
1 

 

UNIVERSITÀ DEGLI STUDI DI PADOVA 
 
 

Sede Amministrativa: Università degli Studi di Padova 

 

     Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari 
 

 

 

 

 

 

SCUOLA DI DOTTORATO DI RICERCA IN 
Scienze Mediche, Cliniche e Sperimentali 

 

Indirizzo: Scienze Cardiovascolari 

XXVII ciclo 
 

 

 

 
 

CHRONIC LUNG ALLOGRAFT DYSFUNCTION:  

CLINICAL AND EXPERIMENTAL STUDY 

 

 

 

 

 
 

Direttore della Scuola: Ch.mo Prof. Gaetano Thiene 

Coordinatore d’indirizzo: Ch.mo Prof. Gaetano Thiene 

Supervisore: Ch.ma Prof.ssa Fiorella Calabrese 
 
 

 

 
 

 

       DOTTORANDA: DOTT.SSA NAZARENA NANNINI 
 

 

 



2 

 

 

 

 

 

 

 

 



3 

 

 

 

 

 

 

 

A Paolo, Andrea e Luca 

mia linfa vitale. 

 

A mamma, papà e fratelli 

che credono in me. 

 

Alla Prof.ssa Calabrese 

che trova il risvolto positivo sempre 

anche nelle avversità. 

 

A Francesca 

la cui volontà supera ogni difficoltà.



4 

 

 

 



5 

 

INDEX 
 

INDEX ....................................................................................................................................... 5 

ABSTRACT ............................................................................................................................... 7 

RIASSUNTO ............................................................................................................................ 11 

1) INTRODUCTION ................................................................................................................ 15 

1.1 Lung allograft dysfunction: clinical and pathological aspects ........................................... 15 

1.2 Acute lung allograft dysfunction (primary graft dysfunction, infection, acute rejection).... 15 

1.4 Chronic  lung allograft dysfunction – clinical aspects ....................................................... 23 

1.5 Chronic  lung allograft dysfunction – pathological aspects ............................................... 26 

1.5.1 Obliterative bronchiolitis .......................................................................................... 26 

1.5.2 RAS .......................................................................................................................... 28 

1.6 Etiopathogenesis of  bronchiolitis obliterans syndrome .................................................... 30 

1.6.1 Innate Immunity and Response to Environmental Insults ........................................... 31 

1.6.2 Alloimmune T-Cell Reactivity .................................................................................... 31 

1.6.3 Humoral Immunity .................................................................................................... 32 

1.6.4 Autoimmunity ............................................................................................................ 33 

1.7 Animal models of BOS .................................................................................................... 36 

1.7.1 Heterotopic tracheal transplantation ......................................................................... 37 

1.7.2 Orthotopic tracheal transplantation .......................................................................... 39 

1.7.2 Orthotopic lung transplantation ................................................................................ 41 

1.8 From bench to bedside ..................................................................................................... 44 

2) AIM OF THE RESEARCH ................................................................................................... 46 

3) MATERIALS AND METHODS ........................................................................................... 48 

3.1 Rat orthotopic lung transplantation .................................................................................. 48 

3.1.1 Animal housing ......................................................................................................... 48 

3.1.2 Animal model #1: Outbred rat strain. ........................................................................ 48 

3.1.3 Animal model #2: Inbred rat strain. .......................................................................... 48 

3.2 Organ harvesting ............................................................................................................. 49 

3.3 Lung transplantation ........................................................................................................ 50 



6 

 

3.4 Broncoalveolar lavage  (BAL) ......................................................................................... 50 

3.5 Serological analysis ......................................................................................................... 51 

3.6 Macroscopic and microscopic evaluations ........................................................................ 52 

3.7 Immunohistochemistry..................................................................................................... 52 

3.8 Semiquantitative RT-PCR ................................................................................................ 53 

3.9 Immunofluorescence ........................................................................................................ 55 

3.10 Statistical analysis .......................................................................................................... 56 

4) RESULTS ............................................................................................................................. 57 

4.1 Development of CLAD experimental models with morphologic characterization of both 

acute and chronic immunologic lesions and serological screening of DSA ............................. 57 

4.1.1 Animal model #1: outbred rat strain. ......................................................................... 57 

4.1.2 Experimental model #2: Inbred rat strain. ................................................................. 59 

4.1.3 DSA detection ........................................................................................................... 66 

4.2 Evaluation of IL17/IL23 pathway (immunohistochemical and molecular analyses) in 

experimental model. .............................................................................................................. 67 

4.2.1 Immunohistochemistry .............................................................................................. 67 

4.2.2 Molecular analysis .................................................................................................... 69 

4.3 IL17 expression in all scheduled biopsies of 2 index cases developing OB ....................... 70 

4.3.1 Index case #1 ............................................................................................................ 70 

4.3.2 Index case #2 ............................................................................................................ 72 

4.3.3 Control case #3 ......................................................................................................... 72 

5) DISCUSSION ....................................................................................................................... 73 

6) SUMMARY .......................................................................................................................... 78 

7) FUTURE RESEARCH BASED ON PHD RESULTS ............................................................ 79 

8) REFERENCES ..................................................................................................................... 80 

9) CURRICULUM VITAE........................................................................................................ 89 

10) PRODUCTS OF THE RESEARCH .................................................................................... 92 

 



7 

 

ABSTRACT 
INTRODUCTION 

Transplantation is the only effective treatment for several end-stage lung diseases. 

Remarkable progress has been made in improving outcomes, although the 5-year graft 

survival is still less than 50% primarily because of the development of chronic lung 

allograft dysfunction (CLAD). CLAD has been now recognized as a heterogeneous 

condition that includes an obstructive form (bronchiolitis obliterans syndrome, BOS) and 

a restrictive allograft dysfunction (restrictive allograft syndrome, RAS). BOS, and its 

histological correlate obliterative bronchiolitis -OB-  represents the principal form of 

CLAD (~75%). The specific etiology and pathogenesis of BOS/OB are not fully 

understood. Multiple immune mechanisms seem to contribute to the development of 

BOS/OB, thus it is thought to represent a final common pathway of a process triggered by 

both alloantigen dependent and independent mechanisms.  While the role of alloimmunity 

has long been established more recent studies have begun to demonstrate the role of  

autoimmunity in the development of BOS.  A few experimental and clinical studies have 

demonstrated that collagen V and K-α1 tubulin, modified during ischemia reperfusion 

injury, may trigger autoimmune response, both humoral and cell mediated. Interleukin 17 

(IL17), a proinflammatory cytokine involved in autoimmune and infectious diseases, has 

recently been suggested to play a key role in the development of CLAD. 

The development of  animal models, mimicking the human transplantation procedure, is  

of great importance to elucidate the pathogenetic mechanisms leading to BOS/OB, to 

identify  important biomarkers of OB and finally to test the effectiveness of new target 

therapies.  

However up to today two important issues are largely discussed in rodent orthotopic 

models: 1) the reproducibility of the surgical procedure 2) the identification of the best 
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genetic strain (inbred versus outbred rats) for the development of immunological lesions 

similar to those in humans. 

AIM OF THE RESEARCH 

The  main goals of the present PhD research project were: 

1) development of a reproducible orthotopic lung transplant animal model, obtaining 

immunological lesions, particularly CLAD, similar to those of humans; 

2) evaluation of IL17/IL23  pathway, crucial in autoimmune response, through a 

careful investigation in preclinical models and in clinical index cases of CLAD. 

MATERIALS AND METHODS 

Two different animal models were used to perform orthotopic lung transplantation 

(OLT): outbred rat strain (20 CD SPF left lungs were transplanted into VAF) and inbred 

rat strain (32 Lewis left lung rats were transplanted into Fisher 344).  Only the long term 

survival animals (sacrificed 30 and 90 days after LT)  were subjected to a full 

immunological evaluation as follows: a) detection of donor-specific antibodies (DSA) 

testing serum samples with the flow cross match technique b) morphological and 

immunophenotype evaluation of acute and chronic immunological lesions developed in 

the graft c) immunohistochemical and molecular (RT-qPCR) analysis of IL17/IL23 

pathway  in the graft and bronchoalveolar lavage (BAL)  of animals and in all scheduled 

transbronchial biopsies of two index cases that developed CLAD.  

RESULTS 

Surgical mortality and early graft failure (within 24 hours) was higher in the outbred  

than inbred group (only 2 of a total 20 outbred rats survived). The two survival OLT 

outbred rats (sacrified 13 and 14 days after OLT) developed well evident immunological 
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disorders: one showed  acute cellular rejection (ACR) with coexistent early OB and the 

other late OB.  

Immunological disorders (only minimal ACR: A1B1) were rare (only 1/11; 9%) in the 

first 15 days of OLT inbred rats. In this period the inbred grafts showed  

ischemia/reperfusion or infections.  ACR (≥A2B1)  developed in 2/6 (33%)  inbred grafts 

at 30 days. 

 Ninety days after OLT was the best time point for the development of  immunological 

disorders: ACR (≥A2B1) and OB (both early and late) were detected in 7/15 (46%) and 

8/15 (53%) animals respectively, regardless of immunosuppressive treatment. 

DSA IgG showed higher median levels in those with ACR or OB than those without 

(70% and 34%, respectively vs 13%). 

A strong IL17 immunostaining was detected in inbred grafts that developed ACR and 

OB. IL 17 was  equally expressed  in inflammatory cells (macrophages and lymphocytes) 

of  inbred grafts with ACR  and OB while it was more expressed in epithelial and 

endothelial cells of  inbred grafts with OB. No staining was detected in grafts of animals 

without any sign of rejection. IL23 expression was high in grafts with both  absence and  

presence of rejection. Molecular analysis of IL17 and IL23 expression in BAL fluids 

showed higher levels of mRNA in grafts with ACR than OB. All scheduled  

transbronchial biopsies of the two index cases with ACR and OB showed IL17 

overexpression with the same pattern detected in the preclinical model.   

 

 

CONCLUSIONS   
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Outbred rodents that could have been more similar to humans due to high genetic 

diversity can not be used as a reliable OLT model because of the high rate of dramatic 

early graft failure. 

A reproducible model of both  ACR  and OB was developed  in  inbred rats (Lewis to 

Fisher 344) and 90 days post-transplantation was the optimal endpoint established. IL17, 

overexpressed  in  ACR and overall in OB lesions, is a crucial mediator in post-transplant  

immunological lesions and could be considered a potential therapeutic target in clinical 

transplantation.  
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RIASSUNTO  

INTRODUZIONE 

Il trapianto di polmone è l’unica opzione terapeutica per alcune patologie polmonari 

terminali. Notevoli progressi sono stati fatti in questo ambito, tuttavia la sopravvivenza 

dell’organo dopo 5 anni è inferiore al 50%, principalmente a causa dello sviluppo del 

rigetto cronico. Il rigetto cronico si presenta in modo eterogeneo, in quanto può essere 

caratterizzato da una forma ostruttiva (sindrome della bronchiolite obliterante, BOS) o da 

una restrittiva (RAS). La BOS e il suo corrispondente aspetto istopatologico, la 

bronchiolite obliterante (BO), rappresentano la principale forma di rigetto cronico 

(~75%). L’eziologia e l’esatta patogenesi della BOS/BO non sono ancora state 

completamente chiarite in quanto diversi meccanismi immunitari sembrano essere 

coinvolti nel suo sviluppo e sembra essere la conseguenza di un processo indotto da 

meccanismi dipendenti/indipendenti dagli alloantigeni. Infatti, il ruolo dell’alloimmunità 

nello sviluppo della BOS/BO è stato dimostrato da tempo, mentre quello 

dell’autoimmunità è emerso solo recentemente. 

Pochi lavori sperimentali e clinici hanno dimostrato che il collagene V e la tubulina K-α1,  

modificati nel danno da ischemia e riperfusione, possono indurre la risposta autoimmune, 

sia umorale che cellulo-mediata. L’interleuchina17 (IL17), una citochina 

proinfiammatoria coinvolta in patologie autoimmuni ed infettive, è stata proposta 

recentemente come fattore cruciale nello sviluppo del rigetto cronico. Lo sviluppo di 

modelli animali, che subiscono una procedura trapiantologica analoga all’umana, risulta 

di grande importanza al fine di chiarire i meccanismi patogenetici legati allo sviluppo 

della BOS/BO, di identificare biomarcatori precoci e di provare l’efficacia di nuove 

terapie. Attualmente, due importanti aspetti vengono largamente discussi nei modelli di 
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trapianto ortotopico nei roditori: 1) la riproducibilità della procedura chirurgica e 2) 

l’identificazione del migliore genotipo (inbred o outbred) per lo sviluppo di lesioni 

immunologiche simili a quelle umane. 

SCOPO DELLA RICERCA 

I principali obiettivi di questa ricerca sono stati: 

1) sviluppo di un modello animale di trapianto ortotopico di polmone riproducibile con 

lesioni immunologiche simili a quelle umane, in particolare quelle tipiche del rigetto 

cronico; 

2) verificare l’ipotesi che IL17/IL23 giochi un ruolo chiave nello sviluppo del rigetto 

cronico mediante uno studio scrupoloso nei modelli preclinici e in casi clinici 

emblematici. 

MATERIALI E METODI 

Due modelli animali sono stati utilizzati per eseguire il trapianto ortotopico di polmone 

(LT): il modello outbred (20 polmoni sinistri CD SPF sono stati trapiantati in VAF) e il 

modello inbred (32 polmoni sinistri di ratti Lewis sono stati trapiantati in Fisher 344). 

