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Summary

In the last decades, also due to the ever incrgasiportance assumed by civil air transport and its
deregulation, the aeronautical structural designlte to be characterized by two contrasting needs:
on the one hand, the reduction of costs, and, enother hand, the increase of the aircraft
reliability. The costs minimization often resultsfuel saving and, hence, in a mass optimization of
the airplane; however, this risks to collide witle hecessity to maximize the system reliabilitye Th
probabilistic approach to structural design, assitproposed by the Reliability-Based Design
Optimization (RBDO) phylosophy, allows to combiiese antithetical requirements. After all, the
traditional deterministic approach, which is basedthe use of safety factors, often proves to be
inadequate, since it can cause both a structuealx@ight and an underestimation of risks.

Probabilistic optimization consists of two separptecesses: an external loop of deterministic
optimization and an internal reliability assessmieop; these two steps are executed repeatedly,
until the optimal configuration is reached; thisiddion is such that one or more performances are
maximized and, at the same time, the feasibilityst@ints result to be respected with the desired
level of likelihood.

Despite the growing interest towards the RBDO mathagies in the aeronautical field, to this day
some applicative areas remain, which have not ba#itiently treated in literature; one of them is
the aeroelastic field. Moreover, it is importanthiglight that every single applicative case regsiir
a deep study at a numerical level, aimed at detengniwhich are the optimization and reliability
assessment algorithms which are best fit for thettiqular situation; next, the two chosen
algorithms have to be interconnected, to createglesprobabilistic optimization loop.

One of the novelties that are proposed in thisishesnsists on the use of RBDO in the frame
design of a wing section, in order to prevent desigE instabilities and to optimize such a
structure; this optimization methodology, basedlmelastic axis, had been previously applied by
following a deterministic approach only (even thbug a three-dimensional case). Another subject
matter that was treated is essentially numeriba:creation of a simple RBDO algotithm, that was
then successfully applied to the sizing of a be&ubsequently, two analyses were carried on,
aiming at applying RBDO first to the structure ofegtangular wing, and then to a shear web, and
promising results were obtained in both cases.

In the future continuation of the present work, Hagious subject matters that have been treated
will converge towards the determination of a glpbahified procedure for the probabilistic
optimization of a wing structure. Such an approatiat will also aim to prevent aeroelastic
phenomena, will be devoted to reproduce as morkstieally as possible the system and the
surrounding environment; therefore, it will reckeith both structural nonlinearities and the forces
generated by random gusts.






Sommario

Mai come oggi, complice anche la crescente impadashe ricopre il trasporto civile aereo e la
liberalizzazione di tale mercato, la progettazi@teitturale in ambito aeronautico risulta essere
dominata da due esigenze contrastanti: da un lateiduzione dei costi, dall'altro, 'aumento
dell'affidabilita del velivolo. La minimizzazioneedcosti si traduce spesso in una minore spesa di
carburante e, quindi, in un'ottimizzazione dellasg@adell'aereo; tuttavia, ciod rischia di scontrarsi
con limperativo di massimizzare laffidabilita deistema. L'approccio probabilistico alla
progettazione, cosi come proposto dalla filosofgdid®ility-Based Design Optimization (RBDO),
consente di coniugare queste due esigenze fra datibetiche. D'altro canto, il tradizionale
approccio deterministico, basato sui coefficientsidurezza, risulta spesso inadeguato, in quanto
puo portare sia ad un eccessivo appesantimenttuséile che, caso opposto, ad una riduzione della
sicurezza del sistema.

L'ottimizzazione probabilistica consta di due pssmedistinti: un loop esterno di ottimizzazione
deterministica ed un ciclo interno di verifica tfidabilita: questa successione continua findva ¢

si converge alla configurazione ottimale, tale dl@@massimizzare una o piu performances e, allo
stesso tempo, che rispetti i vincoli relativi &€lilo minimo di sicurezza richiesto.

Nonostante il crescente interesse verso le metgedolRBDO in campo aeronautico, ad oggi
permangono aree applicative che non sono ancaea sifficientemente trattate in letteratura; tra
gueste, I'ambito aeroelastico. Inoltre, va soteadio che ogni singolo caso applicativo richiede uno
studio approfondito, a livello numerico, volto ateleninare quali siano gli algoritmi di
ottimizzazione e di verifica dell'affidabilita cimeeglio si adattano alla situazione; questi, in gegu
vanno interconnessi per creare un unico ciclotiihazazione probabilistica.

Uno degli elementi di novita che vengono propastjuesta tesi consiste nell'impiego della RBDO
al progetto strutturale della sezione di un'al&y atopo di prevenirne fenomeni di instabilita di
natura aeroelastica, oltre che di ottimizzarndnattsira; tale metodologia di ottimizzazione, basat
sull'asse elastico, in precedenza risultava agpliGgeppure ad un caso tridimensionale) soltanto in
maniera deterministica. Un'altra tematica che &adtattata ha invece una natura essenzialmente
numerica: la costruzione di un semplice algoritmattimizzazione probabilistica, applicato con
successo al dimensionamento di una trave. In sequitata affrontata un'analisi volta ad applicare
la RBDO prima alla struttura di un'ala rettangolarpoi ad un longherone rastremato, con risultati
promettenti.

Nella futura prosecuzione del presente lavoro, deevtematiche affrontate confluiranno nella
determinazione di una metodologia unitaria petittozzazione probabilistica della struttura di
un‘ala. Tale approccio, che mirera anche alla pravee di fenomeni aeroelastici, si proporra di
riprodurre il sistema e I'ambiente circostante meldo piu fedele possibile, e terra quindi conto
delle nonlinearita strutturali e delle sollecita@icdovute alle raffiche di vento aventi natura
stocastica.
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Chapter 1

Introduction

1.1. Originality and motivation

In the last decades, there has been an ever inmeastivation for aerospace systems to achieve
both better performances and lower costs and, erotier hand, a higher reliability. The need to
minimize weight and maximizing performances colideith the costly and fatal conseguences of
failure, due to the extreme difficulty to performaimtenance during flight. Moreover, a diversified
amount of uncertainties arises from the system famoh the surrounding environment, which
causes the system performances to change or ftacthas constituting an inherent source of risk.
Reliability-Based Design Optimization (RBDO) progglan answer to this kind of issues (Yo
al., 2011). RBDO is a probabilistic design methodoltpt allows to reckon with these contrasting
needs: indeed, it can be used to enhance theiligyiaif a physical system and to maximize its
performances, in full compliance with the desire@asibility constraints. In general, a higher
reliability implies a greater cost, and a lowelatkility also implies a greater cost due to failure
consequences (Du, 2006): this proves the importaheeprobabilistic approach in design, in order
to achieve the desired trade-off between perforesaad safety.

In traditional design, to account for uncertaintiegfety factors are widely used (Yabal, 2011);

anyway, such an approach poses some limitatiodgenh bigger safety factors could result in a
performance loss; on the other hand, being thestidents defined based principally on the past
experience, it could be likely that they don't kéee account all the possible risks, thus leadng

a potential danger.

RBDO allows to optimize the desired performanceg.(¢he mass minimization of an aeronautical
device) while limiting the probability of failureota maximum predefined value. The difference
between deterministic optimization and probabtistptimization (performed via RBDO) is
depicted in Fig. 1.1. We want to design a systami(fstance, a beam) so that its mass results to be
minimized, and let us call; andx,its geometrical dimensions, that can be varied'dagrees of
freedom") to reach the desired goal: for exampie, dimensions of the beam rectangular cross-
section. Clearly, the optimization process is leditby some feasibilitgonstraints(see Fig. 1.1),
such as the yield stress and the maximum allowelteai®n. Generally, a deterministic
optimization loop continues automatically until oofethe deterministic constraints is reached: this
is the case of the radksign poinf Fig. 1.1; however, this point corresponds ®0&o probability

of failure, since it is located exactly on the bartbetween the feasible and the infeasible regions.
Conversely, theeliable optimal solutior(i.e., the green design point in Fig. 1.1) cowdduit more
"prudent”, but it meets the predefined reliabilayel.

13
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Figure 1.1: graphical representation of Reliability-Based Dag@iptimization(from W. Yao ¢ al., 2011).

Despite the probabilistic approach is already pradtin many branches of the aerospace field, at
present there is an ever increasing interest onuthifed approach that is offered by RBDO
methodologies; moreover, a lack of RBDO literatueeists for some particular aerospace
applications, such as in the aeroelasticity figldaddition, it is important to highlight that, fevery
single different structural contest, one has tddoand adapt its correlated RBDO implementation,
such that it results to be as more accurate ardests possible, and less time-consuming; to
achieve this result, one has to investigate thet swsable algorithms for both reliability analysis
and optimization, and then integrate them intocadogl unified procedure.

Huo et al. (2013) proposed a methodology for the wing optatian based on elastic axis, limited
to a deterministic case, in which the goal of mizinmg the structural mass is pursued together with
the need of preventing aeroelastic instabilitiesthle present thesis, such a problem was revisited
from a reliability-based point of view. Moreoven mvestigation of some possible ways to reduce
the computational time in structural RBDO was madsp by employing Design Of Experiments
(DOE) and Response Surface Methodology (RSM); & senple RBDO algorithm is presented as
well.

1.2. Outline

Chapter 2 provides the prerequisites to be ablédet with reliability assessment; hence, the
fundamentals of uncertainty modeling are reviseith & particular focus on the fundamentals of
probability theory and statistics. Then, uncertaiabalysis is presented, and some key concepts,
such as that akliability andprobability of failure are introduced. In Chapter 3, the main reliapilit
assesssment methods are illustrated: Monte Carwl&iion (MCS), First and Second Order
Reliability Methods (FORM and SORM), and First Qr@&econd Moment method (FOSM); then,
such algorithms are tested on some structural ebfesnm order to evaluate their efficiency. In
Chapter 4, deterministic optimization is treateat] #he various methodologies for implementing it
are illustrated: the analytical method, the graphimethod, thgradient-based numerical methods
and genetic algorithms(GA). Chapter 5 serves to describe how Reliabibiysessment and

14



deterministic optimization converge inReliability-Based Design OptimizatidRBDO); Then, a
very simple RBDO algorithm that was developed isspnted; subsequently, such an algorithm is
applied to the probabilistic design of a cantilekeam. Finally, two of the best-established RBDO
algorithms are introduced: Reliability Index Appcba(RIA) and Performance Measure Approach
(PMA). Chapter 6 concerns the application of thiabdity-based design to some aeronautical
structures, and aims to describe the RBDO casdsaniincreasing level of lifelikeness. In the first
case, the probabilistic design of a wing airfoilisture is made; the main goals of this analyses ar
mass minimization and the prevention of aeroelasstabilities. Subsequently, the probabilistic
design of a rectangular wing is described, in whagtimization is performed via a genetic
algorithm, and Monte Carlo Simulation (MCS) is usecompute the system reliability. The same
approach is then used for the design of a tapehsdrsweb, in which Response Surface
Methodology (RSM) is used to simplify the expressas the constraint function and to reduce the
computational costs. Eventually, Chapter 7 cont#iesconclusions, in which the main results are
recapitulated, and some recommendations on theefutantinuation of the work are briefly
described.

15



Chapter 2

Uncertainty modeling and analysis

2.1. Introduction

Uncertaintycan be defined as the difference between the aimghowledge of a system and its
current knowledge.

While studying a physical system, it is useful pitghe lack of knowledge into two major families:
aleatory uncertaintyand epistemic uncertaintyAleatory uncertainty(or gochastic uncertainjy
originates from the inherent variability of a syster the surrounding environment under study; it
is related tonatural variability, and cannot be completely eliminated by collectimgpre
information. Therefore, aleatory uncertaintyrreducible On the other han&pstemic uncertainty
accounts for the incomplete knowledge of natures ithcludes the properties of the system under
study, as well as its time-varying interactions hwihe external environment. This lack of
knowledge can be, at least partially, overtakenugh the collection of more data; thus, epistemic
uncertainty igeducible

In the present work, we will focus on aleatory uteiety. To quantify aleatory uncertainty,
probability theory is commonly used (Du X., 2006).

Uncertainties on parameters and model featuresyefisas numerical errors, have an important
impact on the system performances. Neglect or wecbtreatment of uncertainty may lead to low
quality and reliability, costly warranties, oversigned (conservatively) products, low costumer
satisfaction, up to catastrophic consequences (DA006).

In engineering design, uncertainty can be facedthrae complementary levelsiodeling analysis
anddesign

First level:uncertainty modeling

The goal of uncertainty modeling is to provide ammeanatical quantification of uncertainty. To do
so, probability theory and statistics are oftendystirough which the uncertainty is finally
expressed as a random variable with its probaldigfribution. The latter is the input to uncertgin
analysis (second level).

Second leveluncertainty analysis

Uncertainty analysis aims to quantify the uncettaiof the design performance (model output)
given the uncertainty of the model input (whichpi®vided byuncertainty modeling (Du X.,
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2006). Thanks to uncertainty analysis, it is pdssib forecast the influence of uncertainty on the
design performance, and to evaluate the desigabrkdy.

Third level:design under uncertainty

The goal of design under uncertainty is to redieeeffects of uncertainty by making appropriate
design choices. Depending on the design requiresnémé attention may be focused on safety,
robustness or quality.

Design under uncertainty is an iterative procesd,every updated design will undergo uncertainty
analysis.

2.2. Basics of uncertainty modeling

Uncertainty modeling aims to quantify uncertairftyough mathematical tools. A brief overview of
some fundamental probability theory and statistmscepts will be presented below.

Probability

Probability quantifies the likelihood of occurrence of an ev@u X., 2006). The probability of an
eventE is defined as

The number of ways the event E can occur

P(E) = (2.1)

The total number of possible outcomes

Probability density function

Let us consider a spacecraft orbiting around agplamhich experiences a temperature gradient, at
every orbit, between the perihelion and the aphelibet us want to record the maximum
temperatureX which is experienced by a particular instrumené\ary orbit. One wants to know
which is the probability for the temperature to ineany given interval, i.e., the probability
distribution forT. To answer this question, one can record the maxinmstrument temperature at
every orbit and then plottastogram(Figure 2.1 (a)).

In order to be more accurate, one can reduce theibe (Figure 2.1 (b)). In the limit case, the
histogram becomes a smooth curve (Figure 2.1\d)ich is theprobability density functioripdi),
or probability distribution for X.

17
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Figure 2.1 if one reduces the bin size of a histogram, itné case is given by thgrobability density function (pdff
the random variable under study (from Zhang, 2008).

A mathematical formulation for thedfis provided below.

Let X be a continuous random variable. Then, a probgliénsity function (pdf) oK is a function
f(X) such that, for any two valuesandb with a < b,

P(a<X <b) = [ f(X)dX (2.2)

whereP stands foprobability.
The definition above is valid under the two follegiconditions:

1) f(X) = 0 for everyX

2) [T fdx =1

Thus, the probability for the instrument to reaamaximum value of tempreature between 60° and
70° is given by the grey area (Figure 2.2) dividgdhe total area under tipef curve.

18
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Figure 2.2:the probability for the random variable X to liethe selected interval is equal to grey area divioy the
total area under thadf curve (from Zhang, 2008).

Cumulative distribution function

The cumulative distribution functioRi(x) for a continuous random variab} with probability
density functiorf is defined by

Fx)=P(X<x)=["_F(X)dX (2.3)

X

Figure 2.3: probability density function (left) and cumulatidestribution function (right) (from B. Schroeder).

wherex is meant as a particular value that is assumeatédyandom variablX.

An important theorem on cumulative distributiondtians is reported below.

19



Theorem:

Let X be a random variable with cumulative distributfanction F. Then, for a real number we
have

P(X>a)=1-F(a) (2.4)

.// - % TTe—

Figure 2.4:the probability, for the random variabte to be bigger than a real numizeis the reciprocal of the
cumulative distribution function at(from B. Schroeder).

Mean

Themeanof a continuous random variable X with probabitignsity functioryy is

uei= "7 X fy(X)dx (2.5)

Variance

Variance is a measure of how spread a distribwronnd its mean is, and is expressed as

02 = [T7(X — u)?fr(X)dX (2.6)

For a finite numbeN of samples, the variance is calculated by

2 =~ ¥ (x; — px)? (2.7)

As N increases significantly, the variance expressiaiven by

§2 = = B, (x — py)? (2.8)

20



which best approximates the variance value whapproaches infinity.

Percentile value

Consider a continuous random variaflend a real numbet; the percentile valuge® is a value
below which the probability of the actual values<dfeing equal or less thatf isa, i.e.

P(X < x%) = Fy(x®) = [~ fF(X)dX = a (2.9)

f‘:—( 1_) &

[
-

X X

Figure 2.5: percentile value of a distribution. The grey areaqual tax (from Du X., 2006).

Normal distribution

A Normal Distribution (also called Gaussian Distribution or Bell Cujvis a particular kind of
theoretical frequency distribution, which is symneetbout its mean. The maximum value of the
pdf is reached at the mean of the random variaplé,such function decreases monotonically along
both directions, so that the function is bell-stthpEhe distribution is defined by two parameters:
the mean iy) and the standard deviationy]. Some features regarding the items concentration
about the mean are shown in Figure 2.6.

This is the most popular statistical distributiand will often be used in this work.
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Figure 2.6: a (standard) normal distribution with some datgarding the items concentration about the meam(fro
faculty.virginia.edu).

Considering a normally distributed random varia¥]eits normal distribution is determined by a
mean valuey, and a standard deviatian, , and its notation i¥~N (uy, o).

Theprobability density functiofpdf) of a normal distribution is given by:

2
1 1 (xX-u
fo(X)=————*exp-=*| —2| |, —0< X<+
N o, F{ 2 ( 2 ” T (210
Thecumulative distribution functio¢cdf) is expressed as
° 1 1, (x-u ’
Fo(X)= | ——*exp-=* X1 ldx, -0 < X<+
0= { 7 ” e @1

A normal distribution with zero mean (u = 0) andtwariance(c? = 1) is called astandard
normal distribution(Figure 2.6).

A normal random variabl&~N(uy,gy) can be transformed into a standard normal variable
through the following expression:

7 = Xkx (2.12)
ox

its probability density functiop (Z) and cumulative distribution functieh(Z) are given by

1 1
p(Z) = Norida (_ﬁ) —00 <z < 4 (2.13)
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?(2) = f_Zoo%exp (—%) dz —0 <z <+ (2.14)

2.3. Uncertainty analysis

An engineering system can be schematized througfataematical model with some inputs and
outputs.

The inputs are design variables and random vasablhile design variables are under the control
of the designer (e.g., dimensions or the choicaaterials), random variables account for all those
conditions which can't be modifed by him (e.g., éxéernal temperature or the direction and speed
of wind gusts).

The system output or response, on the other hamdbe seen asperformancesuch as the stress
or strain which is experienced by a structure.

If the input variableX are random, the output variabfewill be random as well.

A major issue in uncertainty analysis is to evaufie impact of input parameters uncertainties on
the system response. From a mathematical poinewf, the goal is to evaluate the distribution of a
response variable given the distributions of thmutrvariables (Du X., 2006).

X __)D_ Analvsis Model YJLL
Y =g(X)

+

Figure 2.7: mathematical model for the probabilistic desigrmofactual engineering system.

From now on, the mathematical modek g(X) will be called performance functionwhich
describes the relation between the response andghevariables.

The task of uncertainty analysis is to quantify timeertainty associated with the model output (Du
X., 2006).
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23.1.  Reliability

Reliability is the likelihood that a component (arsystem) will perform its intended function
without failure for a specified period of time umdgated operating conditions (Yao et al., 2011,
Ingram-Cotton et al., 2007, and MIL-STD-785REVB30%.

For a system to be considered safe, the valueegpéinformance functiohl = g(X) has to lie over

a certain threshold. If it outgoes such a limig #8ystem cannot be considered safe anymore. The
threshold value is defined as thmit state and divides the random variables space intafe
region and afailure (or unsaf@ region From now ony = g(X) = 0 will be considered as the
threshold value for the performance function, ite limit state function Hence, the safe region
extends wherg(X) > 0, whereas the area wig(X) < 0 is theunsafe regior{Figure 2.8).

\ Unsafe region g(X)<0

Limit state function g(X) =0

N

Safe region g(X)=0

» X3

Figure 2.8: graphical expression of the limit state function# two-dimensional problem (from Du X., 2006).

A simple engineering example of what has just beessented is the case of a specimen being
stimulated; in this case, the performance functiam be defined as

Y = g(X) = X, — X;, whereX; is the acting stress, aid is the strength of the material.

The Reliability (R) is expressed as the probability, for the perferoeafunction, to be above the
limit-state value, i.e.,

R = P(g(X) > 0) (2.15)
while theprobability of failure(p, ) is defined as

pr=1—-R=P(gX)<0) (2.16)
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In structural applications, the probability of fai is generally low; hence, it is often convenignt
relate it to the left tail of the performance funat(Figure 9).

This could be the case of the previous examplerevtiee probability of failure is expressed as
pr=P(@X)<0)=PX,—X;<0) (2.17)
which reports on the (very low) probability of thgess overtaking the material strenght.

A )
fr[.}'.}

Tailjrey \
’ -

0 y

Probability of Failure p, Reliability R

Figure 2.9: pdf of a performance functioly = g(X). The shaded area refers to thesafe regioni.e., the one such that

y = g(X) < 0 (from Du X., 2006).

If one needs to improve the reliability of a designs possible to do it by shifting thglf (through
varying the value of the mean) and/or by shrinking.e., reducing variance) (see Figure 2.10).
This can be done by conveniently changing the sati¢he design variables, and this is one of the

goals ofReliability-Based Design

Shrink the distribution  Opgmal Design

() +

Shift the distribution

/

Probability of Failure Reliability ®

0

}
Figure 2.10:reliability can be increased trough acting onrtean and the variance of thdf(s) (from Du X., 2006).
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2.3.2. Robustness

Robustnesss the degree of tolerance of a system to be sithem to variations in both the system
itself and the environment (Yao et al., 2011). fhep words, a design is considered@sustif its
functionality is not significantly affected by srhahanges in parameters, models, assumptions and
in the external environment (IEEE Std. 933-1999juFe 2.11 depicts the case of the respque

of two different designs: even though the meaméssameDesign 1lis more robust thaBesign 2
because of its lower standard deviation.

fr () A

Design 1

0 iy y

Figure 2.11:due to its lower standard deviatidesign lis more robust thabDesign 2(from Du X., 2006).

Robust Design is mainly concerned with the evestriuted near the mean of the probability
density function (small fluctuations around themalr status, see Figure 2.12), whereas Reliability-
Based Design Optimization is concerned with thefgperance distribution at the tails of the
probability density function (extreme events) (Ya&al., 2011).

A

Robusiness

fix)

Relinbility Reliability

Probability density function

0T L 4T

Random vanable

Figure 2.12:robustness and reliability in terms of probabitignsity function (from Yaet al, 2011).

26



In other words, reliability is mostly focused orfetg for preventing catastrophic events, whereas
robustness deals with the everyday fluctuationsaamd mainly to avoid quality loss.

A
- : No engineering Reliability-based
& = applications design optimization
L=
=
= F
D
2 - . e
g‘ B Robust design and Reliability is not an
g aptimization issue

Y

Small permurhation Extreme event

Uncertain event

Figure 2.13:domains of application of Robust Design and RdltgiBased Design (from Yaet al, 2011).

2.3.3. Uncertainty analysis algorithms
The main goal of uncertainty analysis is to comléeprobability of failure of a system.

Let us consider a-dimensional joint probability density functiof(X) = f(X;,X,, ...X;,). The
probability of failure can be computed by the fallng integral (Breitung, 1989):

pf = fD f(X)dXx (2.18)
where the failure domaib is defined ag(X) < 0.

In engineering applications, performance functioase normally complex and nonlinear;
furthermore, a high number of random variables sgally involved, making multidimensional
integration computationally prohibitive. In manysea, performance functions are a black box (e.g.,
Finite Element Modeling or Computational Fluid Dymas codes). Therefore, it is frequently
almost impossible to find a closed form analytisalution for determining the probability of
failure.

To overcome this issue, numerical approximatiorho@s$ are used. There are three main categories
for such algorithmsuncertainty analysis methodsampling-based methodsmdsurrogate models
Even though they will be treated in detail in tlexinchapter, a brief hint to them is made below.

Uncertainty analysis methods

These algorithms are used to simplify the integnanlg. (18) and to approximate the performance
function g(X), in order to obtain an analytical solution for theegral. Among these approximation
methods, First Order Reliability Method (FORM) aBdcond Order Reliability Method (SORM)
are the most widely applied in engineering probléyfeo et al., 2011, and Rackwitz, 2001).
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Sampling-based methods

Also known asMonte Carlo Simulation(MCS) methods, they are a class of computational
algorithms which perform repeated sampling and Ktman, in order to compute the statistics of
the response quantities of interest (dal, 2011, Heltoret al, 2006, and Landaet al, 2005),
like for example the probability of failure. The MCmethods accuracy can be improved by
increasing the number of samples, up to tend tohtheretically exact solution.

Surrogate models

When the evaluation of the performance funcggX) is strongly time-consuming, a great issue to
deal with is the necessity to reduce the computatioverload. This task can be accomplished by
substituting the original, complex analysis modéthwa simpler one (i.e., theurrogate modagl
Hence, the related performance functions are nmeraentary and easier to handle.

