composed by two horizontal skins and two vertical shear webs (see Fig. 6.2). 

 

Figure 6.2: Simplified structural model of the wing cross section (from Coccon, Menegozzo and Galvanetto, 2014). 

 

For the sake of simplicity, the material properties are assumed to be uniform over the section (from 
Coccon, Menegozzo and Galvanetto, 2014) and the wing is hypothesized to be rectangular. 
Moreover, it is assumed that the aerodynamic center, AC, lies on the vertical axis of the left shear 
web (even if, in Fig. 6.2, AC is not exactly positioned in that location, for the sake of clarity) and is 
horizontally aligned with the center of gravity, CG, and the elastic axis, EA (see Fig. 6.2). 

The physical characteristics to be minimized are the wing cross sectional area (which is 
representative of the wing mass) and the distance between the AC and EA, here indicated with A 
and e, respectively. The objective function expression is analogous to Eq. (6.2), and the weight 
coefficients are chosen such that ?� = ?� = 0.5: 

 

# = 0.5 G úúÝJ + 0.5 G ��ÝJ         (6.3) 

where ÷b and Eb are the values of A and e before optimization. As it can be noticed, the numerical 
value of the objective function f  is initially equal to 1, and it decreases after the optimization 
process. However, the presence of reliability constraints could limit such a decrement. Three design 
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variables are considered, i.e. the thicknesses of the two shear webs, h� and h·, and their mutual 
distance, l. 

The thickness h� of the (horizontal) skin, on the other hand, has a constant value of 2 mm. The 
starting configuration is reported in Table 6.1. 

Table 6.1: Initial configuration and bounds of the wing cross section design variables (from Coccon, Menegozzo and 
Galvanetto, 2014). 

Parameters Value [mm] Bounds [mm] 

t2 8 5-15 

t3 15 10-25 

l 500 350-600 

 

In this model, the uncertainty is due to the incomplete knowledge of the material properties: the 
Young modulus, E, and the shear modulus, G, are assumed to follow a normal distribution with 
mean values 0@ = 71700 MPa, 0�= 26900 MPa (Al 7075-T6) and a standard deviation equal to 
10% of the mean values. It should be noticed that the values of A and e are not influenced by the 
random variables E and G, therefore the objective function only depends on the design variables: # = #�h�, h·, i�. 

However, the random variables E and G are introduced in the constraints, which establish the 
minimum required values for the section bending and twisting stiffnesses, i.e., ÐA,��
 = 120 N/mm 

and Ð	,��
 = 1.6x106 N/mm. The section is located at a distance � = 3000 ee from the wing root. 

The expressions for the bending and twisting stiffness are, respectively: 

ÐA = 3BC,�·  

Ð	 = 4÷��é� ∙ G2èh· + 2èh� + 2Dh� Jê 
 

where C, is the section moment of inertia with respect to the x axis (see Fig. 6.2), which is function 
of the cross-section geometric features. 

The corresponding performance functions are defined by the difference 

 

Q��h�, h·, i; B, �� =  Ð�,��
 − Ð��h�, h·, i; B, ��,     g = ^D,E_    (6.4) 

 

where B = bending and T = twisting. 
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With regard to the PMA scheme of Eq. (5.34), the constraint equations are based on the ��,�-th 

percentile, Q�Õz,x, of the performance function Q�. For both these constraints, a required reliability 

index β = 1 is set, that corresponds to a target probability of failure �� = Φ�−��� =15.87%. 

The mathematical model of the present RBDO implementation is given by 

���
��
���
� #gc$ h�, h·, iegc #�h�, h·, i�\. h. Q�Õz�h�, h·, i; B, �� ≥ 0 , g = ^D,E_h�� ≤ h� ≤ h��h·� ≤ h· ≤ h·�i� ≤ i ≤ i�

�      (6.5) 

 

 

6.2.2. Analysis of the results 

Along with the implementation of such a RBDO problem, the equivalent deterministic problem was 
also solved, which was obtained from Eq. (6.5), by replacing the probabilistic constraints Q�Õz�h�, h·, i; B, �� ≥ 0 with deterministic performance functions, i.e. Q��h�, h·, i; 0@ , 0�� ≥ 0. The 

results of both these approaches are reported in Table 6.2. 

 

Table 6.2: Comparison between the deterministic optimization design and the proposed RBDO approach (from 
Coccon, Menegozzo and Galvanetto, 2014). 

Parameters Initial configuration After deterministic 

optimisation 

After the proposed 

RBDO 

To be minimised    

f   (objective function) 1.000 0.7632 0.9272 

A 	FFë
 5450 4987 5440 

e ËFFÌ 217.0 132.6 185.8 

Related to the 

probabilistic constraints 

   

GHËI/FFÌ 141.2 120.0 141.0 G­ËI/FFÌ °.J° × °µK °.JL × °µK °.MN × °µK 

Design variables    OëËFFÌ 8.0 5.0 5.0 OPËFFÌ 15 18.1 17.9 nËFFÌ 500.0 380.8 500.0 

 

As shown in Table 6.2, the deterministic approach provides a better optimization, thus resulting 
in a lower value of the performance function f : indeed, both the cross-sectional area (A) and the 
distance between the aerodynamic center and the elastic axis (e) are smaller than those obtained by 
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RBDO. The main effect of such a difference on the two resulting designs is that deterministic 
optimization produces a definitely shorter distance l between the shear webs. Although the 
deterministic design looks more performant, it does not meet the reliability requirements on the 
minimum bending stiffness. This fact was demonstrated by carrying out a series of crude Monte 
Carlo Simulation (MCS) analyses, which assessed the reliabilities of both the designs. Such results 
are reported in Table 6.3, which shows the probabilities of failure and the corresponding reliability 
indexes of the constraint functions for bending and twisting stiffness. Only the reliability-based 
design guarantees a probability of failure Pf  < 15.87% (or equivalently, a reliability index β > 1) 
for both the constraints, whereas the probability for the deterministic design to have a bending 
stiffness lower than 120 N/mm is equal to 50.0%. 

 

Table 6.3: probabilities of failure for the deterministic and the reliability-based design, assessed via MCS method (from 
Coccon, Menegozzo and Galvanetto, 2014). 

Probabilistic 

constraints 

After deterministic optimisation After the proposed RBDO Q5 � Q5 � GH,Fmt − GH  50.0% 0.0000 6.8% 1.4909 G­,Fmt − G­ 3.6% 1.8384 9.8% 1.2930 

 

 

 

 

6.3. Analysis of a three-dimensional, rectangular wing 
 

Let us consider a RBDO problem, in which a high aspect ratio (AR), rectangular wing is involved, 
the goal being its mass minimization. 

In a first approximation, the wing cross-section is considered to be constant over the whole length. 
The wing can be schematized as a thin-walled, cantilever beam with rectangular section, as depicted 
in Figure 6.3. 

To act in favour of safety, the lift was considered as concentrated at the wingtip. The acting drag, on 
the other hand, was considered as negligible. 

The constraints concern the maximum allowable displacement and the maximum acting stress. 

Two cross sections were taken into account, corresponding to the following locations: 

- the root, where the maximum Von Mises stress is reached; 

- the wingtip, which corresponds to the maximum vertical deflection. 

As for the uncertainty term, the vertical force F (lift) and the Young modulus E were chosen as 
probabilistic variables. Due to the absence of drag, the thickness t of the front and the rear shear 
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web was considered to be the same, and it was considered as an interval design variable. The other 
two design variables are the shear webs height, H, and their distance, B. 

 

 

 

Figure 6.3: the wing cross-section and its schematization. 

 

The Al7075-T6 aluminium alloy was chosen as material. 

 

Problem data: 

B = external distance between the two shear webs; 

h� = 2 mm (thickness of the horizontal skins); 

H = shear webs height, or external distance between the two horizontal skins; 

L = 4000 mm (wing length); 

ü = 2810 ±�̀Ö (Material: Al7075-T6); 

t = thickness of each of the two shear webs; 

b = B-2*t = internal distance between the two shear webs. 

h = H - 2*h�: internal distance between the two horizontal skins; 
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Design variables: 

Ëh��
, h��,Ì = Ë0.1, 20Ì ee Ëè��
, è��,Ì = Ë100, 200Ì ee ËD��
,D��,Ì = Ë300, 700Ì ee 

 

Random variables: 

F = N (1000, 100) N (lift); 

E = (71700, 7170) MPa; 

Now, let us consider the 99.87-percentile most critical value for the acting force F, which 
corresponds to its mean value plus three standard deviations. On the other hand, the 99.87-
percentile most critical value for the Young’s modulus E corresponds to its mean value minus three 
standard deviations. Then, the worst values for both F and E are chosen, in order to consider the 
worst case, i.e., 

• + = 0R + 3 ∗ 2R = 2600 N; 

• B = 0@ − 3 ∗ 2@ = 50190 MPa; 

that is, both F and E assume the 99.87-percentile most critical value. 

Thus, the probabilistic problem can be treated as deterministic. 

 

Analytical model 

The minimum ratio between the semi-wing lenght L and the "chord" B is  �D��, = 4 e0.7 e ≅ 5.71 > 5 

Therefore, the wing can be treated as a slender beam. 

The equation of the beam vertical deflection is  

Ô = +�·3BT = 4 ∗ +�·B ∗ �Dè· −  ℎ·� 

Let us establish that the maximum allowable beam deflection is Ô���= 100 mm. Therefore, the first 
constraint is 

Ô − Ô��� ≤ 0 → î∗R�Ö@∗�AVÖ*�
Ö� − Ô��� ≤ 0       (6.6) 

The mass of the semi-wing is given by 
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e = ü��Dè −  ℎ� = ü�ËDè − �D − 2h�ℎÌ      (6.7) 

 

Let us now determine the axial stress at the constraint. 