Esclusivamente i ratti con sopravvivenza a lungo termine (sacrificati 30 e 90 giorni dopo 

LT) sono stati studiati in modo approfondito dal punto di vista immunologico mediante: 

a) ricerca di anticorpi anti-donatore (DSA) mediante citometria a flusso sui campioni 

ematici; b) valutazione morfologica ed immunofenotipica di lesioni immunologiche acute 

e croniche sviluppatesi nel polmone trapiantato; c) analisi immunoistochimica e 

molecolare (PCR semiquantitativa) del meccanismo IL17/IL23 nell’organo trapiantato e 

nel BAL dei modelli animali e nelle biopsie transbronchiali di monitoraggio di due casi 

clinici emblematici di pazienti che hanno sviluppato la BO.  
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RISULTATI 

La mortalità perioperatoria e la disfunzione precoce dell’organo trapiantato (entro le 24 

ore) erano più elevate nel gruppo di animali outbred rispetto agli inbred (solo 2/20 ratti 

outbred sono sopravvissuti): uno presentava rigetto cellulare acuto (ACR) con coesistente 

BO precoce, l’altro un rigetto cronico tardivo. Nei primi 15 giorni dopo LT i topi inbred 

presentavano raramente lesioni immunologiche (solo 1/11: 9%) e si trattava di ACR lieve 

(A1B1). In questo periodo i polmoni trapiantati inbred mostravano danno da 

ischemia/riperfusione o infezioni.  

In 2/6 (33%) dei polmoni trapiantati inbred è stato riscontrato un importante ACR 

(≥A2B1) 30 giorni dopo LT. Il sacrificio a 90 giorni è risultato ottimale per lo sviluppo di 

lesioni immunologiche: ACR (≥A2B1) e BO (lesioni precoci e tardive) sono state 

riscontrate in 7/15 (46%) e 8/15 (53%) animali rispettivamente, indipendentemente dal 

trattamento di immunosoppressione.  

Gli animali con ACR o BO presentavano livelli di Ig DSA maggiori rispetto a quelli che 

non presentavano alcun segno di rigetto (rispettivamente 70% e 34% vs 13%). 

Una forte positività immunoistochimica per IL17 è stata riscontrata nei polmoni 

trapiantati dei topi inbred che avevano sviluppato ACR e BO. Non erano evidenti 

differenze significative nell’espressione di IL17 nelle cellule infiammatorie (macrofagi e 

linfociti) di polmoni inbred con ACR e BO, mentre è risultata maggiore nelle cellule 

epiteliali ed endoteliali di polmoni inbred con BO rispetto a quelli con ACR. Non è stata 

riscontrata positività nei polmoni di animali senza alcun segno di rigetto. L’espressione di 

IL23 era elevata sia in assenza che in presenza di rigetto. L’analisi molecolare 

dell’espressione di IL17 e IL23 nel BAL ha dimostrato maggiori livelli di mRNA nei 

polmoni trapiantati con ACR rispetto a quelli con BO. Tutte le biopsie di monitoraggio 
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dei due casi emblematici caratterizzate da ACR e BO hanno mostrato un’elevata 

espressione di IL17 con lo stesso pattern riscontrato nel modello preclinico.  

CONCLUSIONI 

I ratti outbred, che potrebbero essere considerati più simili all’uomo data la loro diversità 

genetica, non possono essere considerati un modello riproducibile di LT a causa 

dell’elevata mortalità precoce. E’ stato sviluppato un modello riproducibile di rigetto 

acuto cellulare e cronico nei ratti inbred (da Lewis a Fisher 344) e il sacrificio 90 giorni 

dopo il trapianto è risultata la tempistica ottimale. IL17, notevolmente espressa nell’ACR 

e nella BO, è un mediatore cruciale nelle lesioni immunologiche post-trapianto e potrebbe 

rappresentare un importante target terapeutico nella trapiantologia clinica.  
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1) INTRODUCTION 

1.1 Lung allograft dysfunction: clinical and pathological aspects 

Lung transplantation represents the only therapeutic option for many incurable pulmonary 

diseases, such as cystic fibrosis, idiopathic pulmonary fibrosis, and chronic obstructive 

pulmonary disease. Remarkable progress has been made in improving outcomes, although 

the 5-year graft survival is still less than 50% primarily because of the development of 

chronic allograft dysfunction (CLAD) [1]. Acute lung allograft dysfunction is sustained 

by different pathological processes whose specific treatment is crucial for their impact on 

CLAD.  

1.2 Acute lung allograft dysfunction (primary graft dysfunction, infection, acute 

rejection) 

Lung allograft dysfunction may be an acute phenomenon (acute lung allograft 

dysfunction, ALAD), leading to an acute decline in forced expiratory volume, FEV1 

(with or without forced vital capacity decline) and may be due to various conditions that 

affect the graft, such as primary graft dysfunction (PGD), respiratory infections and acute 

rejection. In some of the conditions, spirometry will not be available, but ALAD may be 

diagnosed by other tools such as radiology, oxygenation status, and biopsy specimen.  

PGD after lung transplantation represents a multifactorial injury to the transplanted lung 

that develops in the first 72 hours after transplantation; it is variously referred as 

“ischemia-reperfusion injury”, “early graft dysfunction” and “reimplantation edema”. 

PGD is characterized by severe hypoxia, lung edema and diffuse pulmonary opacities at 

radiography without other identifiable cause. The typical pathological pattern of PGD is 

diffuse alveolar damage (DAD). The incidence of PGD is reported to be in the rage of 10 
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to 25%. Despite significant advantages in organ preservation, surgical technique, and 

post-operative care, PGD is up today an important cause of morbidity and mortality 

[2,3,4].  

Infections are very important and common complications of lung transplantation. 

Bacterial pneumonias are the major infection complications in the early, intermediate, and 

late post-operative periods. Most of the infections occur in the first 11 months after 

transplantation. The underlying native lung may predispose to infection as occur in end-

stage suppurative disease such as cystic fibrosis and bronchiectasis, in the late post-

operative period the major predisposing factor is the presence of CLAD. The diagnostic 

approach to suspected pneumonia at any time period post-transplant includes sputum, 

blood cultures and often bronchoscopy with bronchoalveolar lavage (BAL), sterile brush 

and sometimes biopsy. The role of new biomarkers such as procalcitonin for diagnosis or 

follow-up has not been well established. Viral infection after lung transplantation is 

common and the most frequent are caused by cytomegalovirus (CMV) or caused by other 

community-acquired respiratory viruses. CMV is the second most frequent cause of 

pneumonia. Seronegative organ recipients are more susceptible to the infection. The 

lowest risk occurs in donor-negative/recipient negative patients [5]. The majority of CMV 

episodes occurred within the first 3 months following lung transplant, while the majority 

of the later infections were due to influenza and occurred after 1 year.  CMV is the most 

prevalent and most important despite significant advances in both diagnosis and 

management. As well as contributing directly to both morbidity and mortality, mounting 

evidence suggests a relationship between CMV pneumonitis and chronic rejection in the 

form of bronchiolitis obliterans syndrome (BOS) and decreased survival despite treatment 

[6]. The incidence of CMV infection has been reported to range from 30% to 86%, with a 
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mortality of 2–12% [7]. CMV may coexist with rejection. Both of these individual 

processes induce a cytokine cascade that in essence promotes the development of the 

other. Tumour necrosis factor-alpha, a key signal in the reactivation of CMV from 

latency, is released during allograft rejection, thereby facilitating the onset of viral 

replication and subsequent infection. Conversely, infection of the vascular endothelium 

and smooth muscle by CMV leads to an upregulation of adhesion molecules promoting 

an increase in the quantity of inflammatory cells in the graft and subsequent development 

of rejection. Additionally, molecular mimicry and the production of anti-endothelial 

antibodies with CMV may also play a role in the development of rejection [8]. Recent 

diagnostic tools have effected a shift in the diagnosis of CMV infection and disease. The 

previous method of diagnosis, pp65 antigen detection, has been replaced by quantitative 

nucleic acid-based amplification testing via polymerase chain reaction (PCR) for the 

recognition of viraemia by most centres, with 85% of institutions using this method for 

monitoring and diagnosis [9]. There are no universally accepted viral load cut-offs for 

positive and negative results, and that reported values may be dissimilar between different 

laboratories. Despite this, current guidelines on the management of CMV in solid organ 

transplant patients do not clearly favor one test over the other and cite both as acceptable 

options for diagnosis. There are two accepted approaches to the prevention of disease 

from CMV, universal prophylaxis and pre-emptive therapy, and although there are no 

randomized trials comparing one strategy versus the other, most centres favour the former 

or may sometimes employ both [9]. The first, universal prophylaxis, involves 

administration of antivirals to all transplant patients deemed to be at high risk by 

serostatus. The second, pre-emptive therapy, is comprised of monitoring at-risk patients 

for viral replication and administering antivirals at a predetermined level of replication in 

the hopes of treating patients prior to the onset of disease. A Cochrane Review comparing 
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prophylaxis in different groups of solid organ transplant patients with antivirals versus 

placebo or no treatment showed a significant reduction in disease (relative risk 0.42), 

infection (relative risk 0.61), mortality from CMV disease (relative risk 0.26) and all-

cause mortality (relative risk 0.63). Interestingly, the review also found a decrease in the 

risk of developing herpes-simplex virus, varicella-zoster virus and bacterial infections 

[10]. Prophylaxis may not only be beneficial in decreasing direct morbidity and mortality 

from CMV disease but may also have secondary effects by decreasing the morbidity and 

mortality of both acute and chronic rejection. The Cochrane Review previously 

mentioned failed to show a difference in acute rejection episodes, but other small studies 

have shown statistically significant differences in lung transplant recipient specifically 

and it is generally believed that prevention of CMV decreases the risk for acute rejection 

[11-15]. Fungal infections are a common complication after lung transplant with an 

estimated incidence of 15–35% and an overall mortality of 80% [16]. Complications at 

the site of the anastomosis (i.e. stenosis or necrosis) create the ideal environment for these 

infections. Other risk factors include the immunomodulatory effect of coexistent 

infections (i.e. viral) and neutropenia [17,18]. Pretransplant fungal colonization is 

common, especially in patients with cystic fibrosis and chronic obstructive pulmonary 

disease, and it has been associated with post-transplant fungal infection and BOS 

although not all colonized patients develop active/invasive infection [19]. The most 

common fungal pathogens are Candida and Aspergillus species, while Zygomycetes, 

Scedosporium, Fusarium, Cryptococcus species, histoplasmosis and coccidiomycosis 

occur less commonly. These infections, more prevalent during the first few months after 

transplantation, can manifest as invasive disease with a reported 1-year cumulative 

incidence of 8.6%. Regarding the diagnosis there are limited data on the role of minimally 

invasive tests such galactomannan, PCR and 1,3-β-D-glucan assay for the diagnosis of 
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invasive aspergillosis [20]. Diagnosis of invasive aspergillosis may require aggressive 

procedures (i.e. biopsy) to verify tissue involvement; however, this is not always possible, 

and often, the diagnosis is reached on evaluation of computed tomography chest findings 

and fungal staining/culture from bronchoscopy (i.e. BAL). 

Lung allograft rejection can be a hyperacute, acute or chronic process and it occurs 

through immunologic mechanisms that include the innate and the adaptive immune 

systems [21]. The innate immune system can cause hyperacute rejection after 

transplantation, such as of an ABO mismatched donor even if donor and recipient are 

normally blood crossmatched [21]. 

When considering pathological aspects, acute rejection is characterized by perivascular 

mononuclear cell infiltrates, which may be accompanied by sub-endothelial infiltration, 

so-called endothelialitis or intimitis, and also by lymphocytic bronchitis and bronchiolitis.  

Histological pulmonary allograft rejection is now graded according the revised working 

formulation for classification and grading of pulmonary allograft rejection as described in 

the following table [22]. 
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The intensity of the perivascular mononuclear cell cuffs and the distribution of the 

mononuclear cells, including extension beyond the vascular adventitia into adjacent 

alveolar septa, form the basis of the histological grade. Acute rejection usually affects 

more than one vessel (particularly in adequate transbronchial biopsy samples) but is 

occasionally seen as a solitary perivascular infiltrate [22]. 

Grade A0 (No Acute Rejection): normal pulmonary parenchyma is present without 

evidence of mononuclear cell infiltration, hemorrhage or necrosis. 

Grade A1 (Minimal Acute Rejection): there are scattered, infrequent perivascular 

mononuclear infiltrates in alveolated lung parenchyma. 

Grade A2 (Mild Acute Rejection): more frequent perivascular mononuclear infiltrates are 

seen surrounding venules and arterioles and are readily recognizable at low 

magnification. 

Grade A3 (Moderate Acute Rejection): easily recognizable cuffing of venules and 

arterioles by dense perivascular mononuclear cell infiltrates, which are commonly 

associated with endothelialitis. 

Grade A4 (Severe Acute Rejection): diffuse perivascular, interstitial and air-space 

infiltrates of mononuclear cells with prominent alveolar pneumocyte damage and 

endothelialitis. 

 

The revised working formulation allowed airway inflammation to be graded from B0 (no 

inflammation) to B2R (high grade small airway inflammation) and main histological 

features are summarized below [22]. 

Grade B0 (No Airway Inflammation): no evidence of bronchiolar inflammation. 
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Grade B1R (Low-grade Small Airway Inflammation): mononuclear cells within the sub-

mucosa of the bronchioles, which can be infrequent and scattered or forming a 

circumferential band. 

Grade B2R (High-grade Small Airway Inflammation): the mononuclear cells in the sub-

mucosa appear larger and activated, with greater numbers of eosinophils and 

plasmacytoid cells. 

Grade BX (Ungradeable Small Airways Inflammation): the changes are ungradeable due 

to sampling problems, infection, tangential cutting, artifact, etc. 

 

Figure 1.1 Emblematic cases of parenchymal acute rejection graded as A1 (A), A2 (B), 

A3 (C) and A4 (D).From Stewart S. et al., J Heart Lung Transplant 2007;26:1229–42. 
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Figure 1.2. Emblematic cases of bronchiolar acute rejection graded as B1R (A) and B2R 

(B). From Stewart S.et al., J Heart Lung Transplant 2007;26:1229–42.
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1.4 Chronic  lung allograft dysfunction – clinical aspects 
 

When the pulmonary function decline is persistent and not restored to 90% of baseline, 

chronic lung allograft dysfunction (CLAD) may be suspected [23]. CLAD following lung 

transplantation is a heterogeneous condition that includes an obstructive form 

(bronchiolitis obliterans syndrome, BOS) and a restrictive allograft dysfunction 

(restrictive allograft syndrome, RAS). Although BOS, characterized clinically by 

irreversible obstructive deficits in pulmonary function tests, remains the major cause of 

late mortality, RAS accounts for 25–35% of CLAD [24]. The term “chronic” implies a 

certain duration of time, and in analogy with the BOS definition, it has been suggested a 

minimum of 3 weeks as a sufficiently prolonged period to label allograft dysfunction as 

“chronic.” This interval of at least 3 weeks is chosen arbitrarily but is inspired by the 

BOS definition [23]. Diagnostic criteria of the two different types of CLAD are 

summarized in the following Table. 