2.4. Conclusions

In this chapter, a brief review of uncertainty mioeg was made, followed by an introduction to
uncertainty analysis. Uncertainties canepestemicor aleatory, while the first one can be reduced
through a better knowledge of the engineering maddlits environment, the latter are irreducible.
A generic engineering system can be schematizednbgnalysis model, which has some inputs
(i.e., random variableX and design variabled), and one (or more) output(¥)(i.e., the system
responsg The uncertainties associated with the model tinpili be propagated to the model
output, and this process is describled by one orenperformance functiony = g(X). In
engineering design, uncertainties have to be mahagethree different levels. Firstly, input
uncertainties must be mathematically quantifiedulgh uncertainty modeling, which is performed
via statistic tools; as a result, each of them banexpressed as a random variable with its
probability distribution function(pdf). The second step consists uncertainty analysiswhich
allows to compute the uncertainty associated withmodel output, and to determine the system
reliability; however, in many engineering applicei$, this can be computationally prohibitive; to
overcome this issue, numerical approximation methade used. The third step consists in
performingdesign under uncertaintyvhose main goal is to reduce the impact of uaggres in
the final design by making opportune design choiges, by setting the optimal values for the
design variabled).
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Chapter 3

Reliability assessment methods

3.1. Introduction

To compute the probability of failure of a physitaidy, one has to deal with non-deterministic
guantities (i.e., tha random variableX) and, hence, the entity of at least some parasetert be

fixed a priori.

An uncertainty-based approach is given by consigeitie possible outcomes of some experiments
(e.g. a quantitative measure) or some physical tfiggmas random variables that are subject to a
particular probability distribution; for simplicitywe will henceforth considerormal distribution

that is the most commonly used.

A system reliability is determined by its performsarfunctiong (X), which returns a negative value
under system failure conditions, and a positivaugalvhen the system is safe. Hence, it can be
viewed as the difference between resistaR¢c@nd loadS:

g(R,S)=R-S5 (3.1)

Both the resistance and the load of an engineaystem depend on random variables; therefore,
they each have a probability distributigh(R) andf;(S). If these twopdfs are combined, they
give rise to goint probability density functiari.e., fz s(R, S) (Figure 3.1).

Once the joinpdfis known, the probability of failure is calculatby the following integral:

pr= 0" fas(R, S)drds (3.2)

Such an equation can be generalized tontdenensional case, with = total humber of random
variables:

pr=Plg(X) <0} = [ [x(X)dX (3.3)

29



Sls) fzln)

Resistence

R Joint Probability
Density Function fps(r.s)
Load

g(R-S>0
(Safe Region)

g(R-S)<0

(Failure Region)

Figure 3.1 joint probability density function, divided betes the safe region and the failure region (from
uniandes.edu.co).

If one performan experiments (which are depicted in Figure 3.2laskbdots), the probability of
failure of a system is equal to the probability fafling in the region where the performance
function is less than zero, i.e., tfaglure region

Therefore,

number of items falling inside the Failure region
Pr =

total number of items

Figure 3.2 let us perforrm experiments. The probability of failure is the odbietween the number of items
falling inside the failure region and the total rhen of experiments, i.em.
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In order to compute the probability of failure (thve reliability) of a given structure, several
different methods can be employed. In this chapaer,overview will be made on the most
commonly used methodologies, which belong to the families of Uncertainty Analysis methods
and Monte Carlo Simulation (MCS).

3.2. Monte Carlo Simulation (MCS)

Although statistical methods are gradually spregqditore and more in engineering applications,
many engineers have only a limited knowledge obphality and statistics. Monte Carlo simulation
provides a straightforward approach if one doelaite a deep theoretical knowledge of statistical

methods.

Monte Carlo Simulation(MCS) methods, also callesampling-based methadare a class of
algorithms which consists on performing a very éargndom sampling and making a huge number
of simulations on computer, so as to compute thessts of the response quantities of interest.

Provided a sufficient number of samples, MCS methzath reach the desired level of accuracy; the
latter tends to the exact solution as the numbeaxperiments approaches infinity. Because of its
robustness, MCS is often used as a benchmark &duaing the performance of new uncertainty

analysis techniques (Yao et al., 2011).

MCS normally requires a huge number of simulaticarsl can be computationally demanding.
Therefore, it may not be suitable for some commagineering applications, where the need to
repeatedly execute a lot of complicated calculatimould be computationally prohibitive. Hence,
Monte Carlo Simulation is widely used in enginegrapplications where the model evaluations are
not onerous. Alternatively, the computational costMCS may be optimized by implementing
variance reduction techniguesuch admportance Samplingwhich allows to strongly reduce the

number of samples.

Coming back to crude Monte Carlo, a first, simppplacation of this methodology consists of

calculating the area of a circle if one doesn’twnts formula.

Let us consider a circle that is inscribed insid®aare (see Figure 3.3), and let us randomly sampl
some points inside the area of the square. Themedihe number of the points inside the circle by

the number of the points that fall outside the sguaut outside the circle. As the number of the
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points (i.e. the samples) increases, the resuheflivision gradually approaches the valuer H4,

that is just the ratio between the areas of thegeametric figures.
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Figure 3.3 Computing the ratio between the areas of a cankka square (inside which it is inscribed) thfolpnte
Carlo Method (from Fattaruso J.).

Some theoretical basics underlying crude MontedJdthod are given below.

Even if MCS is applicable to both the cases of ddpat and independent variables, the present
dissertation is focused on the case in which amligpendent random variables are involved.

Let us consider an engineering model whose operasicexpressed by a performance function
Y = g(X), whereX is the model input anH is the output. The process is composed of thegess
sampling of input random variables, evaluationhs performance function for each sample, and
statistical analysis on the model output.

Step 1: Sampling of input random variables

At the beginning, a random generator produces aeseg of numbers inside the interval [0, 1];
this way, a uniform random varialdfeis created.

32



Subsequently, the samples of the [0, 1] uniformaides are transformed into values of a random
variable X; which follows the desired probability distributidh (x;) (e.g., astandard normal
distribution).

This is accomplished by various methods; one ahtisetheinverse transformation method
Through this technique, the values of the randorralike X; are given by

x; = F' () (3.4)

Wherell"x‘i1 is the inverse of the cumulative distribution ftiao (cdf) of the random variabl&;
(from Du X., 2006).

Figure 3.4 transformation of the samples from the [0, lifarm distribution to a nonuniform distribution ¢fm
Glns, 2012).

Step 2: Numerical experimentation

Let us suppose that, for a particular random végisEp(j = 1, 2...,n), N samples are generated;
hence, the performance function will be computedetich of the samples:

Yij = g(xi,j)' i=12,..N (3.5)

thus,N output samples are generated.

Step 3: statistical analysis on the model output

For thej-th random variable, Each output sample = g(xi,j) is computed, and is compared to the
threshold valug = g(X; ;) = 0.

If N¢ is the total number of items such tlya& 0, the probability of failure is given by
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N
pr=Y (3.6)

whereN is the total number of samples.

Hence, the reliability is given by

R=1-p;=1--L (3.7)

3.3. First and Second Order Reliability Methods

These techniques aapproximation methogdshe aim of which is to determine, with an accbfga
level of accuracy, the numerical value of a systelability, without the need to analytically solve
the integral

R = J im0 x(X) dX (38)

Eq. (3.8) corresponds to compute the portion ofubleme under thgoint pdf which lies in the
safe region (i.eg(X) = 0, see Figure 3.5).

On the other hand, the probability of failure, whis expressed by

Pr = Jyxy<o [x(X) dX (3.9)

corresponds to the volume of the removed part efidmt pdf fy (X) in Figure 3.5. In the same
figure, the contours of the integrafid X) are shown as projected in tkeplane.
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Figure 3.5 the total volume under thjeint pdfis 1; henceteliability is the portion of such volume which lies in the
safe region (from Du X., 2006).

These methods are used in order to ease the cadiopatadifficulties and to reduce the
computational effort which is required for a comglenulti-dimensional problem. This is done in
two phases: the first one consists of simplifyihg tntegrandy, (X), in order to make its contours
more regular and symmetric; then, as a second step,integration boundary(X) =0 is
simplified (Du X., 2006). These two steps allowpmvide a simple analytical solution for the
probability integration. There are two algorithnma fdoing this, which differ in the way the
probability integration is approximated: the Figzder Reliability Method (FORM) and the Second
Order Reliability Method (SORM).

3.3.1. First Order Reliability Method (FORM)

Through this technique, the performance funcy¢X) is approximated by the first order Taylor
expansion, hence the name of the method.

First phase: simplification of the integral

In order to obtain such a simplification, the ramdwariablesX = (X;,X5, ..., X;,) which are
involved in the problem are transformed into staddsormal variable¥ = (U, U,, ...,U,), i.e.,
random variables which follow a standard normatritistion. This can be done by tf®senblatt
Transformation which is based on the condition that the cumatlistribution function remains
the same before and after the transformation, i.e.,

Fy,(x;) = @(wy) (3.10)

where® (u;) is the cumulative distribution functiondf) of the standard normal distribution.
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As for the random variables, the same formulatiofi fae herein used for standard normal
variables:U; generically identifies the continuous variable atelaxis on a coordinate system,
whereasy; is associated to a particular (discrete) valuarassl by the variable along the axis.

It is useful to recall [from Eq. (2.12)] that thelationship between a normal random variabknd
a standard normal variableis given by the following expression:

U = XHx (3.11)

ox

After such a transformation, Eq. (3.9) becomes

Pr = I <o Pu(U) dU (3.12)

being @, (U) the joint pdf of U. Recalling that all the random variables are asslno be
independent, the resultingint pdf is equal to the product of every singidf of its respective

standard normal distribution, thus resulting

Py(U) = [Ty =exp (-3 07) (3.13)

Therefore, the probability integration becomes
1 1
pr = fg(ul,uz,...,un)<0fH?zlﬁexp (—Euiz) du, du, ...du, (3.14)
The transformation does not affect the precisiothefintegration, i.e., equations (3.3) and (3.14)
give the same result. Nevertheless, the contoutleointegrandd ;(U) become concentric circles
(or hyperspheres, for a bigger dimensional problese; Fig. 3.6): this makes thdf U easier to be

integrated.
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Figure 3.6: probability integration in the random variable sp&efore and after the Transformation from
random variable spacéto standard normal spatk(from Du X., 2006).
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Second phase: approximating the integration boyndar

As previously stated, in FORM the performance fiomcg(U) is approximated by the first order

Taylor expansion:
G(U) ~ L(U) = g(u) +Vgu)(U —u)" (3.15)

where L(U) is the linearized performance functiax, is the expansion poinfl stands for a
transpose, andg (u*) is the gradient of(U) atu* (D. Xiaoping, 2006).

In order to minimize the accuracy loss, Hasofer amid (1974) suggested to expand the
performance function on its boundaggU) = 0 and, to be more precise, at the point hatgg

maximum value of th@int pdf. this is called thdlost Probable Poin(MPP) (see Fig. 3.7).

The analytical expression for locating the MPPiveg below:

1 1
n 2
maXxy Hi:lmexp (_ Eui )

(3.16)
gl)=0

lFlI'dl. ulJ

Highest probability density

4 gl U0

= Ui 8 220
<UUED '

: .":'-l]“l;'ll." gl L0

(A

Figure 3.7:the most probable point corresponds to the highredtability density along the limit-state function
g(U) = 0 (from Du X., 2006).

Since

?:1%67(13 (—%Ui) =\/%_“exp (—% i=1ui)’ (3.17)
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1

we see that the maximum valuelﬂ)g‘:lﬁexp (—%ulz) corresponds tahe minimum ofy, u?.

Hence, Eq. (3.16) can be rewritten as

fminylud 3.18)

gU) =0
whereof solution is the Most Probable Point, whlindicated ast* = (uj, u3, ..., u5,). As shown
in Fig. 3.8, the MPP is the shortest distance pairthe limit state functioig(U)=0 to the originO
in U-space. Such a minimum distance was caldability indexf (Hasofer and Lind, 1974), and
is such thap = |lu*||. As it will be seen shortly, the knowledge of tigortest distance can be
used to predict the probability of the limit-stat@ction less than zero (Du. Xt al, 2000).

At the Most Probable Point,df = 0, so eqg. (3.15) becomes

0 *
LW) =3, 20 (U —up) (3.19)
L u*

Naminga, anda; the following coefficients:

(3.20)

8w, U, 30

Figure 3.8: TheMost Probable Poin(MPP) as seen in tHg-space. As it can be seen, this is the closest pbihe
limit-state functiong(U) = 0 to the origin of theJ-space (from Du X., 2006).

and

. _ 99
t au; u*

, (3.21)

equation (3.19) may be rewritten as
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L(U) = Qy + Z?:l aiUi (322)

Hence,L(U) is a linear function of standard normal variabldserefore,L(U) has a normal
distribution, too.

Its meany,, is equal to

agu) %
U = Qg = Zl 1 gU . ul' (323)
u

while its standard deviatiorq, , is

2
a
o, = (X, af =\/ i=1 <a_5. > (3.24)
i u;
Consequently, the probability of failure is given b

n 09g
/ Yi= 130,

pr & P{LLU)< 0} =0 (— %) =@ \—*>2) (3.25)

L ag
i=1\ U;

Naming asx; the following coefficients,

99
aU;

a = (3.26)
n (f’_g )
=1 an u

the expression for the probability of failure be@sm

/ n Bg
Zl— E)U

pr ~ P{L(U) < 0} = & (- ‘;—2) =@ \ﬁ) (™, au)) (3.27)
From (3.21) and (3.26),
a=(a,ay .., a,) = ZIC (3.28)

Vg )|

which is the unit vector of the gradient of thefpanance functiog(U) at the MPP.

Thus, the probability of failure can also be wntes
pr ~ O(TL, au)) = (L, au'™) (3.29)
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Since the MPP is the shortest distance point froenpterformance function cungfU)=0 to the
origin, the MPP is the point of tangency of theveuy(U)=0 and the circle (centred at the origin)
with a radius equal tg (figure 3.9). Consequently, the MPP vector restdtbe perpendicular to
the performance function curve at the MPP. Thectima of this vector is expressed by the unit
vectoru®/[|lu*|| = u*/B. On the other hand, the direction of the gradi®maiso perpendicular to the
curve at the MPP, and its direction can be repteddny the unit vectoa (see Eq. (3.28)) (Du X.,

2006).
Hence,

“E* - —a (3.30)
or,

u' =-—Lfa (3.31)

g_u — a tangent point

[
g

U,

Figure 3.9 geometrical situation of the Most Probable Paifit(from Du X., 2006).

If one recalls that
aa’ =YY" a? =1 (3.32)

the probability of failure is eventually expressex
ps = P{L(U) < 0} = @(au'") = &(—paa’’) = o(-p) (3.33)
Therefore, the reliability is

R=1-p;=1-0(-p) = 2(p) (3.34)
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MPP search

From Eq. (3.33), the evaluation of the probabitifyfailure is possible once the reliability indgx
has been obtained. The latter can in turn be datedronce the MPP has been located. However,
the MPP search is often impossible to be perforaredytically. Such an issue can be overcome by
using numerical methods. One of them is describethe sequel, which is a recursive algorithm
where the performance function is linearized. Thfewt the iterations, the position of the MPP is
updated, until its actual location is obtained.

Let u* be the MPP coordinates at tkeh iteration (see Fig. 3.10); the performance functi®
linearized in such a point, and is expressed as

g) = g(u*) + Vg (u¥) (u—u*)" (3.35)
A er
, gu™)
ug‘. “.-u'+1
a® _
‘ g(u)
ﬁx kel - I 5 BT
p g(u")+Vg(u" )(u“'1 —u’) =0
g(u“L)Jr Vg(uk}(u —u®)

Figure 3.10 MPP search scheme (from Du X., 2006).

Let the linearized functiog(u") be zero; consequently, in the following iteratitime MPPu*+1

will lie on the line (the linearized performanceétion, see Fig. 3.10), i.e,

g(uk1) = g(uk) + Vg (uk)(uk! — uk)" =0 (3.36)

From equation (3.31), one deduces that, akitieteration,
uk = —p*ak (3.37)

uk*1is the shortest distance point from the origintte kine, as depicted in Fig. 3.10. Hence, the
vectoruk*1 is perpendicular to the line and is directed frtma origin O to u**! (from Du X.,
2006).
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The versom**1 is also perpendicular to the line, and its direci®opposite to that ai**1. Since
the length of the vectar**! corresponds to the Euclidean distance from thedrofgto the point
uk*1 (i.e., the reliability index), it follows that

uk+1 = —ﬂk+1ak (3.38)

Substitutingu® in equation (3.37) and**1in equation (3.38) into equation (3.36), one olxain

(u4+1) = g(ut) + T () (@) B = 57) = 9(u) + [T (w8 = ) = 0

(3.39)
The updated reliability index is then
B+t =gk + % (3.40)
whose corresponding updated point is
Wt = —ak |+ + | (3.41)

Equations (3.40) and (3.41) are recursive formulaleich can be used to locate the MPP and
determine the corresponding reliability index. Artihg point is required, and the origiff = 0 is
often chosen.
The termination criterion of the MPP search is ohthe following:

1) if ||uk*t — uk|| < &, stop; or

2) if |[vg(u**tt) — vg(ub)| < &,, stop; or

3) if ||g**t — B¥|| < &5, stop.
Whereg,, ¢,, g5 are very small positive numbers, according todegired precision level.

Figure 3.11 depicts the flowchart of the MPP seatgbrithm that has been presented.
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Figure 3.11 flowchart of the recursive MPP search (from Dy 2Q06).
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3.3.2. Second Order Reliability Method (SORM)

The First Order Reliability Method (FORM) often pides a sufficient precision in the
determination of the probability of failure. Howeyen some cases, the limit-state function in the
U-space may be highly nonlinear, and the varianngeaf uncertain variables could be wide. In
such cases, the first order approximation of timétistate function may no longer be adequate, thus
resulting in a large error in the reliability eséition. The second-order reliability method (SORM)
was established as an attempt to improve the aogwiaFORM (Zhao et al, 1999); through this
algorithm, the limit-state function is approximatat the second term of the Taylor expansion at
the MPP (Breitung K., 1984). The SORM method isegally more accurate than the FORM, but it
is also more computationally demanding; indeedreduires the determination of the second
derivatives of the performance function.
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After the random variableX have been transformed into standard normal vasable the
performance functiog(U) is approximated by the second order Taylor exiparst the MPP.

The second order approximation gives

* a * 1 62
gW) ~ g + XLy Ui —u)) + XL B o
'u l

* W; —u)(U; —w) (3.42)

Assuming thag (u*) = 0 and writing Eq. (3.42) with a vectorial notatimme obtains
g(U) = Vgw)(U —u)" + %(U —u)V2g(u)(U —u”)’ (3.43)

beingV?g the Hessian matrix, i.e.,

[ 2%¢ ... _9% ]
| a2u, AU, 08Uy, |
Vig=| : (3.44)
azg cee azg
dU,0U, 92Uy,

In order to determine the probability of failureg.£3.43) has to be simplified once again, dudéo t
second order terms. After linear and orthogonahdf@mationsg(U) becomes a function of
independent andgtandard normal variables. Then, following Breggnformulation (1984), the
probability of failure is eventually expressed as

1
pr =PI+ Bk)2 (3.45)
wherep is the reliability index and; (i = 1, 2, ..., n-1) are the principal curvaturesgg@d) at the

MPP (Du X., 2010). By comparison to Eq. (3.33), @am conclude thdf* (1 + k) zis a
corrective term which allows to pass from the Fitster Reliability Method (FORM) to the
Second Order Reliability Method (SORM).

In order to compute ther through Eq. (3.45), the valuesiof(i = 1, 2, ..., n-1) at the MPP are
needed. Such principal curvatures are the eigeasalfia matriA, whose elements;; are

B (Rv? g(u*)RT)i].

Lij = gl (3.46)

here, R is an X n rotation matrix, which, in turn, is attained bypapng Gram-Schmidt
orthogonalization to another matiRy.

R, is given by
[ 1 0 0 0 1
| 0 1 0 0 |
Ry = : : (3.47)
0 0 1 0
—a; —a —Qp-1 —0n
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where the (n-1) x (n-1) minor is an identity matnwhereas the last row &, is the unit vectora
that was defined in equation (3.28).

SORM method is composed by the two following steps:

1. MPP search.This procedure is exactly the same as in FORM.rAfte determination at*,
the corresponding values gfa(u*), Vg(u*), andv?g(u*) are found.

2. Determination of matrix R. Let us indicate withy; andr, the rows of matriceR, and R,
respectivelyR, can be used to g& through the Gram-Schmidt orthogonalization procedu
as follows:

rn =Ton

et rk=”:—z‘”, k=n-1,n-2,..,1 (3.48)
k

' n
Ty ="ok — Lj=k+1..T
J Tjr]

3. Construction of matrix A. Equation (3.46) leads to the determination of ma#tj whose
dimensions arenfl) x (n-1).

4. Computation of the principal curvatures. Thek; are attained through the solution of the
following eigenvalue problem:

AZ =kZ (3.49)

whereZ is a vector witm-1 elements. The problem is solved by putting thieo¥ahg condition:
det(A—kI) =0 (3.50)

wheredetstands fodeterminantandlI is the -1) x (n-1)-dimensional identity matrix.

5. Computation of the probability of failure. SORM approximates the limit state surfacéJin
space at the MPP by a second-order surface [Fiesslal, 1979]. In Figure 3.12, a graphical
comparison between FORM and SORM is depicted. Asunt be seen, for a nonlinear limit-state
function, the SORM is generally more accurate tR&RM. However, its accuracy is guaranteed
only for those cases in which the reliability ingeis sufficiently large (Du X. et al., 2010). Since
SORM requires the computation of the second orderatives for the performance function, it is

not as efficient as FORM when the derivatives amduated numerically (Du X., 2006).
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U, 4

Figure 3.12 Comparison between FORM and SORM (from Du X.,6)00

3.3.3. Inverse reliability analysis

In many engineering applications, it is worthwhite design a system with a previously settled
reliability level, rather than computing the probigy of failure a posteriori. For this purpose,
inverse reliability analysiss used, which consists of determining the perferceafunction that
corresponds to the desired reliabilRyor probability of failurep;. It may be convenient to work

with percentile valuesthis way, the goal is to find the percentile \&a§i¥/ which corresponds to
the targepy, i.e.,

Prig(X) < gPf] =py (3.51)

The latter equation means that the probability, thex performance function, to be belg#s is
equal topy.

In order to determine thgPs, the inverse FORM methodFORM) can be applied; a brief
introduction to this technique is given below.

Let us define a new performance function, such that
9'X) =g9X) - g* (3.52)

that, after Rosenblatt's transformation, becomes
g'(U) =gU) — g¥r (3.53)

From the corresponding limit-state function, i.e.,

g'(U)=g) - gPr =0, (3.54)
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Letu* be the MPP foy'(U) = 0; henceu” is also the MPP fog'(U) < 0, i.e., forg(U) < g*’.
From the target probability of failupg, the corresponding reliability indgkis given by

B =127 (pf)| (3.55)

The Most Probable Point (MPRYJ is the point of tangency of both the circle haviadiusf and
the limit-state functiory’(U) = g(U) — gP7 = 0 (see Fig. 3.13). Moreoven” is also the point
having the minimum value of(U) on the circle; that point corresponds to the maxim
probability of failure, i.e.ps. Therefore, the aim of the inverse FORM is to fihd MPPu* on the
p-circle (orp-sphere, op-hypersphere, for an higher dimensional problem XQuw006)) such that

the performance functiogp(U) is minimized:

find u
(3.56)

v glU)<g?

a "\
B
N\ g=glu)-gT=0.g()=g"
gw)>g” |\

|
U,

Figure 3.13:scheme of the inverse search for the Most Prolfabiet (MPP).

Once the MPRt* has been found, the:-percentile valug/Ps is computed at that point, i.e.,

g =g (3.57)

3.4. A basic structural example

The example that is now presented will be solvedadtlpwing the different methods which have
been seen in sections 3.2 ad 3.3; this will raswtuseful comparison of the various approaches.
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Let us consider a statically indeterminate strigstwwomposed of a horizontal beam and a soft
vertical support over its right tip, representedaaspring; such a structure, which experiences a
vertical forceF, is subject to some uncertainties; therefore, wee iaterested on assessing its
reliability.

g w

Figure 3.14 statically indeterminate structure.

The data of the problem are the following:
Geometrical features (see Fig. 3.14): L = 300 mm20 mm; w = 10 mm;

acting force (see Fig. 3.14): F = 1500 N;

Young Modulus: E = 71700 Nmn? (Nominal value) - Material: Al 7075-T6 (from
www.matweb.coni

Beam section moment of inertia with respect tovldirection: | = 6667mm®* (Nominal value);
d = vertical displacement of the point where the€oF is acting.
Two physical quantities are non-deterministic, &slbw a standard normal distribution:

-Bending stiffness of the horizontal bedRy:= E*I.
R, =N (478*10° 956 *10° ) N*mnv

-Compressive stiffness of the spring:=KN (40, 8) %

Using the flexibility method, the expression of trertical displacemerdtis found to be

F*|®
- _ (3.58)
3*R, +K*|
As for the constraint, the vertical displacemértias not to exceed a given value of, sgys25
mm. Such a value would be overtaken if either th&n or the spring failed.

From equation (3.58), one can easily computethese two extreme cases:
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Fl®

3*

- without the spring: 0 = =28.24 mm > 25 mm;

f
- without the beamézg =37.5mm > 25 mm.

The goal of this analysis is to assess the probatwf failure of the structure, defined as the
probability of the maximum allowable value of tlye displacement to be greater than the actual tip
displacement, namely

F*I3
p, = P{g:50—3—*R KT 20} (3.59)
f

3.4.1. Solving with MCS

Let us implement a simple computer program with|&#®, to observe the progress of the outputs
with an increasing number of simulatiofsgures 3.15 to 3.18, that differ by the numbertrod
samples, plot all the coupleR(, K ) that were sampled during the simulations.

It can be clearly seen that the probability ofueglp, gradually converges to a value of 0.006417
(0.6417 %); thus, the reliability R converges to@©09.3583 % .