The section moment of inertia with respect to x direction is 

T// = 112 ËDè· −  ℎ·Ì = 112 ËDè· − �D − 2h� ∗ ℎ·Ì 
 

?// = T//Tè 2W U = 16è ËDè· − �D − 2h� ∗ ℎ·Ì 
Hence, 

2YXX	 = �/?// = + ∗ �?// = 6 ∗ + ∗ � ∗ èËDè· − �D − 2h� ∗ ℎ·Ì 
 

Let us fix a limit value for the axial stress 2���= 100 MPa (even though it is well lower than the 
yield stress of the material). Therefore, the second constraint is 

2YXX	 − 2��� ≤ 0 →  ç∗R∗�∗VËAVÖ*�A*���∗
ÖÌ − 2��� ≤ 0      (6.8) 

 

The formulation for this kind of problem is the following: 

 

 

���
���
���
�� #gc$ �h,D, è�\. h.min�e�Q��h,D, è� ≤ 0Q��h,D, è� ≤ 0h� ≤ h ≤ h�D� ≤ D ≤ D�è� ≤ è ≤ è�+ = 0R + 3 ∗ 2RB = 0@ − 3 ∗ 2@

�         (6.9) 
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6.3.1. Genetic Algorithm-based optimization using the most critical 
values of the random variables 

A GA-based optimization algorithm has then been applied to solve the problem that was set up in 
Eq. (6.9). 

This kind of GA doesn’t require a starting point. This fact reduces the risk of convergence to local 
(and not global) or false maxima, which, on the other hand, often occurs when gradient-based 
algorithms are used, due to their dependency on the starting point. 

 

The optimization algorithm gives: 

t = 0.1006 mm; 

H = 189.93 mm; 

B = 649.20 mm; 

 

The related objective function is: 

m = 29.61 kg. 

 

6.3.1.1. Simplifying the performance function with Response surface 
 Methodology 

Now, the next thing to do is to reduce the computational effort by simplifying and linearizing the 
formulation of the two constraint functions (6.6) and (6.8), through the use of surrogate models, 
which are supplied by Response Surface Methodology (RSM, see Appendix F). Such a 
simplification is not essential in this example, since the constraint functions are elementary as they 
are, but it is very useful when one is dealing with complex problems or with Finite Element 
Modeling (FEM). 

The original performance functions are now substituted with the surrogate models.  

In order to achieve a greater clarity, the interval variables are renamed as follows: 

!� = h, !� = è, !· = D 

 

First performance function surrogate model 

As for the first constraint, it involves each of these three variables. Therefore, the surrogate 
expression for performance function Q� can be stated in the following form: 
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P��,� = �b + �� ∗ !�Æ + �� ∗ !�Æ + �· ∗ !·Æ        (6.10) 

where 

!�Æ = �T/x*/x,þx�U/x,þû**/x,þx� − 1          (6.11) 

Only the extreme values of each of the interval variables will be here considered. 

As for the first surrogate performance function, the DOE matrix is 

 

Table 6.4: DOE matrix related to Q�. 

Experiment 

no.   

R°Æ  RëÆ  RPÆ  Ym�RZ 

1 -1 -1 -1 381.56 mm 

2 -1 -1 +1 164.00 mm 

3 -1 +1 -1 92.97 mm 

4 -1 +1 +1 40.09 mm 

5 +1 -1 -1 189.54 mm 

6 +1 -1 +1 114.25 mm 

7 +1 +1 -1 29.98 mm 

8 +1 +1 +1 21.03 mm 

 

Now, let us determine the values of the �� coefficients: 

�b = 18 ì P�,�,� = 129.18 /
�  

 

��( = 14 �P�@/Õ + Pç@/Õ + P0@/Õ + P/@/Õ� =  88.7  
 

��* = 14 �P�@/Õ + P�@/Õ + P·@/Õ + Pî@/Õ� = 169.66  
B� = ��( − ��* = −80.96  

�� = B�2 = −40.48  
��( = 14 �P·@/Õ + Pî@/Õ + P0@/Õ + P/@/Õ� = 46.02  
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��* = 14 �P�@/Õ + P�@/Õ + P�@/Õ + Pç@/Õ� = 212.34 

B� = ��( − ��* =  −166.32 

�� = B�2 = −83.16 

 

�·( = 14 �P�@/Õ + Pî@/Õ + Pç@/Õ + P/@/Õ� = 84.84 

�·* = 14 �P�@/Õ + P·@/Õ + P�@/Õ + P0@/Õ� = 173.51 

B· = �·( − �·* = −88.67 

�· = B·2 = −44.34 

 

Therefore, the surrogate expression of the first performance function is 

P� = 129.18 − 40.48 ∗ !�Æ −83.16 ∗ !�Æ −44.34 ∗ !·Æ       (6.12) 

 

Then, after substituting !�Æ with !�, P� = 530.44 − 4.068 ∗ !�−1.663 ∗ !� − 0.2218 ∗ !·     (6.13) 

 

 

Second performance function surrogate model: 

Now, let us consider the second performance function (eq.(4)). 

Here, each of the three interval variables appear, too (i.e., !� = h, !� = è and !· = D). 

The surrogate performance function can be expressed in the following form: 

 

P��,� = �b + �� ∗ !�Æ + �� ∗ !�Æ + �· ∗ !·Æ        (6.14) 

where 

!�Æ = �T/x*/x,þx�U/x,þû**/x,þx� − 1          (6.15) 
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In this case, the  DOE matrix is 

Table 6.5: DOE matrix related to Q�. 

Experiment 

no. 

R°Æ  RëÆ  RPÆ  Ymq,Q 

1 -1 -1 -1 179.54 MPa 

2 -1 -1 +1 77.17 MPa 

3 -1 +1 -1 87.49 MPa 

4 -1 +1 +1 37.72 MPa 

5 +1 -1 -1 89.18 MPa 

6 +1 -1 +1 53.76 MPa 

7 +1 +1 -1 28.21 MPa 

8 +1 +1 +1 19.79 MPa 

 

Now, let us determine the values of the �� coefficients: 

 

�b = 18 ì P�,�,� = /
� 71.61 

 

��( = 14 �P�@/Õ + Pç@/Õ + P0@/Õ + P/@/Õ� = 47.74  
 

��* = 14 �P�@/Õ + P�@/Õ + P·@/Õ + Pî@/Õ� = 95.48 

B� = ��( − ��* = −47.74  
�� = B�2 = −23.87 

 

��( = 14 �P·@/Õ + Pî@/Õ + P0@/Õ + P/@/Õ� = 43.30  
��* = 14 �P�@/Õ + P�@/Õ + P�@/Õ + Pç@/Õ� = 99.91 

B� = ��( − ��* = −56.61  
�� = B�2 = −28.31 
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�·( = 14 �P�@/Õ + Pî@/Õ + Pç@/Õ + P/@/Õ� = 47.11 

�·* = 14 �P�@/Õ + P·@/Õ + P�@/Õ + P0@/Õ� = 96.11 

B· = �·( − �·* = −49 

�· = B·2 = −24.5 

  

Therefore, the surrogate expression of the second performance function is 

P� = 71.61 − 23.87 ∗ !�Æ −28.31 ∗ !�Æ − 24.5 ∗ !·Æ       (6.16) 

 

Then, after substituting !�Æ with !�, P� = 241.9 − 2.399 ∗ !�−0.5662 ∗ !�−0.1225 ∗ !·     (6.17) 

 

Hence, the reliability-based optimization problem (6.9) becomes 

���
���
���
�� #gc$ �h,D, è�\. h.min�e� P��h, D, è� ≤ 0P��h, D, è� ≤ 0h� ≤ h ≤ h�D� ≤ D ≤ D�è� ≤ è ≤ è�+ = 0R + 3 ∗ 2RB = 0@ − 3 ∗ 2@

�          (6.18) 

The optimization outputs were the following: 

Design variables: 

t = 0.1138 mm; 

H = 191.38 mm; 

B = 651.36 mm; 

objective function: 

m = 29.76 kg. 
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Comparison of the results attained with and without RSM 

Let us now compare the outputs from the optimization that was carried on with the original 
constraint functions with  the results that were achieved by using RSM. 

Table 6.6: results of probabilistic design with GA: comparison between the results obtained by using the original 
performance functions and those obtained by using  their surrogate models. 

Algorithm GA GA with RSM 

t 0.1006 mm 0.1138 mm 

H 189.93 mm 191.38 mm 

B 649.20 mm 651.36 mm 

Mass m (objective function) 29.61 kg 29.76 kg 

 

As it can be seen, the RSM-based model brings to a final result which is very close to the one 
obtained by using the original performance function; therefore, the surrogate model proved to be 
able to mimic the original constraint with a satisfactory level of precision; the fact that the mass is 
slightly greater is in favour of safety. The results that were obtained are relative to the case in which 
the random variables assume their 99.87-percentile most critical value. 

 

Reliability assessment 

The reliability can now be computed via Monte Carlo Simulation (MCS). For this case, the 
probability of failure F� after 10ç iterations is 

F� = 0.0059 

i.e., 0.59 %. If this result doesn't meet the desired value, the RBDO process can be repeated 
iteratively by varying the intervals of the design variables, until the target reliability is reached. 

 

 

6.4. Reliability-Based Design of a shear web 
 
6.4.1. Introduction 

Now, let us make the wing RBDO problem more realistic; this can be done by considering an 
ultralight aircraft experiencing a realistic distribution of fluidodynamic forces. A four seat, ultralight 
aircraft travelling at a cruise speed was considered, whose slightly tapered wings experience a 
quasi-elliptical lift distribution; such a distribution can be approximated, with a good level of 
precision, by using the Prandtl's lifting line theory; indeed, such a formulation can be applied not 
only to rectangular wings, but also to tapered wings. according to this approach, the lift acting on a 
wing of length b has a distribution like that depicted in Fig. 6.4.  
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Figure 6.4: elliptical lift distribution (from M. Drela, 2009). 

