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Sommario

Le zone di transizione tra entroterra e mare costituiscono una porzione di territo-

rio molto importante dal punto di vista ambientale e naturalistico. Esse rappre-

sentano un naturale filtro per tutte quelle specie chimiche che sono prodotte da

fonti di inquinamento diffuse (dilavamento di suoli agricoli) o occulte (scarichi

non collettati o irregolari) che possono creare, se non opportunamente trattate,

problemi di eutrofizzazione e di qualità delle acque lungo le coste. I tradizio-

nali metodi di depurazione si rivelano poco efficaci nel trattare questo tipo di

effluenti, per le grandi portate da gestire e per le relativamente basse concentra-

zioni di inquinanti. Risulta importante quindi, nell’impossibilità di impiegare

i tradizionali impianti di depurazione, comprendere le dinamiche di trasporto

negli ambienti naturali (fiumi e aree umide) e i meccanismi di rimozione degli

inquinanti in tali zone, in modo da poterle utilizzare per riassorbire, in modo

sostenibile e naturale, il carico di inquinanti che altrimenti raggiungerebbe diret-

tamente le coste. A questo scopo é necessario focalizzare l’attenzione sui processi

di ritenzione e sulla formulazione di appropriati strumenti modellistici che con-

sentano ai tecnici e ai modellisti una comprensione sufficientemente ampia dei

fenomeni e forniscano loro degli strumenti pratici che aiutino nella gestione e

riprogettazione di queste aree tampone.

Nel Capitolo 1 viene analizzato il ruolo di differenti processi di trasporto foca-

lizzando l’attenzione su diverse scale spaziali e temporali di analisi e descrivendo

i principali approcci modellistici utilizzati per trattare ciascun fenomeno. E’ evi-
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Sommario

denziato il contributo di ciascun termine al bilancio di massa e sono prese in

considerazione le chiusure modellistiche più classiche oggi adottate.

Nel Capitolo 2 si analizzano le caratteristiche dei processi di ritenzione in

tre diversi corsi d’acqua mettendo in relazione le diverse chiusure modellisti-

che adottate in funzione delle caratteristiche planimetriche degli alvei, della lo-

ro composizione vegetazionale e delle caratteristiche di permeabilità del fondo.

L’analisi é eseguita utilizzando il modello di trasporto monodimensionale STIR

(Solute Transport In Rivers) che si presta a descrivere le curve di concentrazione

implementando una vasta gamma di fenomeni di ritenzione a diverse scale tem-

porali, descritte da specifiche distribuzioni dei tempi di residenza del soluto in

ciascun comparto di ritenzione. L’accordo dei dati sperimentali con le curve di

concentrazione mostra come si possa, tramite analisi inversa, caratterizzare un

fiume dal punto di vista della ritenzione.

Il Capitolo 3 prende in considerazione un’area umida bidimensionale di cui

si risolvono, con un approccio modellistico alle acque basse, l’idrodinamica e il

trasporto di massa. Una opportuna procedura di analisi dei risultati numerici é

utilizzata per determinare le distribuzioni dei tempi di residenza dell’area umida

in funzione di una particolare distribuzione di vegetazione che riproduce un ca-

nale principale delimitato da due zone laterali a maggiore densità di vegetazione.

A diversi rapporti di densità corrisponde una specifica forma della distribuzione

che presenta, al di sotto di uno specifico valore di soglia, una evidente bimodalità.

Per rappresentare opportunamente tale fenomeno, comune negli ambienti natu-

rali, con un approccio modellistico mono-dimensionale di più semplice utilizzo,

é proposta in questo capitolo, una nuova versione del modello STIR denominata

STIR-DTD.

Il Capitolo 4 presenta un approccio innovativo di ottimizzazione alla proget-

tazione di un’area umida. La risoluzione numerica di un modello bidimensionale

alle acque basse tramite il modello TELEMAC2D é integrata infatti con un algo-

II



Sommario

ritmo evolutivo di ottimizzazione. Allo stadio iniziale dell’evoluzione, é definita,

in modo casuale, una popolazione di individui (ciascun individuo rappresenta

una specifica distribuzione di zone vegetate) di cui il modello valuta l’efficienza

depurativa. A partire dal livello di efficienza depurativa dimostrata da ciascuna

distribuzione, l’algoritmo evolutivo, tramite specifici operatori genetici che mi-

mano i processi di selezione naturali, evolve la popolazione verso la distribuzione

di vegetazione che massimizza l’abbattimento di inquinanti. I test effettuati mo-

strano come la distribuzione ottimale evolva verso configurazioni che tendono a

coprire tutta l’area vegetata disponibile o, qualora questa sia fissata, a prolungare

il più possibile i percorsi di flusso all’interno delle aree vegetate.