R=1-p, — 0.993583

The straight line in figures 3.15 to 3.18 represehe equation for g = 0, expressed as a funcfion o
the two variableR, andK:

1

K=- ¥R +60
9*1C
1 . .
where — = is the slope of the line.
9*10
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Figure 3.16: 10* simulations —probability of failure = 0.0071.
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Figure 3.17: 10° simulations — probability of failure = 0.00674.
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Figure 3.18: 10° simulations — probability of failure = 0.006417.
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The accuracy of Monte Carlo Simulation dependshennumber of simulationd. The higher the
number of simulations, the more accurate the estimall be. As the number of simulatioMé
approaches infinity, the solution of Monte Carlmslation will converge to the true probability
that is under estimation. Monte Carlo is computatlty robust: with a sufficient number of
simulations, it always converges (Du X., 2006).

3.4.2. Solving with FORM

First, the normally distributed variabl& and K are transformed into the standard normal
variables:

X = (Ry,K) = (ug + 0gUp, g + g Uy) (3.60)
or
Rf— —
U = (Ug, Ug) = (};—:R;KJ—:I() (3.61)

The transformed performance function in thespace becomes

pl3

g =0 - [38(ur+0oRUR)+(uk+oKUK)13] (3.62)
The gradient of @¢) is given by
. 30RPI3 ok Pl
vg(U) = ([3(HR+URUR)+(MK+0KUK)13]2 ’ [3(HR+JRUR)+(MK+UKUK)13]2) (3.63)

The starting point for the search of the Most Pbdd&oint (MPP) is set o° = (0, 0).

lteration 1

At u® = (0,0), g(u®) = 8.8902, Vg(u°) = (1.838,1.384),

IVg(u®)|| = /(—1.838)2 + (—1.384)2 = 2.301,

o_ Vg(u) _
0 = S0 = (0.799,0.601),

andp® = |lu°|| =0

lteration 2

1 of 0 g(u")}:_ B
ul = —a {ﬁ +H oGl (—3.087,—2.322)
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At u! = (-3.087,-2.322), g(u') = —10.93, Vg(ul) = (9.15,6.89),

" — 1 _ Vg(u') _
IVg(uhll = 1145, a* = o7-a = (0.799,0.602),

andp! = ||lul|| = 3.863

lteration 3

u? = —al{p" + g(u’) } = (-233,-175),

Ivg(ubll

At u?, g(u?) = —2.59, Vg(u?) = (5.39,4.06),

v 2
IVg(u?)|| = 6.75, a? = ”V‘ZE;‘Zz” = (0.799,0.602),

andp? = ||lu?|| = 2.91

The process continues until the solution convergbs.search ends after 9 iterations. The complete

convergence history is shown in table 3.1.

Iteration B g (g (U,.U,)

1 0 8.8902 (1.838, 1.384) (0, 0)

2 3.863 -10.93 (9.15, 6.89) (-3.087, -2.322
3 2.91 -2.59 (5.39, 4.06) (-2.33,-1.75)
4 417 -14.8 (11.2, 8.46) (-3.33, -2.51)
5 3.11 -4.00 (5.96, 4.49) (-2.49, -1.87)

6 2.57 -0.46 (4.59, 3.46) (-2.06, -1.54)

7 2.490 0.022 (4.42, 3.33) (-1.99, -1.49)
8 2.492 -0.02 (4.44, 3.34) (-1.995, -1.496
9 2.49036 -0.002 (4.42668, 3.3339) (-1.9923,-1.3942
Table 3.1 the MPP search history.

The MPP is found at*= (-1.9923,-1.4942), and the reliability indexgis 2.49036. The probability
of failure is then

p; = P(-L) = P(-2.4904 = 0.006380
and the reliability is

R=1-p,=1-0.006380 = 0.99362

If the probability of failure obtained from Montea@o simulation with10° simulations can be
considered as an accurate solution, the outpunhdyeFirst Order Reliability Method offers a good
approximation (Table 3.2) of the real value; at shene time, from a computational point of view,
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FORM allows to save time and means, as it is natpdationally expensive like Monte Carlo
Method.

Method Monte Carlo FORM
Number of iterations 10° 9
Probability of failure 0.006417 0.006380
(output)

Table 3.2:Comparison between Monte Carlo Simulation and FORM.

3.4.3. Solving with SORM

In section 3.4.2, the MP#" = (-1.9923,-1.4942), the gradient of the limittstlunction at the MPP
Vg(u*) = (4.42668, 3.3339), the unit vectar(u*) = (0.8, 0.6), and the reliability indek =
2.49036 were obtained.

The Hessian matrixd?(u’) requires second derivatives, which are given by

02 —~1802PI3
U3 [3(ug + ggug) + (ug + oxug)13]?

d%g _ —20%P1°
oUE  [3(ug + ogug) + (ug + oxug)3]3

0%g —60z0%Pl®

0UROUg  [3(ug + ogug) + (ug + oxur) 3]3

Thus, the Hessian Matrix results

—1.5675 —1.1806

H(u) =] 17806 —0.88912

Determination of matriR

First, matrix isR, constructed:

|1 0] 11 0
Ro = [_al —0{2] B [—0.8 —0.6]
Let us now compute the rows of matRx

Yo =Tg2 = (—08, —06)
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2

T T
nr rar (—0.8,—0.6)(1,0)
I Jj'o1 2 01
rl =r —z ri=T1yg — —=1, = (1,0) — (—-0.8,—0.6) =
Y = rr o rzrz (—0.8,—0.6)(—0.8,—0.6)T
= (0.36,—0.48)
and
TI
To1 = 77 = (0.6,—0.8)
4]
Therefore,
_[T11_10.6 —0.8
R_[Tz]_ -0.8 —0.6

Determination of matriA

RV’g(u)R" [ —1.588-10~° —8.8991-10‘4]
VZg@Oll ~ 1=8.8991-10"*  —0.4433

yields
— > A=[-1588-10"¢]

Computation of the principal curvatuke

Let us solve the following eigenvalue problem:
AZ = kZ
det(A — kI) = det[-1.588-107] =0

Hence, the eigenvalueks = —1.588-107°.

Computation op,

The probability of failure is

NP

_1 -

pSofM = p(-p) * |‘J (1+B*k;) ~ = ®(-2.49036* [1+ 2.49036" (- 1588*10°°)] = 0.006380012

that is very close to the value that was found sipgiFORM (p;°*™ = 0.00638).

Table 3.3 summarizes the outputs which were oldalme solving the example with the three
different methods presented above.
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Method Monte Carlo FORM SORM
Number of iterations 108 9 9+1
Probability of failure 0.006417 0.006380 0.006380

(output)

Table 3.3:Comparison between Monte Carlo Simulation and FCIRDRM.

In this particular case, one can notice a posietiiat there would not have been the necessity to
use the SORM method, as the greater computatiocif@ait dvas not resulted in a significant
improvement in the accuracy level that had beewipusly achieved by using FORM.

3.5. Risk analysis of a simple aeronautical structe

T T -—{,-—/ .
L &
LSS LSS

Figure 3.19:the case study consists of a NACA 4415 airfoil.

Reliability assessment will now be applied to tasecof a structure which experiences aerodynamic
forces (see Fig. 3.19); in this model, some datadaterministic, whereas others (i.e. the air speed
and the lift coefficient) follow a random distriber. Prior to perform reliability analysis to the
present application, the model has been studied &aleterministic point of view, and the results

are reported in Appendix A.

A NACA 4415 airfoil constitutes the cross-sectidnaorectangular wing of 1.5 chord and 9n
depth, which passes through an air stream at an giakie of the angle of attack Such a wing is
bound to a statically determinate structure in tvoales, called A and B. The aerodynamic forces
generate stresses on raglsb, andc. The goal of the simulation is to assess the fnidiba of
yielding of the front rod, i.e., the probabilityrfthe stress on beaay to be greater than the yield
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stress of the materiaA( 7075-T9, i.e. g, = 462 MPa. Due to the constancy of the cross-section
along the wingspan, the problem can be consideséd@dimensional.

Problem data

Profile NACA 4415

Chosen angle of attack:= 0°;
Lift coefficient: ¢, = N (0.4,0.1) (normally distributed);
Drag coefficient:.c, = 0.075;

Moment coefficient at a quarter of the chord (kethe position of the aerodynamic center):
cm = —0.1;

Air flux :
Densityp = 1.225kg /m3;
Velocity V,, = N(150,30)m /s (N = normally distributed);

Wing architecture

e=0.225 m (see figure 3.19);

f=0.675m (see figure 3.19);

Wing surface are§= 13.5m?;

Length of the chordc = 1.5 m;

Section area of roc: A, = 452.39 mm?;

Section area of rodsandc: 4, = A, = Ay, = 176.71 mm?;

From equation (A.12) (see Appendix A), the limigtst function is defined, ifMPa], by

G,(poV,a)=0, -0, =[—£* prVE* s{rm* c+ o (a =) e}—Zﬂ* (a_aL=0)}_462:OJ

e+ f

(3.64)

The following substitution (which is valid for thange of interest of the lift coefficient):
2n(a — a;—y) = ¢y, (3.65)

and some rearrangements lead to
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G,(c.V)=0,-0, = (—ﬁ* PV %{MH—MZS o} (3.66)

e+ f

3.5.1. Solving the problem with Monte Carlo MethodMCS)

The execution ol0® iterations lead to a probability of failung, = 0.0801, which corresponds to a
reliability index f = 1.405. Nevertheless, a good approximation ofghevalue is reached after

10° iterations, leading tg, = 0.0805.

A0 ¢

Failure region

Safe region

o n.x 4 & 3 1 13 14 73 T}

Figure 3.20: The blue cloud of points represents thd0® MCS simulations. The performance function
G,(c ,V) =0 is shown in green. Theloud is centered at the average values of the lift faefit and of the
velocity.

The limit-state function (3.66) has been used widédi thesafe zondérom thefailure zone

3.5.2. Solving the problem with FORM

To execute the simulation with the First Order Bality Method, it is necessary to compute the
gradient of the limit-state function. Before doitigs, Rosenblatt Transformation is made, in order
to have random variables that follow a standaranabdistribution:

(c..V)=(u +o*Ug 14, +o*U,)=(04+01*U 150+30*U, ) (3.67)
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By substitution of the so expressed andV into eq. (3.66) and after rearranging, the lints
function comes to the following form:

cme—(0.4+0.1U¢, ) f
e+f

— 462 =0
(3.68)

Go(U) = Gylc, V) = 0y — 0y = —%;)5(150 +30U,)?

The gradient ofG,(c_,V )is given by the derivatives of such a functiondach of the different
(here, they are only two) standard normal variables

0G,(Uc Uy) _ v2* p*S* |
U, 20% A *(e+ f

)(150+ 30*U,, )’ (3.69)

* * *
0G,(c ,U,) :_30 \/_ 1% 8(150+30*UV)[Cm*C—(0-4+0-1*UCL)* f] (3.70)
BUV A~ (e+ f)
Hence,
grad(U) = grad(Ue,, Uy) = (aGa(;’CCLL'Uv),6Ga(l;;uuv)) _
V2pSf 30v2pS
{m (150 + 30U,)?, — e (150 + 30U) [cnec — (0.4 + 0.1U¢,) -f]} (3.71)

The implementation of FORM method brought to cogeece at MPP = (0.57125, 1.24315).

The resulting reliability index is then

B = |U2 +UZ=+057125% + 1.24315? = 1.3681 (3.72)

As reported in Table 3.4, the convergence criteanithe MPP location, i.e.,
if luk*t —uk|| < &, stop (3.73)
was satisfied.
Anyway, the other two alternative convergence ddtevere satisfied, which are:
if IVg(u*tt) — vg(ub)|| < &5, stop; or (3.74)
if |B**t — B¥|| < &5, stop (3.75)

Once the reliability indey is known, the probability of failure is immediatelerived:

p; = P(-p) =P(-1.368) = 0.085637 (3.76)
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Figure 3.21: MPP search using FORM. As it can be clearly sgeasi-convergencis reached after 3 iterations.
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Figure 3.22:zoom on the MPP, locatedat (0.57125, 1.24315).

To make a comparison, recall that, with Monte C&8lonulation (MCS), p, =0.0801. The
precision here achieved with FORM correspondsabdhMCS after about 3000 iterations.
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Iteration # Ug U,
1 0 0
2 0.6073 1.5115
3 0.5927 1.2434
4 0.5698 1.2440
5 0.5714 1.2431
6 0.5712 1.2431
7 0.5712 1.2431

Table 3.4:the MPP searchld, andU,, are in the first and second column, respectivedgches convergence (with
an accuracy of 10e-4) after 6 iterations.

3.5.3. Solving the problem with SORM

In order to increase the accuracy that is obtaedtdm the Reliability Analysis Methods, the
Second Order Reliability Method (SORM) was perfodme

In order to build the Hessian Matrix, the secondieoderivatives o, (U) = G,(c,, V) are needed:
2
0 Cia -0
oug,
2 * *
g S, __9002% p Silc *c—(04+01%U )* f]
U2 A *(e+f)
0°G, _3R2*p*s+f,
U, 0U, Ax*(e+f)

(150+30*U,,)

Thus, the Hessian Matrix is

0 M—P«Sf(150 +30U,) ]
*Y\ Aa(e + f) _
H) = 3V2pSf 900v/2pS 1=
p p
lA—a(e D (150 + 30Uy) RCEY)) [eme — (0.4 +0.1-U,,) -f]J

-, 0 217861
21.7861 23.7065

Construction of matriR

First, one constructs matri:

_[1 _ 1 0
R°_[—a1 —az]_[—0.4175 —0.9087]

Let us now compute the rows of matRx
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ry =gz = (—0.4175,—0.9087)

2 T
r;'r Yo" T
rl =101 — Z L O 1 = 1oy — ——% -1, = (0.1743,0.3794)

= rj-T; Ty T3
and
TI
ry = — = (0.4175,0.9087)
Il
Therefore,
R— [rl] _[04175  0.9087
ra —0.4175 -0.9087

All the elements needed to compute ma#tikave now been obtained.

Hence,

R-V’gw) _10.2217 ~02217]
IV2gQu)ll ~ [-0.2217  0.2217

The1x1 upper-left minor of the latter matrix is matAx

=[0.2217]

Let us now compute the principal curvatle

The following eigenvalue problem has to be solved:
A*Z =k*Z

then,
det@-k*1) = det[0.2217-k*1] =0
that returns
k,=0.2217

which is the needed eigenvalue.

As a final step, the probability of failure is detened:
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n-1 -
pSofM = p(-p) * |‘J (1+ B*k) ~ = ®(-1.368) * [1+1.3681*0.2217*° = 0.07501

NP

that is slightly closer to the MCS solution thanFE8® method is.

Table 3.5 makes a comparison between the resuwisded by MCS, FORM and SORM. If the
output obtained through MCS can be considered asthboretically exact solution, it can be
observed that the esteem of the probability olifailwhich was done by SORM is more precise of
approximately 12% than the one computed by FORM.

Method Monte Carlo FORM SORM
Probability of failure 0.0801 0.085637 0.075013
(output)

Table 3.5 comparison between the probability of failureesateemed by MCS, FORM and SORM.

3.5.4. First Order Second Moment method (FOSM)

The FOSM method (also known dean Value methgds based on a first order Taylor series
expansion of the performance function; it is eveddaat the mean values of the random variables,
and only uses means and covariances of the randaables (Swiler L.Pet al, 2011).

Differently from FORM and SORM, FOSM method is perhed analytically, and so it does not
need iterations. A brief introduction to this algjom is made in the sequel.

Let );(X) be the covariance matrix (see Appendix B) of aegervector of random variables let
us define the vectar as

a = grad(g)l, (3.77)

i.e., the average value of the gradient of thequerénce function.

It can be proved that, X € N(uy, Y.(X)) (i.e. if X follows a normal distribution), then

ng = g(ux)
AS
Z_g _ 3, (3.79)

the probability of failure can be immediately obtedl:
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pr=®(-p) = (—ﬁ—z) (3.80)
Wheng(X) is linear and the input variables are normal,rttean value method gives exact results

(Swiler L.P.et al, 2011).

To employ this method to the current example,E(cL,V) be the 2x2 covariance matrix of the
two random variables involved in the present sirtoita

_ [0.0100 0
2@V =[""0" g99.9533) (3.81)
From Eq. (3.78),
Ug = Ga(CL,avg'Vavg)
2 _ . T (3.82)
of =a-Y(c,V) a

whereu, = Ga(CL,avg'Vavg) is the value of the performance function whgrandV assume their
average values, i.e., 0.4 and 150 m/s, respectively

The first equation of (3.82) then gives
H, =G,(04150) = -19059MPa

To determine the standard deviatiog (secondmember of Eq. (3.82)), partial derivatives of the
performance function (3.66) are calculated witlpees toc, andV :

dG, 2* prv2*S*f

= 3.83

T ) -
— * * * * * — *

oG, _ 2% p*V*S (cm c-cC, f) (3.84)
oV (e+f)

Using (3.83) and (3.84),
a = grad(Gy(c, V)]l = (Z%aaiv) o 04 = (436.2,3.6188) (3.85)

V=150

Then, from the second equation of the system (3.82)

o, = J[a-Z(cL, V)-a’| = 1169993
Hence,

64



0,

p;=® (— “—g> = 0.05166
9

This result is farther from the theoretically exaotution than FORM and SORM are. The reason
could be the nonlinearity of the performance fumttiwhich significantly reduces the accuracy of
FOSM.

3.5.5. A modified FOSM

In order to improve its accuracy, FOSM classicathond was modified as follows. In equation
(3.80), the mean performance function was approtdchas a function of the mean values of the lift
coefficient and the aircraft speed.

Let us now compute the real valueux¢f)) as referred to samples:

;ug — 27'1 Ga(CL,i'Vi) (384)

i=1 n
rather than

ng = g(ux)

The same is done for the mean of the performanuaitn gradient:

_ grad[Ga(cL,iVi)]
a=Yi, — (3.85)

rather than

aG, aGa>
dc,’ oV

a = gradiGa(e, VI, = (

CL,avg =0.4
Vapg =150

From (3.84) and (3.85),
g = —179.6014 MPa, and
a = (453.9596,3.6192)
Which were computed by considering= 10° in both Egs. (3.84) and (3.85).
Then, from the second equation of the system (3.80)

g, = 117.6839

= p, =1-normcdf(0,-179.6014117.6839 =1- 0.9365= 0.0635

This result is substantially more accurate tharotine obtained with standard FOSM method.
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3.5.6. Comments

The following table is to compare the proposed FO@bthods with the previously implemented
methods; here, they are ordered from the most atxtw the least accurate.

Method Probability of failure
Monte Carlo 0.0801
FORM 0.085637
SORM 0.075013
FOSM (modified) 0.0635
FOSM 0.05166

Table 3.8:comparison between the probability of failure aidd with FOSM methods with the ones previously
computed via MCS, FORM and SORM.

As stated previously, the result from Monte Carlethbd can be taken as the correct solution, due
to the huge number of simulations that were peréatnFORM method gives an approximation
with an error of about 0.55%, whereas SORM methaaidht, in this case, to a relatively poor
improvement, if compared with the first order apgpneation: indeed, using SORM, the error is
0.5%, i.e. only 0.06% closer to the true solutibart FORM (with an improvement in accuracy of
12%). This fact suggests that, for this particidgplication, the bigger computational cost for
performing SORM is not fully repayed in terms ofpimaved accuracy, if compared with FORM.

As regards FOSM methods, they resulted to be tast laccurate one between the methods that
were applied to this example. On the other hane, wuthe lack of iterations, the FOSM and
modified FOSM are often recommended for complextesys, where a huge number of
computations would be otherwise needed. In this,@apnsiderable amount of time can be saved.

3.6. Conclusions

This chapter was devoted to the description anduatian of some of the main reliability
assessment algorithms. The issue to be solvedeisdmputation of the reliability of a system,
which, from an analytical point of view, derivesiin the integration of thpint probability density
function(jpdf) of the random variables inside tb&fe domaini.e.,that part of the random variables
space in which the structure is expected to suruivder predefined (usually extreme) events. The
most immediate and easy to use technique is Moatk Gimulation (MCS). Provided a sufficient
number of simulations, MCS results to be the mostimte method for computing the probability
of failure of a system, so much so that it is oftessed as a benchmark for the validation of other
algorithms. On the other hand, MCS is not suitalide repeatedly performing complex
computations like those which are concerned withnynangineering applications; therefore,
approximated methods are often used. Among thess, dhe most popular ones are First and
Second Order Reliability Methods (FORM and SORM)jch simplify the expression of thedf
(i.e., the integrand), and, on the other hand, kiynfhe integration domain through approximating
the limit-state functiorg(X) = 0 at the Most Probable Point (MPP) with a Taylor Engan of the
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first or second order, respectively. These methwdee tested first on an elementary, statically
indeterminate, structure, and then on an aerofaiickv is constrained to the ground through a
statically determinate structure. Considering thebpbility of failure computed via MCS (after
1076 and 10”8 iterations, respectively) as the egalution, the execution of FORM brought to an
error of 0.0037% and 0.55%, respectively. Comp&nedORM, the subsequent implementation of
SORM determined an accuracy improvement only insé@ond case (of 12%), whereas the output
relative to the first case remained unchanged. Jinggests that the use of SORM method should be
considered with a grain of salt, i.e., in compliangith the accuracy needs, and by taking into
account that the desired improvement in accuracgpnpared to FORM) can be not so significant,
and that, in any case, there will be an increasthnencomputational burden. Anyway, the use of
SORM results to be convenient when the performdumcetion is highly nonlinear. While studying
the second applicative cases, First Order Seconmévib (FOSM) method and a modified version
of the latter were applied; whgtX) is linear and the random variables are normal, FQ&hides

the mathematically exact solution; however, thisas the case of the airfoil simulation, in which
these techniques resulted therefore to be significéess accurate than FORM and SORM.

To sum up, among the reliability assessment mettimishave been seen and tested in this chapter,
the author’s opinion is that the First Order Raligbmethod (FORM) resulted to be perhaps the
one that offers the best compromise between acgarat computational costs.
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Chapter 4

Deterministic optimization

4.1. Introduction

In engineering design, optimization is a technqumctv allows to satisfy the need of maximizing
(or minimizing) a certain performance, while comptywith some feasibility requirements. Indeed,
in a design, the choice of the dimensions of tletesy to be realized are normally limited to some
predefined intervals; moreover, safety requirememigose additional limitations to the system
properties, in order to prevent any form of failune even danger for the surrounding environment.
The latter conditions are met through the use ofes@ppropriate constraint functiofs.om a
mathematical point of view, optimization is thelgaln of a constrained extrema problem inside a
selected subspace. The analytical formulation @fpttoblem is as follows:

Minimize f(dq,d5, ..., dy)
subject to
gi(dl, dz, ...,dn) < O, i= 1,2, e, N (41)
hj(d1’ dz, ey dn) = 0, ] = 1,2, -, Ne

di <d,<d¥, k=12,..,n

where(d,, d,, ..., d,) is the vector of the design variables that willde¢ermined during the design;
f(dy,d,, ...,d,) is the desigrobjective function(or fithess functiop which has to be minimized,;
gi(dy,d,, ...,d,) are theinequality constraints which limit the space to a feasible domain;
h;(dy,d,, ...,d,) are equality constraintsd: andd} are, respectively, the lower and the upper
bound for each of thikedesign variables. In other words, the problemlmamnderstood as: find the
set of design variabled which minimizes the performance functidnwhile respecting the design
constraints.

To sum up, an optimization model is normally congazb®f three main components: tdesign
objective,the design variablesand thedesign constraintsLet us now analyze in detail each of
them.

Design variables

The design variables are under the control of gsgmer, and every different combination of them
determines a different design. The goal of thegiesptimization is to find the best combination of
design variables that optimizes the designer'sepesice design objectiveand maintains certain
requirements gonstrainty (Du X., 2006). A typical engineering example ofstyn variables
managing is the choice of the geometric dimensafrsstructure.

68



Design variables are normally in one of the follogviorms:
- continuous variables

- integers e.g. the number of heat pipes in a cooling sysk@na spacecraft instrument, or the
number of teeth in a gear;

- a discrete variable which can take values only from a discrete setékample, a catalogue).

Design objective

The design objective represents the designer's gbaé mathematical representation for the design
objective is theobjective function(or fithess functiojy which is represented in terms of design

variables. Typical examples of objective functionslude weight and costs, or aerodynamic

efficiency. From a computational point of view, thess function is normally expressed as a
guantity to be minimized. However, if one wantartaximize the fitness functiofi(d,, d5, ..., d,,)

in equation (4.1), the design objective can be esged as

Maximize{—f(d,, d5,...,dy)}
i.e., with a change of sign.

In many complex design problems, more than oneopmadnce have to be optimized; to solve this
kind of problemsmultiobjective optimizatiors performed.

Design constraints

Constraints are function of the design variables, lanit the domain of the possible solutions; they
have to be strictly satisfied. Some examples ofgtesonstraints include the maximum allowed
deflection or stress in a beam, or the minimum ireguevel of reliability.

4.2. Optimization algorithms

Several kinds of algorithms can be used to solvemimization problem; they can be divided into
some main categories: analytical methods, grapmedhods, and numerical methods; in the latter
group, the gradient-based algorithms and the geakgorithms (GA) are the most used.

4.2.1. Analytical method

This kind of method requires the solution of tkarush-Kuhn-Tucker conditionsvhich are a
generalization of the Lagrange Multipliers Methadhich allows only equality constraints) and are
reported below:
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Ifaf(‘”+2] . ]af;d(d)+2k ) ka’;’;(‘”=0, i=12..,n
wigij(d) =0, forj=12,..,n (4.2)
w; =0, forj=1.2,..,n
k h,(d) =0, fork=12,..,n,

wherew; andv, are undetermined constants (from Du X., 2006).

Due to the computational complexities that arisenvhequations (4.2) are nonlinear, the analytical
solution is limited to very simple cases only.