Let us consider a rectangular (or  An elliptical spanwise circulation distribution (see Fig. 6.5)  is 
expressed as 

\�V� = \b�³1 − G��� J�´         (6.19) 

where y is the direction along the wingspan and \b is the circulation at the wing center, i.e., at y = 0, 
and b is the wingspan length. 

The corresponding lift distribution per unit length is given by  �Æ�V� = üø)\�V�          (6.20) 

where ü is the air density, and ø) is the free stream velocity . 

 

 

Figure 6.5: spanwise lift distribution on a lifting line (from Anderson, 2001). 

 

Hence, the total lift acting on the wing is given by substituting Eq.(6.19) inside Eq. (6.20) and by 
integrating the lift per unit length �Æ�V� along the wingspan: 

� = " �Æ�V�$V = " üø)\b�³1 − G��� J�´ $V = Dî
]I*]I

]I*]I üø)\b     (6.21) 

(Drela, 2009). 
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Knowing that, from Eq. (6.21), 

\b = î��ý̂ �D,           (6.22) 

from (6.21) and (6.22), one deduces the following expression for the lift distribution: 

�Æ�V� = î��D �³1 − G��� J�´         (6.23) 

 

 

Figure 6.6: simulation of the elliptical lift distribution on a simple wing model. 

 

Let us consider an ultralight aircraft having a maximum allowable takeoff weight of 1500 kg, which 
is travelling at its maximum cruise speed of 191 knots (i.e., 98.25 m/s); this plane has two slightly 
tapered (trapezoidal) wings, with a total wingspan of 11.00 m. Let us now hypothesize that this 
mass is almost all borne by the two wings (i.e., 2∙700 kg), whereas only a lesser part is borne by the 
fuselage (100 kg). 

During the cruise phase, the necessary lift that is required to the aircraft is 

�	X	 = e	X	Q = 1500ÂQ ∙ 9.81 ��I = 14715 ;      (6.24) 

whereas each of the two wings will produce a lift amount which is equal to 

�=�4� = e=�4�Q = 700ÂQ ∙ 9.81 ��I = 6867 ;      (6.25) 

The lift force acting on the wing is supposed to be born entirely by the main shear web (see Fig. 
6.7), which has a tapered shape; the cross-sectional dimensions (which are depicted in Fig. 6.8) are 
chosen as design variables:  

- h�, the thickness along the direction of the chord, which is constant along the wingspan; 
- hY, the "height" of the cross section at the wing root; 
- h	, the "height" of the cross section at the wing tip. 
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The design objective is to determine the shear web dimensions such that its mass is minimized, 
while respecting the constraint on the maximum wingtip allowed deflection (100 mm). Such a 
constraint is probabilistic, since some of the quantities concerned with the problem follow a normal 
distribution: 

- the drag per unit surface, i.e., _ ÷�⁄ , where L is the projection of the wing surface on the 
free stream direction z; 

- the lift per unit surface, i.e., �Æ ö�!�⁄ , where ö�!� is the chord length, which assumes a 
different value at each position along the wingspan; 

- the Young modulus of the aluminium alloy (Al7075-T6) which the shear web is composed 
of. 

 

Figure 6.7: schematization of the main shear web. 

 

    

Figure 6.8: shear web cross-sectional dimensions at the wing root (right) and at the wing tip (left). 

 
 

6.4.2. Problem data üú� = 2810 ÂQ e·⁄ ; mass density of the shear web material (Al7075-T6); Ô��� = 100 ee; maximum allowed wingtip deflection; 
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Random variables: 

� = N�6867,686.7�Ë;Ì; normal distribution for the lift force which is born by a single wing;

 => �a��/� = N�1300.19��1 − é��b*b.���� ê�c , 130.019��1 − é��b*b.���� ê�c� é 4�Iê; (6.26) 

_ =  N�84.43,8.443�Ë;Ì  => Xú  = N�160.82,8.041� é 4�Iê;     (6.27) 

B =  N�71.7 ∙ 10æ, 7.17 ∙ 10æ� é 4�Iê;        (6.28) 

Interval variables: 

hY = Ë100, 160ÌËeeÌ; 
h	 = Ë40, 80ÌËeeÌ;          (6.29) 

h� = Ë20, 30ÌËeeÌ;           

 

6.4.3. Setting of the problem and results 

Now, let us consider the 99.87-percentile most critical value for the lift and drag, which corresponds 
to its mean value plus three standard deviations. On the other hand, the 99.87-percentile most 
critical value for the Young’s modulus E corresponds to its mean value minus three standard 
deviations. Then, the worst values for �Æ ö�!�⁄ , _ ÷�⁄  and E are chosen, in order to consider the 
worst case, i.e., 

• ��a� �·@ = 0  a��?� + 3 ∗ 2  a��?� = ��1 − é��b*b.���� ê�c ∙ �1300.19 + 3 ∙ 130.019� =
1690.25��1 − é��b*b.���� ê�c é 4�Iê; 

• � Xú �·@ = 0 de  + 3 ∗ 2 de  = 160.82 + 3 ∙ 8.041 = 184.94 é 4�Iê; 
• B·@ = 71.7 ∙ 10æ − 3 ∙ 7.17 ∙ 10æ = 50.19 ∙ 10æ é 4�Iê.    (6.30) 

 

that is, all these probabilistic quantities assume their 99.87-percentile most critical value.  

 

Performance function: 

To set up the problem, a mathematical expression for the performance function is needed, which 
describes the deflection of the tapered shear web caused by the distributed forces (see Fig. 6.9). As 
an analytical expression is not easy to be derived, this will be substituted by a surrogate model, 
which describes the system behavior with a high level of accuracy. To do so, RSM is used, in which 



124 

 

hY , h	 , h�  are used as design variables for building the expression for the surrogate constraint 
function Y. 

In order to achieve a greater clarity, the interval variables are renamed as follows: 

!� = hY , !� = h	 , !· = h�         (6.31) 

Only the extreme values of each of the interval variables will be here considered; for each 
combination of their values, a FEM simulation was run, and the response variable P�@/Õ (i.e., the tip 
deflection, see Fig. 6.10) was recorded (see Tab. 6.7). During the FEM simulations, a mesh 
composed by hexaedral elements was used, with a size of 5 mm. 

 

 

Figure 6.9: the elliptical lift distribution and the aerodynamic drag are assumed to be born by the main shear web. 

 

Figure 6.10: wing deformation relative to experiment no. 7 (see Tab. 6.7). 
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Performance function surrogate model 

The constraint involves each of the three design variables. Therefore, the surrogate expression for 
performance function Q� can be stated in the following form: P��,� = �b + �� ∗ !�Æ + �� ∗ !�Æ + �· ∗ !·Æ        (6.32) 

where 

!�Æ = �T/x*/x,þx�U/x,þû**/x,þx� − 1          (6.33) 

 

As for the surrogate performance function, the DOE matrix is reported below. 

Table 6.7: DOE matrix related to Q� (mesh size = 5 mm). 

Experiment 

no.   

R°′ �OÃ� Rë′ �O­� RP′ �Of� Ym�RZ 

1 -1 -1 -1 295.6 mm 

2 -1 -1 +1 88.89 mm 

3 -1 +1 -1 408.9 mm 

4 -1 +1 +1 118.6 mm 

5 +1 -1 -1 245.2 mm 

6 +1 -1 +1 70.57 mm 

7 +1 +1 -1 324.2 mm 

8 +1 +1 +1 92.9 mm 

 

Now, let us determine the values of the �� coefficients: 

�b = 18 ì P�,�,� = 205.61 /
�  

��( = 14 �P�@/Õ + Pç@/Õ + P0@/Õ + P/@/Õ� = 183.22 

��* = 14 �P�@/Õ + P�@/Õ + P·@/Õ + Pî@/Õ� = 228.00 

B� = ��( − ��* = −44.78 

�� = B�2 = −22.39 

 

��( = 14 �P·@/Õ + Pî@/Õ + P0@/Õ + P/@/Õ� = 236.15 

��* = 14 �P�@/Õ + P�@/Õ + P�@/Õ + Pç@/Õ� = 175.07 
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B� = ��( − ��* = 61.08 

�� = B�2 = 30.54 

 

�·( = 14 �P�@/Õ + Pî@/Õ + Pç@/Õ + P/@/Õ� = 92.74 

�·* = 14 �P�@/Õ + P·@/Õ + P�@/Õ + P0@/Õ� = 318.48 

B· = �·( − �·* = −225.74 

�· = B·2 = −112.87 

Therefore, the surrogate expression of the performance function is P� = 205.61 − 22.39 ∗ !�Æ +30.54 ∗ !�Æ −112.87 ∗ !·Æ       (6.34) 

Then, after substituting !�Æ with !�, one obtains the surrogate performance function: P� = 775.41 − 0.746 ∗ !�+1.528 ∗ !� − 22.58 ∗ !·     (6.35) 

 

Hence, the RBDO problem can be put in the following form: 

��
���
��
���
��
� #gc$ �hY , h	 , h��\. h.min�e�P�hY , h	 , h�� ≤ 0hY� ≤ hY ≤ hY�h	� ≤ h	 ≤ h	�h�� ≤ h� ≤ h���a��/� = 0  a��?� + 3 ∗ 2  a��?�Xú  = 0 de  + 3 ∗ 2 de B = 0@ − 3 ∗ 2@

�         (6.36) 

 

Such a problem is solved via a commercial routine employing a genetic algorithm. 

As for the optimization outputs, the following optimal design parameters �hY , h	 , h����� that were 
found through the GA-based RBDO are:  hY,���= 133.35 mm; h	,���= 40.00 mm;          (6.37) h�,��� = 28.21 mm; 
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objective function: 

e���= 34.36 kg. 