 

Table 1.1  From Verleden GM, J Heart Lung Transplant 2014; 33:127–133 
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BOS is clinically characterized by progressive (often fatal) airflow obstruction (FEV1 

falls below 80% of the best value they achieved after transplantation), the absence of 

parenchymal infiltrates on chest radiographs, a mosaic pattern of perfusion on high-

resolution computed tomographic scan, poor responsiveness to therapy, and high 

mortality rates [25]. On the basis of these criteria, BOS affects 48% of recipients at 5 

years and 76% at 10 years after lung transplantation. Although treatment with 

azithromycin can sometimes stabilize and even reverse the progressive decline in lung 

function associated with CLAD, frequently this treatment fails, leaving retransplantation 

as the only treatment option.  

RAS is defined as CLAD with an irreversible decline in total lung capacity (TLC) to < 

90% of baseline as determined using the method explained later. BOS was strictly defined 

as CLAD without restrictive changes of RAS. Thus, the diagnosis of RAS was not made 

until FEV1 dropped to meet the criteria of CLAD, even if TLC had already declined to 

meet the threshold. The diagnosis of BOS was not made until a valid TLC measurement 

was done to rule out RAS, even if spirometry showed a decline in FEV1 meeting the 

criteria of CLAD [26].  
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Figure 1.3. This flow chart suggests an approach that can be used to evaluate a lung 

transplant recipient’s decline in post-bronchodilator forced expiratory volume in 1 

second (FEV1) with or without a decline in forced vital capacity (FVC) of Z 10%. This 

may be acute lung allograft dysfunction (ALAD) and may normalize with treatment. When 

the lung function decline, however, persists for at least 3 weeks without the FEV1 and/or 

FVC returning to 4 90% of the post-operative best values, it is suggested this is chronic, 

and chronic lung allograft dysfunction (CLAD) is suspected. Extended pulmonary 

function tests (PFT), including spirometry and lung volumes, high-resolution computed 

tomography (HRCT) of the thorax, and bronchoscopy with bronchoalveolar lavage  

(BAL) and transbronchial biopsy specimens may identify a cause or causes of suspected 

CLAD that may still be (completely) reversible upon specific treatment. If the FEV1 

and/or FVC declines further to r 80% of the post-operative best values, despite treatment 

or without identifying a clear cause, a specific CLAD phenotype should be identified. 

(Suspected) CLAD could also be a consequence of ALAD if the lung function decline 

persists. Some patients never develop suspected CLAD but may already have CLAD when 

they are diagnosed. BOS: bronchiolitis obliterans syndrome; CXR: routine chest X-ray; 

FEV1: forced expiratory volume in 1 second; SLT: single lung transplant; ARAD: 

azithromycin-responsive allograft dysfunction; RAS: restrictive allograft syndrome. From 

Verleden GM, J Heart Lung Transplant 2014; 33:127–133. 
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1.5 Chronic  lung allograft dysfunction – pathological aspects 

1.5.1 Obliterative bronchiolitis  

The pathological term obliterative bronchiolitis (OB) was introduced in 1984 to describe 

airway lesions observed in five patients, suffering from BOS after lung transplantation, 

and these findings have been confirmed by others [27]. OB describes dense eosinophilic 

hyaline fibrosis in the sub-mucosa of membranous and respiratory bronchioles, resulting 

in partial or complete luminal occlusion. This tissue can be concentric or eccentric and 

may be associated with fragmentation and destruction of the smooth muscle and elastica 

of the airway wall. It may extend into the peri-bronchiolar interstitium. Mucostasis and/or 

foamy histiocytes in the distal air spaces are commonly associated with obliterative 

bronchiolitis and may be observed in transbronchial biopsies in the absence of 

bronchiolar occlusion or any bronchiolar tissue [22]. The consensus in 2006 was that the 

distinction between active and inactive obliterative bronchiolitis is no longer useful and 

the condition should be designated merely as C0, indicating a biopsy with no evidence of 

obliterative bronchiolitis, and C1, indicating that obliterative bronchiolitis is present in 

the biopsy. Histological OB is graded as described in the following table [22]. 
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 Transbronchial biopsy is an insensitive method for detecting OB and the clinical use of 

BOS with its functional grading is the preferred means of diagnosing and monitoring 

CLAD [22]. A very recent work by Verleden et al. using micro-computed tomography, 

demonstrated that the constrictive bronchiolitis targets conducting airways while sparing 

larger airways as well as terminal bronchioles and the alveolar surface [28]. 

 

Figure 1.4. A) This small bronchiole shows eccentric scarring of the submucosa of the 

small airway associated with an inconspicuous peribronchiolar mononuclear infiltrate. 

The overlying epithelium appears attenuated, while the lumen of the airway is distorted. 

Such partial occlusion of the small airways may be responsible for significant increases 

in airflow resistance. H&E. B) The hint to underlying obliterative bronchiolitis in this 

case is the interrupted cords of smooth muscle forming a tubular structure associated 
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with dense scar tissue in a position adjacent to a pulmonary artery. H&E. From Stewart 

S.et al., J Heart Lung Transplant 2007;26:1229–42. 

 

1.5.2 RAS 

RAS is characterized by restrictive changes in pulmonary function tests that may correlate 

with inflammatory and fibroproliferative processes in peripheral lung tissue: extensive 

pulmonary interstitial fibrosis is dominant in the upper lobes of transplanted lungs and 

was initially reported based on radiographic and histological evidences [26]. A recent 

study represents the first reporting pleuroparenchymal fibroelastosis as a major 

histopathologic correlate of RAS in the largest single series of pleuroparenchymal 

fibroelastosis cases to date [24]. It is characterized radiologically by features suggestive 

of a chronic interstitial pneumonia with upper lobe predominance, and histologically by 

pleural fibrosis and parenchymal fibroelastosis in a predominantly subpleural distribution, 

with a sharp demarcation between fibroelastotic and unaffected lung parenchyma, and 

with the presence of fibroblastic foci at this interface. A limited number of cases with 

similar radiologic and pathologic features have also been reported, including a very recent 

article by Reddy et al, suggesting a broader spectrum of histopathologic findings [24]. 

Consistent with the recent finding that onset of RAS is often preceded by the presence of 

DAD in biopsies, it has been found that pleuroparenchymal fibroelastosis in RAS patients 

was very often present concurrently with features of DAD. Specimens obtained 1 year 

after clinical onset of CLAD typically demonstrated features of DAD, whereas those 

obtained at intervals of a year or more after CLAD onset showed DAD less frequently. 

These findings, together with the finding in some cases of DAD appearing to merge into 

areas of pleuroparenchymal fibroelastosis, support a temporal sequence of DAD 

preceding the development of pleuroparenchymal fibroelastosis in the natural history of 

RAS [24]. 
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Figure 1.5. Pleuroparenchymal fibroelastosis: areas of pleuroparenchymal fibroelastosis 

characterized by confluent areas of hypocellular collagen deposition with preservation 

and thickening of the alveolar septal elastic framework. (A) Hematoxylin and eosin stain, 

original magnification X50; (B) Elastic trichrome stain, original magnification X50. 

From Ofek  E. et al., Modern Pathology (2013) 26, 350–356. 
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1.6 Etiopathogenesis of  bronchiolitis obliterans syndrome 

The main factors that seem to be etiologically related to BOS are both immunological and  

non immunological: prolonged ischemia time, PGD, CMV pneumonitis, aspergillus 

colonization, respiratory virus infection and gastro-esophageal reflux. 

Although the pathogenesis of this progressive airway obstruction is unknown, different 

immunological mechanisms seem to be involved in the development of BOS. Thus it is 

thought to represent a final common pathway of a process triggered by both alloantigen 

dependent and independent mechanisms.  

 

 

Figure 1.6. Multiple immune mechanisms contribute to the development of OB. Potential 

therapeutic targets are highlighted. HLA 5 human leukocyte antigen; IVIG 5 IV 

immunoglobulin; PAMP 5 pathogen-associated molecular pattern; Th 5 T helper. 

Modified from Todd J et al., Chest 2011; 140(2): 502 – 508.  
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1.6.1 Innate Immunity and Response to Environmental Insults 

In recent years, the central importance of innate immunity in host defense has been 

recognized, particularly with the identification of toll-like receptors (TLRs) in humans. 

Innate immunity relies on recognition of highly conserved microbial pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by 

innate pattern recognition receptors (PRRs). TLRs, the prototypic family of innate PRRs, 

are found on pulmonary antigen presenting cells and lung epithelium where they regulate 

the pulmonary response to inhaled toxins and infections. Both exogenous and endogenous 

ligands for these receptors have been described, including lipopolysaccharide (LPS), 

high-mobility group box 1, and hyaluronan fragments. In the context of lung 

transplantation, genetic studies support the importance of innate immunity and TLRs in 

the pathobiology of BOS. Taken together, published data suggest a constant interplay 

among environmental stimuli, the innate immune response, recipient genetic 

susceptibilities, and adaptive immunity. In fact, many of the previously identified and 

emerging clinical risk factors for 

BOS are factors that would be likely to activate pulmonary innate immunity [29].  

1.6.2 Alloimmune T-Cell Reactivity 

The rarity of OB in patients without transplantation emphasizes the fundamental role of 

alloimmune 

T-cell reactivity in the development of this condition. Acute cellular rejection is the most 

consistently described risk factor for BOS. Specifically, both acute vascular (A-grade) 

rejection, especially if histologically severe, and lymphocytic bronchiolitis (B-grade) 

rejection are associated with a significantly increased risk of BOS. In animal models 

using tracheal transplantation, the initial alloimmune response is of the T helper (Th) 1 
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type, with interferon-γ being the predominant cytokine. Interferon-γ upregulates the 

expression of adhesion and costimulatory molecules by airway epithelial cells, thus 

further augmenting the alloimmune response by stimulating lymphocyte infi ltration and 

priming T-cell responses. The airway epithelial cell itself, once activated, generates a 

profibrotic milieu, producing growth factors that ultimately result in tracheal obliteration. 

The presence of obliterative disease in allogeneic, but not syngeneic, tracheal 

transplantations supports the importance of alloimmunity in airway fibrosis [29]. 

Despite clinical and basic evidence supporting a central role for alloimmune reactivity in 

the development of BOS, the failure of T-cell-based immunosuppressive regimens to 

prevent the onset of BOS or stabilize lung function after its onset supports the importance 

of other mechanisms of disease pathogenesis. Several additional immune- and 

nonimmune-related mechanisms that likely contribute to the high burden of OB after lung 

transplantation. Clearly, increased understanding of these factors is critical to the 

development of improved approaches to prevent and treat BOS [29]. 

1.6.3 Humoral Immunity 

 

Laboratory advancements in the detection and characterization of human leukocyte 

antigen (HLA) antibodies by flow cytometry in conjunction with tissue immunostaining 

for complement fixation have provided clinical evidence that antibody-mediated rejection 

occurs in lung transplantation. The development of post-transplant HLA antibodies in 

lung transplant recipients is correlated with an increased risk for BOS and worse overall 

survival. Recognition of the role of humoral, or antibody mediated, processes in the 

pathogenesis of BOS has had a substantive impact on the clinical approach to its 

prevention and treatment [29]. Indeed, B-cell-modulating therapies are now being used to 

reduce the humoral immune response in lung transplant recipients who develop donor-
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specific HLA antibodies in an effort to decrease the occurrence or progression of BOS. 

This treatment can have the benefit of being preemptive when given prior to the onset of 

acute rejection or BOS in patients with donor-specific antibody (DSA) [29]. 

1.6.4 Autoimmunity 

The discovery of autoimmunity as a mediator of BOS is one of the most exciting novel 

cellular mechanisms recently described. Sumpter and Wilkes have developed the concept 

that rejection is biphasic, with the first phase representing tissue injury and the second 

representing autoimmunity. Tissue injury (from immune or nonimmune insults) exposes 

normally sequestered self-antigens, and their fragments are released into the lung, acting 

as triggers for autoreactive T-cell proliferation and autoantibody production [30]. The 

exposed self-antigens can thus sustain rejection even in the absence of persistent 

alloimmunity [29]. 

Type 5 collagen [col(V)], which resides beneath the basement membrane in the 

perivascular and peribronchiolar tissues of the lung, was the first described potential self-

antigen. 

A fivefold to 10-fold increased risk of high-grade BOS in those patients with elevated 

col(V)-specific cell-mediated immunity.  

Further investigation suggested that autoreactive Th17 cells, known to be associated with 

chronic fibrotic autoimmune diseases in humans, in part mediate this response. In added 

support of this concept, a separate study found several cytokines important in Th17 cell 

development to be present in increased amounts in BAL fluid from patients with BOS 

compared with control subjects. Recently, other novel autoimmune targets on the 

epithelial cell surface, including K-α1 tubulin, have been identified, and binding of 

autoantibodies to these targets has been shown to promote fibroproliferative events in 
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vitro. The concept of inducible immune tolerance to col(V) or other self-antigens is 

highly intriguing, and exploitation of this idea may represent a future novel approach to 

the prevention or treatment of BOS [29].  

Th17 cells, a subset of T helper cells distinct from Th1 and Th2 cells, play a key role in 

the production of several cytokines such as IL17, IL21 and IL22. First described in 1983, 

IL17a is the first member of the IL17 family that is comprised of six isoforms. Produced 

by T lymphocytes, these cells promote neutrophil growth and activation in the lungs, joint 

space, central nervous system, and intensities. IL17a and IL17f specifically have been 

shown to play an important role in host defense and autoimmunity [31]. 