4.2.2. Graphical method

For very simple problems involving up to two vated) the optimal point can be found through the
following method:

- plot the constraint boundaries to define the fdasabd the infeasible regions;

- plot the contours of the objective function, anwdfthe direction along which the objective
function increases or decreases;

- identify the optimal point i.e., that point whose coordinatés,,d,) correspond to the
optimal design solution. This point is related he minimum value of the fitness function
inside the allowed region, and it is usually lodaédong one of the constraint boundaries; it
often coincides with the tangency point betweeoraaur of the objective function and one
of the constraints, as depicted in Fig. 4.1.

.....
.....

Bl

- increasing f

[ f(d)
: di

Figure 4.1: example of optimization through the graphical methrhe limit-state functiory(d,,d,) = g(b,h) =0
(in magenta) divides the space into the feasilli@reand the infeasible region. Each of the bluwesiindicates a
particular value of the objective functibn
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4.2.3. Gradient-based numerical method

Due to the high complexity level, most of the emginng problems cannot be solved by analytical
or graphical methods. One of the alternativesvsmibygradient-based numerical method¥ith a
numerical method, the optimal design starts fromiratial design point (starting point) that
represents an initial design. The numerical optemevaluates the objective function, the constraint
functions and their derivatives and, based on tredires, the optimizer generates a search direction
along which the objective function will be likelp descend (see Fig. 4.2). A step size along the
descent direction will be searched such that thectibe function will decrease to the lowest
possible value without violating any constraintemhat the following iteration, the current design
point moves along the search direction with thectigel step size. A new design point is then
obtained. The optimizer evaluates the objectivection and the constraint functions again at the
new design point and checks whether the solutiowemes (from Du X., 2006). If convergence is
not reached, the optimizer generates a new searehtidn and the relative step size for the
following iteration. This procedure continues uatil optimal solution is found.

Let us now consider a simple two-dimensional cdseptimal point search, in which the design
point afterk iterations isd* (see Fig. 4.3); to determine the next iteratioa,d**!, the search
directiona® and the step siz8* are generated, so that the new design point is

d*+1 = gk 4 Brgk

As for the termination criteria, two of the mosippitar ones are the following:

1) The distance between two consecutive designpbas to be less than a tolerangce
||dk+1 _ dk” < g

2) The difference between the fitness functionatnet to two consecutive design points has to be
less than a toleraneg:

F(@+1) - f(d¥)] < &

To perform gradient-based optimization, the avddatumerical routines are normally used, where
the search process is fully automatic.

One of the limits of this kind of methods is thhey can converge to local minima rather than
global minima (see Fig. 4.4); therefore, to obtdia optimal solution, a different starting point

should be used.
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Figure 4.2: example of a a gradient-based optimization procetiutook for a minimum value (from S. Kozola, 2p09
dz F 3

Current design

dh
Figure 4.3: example of thé-th iteration of an optimal point search: the newige pointd“*! is found from the
previous design pont* by making g8* move along the* direction (from Du X., 2006).
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New design

a'; d

d; d.

Figure 4.4: this case, in which a single design variablavolved, is useful to highlight how the choicetbé starting
design point is crucial: indeed, for some starpiints such ad? andd?, the gradient-based numerical method can
converge to a local minimum (i.el; ord3), rather than to the global minimu#j (from Du X., 2006).

4.2.4. Genetic algorithms (GA)

This kind of algorithms act in an heuristic wayttih@mics the process of natural selection. They
are based on the classic view of a chromosomesaigg of genes (Holland, 2012)n the selective
breeding of plants or animals, for example, offisgriare sought to have certain desirable
characteristics, which are determined at the geretiel by the way the parents’ chromosomes
combine. By using this concept, R.A. Fisher (19&@)tributed to the development of mathematical
genetics by providing a theory specifying the ratevhich particular genes would spread through a
population. In the case of GAspapulationof strings is used, and these strings are oftesrnesd to

in the GA literature ashromosomesThe elements of a string correspondjémes and the values
assumed by those genes correspondlledes The concept oévolutionis carried out through a
generation-by-generation process where, at eage,stgoopulation of individuals produces a set of
offspring that indeed constitutes the next genemati hen, a fitness function is associated to each
of the new strings, in order to assign the numbkewoféspring which that chromosome will
contribute to during the next generation. Starfiogn theparentchromosomes, the recombination
of such strings is carried out by using simple agigs of geneticrossoverand (to a lesser extent)
mutation,and the search is guided by the results of evalgdtie objective functioh for each
string in the population. Based on this evaluatistnings that have highditness(i.e., represent
better solutions) can be identified, and thesegaren more opportunity to breed (C. Reeves, 2003).

Let us now focus on the processes of recombination.

Crossoveris a way of substituting some of the genes in par@nt by corresponding genes of the
other. Crossover in its simplest form (i.e., onéporossover) can be defined as follows: given the
parents P1 and P2, let us define the crossovet Joitne pieces lying on the left of that point are

exchanged between the two chromosomes, givingaisepair of offspring chromosomes O1 and

02 (see Fig. 4.5) .

Mammals’ offspring exhibit a mix of their parentsharacteristics mainly due to crossover

(Holland, 2012).
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P1 1 1 1 1 1 1 1

P2 O 0 0 0 0 0 0

o1 1 1 1 0 0 0 0

02 O 0 0 1 1 1 1

Figure 4.5: parent strings (P1 and P2) undergoing crossoram fhich the offspring (O1 and O2) is generated.

In mutation on the other hand, a subset of genes is choselomdy, and the allele value of the
chosen genes is changed. In the case of binangstrihis simply means complementing the chosen
bits (C. Reeves, 2003). For example, the string(€@2 Figure 4.5), with genes 2 and 7 mutated,
would become0101110.

If the new population of strings doesn't satisfg ttonvergence conditions, the recombination
process will continue, as shown in the templatéftiibows.

Choose an initial population of chromosomes;
while termination conditions not satisfied do
repeat
if crossover conditions not satisfied then
{select parent chromosomes;
choose crossover parameters;
perform crossover};
if mutation condition satisfied then
{choose mutation points;
perform mutation};
evaluate fitness of offspring
until sufficient offspring created;
select new population;
endwhile

Figure 4.6: general template for a genetic algorithm (fromrRseC., 2003).
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Population GA Operators

-4—— Mutation
A

Crossover
T

Reproduction
A

Evaluation

v

Fitness value

Evolution Environment

Figure 4.7: evolution flow of a genetic algorithfrom Liao and Sun, 2001).

4.3. Deterministic examples
4.3.1. Statically determined airfoil

As an introductory example to optimization desi@simple case, applied to a statically determinate
profile (nearly the same that was analyzed in GiraB} will be herein presented. In this case, the
performance of a gradient-based algorithm will beeyved.

Compared to the case of Chapter 3, the only diffsgds that: the distan¢e + f) between nodes
A and B is no more constant, due to the fact tii@how considered as one of the design variables;
therefore, the position of the aerodynamic cerdar)(is no more fixed a priori.

The goal of the present simulation is to minimilze tatio betweeh (i.e., the distance between the
aerodynamic centre and node B) and the airpiaatecity V, with the constraint about the yield
strength that has not to be overtak€he minimization of thd/V ratio is made with the aim of

optimizing the performances while, at the same timi@imizing the wing obstruction (and, hence,
its mass).

Anyway, the values of these two variables havéetinkide two intervals, which are, respectively:

- for the length: [0.35 m; 1 m];
- for the velocityV: [100 m/s; 200 m/s].

Remember that, during the reliability analyses,uhkie forf was constant and equal to 0.675 m.
For the rest, the model data are the same of Chapte
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Figure 4.8: the airfoil structure which was optimized. Whiletairfoil depicted in figure 3.19 has a fixed getry, in
the present application the lengthis a design variable.

The optimization model is given by

( Min L
| v
S.t.
4 Gy (c,V)=0,—0y <0 (4.3)
l 035m <f <1m
100 m/s <V <200 m/s

Whereogy, = 462 MPa is the yield strength of the material (AI7075-T6).
A commercial routine implementing the gradient-loasethod was used.
The Matlab codes used - partially influenced by>D{2006) - are given in appendix C.1.

Analysis of the results

The results from Matlab are reported in Appendik.@he initial value off(V) was set to (0.675 m;
150 m/s). With such a starting point, the optim@ajprocess converges to:

V(opt) f(opt) f/V (opt) G, (opt) [safe if< | Tension on rod a
0]
150.0015 m/s 0.35m 0.0023333 -168.6713 MPa 2948
Table 4.1:outputs of the gradient-based optimization, whenstarting points were setfte 0.675mmandV=150
m/s

The optimal point - i.e. the minimum of th&/ ratio - is obtained for a value for a tension 8833
MPa, i.e. well under the yield limit of 462 MPa.é& bptimal value for the velocity is 150.0015 m/s:
it lies inside the interval of [100m/s; 200 m/slitlit is extremely close to the value chosen fer th
starting point (150 m/s); on the other hand, th&ueveof the distancé corresponding to the
minimum is 0.35 m, i.e. on the lower limit of th@erval. Subsequent simulations showed that such
an optimal point is only bocal minimumand it is far from thglobal minimum
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Then, a global minimum search was performed, whatsisted in varying the starting valuesf of
andV, until it was found that, while the optimal poiistindependent on the initial value Hfit
strongly depends on the initial value\of

Thepoint of global minimunms
(fV) giob min = (0.35m,188.25 m/s)
which corresponds to the limit value of the perfanoe function, i.eG,(c,,V) = 6, — gy = 0.

Such an optimal point, that corresponds to thegperénce function reaching zero (i.e., the material
yielding), is obtainable by initializing the velbgiwith a value between 188.25 m/s and about 199
m/s. For a starting velocity of 188.24 m/s (i.€010m/s less than the value \éfwhich corresponds

to the optimal/V ratio), the optimum is not reached; this fact cadés that, in the present example,
the utilized gradient-based routine is efficientlyooon the right neighbourhoodof the point
corresponding to optimum.

The results referring to the case in which theahgation of §,V) was set to (0.36 m; 199 m/s) are
reported in Appendix C.1.

The performance function

The trend of the performance function inside theriral is reported in Fig. 4.9. There, the red plan
represents the limit case in which the acting tamsiquals the yield stress of the material: thues, t
intersection between the coloured surface anddteplane represents the limit case in which the
acting forces are equal to the yield stress ofntlagerial: the part of the performance function that
lies above such a plane is connected to the detestigifailure of the structure.

g(f;V) = O (limit-state function unsafe region

g—{( A
Af(}nﬂaﬂce function)

100

Figure 4.9: The intersection between the coloured perform&meetion and the red plane locates the limit-state
functionG(V,f) = 0. The portion of the performance function whictslabove such a limit (i.e., on the right) idensfie
the configurations (couples ¥fandf) which bring to failure.
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Looking for minimum points

(objective fun®

Figure 4.10:the trend of the objective functidfVv inside the selected interval.

As it can be seen from Fig. 4.10, there is only orieimum in the domain that was chosen: as it
can be easily computed, the minimunf/dfin the domain is found for the minimum value bfby

the maximum o#, i.e. 0.35/200 = 0.00175. Moreover, there isny atationary point(i.e., where
the Hessian Determinant is zero): this suggests ithelly, a gradient-based algorithwould have

to converge tof(V) = (200,0.35) for whichever starting point on th@main. Nevertheless, one has
also to remember the presence of the constraiisdly, theunsafe regionn Fig. 4.9), which
circumscribes the optimum point search to @liewed regiononly. Hence,V, f) = (188.25 m/s,
0.35 n) is theconstrained global minimum point

4.3.2. Cantilever beam

A cantilever beam having a rectangular section aricted length is subjected to a pure bending
force on its tip, whose components &eandP,. Let us want to dimension the cross-sectional
geometry, such that the beam mass results to bienined, while respecting the constraint on the
maximum allowable stress (i.e., the yield streBsje to the constant section and the homogeneous
density, the mass minimization problem can be reduo the minimization of the cross-sectional
area of the beam, which is expressed a*h (see Fig. 4.11).

L l P‘.
< > ’

h 4—Pr

ANEANEANAN

Figure 4.11: cantilever beam subjected to a pure bending foncks tip.
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Nevertheless, the section bdsand heigtth values have to lie inside predefined intervals.

Problem data

L = 2540mm

E = 200,000MPa;

P, = 2227 N;

P, = 4454 N;

Sy = 241.3 MPa (yield strength);

b' < b < b* [b' = 25.4 mm, b* = 254 mm];
h' < h < h* [h! = 25.4 mm, h* = 508 mm];

The constraint is deterministically expressed aspérformance functiog (Equation 4.4); from a
deterministic point of view, this function has te begative, i.e. the acting stress has not to akert
the yield stres$ of the material, i.e.,

9(Pup) =2 (24+2) -5, <0 (4.4)
or,
g(P,P)=S-5,<0 (4.5)

To summarize, the optimization problem is given by:

min 4
s.t.
g(P,P)=5S—5y<0 (4.6)
| bl < b < b*
ht < h < h*

The starting point for the optimization processasto(b,h)= (50.8, 50.8)nm

Optimization

Optimization is performed by using the the samealigrat-based routine which was used in section
4.3.1, and the chosen algorithm followserior point method The iterations data and the final
results are reported in Appendix C.1. The firsirapgation loop provides the following results:

(b,h) = (52.0055, 104.011m

Obijective function = 5409.1/mn7
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Approaching the problem from a different startirogn

To assess the stability of the gradient-based rdetihhéhe present application, a new starting point
was settled al=(203.2, 50.4) mm

Optimization:

The optimal objective function results to g, = 5409.14 mm?, the optimal point being
(b, h) opt= (52.0055, 104.011hm

One can notice that the optimization outputs aractix the same as in the previous case [i.e.,
starting from(b,h)=(50.8,50.8) min

Changing again the starting point

Other starting points were selected as input feraptimization problem, namely:
(b,h)=(228.6, 533.4) mm;

(b,h)=(251.5, 505.5) mm,;

(b,h)=(25.65, 25.65) mm,;

(b,h)=(127, 381) mm;

nevertheless, all of them leaded to the same rawurttely
(b, h) ope= (52.0055, 104.01hm

Aope = 5409.14 mm?

Inspecting the force-geometry correlation alonod & directions

In the last paragraphs, it was noticed that optton results brought to beam sections in which the
ratio between the horizontal and the vertical side ofsiaetion was always equal to 0.5. In order to

understand the reason for this, the values of ttiegaforcesP, and P, were changed, in order to
state whether there is any law which defines thier@b geometry of the section.

In all the optimization cycles that have been panied up to now, the ratio between the acting force

o P, 2227
alongx direction and the one aloygvas equal to—= = =
P, 4454\

y

The optimization cases that follow were performedhie hypothesis that the starting geometry was
(b,h)=(50.4, 50.4) mmand with all the numerical assumptions that Haa&n made up to now.
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Varying the acting forces in intensity and in th@wtual ratio

If one chooses, =P, = 4454N, the optimal result is:

bope= hope = 82.517mm

: P . . .
That is to say, to api ratio equal tol, the routine returngg, /h,,, ratio equal to 1.
y

If P, =8908 N and P, = 44.54N, the optimal section is the one with:

bopt = 150.92 mmh,,,; = 25.4mm
In this last case, the optimization was limitedtbg fact that the lowest allowed value for
was reached.

Changing the allowed intervals fbrandh:

The lower and upper bounds for the design varidide® been, up to now:
25.4mm<b<254mm and

25.4mm< h<508mm

Such values will be herein changed.

Let us now chooseP, = 8908 and P, = 44.54N again, but with a different set of allowed

intervals for the sizes df andh, namely
25.4mm<b<254mm and
0 mm< h<508mm

the optimal section results to be the one with:

bopt = 25.4mm,h,,. = 9.8334mm
In this last case, the optimization was limitedtbhg fact that the lowest allowed value bor
was reached.

The bounds of the design variables were changeih,ageeping the same values of the
acting forces:

25.4mm< b <1270mmand

0<h<508mm

the optimal section geometry is then given by:
bope= 607.98Mmm hyp,e = 3.04mm Ay = (b - h) ope = 1848.2mn7.

It was found thab,,./h,,: = 200,the same ratio existing for the acting forces:
P./P, =8908/445.4 = 200.

It is important to notice that, in this case, timeit bound(s) were not reached.

As a further proof of this trend, another differeet of forces was chosen:
P, =501(N
P, =1710MN
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with
25.4mm<b<1270mmand
0<h<508mm

Notice thatP, /P, = 0.3295
The optimization brought to

bopt = 56.99 mm
{hopt = 172.97 mm

and theb,,;/h,p, ratio is 0.3295, i.e., exactly equal to the rdtadween the external acting
forces.

Comments

As far as it has been seen during the presenttigagéisn, whenever the optimal geometry doesn’t
involve any limit bounds for the section allowedes, the ratio betweén,,. (the side along axis)

andh,,; (the side alony axis) resulted to be equal B/P,, i.e. to the ratio between the acting
force alongk and the one along

4.3.2.1. Verifying the results through Graphical opimization

In the last sections, it was shown that the graebdased function brought to the exact solution.
The goal of the present paragraph is to perfornofitanization from a graphical point of view, in
order to compare it with the numerical results.

As it is shown in Fig. 4.12, every value of the aemtive functionf is associated to a different
hyperbolef = b* h = A

500
450
400
350

306

£=3900
f /

200 /;‘=3;5|:~
150 ) f= 2600
/

100
F=1950
S0 r=ys00
- f= ﬁjﬂ : i I i 3 i A - il
50 100 150 200 y 300 350 400 450 500

b

Figure 4.12:several curves of the performance functiohh = f, in which every hyperbole has a constant valué of
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On the other hand, Fig. 4.13 shows (highlightethagenta) the limit-state functigtgb,h)=0.
450
400
350
31}9
h 250
200
150
100

O 50 100 150 200 250 300 350 400 450 500
b

Figure 4.13: limit-state functiorg(b,h)=0 (in magenta) and several objective functiond(ire).

Figure 4.13 shows that the performance functiorveupotentially intersects more than one
objective curves.

This means that the limit-state function followspath that potentially continues to change
“altitude”, according to every of its particulargade of coordinategb,h). Therefore, the optimal
value for the objective function along the limigt& function is reached at the point having the
minimum f value, which corresponds also to the tangencytpaith the connected objective
function itself (see Fig. 4.14).

258

= /! imit-state function

200

125 /Dpfimum dESigﬂ pDiﬂt

100

"525 375 50 2.5 = b 875 100 1125 125 137.5

Figure 4.14: The green curve represents the optimal objectinetfon, i.e. the only one that is tangent to thetistate
function (coloured in magenta).
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To better understand the separation between théttadnand the forbidden regions, let's have a
tridimensional look to the objective function amdthe performance function (see Figures 4.15 and
4.16).

Figure 4.15: The objective functiorf = b * h increases for increasing valuesbandh.

g(b.h)
x e

8 50 100 150 355 e 20
200 E——
5 250 300 350 400 450 spg 2S00

Figure 4.16: The performance functiag(b,h)sharply increases while getting closer to theiorig
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Let us look for the optimal values bfandh. Considering the expressions for the two curves in
figure 4.14:

6*L( X Y
h)j=S—-———| —+— | =
glb,h)=s b*h(b+hj 0

f =b*h=const=c @.7)

From the second expression of the system:

h=2
b (4.8)

And, by inserting such a value in Eq. (4.7), ontaois the expression of the limit-state function as
a function ofb as the only variable:

g:S—6 L(£+Y bj:o

b* & b c
b (4.9)
Then,
S*b*c?-6*L* X*c-6*L*Y*b*=0
(4.10)
The equation is now expressed as a second-degsg®puoal of the only variablé:
* A2
e*L*y Y (4.11)
The law to find the two solutions is
S*¢? N S?*ct 4*X*c (4.12)
6*L*Y || 36*L**y? Y
b, = >

SPrct 4*X*c
But, remembering that there is only one soluti@ngency), the term( - j

36* L2* y? Y
(i.e. the so-called) is necessarily equal to zero. Hence,

S2x ¢t 4* X*cC
A=0=> - =0
\/{36*L2*y2 Y j

(4.13)
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From the last expression, it is possible to deteentihe value of = f:

* | 2% YW *
c=3\/144 L 5 X7y =540407
S (4.14)

From equations (4.12) and (4.14), it is possibl&rtd that
bop: = 51.981

And, recalling thath = — =

7

olo
o|—

hope= 103.963MM

These results confirm the validity of the optimalirg that was found using the gradient-based
method.

Further improving the objective function

The value of the performance function at the opitipeént that was found earlier is

g(b,h) = 51.981mm 103.962mn) =0

Several points along the optimal objective functieere chosen in the neighbourhood of the point
that was found to be the optimal one (both by ttag@lgical method and Hynincor), in order to see

if there was any couple of coordina{esh) having a greater value of the performance funciien
farther to the limit condition and therefore “séfer

It was found that, ifb = 51.841mm

for _ 540407

h= =
b 51.841

=10424mm

and

g(b,h)=g61.841,104.2= 40.27> 0

For less than truncation errors, this last pointulddoe safer than the point that was found earlier,
i.e. (51.981, 103.962), for which the performanaection is zero.

Notice that, in this last case? = 5134l =0.4973% 1
h 104.24 2
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4.4. Conclusions

In the present chapter, an introduction to optitrawas made, which, together with reliability
assessment, constitutes the basis for the commieineand the implementation of Reliability-
Based Design Optimization, as it will be hereinafieen. Anyway, for the purposes of this chapter,
purely deterministic optimization was examined. @ structural design, the objective of
optimization is to find the optimal values of a sétdesign variables such that a certain (or more
than one) performance is maximized, while respgctiome predefined feasibility constraints. The
most elementary problems, which can be expressedgh a very simple mathematical form and
which involve a limited number of design variablean be solved in an analytical or a graphical
way. Apart from these rare cases, optimizationagied on via numerical methods, the most
popular ones beingradient-based methodand Genetic Algorithms A couple of applicative
examples have then been examined. In the firsttbeegbjective was to optimize the ratio between
the performances and the dimensions of a wingihitéodo so, a gradient-based method was used.
In this application, such an algorithm proved todosceptible to the value of the starting point:
indeed, convergence to the global optimal solutsattained only if the starting point is located
inside a precise subset of the design variableesph@wed region. The second applicative example
concerns the geometrical sizing of a cantilevernbea order to minimize its mass while
accounting for the constraint on the material yisttess. This time, the gradient-based method
converged to the global optimum, and its stabiks proved by varying the initial beam geometry
and the values of the forces acting on its tip. €Ractness of the solution was also proved via
graphical optimization, with whom the same optipaint was found. In conclusion, it was verified
that gradient-based methods not always converge,aa®@ generally strongly dependent on the
choice of the starting point.
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Chapter 5

Reliability-Based Design Optimization

5.1. Introduction

In Chapter 4, deterministic optimization was trdatthis methodology is used to minimize or
maximize an objective functio, while maintaining design constraints; however,ddesn't
incorporate uncertainties, and thus may resultiskyror conservative designs (see Fig. 5.1).
Reliability-Based Design OptimizatigRBDO) is a methodology that considers uncertathtging
the design process. Uncertainty is due to the poesefrandom parameters.e., those random
variables which cannot be controlled by the desidbe X., 2006). The need to obtain a trade-off
between a higher safety and a lower cost is noymealisfied by fixing a minimum required
reliability R, or a maximum allowed probability of failupg for each of the constraints, the latter
being expressed through a sengfprobabilistic performance functiomgs.

Saf Fail

. . X <
Infeasible Region Gy(X)<0 Deterministic Optimum

Joint PDF

fx(x) Contour
G (X)=0
Reliable Optimum

% Design
of ]

®
Initial Design

—
-

0‘ X

Feasible Region
G(X)>0 G1(X)=0

Figure 5.1: comparison between deterministic optimization Redlability-Based Design Optimization (from R.
Haftka, 2010).
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The analytical formulation of the problem is

( Minimize f(d, py)
subject to
Pr{gi(d,X) <0} >=R; i=12,..,n, (5.1)
gi(d) <0, j=12,..,n4
di <dy<d¥, k=12,..,n

where g; are the probabilistic constraint®; are their related required reliabilitieg; are the

deterministic constraints, apg is the vector of the mean values of random vae¥)j d\ andd}
are, respectively, the lower and the upper bound dach of then design variablesl =
(dy,dy, ..., dy).

To solve a RBDO problem, a reliability analysis pos nested into an external optimization loop
(see Fig. 5.2). In the outer loop, the optimum &leds executed. After every iteration of the
optimization algorithm, the inner loop uncertairggalysis is performed to evaluate the design
safety, which is normally based either on Monteal€&imulation (MCS) or on Reliability
Methods (i.e., FORM or SORM). Due to its trade-b#tween efficiency and accuracy, FORM
method is often preferred.

Initial Design Optimal Design
7’ Optimization 'FHH '
I Optimization Loop W \
Design Variables Reliability Constraints
— _________%_Hﬂ/ﬁ

Reliability Analysis
Monte Carlo
FORM
SORM

3 -3
, random  reliabilify random  reliability
\ variables constraint 7 wvariables constramt

“u / u /

Engineering Simulation Models

— -
I Reliability Analysis Loop I

Figure 5.2: General scheme of the double loop-procedure faaRiéty-Based Design Optimization (from Du X.,
2006).
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Equation (5.1) refers to the caselifect Reliability-Based Designn such a model, the the actual
reliability of each reliability constraint is evalted (Du, 2006), and FORM method is normally
used. For every probabilistic constraint, the Mesibable Point is located by using the following
model, which is analogous to that of Eq. (3.18):

min ; =min|U;|
s.t. (5.2)
gi(d) Ui ) =0

in which the coordinate systebh refers to the standard normal random variableméhg after
Rosenblatt transformation). The solution of Eq2)5s the MPRu; or, equivalently, the reliability
index ;. The corresponding reliability is given by

Prlg;(d,X) < 0] = ©(B;) (5.3)

However, the computational efficiency Direct Reliability-Based Desigmodel is limited, mainly
due to the necessity to compute the probabilityfadlfire for each of the reliability constraints
g:(d, X). Moreover, some of the probabilistic constrainsynmave very high reliabilities, which
will never be critical during the optimization pess; nevertheless, the evaluations of their
reliabilities will unfortunately dominate the contptional effort in the RBD process (Du, 2006).
Furthermore, direct reliability analysis expose#hmrisk of singularity problems.