 

Reliability assessment 

Now, let us set up the reliability analysis to determine a posteriori the probability of failure of the 
resulting configuration; to do so, let us consider the resulting design parameters as fixed values, and 
let us build the surrogate model P�  for the constraint as a function of the random variables. 
Therefore, the random variables will now be used as the interval variables for Response Surface 
Methodology. 

�a� = g0  a��?� − 3 ∗ 2  a��?�, 0  a��?� + 3 ∗ 2  a��?�h =
g909.96��1 − é��b*b.���� ê�c , 1690.25��1 − é��b*b.���� ê�ch é 4�Iê    (6.38) 

Xú  = g0 de  − 3 ∗ 2 de  ,  0 de  + 3 ∗ 2 de h = Ë136.70, 184.94Ì é 4�Iê    (6.39) 

B = Ë0@ − 3 ∗ 2@ ,  0@ + 3 ∗ 2@Ì = Ë50.19 ∙ 10æ, 93.21 ∙ 10æÌ é 4�Iê    (6.40) 

 

The interval variables are renamed as follows: 

!� = �a� , !� = Xú  , !· = B         (6.41) 

which haven't to be confused with X, i.e., the direction of the wingspan (see Fig. 6.9 and 6.10). !� 
represents the amplitude of �Æ ö⁄ , which varies locally as a function of the position along the 
wingspan. 

 

Performance function surrogate model 

As for the constraint, it involves each of these three design variables. Therefore, the surrogate 
expression P� (expressed as a function of the random variables) for the performance function can be 
stated in the following form: P� = �b + �� ∗ !�Æ + �� ∗ !�Æ + �· ∗ !·Æ        (6.42) 

where 

!�Æ = �T/x*/x,þx�U/x,þû**/x,þx� − 1          (6.43) 

 

Only the extreme values of each of the interval variables will be here considered. 

As for the first surrogate performance function, the DOE matrix is 
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Table 6.8: DOE matrix related to Q� (mesh size = 5 mm). 

Experiment 

no.   
R°′ �iÆf � Rë′ �jõi� 

RP′ ��� Ym�RZ 

1 -1 -1 -1 66.97 mm 

2 -1 -1 +1 36.06 mm 

3 -1 +1 -1 90.37 mm 

4 -1 +1 +1 48.66 mm 

5 +1 -1 -1 67.93 mm 

6 +1 -1 +1 36.58 mm 

7 +1 +1 -1 91.08 mm 

8 +1 +1 +1 49.04 mm 

 

Now, let us determine the values of the �� coefficients: 

�b = 18 ì P�,�,� = 60.84 /
�  

��( = 14 �P�@/Õ + Pç@/Õ + P0@/Õ + P/@/Õ� = 61.16 

��* = 14 �P�@/Õ + P�@/Õ + P·@/Õ + Pî@/Õ� = 60.52 

B� = ��( − ��* = 0.64 

�� = B�2 = 0.32 

 

��( = 14 �P·@/Õ + Pî@/Õ + P0@/Õ + P/@/Õ� = 69.79 

��* = 14 �P�@/Õ + P�@/Õ + P�@/Õ + Pç@/Õ� = 51.89 

B� = ��( − ��* = 17.9 

�� = B�2 = 8.95 

 

�·( = 14 �P�@/Õ + Pî@/Õ + Pç@/Õ + P/@/Õ� = 42.59 

�·* = 14 �P�@/Õ + P·@/Õ + P�@/Õ + P0@/Õ� = 79.09 

B· = �·( − �·* = −36.5 
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�· = B·2 = −18.25 

 

Therefore, the surrogate expression of the performance function is P� = 60.84 + 0.32 ∗ !�Æ +8.95 ∗ !�Æ −18.25 ∗ !·Æ        (6.44) 

Then, after substituting !�Æ with !�, P� = 60.95 + 0.0008202 ∗ !� + 0.371 ∗ !� − 0.8484 ∗ 10*æ ∗ !·   (6.45) 

 

Now, the probability of failure can be assessed via Monte Carlo Simulation (MCS), by random 
sampling on the probabilistic variables according to their distribution. The probability of failure 
after 10ç iterations results to be F� = 0.0089 

i.e., 0.89 %. If this result doesn't meet the desired value, this RBDO process can be repeated 
iteratively by varying the allowed intervals of the design variables (i.e., the shear web cross-
sectional dimensions), until the target reliability is reached. 

 

 

 

6.5. Conclusions 
In the present chapter, an efficient approach for the reliability-based design optimization of an 
airfoil structure is presented. The uncertainties affecting the system are due to the randomness in the 
material properties. An elastic axis-based RBDO technique is proposed, whose design objectives 
are mass minimization as well as the achievement of aeroelastic stability; at the same time, the 
prearranged levels of reliability in satisfying the constraints must be guaranteed. Here, the design 
variables are the thicknesses of the shear webs and their position along the chord: their final values 
are those that minimize the wing cross-sectional area and the distance between the elastic axis and 
the aerodynamic center. The probabilistic constraints define the minimum required values for the 
bending and torsional stiffness of the section. The overall RBDO problem is solved through a 
Performance Measure Approach which employs inverse first-order reliability analysis for 
evaluating the probabilistic constraints. Along with the reliability-based design, the same problem 
was solved through deterministic optimization too. The comparation of the results from these two 
methods highlights that the RBDO-based approach allows to minimize the objective function while 
meeting all the established reliability requirements. Subsequently, a rectangular wing was analyzed, 
in which the design goal was to find the geometrical features such that the wing mass is minimized, 
while respecting the probabilistic constraints on the maximum allowed stress at the wing root and 
the maximum allowed wingtip deflection. The RBDO approach is based on the use of a genetic 
algorithm, in which the random variables are given a value corresponding to the 99.87-percentile 
most critical case; then, the system reliability is computed via MCS; if the probability of failure 
doesn't meet the desired value, the RBDO loop can be repeated, after having varied the allowed 
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intervals for the design variables, until the target reliability is found. Finally, the main shear web of 
an ultralight aircraft was studied, which experiences a set of forces due to drag and elliptical lift 
distribution. Furthermore, the set-up for its reliability-based design was arranged. The objective of 
the simulation was to determine the shear web dimensions (of its cross-section at different 
positions) such that its mass is minimized, while respecting the probabilistic constraints on the 
maximum tip deflection. Due to the difficulty to derive an analytical model for this system, the 
performance function was derived through applying Response Surface Methodology on a FEM 
model of the structure. Once the expression for the probabilistic constraint was obtained, the 
optimum design parameters were computed. Then, in order to be able to determine the design 
reliability, RSM was used again to derive a surrogate model based on the random variables. The 
structural reliability is then computed by using MCS. The described process can be performed 
iteratively, until the desired probability of failure is obtained. 
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Chapter 7 

 

Conclusions and recommendations for future work 
 

 

7.1. Conclusions 
The need for enhancing reliability, together with the ever increasing demand for improved 
performances, are among the prevailing objectives in all the engineering fields. This is particularly 
true in aerospace applications, where the contemporary needs to reduce costs and enhancing safety 
look like as contradictory. Therefore, in the last years, a new field of study was developed, which 
aims to balance these contrasting needs; this new branch is called Reliability-Based Design 
Optimization (RBDO).  

The main goal of the present work was to develop a RBDO methodology which is devoted to the 
structural aerospace design. 