When Verleden et al. looked at biopsies and BAL specimens from lung transplant 

recipients undergoing acute rejection, higher IL17 were correlated with increased 

neutrophils and lymphocytes, demonstrating the potential role of IL17 in acute rejection. 

Additionally, this group then demonstrated that higher IL17 mRNA and protein levels in 

BALs from transplant recipients were associated with the development of BOS [32]. 

Another mechanism by which IL17 may contribute to rejection was postulated with IL17 

inducing iBALT, which may contribute to autoimmune reaction in allograft lungs. 

Finally, data in a murine orthotopic lung transplantation model demonstrated that 

neutralizing IL17 prevented OB, down regulated acute rejection, and upregulated 

systemic IL-10. These studies offer multiple roles by which IL17 may mediate immune 

responses and rejection [31].  

IL17 has also been implicated in the development of immune responses to self-antigens. 

Autoantibodies to col(V) from lung transplant recipients were IL17 dependent and 

associated with the development of OB after transplantation. Interestingly, the adoptive 

transfer of lymph node cells reactive against col(V) from immunized donors into isograft 

recipients induced OB without an alloimmune response. IL17 has been found to 
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contribute to the autoimmune response to K-α1 tubulin as well. Among mice who were 

administered antibodies to donor MHC class I antigens, inhibition of IL17 resulted in 

decreased levels of autoantibodies to col(V) and K-α1 tubulin. Combined, these results 

propose a key role for IL17 in the development of autoimmunity. However, recent work 

has highlighted that not all Th17 cells are pathogenic and that other key cytokines such as 

IL23 is necessary to induce autoimmune disease. Thus, the connection between IL17 and 

autoimmunity in human studies needs to be further and deeply investigated [31].  

 

 

Figure 1.7.  Autoimmunity in lung transplantation. After transplantation, exposure of 

collagen type V [col(V)] and K-α1 tubulin triggers autoimmune responses, both humoral 

and cell mediated, which contribute to chronic rejection and obliterative bronchiolitis. 

APC, antigen presenting cell. From Weber DJ and Wilkes DS. Am J Physiol Lung Cell 

Mol Physiol. 2013;304(5):L307-11. 
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1.7 Animal models of BOS 

To better understand the underlying mechanisms of OB development, a research model 

that mimicked the phenomenon of pulmonary chronic rejection was introduced in 1993 

[33]. In this model, tracheal rings were heterotopically implanted under the skin or into 

the abdominal cavity of rats or mice, and these rodents developed the typical features of 

OB histology. This model possesses the advantages of reproducibility, and is simple to 

perform. However, researchers argued that this model did not sufficiently reflect the 

complexity of clinical OB. In search of more physiological models, various other 

techniques were introduced in rodents, among them the orthotopic tracheal segment 

interposition and the implantation of a donor trachea into a recipient lung [34]. With the 

introduction of the model of orthotopic single-lung transplantation in the mouse, the 

physiological ventilation and perfusion that equal the human transplantation condition can 

be provided. Preclinical models, such as the miniature swine transplantation model in 

which OB lesions develop, were proposed, using minor histocompatibility complex 

(MiHC) antigen–mismatched combinations. Although this model provides the obvious 

advantages of being closest to human OB, of the anatomic similarities of the transplant, of 

the ability to monitor individual animals continuously by repeated biopsy, and of the 

option for bronchoalveolar lavage and computed tomography imaging, these models are 

limited in their availability, their need for special breeding facilities, and their high cost. 

The main characteristics of rat and murine models of OB are summarized in the following 

table [34].   
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Table 1.2. From Jungraithmayr W et al., Am J Respir Cell Mol Biol. 2013;48(6):675-84. 

 

1.7.1 Heterotopic tracheal transplantation 

The invention of heterotopic tracheal transplantation model in 1993 enabled the 

reproduction of the phenomenon of  OB after transplantation for the first time. Tracheal 

segments were either implanted into a subcutaneous pouch in the neck, or placed 

intraperitoneally. This approach is technically effortless, reproduces representative results 

in vivo, and simulates the identical histopathological changes of human OB. The majority 

of published studies so far were performed on the basis of this model. However, its 

shortcomings are not negligible. Implanted tracheal segments undergo severe initial 

ischemia, relying only on diffusion from the surrounding tissue. Furthermore, 

physiological ventilation as a central functional aspect in lung transplantation does not 

occur, and large airways instead of bronchioles are investigated, thereby not reflecting the 

pathological hallmarks of OB. Finally, the observed changes occur within a short span of 

time, in contrast with the slowly developing OB in human lung-transplant recipients [34]. 
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Figure 1.8. (A) Model of heterotopic tracheal transplantation. Segments of a donor 

trachea, consisting of one or two cartilaginous segments, are harvested from a donor. 

These are implanted heterotopically into either a subcutaneous pouch in the neck, or into 

the greater omentum via a small laparotomy. Histologic sections from murine heterotopic 

tracheal segment allografts are delineated according to hematoxylin-and-eosin (B), 

trichrome (C), and a–smooth muscle actin (a-SMA) staining (D; blue, nuclei; red, 

myofibroblasts). Histological sections from rat allografts are also shown according to 

hematoxylin-andeosin (E), trichrome (F), and a- SMA staining (G; blue, nuclei; red, 

myofibroblasts). The obliterated lumen was characterized by a dense accumulation of 

proliferated fibroblasts and inflammatory cells (insets) with a strong intraluminal 

staining of smooth muscle cells (D and G), and the absence of respiratory epithelium. 

Scale bars, 100 mm. From Jungraithmayr W et al. Am J Respir Cell Mol Biol. 

2013;48(6):675-84. 
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1.7.2 Orthotopic tracheal transplantation 

The disadvantages of the heterotopic tracheal model motivated the search for a more 

physiological setting. A new model of orthotopic tracheal transplantation was introduced 

by Ikonen and colleagues in 2000, and was later refined by Schrepfer and colleagues, in 

which a segment of a donor trachea was interposed into a recipient trachea to provide 

physiological ventilation [35,36]. These authors described a long-term patency of fully 

histoincompatible allografts in nonimmunosuppressed rats, as was also observed in mice. 

Despite acute alloimmune injury and the induction of myofibroblast proliferation, 

epithelial regrowth from the host limited the progression of OB, thus emphasizing the role 

of the epithelium in the control of airway obliteration [34].  
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Figure 1.9. (A) Model of orthotopic tracheal transplantation. The whole trachea is 

harvested from a donor and orthotopically implanted by suturing the trachea at the 

cranial and caudal lumen by an end-toend running suture into the recipient. Histologic 

sections from murine orthotopic tracheal allografts are delineated according to 

hematoxylin-and-eosin (B), trichrome (C), and a-SMA staining (D; blue, nuclei; red, 

myofibroblasts). Histological sections from rat allografts are also shown according to 

hematoxylin-and-eosin (E), trichrome (F), and a-SMA staining (G; blue, nuclei; red, 

myofibroblasts). On Day 60 after implantation, orthotopic allografts did not obliterate, 

but show a mild epithelial regrowth (insets in B and C) and a proliferation of 

myofibroblasts and smooth muscle cells (insets in E and F), with strong staining of 

smooth muscle cells (G). Scale bars, 100 mm. From Jungraithmayr W et al. Am J Respir 

Cell Mol Biol. 2013;48(6):675-84. 



41 

 

1.7.2 Orthotopic lung transplantation 

The model of orthotopic lung transplantation has the advantage not only of being a 

transplantation model of physiologic ventilation and perfusion, but it also best reproduces 

the surgical procedure in humans. In this model, the recipient’s artery, vein, and main 

bronchus are cuff-anastomosed, or alternatively sutured to the respective vessels and 

bronchus of a single donor graft, thus mimicking the human transplantation procedure 

[34].  

Orthotopic rat lung transplants have been used to investigate ischemia–reperfusion injury 

and acute rejection. However, in using rat orthotopic lung transplantation as a model of 

OB, control of the immune response is a major challenge. Without immunosuppression, 

major histocompatibility 

(MHC)-fully mismatched lung allografts (e.g. Brown Norway to Lewis rats) are acutely 

rejected and become necrotic within several days, while only short-term 

immunosuppression (e.g. cyclosporine for the first few days) was found to enable long-

term acceptance of allografts. A commonly used orthotopic rat lung transplant model of 

‘chronic rejection’ is a moderately histoincompatible strain combination, from Fisher 344 

(MHC type, RT1lvl) rats to Wistar Kyoto (RT1l) rats without immunosuppression [37]. 

Importantly, however, many reports have indicated that the chronic lesions in 

orthotopically transplanted rat lungs are not typical OB lesions [38].  

Two important issues are up today largely discussed in rodent orthotopic lung models: a) 

the reproducibility of surgical procedure; b) the identification of the best genetic strain 

that develop immunological lesions similar to those in humans. Although the orthotopic 

lung transplantation model is technically demanding, it holds great promise for boosting 

clinically relevant research. To reach this goal, a wider use of this model must be 

achieved, because only a few centers worldwide can successfully implement this model at 
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present. On the basis of this research model, the development of reagents will be 

promoted through systematic exploration and meticulous analyses in therapeutic proof-of-

concept studies [34].  

Inbred strains are generated by 20 generations or more of brother-sister mating. Thus they 

show a more homogeneous genetic background than their outbred counterparts. 

Historically, inbred mice have been utilized for such studies as their limited genetic 

variability removes much of the inter-subject variability, making more reproducible 

results and simpler data interpretation. Recent studies have suggested that such 

genetically similar mice may not serve as an accurate model for the human conditions 

(which are genetically outbred) particularly when considered the immune responses 

occurring in the transplant field. A murine orthotopic lung transplant model has been 

reported recently, which shows new promise to use small animals for chronic 

investigation [40]. The possibility of using transgenic mice to explore the molecular 

mechanisms of OB is attractive, while reproduction of OB-like lesions might be 

challenging as in rat orthotopic lung transplantation [37]. 
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Figure 1.10. (A) Orthotopic single lung transplantation. The left lung is removed from a 

donor animal, the artery (blue), bronchus (yellow), and vein (red) are separated, and 

each is equipped with a specially designed plastic cuff. The lung is then introduced into 

the recipient’s respective bronchus and vessels, to obtain a perfused and ventilated 

transplant. (B) Histologic sections from rat orthotopic lung allografts show typical 

obliterative bronchiolitis lesions on day 60 after transplant. Only small parts of the 

respiratory epithelium are intact, and the smooth muscle layer has vanished. Instead, 

increasing amounts of fibrous tissue have obliterated the bronchial lumen (I, 

hematoxylin-and-eosin; II, Trichrome). (C) Histological sections from murine orthotopic 

lung allografts show obliterative bronchiolitis, 70 days after transplantation. 

Mononuclear cells are prominently present within fibrotic plugs that protrude into the 

airway lumen (I, hematoxylin-and-eosin stain), with intense staining of collagen within 

the plugs (II, Sirius red). The polarized Sirius red light clearly indicates the difference in 

younger, rather reddish collagen and older, whiter collagen (III, Sirius red polarized). 

From Jungraithmayr W et al. Am J Respir Cell Mol Biol. 2013;48(6):675-84. 
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1.8 From bench to bedside 

Each of the proposed models which provided interesting insights for the interpretation of 

the pathogenesis of OB. For almost 20 years, the technique of heterotopic tracheal 

transplantation was the leading experimental model in OB research. Important insights 

about how and when OB changes occur were achieved soon after the introduction of the 

heterotopic tracheal transplantation model. Hertz and colleagues demonstrated that within 

21 days after transplantation, murine allografts developed airway fibroproliferation, 

whereas isografts showed normal respiratory epithelia. Boehler and colleagues then 

proved that the development of OB was alloantigen-dependent. Only allogeneic grafts 

showed typical OB lesions, whereas isografts were reconstituted with a normal epithelial 

lining after recovery from ischemia [41]. Hertz and colleagues later showed that OB 

lesions progressed if the initial period of alloimmune injury was sufficient, even if the 

alloimmune stimulus was removed [42]. To address the need for a more physiologic 

experimental setup, a variety of small animal models have been proposed during the past 

two decades, such as the orthotopic tracheal transplantation model or the intrapulmonary 

trachea implantation model. Answers to remaining questions could be determined via the 

newly introduced model of orthotopic murine lung transplantation, which not only 

reflects the full physiology of a transplanted graft, but also allows for the investigation of 

the influence from other factors that are most relevant in the evolution of OB, such as 

acid aspiration or other nonimmunologic stimuli. Beyond the possibility of genetic 

modifications in the mouse through which human diseases can be explored, transplant-

related complications such as PGD or ischemia–reperfusion injury and their potential 

therapy options could be investigated in this model. Moreover, the investigation of non–

heart-beating donor organs as well as the ex vivo reconditioning of potentially 
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transplantable organs, which plays an increasing role in the retrieval of organs, can be 

performed in this model. Moreover, the establishment of OB in minor mismatched 

recipients could also provide the last opportunity for testing novel therapeutic 

interventions such as inhibition of  crucial mediators involved in EMT development.  

 

 

 

Figure 1.11. A cartoon describing the principal evidences in clinical lung transplantation 

derived from animal studies. 
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2) AIM OF THE RESEARCH  

 

The  main goals of the present PhD research project were: 

3) Development of reproducible orthotopic lung transplant animal model, with 

immunological lesions, particularly CLAD, similar to those of humans (first year 

of PhD); 

4) Test the hypothesis that IL17/IL23 plays a key role in the development of CLAD 

through a careful investigation  in preclinical models and clinical index cases 

(second/third year of PhD); 

All the activities were performed following the Gantt. 
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3) MATERIALS AND METHODS 

3.1 Rat orthotopic lung transplantation 

3.1.1 Animal housing 

 Transplantation was performed pathogen-free in rats weighing 220–280 g. Animal 

care and animal experiments were performed according to the guidelines in force in Italy 

(DDL 116, 21/02/92 and subsequent addenda). Experimental protocols and appropriate 

animal care procedures were authorized by special Decrees of Italian authorities. All 

efforts were made to minimize animal suffering and animal care was supervised by 

veterinarians and animal technicians skilled in the healthcare and housing of transplanted 

rats. All animals were housed under standard environmental conditions (12-hour light-

dark cycle, temperature: 22 ± 1°C and humidity: 50%) with free access to food and water. 