To work out such an issue, one can set a prioriiginmm required reliability, rather than

computing it a posteriori: by doing this, the rbllay assessment is performed only to the
necessary level, i.e., just enough to meet thegdesequirements. For this purpodeyerse
Reliability-Based Designwas introduced. In this model, the probabilistionstraints-based
formulation is substituted with the conceptpefrcentile performance functioRecalling Eq. (3.51)
(but reversing the signs, in order to improve tlagity), the percentile valug?/ which corresponds
to the targepy is

Prig(X) = g?] = pf (5.4)
or, equivalently,
Prlg(X) < g"] =R (5.5)

The latter equation means that the probability,tif@ performance function, to be less or equal to
the R-percentile performance functigrf is equal to thearget reliability R which is equal to the

area in magenta in Fig. 5.3.
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Area= P{G(d. X)<G"}=R 4 ppDFofG

G" 0 G

Figure 5.3: graphical expression of &ipercentile performance function from Du X., 2006).

In other words, in the Inverse Reliability-Basedsig@ approach, the probabilistic constraints are
transformed intdR-percentile performance functions that have todisfsed. Therefore, rather than
computing the actual reliabilitgr[g;(d, X) < 0], the location ofg®will determine whether the
probabilistic constraint are satisfied or not. Preecentile constraints are expressed as

gR(d,X) <0 (5.6)

Another advantage of this procedure is that itvedlao avoid the singularity problems that can be
met while performing direct reliability analysigttugh FORM or SORM.

A general RBDO problem implementing inverse religpanalysis can be expressed as:

( Minimize f(d, uy)
subject to

g (d,X) <0, i=12,..,mn, (5.7)
gid)=<0,j=12,..,n4
di <d, <d¥ k=12,..,n

wherer; (i =12, ...,np) is the target reliability for théth percentile constrainfThe percentile

gf" is determined by inverse reliability analysis, amderse First-Order Reliability Method
(IFORM) (Tuet al, 1997) can be used:

find U
min  g,(d, U) (5.8)
s.t. |lUll =B

whose solution is the MP#; which, after its transformation intg in the original space, can be
used to determine the value of the percentile pexdoce function:

g7i(d,X) = g;(d, x}) (5.9)

Therefore, the inverse RBDO analytical model of (&j7) can be expressed as
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( Minimize f(d, ux)
subject to
gi(d,x;) <0, i=1,2, R (5.10)
gj(d) =<0, j=12,..,n4

|
\dL < d, <d¥ k=12 ..,n

5.2. A simple RBDO algorithm

In order to examine in depth the interaction of tlwe contrasting goals of maximizing
performances and respecting reliability constrairda elementary Reliability-Based Design
algorithm was developed; subsequently, it was afdid a simple RBDO example. The algorithm
is described below.

Nomenclature

f = objective function;

g(X) = Performance functiofsafe if> 0);

X =random variables vector;

u, = vector of the mean values of the random variables

d = vector of the design variables, which are iriéwmariables, s.d} < d, < d¥, k=1,2,..,n;

design parameterss set of specific numerical values assumed by tbsigth variables for a
particular design configuration;

R = ¢(B) =target reliability corresponding to the target relaibility ind@x

Pr = ¢(—p) = target probabilty of failure

The RBDO problem to be solved is the following one:

find d
s.t.
min f(d, X)

Prlg(d,X) < 0] = Pf (5.11)

di <dp <d¥, k=12,..,n

Step 1: deterministic optimization

During the optimization process, the random vaeaslare given a constant value, i.e., the value of
their means, namelX = uy:

93



( Minimize f(d, uy)
subject to
{ g(d ux) <0
di <dp <d¥, k=12,..,n

(5.12)

As a result of optimization, the first attempt opdil design parameters ate= d1.

Step 2: inverse reliability analysis

In the expression of the performance funciidX), the new seil! of the design parameters is
used, and the percentile performance funcy8id?!,X) is determined by inverse First-Order
Reliability Method (iIFORM):

find U
min  g(di, U) (5.13)
s.t.  |[Ull=p

whose solution is the MP#" which, after its transformation intg in the original space, gives the
value of the percentile performance function:

gf(d', X) = g;(d", x}) (5.14)

gR(d!, X) is such that

Prlg(d", X) = g®(d', X)] = R (5.15)
Now, let us define a new performance function, dheth

g'(d4,X) = g(d',X) + gR(d", X) (5.16)

which equals zero when the target reliabiRtys reached. Compared to Eqg. (3.52), a differentnno
for the signs is used in Eq. (5.16).

The new performance functigri(d!, X) will be used during the next optimization cycle.

Step 3: deterministic optimization

Again, as for each determinstic optimization cythe random variables are given the value of their
means, i.e. X = uy:

I{ Minimize f(d%, uy)

4 subject to
g'@d@L,x)=0

Ld};l <di<d¥, k=12,..,n

(5.17)
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As a result of the optimization loop, the optimakin parameters are updatdds d?, which
satisfy the new constraint function, i.g!(d!,X) > 0.

Step 4: inverse reliability analysis

Similarly to step 2, the new values= d? of the design parameters are used to update the
performance function. By using iIFORM:

find U
min  g(d? U) (5.18)
s.t.  |[Ull=p

whose solution is the MP#" which, after its transformation intqg in the original space, gives the
value of the percentile performance function:

g~ (d? X) = g;(d? x}) (5.19)

Now, let us introduce the updated performance fangt’'(d?, X):
9"'(d* X) = g'(d4, X) + g®(d? X) (5.20)

which equals zero when the target reliabiRts reached.

Next steps

As for steps 3 and 4, sequential optimization ameerise reliability loops are executed until
d"*1 = d" (convergence).

5.2.1. An applicative example

To test the proposed RBDO method, let us considersimple structure that was analyzed in
section 4.3.2 (even though, in that case, only raetestic optimization was carried out). A
cantilever beam with homogeneous mass densitynmilstted on its tip by a pure bending forces,
whose components aRe andP,, which are not deterministic, but follow a proldaic normal
distribution. The goal of this design problem is theam mass minimization while guaranteeing a
minimum reliability level to prevent yielding. Leis imagine the beam section being constant and
rectangular, with dimensions and h. The beam length is fixed. Thus, due to the homegas
mass density, the objective of optimization is tanimize the cross-sectional area, il&h.
Thereforeb andh will be the design variables which have to lieidessome predefined intervals.
On the other hand, a reliability level of 99.87%eguired, which corresponds to a reliability index
S = 3, i.e. to a cumulative distribution functidn= 3s. This constraint is satisfied by respecting the
probabilistic constraint functiog on the maximum allowable stress at the fixed drtle@beam.
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AN

Figure 5.4: cantilever beam subjected to a pure bending foncis tip.

Problem data:

L = 2540mm

b' =254mm <b <254mm = b¥;

h! =254mm <h <508 mm = h*%

d = (b, h) = vector of the design variables;

f = objective function = minb - h;

P, = (2227,445.4) N (force acting along direction);
P, ~ (4454, 445.4) N, (force acting along direction);
X = (P, P,) =(X,Y) = vector of the random variables;
Uy, hy= mean values of the random variables;

o, 0,= Standard deviations of the random variables;
£ =3 (required reliability index);

S =241.3 MPa (yield strength of the material);

The constraint is expressed as the performancaicﬂmy:(Px,Py); from a deterministic point of
view, this function has to be negative, i.e. theéngcstress has not to overtake the yield stBsb
the material.
6L (Py , P

9@x)=g(P.P)=2(2+2)-5<0 (5.21)
Before executing inverse reliability analysis, tlemal random variables will be transformed into
standard normal variables through Rosenblatt toansdtion; hence, the performance function
becomes:

g(Ux,Uy)‘

" b*h

6L (:ux-'-o-bx*ux +Iuy+0r-,]y*UyJ_SS0

(5.22)
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Such a constraint has to be respected with tharesh@9.87% level of reliability (i.ef = 3) or,
equivalently, with a maximum 0.13% probabilityfailure.

To summarize, the reliability-based optimizationlgem is given by:

find b, h
S.t.
minb - h
Prlg(d,X) > 0] = P; (5.23)
bt < b < b*
ht<h<h"

The first step consists of performing an optimizaticycle through a routine employing the
gradient-based method. During the inverse religb#inalysis that follows (performed through
IFORM method), the most probable point correspogdnthe target reliability is found, which
will be used to update thmonstraint functiorthat will be employed during the subsequent furthe
optimization cycle. The optimization—inverse reli analysis sequence continues till
convergence is reached. During each determinisgitmazation cycle, P, and P, will be

considered constant and equal to their averageesalie. u, andu,.. For a greater clarityP, and
P, will be henceforth called asandY.

Step 1: deterministic optimization

The gradient-based method is run by using a nuademdwtine, and the chosen algorithm follows
theinterior point methodA starting point for the optimization processesjuired, which is set to
(b,h) = (50.4, 50.4)nm

The first optimization cycle provides the followingsults:

(by, hy) = (52.0055, 104.011Hm

Objective function § = b - h = 5409.14mn7?

The optimization outputs are the new valuesbodnd h; their product,b*h, which has to be
minimized, is theobjective function(also calleditness functioror obj). The new values df andh,
namely,b; andh;, are used to update thenstraintfunctiong that will be used during théenverse
reliability analysiscycle that follows.

The objective of the inverse reliability analysigle is to find out the value of the performance
function that corresponds to the desired relighilite., thepercentile functiong® (in the present

example,g® = g **™).
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Step 2: inverse Reliability Analysis cycle

Inverse reliability analysis is executed in orderguarantee the needed 99.87% reliability. For
computational reasons, the additive inverse ofp#méormance function will be used during inverse
reliability analysis, and it will be indicated ag. Starting from equation (5.21), updating the limit
state function with the new values lmfandh that were obtained through optimization, and final
changing the sign in the equation in order to penfmverse Reliability Analysis, one gets:

_g_ (X Y
—gx, V) =8 -2 (5 + 1) (5.24)

After making Rosenblatt transformation:

_ _ _ 6L [.lx+0'xe Hy"'o-yUy
g(U,U) =S5 blhl( g ) (5.25)
And, by inserting the numerical values:

xtoxUx | Hy+toyU
—g(U,, U,) = 2413 — 2.82 (“5 SO 1yo4.0y11y) (5.26)

Let us computedg, |Og| anda, which in this example are constant:

Dg(UX,Uy)=( 9% a_gJ = (- 24164+ 12082)

oU, "ou, (5.27)
|Og| = 27016
a = (—0.8945, —0.4472)
Starting byu,, = (0, 0),
g(uy) = —0.794
u;, = —fa = —3a = (2.6835,1.3417) = u* = (u;, u;) (5.28)

Convergence to the MP# is reached after only one iteration.

By making Rosenblatt Transformation backwise, oets the values of X and Y that correspond to
the limit-state case for a 99.87-percentile relitgb

The corresponding values of X and Y are
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X' =i, +0,*U} = 2227+ 4454 * 2.6835= 342N = x*%™
y =4, +0,*U] = 4454+ 4454 *13417=505N = y**™ (5.29)

In other words(x*,y*) = (x%,y®) = (x%287%,y9987%) is the minimum force which brings to
failure in the presence of a 99.87% reliabilite (i.a reliability indexg = 3). As it could be forecast
X 9% and Y*%®™ are greater than the corresponding mean value®7 (22 and 4454N,
respectively).

By using(x*,y*) = (xR, y®), the value of the percentile performance funcisoobtained:
gR(dy, X) = g;(d',x*) = g;(b*,h',x*,y*) = —81.39 MPa = g°987% = gR (5.30)

Now, as in Eq. (5.16), let us define the new pentamce functiory’(d?!, X)

6L
g'(dL, X) = g(dL, X) — gR(dL, X) = —(”—x + “—y) — 241348139 =
bh\b, ' h,
— oL (hx  Hy\ _
= (m + hl) 159.91 (5.31)

Compared to Eq. (5.16), a different norm for thgnsiwas used fgrf (d?, X) in the last equation.

Step 3: deterministic optimization

Compared to the previous optimization cycle, thie dliffers for the new value gif = g®987%,
that in the first optimization was necessarily ddaaero, the value of initialization.

The corresponding expression for the performannetion is now given by Eqg. (5.31). The second
optimization cycle was run by usirfgninconfunction, with(b,, h;) = (52.0055, 104.011m as

starting values, and with/ (d!, X) = % (% + ?) — 159.91 as updated limit-state function.
1 1

This further optimization gives the following outpralues for the design parameters:

(b,, hy) = (59.568, 119.136nm and

f =obj = b, - hy, =7096.7 mm?.

Next steps

The optimization-reliability assessment sequencepaesformed repeatedly until the following
criteria are satisfied:

bn+1_bn

< 107*, and (5.32)

n+1
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hn+1 _hn

<1074 (5.33)

n+1
These criteria result to be satisfied after thé&" iteration, and the resulting geometry is
b =57.31mm;

h =114.61 mm.

Hence, the objective function (i.e., the crossiseal area) is

f =obj =b-h=65683mm?2.

Assessing the reliability with FORM and MCS

In order to verify whether the output of the lagitimization cycle respects the reliability
requirement off = 3 (and, henceR = 0.9987), a direct reliability analysis cyclepsrformed with
First Order Reliability Method (FORM). It is impartt to remember that the new performance

function, i.e.—g' =—(g(X)-g~), equals zero when reliabilify is 99.87%. Iflu,,U, ) converges
to (0,0), this requirement will be satisfied.

Indeed, if(UX,Uy): (00), then ' :H(UX,UJ‘ =0; B' =0 = 0 corresponds to the mean value,
(see figure 7).

0.2 0.3 04

24.1% 24.1%

0.0 0.1

Figure 5.5: standard normal distribution.

Performing the reliability analysis, FORM methodeetively converges a(UX,Uy): (00): thus,
convergence is reached.

To confirm the dependability of the results, thiaf@lity of the structure was computed via Monte
Carlo Simulation (MCS) too. After0° iterations, the reliability-based design outpesuited to be
verified, with an error of 0.48% on the desired839s reliability.
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Comments

The outputs of the RBDO method were compared t@éuwmetrical parameters relative to both the
deterministic optimization and the initial configtion, and are reported in Table 5.1. Even though
the reliable optimum would appear a bit less highifggmance than the deterministic optimal
solution, the latter does not have the desiredl lef/eeliability, which, by definition, is equal to
50%.

b h f=b-h Reliability

Initial 50.80 mm 50.80 mm 2581 mm? << 50%
configuration

After 52.006 mm 104.011 mm 5409 mm? 50%
deterministic
optimization

After 57.31 mm 114.61 mm 6568.3 mm? 99.87%
probabilistic
optimization

Table 5.1:design parameterd &ndh) and objective functiohrelated to the initial configuration, the deterisiit
optimization (see chapter 4) and probabilistic mjation.

The utilization of different solving algorithmsdi.trust-region reflectiveactive-setor sequential-
guadratic programmingdoes not change the outputs of the optimizatimtes.

About the reciprocal correlation between the twetise edged andh, the reason for the fixeath
ratio (equal to 2) was explained from a physicainpe@f view. While performing RBDO, a
numericalreason for the constancy of this ratio can bellggted: it is due to the constancyldd ,

|0g| anda.

5.3. Reliability Index Approach and Performance Meaure
Approach

To solve complex RBDO problems, it is better tooreso some of the best-established methods,
which supply an high level of both computationdlogéncy and reliability. Two main approaches
are used to carry out RBDO: Reliability Index Apach (RIA) and Performance Measure
Approach (PMA) (see Fig. 5.6), which are often lbase First Order Reliability Method (FORM).
The reliability indexs associated with the limit state functigpis defined as the distance from the
origin to the most probable point (MPP) of thededl surface in the standard normal space (see Fig.
5.6) (Frangopol D.M. et al., 2014). While RIA emysodirect reliability analysis for assessing the
probability of failure, PMA is based on inverseabllity analysis.
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Reliability Index Approach Performance Measure Approach

___ first order approximation s Y
Uz « of limit state function 2 \ \

g=<0
MPP

decreasing g

g=0

min |ju)] ~g=0
Ly 1 —U1

Figure 5.6: Comparison between Reliability Index Approach Bedformance Measure Approach.

The RIA method computes the probability of faildng the reliability index; it aims to minimize
|lul] = B, i.e. to find the reliability index which corregmis tog;(X) = 0 (i.e., the failure surface).
Beingu = u[d(X)] the vector of the design variables (which are fi@mcof the random variables),
the RBDO problem (5.1) using RIA can be defined as

( Minimize f(d, uy)
| subject to
ﬂm,i - ,81' <0, i=12 - Ny (5_34)
gj(d) =<0, j=12,..,n4
\dL < d, <d¥ k=12, ..,n

wheref,, ; is the minimum required reliability index for ti¢h probabilistic constraintandg;(d)

is thej-th deterministic constraint

Anyway, it can not be guaranteed that the RIA om#ation problem has a solution for any given
design during the design-optimization process (foanl D.M. et al., 2005). Indeed, in some cases
there may be no solutiansuch thalg; = 0 (i.e, on the failure surface).

A very efficient alternative to RIA for performingBDO is the Performance Measure Approach
(PMA). For a given target reliability inde%, the maximum value for the limit state function is
computed by solving the following optimization pleim in the standard normal space

max g; (u)
15. t. (5.35)
@'z - B =0

The value of the limit state function at the optrmwf formulation (5.35) represents the worst
possible performance forraquired reliability indexs; (Frangopol D.M. et al., 2005).Compared to
the RIA approach, the constraint in eq. (5.35) @larays be satisfied.

A general RBDO problem implementing PMA is given by
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find d
s.t. Min f(d; ux)
9" (&X) <0, i=12,..,m, (5.36)
gjd) <0, j=12,..,n4
di<d,<dl, k=12,..,n

Wheregff tis thePy ;-th percentile value for theth performance functiog;, i.e.
Pri
Plg;" (@ x) 2 0| =P,

in which Py, is the corresponding target probability of failurEhe percentilegff'i can be

determined by inverse reliability analysis, andeirse First-Order Reliability Method (iIFORM) (Tu
et al., 1997) is often used.

PMA is numerically more efficient and stable thaldAR

5.4. Conclusions

In this chapter, the theoretical basics of ReligbBased Design Optimization (RBDO) were
presented. The aim of RBDO is to maximize a givesrfggmance (optimization) while
guaranteeing a minimum, predefined, level of reliigh To manage such conflicting goals, one has
to deal with an external optimization loop and ametinal reliability assessment loop. The
achievement of the desired safety level in religbhbased design can be pursued via two alternative
ways, namely, direct reliability analysis and irseereliability analysis. The first case is referesd
Direct Reliability-Based Designand an algorithm which employs such a methodolsgyhe
Reliability Index ApproacliRIA). On the other hand, the second case is céfleerse Reliability-
Based Designand is based on setting a minimum, predefinadhbiity level; such a methodology

is employed by thé&erformance Measure Approa¢dRMA) algorithm. Inverse Reliability-Based
Design has generally proved to be more stable asd tomputational demanding than Direct
Reliability-Based Design. An elementary Inverse i&elity-Based Design algorithm was
developed, in which optimization and reliabilityadysis loops are executed sequentially, and the
latter is performed vimverse First Order Reliability Metho@ORM). This algorithm was applied
to the design of a cantilever beam which is subjegpberpendicular forces (subject to gaussian
distribution) acting on its tip. The objective w@sminimize the beam mass, while respecting the
probabilistic constraint on the maximum acting ssrevith a 99.87% reliability, which corresponds
to a reliability indexs = 3. The RBDO outputs were the geometrical dinarsiof the structure
which fulfill the problem requirements; to confirtime reliability of such a configuration, MCS was
used, which verified the results, with an erroD@f8% on the required reliability.

103



104



Chapter 6

RBDO of aeronautical structures

6.1. Introduction

In chapter 5, a theoretical introduction to ReligiBased Design Optimization was made, with a
particular emphasis from an analytical and numémpeant of view. In the present chapter, the
stress will be on the particular kind of applicatithe systems that will be presented are concerned
with aeronautic structural applications. To begithwthe probabilistic structural design of a wing
airfoil (considered as a part of a rectangular wiwgs made, with the aim of minimizing the wing
mass and preventing aeroelastic instabilities;rtfento combine both the simultaneous needs for
optimizing the structure and attaining the desitedels of reliability on the probabilistic
constraints, the airfoil structural design is parfed via a double-loop RBDO algorithm. Here, the
reliability assessment is performed by inverseabglity analysis (inner loop), which is nested into
the optimization process (outer loop). The probstioil optimization is then extended to a three-
dimensional case involving a rectangular wing, imali the probabilistic constraints concern both
the wingtip displacement and the maximum allowattess (at the wing root); in this application,
Genetic Algorithms (GA) will be used for performingpe optimization. Subsequently, the
reliability-based design will be performed on th@imshear web of a tapered wing, which is
subject to an elliptical lift distribution. The spiof these simulations is to come to an ever
increasingly realistic approach on the probabdigesign of a wing.

6.2. Probabilistic optimization based on elastic ag*

In the present paper, a probabilistic optimizatmproach to the structural design of an airfoil is
described. Such an activity is to be considerethadirst step towards the structural design of a
high aspect ratio, flexible wing. The structure i of the latter is based on the work done by
Cesnik and Brown (2002) and Brown (2003), in whiick wing is analyzed as a one-dimensional
beam experiencing three-dimensional bending anstitvg deformations, whereas the extensional
and shear deformations are considered as negli{gele Appendix D). In order to highlight the
forces that originate from random gusts, the thedrieterset al. (1994) and Peterst al. (1995)

will be followed when the analysis will be extendedthe three-dimensional case. To consider the
present application, the deterministic optimizatecheme introduced by Huet al. (2013) is
described in Appendix E, which stresses the impogabf the elastic axis position in the aeroelastic
stability of a wing; this is valid also for a twartensional case. After having verified that the
divergence instability is more likely to occur fdigh values of the distance between the
aerodynamic center and the elastic axis, such tandie was considered by Hed al. (2013),

! Partly based on: Coccon, Menegozzo and GalvantidRoyal Aeronautical Society Aircraft Structubssign
Conference, Conf. Proc., 7th-9th October, 2014{aB&|Northern Ireland.
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together with the wing mass, to define the desigjeaiive function which has to be minimized.
This work inspired the definition of the objectifenction in the study that is proposed in the
present section, in which a reliability assessneinitegrated inside the optimization process. The
reliability-based design is carried out by meansaoPerformance Measure Approach (PMA)
(Frangopolet al, 2005, and Twet al, 1999), which uses inverse First Order ReliabiMgthod
(IFORM) to evaluate the probabilistic constraintstbe maximum allowable strain and stress over
the wing span. To solve this kind of problems, tise of sampling-based methods (e.g., Monte
Carlo Simulation) is not suitable, because theyuireqa very high computational effort.
Conversely, the proposed algorithm represents d gompromise between precision requirements
and computational costs. Even though the developmiethis optimization procedure is still in
progress, some preliminary results are presentadet to the design of a single airfoil.

6.2.1. RBDO of a wing airfoll

The goal of this probabilistic design is to minimi#ts cross-sectional area, together with the
distance between the aerodynamic center and thee skater. The thicknesses of the shear webs
and their position along the chord are considerediesign variables. The constraint functions
concern the minimum allowable values for bendinfingtss and twisting stiffness, and the target
reliability indexp is set to one, which corresponds to a target fmittyaof failure of 15.87%.

As it was proved by Huet al. (2013, see Appendix E), the divergence dynamisquieqg, on a
wing is expressed as

kg

D = SGc,/om (6.1)

wherek, is the twist elastic coefficient is the distance between the elastic axis (EA) thed
aerodynamic center (AC% is the wing surface areg; is the lift coefficient, and is the airfoil
angle of attack, which is the sum of the initiagkenof attackg,, and the twist anglé€. From Eq.
(6.1), one deduces that, for increasing values, afivergence instability is more likely to occur.
Hence, the location of the elastic axis has a tlirepact on the wing divergence velocity.

Figure 6.1 optimization design based on elastic axis.

In their work, Huoet al. (2013) set the wing mass and the distance betteealastic axis and the
aerodynamic center as the two objective functiomBich define the following global fithess
functionf:
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wWiM Wye
f= m n 72 (6.2)
where M is the wing mass after optimizatiai,,,, is the maximum wing mass in the design
variable intervalc is the cross section chord, wher&asandl/, are the weight coefficients. The
deterministic optimization process described abzarebe extended to a RBDO analysis, where the
fitness function in Eq. (6.2) is minimized while sidering the uncertainties introduced by the
randomness on the material properties as well ah@merodynamic loads (random gusts). In the
present section, a reliability-based methodologyraposed for the optimization of the high-aspect
ratio wing model of Appendix D, and some preliminaesults are presented, limited to a wing

section, and considering the material propertidg as the random variables.

The structure of the wing cross-section is sketcagd thin walled structure with a single cell
closed section, composed by two horizontal skirsteuo vertical shear webs (see Fig. 6.2).

VL; Y

y—
AL LG +EA
Figure 6.2: Simplified structural model of the wing cross sact(from Coccon, Menegozzo and Galvanetto, 2014).