The road map that was followed during this thesis starts from the theoretical basics of both 
reliability analysis and deterministic optimization, and then merges these two subjects together, by 
focusing on probabilistic design. Chapter 1 is mainly introductory, whereas Chapter 2 aims to 
supply the prerequisites for the comprehension of reliability assessment methodologies. To begin 
with, the concept of uncertainty modeling is presented, which serves to provide a mathematical 
quantification of uncertainty. Therefore, a brief introduction to the fundamentals of probability 
theory and statistics was made, through which the uncertainty can be expressed as a random 
variable with its probability distribution. The latter functions as the input to uncertainty analysis; 
hence, the central concepts of performance function and probability of failure were introduced. 
Chapter 3 deals with the principal methods for determining the reliability of a system: Monte Carlo 
Simulation (MCS), First and Second Order Reliability Methods (FORM and SORM), and First 
Order Second Moment method (FOSM). These methods were then applied to some structural cases; 
MCS proved to be the most accurate, but also the most time-consuming; FORM, on the other hand, 
provided the best compromise between accuracy and computational burden. Also, inverse reliability 
analysis was introduced, which is very suitable for performing the reliability assessment loops in 
RBDO. Chapter 4 serves to introduce optimization, which aims to satisfy the need of finding those 
design variables that maximize (or minimize) a certain performance, while complying with some 
feasibility requirements. Optimization can be performed in different ways: for the most elementary 
cases, one can come to the theoretically exact solution by using the analytical method [which 
employs the Karush-Kuhn-Tucker (KKT) conditions] or the graphical method; anyway, in order to 
manage engineering applications, numerical methods are normally used. Genetic algorithms (GA) 
and gradient-based numerical methods are among the most widely employed. In the latter ones, at 
every iteration, the optimizer evaluates the objective function, the constraint functions and their 
derivatives and, based on their values, a search direction is generated, along which the objective 
function will be likely to descend with the specified step size; the process continues until 
convergence is reached. These methods are normally very accurate, but sometimes can converge to 
local minima rather than to the global minimum. Conversely, GA are not dependent on the starting 
point; this kind of algorithm mimics the process of natural selection, in which each of the possible 
model configurations is represented as a string of numbers (like chromosomes in nature). The 
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various strings undergo a process of breeding through some mechanisms like crossover and 
mutation (which are borrowed from Biology), until the optimal solution has been found. Two 
examples were analyzed and solved via a gradient-based numerical method, and one of them was 
also verified through the graphical method. 
Chapter 5 aims to introduce the reader to the concept of Reliability-Based Design Optimization 
(RBDO). In a RBDO problem, a reliability assessment loop is nested into an optimization loop; the 
two coupled loops are performed repeatedly, until convergence is reached. In many practical 
applications, it is more useful to implement inverse reliability analysis in the inner loop, so as to set 
the desired level of reliability, rather than computing a posteriori the probability of failure. Then, a 
very simple RBDO algorithm that was developed is presented; subsequently, it was successfully 
applied to the probabilistic design of a cantilever beam; the reliability of the resulting geometrical 
configuration was then verified via MCS. Finally, two of the best-established RBDO algorithms 
were introduced: Reliability Index Approach (RIA) and Performance Measure Approach (PMA); 
RIA employs direct reliability analysis for assessing the probability of failure, whereas PMA is 
based on inverse reliability analysis, which is executed by using inverse FORM (iFORM). 
Eventually, Chapter 6 is devoted to the reliability-based design of some aeronautical structures, and 
aims to describe RBDO cases with an increasing level of lifelikeness. At first, a two-dimensional 
case was considered, consisting in the cross-section of a rectangular wing. In addition to the 
minimization of the cross-sectional area, another objective was the minimization of the distance 
between the aerodynamic center and the elastic axis, in order to prevent aeroelastic instabilities. The 
structure was subject to probabilistic constraints on the minimum required bending and torsional 
stiffness of the wing section, where the uncertainty term concerned the material properties, which 
were subject to a normal distribution. The simulations were carried on through a RBDO algorithm 
employing PMA. The reliability of the resulting geometry was then successfully verified via MCS. 
Subsequently, a three-dimensional, rectangular wing was analyzed: the design objective was to 
minimize the mass, while respecting the probabilistic constraints on the maximum tip displacement 
and on the maximum axial stress. A genetic algorithm was used for optimization, and Response 
Surface Methodology (RSM) was used to simplify the performance functions. Two simulations 
were carried on: one by using the original performance function, and the other one by using RSM. 
The RSM-based surrogate model proved to mimic the original constraint in a very accurate way; 
indeed, the resulting wing geometry and mass were very similar in the two cases. Then, a more 
realistic aeronautical application was considered: the reliability-based design of the main shear web 
of a wing, which is subject to an elliptical lift distribution and a drag force that are compatible to 
those that affect a four-seat, ultralight aircraft; the aerodynamic forces and the Young's modulus 
were subject to a gaussian distribution. The goal of the probabilistic design was to find the 
geometrical features which both minimize the structural mass and respect the probabilistic 
constraints on the maximum admissible tip deflection. As an analytical expression for the 
probabilistic constraint is not easy to be derived, a polynomial surrogate model was used, which 
was obtained by computing the response of a FEM model at some preset design points through 
RSM. As for the optimization algorithm, a genetic algorithm was used, and the random variables 
were set to their 99.87-percentile most critical value. Subsequently, the system probability of failure 
was computed by using MCS. The described process can be conducted repeatedly, until the desired 
reliability level is reached. 

 

7.2. Final remarks and future works 

The present work is devoted to both new applications of Reliability-Based Design Optimization 
(RBDO) algorithms and to the investigation of original possible methodologies for probabilistic 
design. A very simple RBDO algorithm was created and applied to the sizing of an elementary 
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structure: the resulting geometry proved to be compliant to the desired safety level. Then, some 
already existing and well-established RBDO algorithms were applied to perform a probabilistic 
design based on the elastic axis of a rectangular wing section; the results obtained were very 
promising, and brought to a structural configuration that allows to prevent aeroelastic instabilities. 
Then, some three-dimensional applications were analyzed, in which the RBDO procedure consists 
on an optimization loop via a genetic algorithm, followed by a direct reliability analysis loop (by 
using FORM); the procedure has to be repeated until the desired reliability level has been reached. 
Before all these analyses, starting from the very theoretical basics, the main reliability analysis and 
deterministic optimization algorithms were addressed; such an activity served as a prerequisite to 
the execution of the study that was proposed above. 

As for the future steps, the probabilistic design based on elastic axis is planned to be applied to the 
analysis of very flexible wings, whose behavior can be described via the nonlinear beam theory; 
moreover, the probabilistic forces due to random gusts will be taken into consideration during the 
design. These analyses will provide an as good as possible realistic model, which will serve to 
enhance the prevention of aeroelastic instabilities in three-dimensional models. On the other hand, 
the study of the behavior of the different RBDO methods will be deepened, in order to find the one 
that is the most suitable for this kind of applications. The overall aim of these future works is to 
come to an unified approach for the probabilistic optimization of a wing structure. 
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Appendix A 

Structural analysis of a stalically determined structure 
undergoing fluidodynamic forces - a deterministic 

example 

  

 

Figure A.1: the case study consists of a NACA 4415 airfoil. 

 

As a preparatory step towards the execution of reliability analysis, a deterministic example will be 
considered. 

A NACA 4415 airfoil of length 1.5 m and depth of  9 m passes through an air stream at different 
values of the angle of attack α. Such an airfoil is bound to a statically determinate structure in two 
nodes, called A and B. The main goal is to assess the value of the stresses on each of the three rods 
which the structure consists of.  The problem data are herein provided. 

 

A.1. Problem data 

Air characteristics: 

 T = 288 K 

   Density ρ = 1.225 
3m

kg
 

   Dynamic viscosity μ = sPa*10*81.1 5−
 

   Air velocity: 83.333 m/s ( = 300 km/h) 
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Structural features:  

the NACA 4415 airfoil is considered as a rigid body, and it is restrained by three rods, which are 
oriented as shown in figure 1. The bars have circular section, with the following values for the 
diameters and their respective cross-sectional areas: 

    $� = 24 ee =>  ÷� = 452.39ee� $� = 15 ee => ÷� = 176.71ee� $� = 15 ee => ÷� = 176.71ee� 

The rods lengths are, respectively,  

mml

mml

mml

c

b

a

1414

;816

;1000

=
=

=

 

As it can be seen in Fig. 3.19, the longitudinal dimensions of the portions of the chord (i.e., d, e, f 
and g) are, respectively:  

d = 150 mm; 

e = 225 mm; 

f = 675 mm; 

g = 450 mm; 

Material: Al 7075-T6, with Young’s Modulus  E = 71700 MPa and yield stress 2ù = 462 MPa. 

 

 

 

A.2. Determination of the physical quantities of interest 

For a given value of the angle of attack α, the values of the coefficients of lift �ö��, drag �öX� and 
moment �ö�� at a quarter of the chord are provided by experimental graphs for each profile (see 
Figures A.2 and A.3). 
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Figure A.2: Lift coefficient as a function of the angle of attack (from I. H. Abbott et al., 1959). 
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Figure A.3: Drag coefficient and momentum coefficient as a function of the lift coefficient (from I. H. Abbott et al., 
1959). 

 

These coefficients are used to determine the forces and the twisting moment exerted on the airfoil 
by the air, according to the following formulae: 

Lift: 

� = �� üø)�ö�3           (A.1) 

Drag: 

_ = �� üø)�öX3           (A.2) 

Twist moment at the aerodynamic center (for a low speed airfoil, this point is located at about 
0.25*c, i.e., at the quarter of the chord):  

�ú� = �� üø)�ö�ö3          (A.3) 
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Once the external forces acting on the airfoil have been obtained, the following step is to compute 
the reaction forces exerted by the pinned structure on the wing as a consequence of the aerodynamic 
stresses that are transmitted from the wing to the bars. 

As for the reaction force from rod a (at point A), the only unknown is its intensity, being the 
direction fixed by the capability of a bar to sustain axial forces only.  

Figure A.4: The forces acting on the airfoil: Lift (L) and Drag (D) are exerted on the body by the air, while the forces 
highlighted in red are the reactions produced by the underlying structure on the airfoil itself. 

 

With reference to the reaction force at point B, there are two unknowns, namely, its components on 
directions x and y, respectively. 

To sum up, there are three unknowns, which can be determined by using equilibrium equations, 
namely 









=
=
=

∑
∑
∑

0

0

0

y

x

P

F

F

M

           (A.4) 

where P is a (any) point of the plane.  

For the case under study, these equations have the following form:  

6�� î⁄ + � ∙ E + +Aù�E + #� = 0+ú cos45° + _ + +A, = 0+ú sin 45° + � + +A� = 0 �        (A.5) 

Where �� î⁄  is the twist moment at the aerodynamic center, which is normally considered to be 
equal to �ú�, whereas e and  f  are the dimensions that are shown in Fig. A.4. The solution of the 
aforementioned system gives the values of +ú, +A, and +A�.  

The next step consists of deriving the reaction forces from each bar, by projecting +ú, +A, and +A� 
along the direction of the rods that are connected with each of the points A and B. The further 
division by the area of each bar section will provide the corresponding tensions. The final step 
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consists on getting the value of the displacements of points A and B along x and y directions.  
Positive values of the forces are related to a state of tension of the bars, while negative values 
indicate compression. Twist moments are considered to be positive in the anticlockwise sense. 
Several configurations of the airfoil were studied, which differ for the value of the angle of attack α, 
whereas the free stream velocity ø)  was kept constant and equal to 83.333 e \⁄  (namely, 300 Âe ℎ⁄ ); in each of these cases, once the aerodynamic coefficient have been obtained from the 
experimental graphs A.1 and A.2, they are used to compute the aerodynamic forces acting on the 
wing. Consequently, the three equations in the system (A.5) have three unknowns, and the forces 
acting on each of the rods can be easily derived. Then, the stress on the bars and the displacement of 
points A and B are immediately determined, and are reported in Table A.1.  

 

 

Table A.1: Forces and tensions acting on the system for a fixed value of ∞V  = 83.333 m/s and varying α. The most 

critical case is that of  α = 12°, where the safety factor for bar c is ν = 2ù 2⁄ = 1.343. 