3.1.2 Animal model #1: Outbred rat strain. 

 CD SPF left lungs were transplanted orthotopically into VAF recipients using 

non-suture cuff technique. 

3.1.3 Animal model #2: Inbred rat strain. 

 Lewis (Lew) (RT-1l) left lungs were transplanted orthotopically into Fisher 344 

(F344; RT-1v) recipients using non-suture cuff technique. 

11 rats died in the early post-operative period (from day 0 to 15
th
) , and represent the 

“short-term survival” group, while the remaining 21 represent the “long-term survival” 

group.  
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The “long-term survival” group was divided in the following experimental subgroups: 

1) without any suppressive treatment 

GROUP A (n=6) sacrificed at 30 post- operative day; 

GROUP B (n=6) sacrificed at 90 post- operative day; 

2) with suppressive treatment 

GROUP C (n=5) sacrificed at 90 post- operative day (cyclosporin A, 1.5 mg/kg from day 

1 to 7)  

GROUP D (n=4) sacrificed at 90 post- operative, treated (cyclosporin A, 1.5 mg/kg from 

day 7 to 14) 

The transplantations were performed under clean, nonsterile conditions by a single 

surgeon. All the microsurgical procedures were done under the magnification between 6 

to 20x of a stereoscopic microscope.  

3.2 Organ harvesting 

 The donor  animal was preanaestetized in the glass chamber inhaling 2% 

Isoflurane. Five hundred units of heparin were administered via the inferior vena cava. A 

tracheostomy was performed and the animal was ventilated through the tube (14 GA iv. 

Catheter) with  FiO2=1.0, f=100/min, TV=2.5-8,5 ml/kg by a RodentVentilator. The 

lungs were flushed with 10 ml of cold (4 °C) preservation solution through the main 

pulmonary artery. Subsequently, the heart-lung block was removed at end-tidal volume 

and the left lung was separated ex-vivo from the heart and right lung. The inflated left 

lung was placed into preservation solution at 4°C until transplantation.  Cuffs were 

prepared for vascular and bronchial anastomoses. We used 16-gauge intravenous 

catheters to make cuffs for each pulmonary artery (PA) and 14-gauge catheters for the 

pulmonary veins (PV) and bronchi. 
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3.3 Lung transplantation 

Recipient animals were anesthetized, orotracheally intubated and ventilated with a 2% 

isofluorane  and 100% oxygen mixture for adequate sedation at a rate of 70 breaths/min, 

with a tidal volume of 1 mL/100 gr body weight and a positive end-expiratory pressure of 

2 cmH2O. Rats were placed on right decubitus and a left posterolateral thoracotomy 

through the fourth intercostal space was made. The lung was removed from the chest 

cavity. The hilum of the lung was dissected and the pulmonary artery, pulmonary vein, 

and bronchus were identified. Ligatures and microvascular clamps were placed on each of 

these structures next to the heart. A small incision was made on the ventral part of 

pulmonary artery, vein and bronchus, then each element was anastomosed by placing 

cuffs inside each of the corresponding structures. A 7-0 polifilament ligatures were put 

around the cuffs to fix it to each element. Once the lung was implanted, the native lung 

was excised. The ventilation and then the perfusion of the graft were restored by 

removing clips from left bronchus, PV and PA respectively. The thoracotomy was then 

closed and a pleural drainage tube connected to a syringe was introduced. The drainage 

tube was aspirated to return the pleural cavity to negative pressure and, when the animal 

was breathing spontaneously, the drainage tube was removed. 

3.4 Broncoalveolar lavage  (BAL) 

At definite time points lung recipients have been sacrificed. After opening the abdominal 

cavity and exsanguination via the aorta abdominalis, the lungs were exposed and a 

cannula (1.2 mm internal diameter) fixed in the trachea. The lungs were lavaged gently, 

via this cannula, to avoid tissue rupture. Lavage fluid (2 mL) was slowly injected into the 

lung using a syringe and then sucked out again. The operation was repeated 2 times with 
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fresh, cold (4°C) saline. BAL from either right and left lung have been obtained by 

specifically clamping the controlateral bronchus. 

3.5 Serological analysis 

 The humoral immune response in the rat model of chronic lung rejection have also 

been evaluated. At early and late time points following transplantation, serum collected 

from recipient animals have been assessed for the presence of donor-specific IgG 

antibodies by flow cytometry. Donor cells have been incubated with recipient serum and 

specific antibody binding determined by the use of secondary anti-IgG antibodies.  

To define donor-specific allo-antibodies responses, we harvested sera from F344 

recipients at day 8, 30, 60 or 90, and tested by two-color flow cytometry to detect 

circulating IgG allo-Ab binding to LEW splenocytes as target cells. In recipients 

administered a suboptimal dosage of cyclosporin A, allo-antibodies have been evaluated 

at 90 days following transplantation. 

Donor-specific antibodies were detected using testing serum samples with the Flow cross 

match technique. At sacrifice, serum samples were obtained from centrifugation of blood 

taken from the abdominal aorta, then immediately stored at -20 °C until analysis. Donor 

splenocytes, separated by density gradient centrifugation (Hystopaque, Sigma, St Louis, 

USA), were used as target cells. After measuring the concentration of Lew splenocytes, 

we incubated 1x105 cells with recipient serum samples (1:256 diluted, 50 μl) for 30 min 

at 4 °C, then washed the samples in PBS containing 0.2% sodium azide three times. 

Negative controls were incubated with normal LEW rat serum. After that, samples were 

stained by 30 min incubation in the dark on ice with FITC-conjugated  anti-rat IgG Fcg 

Fragment specific or anti-rat IgM (Jackson Immuno Research laboratories, Inc.) (50 μl) 

diluted to 1:100 used as second Abs. Phycoerythrin-conjugated anti-CD3 monoclonal Ab 
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(Biolegend, San Diego, CA, USA) were used to identify T cells. Target cell samples were 

then washed twice with PBS and tested with flow cytometry. We performed two-color 

FCXM analyses on 10 000- recorded cells with FACS Calibur (Becton Dickinson, San 

Jose, CA). CELL QUEST software (Becton Dickinson) was used for data processing. The 

signal events of lymphocytes gated by forward and side scatter parameters were recorded. 

T cells were selected by positive gating with phycoerythrin-conjugated anti-CD3. 

Fluorescence data were plotted using logarithmic amplification 

3.6 Macroscopic and microscopic evaluations  

 The animal was sacrificed and the entire heart-lung block was explanted and 

carefully examined. In particular the graft was measured, weighed, photographed, cut and 

formalin-fixed paraffin-embedded. After 24 hours samples were sectioned and stained 

with haematoxylin-eosin for the routine diagnostic approach: specimens were examined 

for the presence or absence of ACR by using the nomenclature revised by the Lung 

Rejection Study Group of the ISHLT [22]. The presence of airway inflammation  was 

determined based on evidence of lymphocytic bronchiolitis  (LB) in all biopsy specimens 

[22]. 

3.7 Immunohistochemistry  

Tissue samples were processed for sectioning and, after dehydration, embedded in 

paraffin wax. Five μm-thick sections were processed for immunohistochemical analysis 

of IL17, IL23 and CD44. In all experimental and clinical samples, immunohistochemistry 

(IHC) was carried out by using the following antibody panel: rabbit polyclonal anti-IL17 

(1:100, Abcam, Cambridge, UK); rabbit polyclonal anti-IL23 (1:100, Bioss, Woburn, 

Massachusetts, USA); rabbit polyclonal anti-CD44 (1:100, Abbiotec, San Diego, CA, 

USA). For all immunohistochemical experiments, negative controls were obtained by 
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incubation of the sections with the omission of primary antibody and using the antibody 

diluents alone or the appropriate non-immune IgG in each case. Briefly, after dewaxing 

and hydration, sections were incubated in citrate buffer 5 mM at pH 6.0 in a microwave 

oven for 30 minutes, for antigen retrieval. Afterwards, sections were treated for 60 min 

with the primary monoclonal antibodies and subsequently incubated with Ultravision 

Quanto Detection System HRP-polymer (Runcorn, UK). Immunoreactivity was 

visualized with diamino benzidyne (DAB, Dako, Glostrup, Denmark). Finally, the 

sections were counterstained with Mayer’s haematoxylin. Data were expressed using a 

score system from 0 to 3 (0: no staining, 1: staining in up to 30% of cells, 2: staining in 

30-50% cells, 3: staining in more than 50% of cells). 

3.8 Semiquantitative RT-PCR  

 Molecular analysis for IL17 and IL23 expression was performed in all BAL 

samples. Total RNA was extracted from BAL fluids by a modified RNAzol method, as 

previously described [43]. The RNA pellets were re-dissolved in 20 μl sterile DEPC-

treated water and incubated with 5U of deoxyribonuclease I (Sigma Aldrich, Milan, Italy) 

for 15 min at room temperature. 1 μg of extracted total RNA was used for the first 

complementary DNA (cDNA) synthesis and conventional RT-PCR was used. The PCR 

mix was made up to a volume of 50μl using 1X PCR Buffer II, 2mM MgCl2 solution, 200 

μM each of dATP, dCTP, dGTP, dUTP, 400 nM of each primer, 1.25 Units of AmpliTaq 

Gold and 6μl of cDNA. After the initial denaturation at 95°C for 10 min, the cDNA was 

amplified by 35 three-step cycles (30 sec at 95°C, 30 sec at annealing temperature, 1 min 

at 72°C). The appropriate number of cycles of PCR was determined so that the amount of 

PCR product versus the intensity of the ethidium bromide-stained product on Agarose gel 

were within a linear range. All samples were analyzed using glyceraldehyde-3-phosphate 
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dehydrogenase (GAPDH) primers to verify adequate nucleic acid extraction. The 

sequences of primers for GAPDH, IL17 and IL23 and annealing temperature conditions 

are listed in Table 3.1. All samples were processed with simultaneous positive and 

negative controls (reaction mixture without RNA and cDNA templates). Precautions were 

taken to avoid false positives as a result of contamination by PCR product carry over, by 

strictly following the guidelines for the general handling of the PCR procedure, such as 

separation of rooms, boards, and lab benches (i.e. extraction of nucleic acids, PCR 

amplification and gene sequencing performed in different rooms with separate equipment 

and pipettes). Following PCR amplification, PCR products (15 μl) were subjected to 

electrophoresis on 3% ultrapure Agarose gel (Invitrogen, Italy) in 1X TAE buffer (Tris-

acetate 0.04 M and EDTA 0.001 M) containing 0.03 μg/ml ethidium bromide. The gels 

were visualized by UV  transillumination and photographed with a Alliance 2.7 

(UVITEC, Cambridge, UK). The optical density of each band was quantified by 

densitometry using 1D gel analysis (UVITEC, Cambridge, UK) and levels of mRNA 

expression were normalized by calculating them as a percentage of GAPDH mRNA 

expression levels. 

Primer Sequence 
Annealing 

temperature 

GAPDH Fw AATCCCATCACCATCTTCC 

57°C 
GAPDH Rv GGCAGTGATGGCATGGACTG 

IL17 Fw ACAGTGAAGGCAGCGGTACT  
60°C 

IL17 Rv GCTCAGAGTCCAGGGTGAAG 

IL23 Fw TCACAGGGGAGCCTTCTCTA 

60°C 
IL23 Rv GGCACTAAGGGCTCAGTCAG 

Table 3.1 Sequences and annealing temperatures of the three different primer sets. 
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3.9 Immunofluorescence 

 Formalin-fixed samples were processed for paraffin embedding. Serial 5 µm-thick 

slices were cut using a microtome, mounted onto clean slides and stored at room 

temperature. Thus obtained slices were then dewaxed in xylene and rehydrated through 

serial alcohol’s (100%, 95%, 70%; two changes of 3 min each) and distilled water (twice 

for 5 min each) and  then air-dried for thirty minutes. Afterwards, unmasked the antigens 

and epitopes with 5Mm sodium citrate buffer at pH 6.0 in a microwave oven for 30 

minutes. Tissue samples were processed for immunophenotypization of inflammatory cell 

infiltrate by immunofluorescence. In all samples, immunofluorescence was carried out by 

using the following antibody panel: anti-rat-CD4 fluorescein isothiocyanate (FITC) 

conjugated, anti-rat-CD8a allophycocyanin (APC) conjugatedand anti-rat-CD45RA 

phycoerythrin (PE) conjugated (Biolegend, San Diego, CA, USA).  All the antibodies 

were diluted 1:20 in phosphate buffered (PBS). Non-specific binding interaction were 

identified using specific isotype-matched, non-immune  antibody or secondary antibody 

alone. Slides were stored at 4°C and analysed within 24 h. The analysis of samples were 

performed with a fluorescence microscope Leica DMI6000CS (Leica Microsystem CMS, 

Germany). FITC and PE  fluorescence were visualized by excitation at 488nm and 

emission at 570 nm. APC fluorescence was visualized by excitation  at 633 nm and 

emission at 660 nm. All samples were analysed by differential interference contrast (DIC) 

objective and  images were viewed and captured at 40x magnification.  Images were 

acquired using a DFC365FX camera and analysed with Leica LAS-AF 3.1. software.  



56 

 

3.10 Statistical analysis 

All cases were coded and the measurements were made blindly. Data were 

expressed as mean ± standard deviation (SD), or as median, Q1-Q3 when appropriate. 