'2\‘%\‘5"

For the sake of simplicity, the material propertiee assumed to be uniform over the section (from
Coccon, Menegozzo and Galvanetto, 2014) and they wesnhypothesized to be rectangular.
Moreover, it is assumed that the aerodynamic ceA€r lies on the vertical axis of the left shear
web (even if, in Fig. 6.2, AC is not exactly posited in that location, for the sake of clarity) and
horizontally aligned with the center of gravity, C&hd the elastic axis, EA (see Fig. 6.2).

The physical characteristics to be minimized are thing cross sectional area (which is
representative of the wing mass) and the distaet@den the AC and EA, here indicated with
and e, respectively. The objective function expressisranalogous to Eq. (6.2), and the weight
coefficients are chosen such tht = W, = 0.5:

f—os( )+°5(e0) (6.3)
whereA, ande, are the values oA ande before optimization. As it can be noticed, the nooa

value of the objective functioh is initially equal to 1, and it decreases after dpgimization
process. However, the presence of reliability aanstis could limit such a decrement. Three design
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variables are considered, i.e. the thicknesseh@ftwo shear webs; andt;, and their mutual

distance].

The thickness, of the (horizontal) skin, on the other hand, hasoastant value of 2am The

starting configuration is reported in Table 6.1.

Table 6.1: Initial configuration and bounds of the wing cresstion design variables (from Coccon, Menegorub a

Galvanetto, 2014).

Parameters Value [mm] Bounds [mm]
t, 8 5-15
t3 15 10-25
/ 500 350-600

In this model, the uncertainty is due to the inctatgoknowledge of the material properties: the
Young modulusg, and the shear modulu§, are assumed to follow a normal distribution with
mean valueg; = 71700 MPau;= 26900 MPa(Al 7075-T6) and a standard deviation equal to
10% of the mean values. It should be noticed thatvialues oA ande are not influenced by the
random variable& and G, therefore the objective function only dependstloan design variables:

f=f(tts D).

However, the random variablds and G are introduced in the constraints, which estabtigh
minimum required values for the section bending tawidting stiffnesses, i.eKp ,;, = 120 N/mm
andKr in = 1.6x10° N/mm The section is located at a distaice 3000 mm from the wing root.

The expressions for the bending and twisting stgfare, respectively:

_ 3EJ,
. 442G
T =
b G2

whereJ, is the section moment of inertia with respecthi|ex axis (see Fig. 6.2), which is function
of the cross-section geometric features.

The corresponding performance functions are definetthe difference

gi(tZ't3'l;El G) = Ki,min - Ki(tz,tg,l;E,G), = {B, T} (64)

whereB = bendingandT = twisting
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With regard to the PMA scheme of Eq. (5.34), thest@int equations are based on Bheth

percentilegff'i, of the performance functiag;. For both these constraints, a required religbilit
indexf = 1 is set, that corresponds to a target probabififpiture Pr = ®(—p;) =15.87%

The mathematical model of the present RBDO implaatem is given by
( flnd tz, t3, l

min  f(t,, t3, 1)

s.t. g (tyt3, LE,G) 20, i={BT) 65)
th<t,<ty '

th<t; <ty

\ r<i<v

6.2.2. Analysis of the results

Along with the implementation of such a RBDO prable¢he equivalent deterministic problem was
also solved, which was obtained from Eq. (6.5), rfeplacing the probabilistic constraints
gff(tz,t3,l;E,G) > 0 with deterministic performance functions, ig(t,, ts, [; ug, ug) = 0. The
results of both these approaches are reportedile Ba2.

Table 6.2: Comparison between the deterministic optimizatlesign and the proposed RBDO approach (from
Coccon, Menegozzo and Galvanetto, 2014).

Parameters Initial configuration After deterministic After the proposed
optimisation RBDO
f (objective function) 1.000 0.7632 0.9272
A [mm?] 5450 4987 5440
e [mm] 217.0 132.6 185.8
Kg[N/mm] 141.2 120.0 141.0
Ky[N/mm] 1.91 x 10° 1.95 x 10° 1.84 x 10°
t,[mm)] 8.0 5.0 5.0
t3[mm] 15 18.1 17.9
I[[mm] 500.0 380.8 500.0

As shown in Table 6.2, the deterministic approadivides a better optimization, thus resulting
in a lower value of the performance functibnindeed, both the cross-sectional ardpdnd the
distance between the aerodynamic center and tb8cedis €) are smaller than those obtained by
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RBDO. The main effect of such a difference on twe tresulting designs is that deterministic
optimization produces a definitely shorter distancbéetween the shear webs. Although the
deterministic design looks more performant, it does meet the reliability requirements on the
minimum bending stiffness. This fact was demonsttdty carrying out a series of crude Monte
Carlo Simulation (MCS) analyses, which assessededleilities of both the designs. Such results
are reported in Table 6.3, which shows the proligdslof failure and the corresponding reliability

indexes of the constraint functions for bending &ndting stiffness. Only the reliability-based

design guarantees a probability of failie < 15.87%/(or equivalently, a reliability indeg > 1)

for both the constraints, whereas the probabildy the deterministic design to have a bending
stiffness lower thad20 N/mms equal td60.0%

Table 6.3: probabilities of failure for the deterministic atigk reliability-based design, assessed via MCSioaeffrom
Coccon, Menegozzo and Galvanetto, 2014).

After deterministic optimisation After the proposed RBDO
Py B Py B

Kpmin— Kg 50.0% 0.0000 6.8% 1.4909
K7 min — K1 3.6% 1.8384 9.8% 1.2930

6.3. Analysis of a three-dimensional, rectangular iug

Let us consider a RBDO problem, in which a higheaspatio (AR), rectangular wing is involved,
the goal being its mass minimization.

In a first approximation, the wing cross-sectiorcamsidered to be constant over the whole length.
The wing can be schematized as a thin-walled, leaeti beam with rectangular section, as depicted
in Figure 6.3.

To act in favour of safety, the lift was consideesdconcentrated at the wingtip. The acting drag, o
the other hand, was considered as negligible.

The constraints concern the maximum allowable disghent and the maximum acting stress.
Two cross sections were taken into account, cooretipg to the following locations:

- the root, where the maximum Von Mises streseashed;

- the wingtip, which corresponds to the maximuntieal deflection.

As for the uncertainty term, the vertical foree(lift) and the Young modulug were chosen as
probabilistic variables. Due to the absence of dthg thickness of the front and the rear shear
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web was considered to be the same, and it wasdmyesi as an interval design variable. The other
two design variables are the shear webs helitjrdnd their distancé.

-J___r"'_.r-_ — oo B S
4 4 ; _m_-:,‘___“:——_
e B = e —r
t
B /

V,[ /Ih H
t b
X

Figure 6.3: the wing cross-section and its schematization.

The Al7075-T6 aluminium alloy was chosen as malteria

Problem data

B = external distance between the two shear webs;

t; = 2 mm (thickness of the horizontal skins);

H = shear webs height, or external distance betwreetwo horizontal skins;
L = 4000 mm (wing length);

p = 2810% (Material: AI7075-T6);

t = thickness of each of the two shear webs;

b = B-2*t = internal distance between the two shear webs.

h = H - 2*t;: internal distance between the two horizontal skin
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Design variables

[tmin' tmax] = [0-1: 20] mm
[Hmin: Hmax] = [100, 200] mm

[Binins Bmax] = [300,700] mm

Random variables

F = N (1000, 100) Nlift);
E = (71700, 7170) MPa

Now, let us consider the 99.87-percentile mosticaiitvalue for the acting forc&, which
corresponds to its mean value plus three standawhtibns. On the other hand, the 99.87-
percentile most critical value for the Young's mhdiE corresponds to its mean value minus three
standard deviations. Then, the worst values foh BoandE are chosen, in order to consider the
worst case, i.e.,

o F=‘UF+3*O-F:2600N,

that is, botH- andE assume the 99.87-percentile most critical value.

Thus, the probabilistic problem can be treatededsrchinistic.

Analytical model

The minimum ratio between the semi-wing lengland the "chordB is

L 2™ 5715
Bnge 07m~ 7

Therefore, the wing can be treated as a slenden.bea
The equation of the beam vertical deflection is

FI3 4% FL?

0 = 351 = Ex(BH? = bh®)

Let us establish that the maximum allowable beafiecte®n isé;;,,= 100 mm. Therefore, the first
constraint is

4+FL3
5—5limﬁoﬁm—5limﬁo (66)

The mass of the semi-wing is given by
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m = pL(BH — bh) = pL[BH — (B — 2t)h] (6.7)

Let us now determine the axial stress at the caimstr

The section moment of inertia with respect to »ecliion is

Iy = i[BH3 — bh3] = i[BH3 — (B = 2t) * h3]
XX 712 12

_ Ixx _L 3_(Rp— % h3
Wxx_m_6H[BH (B — 2t) * h°]

Hence,

_ My FxL 6xFxLx+xH
OROOT = Y T Wy  [BH® — (B — 2t) * h3]

Let us fix a limit value for the axial stresg,,= 100 MPa (even though it is well lower than the

yield stress of the material). Therefore, the sdamnstraint is
(6.8)

6xF+L*xH

o -0, <05 —MmMMM 0., <0
ROOT lim = [BH3—(B—2t)*h3] lim =

The formulation for this kind of problem is thelfmking:

( find (t,B,H)
s.t.
min(m)

gl(trB;H) S O
g2,(t,B,H) <0

tht<t<t (6.9)

B! < B < B*

H'<H < H%
F = ‘UF + 3 * GF
\E = ME — 3 * GE
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6.3.1. Genetic Algorithm-based optimization usinghte most critical
values of the random variables

A GA-based optimization algorithm has then beenliaggo solve the problem that was set up in
Eqg. (6.9).

This kind of GA doesn’t require a starting poinhig fact reduces the risk of convergence to local
(and not global) or false maxima, which, on theeothand, often occurs when gradient-based
algorithms are used, due to their dependency ost#réng point.

The optimization algorithm gives:

t=0.1006 mm:;
H=189.93 mm:;
B =649.20 mm:;

The related objective function is:

m = 29.61 kg.

6.3.1.1. Simplifying the performance function with Response surface
Methodology

Now, the next thing to do is to reduce the companad effort by simplifying and linearizing the
formulation of the two constraint functions (6.6)da(6.8), through the use of surrogate models,
which are supplied by Response Surface Methodol®@$M, see Appendix F). Such a
simplification is not essential in this exampleycg the constraint functions are elementary as they
are, but it is very useful when one is dealing wettmplex problems or with Finite Element
Modeling (FEM).

The original performance functions are now subigdwvith the surrogate models.
In order to achieve a greater clarity, the intemaaiables are renamed as follows:

Xlzt, X2=H, X3=B

First performance function surrogate model

As for the first constraint, it involves each ofesie three variables. Therefore, the surrogate
expression for performance functign can be stated in the following form:
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Y% = Bo+ By + X1 + Bz X3 + B * X5 (6.10)

where

X'I _ Z(Xi_Xi,min) _ 1 (611)

L Xi,max_Xi,min
Only the extreme values of each of the intervalaldes will be here considered.

As for the first surrogate performance functiorg BOE matrix is

Table 6.4:DOE matrix related tgj; .

Experiment X3 X, X; yEXP

no.

1 -1 -1 -1 381.56 mm
2 -1 -1 +1 164.00 mm
3 -1 +1 -1 92.97 mm
4 -1 +1 +1 40.09 mm
5 +1 -1 -1 189.54 mm
6 +1 -1 +1 114.25 mm
7 +1 +1 -1 29.98 mm
8 +1 +1 +1 21.03 mm

Now, let us determine the values of fecoefficients:

8
1 .
Bo=5 E Yol = 129.18
1

1
Py = 7 (7 + Y + Y7+ ¥g) = 88.7

1
P_= 1 (YEXP + YEXP 4 YEXP 4 YEXPY = 169.66
El = P1+ - Pl— = _80.96

E
B = = —40.48

1
Pos = 7 (X + VPP + YFXP 4+ VP7) = 46.02
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1
Pro=7 (YEXP 4 YEXP 4 YEXP 4 YEXP) = 212.34

E,=P,, —P,_ = —166.32

E,

=—=-83.16
B ==

1
Py = 2 (77 + VP + Y + ¥550) = 84.84

1
P =7 (YEXP 4 YEXP 4 YEXP 4 YEXP) = 173.51
E3 = P3+ - P3_ = _8867

E3

=—=—44.34
Bs =~

Therefore, the surrogate expression of the firdiop@mance function is

Y1 =129.18 — 40.48 x X;—83.16 * X;—44.34 = X}

Then, after substituting; with X;,

Y! = 530.44 — 4.068 * X;—1.663 * X, — 0.2218 * X,

Second performance function surrogate model

Xi,max_Xi,min

Now, let us consider the second performance fundeq.(4)).
Here, each of the three interval variables appear(i.e.,.X; =t, X, = H and X3 = B).
The surrogate performance function can be expraagbe following form:

Y, P = Bo+ By * X1 + Bo * X5 + B * X5

X! = 2(Xi=X;min) ~1
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In this case, the DOE matrix is

Table 6.5: DOE matrix related tg,.

Experiment X X, X35 )
no.
1 -1 -1 -1 179.54 MPa
2 -1 -1 +1 77.17 MPa
3 -1 +1 -1 87.49 MPa
4 -1 +1 +1 37.72 MPa
5 +1 -1 -1 89.18 MPa
6 +1 -1 +1 53.76 MPa
7 +1 +1 -1 28.21 MPa
8 +1 +1 +1 19.79 MPa
Now, let us determine the values of feoefficients:
I~
Bo = 52 yept = 71.61
1
1
Py =7 (7 + Y5 + Y70 4+ ¥g7F) = 47.74

1
Pro= 7 (0 + V70 + Y70 4+ ¥HF) = 95.48
El = P1+ - Pl— = —47.74
Ey
By =— = —23.87
2
1 EXP EXP EXP EXP
P2+ = Z(Y3 + Y4_ + Y7 + Y8 ) = 43.30
1
Ppo = 2 (77 + V%0 + Y57 4+ Y5H) = 99.91

Ez = P2+ _Pz_ = _5661

E,
B, =~ =-2831
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1
Pos = 7 (X + Y7 +YEXP 4 ¥P47) = 47.11

1
Py = 7 (7 + Y77 + Y50 +¥75F) = 96.11

E3=P3+_P3_=_4‘9

_Es_ 24.5
Bz =— =24

Therefore, the surrogate expression of the secerfdrmance function is

Y2 = 71.61 — 23.87 * X, —28.31 * X}, — 24.5 x X}, (6.16)

Then, after substituting; with X;,

Y2 = 241.9 — 2.399 * X, —0.5662 * X,—0.1225 * X5 (6.17)

Hence, the reliability-based optimization problér®) becomes

( find (t,B,H)
s.t.
min(m)

Y(t,B,H) <0

Y?(t,B,H) <0
{ et < (6.18)

B' < B < B

H'<H<H"
F=upr+3*op
\E' = up — 3 *op

The optimization outputs were the following:
Design variables:

t=0.1138 mm;

H=191.38 mm;

B =651.36 mm;

objective function:

m = 29.76 Kkg.
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Comparison of the results attained with and witH®8M

Let us now compare the outputs from the optimizatibat was carried on with the original
constraint functions with the results that werki@eed by using RSM.

Table 6.6: results of probabilistic design with GA: comparisbaetween the results obtained by using the original
performance functions and those obtained by ush&yr surrogate models.

Algorithm GA GA with RSM
t 0.1006 mm 0.1138 mm
H 189.93 mm 191.38 mm
B 649.20 mm 651.36 mm
Mass m (objective function) 29.61 kg 29.76 kg

As it can be seen, the RSM-based model brings finah result which is very close to the one
obtained by using the original performance functithrerefore, the surrogate model proved to be
able to mimic the original constraint with a satgbry level of precision; the fact that the mass i
slightly greater is in favour of safety. The resutat were obtained are relative to the case intwh
the random variables assume their 99.87-percanbk critical value.

Reliability assessment

The reliability can now be computed via Monte Ca8lonulation (MCS). For this case, the
probability of failurep after10° iterations is

p; = 0.0059

i.e., 0.59%. If this result doesn't meet the desired valle, RBDO process can be repeated
iteratively by varying the intervals of the desigariables, until the target reliability is reached.

6.4. Reliability-Based Design of a shear web

6.4.1. Introduction

Now, let us make the wing RBDO problem more reigtighis can be done by considering an
ultralight aircraft experiencing a realistic dibtition of fluidodynamic forces. A four seat, ultggit
aircraft travelling at a cruise speed was consilevehose slightly tapered wings experience a
guasi-elliptical lift distribution; such a distribon can be approximated, with a good level of
precision, by using the Prandtl's lifting line timgoindeed, such a formulation can be applied not
only to rectangular wings, but also to tapered wiragcording to this approach, the lift acting on a
wing of lengthb has a distribution like that depicted in Fig. 6.4.
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Figure 6.4: elliptical lift distribution (from M. Drela, 2009)

Let us consider a rectangular (or An ellipticahiswise circulation distribution (see Fig. 6.5) is
expressed as

roy=n[1-(2)] 619)

wherey is the direction along the wingspan djds the circulation at the wing center, i.e.yat 0,
andb is the wingspan length.

The corresponding lift distribution per unit lengshgiven by
L'(y) = pVuI' () (6.20)

wherep is the air density, and, is the free stream velocity .

Figure 6.5: spanwise lift distribution on a lifting line (fromnderson, 2001).

Hence, the total lift acting on the wing is givey substituting Eq.(6.19) inside Eq. (6.20) and by
integrating the lift per unit lengtH (y) along the wingspan:

b b 2\ 2 -
L=[%L)dy = [*pVely [1 - (7) ]dy = PVulpb (6.21)
2 2

(Drela, 2009).
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Knowing that, from Eq. (6.21),

4L

= v (6.22)

Iy

from (6.21) and (6.22), one deduces the followirgression for the lift distribution:

L) =2 /[1 - (%y)z] (6.23)

Figure 6.6: simulation of the elliptical lift distribution on simple wing model.

Let us consider an ultralight aircraft having a maxm allowable takeoff weight of 1500 kg, which
is travelling at its maximum cruise speed of 19btkn(i.e., 98.25 m/s); this plane has two slightly
tapered (trapezoidal) wings, with a total wingsmdrii1.00 m. Let us now hypothesize that this
mass is almost all borne by the two wings (i.€/0@ kg), whereas only a lesser part is borne by the
fuselage (100 kg).

During the cruise phase, the necessary lift theggsiired to the aircraft is

Lror = Myorg = 1500kg - 9.815 = 14715 N (6.24)
whereas each of the two wings will produce a hftcaint which is equal to

Lwine = Mwived = 700kg - 9.815% = 6867 N (6.25)

The lift force acting on the wing is supposed tobloen entirely by the main shear web (see Fig.
6.7), which has a tapered shape; the cross-sectonansions (which are depicted in Fig. 6.8) are
chosen as design variables:

- t., the thickness along the direction of the chordiclv is constant along the wingspan;
- tg, the "height" of the cross section at the wingi;roo
- tr, the "height" of the cross section at the wing tip
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The design objective is to determine the shear #iglensions such that its mass is minimized,
while respecting the constraint on the maximum wm@llowed deflection (100 mm). Such a
constraint is probabilistic, since some of the quias concerned with the problem follow a normal
distribution:

- the drag per unit surface, i.6./A;, where L is the projection of the wing surfacetha
free stream direction

- the lift per unit surface, i.el//c(X), wherec(X) is the chord length, which assumes a
different value at each position along the wingspan

- the Young modulus of the aluminium alloy (Al7075)Mhich the shear web is composed
of.

Figure 6.7: schematization of the main shear web.

tr

te te

Figure 6.8: shear web cross-sectional dimensions at the wiog(right) and at the wing tip (left).

6.4.2. Problem data
pa = 2810 kg/m3; mass density of the shear web material (AI707%5-T6

61im = 100 mm; maximum allowed wingtip deflection;
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Random variables

L = N(6867,686.7)[N]; normal distribution for the lift force which in by a single wing;
U 2(X-0.5)]2 2(X-0.5)12)\[ N 1.
=>-=N (1300.19\/{1 - [T] } 130.019\/{1 - [T] }) [ﬁ] (6.26)

D = N(84.43,8.443)[N] => 2 = N(160.82,8.041) [iz] (6.27)
Aj, m

E = N(71.7-10%7.17 - 10) [%] (6.28)

Interval variables

tp = [100,160][mm];
ty = [40,80][mm]; (6.29)

t. = [20,30][mm];

6.4.3. Setting of the problem and results

Now, let us consider the 99.87-percentile mostoaditvalue for the lift and drag, which corresponds
to its mean value plus three standard deviations.tl@ other hand, the 99.87-percentile most
critical value for the Young's modulug corresponds to its mean value minus three standard
deviations. Then, the worst values 1t6fc(X), D/A, andE are chosen, in order to consider the
worst case, i.e.,

LI
° —_
C

— 2
=py +3%0, = \/{1 _ [Z(XMO'S)] } (1300.19 + 3 -130.019) =

30

c(X) c(X)
2(X-05)12)[ N 1.

1690-25J (- 5 Y el

D NT.
. —| =up +3+0p = 160.82 + 3 - 8.041 = 184.94 [—2]

ALl 4 AL AL m

N

« Ey,=717-10°=3-7.17-10° = 50.19 - 10° [ﬁ] (6.30)

that is, all these probabilistic quantities asstine# 99.87-percentile most critical value.

Performance functian

To set up the problem, a mathematical expressiorhf performance function is needed, which
describes the deflection of the tapered shear \mebex by the distributed forces (see Fig. 6.9). As
an analytical expression is not easy to be deritlad, will be substituted by a surrogate model,
which describes the system behavior with a higkllefaccuracy. To do so, RSM is used, in which
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tr, tr, t. are used as design variables for building the esgion for thesurrogate constraint
function Y

In order to achieve a greater clarity, the intemaiables are renamed as follows:

Xl = tRl X2 = tT, X3 = tC (631)

Only the extreme values of each of the intervaliakdes will be here considered; for each
combination of their values, a FEM simulation was,rand theesponse variabl&Z* (i.e., the tip
deflection, see Fig. 6.10) was recorded (see Tab. ®uring the FEM simulations, a mesh
composed by hexaedral elements was used, witteask mm.

Figure 6.9: the elliptical lift distribution and the aerodynammirag are assumed to be born by the main shear web

e e e o s

o e

Figure 6.10:wing deformation relative to experiment no. 7 (3eb. 6.7).
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Performance function surrogate model

The constraint involves each of the three desigrabkes. Therefore, the surrogate expression for
performance functiog, can be stated in the following form:

Y/ = By + By x X1 + By * Xp + B3+ X3 (6.32)
where
X{ _ Z(Xi_Xi,min) -1 (633)

Xi,max_Xi,min

As for the surrogate performance function, the D@drix is reported below.

Table 6.7:DOE matrix related tg, (mesh size =5 mm).

Experiment |  X7(tg) X, (tr) X3(t,) yixr

no.

1 -1 -1 -1 295.6 mm
2 -1 -1 +1 88.89 mm
3 -1 +1 -1 408.9 mm
4 -1 +1 +1 118.6 mm
5 +1 -1 -1 245.2 mm
6 +1 -1 +1 70.57 mm
7 +1 +1 -1 324.2 mm
8 +1 +1 +1 92.9 mm

Now, let us determine the values of fecoefficients:
1 8
By = 52 yemi = 205.61
1

1
Py = 7 (7 + Y& + Y7 + vg7F) = 183.22

1
Pro= 7 (0 + V70 + Y0 4+ ¥F) = 228.00
El = P1+ - Pl— = —44.78

E,
B = =—2239

1
Py, = 1 (YEXP 4 YEXP 4 YEXP 4 YEXP) = 236.15

1
P, = 1 (YEXP + YEXP 4 YEXP 4 YEXPY = 175.07
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Ez =P2+_P2_ = 61.08
E;
B, = -2 = 30.54
2
1 EXP EXP EXP EXP
1
Py = 1 (YEXP + YEXP 4 YEXP 4 yEXPY = 318.48
E3 == P3+ - P3_ = _225.74
Es

=—=-112.87
Bs =~

Therefore, the surrogate expression of the perfocadunction is

Y =205.61 — 22.39 x X;+30.54 * X;—112.87 * X3

Then, after substituting; with X;, one obtains the surrogate performance function:

Y! = 775.41 — 0.746 = X;+1.528 * X, — 22.58 * X5

Hence, the RBDO problem can be put in the followfomgn:

( f"nd (tR) tT; tc)
s.t.
min(m)
Y(th tTr tc) < 0
th <tp < t¥
th <tp < t¥
tt<t. <td
LI
— = 4+ 3x*x0 L

‘0 T m @

D
—=up +3*0p
AL AL AL

\ E=M5—3*O'E

Such a problem is solved via a commercial routmeleying a genetic algorithm.

(6.34)

(6.35)

(6.36)

As for the optimization outputs, the following apal design paramete(sg, tr, t.),p that were

found through the GA-based RBDO are:
tropt= 133.35 mm;
tr ope= 40.00 mm;

teopt = 28.21 mm;
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objective function:

Mype= 34.36 kg.

Reliability assessment

Now, let us set up the reliability analysis to detme a posteriori the probability of failure ofeth
resulting configuration; to do so, let us consitter resulting design parameters as fixed valuasb, an
let us build the surrogate modeél for the constraint as a function of the randomialdes.
Therefore, the random variables will now be usedhasinterval variables for Response Surface
Methodology.

LI
:=[ML_'—3*0L_'»M_'+3*0L_']=

c(X) c(X) cX) ) c(X)
2(X-0.5)12 2x-05)12) | [ N
[909.96J{1 - == } 1690.25\/{1 - [ }| B (6.38)
D N
LA l[,lD —3%00, o +3* O'Dl = [136.70, 184.94] [—2] (6.39)
AL AL AL AL AL m
E = [y — 3 %05 pp +3*0g] = [50.19 - 10% 93.21 - 10°] [%] (6.40)

The interval variables are renamed as follows:

X ==, X, ==, X;=E (6.41)

L

which haven't to be confused with X, i.e., the i@ of the wingspan (see Fig. 6.9 and 6.X0).
represents the amplitude Bf/c, which varies locally as a function of the positialong the
wingspan.