Angle of 
attack,  α 

-3° 0° 2° 7° 12° (stall) 

Lift 
coefficient, 

Lc  

0.15 0.4 0.61 1.05 1.28 

Drag 
coefficient, 

Dc  

0.0075 0.0075 0.0075 0.0087 0.0145 

Moment 
coefficient at 

c/4, mc  

-0.1 -0.1 -0.1 -0.1 -0.09 

Lift, L 8613 N 22969 N 35028 N 60292 N 73499 N 

Drag, D 431 N 431 N 431 N 500 N 833 N 

Twisting 
moment at 
c/4, M 

-8613 N*m -8613 N*m -8613 N*m -8613 N*m -7752 N 

Force acting 
on bar a  

22670 N 37900 N 50687 N 77483 N 90139 N 

Force acting 
on bar b 

-14654 N -16929 N -18840 N -22879 N -23831 N 

Force acting 
on bar c 

10547 N 21667 N 31005 N 50633 N 60800 N 
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Tension 
acting on 
bar a 

50 MPa 83.8 MPa 112 MPa 171.3 MPa 199.3 MPa 

Tension 
acting on 
bar b 

-82.9 MPa -95.8 MPa -106.6 MPa -129.47 MPa -134.9 MPa 

Tension 
acting on 
bar c 

59.7 MPa 122.6 MPa 175.5 MPa 286.53 MPa 344.1 MPa 

(ν=1.343) 

Axf  

displacement 

0.494 mm 0.826 mm 1.10 mm 1.689 mm 1.965 mm 

Ayf  

displacement 

0.494 mm 0.826 mm 1.10 mm 1.689 mm 1.965 mm 

Bxf
displacement 

-1.40 mm -2.55 mm -3.51 mm -5.524 mm -6.47 mm 

Byf

displacement 

-0.247 mm 0.247 mm 0.661 mm 1.527 mm 2.027 mm 

 

 

A further survey that has been made consists on the study of the same model, for a fixed value of  

α = 0°, by varying the velocity ∞V of the incoming air stream. 

The results are summarized in Table A.2. 

 

Table A.2: forces and tensions acting on the system for a fixed value of α = 0° and varying ∞V . The most critical case 

is that of  ∞V = 125 m/s, where the safety factor for bar c is ν = 2ù 2⁄ == 1.675. 

Air velocity ∞V  83.333 m/s 40 m/s 125 m/s 

Lift coefficient, Lc  0.4 0.4 0.4 

Drag coefficient, Dc  0.0075 0.0075 0.0075 

Moment coefficient at 

c/4, mc  
-0.1 -0.1 -0.1 

 

Lift, L  22969 N 5292 N 51680 N 
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Drag, D 431 N 99 N 967 N 

Twisting moment at 
c/4, M 

-8613 N*m -1984 N*m -19375 N*m 

Force acting on bar a 37900 N 8731 N 85266 N 

Force acting on bar b -16929 N -3900 N -38090 N 

Force acting on bar c 21667 N 4992 N 48748 N 

Tension acting on bar a 83.8 MPa 19.3 MPa 188.5 MPa 

Tension acting on bar b -95.8 MPa -22.1 MPa -215.6 MPa 

Tension acting on bar c 122.6 MPa 28.2 MPa 275.9 MPa 

ν = 
σ
σ Y = 1.675 

Axf  displacement 0.826 mm 0.19 mm 1.859 mm 

Ayf  displacement 0.826 mm 0.19 mm 1.859 mm 

Bxf displacement -2.55 mm -0.587 mm -5.738 mm 

Byf displacement 0.247 mm 0.0568 mm 0.555 mm 

 

 

A.3. Definition of the limit-state functions 

A limit-state function will be herein expressed for rod a, in terms of axial stress. Subsequently, the 
limit-state functions in terms of the displacement of point A will be considered, too. 

Before the stall, the dependency of the lift coefficient from the angle of attack 8 is linear: 

   ( )0*2 =−= LLc ααπ        (A.6) 

Where 0=Lα  is the angle at which lift is zero. 

From the three equilibrium equations (A.5), and expressing Lc  in the aforementioned form, it is 
possible to obtain the values of the axial stresses as functions of the structural characteristics and of 
three aerodynamic variables: 8, ø) and ü). For the sake of simplicity, the latter two variables will 
be henceforth called as V and ρ, and the torque moment at c/4 as M. 

From the equation of momentum:  
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After some steps, the equation reduces to  
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Where c is the length of the chord. 

From the third equation of system (A.5), one gets: 

( )LFF BYA −−= 2           (A.9) 

Which, after a few steps, becomes 

( ) ( )








−−








+
−+

=−= =
=

0
02 *2

**2*
***

2

2
L

Lm
aA fe

ecc
SVFF ααπααπρ

  (A.10)
 

Dividing by the cross sectional area of bar A, and changing the sign of the term on right (as focus is 
now on the rod), one gets 
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The performance function can therefore be expressed as  
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            (A.12)
 

 

Another performance function can be introduced, in terms of the displacements of node A as an 
effect of the aerodynamic acting forces. Let [ ]K  be the stiffness matrix of  a rod or system of rods, 

and let { }F  and { }f  be, respectively, the vector of the forces acting on the structure nodes and the 

vector of the displacements of the nodes, expressed in the global coordinate system (with the x axis 
aligned with the direction of motion). Thus, 

{ } [ ]{ }fKF =            (A.13) 

 

Let us call al , bl  and  cl , respectively, the lengths of rods a, b, and c. 
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For the case of rod a, where only one element is involved, one can consider that, along the bar 
direction: 

aF = Aa fK * = A
a

a f
l

AE
*

*
         (A.14) 

Hence,  
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Which, projected on the x and y axes, provides the two components of such displacement: 
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Equation (A.15) makes it possible to express the performance function in terms of nodal 
displacements, thus allowing the presence of the Young Modulus E in the performance function 
itself. 

From (A.10), (A.15), and (A.16), 
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Similarly, from (A.10), (A.15) and (A.17):  
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Therefore, by fixing a limit value for each node in each direction (indicating it with the subscript L), 

it is possible to write the performance functions in terms of the nodal displacements: 
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Appendix B 

Covariance matrices 

  

Given a problem with n probabilistic physical variables, a question to deal with consists on 

evaluating and quantifying the physical correlation which exists between themselves, in order to 

make it possible to answer to the question: if there was a change on one of such variables, what 

would be its effect on the whole system? How considerably would the other physical quantities be 

affected? To deal with this problem, the correlation between these variables is often measured 

through the use of covariance matrices. A prerequisite to comprehend this tool is the knowledge of 

the concept of covariance.  

Given a physical phenomenon involving two probabilistically distributed variables X and Y, and 

given n experiments or simulations, the covariance between X and Y is defined as 

( ) ( )[ ]∑
=

−−
−

=
n

i
ii YYXX

n
YX

1

**
1

1
),cov(        (B.1) 

where iX and iY  are the values of the variables corresponding to the i-th sample or simulation. 

Covariance, in other words, is a measure of how much two random variables change together. 

Variance, on the other hand, involves every singular variables, and is defined (as it was seen in Eq. 

(2.7) and (2.8)), as 

( )
2

1

*
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1
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=

−
−
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n

i
i XX

n
X

        (B.2) 

i.e., is a measure of how spread a distribution around its mean is.
 

Equations (B.1) and (B.2) are valid for sufficiently great values of n; otherwise, the n-1 term in the 

denominator turns to n.
 

The covariance coefficient (or correlation coefficient) is defined by 

ρ(X,Y)= ( ) ( )YX

YXCov

σσ *

),(

          (B.3) 
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where ( )Xσ  and ( )Yσ   are the standard deviation of X and the standard deviation of Y, 

respectively. 

It is important to recall that  

( ) ( )XX var=σ
          (B.4) 

In general, the value of a covariance coefficient ranges between -1 (anticorrelation) to 1 (complete 

correlation). The value 0 refers to complete uncorrelation. 

 

Figure B.1: some examples of statistical distributions, with their related correlation coefficients (from New York 

University). 

 

With reference to the problem of section 3.5.4., the covariance matrix was built for the case of the 

two normally distributed random variables Lc  and V.  The following tables show the covariance 

matrix for an increasing number of simulations, which were performed via Monte Carlo. The terms 

in the main diagonal are variances, whereas the terms outside the main diagonal are covariances. 
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Covariance matrix (10^3 

iterations) 
Lc  V 

Lc  0.0106 -0.1584 

V -0.1584 801.1573 

            (B.5) 

Covariance matrix (10^5 

iterations) 
Lc  V 

Lc  0.0100 0.0039 

V 0.0039 906.6141 

            (B.6) 

 

Covariance matrix (10^6 

iterations) 
Lc  V 

Lc  0.0100 0.0013 

V 0.0013 900.1912 

            (B.7) 

Covariance matrix (10^7 

iterations) 
Lc  V 

Lc  0.0100 410*3319.5 −−  

V 410*3319.5 −−  7082.899  

            (B.8) 

Covariance matrix (10^8 

iterations) 
Lc  V 

Lc  0.0100 510*2422.9 −  

V 510*2422.9 −  9533.899  

(B.9) 

As it can be noticed, as the number of iterations increases, the terms outside the main diagonal (i.e. 

the covariance terms) are approaching zero. This means that Lc  and V  have no correlation; indeed, 

this fact is correct, if one recalls that V and Lc  were set as independent variables. 
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Appendix C 

Deterministic optimization routines 

 

The present appendix gathers together the Matlab routines that were used for solving the 
deterministic optimization problems which have been debated in chapter 4. 

 

From paragraph 4.3.1.: 

The following Matlab codes were used to minimize the f/V ratio (anyway inside a given interval) in 
the presence of a constraint. 

 

Main Function 

 

 

Objective function 
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Constraint function 

 

 

The outputs from the optimization design of the (f/V) ratio are reported below. Here, the initial 

value of (f,V) for the statically determinate profile was set to (0.675 m; 150 m/s). 