Differences between groups were analysed using Kruskal-Wallis test and the Mann-

Whitney U test. 
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4) RESULTS 

4.1 Development of CLAD experimental models with morphologic characterization 

of both acute and chronic immunologic lesions and serological screening of DSA 

 

ACTIVITY DESCRIPTION 

MONTHS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Study of literature 

Development of experimental model

Macroscopic evaluation of rat lung tissues

Microscopic evaluation of rat lung tissues

Serum testing of donor-specific antibodies

Data presented at national and international conferences

SECOND YEAR THIRD YEARFIRST YEAR

 

4.1.1 Animal model #1: outbred rat strain. 

CD SPF left lungs were transplanted orthotopically into 20 VAF recipients using non-

suture cuff technique. Seventeen rats died of early severe ischemia/reperfusion injury and 

only 3 rats out of 20 survived. One of them developed a severe PGD and died 24 hours 

after lung transplantation. The other two died at days 13
rd 

and 14
th

 post-transplant and the 

explanted grafts were carefully studied according the previous described methodology. 

The gross examination of these grafts displayed a slight increase in volume and 

consistence. At histology: one showed severe acute cellular rejection graded A3B2 with 

coexistent initial OB (Figure 4.1 A and B). The other had severe OB with diffuse fibrosis, 

bronchiectasies and complete obliteration of the airways (“vanishing bronchiolitis”) 

(Figure 4.1 C and D). 
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Figure 4.1. Emblematic image of severe ACR graded A3B2 detected in the first outbred 

graft (A, B) and OB, diffuse fibrosis with complete obliteration of the airways (“vanishing 

bronchiolitis”)  detected in the second outbred graft (C ,D). 
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4.1.2 Experimental model #2: Inbred rat strain. 

Lewis (Lew) (RT-1l) left lungs were transplanted orthotopically into 32 Fisher 344 (F344; 

RT-1v) recipients using non-suture cuff technique.  

 

Rats with a short term graft survival: 

11/32 rats (34.4%) died of PGD in the early post-transplant period (from day 0 to 15
th
, 

with a mean±SD survival of 3±4 days). The histology showed diffuse hemorrhage and 

alveolar damage, typical aspects of ischemia/reperfusion injury (Figure 4.2).   

 

Rats with a long term graft survival: 

Survived animals (65.6%) were divided into 2 experimental groups:  

1) without any suppressive treatment 

GROUP A (n=6), sacrificed at 30 post-operative day; 

GROUP B (n=6), sacrificed at 90 post-operative day; 

2) with suppressive treatment; 

GROUP C (n=5), sacrificed at 90 post-operative day (cyclosporin A, 1.5 mg/kg, from 

day 1 to 7); 

GROUP D (n=4), sacrificed at 90 post- operative day (cyclosporin A, 1.5 mg/kg, from 

day 7 to 14). 

 

Main histological aspects are summarized in the following tables. 
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 Group Animal 
Survival 

(days) 
Histological diagnosis  

  

F008 2 A0B0/ ischemia/reperfusion injury 

F026 3 A0B0/ ischemia/reperfusion injury 

F027 0 A0B0/ ischemia/reperfusion injury 

F062 2 A0B0/ ischemia/reperfusion injury 

F064 2 A0B0/ ischemia/reperfusion injury 

F065 1 A0B0/ ischemia/reperfusion injury 

F063 4 A0B0/ infection 

F069 1 A0B0/ ischemia/reperfusion injury 

F072 0 A0B0/ ischemia/reperfusion injury 

F045 8 A1B1/ ischemia/reperfusion injury 

F070 15 A0B0/ infection 

 

A 

F007 30 OB  

Without 

immunosuppression 

F009 30 A0B0/ infection 

F011 30 A3B2 

F013 30 A0B0/BALT hyperplasia 

F014 30 A2/3 B1 

F015 30 A0B0/ infection 

B 

F019 90 A0B0/ BALT hyperplasia 

F025 90 Severe OB 

F030 90 Severe OB 

F035 90 Aspergillus bronchitis/A2BX 

F049 90 A3B2 

 F051 90 A3B2/early OB  

With 

immunosuppression 

C 

F058 90 
Severe OB (vanishing bronchiolitis 

syndrome) 

F060 90 A2B1 

F067 90 
Severe OB (vanishing bronchiolitis 

syndrome) 

F073 90 
Severe OB (vanishing bronchiolitis 

syndrome) 

F078 90 A3B2 

D 

F053 90 
Severe OB (vanishing bronchiolitis 

syndrome) 

F054 
90 

A0B0/ infection 

F055 
90 

A3B2/ early OB 

F079 
90 

A3B2 
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Group  POD  IS  n

  
% Acute 

rejection  

% 

Chronic 

rejection  

Other histological 

findings  

 0-15  /  1

1

  

9% 0  Ischemic damage 

(82%)  

Infection (18%) 

A  30  /  6

  

33%  17%  Infection (33%)  

BALT hyperplasia 

(17%)  

 

B  90  /  6

  

50%  50%  BALT hyperplasia 

(17%)  

Aspergillosis (17%)  

C  90  DAY 1 to 7  5

  

40%  60%   -  

D  90  DAY 7 to 14  4

  

50%* 50%* Infection (25%) 

 

* In one animal there was a coexistence of acute and chronic rejection. 

POD: post-operative death/sacrifice; BALT: bronchus-associated lymphoid tissue. 

 

 

 

 

After 30 days, acute cellular rejection and OB were found in 2/6 (33%) and 1/6 (17%) 

inbred grafts respectively. After 90 days, OB was found in 8/15 (53%) rats, with or 

without suppressive treatment. Considering animals with suppressive treatment, group C 

developed ACR in 2/5 (40%) and OB in 3/5 (60%), while group D developed ACR in 2/4 

(50%) and OB in 2/4 (50%) (emblematic histological aspects in Figure 4.3-4.6). 

Immunofluorescence showed a prevalent CD4 and CD8 positive lymphocytes in ACR, 

minimal B lymphocytes and no NK cells (Figure 4.7). 
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Figure 4.2. An emblematic image of ischemic injury, edema and blood extravasations 

typical of ischemia-reperfusion injury detected in the short term inbred graft survival. 

 

 

 

 

Figure 4.3. Emblematic aspects of severe acute cellular rejection (A3B1) 30 days after 

orthotopic lung transplantation.  
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Figure 4.4. Emblematic images of chronic rejection: OB (C1) 90 days after lung 

transplantation: eccentric(arrow) and concentric (thick arrow) obliteration are well 

visible. 

 

 

 

 

Figure 4.5. An emblematic image of chronic vascular rejection. 
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Figure 4.6. Indirect signs of severe chronic rejection: gross appearance showed a graft 

with white-grey color (A, arrow) while histology showed extensive fibrosis (B), 

bronchiectasies (C) and fibrosis with honeycomb (D),  the so-called “vanishing 

bronchiolitis syndrome”. 
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Figure 4.7. Emblematic images of immunofluorescence using specific antibodies to 

characterize CD4
+
 T lymphocytes (A), CD8

+
 T lymphocytes (B), B lymphocytes (C) and 

NK cells (D). 
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4.1.3 DSA detection  

No donor specific IgG response can be detected at day 8 post transplantation and systemic 

IgG allo-Ab responses can be detected starting from day 30 following transplantation. At 

this time point IgG antibodies were significantly higher compared to that of normal LEW 

rat serum in most of the animal tested. Low levels or no antibodies were detected in 

animals without ACR (median values, Q1-Q3: 13.2, 9.3-18.4) (Figure 4.8). Higher levels 

of anti-IgG antibodies have been obtained  in animals with ACR and OB (median values, 

Q1-Q3: 70.1, 56.5-74.5 and 34.3, 29.4-75 respectively) (Figure 4.8). Reduced levels of 

donor specific antibodies were detected in recipients treated with cyclosporine A and 

higher values of DSA were found in more severe ACR. 

 

Figure 4.8. Histogram showing median DSA IgG levels in animals with or without 

acute/chronic rejection.  
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4.2 Evaluation of IL17/IL23 pathway (immunohistochemical and molecular 

analyses) in experimental model. 

ACTIVITY DESCRIPTION 

MONTHS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Study of literature 

Immunohistochemistry for IL17 and IL23

Semiquantitative RT-PCR for IL17 and IL23 expression 

Data presented at national and international conferences

SECOND YEAR THIRD YEARFIRST YEAR

 

4.2.1 Immunohistochemistry 

A strong IL17 immunostaining was detected in grafts of rats that developed ACR, both in 

inflammatory and epithelial cells (median, Q1-Q3: 3, 2.5-3 in macrophages, 2, 1.5-2.5 in 

lymphocytes, 2, 1-2.5 in epithelial cells, 2,  0.5-2. 5 in endothelial cells) and OB (median, 

Q1-Q3: 3, 3-3 in macrophages, 2.5, 1.75-3 in lymphocytes, 3, 2.25-3 in epithelial cells 

and 3, 0.75-3 in endothelial cells) (Figure 4.9 and 4.10). No staining was detected in 

grafts of animals without any sign of rejection. Although not statistically significant, IL17 

expression was higher in OB, mainly produced by macrophages, epithelial and 

endothelial cells. IL23 expression was high both in absence and in presence of rejection, 

mainly in macrophages and endothelium (Figure 4.9). 
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Figure 4.9. Histogram showing IL17 and IL23 expression median score in the absence or 

presence of rejection distinguishing the different cell types.  

A B C

D E F

 

Figure 4.10. Immunohistochemistry for IL17 showed a high expression in all cell types. 

Staining is well visible in lymphocytes (B), macrophages and epithelium (C, arrow and 

thick arrow respectively), endothelial cells (D) and fibroblasts (F).  
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4.2.2 Molecular analysis 

GAPDH was amplifiable in all BAL samples (some emblematic cases in the Figure 4.11). 

Molecular analysis of IL17 and IL23 expression in BAL fluids showed higher levels of 

mRNA in animals with acute rejection than chronic rejection (IL17/GAPDH mRNA 

ratio: 35.8% vs 15.1% and IL23/GAPDH mRNA ratio: 47.5% vs 21.2%) (Figure 4.12). 

 

Figure 4.11 Agarose gel electrophoresis of PCR amplicons of GAPDH (lanes 2, 4, 6, 8) 

and IL17 (lanes 3, 5, 7, 9). Emblematic amplicons of animals with ACR (lanes 2 and 3), 

OB (lanes 4 and 5) and without any sign of rejection (lanes 6 and 7). Molecular weight 

marker VIII and negative controls are in lanes 1, 8 and 9 respectively). 

 

 

Figure 4.12 Histogram showing IL17 and IL23/GAPDH mRNA ratio in BAL of rats with 

acute or chronic rejection. 
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4.3 IL17 expression in all scheduled biopsies of 2 index cases developing OB 

ACTIVITY DESCRIPTION 

MONTHS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Study of literature 

Immunohistochemistry for IL17

SECOND YEAR THIRD YEARFIRST YEAR

 

4.3.1 Index case #1 

V.M., male, 49 years old, lung transplanted for chronic obstructive pulmonary disease. 5 

scheduled transbronchial biopsies were analyzed and showed an overexpression of IL17 

in all of them (Figure 4.13). In particular: 

  IL17 expression (score 0-3) 

Schedul

ed TBB 

Post-

transplant 

time 

Histological 

diagnosis 

Lymphocy

tes 

Macrophage

s 

Epithelia

l cells 

Endotheli

al cells 

1 20 days A3BX 3 3 3 3 

2 
2 months A2BX; CMV 

pneumonitis 
2 3 3 2 

3 8 months A0BX 2 3 n.v. 2 

4 14 months A0C1  2 3 2 2 

5 21 months A0C1 3 3 3 3 
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Figure 4.13. Hematoxylin and eosin stain showing typical aspects of severe ACR (A) and 

OB (C): a strong immunohistochemical IL17 staining was detected in the same fields (B 

and D respectively). 
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4.3.2 Index case #2 

C.Z., female, 61 years old, lung transplanted for idiopathic pulmonary fibrosis. 

12 scheduled transbronchial biopsies were analyzed and showed an overexpression of 

IL17 in all of them. In particular: 

  IL17 expression (score 0-3) 

Scheduled 

TBB 

Post-

transplan

t time 

Histologic

al 

diagnosis 

Lymphocyt

es 

Macrophage

s 

Epithelial 

cells 

Endotheli

al cells 

1 22 days A3B1 3 3 3 3 

2 2 months A2B0 3 3 3 3 

3 3 months A0BX 2 3 3 2 

4 6 months A3B0 3 3 3 3 

5 9 months A1B0 2 3 3 2 

6 14 months A0C1  3 3 3 3 

7 21 months A1/2BX 3 3 3 3 

8 23 months A0B0 2 3 3 2 

9 30 months A2BX 3 3 3 3 

10 32 months A0B0 2 3 3 2 

11 39 months A0B0 2 3 3 2 

12 46 months A0B0 2 3 2 2 

4.3.3 Control case #3 

G.P., male, 55 years old, lung transplanted for idiopathic pulmonary fibrosis. 

6 scheduled transbronchial biopsies were analyzed and showed no rejection nor 

expression of IL17 in all of them.  
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5) DISCUSSION 

Transplantation is the only effective treatment for several end-stage lung diseases. 

Although immunosuppressive regimens efficiently control ACR [43], two main problems 

impact recipient survival. On one hand, PGD, occurring in the immediate postoperative 

period, is caused by ischemia-reperfusion injury and when severe is associated with up to 

40% mortality within 30 days after transplantation. On the other hand, CLAD, in 

particular OB, leads to an irreversible decline in lung function and accounts for more than 

50% of lung allograft failures occurring within 5 years following transplantation. Due to 

no effective therapies for OB there has been an extensive search for preclinical models 

that replicate OB. The use of animal models is critical to investigate the pathological 

mechanisms behind OB and to develop therapeutic strategies. The introduction of the 

orthotopic lung transplantation model in rodents has been of great demand for this 

technique due to the obvious experimental advantages the rodent offers over other animal 

(both large and small) models. These include the availability of rodent-specific reagents 

as well as knockout and transgenic technology. Nevertheless the orthotopic lung 

transplant procedure in rodents is challanging due to microsurgical difficulty and extreme 

fragility of tissues. Introduction of the cuff technique has allowed for the widespread use 

of orthotopic lung transplantation in rats [44].  In mice and rats, unlike humans, the left 

lung contains only one lobe and makes up only 25% of the total lung mass. This makes 

left-single lung transplantation feasible in the murine model without the need for a 

circulatory support system. Thus a left-single lung transplantation using the cuff 

technique was the basis for the development of the orthotopic lung transplant model in the 

present  research study. 
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Historically, inbred mouse/rat models have been utilized in the transplant field as their 

limited genetic variability removes much of the inter-subject variability from the 

experimental results, making results more reproducible and data interpretation simpler. 