Il Capitolo 5 riporta i risultati di una prima analisi eseguita su campi random

di vegetazione, descritti da una opportuna funzione densità di probabilità spazia-

le (Gaussiana). La risoluzione tramite un modello bidimensionale accoppiato ad

uno di trasporto e decadimento mostra come l’efficienza depurativa e la portata

siano correlabili con i parametri (densità media, varianza e lunghezza di corre-

lazione) che caratterizzano la particolare distribuzione statistica di vegetazione

adottata.
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Abstract

Transitional areas, between inland and coastal environments, represent an im-

portant habitat for their environmental and natural value. They act as a natural

buffer for all those chemicals which are produced by diffused sources of pollu-

tants (run-off rain water from agriculture) or from hidden sources (sewers not

connected to a wastewater treatment plant). Pollutants produced by this type of

sources can lead, if not conveniently treated, to eutrophication and to other water

quality problems along coastal areas. Traditional wastewater treatment methods

appear to be not effective in these conditions because of the big volumes of water

and the relatively low concentration of dissolved pollutants to be treated. Since

traditional wastewater treatment plants can not be used, it becomes important to

better understand transport phenomena in transitional environments (rivers and

wetlands) and all the removal processes in such zones in order to manage them to

treat all the chemicals before they arrive to the coastal areas. Particular attention

must be therefore stressed on retention processes and on the formulation of pre-

dictive models which allow scientists and engineers to better manage and design

these buffer areas.

In Chapter 1, the role of different transport processes is analyzed focusing

the attention on different spatial and temporal scales. Principal modeling ap-

proaches are discussed underlining the role of each term on the mass balance

equation and the most classical model closures are described in this chapter.

In Chapter 2, retention characteristics of three different rivers are analyzed,
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relating different model closures with planimetric features of the rivers, their

vegetational cover and bottom permeability. The analysis is carried on using STIR

(Solute Transport In Rivers) model, a one-dimensional solute transport model

that describes concentration breakthrough curves implementing a wide set of

retention phenomena characterized by different time scales, represented by a

specific residence time distribution in each retention domain. Comparison of

modeling results and experimental data shows the capability of the model to

characterize, with an inverse analysis, retention processes that occur in a river.

In Chapter 3 a two-dimensional schematic wetland is studied with a numer-

ical model that solves, with a shallow water approach, hydrodynamic and mass

transport equations. A specific processing of the numerical results is used to de-

termine numerical residence time distributions of the wetland as a function of a

particular vegetation distribution that reproduces a central channel delimited by

two lateral, more densely vegetated, banks. To each different density ratio it cor-

responds a specific shape of the residence time distribution, that present a clear

bimodality below a critical value. To model this specific phenomenon, typical in

natural environments, a simple and a more easy to use one-dimensional model

approach is implemented in the former STIR model. The new version is called

STIR-DTD.

In Chapter 4 a new innovative optimization approach to wetland design is de-

fined. Numerical solution of a two-dimensional shallow water model using the

open-source suite TELEMAC2D, is integrated with an evolutionary optimization

algorithm. At the initial stage of the evolution strategy, the removal efficiency of

a random population of individuals (each individual represents a specific distri-

bution of vegetated patches over the wetland domain) is evaluated numerically

solving a shallow water hydrodynamic model coupled with a solute transport

model. Once the removal efficiency is known, the evolutionary algorithm, us-

ing a wide range of selection operators that mimic natural evolution, evolve the
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initial population to an individual that maximizes the pollutant mass removal.

Performed tests show how the optimized distribution tends to cover the maxi-

mum wetland available area or, if a maximum vegetated area is kept fixed, how

the distribution tends to lengthen the flow paths between the inlet and the outlet

section of the wetland.