 

 

 

The following results refer to the case in which the initialization of (f,V) was set to (0.36 m; 199 
m/s). 
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From paragraph 4.3.2.: 

In the next figure: optimization loop, outputs by fmincon function for (b,h) = (50.8, 50.8) mm as 

starting values. 
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The next figure reports the outputs by fmincon function for (b,h)=(203.2, 50.8) mm as starting 

values. 
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Appendix D 

Dynamic analysis of flexible wings with high aspect 
ratio 

(From Coccon, Menegozzo and Galvanetto, 4th Royal Aeronautical Society Aircraft Structural Design 
Conference, Conf. Proc., 7th-9th October, 2014, Belfast, Northern Ireland). 

 

As a preliminary step, a recall is made to the model for flexible wings with high aspect ratio, as it 
was proposed by Cesnik and Brown (2002) and Brown (2003). Let us consider two coordinate 
systems: w, the local one, which is attached to the deformed wing reference line (see Fig. D.1), and 
B, the inertial one, which is fixed to the airplane fuselage (indeed, it is assumed that the fuselage 
neither rotates nor accelerates). 
 

 

Figure D.1: Inertial and local coordinate systems of the wing (from E. L. Brown, 2003). 

 

In the proposed formulation, the wing is sketched as a one-dimensional beam, which experiences 
three-dimensional bending and twisting deformations. Moreover, it is assumed that lengthwise and 
shear deformations are negligible. Under these hypotheses, the shape of the wing results to be 
determined simply by the curvature distribution along the beam coordinate, s: 

�
��,���� = ÷TÂ,, Â�, ÂOUℎ�\, h� = ¹ºº
»0 T 0 00 0 ÂOT −Â�T0 −ÂOT 0 Â,T0 Â�T −Â,T 0 ¿ÀÀ

Á ℎ�\, h�   (D.1) 

 

where ℎ = TF,�,,��,�OU	
, being p the position vector of a generic point along the wing reference 

line, with respect to the inertial coordinate system, as well as the three component vectors �,,�� 
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and �O. In the 12x12 square matrix, A, the three curvatures are indicated as Â,, Â� and ÂO, while I is 

a 3x3 identity matrix. A solution for such evaluation may be attained by discretizing the beam 
length into nk equally spaced coordinates, in order to identify a set of nk-1 three-node elements, as 
depicted in Fig. D.2. 

 

 

Figure D.2: Discretization of the beam reference line into nk-1 three-node elements. 

The curvature is assumed to be constant in the element, so that only the curvatures at the nodes need 
to be considered to solve Eq (D.1). In this way, the wing kinematics is simply defined by 3nk 

generalized coordinates, i.e., the 3nk elements of curvature vector, Âl, which is given by 

Âl = TÂ,,�, Â�,�, ÂO,�, … , Â,,
� , Â�,
� , ÂO,
�U       (D.2) 

The equation of motion is provided by the total virtual work done on the wing, which is the sum of 
the inertial virtual work (i.e., the work done by inertial forces, internal damping and elastic stresses) 
and the external virtual work (i.e., due to gravity loads and aerodynamic forces): 

Ô? = ÔÂl	 G−� �I±l��I − < �±l�� − ÐÂl + +J       (D.3) 

From here, the equation of motion is derived by setting the total virtual work to zero; this can be 

done because the virtual displacement ÔÂl  is arbitrary. In the following, only the aerodynamic loads 
are calculated in order to explain the methodology proposed by Cesnik and Brown (2002) and 
Brown (2003). 

 

D.1. Aerodynamic loads 

The aerodynamic model used by Cesnik and Brown arises from the original formulation by Peters 
et al. (1994) and Peters et al. (1995). Such a theory was developed for a thin, deformable airfoil 
which experiences a wide motion in a subsonic flow, with small deformations about that motion. 
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Figure D.3: airfoil motion (from Cesnik and Brown, 2002). 

 

Lift, drag and moment are nonlinear functions of the state vector m = �V, M, 8, Vn , Mn, 8n , ob� and its 

derivative, mn , where �V, M, 8� is the instantaneous position of the airfoil (see Fig. D.3), and ob is the 
induced flow due to the free vorticity. The lift force is expressed as 

� = 2uü ãVn éG��  − $J 8n − Mn − obê − ��  Mp − ��  $8pä     (D.4) 

where ü is the air density, b is the airfoil semichord, and d is the distance of the beam reference line 
to the mid-chord. 

The virtual work done by + = ��, �,_�	 can be written in terms of the curvature vector, Âl, i.e., 

Ô? = " ��ÔM + _ÔV + �Ô8�$\��6b = ÔÂl	D+l      (D.5) 

 

where +l  is the vector of the nodal aerodynamic forces, which can be linearized about the 

instantaneous state vector, GÂl�, Âln�J�6�û
	

, so that 

+l ≅ +l� + 	+l±lp +l±ln +l±l 
 6ÂlpÂlnÂlq + Ë+lr+l�Ì ão�ä       (D.6) 

where the terms in square brackets are Jacobian matrixes, whereas w is the contribution of wind 
gusts, which can be seen as an aerofoil velocity term in Eq. (D.4). Such a term is defined according 
to Dryden's wind turbulence model (Mclean, 1990), which provides the following power spectral 
density (PSD) function: 

3��s� = 2� �tý �(·G tu� JI
��(G tu� JI�I         (D.7) 

where s is the frequency, ø is the velocity of the aircraft relative to the air, �� is the length scale of 
turbulence, and 2 is the root mean square (RMS) of the vertical gust velocity. In order to generate 
the signal � in Eq. (D.6), the following relationship between the PSD of � and the PSD of a pre-
generated white noise, u, can be introduced 

3��s� = |è���s�|�3��s�         (D.8) 
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Since the input signal u is a white noise, its PSD is 3��s� = 1, therefore 

Hwx�s� � w�y�
x�y� � √K {(y

�|(y�I         (D.9) 

where	Ð � 3ø2�/�� , � = ø/T√3��U ,  � ø/�� , and \ � �s, being j the imaginary unit. Finally, 

Eq. (D.9) can be represented in the state space by means of the linear filter shown in Fig. D.4, 
where the matrixes A, B and C are functions of the parameters K, a, b. 

 

ã�n � ÷� N Dd� � <� � 
 

Figure D.4: Modeling atmospheric turbulence as filtered white noise. 

 

The output signal w(t) represents the source of uncertainty in the reliability-based design 
optimization (RBDO) described in the following sections. An example of generated gust velocity is 
illustrated in Figure D.5. 

Figure D.5: Example of vertical turbulence profile. 

 

 

 

 

 u(t)     w(t) 
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Appendix E 

Optimization design based on elastic axis 
(from Coccon, Menegozzo and Galvanetto, New methodologies in Reliability-Based Design Optimization for 

Aerospace Structures, WCCM XI - ECCM V - ECFD VI 2014 Conf. Proc., Barcelona, Spain, 20th - 25th July, 
2014). 

 
 
 

A Multidisciplinary Design Optimization (MDO) problem has been recently proposed by Huo et al. 
(2013) to investigate the composite wing elastic axis and its influence on the aeroelasticity 
application problem. The elasticcentreis apoint on a section of the beam, where a shear force can be 
applied without inducing any torsion, and the elastic axis is the lineof all elastic centres. In general, 
the mechanical behavior of an aerofoil is mainly characterized by the position of three points: 
elastic centre, centre of mass and aerodynamic centre. Hereinafter, it will be shown that the elastic 
axis position plays a crucial role in the aeroelastic stability of an airfoil. Let e be defined as the 
distance of the elastic axis to the aerodynamic center, and 8 the airfoil attack angle, which is 
composed of initial attack angle, 8b, and torsion angle, θ. The aerodynamic moment on the elastic 
axis, ��, can be written as 
 

�� � 73ö<>ú� N 73 é�� �7 �8b + θ�ê E       (E.1) 

 
where 7 is the dynamic pressure; S is the airfoil area, c is the cross section chord length; and <>ú� 
and <�are respectively the moment and lift coefficients. If a torsional spring is used to simulate the 
torsional elasticity of the airfoil, i.e. �� = Âθθ, the equilibrium equation of aerodynamic moment 
and spring elastic moment can be written as 

θ = �~Z�/�±:������  �7⁄ �7Ý(���e���*T�~�Z�/±:U���  �7⁄ �         (E.2) 

The torsion angle becomes infinite when the denominator of Eq. (E.2) equals zero, indicating that 
the wing is in a divergent state (instability). The corresponding divergence pressure, q9, is given by 

q9 = ±:�Z���  �7⁄ �          (E.3) 

from which it is seen that divergence instability is more likely to occur for high values of e. Hence, 
an optimization design based on elastic axis was proposed in by Huo et al. (2013). In this study, the 
wing mass and the distance from the elastic axis to the aerodynamic center define the following 
objective function 

# = =�>>þû* + =I��           (E.4) 

where M is the wing mass after optimization, ���,  is the maximum wing mass in the design 
variable span, and ?� and?� are weight coefficients. The constraints of the problem concern the 
maximum torsion angle, maximum strain and flutter frequency. 
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According to Coccon, Menegozzo and Galvanetto (2014), the optimization process described above 
can be extended to a reliability-based design optimization analysis, where the objective function in 
Eq. (E.4) is minimized while considering the uncertainties introduced by the randomness on the 
material properties as well as on the aerodynamic loads (random gusts). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 

 

Appendix F 

Response Surface Methodology 

 

In many physical applications, the evaluation of the performance functions can be computationally 
demanding, and this can be an issue, especially when their computation is required repeatedly. A 
possible solution is to create a surrogate physical model, whose evaluation is more simple and less 
expensive than the original performance function. This can be done through a sort of interpolation, 
i.e., by computing such a performance function (or response function) g, at a set of opportune, 
preset design points, which are then used to fit the simplified substitute model. This process is 
called Design Of Experiments (DOE).  The main goal of DOE is to minimize the amount of 
information that is required for optimization, through selection of the appropriate points where the 
response should be evaluated, such that the surrogate model describes as accurately as possible the 
behavior of the original model. Among the possible methods for approximating the performance 
function, Response Surface Methodology (RSM) is one of the most popular ones, which allows to 
reduce the original, complex response function g to a polynomial function. The design points are 
taken from a set of input variables X, each of them lying inside a preset bound. If the random 
variables are chosen as input variables, RSM allows to simplify the reliability assessment, which 
can then be performed through one of the classical methods, such as FORM, SORM or MCS. On 
the other hand, if  the design variables are chosen as input variables, RSM results to be useful in 
simplifying and accelerating the optimization process. 