However, recent studies have suggested that such genetically identical rodents may not 

serve as an accurate model for the human condition (which are generally outbred) in 

terms of their immune responses [45]. 

Thus the first goal of this research study was to evaluate the utility of the inbred versus 

outbred rat model for obtaining reproducible immunological lesions, in particular CLAD. 

Only 2 out of 20 outbred rats developed immunological lesions (severe ACR and CLAD)  

13
 
and 14 days post-transplant, while 18 (90%) died within 24 hours due to severe PGD. 

These data are similar to the few studies reported in the literature: in these studies, 

animals presented high mortality rate in the early peri-operative period which could be 

due to a hyperacute/severe acute rejection related to the high genetic variability and the 

development of different comorbidities related to the absence of an appropriate strain 

selection [46]. However this model, as underlined by other authors, could give some 

interesting insights in transplant pathology such as providing an opportunity to gain better 

understanding of the inflammatory events that lead to early graft injury [46]. 

The OLT of inbred rats (Lewis to Fisher 344) was definitely the most successful model 

for the development of reproducible immunological lesions (ACR and OB)  allowing the 

first objective of the research to be achieved. Severe ACR and/or OB was obtained in all 

long term (30 and 90 days after OLT) surviving inbred rats. Morphological findings of 

OB in the rats were extremely similar to those detected in clinical samples: the same early 

and late OB stigmata were found (e.g. eccentric and/or concentric fibro-proliferative 

lesion and vanishing airway bronchiolitis). Some authors have reported variable results in 

the OLT grafts in the Fisher 344Wister Kyoto obteining OB in only a few cases [47]. 
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In this work the Authors detected true OB lesions in only a few grafts; the majority were 

characterized by extensive tissue remodeling due to atelectasis. The same Authors using 

another strain (supplied by Charles River) obtained different results with a irreversible 

destruction of grafts within 14 days post-transplant [47]. These data emphasize the 

importance of genetic differences between rat sub-strains which can significantly 

influence the findings. In the present research the best time point was 90 days, obtaining 

OB in 60% or 50%, respectively, of animals with  (from day 1-to 7 days after OLT) or 

without immunosuppressive treatment. Animals with a delayed immunosuppressive 

treatment (from 7 to 14 days after OLT) showed a higher frequency of ACR than those 

treated earlier (from 1 to 7 days) (50% vs 40%); in these grafts ACR was present even in 

coexistence with OB. The same ACR frequency (50%) was observed in the grafts of 

animals without immunosuppressive treatment.  

Even if only small number of animals were included in the study the data obtained point 

out two important aspects: 1) the greater effectiveness of early immunosuppressive 

treatment with cyclosporine (from 1 to 7 days after OLT) on frequency of  ACR, and 2) 

the limited impact of cyclosporine treatment  on the development of OB.  

Regarding the first aspect, the finding is not surprising because, as in humans, the 

immediate post-transplant time is the period at higher risk of ACR, thus 

immunosuppressive treatment is extremely important and effective in this period. 

The limited impact of cyclosporine treatment on the development of OB in our inbred 

grafts supports the concept that ACR only partially influences the development of OB. 

Although the pathogenesis of progressive airway obstruction is unknown, different 

immunological mechanisms seem to be involved in the development of OB. The presence 

in our model of  high levels of DSA (IgG) in grafts with ACR or OB (72% and 34%), 

regardless of cyclosporine treatment supports  the evidence that humoral response can 
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play a key role in this process. In the human lung transplant field increasingly emerging 

data suggest that humoral immunity with HLA and not-HLA DSA, may have an 

important role in the development of CLAD [48]. In terms of the types of antibodies 

involved in autoimmune reactions, IgG has been the primary isotype identified. When 

looking at human lung allograft recipients, the anti-col (V) antibodies were all of the IgG 

type without evidence of any IgM [49].  

The cytokine IL17 has been implicated in the development of immune response to self-

antigens. 

In the inbred grafts of this research there was a high IL17 expression both in those with 

ACR and OB. The higher IL17 expression in graft with OB could be explained by 

important IL17 levels in epithelial and endothelial cells rather than in inflammatory cells 

(lymphocytes and macrophages) that are a common source of this cytokine. Based on a 

literature review, no previous studies in the transplantation setting have analytically 

evaluated IL17 expression distinguishing the different cellular sources. There is only one 

previous longitudinal study that examined IL17 expression in BAL and bronchial biopsy 

focusing on lymphomonocytes. The Authors detected a significant high IL17 level linked 

with the presence of non-specific airway CD8 T cell infiltration; IL17 expression was low 

in CD4 and granulocytes and fell with time post-lung transplantation [50]. The 

discrepancies with the present findings showing a more evident IL17 expression in 

chronic lesions (OB), may be related to two principal factors: first of all bronchial 

biopsies and not transbronchial biopsies were used. BOS lesions are predominantly 

located in small airway rather than in larger airways which were biopsied in the study. In 

other words the best tool to investigate BOS lesions was not used. Secondly, the focus 

was primarily on inflammatory cells (CD4, CD8 and granulocytes) leaving out other 

important cells such as macrophages, epithelial, and endothelial cells. Interestingly a high 
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IL17 level was found in epithelial and endothelial cells of grafts with OB. Although 

lymphomonocytes are the principal source of this cytokine, IL17 overexpression can 

occur in mucosal and cutaneous epithelial cells in response to stimulation with infective 

agents or other proinflammatory mediators [51]. Thus it could hypothesized that 

injured/activated epithelium acts in an autocrine way leading to the secretion of different 

cytokines such as IL17 which can influence epithelial modification favoring epithelial-

mesenchymal transition (EMT). IL17 endothelial expression has also been demonstrated 

as an important source in other inflammatory processes such as synovitis and rheumatoid 

arthritis [52].  

A few studies have detected IL17 overexpression in BAL from patients with CLAD [53; 

32]. In the present animal model, molecular analysis in BAL is not a mirror of IL17 tissue 

data: BAL IL17 mRNA levels were higher in grafts with ACR than those with OB. This 

contradictory result could be explained by the fact that epithelial and endothelial cells, 

two important sources of this cytokine in grafts with OB (see above), are rarely detected 

in BAL. Moreover, BAL cellularity was not characterized before molecular investigations 

due to the small quantity. This could significantly influence the data and could explain the 

discrepancies with immunohistochemical findings. 

An interesting finding of this research study was that the same IL17 expression pattern 

was detected in the transbronchial biopsies of the index cases that developed OB. All 

these data confirm the importance of this cytokine in lung immunological disorders, 

particularly CLAD, suggesting innovative opportunities for target therapies. 
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6) SUMMARY 

The main results of this PhD study can be summarized as follows: 

1) a reproducible inbred OLT animal model with immunological lesions, particularly 

ACR and OB, was obtained; 

2) morphological lesions of OB detected in rats are similar to those typically detected in 

human lung transplant, and reproduce both early and late stages of OB, up to the 

“vanishing bronchiolitis syndrome”; 

3) humoral immunological response (increased DSA and IL17 expression) plays a key 

role in ACR and CLAD; 

4) the cytokine IL17 mediated pathway needs to be further investigated because it can 

represent an important therapeutic target in the prevention of CLAD. 
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7) FUTURE RESEARCH BASED ON PHD RESULTS 

On the basis of in vitro studies performed by our partner of Pavia, CD44 has been 

identified as key adhesion molecule to develop targeted therapies to prevent CLAD and 

we are studying CD44 expression in our OLT model in order to assess biological activity 

of aerosolized nanoparticles (granted by CARIPLO Foundation). To this purpose, gold 

nanoparticles with a IL17 antagonist containing core and an anti-CD44 monoclonal 

antibody on the external surface, will be provided. 

In this early phase, immunohistochemistry using antibody anti-CD44 showed a strong 

positivity in inflammatory cells and fibroblasts. No staining was detected in epithelial 

cells.  

 

 

Emblematic images showing strong CD44 staining in fibroblasts and inflammatory cells 

in chronic (A) and acute (B) rejection. 
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9) CURRICULUM VITAE 

 

F O R M A T O  E U R O P E O  

P E R  I L  C U R R I C U L U M  

V I T A E  

 

 
 

 

INFORMAZIONI PERSONALI 

 

Nome  Nazarena Nannini 

Indirizzo  Via Israeliti, 11 – 44042 Cento (FE) 

Telefono  +390516835123  

+393402305984 

E-mail  nazarena.nannini@unipd.it; nazarena.nanninipcaf@alice.it  

 

Nazionalità  Italiana 

 

Data di nascita  22 Luglio 1976 

 

Luogo di nascita  Bologna 

 

Stato civile  Coniugata; 2 figli di anni 15 (Andrea) e anni 7 (Luca). 

 

 

ESPERIENZA LAVORATIVA 

  

• Date (da – a)  Gennaio 2011 ad oggi 

• Nome e indirizzo del 

datore di lavoro 

 Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari,  

Sezione di Anatomia Patologica, Università degli Studi di Padova 

• Tipo di impiego  Dottorando di Ricerca e Assegnista di Ricerca 

 

• Date (da – a)  Novembre 2010-Gennaio 2011 

• Nome e indirizzo del 

datore di lavoro 

 Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari,  

Sezione di Anatomia Patologica, Università degli Studi di Padova 

• Tipo di impiego  Borsista di Ricerca 

 

• Date (da – a)  2004-2010 

• Nome e indirizzo del 

datore di lavoro 

 Università di Modena e Reggio Emilia  

• Tipo di impiego  Specializzando in Anatomia Patologica   
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Principali mansioni e 

responsabilità 

  

Ambiti di ricerca: patologia polmonare e patologia 

trapiantologica.  

Attivita scientifica: 17 lavori per extenso (h Index: 4; 37 

citazioni totali), 23 lavori brevi ed abstracts.  

 

- Studi morfologici e molecolari di patologie toraciche 

neoplastiche (soprattutto carcinoma non a piccole cellule del 

polmone, tumori neuroendocrini, timomi) e non neoplastiche 

(soprattutto Fibrosi Polmonare Idiopatica e Broncopneumopatia 

Cronica Ostruttiva). 

- Partecipazione attiva nel Gruppo di studio multidisciplinare sul 

Trapianto di Polmone di Padova. 

-  Collaborazione con l’Istituto Oncologico Veneto, il 

Dipartimento di Pediatria, di Medicina Clinica e Sperimentale 

dell’Università degli Studi di Padova e con il Consorzio per la 

Ricerca sul Trapianto di Organi. 

- 11 relazioni a corsi e congressi nazionali o internazionali. 

- Attività di tutoraggio a studenti laureandi nel CDL in Tecniche 

di Laboratorio Biomedico e a studenti stranieri per stage 

organizzato dal Servizio Internazionale per gli Studenti di 

Medicina.  

 

ISTRUZIONE E 

FORMAZIONE 

 

• Date (da – a)  2004-2010 

• Nome e tipo di istituto 

di istruzione o 

formazione 

 Scuola di Specializzazione in Anatomia Patologica. Università 

degli Studi di Modena e Reggio Emilia. 

• Principali materie / 

abilità professionali 

oggetto dello studio 

  

• Qualifica conseguita  Specializzazione in Anatomia Patologica 

   

 

• Date (da – a)  1996-2004 

• Nome e tipo di istituto 

di istruzione o 

formazione 

 Corso di Laurea specialistica in Medicina e Chirurgia. Università 

degli Studi di Bologna. 
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• Principali materie / 

abilità professionali 

oggetto dello studio 

  

• Qualifica conseguita  Laurea Magistrale in Medicina e Chirurgia con votazione 108/110. 

   

• Date (da – a)  1990-1995 

• Nome e tipo di istituto 

di istruzione o 

formazione 

 Liceo Scientifico “N. Copernico” (Bologna) 

• Principali materie / 

abilità professionali 

oggetto dello studio 

  

• Qualifica conseguita  Maturità scientifica 

   

 

CAPACITÀ E COMPETENZE 

PERSONALI 

Acquisite nel corso della 

vita e della carriera ma non 

necessariamente 

riconosciute da certificati e 

diplomi ufficiali. 

 

MADRELINGUA  ITALIANO 

 

ALTRE LINGUA 

 

  INGLESE  

• Capacità di lettura  OTTIMO 

• Capacità di scrittura  OTTIMO 

• Capacità di espressione 

orale 

 OTTIMO 

 

 

ALTRE CAPACITÀ E 

COMPETENZE 

Competenze non 

precedentemente indicate. 

 Ottima conoscenza di Windows XP e VISTA (Word, Power Point, 

Excell), Internet,  

Software bioinformatici e database scientifici. 
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10) PRODUCTS OF THE RESEARCH 

 

A. Papers 

1
st
 year (2012) 

- Calabrese F, Lunardi F, Balestro E, Marulli G, Perissinotto E, Loy M, Nannini N, 

Valente M, Saetta M, Agostini C, Rea F. ”Serpin B4 isoform overexpression is associated 

with aberrant epithelial proliferation and lung cancer in idiopathic pulmonary fibrosis”. 

Pathology. 2012 Apr;44(3):192-8. 

- Schirosi L, Nannini N, Nicoli D, Cavazza A, Valli R, Buti S, Garagnani L, Sartori G, 

Calabrese F, Marchetti A, Buttitta F, Felicioni L, Migaldi M, Rea F, Di Chiara F, Mengoli 

MC, Rossi G. “Activating c-KIT mutations in a subset of thymic carcinoma and response 

to different c-KIT inhibitors”.Ann Oncol. 2012 Sep;23(9):2409-14.  