Chapter 5 shows results of a preliminary analysis on the removal efficiency of

randomly distributed vegetation characterized by a Gaussian spatial probability

density function. Vegetation density is treated as a random variable character-

ized by a mean, a variance and an homogeneous correlation length. The effect of

each distribution on the removal efficiency is numerically evaluated by a coupled

hydrodynamic and solute transport that accounts for the pollutant decay. Results

show how removal efficiency is correlated with the statistical parameters of the

space probability density function used to generate the random filed.
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Chapter 1
Physical transport processes in natural environments

1.1 Introduction

This chapter presents an overview of the transport processes in natural environ-

ments. Main equations are derived and described showing the most common

model closures used to treat spatial and temporal irregularities of the main vari-

ables with a particular attention on mixing processes over two dimensional do-

mains. At the end of the chapter, a brief description of transient storage processes

and modeling of reactive solutes is presented.

1.2 Combined advection-diffusion processes

In transport processes, the quantity of interest is the mass of a dissolved sub-

stance subject to advection and diffusion. Advection is the process by which a

conserved quantity is transported in a fluid in motion whereas diffusion is the

process by which matter is transported from one part of the domain to another

as a result of random molecular motions. Fluid motion is characterized by the

velocity vector field u = (u,v,w) and the mass of a dissolved substance per unit

volume is described by a concentration c [ML−3]. The mass flux, that account for

both diffusion and advection processes, can be written as:

Φ = uc −Dm∇c , (1.1)
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1. Physical transport processes in natural environments

First term uc represents the convective component of the mass flux and the sec-

ond term −Dm∇c represents the diffusive component written as proposed by Fick

(1855). Fick’s approach describes the net mass flux of solute as the product of

the concentration gradient and the molecular diffusion coefficient Dm [L2 T−1].

Negative sign accounts for the direction of the flux from higher concentrations to

lower concentrations. To note that molecular diffusion does not exist as a phys-

ical phenomenon but represents only an ensamble behavior of solute particles.

Indeed, each single particle does not feel the effect of the concentration gradient

but moves following the Brownian motion: only at a larger scale small Brownian

movements produce, under probabilistic point of view, a mass transport from

zones characterized by high concentrations to zones characterized by low con-

centrations of solute.

The net flux Φ can be coupled with the mass balance equation to model diffu-

sion and transport processes of solutes in fluids. The mass balance equation can

be written as:
∂c
∂t

= −∇ · (cu−Dm∇c) . (1.2)

Molecular diffusion coefficient Dm [L2 T−1] can be regarded as a constant and de-

pends on solute and solvent characteristics. In water environments, molecular

diffusion is of the order of 10−8 ÷ 10−10 m2 s−1 depending on whether the solute

molecules are polar or not. If we develop the previous equation, for isotropic

molecular diffusion and an incompressible fluid (∇ · u = 0), equation (1.2) be-

comes:
∂c
∂t

+ u · ∇c =Dm∇2c (1.3)

that is, in extended notation:

∂c
∂t

+u
∂c
∂x

+ v
∂c
∂y

+w
∂c
∂z

=Dm

[
∂2c

∂x2 +
∂2c

∂y2 +
∂2c

∂z2

]
. (1.4)
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u (x,t)

u (x,T2)
∼

u (x,T1)
∼

T1
T2

t

Figure 1.1. Reynolds time-averaging procedure: average of an erratic signal of velocity

over two different time scales. The choice of the time step for the average can change

averaging results

Equation (1.4) is valid for conservative solutes (no mass consumption or produc-

tion of solute) and neutral solutes (not affected by gravity forces). The structure

of this latter equation is similar to the Navier-Stokes equations, for which the

transported variable is the momentum and the kinematic viscosity ν replaces

the molecular diffusion coefficient. Kinematic viscosity ν [L2 T−1] has indeed the

same role of molecular diffusion coefficient Dm in momentum diffusion process.

1.3 Turbulent diffusion

Equation (1.4), which is the exact equation for instantaneous motions of flow and

solute, cannot be solved directly in most cases, because of limited computer ca-

pacity. In mixing process, relevant variables (u, v, w and c) have a fluctuating be-

havior in time (turbulent flow) that acts at a scale often not relevant for practical

engineering problems. Nevertheless, these fluctuations are important to explain

why experimentally observed diffusivity values are higher than molecular ones.

As proposed by Osborne Reynolds, a general variable χ can be divided into mean

3



1. Physical transport processes in natural environments

and fluctuating quantities as described in Figure 1.1.