Performance function surrogate model

As for the constraint, it involves each of thesee¢hdesign variables. Therefore, the surrogate
expressiorY, (expressed as a function of the random varialiteghe performance functiazan be
stated in the following form:

Y, = Bo+ f1* X1+ Bo* Xy + P x X3 (6.42)
where
Xl/ _ Z(Xi_Xi,min) -1 (643)

Xi,max_Xi,min

Only the extreme values of each of the intervalaldes will be here considered.

As for the first surrogate performance functiorg BOE matrix is
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Table 6.8:DOE matrix related tg, (mesh size =5 mm).

Experiment ., (L' X D X3(E) yixr

no. X1 <? 2 (A_L>

1 -1 -1 -1 66.97 mm
2 -1 -1 +1 36.06 mm
3 -1 +1 -1 90.37 mm
4 -1 +1 +1 48.66 mm
5 +1 -1 -1 67.93 mm
6 +1 -1 +1 36.58 mm
7 +1 +1 -1 91.08 mm
8 +1 +1 +1 49.04 mm

Now, let us determine the values of feoefficients:

8
1 .
Bo=5 E yerl = 60.84
1

1
Py =7 (5 +YFF + V7 +¥5) = 61.16

1
Pio =7 (FFXP + VPP 4 P27 4 VPP) = 60.52

E1=P1+_P1_=0.64‘

—E1—032
ﬁl_z_ .

1
Pos = 7 (P + Y7+ YPXP + VP) = 69.79

1
Py = 7 (7 + V77 + Y5 4+ ¥FHF) = 51.89

E2=P2+_P2_=17.9

—22_gos
By = > =8
1
P3p =7 (YEXP + YEXP + YEXP 4 YEXP) = 42,59

1
Py = 7 (7 + V377 + Y5 4+ ¥7HF) = 79.09

E3=P3+_P3_=_36.5
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E;
B3 =~ =-1825

Therefore, the surrogate expression of the perfocadunction is
Y2 = 60.84 + 0.32 * X]+8.95 * X;,—18.25 * X} (6.44)
Then, after substituting; with X;,

Y2 = 60.95 + 0.0008202 * X; + 0.371 % X, — 0.8484 = 107 * X, (6.45)

Now, the probability of failure can be assessedMinte Carlo Simulation (MCS), by random
sampling on the probabilistic variables accordiagtheir distribution. The probability of failure
after10° iterations results to be

p; = 0.0089

i.e., 0.89%. If this result doesn't meet the desired valhées RBDO process can be repeated
iteratively by varying the allowed intervals of tlikesign variables (i.e., the shear web cross-
sectional dimensions), until the target reliabilgyeached.

6.5. Conclusions

In the present chapter, an efficient approach her rteliability-based design optimization of an
airfoil structure is presented. The uncertaintiéscing the system are due to the randomnessein th
material propertiesAn elastic axis-based RBDO technique is proposdithse design objectives
are mass minimization as well as the achievemerdeobelastic stability; at the same time, the
prearranged levels of reliability in satisfying tbenstraints must be guaranteed. Here, the design
variables are the thicknesses of the shear webshairdposition along the chord: their final values
are those that minimize the wing cross-sectionsh @nd the distance between the elastic axis and
the aerodynamic center. The probabilistic constsaitefine the minimum required values for the
bending and torsional stiffness of the section. ®kerall RBDO problem is solved through a
Performance Measure Approach which employs inveiegt-order reliability analysis for
evaluating the probabilistic constraints. Alongiwihe reliability-based design, the same problem
was solved through deterministic optimization tdbe comparation of the results from these two
methods highlights that the RBDO-based approadwalto minimize the objective function while
meeting all the established reliability requirensef@ubsequently, a rectangular wing was analyzed,
in which the design goal was to find the geomelrieatures such that the wing mass is minimized,
while respecting the probabilistic constraints ba tmaximum allowed stress at the wing root and
the maximum allowed wingtip deflection. The RBDOpegach is based on the use of a genetic
algorithm, in which the random variables are gieemalue corresponding to tl®9.87percentile
most critical case; then, the system reliabilitycmputed via MCS; if the probability of failure
doesn't meet the desired value, the RBDO loop @arepeated, after having varied the allowed
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intervals for the design variables, until the tangdiability is found. Finally, the main shear web

an ultralight aircraft was studied, which experiesi@ set of forces due to drag and elliptical lift
distribution. Furthermore, the set-up for its relidgy-based design was arranged. The objective of
the simulation was to determine the shear web dsioes (of its cross-section at different
positions) such that its mass is minimized, whespecting the probabilistic constraints on the
maximum tip deflection. Due to the difficulty to rikee an analytical model for this system, the
performance function was derived through applyirgsfponse Surface Methodology on a FEM
model of the structure. Once the expression for ghababilistic constraint was obtained, the
optimum design parameters were computed. Thenyderao be able to determine the design
reliability, RSM was used again to derive a surtegaodel based on the random variables. The
structural reliability is then computed by using BICThe described process can be performed
iteratively, until the desired probability of farkiis obtained.
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Chapter 7

Conclusions and recommendations for future work

7.1. Conclusions

The need for enhancing reliability, together withe tever increasing demand for improved
performances, are among the prevailing objectinedlithe engineering fields. This is particularly
true in aerospace applications, where the conteanpareeds to reduce costs and enhancing safety
look like as contradictory. Therefore, in the lgsars, a new field of study was developed, which
aims to balance these contrasting needs; this namncb is called Reliability-Based Design
Optimization (RBDO).

The main goal of the present work was to devel®B&®O methodology which is devoted to the
structural aerospace design.

The road map that was followed during this thesats from the theoretical basics of both
reliability analysis and deterministic optimizatjand then merges these two subjects together, by
focusing on probabilistic design. Chapter 1 is ryaintroductory, whereas Chapter 2 aims to
supply the prerequisites for the comprehensionebéliility assessment methodologies. To begin
with, the concept of uncertainty modeling is preéednwhich serves to provide a mathematical
guantification of uncertainty. Therefore, a brietroduction to the fundamentals of probability
theory and statistics was made, through which theexainty can be expressed as a random
variable with its probability distribution. The fat functions as the input to uncertainty analysis;
hence, the central concepts of performance funcioeh probability of failure were introduced.
Chapter 3 deals with the principal methods for hetieing the reliability of a system: Monte Carlo
Simulation (MCS), First and Second Order ReliapilMethods (FORM and SORM), and First
Order Second Moment method (FOSM). These methods tlien applied to some structural cases;
MCS proved to be the most accurate, but also th& timoe-consuming; FORM, on the other hand,
provided the best compromise between accuracy amguatational burden. Also, inverse reliability
analysis was introduced, which is very suitable gerforming the reliability assessment loops in
RBDO. Chapter 4 serves to introduce optimizatiohicv aims to satisfy the need of finding those
design variables that maximize (or minimize) a aeriperformance, while complying with some
feasibility requirements. Optimization can be parfed in different ways: for the most elementary
cases, one can come to the theoretically exactigoliby using the analytical method [which
employs theKarush-Kuhn-Tucker (KKT) conditiohser thegraphical methopganyway, in order to
manage engineering applications, numerical metlaoesnormally usedGenetic algorithms (GA)
andgradient-based numerical methodse among the most widely employed. In the |adters, at
every iteration, the optimizer evaluates the olpjectunction, the constraint functions and their
derivatives and, based on their values, a searectiin is generated, along which the objective
function will be likely to descend with the speedi step size; the process continues until
convergence is reached. These methods are noreaihyaccurate, but sometimes can converge to
local minima rather than to the global minimum. @ersely, GA are not dependent on the starting
point; this kind of algorithm mimics the processnaitural selection, in which each of the possible
model configurations is represented as a stringiwhbers (like chromosomes in nature). The
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various strings undergo a process of breeding girosome mechanisms likerossoverand
mutation (which are borrowed from Biology), until the opaimsolution has been found. Two
examples were analyzed and solved via a gradiesgebaumerical method, and one of them was
also verified through the graphical method.

Chapter 5 aims to introduce the reader to the quncok Reliability-Based Design Optimization
(RBDO). In a RBDO problem, a reliability assessmienp is nested into an optimization loop; the
two coupled loops are performed repeatedly, urdihvergence is reached. In many practical
applications, it is more useful to implemémgerse reliability analysign the inner loop, so as to set
the desired level of reliability, rather than cortipg a posteriori the probability of failure. Them,
very simple RBDO algorithm that was developed isspnted; subsequently, it was successfully
applied to the probabilistic design of a cantilekeam; the reliability of the resulting geometrical
configuration was then verified via MCS. Finallyya of the best-established RBDO algorithms
were introduced: Reliability Index Approach (RlAndaPerformance Measure Approach (PMA);
RIA employs direct reliability analysis for assesggithe probability of failure, whereas PMA is
based on inverse reliability analysis, which is eted by usinginverse FORM (iFORM)
Eventually, Chapter 6 is devoted to the reliabibsed design of some aeronautical structures, and
aims to describe RBDO cases with an increasingd lefvifelikeness. At first, a two-dimensional
case was considered, consisting in the cross-sectioa rectangular wing. In addition to the
minimization of the cross-sectional area, anothgedive was the minimization of the distance
between the aerodynamic center and the elasticiaxsder to prevent aeroelastic instabilitieseTh
structure was subject to probabilistic constraoisthe minimum required bending and torsional
stiffness of the wing section, where the unceryatetm concerned the material properties, which
were subject to a normal distribution. The simolasi were carried on through a RBDO algorithm
employing PMA. The reliability of the resulting geetry was then successfully verified via MCS.
Subsequently, a three-dimensional, rectangular wag analyzed: the design objective was to
minimize the mass, while respecting the probamlisbnstraints on the maximum tip displacement
and on the maximum axial stress. A genetic algarithias used for optimization, and Response
Surface Methodology (RSM) was used to simplify tregformance functions. Two simulations
were carried on: one by using the original perfarogafunction, and the other one by using RSM.
The RSM-based surrogate model proved to mimic tiginal constraint in a very accurate way;,
indeed, the resulting wing geometry and mass werg similar in the two cases. Then, a more
realistic aeronautical application was considetid:reliability-based design of the main shear web
of a wing, which is subject to an elliptical lifistiibution and a drag force that are compatible to
those that affect a four-seat, ultralight aircraifte aerodynamic forces and the Young's modulus
were subject to a gaussian distribution. The gdathe probabilistic design was to find the
geometrical features which both minimize the strtadt mass and respect the probabilistic
constraints on the maximum admissible tip deflectidds an analytical expression for the
probabilistic constraint is not easy to be derivedyolynomial surrogate model was used, which
was obtained by computing the response of a FEMematdsome preset design points through
RSM. As for the optimization algorithm, a genetigaaithm was used, antthe random variables
were set to their 99.87-percentile most criticdueaSubsequently, the system probability of falur
was computed by using MCS. The described procesbe@onducted repeatedly, until the desired
reliability level is reached.

7.2. Final remarks and future works

The present work is devoted to both new applicatioh Reliability-Based Design Optimization
(RBDO) algorithms and to the investigation of amigi possible methodologies for probabilistic
design. A very simple RBDO algorithm was created applied to the sizing of an elementary
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structure: the resulting geometry proved to be d@npto the desired safety level. Then, some
already existing and well-established RBDO algonghwere applied to perform a probabilistic
design based on the elastic axis of a rectanguiag wection; the results obtained were very
promising, and brought to a structural configunatibat allows to prevent aeroelastic instabilities.
Then, some three-dimensional applications wereyagad| in which the RBDO procedure consists
on an optimization loop via a genetic algorithml)dwed by a direct reliability analysis loop (by
using FORM); the procedure has to be repeated tnatitlesired reliability level has been reached.
Before all these analyses, starting from the vieeptetical basics, the main reliability analysidg an
deterministic optimization algorithms were addressich an activity served as a prerequisite to
the execution of the study that was proposed above.

As for the future steps, the probabilistic desigsdd on elastic axis is planned to be appliedédo th
analysis of very flexible wings, whose behavior ¢endescribed via the nonlinear beam theory;
moreover, the probabilistic forces due to randorstgwill be taken into consideration during the
design. These analyses will provide an as goodoasilge realistic model, which will serve to
enhance the prevention of aeroelastic instabilitethree-dimensional models. On the other hand,
the study of the behavior of the different RBDO hoets will be deepened, in order to find the one
that is the most suitable for this kind of applicas. The overall aim of these future works is to
come to an unified approach for the probabilisptimization of a wing structure.
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Appendix A

Structural analysis of a stalically determined stricture
undergoing fluidodynamic forces - a deterministic
example

Figure A.1: the case study consists of a NACA 4415 airfoil.

As a preparatory step towards the execution chbéity analysis, a deterministic example will be
considered.

A NACA 4415 airfoil of length 1.5 m and depth of n® passes through an air stream at different
values of the angle of attack Such an airfoil is bound to a statically deteraténstructure in two
nodes, called A and B. The main goal is to assessdlue of the stresses on each of the three rods
which the structure consists of. The problem da¢aherein provided.

A.1. Problem data

Air characteristics:

T =288K

Densityp = 1.225 <9
m
Dynamic viscosity = 181*10°Pa* s

Air velocity: 83.333 m/s ( = 300 km/h)
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Structural features

the NACA 4415 airfoil is considered as a rigid bpdnd it is restrained by three rods, which are
oriented as shown in figure 1. The bars have arcaection, with the following values for the
diameters and their respective cross-sectionakarea

d, = 24mm => A, = 452.39mm?
d, =15mm => A, = 176.71mm?
d. = 15mm => A, = 176.71mm?

The rods lengths are, respectively,

|, =1000amm
|, =816mm
|, =1414mm

As it can be seen in Fig. 3.19, the longitudinaheinsions of the portions of the chord (it g, f
andg) are, respectively:

d =150mm
e=225mm
f=675mm
g=450mm
Material: Al 7075-T6, with Young’s Modulu& = 71700MPa and yield stressy, = 462 MPa.

A.2. Determination of the physical quantities of iterest

For a given value of the angle of attackthe values of the coefficients of Ift,), drag(cp) and
moment(c,,) at a quarter of the chord are provided by expeamalegraphs for each profile (see
Figures A.2 and A.3).
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Figure A.3: Drag coefficient and momentum coefficient as acfiom of the lift coefficient (from I. H. Abbott al,
1959).

These coefficients are used to determine the faaoesthe twisting moment exerted on the airfoil
by the air, according to the following formulae:

Lift:

L=2pV2c,S (A1)
Drag:

D= %pVochS (A.2)

Twist moment at the aerodynamic center (for a I@sesl airfoil, this point is located at about
0.25%, i.e., at the quarter of the chord):

My = %pVog CmCS (A.3)
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Once the external forces acting on the airfoil hbgen obtained, the following step is to compute
the reaction forces exerted by the pinned struciarthe wing as a consequence of the aerodynamic
stresses that are transmitted from the wing tdo#rs.

As for the reaction force from rod (at point A), the only unknown is its intensity, being the
direction fixed by the capability of a bar to sustaxial forces only.

1d | e f , B

Figure A.4: The forces acting on the airfoil: Lift and Drag D) are exerted on the body by the air, while thedsr
highlighted in red are the reactions produced kyuthderlying structure on the airfoil itself.

With reference to the reaction force at point Rréhare two unknowns, namely, its components on
directionsx andy, respectively.

To sum up, there are three unknowns, which canebermiined by using equilibrium equations,
namely

> M, =0
> F.=0 (A.4)
> F,=0

where P is a (any) point of the plane.

For the case under study, these equations havellbwing form:

MC/4+L'3+FBy(e+f) = 0
Fycos45°+ D + Fg, =0 (A.5)
Fysin45°+ L+ Fg, =0

WhereM, ,, is the twist moment at the aerodynamic centerciwvhs normally considered to be
equal toM,., whereae and f are the dimensions that are shown in Fig. A.4. 3tiation of the
aforementioned system gives the value8,0f, andFy,,.

The next step consists of deriving the reactioederfrom each bar, by projectifg, Fg, andFp,,
along the direction of the rods that are conneeté@d each of the points A and B. The further
division by the area of each bar section will pdavithe corresponding tensions. The final step
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consists on getting the value of the displacementgoints A and B along x and y directions.
Positive values of the forces are related to aesvéttension of the bars, while negative values
indicate compression. Twist moments are considévede positive in the anticlockwise sense.
Several configurations of the airfoil were studiethjch differ for the value of the angle of attack
whereas the free stream velocify was kept constant and equal 8.333 m/s (namely,

300 km/h); in each of these cases, once the aerodynamificteet have been obtained from the
experimental graphs A.1 and A.2, they are useditopute the aerodynamic forces acting on the
wing. Consequently, the three equations in theegyqtA.5) have three unknowns, and the forces
acting on each of the rods can be easily derivednTthe stress on the bars and the displacement of
points A and B are immediately determined, and amported Iin Table A.1l.

Table A.1: Forces and tensions acting on the system foreal fiz;alue ofV,, = 83.333 m/s and varying The most
critical case is that ofi = 12°, where the safety factor for lwais v = gy, /0= 1.343.

Angle of -3° 0° 2° 7° 12° (stall)
attack, a

Lift 0.15 0.4 0.61 1.05 1.28
coefficient,

CL

Drag 0.0075 0.0075 0.0075 0.0087 0.0145
coefficient,

CD

Moment -0.1 -0.1 -0.1 -0.1 -0.09
coefficient at

c/4, c,

Lift, L 8613 N 22969 N 35028 N 60292 N 73499 N
Drag, D 431 N 431 N 431 N 500 N 833 N
Twisting -8613 N*m -8613 N*m -8613 N*m -8613 N*m -7752 N
moment at

cl4a, M

Force acting 22670 N 37900 N 50687 N 77483 N 90139 N
on bar a

Force acting -14654 N -16929 N -18840 N -22879 N -23831 N
on barb

Force acting 10547 N 21667 N 31005 N 50633 N 60800 N
on bar c
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Tension 50 MPa 83.8 MPa 112 MPa 171.3 MPa 199.3 MPa
acting on
bar a

Tension -82.9 MPa -95.8 MPa -106.6 MPa  -129.47 MPa  -134FM
acting on
bar b

Tension 59.7 MPa 122.6 MPa 1755 MPa  286.53 MPa  344.1 MPa
acting on

bar ¢ (v=1.343)

f o 0.494 mm 0.826 mm 1.10 mm 1.689 mm 1.965 mm

displacement

fAy 0.494 mm 0.826 mm 1.10 mm 1.689 mm 1.965 mm

displacement

fo -1.40 mm -2.55 mm -3.51 mm -5.524 mm -6.47 mimn

displacement

fo -0.247 mm 0.247 mm 0.661 mm 1.527 mm 2.027 mm

displacement

A further survey that has been made consists osttlty of the same model, for a fixed value of
a = 0°, by varying the velocity_ of the incoming air stream.

The results are summarized in Table A.2.

Table A.2: forces and tensions acting on the system foreadfialue ofr = 0° and varyingV_, . The most critical case

is that of VV_ = 125 m/s, where the safety factor for basv = g, /o== 1.675.

Air velocity V, 83.333 m/s 40 m/s 125 m/s
Lift coefficient, C_ 0.4 0.4 0.4
Drag coefficient, c, 0.0075 0.0075 0.0075
Moment coefficient at -0.1 -0.1 -0.1
c/4, c,

Lift, L 22969 N 5292 N 51680 N
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Drag, D 431 N 99 N 967 N
Twisting moment at -8613 N*m -1984 N*m -19375 N*m
c/4, M
Force acting on bara 37900 N 8731 N 85266 N
Force acting on barb -16929 N -3900 N -38090 N
Force acting on barc 21667 N 4992 N 48748 N
Tension acting on bara 83.8 MPa 19.3 MPa 188.5 MPa
Tension acting on barb -95.8 MPa -22.1 MPa -215.6 MPa
Tension acting on barc 122.6 MPa 28.2 MPa 275.9 MPa
v=2=1675
o
f . displacement 0.826 mm 0.19 mm 1.859 mm
f o, displacement 0.826 mm 0.19 mm 1.859 mm
fg displacement -2.55 mm -0.587 mm -5.738 mm
f, displacement 0.247 mm 0.0568 mm 0.555 mm

A.3. Definition of the limit-state functions

A limit-state function will be herein expressed fod a, in terms of axial stress. Subsequently, the
limit-state functions in terms of the displacemehpoint A will be considered, too.

Before the stall, the dependency of the lift caedint from the angle of attacekis linear:
c, =2m*(a-a.,) (A.6)
Wherea, _, is the angle at which lift is zero.

From the three equilibrium equations (A.5), andrespingc, in the aforementioned form, it is

possible to obtain the values of the axial streasdsinctions of the structural characteristics @ind
three aerodynamic variables;V,, andp.. For the sake of simplicity, the latter two varbiwill
be henceforth called &andp, and the torque moment@ asM.

From the equation of momentum:
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_-M-L*e

F.. = A.7
o T ot (A7)
After some steps, the equation reduces to
1 (c,*c+2m*(a-a_,)*e)
F._=——p*\y2*g*x\'m L=0 A.8
o = 75F > e+ f (A-5)
Where c is the length of the chord.
From the third equation of system (A.5), one gets:
Fa= \/E(_ Fay — L) (A.9)
Which, after a few steps, becomes
* + 2 * —_ N *
F,=-F, =§*p*v2*s{{cm ¢ ”Jr(C: %) e}-Zﬂ*(a-aLzo)}
€ (A.10)

Dividing by the cross sectional area of bar A, ahdnging the sign of the term on right (as focus is
now on the rod), one gets

g, = -Q* prVEx S{{Cm* c+2m (a-a,)" e} - 2mr* (a—aLzo)}

2A, e+ f (A11)

The performance function can therefore be expreased

* x (- *
G,(pV,a)=0,-0, :[_£* p*vz*sﬂicm C+27;+(C: O'L:o) e}_zﬂ* (O"G'L:o)}‘av SOJ

(A.12)

Another performance function can be introducedieims of the displacements of node A as an
effect of the aerodynamic acting forces. [.Iét] be the stiffness matrix of a rod or system ofsyod

and let{F} and{f} be, respectively, the vector of the forces actinghe structure nodes and the

vector of the displacements of the nodes, expresstte global coordinate systemvith thex axis
aligned with the direction of motionyhus,

{F}=[x}r} (A.13)

Letus calll,, I, and |, respectively, the lengths of rodsb, andc.
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For the case of rod, where only one element is involved, one can dmrsthat, along the bar
direction:

E*
F,=K, *f,= lAﬂ‘*fA (A.14)
Hence,
I o, *|
fo=—2—*F,=—"- (A.15)
E* A E

Which, projected on theandy axes, provides the two components of such dispiané

L, e . o «Ta" 1,
fo = A F. cos(45 )— J2/2 = (A.16)
foy = g " R oodds )= 2l (A17)

Equation (A.15) makes it possible to express theopmance function in terms of nodal
displacements, thus allowing the presence of thengadviodulusk in the performance function
itself.

From (A.10), (A.15), and (A.16),

_.1, laAa*p*vz*S{Cm*C+2ﬂ*(a_aL:°)*e}2”*(a_auo)} (A.18)

Similarly, from (A.10), (A.15) and (A.17):
fay == *Fa*cos(45°)=£* la *F, =
E*A 2 E*A

_1, 0 ) corc+2m(a-a ) el B
B 2* E*Aa*p*v *5{{ o+t f 277-*(0' aL=0)

(A.19)
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Therefore, by fixing dimit valuefor each node in each direction (indicating ithwtihe subscript),
it is possible to write the performance functiomsarms of the nodal displacements:

G =GV,a,E)=1f, —fo =

1 | c.*c+2mr*la-a,_,)*e
{_E* a *p*vz*s{{ m ( L_O) }_2”* (a_aL:O)}_ fAXL}SO (AZO)

e+ f

GfAy =G(pV,a,E)= fAY - fAYL =

1. | c.*c+2mla-a,_,)*e
{_5* a *p*vz*s{ m la-a.) }—ZH*(G-UL:o)}—fAYL}SO (A.21)

e+ f
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Appendix B

Covariance matrices

Given a problem withn probabilistic physical variables, a question taldeith consists on
evaluating and quantifying the physical correlatishich exists between themselves, in order to
make it possible to answer to the question: iféheas a change on one of such variables, what
would be its effect on the whole system? How carsidly would the other physical quantities be
affected? To deal with this problem, the correlatimetween these variables is often measured
through the use afovariance matricesA prerequisite to comprehend this tool is thevdealge of

the concept ofovariance

Given a physical phenomenon involving two probaktally distributed variableX andY, and

givenn experiments or simulations, thevariancebetweenX andY is defined as

cov(X,Y) = Zni_l* [(xi - X (v, —\?)] (B.1)

i=1
where X; and Y, are the values of the variables corresponding ¢oi-th sample or simulation.

Covariance, in other words, is a measure of howmtwo random variables change together.

Variance on the other hand, involves every singular vaesbands defined (as it was seen in Eq.
(2.7) and (2.8)), as

x)=3% 1 x.—Yz
var(X) ;n_l ( i ) ©.2)

i.e., is a measure of how spread a distributiomadats mean is.

Equations (B.1) and (B.2) are valid for sufficigngireat values of; otherwise, tha-1 term in the

denominator turns to.
Thecovariance coefficienfor correlation coefficientis defined by

Cov X,Y)

XY)=—r——"~
PS5 x) o) 3
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where o(X) and o(Y) are the standard deviation of and the standard deviation of

respectively.