 

The steps which are generally followed by RSM method are listed below. 
1. Determination the design (input) variables X and the response variables Q. 
2. Definition of an opportune interval for each of the design variables. 
3. Planning the locations of the design points where the experiment will be performed (namely, 

where the response function g will be evaluated) and the level of the variables (i.e., the number 
of design points for each of the input variables). 

4. Performing the experiment to obtain the local value P�,� of the response variable at each of the 
design points that have been determined in Step 3. 

5. Derivation of the unknown coefficients of the response surface model, in order to obtain the 
polynomial function which represents the surrogate model behavior. 

6. Using the response surface model for uncertainty assessment or for solving an optimization 
problem 

 

An applicative example of application of RSM is described in the sequel, consisting on the 
geometrical optimization of a tapered wing shear web which undergoes a set of aerodynamic forces 
due to drag and elliptical lift distribution (see Fig. F.1). Due to the difficulty of deriving an 
analytical expression to describe the behavior of the system, the response (or performance) function 
Y is calculated at some predefined design points, each of them corresponding to a particular 
combination of the input variables X, which, in this case, are the design variables (i.e., the cross-
sectional dimensions of the shear web, see Fig. F.2). Here, a two-level full factorial design is used, 
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which means that, for each input variable, two design points (i.e., levels) will be chosen, and the 
experiments will involve all the combinations of the design variable levels. 
 
 

 

Figure F.1: the main shear web of a wing experiencing the elliptical lift distribution and the aerodynamic drag. 

    

Figure F.2: shear web cross-sectional dimensions at the wing root (left) and at the wing tip (right). 

 

Step 1: Determination the design (input) variables X and the response variable Y: 
This is an optimization problem; therefore, the design variables (i.e., the cross-sectional dimensions 
of the shear web, see Fig. F.2) are chosen as input variables: 
 !� = hY , !� = h	 , !· = h� 
 
As for the output variable Y, the tip displacement caused by the acting forces will be recorded for 
every combination of the input variables. 
 

Step 2: definition of an opportune interval for each of the design variables: 
 !� = Ë100, 160ÌËeeÌ, 
!� = Ë40, 80ÌËeeÌ,   

!· = Ë20, 30ÌËeeÌ; 
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Step 3: Planning the number of design points and the level of the input variables: 
As it was previously stated, two design points (i.e., levels) will be chosen for each input variable: in 
this particular example, the minimum and the maximum value are chosen. For the sake of 
simplicity, every variable !� is put in an adimensional form and is called !�Æ, which lies inside the 
interval [-1, +1], where -1 stands for the lower bound !�,��
 , and +1 stands for the upper bound !�,��,; the relation between !� and !�Æ is: 

!�Æ = �T/x*/x,þx�U/x,þû**/x,þx� − 1          (F.1) 

 

Table F.1 shows the DOE Matrix, in which the response (or performance) function Y is computed 
for every combination of the levels of the input variables X, namely, for each of the design points. 

 

Table F.1: DOE matrix; every experiment corresponds to a particular design point. 

Experiment 

no.   

R°′  Rë′  RP′  

1 -1 -1 -1 

2 -1 -1 +1 

3 -1 +1 -1 

4 -1 +1 +1 

5 +1 -1 -1 

6 +1 -1 +1 

7 +1 +1 -1 

8 +1 +1 +1 

 

The polynomial function representing the surrogate model is given by P = �b + ��!�Æ + ��!�Æ + �·!·Æ         (F.2) 

 

where ��Æ (i= 1,2,3) are unknown coefficients, whose values will be found at Step 5. 

A graphical representation of the DOE matrix is reported in Fig. F.3, where each node represents a 
design point. 

 

Step 4: Performing the experiment to obtain the local value Yq,Q of the response variable at 
each of the design points: 

The response function P�@/Õ (namely, the tip deflection, where i = 1,...,8) is calculated at the design 
points of Tab. F.1 by using a FEM code. The results of these experiments are reported in Tab. F.2 
and Fig. F.3. 
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Figure F.3: graphical representation of the DOE matrix. The displacements are expressed in [mm]. 

 

Table F.2: DOE matrix with the response P�@/Õ for each of the experiments. 

Experiment 

no.   

R°′ �OÃ� Rë′ �O­� RP′ �Of� Ym�RZ 

1 -1 -1 -1 295.6 mm 

2 -1 -1 +1 88.89 mm 

3 -1 +1 -1 408.9 mm 

4 -1 +1 +1 118.6 mm 

5 +1 -1 -1 245.2 mm 

6 +1 -1 +1 70.57 mm 

7 +1 +1 -1 324.2 mm 

8 +1 +1 +1 92.9 mm 

 

 
Step 5: Derivation of the unknown coefficients of the response surface model, in order to 
obtain the polynomial function which represents the surrogate model behavior: 
To find the unknown coefficients ��, one can apply the least squares method, by minimizing the 
difference between the experimental results P��,�  and the response which is predicted by the 
surrogate model of Eq. (F.2), namely 

 �gc∑ 	P��,� − ��b N ��!�Æ + ��!�Æ + �·!·Æ �
/�6� ²      (F.3) 
 
 
 
Another way to determine the unknown coefficients is based on the observation of the effect 
produced by the change of every single variable on the overall system response (i.e., the main 
effects). 
The first coefficient is the average of the responses from all the design points, namely 
 �b = �/ ∑ P�,�,� = 205.61 /�          (F.4) 
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The other coefficients are derived by considering the main effect By of each input variable !yÆ, that 
is, the average change on the system when !�Æ changes from - 1 to +1 while other variables remain 
unchanged. 
 
 
The main effect By is computed as the difference between the average value �y(of the response at 
the !yÆ  high level (+1) and the average value �y* of the response at the !yÆ low level (-1) (Du, 2006), 
as depicted in Fig. F.4. 
 
 
Now, let us compute ��: 
 

 
Figure F.4: the main effect of !�Æ, which is numerically expressed by Eq. (F.7). 

 
 
 
With reference to Tab. F.2, the average response at !�Æ  high level (+1) (highlighted in red in Fig. 
F.4) is  
 ��( = �î �P�@/Õ + Pç@/Õ + P0@/Õ + P/@/Õ� = 183.22      (F.5) 

 
whereas the average response at !�Æ  low level (-1) (highlighted in blue in Fig. F.4) is 
 ��* = �î �P�@/Õ + P�@/Õ + P·@/Õ + Pî@/Õ� = 228.00      (F.6) 

 
Therefore, the main effect of !�Æ  is expressed as 
 B� = ��( − ��* = −44.78         (F.7) 

 
The coefficient �� is defined as half of the main effect B�, namely 
 �� = @�� = −22.39          (F.8) 
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The other coefficients (�� and �·) are computed in an analogous way: 
 

��( � �î �P·@/Õ + Pî@/Õ + P0@/Õ + P/@/Õ� = 236.15      (F.9) 

��* = �î �P�@/Õ + P�@/Õ + P�@/Õ + Pç@/Õ� = 175.07      (F.10) 

B� = ��( − ��* = 61.08         (F.11) 

�� = @I� = 30.54          (F.12) 

 

�·( = �î �P�@/Õ + Pî@/Õ + Pç@/Õ + P/@/Õ� = 92.74      (F.13) 

�·* = �î �P�@/Õ + P·@/Õ + P�@/Õ + P0@/Õ� = 318.48      (F.14) 

B· = �·( − �·* = −225.74         (F.15) 

�· = @Ö� = −112.87          (F.16) 

 
Therefore, the surrogate expression of the performance function is P = 205.61 − 22.39 ∗ !�Æ +30.54 ∗ !�Æ −112.87 ∗ !·Æ       (F.17) 

Then, after substituting !�Æ with !� [see Eq. (F.1)], one obtains the surrogate performance function 
as a function of the original variables !�: P = 775.41 − 0.746 ∗ !�+1.528 ∗ !� − 22.58 ∗ !·     (F.18) 

and, recalling that !� = hY, !� = h	, and  !· = h�, Eq. (F.18) can be expressed as a function of the 
geometrical design variables:  P�hY , h	 , h�� = 775.41 − 0.746 ∗ hY + 1.528 ∗ h	 − 22.58 ∗ h�    (F.19) 

 
 
 
 
Step 6: Using the response surface model for solving an optimization problem: 
The polynomial performance function P�hY , h	 , h�� describing the tip displacement can now be used 
for optimization, by fixing a maximum allowed displacement Ô��� that has not to be overtook. Let 
the design aim be to find the geometrical features for which the shear web mass is minimized while 
respecting the constraint on the maximum allowed tip displacement; the problem can be formulated 
as: 
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���
�
��
� #gc$ �hY , h	 , h��\. h.min�e�P�hY , h	 , h�� − Ô��� ≤ 0hY� ≤ hY ≤ hY�h	� ≤ h	 ≤ h	�h�� ≤ h� ≤ h��

�         (F.20) 

 
 
In addition to optimization and reliability analysis, the simplification introduced by RSM can be 
used in probabilistic design as well, due to its usefulness in bringing down the computational effort. 
 

 

 

 

 

 

 

 