 2
nd

 year (2013) 

- Herpes virus infection is associated with vascular remodeling and pulmonary 

hypertension in idiopathic pulmonary fibrosis. Calabrese F, Kipar A, Lunardi F, Balestro 

E, Perissinotto E, Rossi E, Nannini N, Marulli G, Stewart JP, Rea F. PLoS One. 

2013;8(2):e55715. 

- Localized pleuropulmonary crystal-storing histiocytosis: 5 cases of a rare histiocytic 

disorder with variable clinicoradiologic features. Rossi G, De Rosa N, Cavazza A, 

Mengoli MC, Della Casa G, Nannini N, Colby TV. Am J Surg Pathol. 2013 

Jun;37(6):906-12. 

- The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate 

dehydrogenase. Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L, Nannini N, 

Calabrese F, Laudiero G, Esposito F, Landriscina M, Defilippi P, Bernardi P, Rasola A. 

Cell Metab. 2013 Jun 4;17(6):988-99. 
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 3
rd

 year (2014) 

- Necrotizing sarcoid granulomatosis with an uncommon manifestation: clinicopathological 

features and review of literature. Giraudo C, Nannini N, Balestro E, Meneghin A, 

Lunardi F, Polverosi R, Calabrese F. Respir Care. 2014 Sep;59(9):e132-6. 

- Pasello G, Urso L, Silic-Benussi M, Schiavon M, Cavallari I, Marulli G, Nannini N, Rea 

F, Ciminale V, Favaretto A. “Synergistic antitumor activity of recombinant human 

Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination 

with carboplatin and pemetrexed in malignant pleural mesothelioma.”J Thorac Oncol. 

2014 Jul;9(7):1008-17. 

- Elena Scagliori, Laura Evangelista, Annalori Panunzio, Fiorella Calabrese, Nazarena 

Nannini, Roberta Polverosi, Fabio Pomerri . Conflicting or complementary role of 

computed tomography (CT) and positron emission tomography (PET)/CT in the 

assessment of thymic cancer and thymoma: our experience and literature review. 

Thoracic Cancer ISSN 1759-7706 Accepted 

- Asymptomatic pulmonary Kaposi’s sarcoma in a patient submitted to lung transplant. N. 

Nannini, A. Rebusso, F. Calabrese, L. Battistella, M. Schiavon, M. Loy, , F. Lunardi, F. 

Calabrese, F. Rea  Submitted to Transplantation Proceedings 

 

B. Abstracts 

 

1
st
 year (2012) 

- E. Rossi, A. Floriani, C. Rinaldo, N. Nannini, G. Marulli, M. Loy, F. Rea, F. Calabrese, 

E. Balestro. “Idiopathic pulmonary fibrosis and silent microaspiration: the role of 

videolaringoscopy”. Eur Respir J 2012; 40: Suppl. 56, XXXs. 
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- N. Nannini, F. Lunardi, M. Vadori, A. Dedja, E. Cozzi, F. Rea, F, Calabrese. “A new 

experimental model of orthotopic lung transplantation: Padova experience”. Virchows 

Arch (2012) 461 (Suppl 1): S1-S332.  

- N. Nannini, F. Lunardi, E. Balestro, E. Rossi, M. Loy, M. Saetta, F. Rea, F. Calabrese. 

“Epitelial dysplasia and lung cancer in end-stage idiopathic pulmonary fibrosis: Padova 

experience”. Virchows Arch (2012) 461 (Suppl 1): S1-S332. 

- F. Calabrese, N. Nannini, F. Lunardi, M. Vadori, E. Cozzi, F. Rea. “Interleukin-17 tissue 

expression correlates with severity of acute and chronic allograft rejection in rat 

orthotopic lung transplantation”. Sottomesso all’ ISHLT 33
rd

 Annual Meeting and 

Scientific Session. 

2
nd

 year (2013) 

- F. Calabrese, M. Schiavon, F. Lunardi, N. Nannini, G. Marulli, S. Nicotra, P. Feltracco, 

G. Di Gregorio, M. Loy, F. Rea. Tissue Evaluation of Donor Lungs Preserved with the 

Organ Care System (OCS) Device: Experience of Padova. J Heart Lung Transplant 2013, 

32 (4S): S155. ISHLT 2013. 

- F. Calabrese, N. Nannini, F. Lunardi, M. Vadori, E. Cozzi, F. Rea. Interleukin-17 Tissue 

Expression Correlates with Severity of Acute and Chronic Allograft Rejection in Rat 

Orthotopic Lung Transplantation. J Heart Lung Transplant 2013, 32 (4S): S263. ISHLT 

2013. 

- N. Nannini, F. Lunardi, M. Schiavon, S. Baraldo, E. Balestro, M. Saetta, F. Rea, F. 

Calabrese. Morphological and molecular characterization of adenocarcinoma associated 

with chronic obstructive pulmonary disease (COPD). PPS 2013. 

- F. Lunardi; N. Nannini; E. Balestro; E. Rossi; F. Rea; M. Saetta; F. Calabrese. Clinical 

and morphological characterization of IPF phenotypes. PPS 2013. 
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- F. Lunardi, N. Nannini, B. Montini, F. Cinetto, M. Gnoato, M. Facco, C. Agostini, F. 

Calabrese. Evaluation of matrix-metalloproteinases (MMPs) and their tissue inhibitors 

(TIMPs) in bleomycin (BLM) – induced pulmonary fibrosis before and after GSK-3 

treatment. PPS 2013. 

-  F. Calabrese, N. Nannini, F. Lunardi, M. Vadori, E. Cozzi, F. Rea. “Overexpression of 

interleukin-17  pathway in  allograft rejection  of rat orthotopic lung transplantation.”  

Virchows Arch (2013) 463: 101-352. 

- F. Calabrese, N. Nannini, F. Lunardi, S. Baraldo, E. Bazzan, E. balestro, M. Schiavon, F. 

Rea, M. Saetta. “Adaptive immune response in COPD patients with and without α1 

antitrypsin deficiency.” Virchows Arch (2013) 463: 101-352.  

- Lunardi F, Nannini N, Balestro E, Rossi E, Loy M, Rea F, Calabrese F. Impact of 

combined CMV prophylaxis on short term complications after lung transplantation. 

AMIT 2013. 

- Balestro E., Calabrese F., Rea F., Rossi E., Lunardi F., Schiavon M., Bazzan E., Loy M., 

Marulli G., Nannini N., Turato G., Baraldo S., Cosio M., Saetta M. Distinct clinical and 

pathological phenotypes in IPF. European Respiratory Society Congress 2013, Barcelona 

Spain, 6-11 September 2013, Eur Respir J 2013 42: Suppl 57. P465.  

- Baraldo S., Bazzan E., Turato G., Molena B., Lunardi F.,Nannini N, Damin M., Schiavon 

M., Balestro E., Loy M., Rea F., Cosio M., Calabrese F., Saetta M. Similar adaptive 

immune response in COPD patients with and without α1 antitrypsin deficiency. European 

Respiratory Society Congress 2013, Barcelona Spain, 6-11 September 2013, Eur Respir J 

2013 42: Suppl 57: P599. 

- Calabrese F., Lunardi F, Nannini N, Balestro E, Andriolo L, Loy M, Rea F, Calabrese F. 

Trattamento profilattico combinato anti-CMV: impatto sulle complicanze a breve termine 

dopo trapianto di polmone. NIT 2013. 
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- Rebusso A, Loy M, Calabrese F, Battistella L,Schiavon M, Lunardi F, Nannini N, 

Marulli G, Nicotra S, Breda C, Rea F. Elevata incidenza di rigetto acuto nel trapianto 

polmonare per fibrosi cistica o bronchi ectasie. NIT 2013. 

- Schiavon M, Marulli G, Zuin A, Calabrese F, Nannini N, Comacchio GM, Rossi E, 

Battistella L, Rebusso A,  Rea F. Morphological and molecular characterization of cancer 

phenotypes associated with chronic obstructive pulmonary disease (COPD). XXI° 

European Congress ESTS, Birmingham 2013.  

 

3
rd

 year (2014) 

- F. Calabrese, M. Schiavon, N. Nannini, F. Lunardi, G. Marulli, G. Di Gregorio, A. 

Rebusso, E. Balestro, M. Loy, F. Rea Apoptosis and Expression of Inducible Nitric Oxide 

Synthase in Normothermic Lung Perfused With Organ Care System (OCS) Compared To 

Standard Cold Show Donor Lungs. ISHLT, 34th Annual Meeting and Scientific Sessions 

April 10 – 13, 2014, San Diego. 

- Nannini N, Lunardi F, Sadeghpour S, Schiavon M, Rebusso A, Loy M, Di Gregorio G, 

Rea F, Calabrese F. Apoptosis and expression of inducible nitiric oxide synthase in 

normothermic perfused lung compared to standard cold storage donor lungs. Virch Arch 

2014; 465:S47 

- Nannini N, Lunardi F, Loy M, Balestro E, Rea F, Calabrese F. Idiopathic pulmonary 

fibrosis: overexpression of trasforming growth factor beta in native lungs is associated 

with vessel remodeling and pulmonary hypertension. Virch Arch 2014; 465:S47. 

- Balestro E, Turato G, Polverosi R, Barbiero G, Zagallo S, Floriani A, Rea F, Calabrese F,  

Bazzan E, Schiavon M, Nannini N, Baraldo S, Saetta M, Cosio M. High resolution 

computed tomography (HRCT) can differentiate rapid from slow progressing Idiopathic 

pulmonary fibrosis (IPF). Eur Respir J 2014; 44: Suppl 58, P758. 
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- Turato G, Floriani A, Baraldo S, Balestro E,  Bazzan E, Schiavon M, Cazzuffi R, Damin 

M, Nannini N, Calabrese F, Rea F, Saetta M, Cosio MG. “Mucus production, lung 

inflammation and functional decay in IPF”. European Respiratory Society Congress, 

Munich Germany, 6-10 September 2014. Eur Respir J 2014; 44: Suppl 58, P3503. 

- Schiavon M, Marulli G, Verderi E, Nannini N, Feltracco P, Gregori D, Breda C, Rea F. 

Right sleeve pneumonectomy and right extended pneumonectomy: early and long term 

outcomes comparison. XXI° European Congress ESTS, Copenaghen 2014. 

- F. Lunardi, N. Nannini, E. Balestro, M. Loy, E. Perissinotto, F. Rea, F. Calabrese     

Elevato rischio di disfunzione primaria del graft e di infezione ricorrente in pazienti 

trapiantati per fibrosi polmonare idiopatica con associata infezione virale. SITO 2014. 

- F. Calabrese, M. Seveso, M. Loy, N. Nannini, E. Ruffoni, D. Sgarabotto, P. Feltracco, E. 

Cozzi, F. Rea. Trattamento del rigetto anticorpo-mediato nel trapianto di polmone: 

esperienza del centro trapianti di padova. SITO 2014. 

- A. Rebusso, F. Calabrese, L. Battistella, M. Schiavon, M. Loy, N. Nannini, F. Lunardi, F. 

Calabrese, F. Rea. Sarcoma di Kaposi polmonare asintomatico in paziente sottoposto a 

trapianto polmonare. SITO 2014: 

- N. Nannini, M. Schiavon, F. Lunardi, G. Marulli, G. Di Gregorio, A. Rebusso, E. 

Balestro, M. Loy, F. Calabrese, F. Rea. Ridotto danno apoptotico e minor espressione di 

i-nos nei polmoni preservati con ocs in comparazione alla preservazione standard. SITO 

2014. 
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C. Book chapters 

 

2
nd

 year (2013) 

- Fiorella Calabrese, Francesca Lunardi, Nazarena Nannini. Biobanks in rare disease. 

NEW INSIGHTS ON BIOBANKS. October 2013 CLEUP 

- Fiorella Calabrese, Nazarena Nannini, Massimo Rugge.  Classificazione patologica: 

evoluzione, luci e ombre. Tumori Neuroendocrini Polmonari: i carcinoidi. Ed med stage 

2013  

D. Speaker at National/International conferences 

1
st
 year (2012) 

- Pneumo Under 40. Il respiro giovane della pneumologia. Aspetti 

anatomopatologici di interesse pneumologico, Milano 10 febbraio 2012 

(Speaker). 

- NSCLC dall’esame istologico alla terapia: opinioni a confronto, Padova 14 

maggio 2012 (Speaker). 

- ECP 2012. 24th European Congress of Pathology. Praga 8 – 12 September 

2012 (Speaker). 

- “Il mesotelioma pleurico: aspetti clinico-patologici e giuridici, Padova 8 

novembre 2012. (Scientific Committee member) 

2
nd

 year (2013) 

- AIR MEETING ITALIA 2013- Milano, 28/29 Giugno 2013. (Speaker) 

- ECP 2013. 25th European Congress of Pathology. Lisbon 31 August– 4 

September 2013. (Speaker) 
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3
rd

 year (2014) 

- ECP 2014. 26th European Congress of Pathology. London 30 August– 3 

September 2014. (Speaker) 

- SITO 2014. XXXVIII Congresso Nazionale della Società Italiana Trapianti 

d’Organo. 24-26 settembre 2014. (Speaker) 

 

E. Other 

Awards: 

- Award “Il sogno di Valter” of the “Unione Trapiantati Polmone Padova” 

(UTPP), Padova 21 March 2012. 

- ECP 2014. 26th European Congress of Pathology. London 30 August– 3 

September 2014: bursary for oral presentation   

Tutorial activity:  

- Tutor of students attending a bachelor’s degree in Biomedical Techniques 

“Analisi mutazionale dell’oncogene KRAS da tessuti neoplastici 

polmonari processati con differenti metodologie” (2011-2012). 

- Tutor of 1 foreign student during their training in our lab, organized by 

SISM, with the project “Molecular approaches to chronic inflammatory 

lung diseases” (2012-2013). 