It is important to recall that
a(X) = Jva(X) (B.2)

In general, the value of a covariance coefficiamges between -1 (anticorrelation) to 1 (complete
correlation). The value 0O refers to complete urelatron.

1.00 -0.90 -0.80 -0.70 0.60 -0.50 040
: |
;} i / I.-. N bao &£ 8o & 5 [ - \
3 o | oW
% e o -5 i
-0.30 020 0.10 0.00 010 0.20 030

Figure B.1: some examples of statistical distributions, witait related correlation coefficients (from New Xor

University).

With reference to the problem of section 3.5.4e, ¢bvariance matrix was built for the case of the
two normally distributed random variablesandV. The following tables show the covariance

matrix for an increasing number of simulations, etthwere performed via Monte Carlo. The terms

in the main diagonal are variances, whereas tinesteutside the main diagonal are covariances.
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Covariance matrix (10"3 c. V
iterations)
C, 0.0106 -0.1584
Vv -0.1584 801.1573
(B.5)
Covariance matrix (10"5 c. \%
iterations)
(o 0.0100 0.0039
\Y 0.0039 906.6141
(B.6)
Covariance matrix (10"6 c. V
iterations)
C, 0.0100 0.0013
Vv 0.0013 900.1912
(B.7)
Covariance matrix (10"7 c. Vv
iterations)
c. 0.0100 -5.3319*10™
v -5.3319*10™ 8997082
(B.8)
Covariance matrix (10"8 c Vv
iterations)
c. 0.0100 9.2422*10°°
\% 9.2422*107 8999533
(B.9)

As it can be noticed, as the number of iterationsaases, the terms outside the main diagonal (i.e.

the covariance terms) are approaching zero. Themmthatc, andV have no correlation; indeed,

this fact is correct, if one recalls thatand ¢, were set axdependenvariables.
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Appendix C

Deterministic optimization routines

The present appendix gathers together the Matlalines that were used for solving the
deterministic optimization problems which have bdebated in chapter 4.

From paragraph 4.3.1.:

The following Matlab codes were used to minimizeftN ratio (anyway inside a given interval)
the presence of a constraint.

Main Function

FMinimization of £/V ratio

d0=[150,0.675]; %starting point, V=150 m/=, £=0.675 m;

1b=[100,0.35]; %lower bounds for design wvariables;

ub=[200,1]; Fupper bounds for design wvariables;

option=optimset ('display', 'iter'),; %set options to show the optimization history

d=fmincon ('cbj fun',do0,[]1,[1.[1,[]1,1b,ub, 'con=ztr fun',option); %*call the optimizer
fAnaly=i=s at the optimal point

V=d (1) :

f=d(2):

obi=£/V:

c=constr_ fun(d); %calculate the constraint functions

disp(["The optimal point = ", numZstr(d)]):

dizsp(['The objective function = ', numZstr(obj)l):

disp(["The constraint functions = ', numZstr{c)l):

Objective function

function obj=obj_ fun (d)
FChijective function
V=d(1):

f=d {2} :

obi=£/V;
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Constraint function

function [c,cegl=constr fun (d)
#Constraint function

V=d (1) -
f=d(2):
ro=l.225; alr mass density
5=13.5; area of the wings

Cro=-0.1;

%

%

% momentum coefficient at a gquarter of the chord
c=1.5; % profile chord

%

%

CL=0.4; 1lift coefficient
ha=452.39; area of the circular section of rod "a"

e=0.225; % distance from node A to the quarter of the chord
c(l)y=-3grtc (2) *ro*V"2#5*% (Cm*c-CL*f) / (2*ha* (e+f))-462; % constraint

ceq=[]1: % no eguality constraint

The outputs from the optimization design of ti@) ratio are reported below. Here, the initial

value of ,V) for thestatically determinate profilevas set to (0.675 m; 150 m/s).

Max Line search Directional First-order
Iter F-count £ (=) constraint steplength derivative optimality Procedure
4] 3 0.0045 -0.325
1 8 0.00445555 -0.3183 1 -0.006867 0.00667
2 9 0.00233331 0 1 -0.00667 1.56e-005 Hesszian modified

Local minimum possible. Constraints =satisfied.

fmincon stopped because the predicted change in the objective function

is less than the default wvalue of the function tolerance and constraints

are satisfied to within the default walue of the constraint tolerance.

<stopping criteria details>

Aective inequalities (to within option=.TolCon = 1le-008) :
lower upper ineglin inegnonlin
2
The optimal point = 150.0015 0.35

The objective function = 0.0023333
The constraint functions = -168.6713

The following results refer to the case in which thitialization of {,V) was set to (0.36 m; 199
m/s).
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Max Line search Directional First-order

Iter F-count =) constraint steplength derivative optimality Procedure

1] 3 0.00180905 52.45 Infeasikle start polint
1 & 0.00327643 17.45 1 0.00502 0.127

2 ] 0.00437076 3.459 1 0.00502 0.077

3 12 0.00470748 0.1%98 1 0.00501 0.0118

4 15 0.00472892 0.000711 1 0.00483 0.000499 Hessian modified

5 g8 0.00472867 1.042e-007 1 -0.000376 0.000483 Hessian modified

& 21 0.00182689 16.45 1 -0.000376 0.00464 Hessian modified

7 24 0.00185885 0.1414 1 9.54e-006 0.00193 Hessian modified twice
8 27 0.00185923 1.082e-005 1 9.87e-006 1.82e-006 Hessian modified

£} 30 0.00185923 3.411e-013 1 9.88e-006 1.18e-011 Hessian modified

Local minimom found that satisfies the constraints.

Cptimization completed because the objective function i=s non-decreasing in
feasible directions, to within the default walue of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

ABctive inequalities (to within options.TolCon = le-008):

lower upper ineglin inegqnonlin
2 1
The optimal point = 188.25 0.35
The objective function = 0.0018582

The constraint functions = 3.4106e-013

From paragraph 4.3.2.:

In the next figure: optimization loop, outputs figinconfunction for p,h) = (50.8 50.§ mmas

starting values.

Max Line search Directional First-order
Iter F-count (=) constraint steplength derivative optimality Procedure
4] 3 2580.64 535.4 Infeasible start point
1 & 3761.17 186.4 1 60.8 502
2 9 4T768.8 52.01 1 53.9 489
3 1z 5342.61 5.682 1 81.5 83.3
4 15 5386.32 1.723 1 g9.18 26
5 18 5401.17 0.5391 1 5.34 g.11
& 21 5408.91 0.01565 1 11.4 0.234
7 24 5409.14 0.0001908 1 3.12 0.00445
8 27 5409.14 6.35%=-089 1 7.1 2.5e-05

Local minimum found that satisfies the constraints.

Cptimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default wvalue of the constraint tolerance.

<stopping criteria details>»

Letive inegualitie=s (to within options.TolCon = le-0&):
lower upper inegqlin inegnonlin
1
The optimal point = 52.0055 104.011

The objective function = 5409.1443
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The next figure reports the outputs figincon function for (b,h)=(203.2, 50.8) mnas starting

values.
Max Line search Directiomal First-order
Iter F-count fix) constraint steplength derivative optimality Procedure
o 3 10322.6 -25.4
1 T B3gB.82 -18.26 0.5 -150 1.2e+03
2 11 7580.71 -14.46 0.5 -35.4 281
3 la 6678.31 0.6243 0.25 =-19.7 556
4 23 6542.11 1.293 0.0625 -18 377
5 6298.32 3.452 0.125 -17.8 60.1
& 34 5ED2.30 5.72% 0.25 -17.1 182
7 8 5486.92 17.2 0.5 -13.1 338
8 41 5334.88 13.72 1 -0.13 247
] 44 5356.46 6.433 1 T.46 102
10 47 5350.31 4,47 1 4.03 67.9
11 a0 53%6.11 0.3073 1 10.9 13.5
1z 53 5407.52 0.1088 1 T7.03 1.63
13 56 5409.13 0.0009917 1 9.25 0.0148
14 59 5409.14 4,.152e-06 1 1.36 0.00238
15 62 5409.14 1.888e-08 1 0.0852 2.6T7e-05 Hessian modified

Local minimum found that satisfies the constraints.

Cptimization completed because the objective function iz non—decreasing in
feasikble directions, to within the default wvalue of the function tolerance,

and constraints are satisfied to within the default wvalue of the constraint tolerance.

<stopping criteria details>

Active inequalities (to within options.TolCon = le-06):
lower upper ineglin inegnonlin
1
The optimal point = 52.0055 104.011
The objective function = 5408.1443
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Appendix D

Dynamic analysis of flexible wings with high aspect
ratio

(From Coccon, Menegozzo and Galvanetto, 4th Royalekonautical Society Aircraft Structural Design
Conference, Conf. Proc., 7th-9th October, 2014, Hakt, Northern Ireland).

As a preliminary step, a recall is made to the rméafeflexible wings with high aspect ratio, as it
was proposed by Cesnik and Brown (2002) and Bra2@®3). Let us consider two coordinate
systemsw, the local one, which is attached to the deformed) reference line (see Fig. D.1), and
B, the inertial one, which is fixed to the airplaiuselage (indeed, it is assumed that the fuselage
neither rotates nor accelerates).

“Deformed Shape
W(5,1)

Undeformed Shape

Figure D.1: Inertial and local coordinate systems of the wiingm E. L. Brown, 2003).

In the proposed formulation, the wing is sketchechane-dimensional beam, which experiences
three-dimensional bending and twisting deformatidisreover, it is assumed that lengthwise and
shear deformations are negligible. Under these thgses, the shape of the wing results to be
determined simply by the curvature distributionngahe beam coordinate,

0 I 0 0 ]
0 0 k,I —k,I

Oh(s,t) z y

T:A(kx, ky, k,)h(s,t) = lo kI 0 k] Jh(s, t) (D.1)
0 ky —kJ 0

whereh = (p, Wy, Wy, WZ)T, beingp the position vector of a generic point along thegareference

line, with respect to the inertial coordinate systes well as the three component vectgrsy,,
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andw,. In the 12x12 square matri&, the three curvatures are indicated@asc, andk,, whilel is

a 3x3 identity matrix. A solution for such evalwetimay be attained by discretizing the beam
length into R equally spaced coordinates, in order to identisetof p-1 three-node elements, as
depicted in Fig. D.2.

3 ) cam——
%‘ 2 I,-'f NI i ki Nk
. - { | -~ -
[

Figure D.2: Discretization of the beam reference line intd.rthree-node elements.

The curvature is assumed to be constant in theegigrso that only the curvatures at the nodes need
to be considered to solve Eq (D.1). In this wag thing kinematics is simply defined by 3n
generalized coordinates, i.e., the 8fements of curvature vectdr, which is given by

k= (ki1 kys ks, K Ky e kZ,nk) (D.2)

The equation of motion is provided by the totatwat work done on the wing, which is the sum of
the inertial virtual work (i.e., the work done bmettial forces, internal damping and elastic segks
and the external virtual work (i.e., due to gravigds and aerodynamic forces):

0%k
at2

L aET ok ~

SW = 5k (—M C2— Kk + F) (D.3)

From here, the equation of motion is derived byirsgtthe total virtual work to zero; this can be
done because the virtual displacem#his arbitrary. In the following, only the aerodyniartoads
are calculated in order to explain the methodolpgyposed by Cesnik and Brown (2002) and
Brown (2003).

D.1. Aerodynamic loads

The aerodynamic model used by Cesnik and Browresfi®m the original formulation by Peters
et al. (1994) and Peterst al. (1995). Such a theory was developed for a thingrdedble airfoil
which experiences a wide motion in a subsonic fimith small deformations about that motion.
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Z,Zil V

Figure D.3: airfoil motion (from Cesnik and Brown, 2002).

Lift, drag and moment are nonlinear functions of state vectoy = (y,z, a,y,2, &, 1,) and its
derivative iy, where(y, z, @) is the instantaneous position of the airfoil (5&g D.3), andl, is the
induced flow due to the free vorticity. The liftrée is expressed as

L=anb{y[eb—d)d—z'—/lo]—%bZ‘—%bdd} (D.4)

wherep is the air densityh is the airfoil semichord, ardlis the distance of the beam reference line
to the mid-chord.

The virtual work done by = (L, M, D) can be written in terms of the curvature veckoi,e.,

SW = [ (L6z + DSy + Méa)ds = k" BF (D.5)

where ' is the vector of the nodal aerodynamic forces,civhcan be linearized about the

~ 2 n\T
instantaneous state vecték,a, ka) , SO that

:ta

+IRRI{) (0-6)

~
IR

oH
+
o
L
;f:n

U RV¢ &

where the terms in square brackets are Jacobianxegtwhereasv is the contribution of wind
gusts, which can be seen as an aerofoil veloaity te Eq. (D.4). Such a term is defined according
to Dryden's wind turbulence model (Mclean, 1990hjol provides the following power spectral
density (PSD) function:

o2
S, (@) = g2l 1+3(Lt7)

1% 0\ 2\

(+(5))
wherew is the frequencyy is the velocity of the aircraft relative to the,di; is the length scale of
turbulence, and is the root mean square (RMS) of the vertical gesbcity. In order to generate

the signaw in Eq. (D.6), the following relationship betwedretPSD oiv and the PSD of a pre-
generated white noisa, can be introduced

(D.7)

Sw(®) = [Hyy(@)[?Sy(w) (D.8)
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Since the input signailis a white noise, its PSD &, (w) = 1, therefore

_w(s) a+s
Huwu(s) = 75 = VKo (D.9)
whereK = 3Vo?/L, ,a =V/(V/3L,) ,b =V/L,, ands = jw, beingj the imaginary unit. Finally,
Eq. (D.9) can be represented in the state spaamdans of the linear filter shown in Fig. D.4,
where the matrixe8, B andC are functions of the parametdtsa, b.

u(t) {x = Ax + Bu w(t)
w = Cx >

Figure D.4: Modeling atmospheric turbulence as filtered whibése.

The output signalw(t) represents the source of uncertainty in the ndliglbased design
optimization (RBDO) described in the following seas. An example of generated gust velocity is
illustrated in Figure D.5.

Vertical Gust(m/s)

5 | | | | | | | | |
0 20 40 ) 80 .10 120 140 160 180 200
Time (sec)

Figure D.5: Example of vertical turbulence profile.
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Appendix E

Optimization design based on elastic axis

(from Coccon, Menegozzo and Galvanetto, New metholbgies in Reliability-Based Design Optimization for
Aerospace Structures, WCCM XI - ECCM V - ECFD VI 2014 Conf. Proc., Barcelona, Spain, 20th - 25th July,
2014).

A Multidisciplinary Design Optimization (MDO) probin has been recently proposed by ldtal.
(2013) to investigate the composite wing elastiés aand its influence on the aeroelasticity
application problem. The elasticcentreis apoina@ection of the beam, where a shear force can be
applied without inducing any torsion, and the etaskis is the lineof all elastic centres. In gexter
the mechanical behavior of an aerofoil is mainharelcterized by the position of three points:
elastic centre, centre of mass and aerodynamicecdfereinafter, it will be shown that the elastic
axis position plays a crucial role in the aeroétastability of an airfoil. Lete be defined as the
distance of the elastic axis to the aerodynamidecerandathe airfoil attack angle, which is
composed of initial attack angle,, and torsion anglé). The aerodynamic moment on the elastic
axis,M,, can be written as

ac
M, = qScCuyuc + qS [a—aL (@ + e)] e (E.1)

wheregq is the dynamic pressur8;is the airfoil areag is the cross section chord length; @hg, -
andCjare respectively the moment and lift coefficietits torsional spring is used to simulate the
torsional elasticity of the airfoil, i.84, = ky0, the equilibrium equation of aerodynamic moment
and spring elastic moment can be written as

— (qs)/(ke)(e(aCL/aa)ao+CCMAC)
O = T (e ko) OCLI00 (E.2)

The torsion angle becomes infinite when the denatomof Eq. (E.2) equals zero, indicating that
the wing is in a divergent state (instability). Téwresponding divergence pressuyg, is given by

— kg
9o = eS(dCL/0a) (E.3)
from which it is seen that divergence instabilgymore likely to occur for high values @fHence,
an optimization design based on elastic axis wapqsed in by Huet al. (2013). In this study, the
wing mass and the distance from the elastic axitheoaerodynamic center define the following
objective function

f=M+@ (E.4)

Mmax 4

where M is the wing mass after optimizatidfy,,, is the maximum wing mass in the design
variable span, and/; and/, are weight coefficients. The constraints of thebtem concern the
maximum torsion angle, maximum strain and fluttegtiency.
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According to Coccon, Menegozzo and Galvanetto (Rhé optimization process described above
can be extended to a reliability-based design apétion analysis, where the objective function in
Eq. (E.4) is minimized while considering the unagtties introduced by the randomness on the
material properties as well as on the aerodynaoaidd (random gusts).
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Appendix F

Response Surface Methodology

In many physical applications, the evaluation & gerformance functions can be computationally
demanding, and this can be an issue, especially wer computation is required repeatedly. A
possible solution is to create a surrogate physieadel, whose evaluation is more simple and less
expensive than the original performance functiadmsan be done through a sort of interpolation,
i.e., by computing such a performance function r@sponse functigng, at a set of opportune,
presetdesign pointswhich are then used to fit the simplified sulogét model. This process is
called Design Of Experiments (DOE). The main goflDOE is to minimize the amount of
information that is required for optimization, thigh selection of the appropriate points where the
response should be evaluated, such that the sterogzdel describes as accurately as possible the
behavior of the original model. Among the possitviethods for approximating the performance
function, Response Surface Methodology (RSM) is @inthe most popular ones, which allows to
reduce the original, complex response funcgoto a polynomial function. The design points are
taken from a set oinput variablesX, each of them lying inside a preset bound. If ttwedom
variables are chosen as input variables, RSM alkmansimplify the reliability assessment, which
can then be performed through one of the classiedhods, such as FORM, SORM or MCS. On
the other hand, if the design variables are ch@semput variables, RSM results to be useful in
simplifying and accelerating the optimization prese

The steps which are generally followed by RSM methie listed below.

1. Determination the design (input) variab¥snd the response variablgs

2. Definition of an opportune interval for each of thesign variables.

3. Planning the locations of the design points whaee éxperiment will be performed (namely,
where the response functignwill be evaluated) and the level of the varialfies., the number
of design points for each of the input variables).

4. Performing the experiment to obtain the local valé® of the response variable at each of the
design points that have been determined in Step 3.

5. Derivation of the unknown coefficients of the respe surface model, in order to obtain the
polynomial function which represents the surrogatelel behavior.

6. Using the response surface model for uncertaintgsssnent or for solving an optimization
problem

An applicative example of application of RSM is ciésed in the sequel, consisting on the
geometrical optimization of a tapered wing shea which undergoes a set of aerodynamic forces
due to drag and elliptical lift distribution (seegFF.1). Due to the difficulty of deriving an
analytical expression to describe the behaviohefsystem, theesponsdor performancég function

Y is calculated at some predefined design pointsh ed them corresponding to a particular
combination of thenput variables X which, in this case, are tliesign variablegi.e., the cross-
sectional dimensions of the shear web, see Fig. H&re, a two-level full factorial design is used,
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which means that, for each input variable, two glegoints (i.e., levels) will be chosen, and the
experiments will involve all the combinations oéttiesign variable levels.

Figure F.1: the main shear web of a wing experiencing the tehplift distribution and the aerodynamic drag.

tr

te te
Figure F.2: shear web cross-sectional dimensions at the wiog(left) and at the wing tip (right).
Step 1: Determination the design (input) variables and the response variablé’:

This is an optimization problem; therefore, theiglesariables (i.e., the cross-sectional dimensions
of the shear web, see Fig. F.2) are chosen as vapiatles:

X1 = tR! Xz = tT! X3 = tC

As for the output variabl¥, the tip displacement caused by the acting fona#be recorded for
every combination of the input variables.

Step 2: definition of an opportune interval for eat of the design variables

X, =[100,160][mm],
X, = [40,80][mm],

X3 = [20,30][mm];
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Step 3: Planning the number of design points and thlevel of the input variables

As it was previously stated, two design points (ievels) will be chosen for each input variatae:
this particular example, the minimum and the maxmualue are chosen. For the sake of
simplicity, every variabl&; is put in an adimensional form and is calld which lies inside the
interval [-1, +1], where -1 stands for the lowemubdX;,,;, , and +1 stands for the upper bound
Xi max, the relation betweek; andX; is:

X; :M_l (F.1)

Xi,max_Xi,min

Table F.1 shows thBOE Matrix, in which theresponsgor performancg function Yis computed
for every combination of the levels of the inputighlesX, namely, for each of the design points.

Table F.1: DOE matrix; every experiment corresponds to a paldir design point.

Experiment X, X5 X;
no.
1 -1 -1 -1
2 -1 -1 +1
3 -1 +1 -1
4 -1 +1 +1
5 +1 -1 -1
6 +1 -1 +1
7 +1 +1 -1
8 +1 +1 +1

The polynomial function representing the surrogatelel is given by

Y = Bo + B1X1 + B2 X5 + B3X3 (F.2)

wherep; (i= 1,2,3) are unknown coefficients, whose valueslvélfound at Step 5.

A graphical representation of the DOE matrix isomtgd in Fig. F.3, where each node represents a
design point.

Step 4: Performing the experiment to obtain the loal valueY®*P of the response variable at
each of the design points

The response functior®*” (namely, the tip deflection, where 1,...,8) is calculated at the design
points of Tab. F.1 by using a FEM code. The resofitdhese experiments are reported in Tab. F.2
and Fig. F.3.
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Figure F.3: graphical representation of the DOE matrix. Trepldicements are expressed in [mm].

Table F.2: DOE matrix with the respong&** for each of the experiments.

Experiment |  X(tg) X, (tr) X3(to) yix®

no.

1 -1 -1 -1 295.6 mm
2 -1 -1 +1 88.89 mm
3 -1 +1 -1 408.9 mm
4 -1 +1 +1 118.6 mm
5 +1 -1 -1 245.2 mm
6 +1 -1 +1 70.57 mm
7 +1 +1 -1 324.2 mm
8 +1 +1 +1 92.9 mm

Step 5: Derivation of the unknown coefficients oflie response surface model, in_order to
obtain the polynomial function which represents thesurrogate model behavior

To find the unknown coefficien{®;, one can apply thkeast squares methpthy minimizing the
difference between the experimental res¥}t§’ and the response which is predicted by the
surrogate model of Eq. (F.2), namely

Min T [V = (Bo + Bu X1 + BoXb + B2 X)]? (F.3)

Another way to determine the unknown coefficierdsbased on the observation of the effect
produced by the change of every single variablghenoverall system response (i.e., thaimm
effects.

The first coefficient is the average of the resgsnfsom all the design points, namely

Bo = X3 YePi = 205.61 (F.4)
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The other coefficients are derived by considerhggrhain effeck; of each input variabl#;, that

is, the average change on the system wfjezhanges from - 1 to +1 while other variables remain
unchanged.

The main effeck; is computed as the difference between the avera@mﬁj-*of the response at
theX; high level (+1) and the average vaRje of the response at tt& low level (-1) (Du, 2006),
as depicted in Fig. F.4.

Now, let us computg;:

Figure F.4: the main effect ok;, which is numerically expressed by Eq. (F.7).

With reference to Tab. F.2, the average responkg laigh level (+1) (highlighted in red in Fig.
F.4)is

P, = %(YSEXP + Y6EXP + Y7EXP + YSEXP) = 183.22 (F.5)

whereas the average responsk;dbw level (-1) (highlighted in blue in Fig. F.4 i

P, = i(ylEXP + YZEXP + Y3EXP + Y4EXP) = 228.00 (F.6)

Therefore, the main effect &f is expressed as

El == P1+ - Pl— = _44.78 (F?)

The coefficient; is defined as half of the main effdgt, namely

By =" =-2239 (F.8)
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The other coefficients andp;) are computed in an analogous way:

1

Py =L (Y50 + VPP + V74P + ¥5*F) = 236.15 (F.9)

Py = = (VFXP + YFXP 4 YEXP 4 YEXP) = 175,07 (F.10)
E, =Py, —P,_ =61.08 (F.11)
B, == =3054 (F.12)
Py = = (VFXP + YFXP 4 YEXP 1 YPXP) = 92.74 (F.13)
Py == (VFXP + YFXP 4 YEXP 4 YFXP) = 318.48 (F.14)
Ey =Py, —P;_ = —225.74 (F.15)
By = % = —-112.87 (F.16)

Therefore, the surrogate expression of the perfocedunction is
Y = 205.61 — 22.39 * X;+30.54 * X5—112.87 * X} (F.17)

Then, after substituting; with X; [see Eq. (F.1)], one obtains the surrogate pedara function
as a function of the original variabl&s

Y = 775.41 — 0.746 * X,+1.528 x X, — 22.58 x X5 (F.18)

and, recalling thakX; = tz, X, = t, and X5 = t., Eq. (F.18) can be expressed as a function of the
geometrical design variables:

Y(tg, tr, t.) = 77541 — 0.746 =ty + 1.528 * t; — 22.58 * t,, (F.19)

Step 6: Using the response surface model for solgmn optimization problem

The polynomial performance functidf(t, t1, t.) describing the tip displacement can now be used
for optimization, by fixing a maximum allowed disgemen®;;,,, that has not to be overtook. Let
the design aim be to find the geometrical feattwesvhich the shear web mass is minimized while
respecting the constraint on the maximum allowpdlisplacement; the problem can be formulated
as:
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( find (tg, t7, t.)
s.t.
min(m)
Y(tg tr,te) — Siim < 0 (F.20)
th < tgp < t¥
th <tp < t¥
L tt<t. <t

N

In addition to optimization and reliability analgsthe simplification introduced by RSM can be
used in probabilistic design as well, due to itsfuless in bringing down the computational effort.
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