χ(x, t) = χ̃(x,Ta) +χ′(x, t) (1.5)

where χ̃(x,Ta) = 1
Ta

∫
Ta
χ(x, t)dt is the average value related to the averaging time

scale Ta and χ′(x, t) is the fluctuating component related to the average value

χ̃(x,Ta). It is interesting to note that, for time intervals smaller than the time

scale used for the average, the term χ̃(x,Ta) is a constant value whereas for time

scales larger than the time scale Ta, χ̃(x,Ta) can have different values in time. Each

mixing process has its specific time scale and thus a specific time interval for the

average. Rewriting each variable as described in equation (1.5), the advection-

diffusion equation becomes:

∂(̃c+ c′)
∂t

+ (ũ +u′)
∂(̃c+ c′)
∂x

+ (ṽ + v′)
∂(̃c+ c′)
∂y

+ (w̃+w′)
∂(̃c+ c′)
∂z

=

D(
∂2(̃c+ c′)
∂x2 +

∂2(̃c+ c′)
∂y2 +

∂2(̃c+ c′)
∂z2 )

(1.6)

If we now average each term over the time scale interval Ta and remember the

following properties of the averaging procedure and of incompressible fluids:

- 1
Ta

∫
Ta

(χ1 +χ2)dt = 1
Ta

∫
Ta
χ1 dt + 1

Ta

∫
Ta
χ2 dt

- ∂
∂x ( 1

Ta

∫
Ta
χdt) = 1

Ta

∫
Ta

∂χ
∂x dt)

- 1
Ta

∫
Ta
χ′ dt = 0

- ∂u
∂x + ∂v

∂y + ∂w
∂z = ∂u′

∂x + ∂v′

∂y + ∂w′

∂z = 0

We thus obtain:

∂c̃
∂Ta

+ ũ
∂c̃
∂x

+ ṽ
∂c̃
∂y

+ w̃
∂c̃
∂z

=Dm

[
∂2c̃

∂x2 +
∂2c̃

∂y2 +
∂2c̃

∂z2

]
−
�∂(u′c′)

∂x
+

�∂(v′c′)
∂y

+
�∂(w′c′)
∂z


(1.7)
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1.3 Turbulent diffusion

Equation (1.7) is the equivalent of equation (1.4) for the time-averaged quantities

with the addition of a specific term which is a result of the averaging procedure

and is a measure of the transport process caused by turbulent fluctuations of

u and c. Boussinesq proposed a closure model that assumes, in analogy with

molecular diffusion, a direct proportionality between turbulent mass fluxes and

the opposite of the concentration gradient:

ũ′c′ = (ũ′c′ ṽ′c′ w̃′c′)T = −Dii
∂c̃
∂xi

(1.8)

where Dii are the eddy diffusion coefficients in the three spatial directions x, y

and z, respectively. If velocity and concentration fluctuations were statistically

independent, then these terms would produce no net diffusive mass fluxes. It

turns out instead that velocity and concentration irregularities are correlated and

that the integral effect over time of turbulent fluxes is always much higher than

the fluxes induced by Brownian motion. The time-averaged mass transport equa-

tion becomes:

∂c̃
∂Ta

+ ũ
∂c̃
∂x

+ ṽ
∂c̃
∂y

+ w̃
∂c̃
∂z

=

∂
∂x

[
(Dm +Dxx)

∂c̃
∂x

]
+
∂
∂y

[
(Dm +Dyy)

∂c̃
∂y

]
+
∂
∂z

[
(Dm +Dzz)

∂c̃
∂z

] (1.9)

Usually the mixing processes caused by turbulence are more important than

molecular diffusion processes and thus molecular diffusion coefficient Dm can be

neglected. Two main differences characterize equation (1.9) from equation (1.4):

the first one is thatDii are determined by the flow regime (in particular by the tur-

bulence intensity) while Dm does not depend on flow regime but only on solute-

solvent properties. If, for example, Reynolds number of the flow tends to small

values, turbulence has a secondary role in mixing process and the fate of solute

is determined mainly by molecular diffusion. If, in contrast, Reynolds number

5



1. Physical transport processes in natural environments

is high, the turbulence of the flow field is the prevalent mixing mechanism. The

second difference is that eddy diffusivities are scale dependent (i.e. the charac-

teristic time scale chosen of the time-averaging procedure can vary in relation to

the size of eddies that come into play). The size of the eddies is controlled by the

size of the flow domain thus, in deep water bodies such as sea or lakes, diffusion

processes involve several different time scales whereas in rivers, in which eddy

size is controlled by depth and width, the diffusivities are not controlled by the

scale of the process. Mean vertical eddy diffusivity Dzz in rivers can be calculated

using the logarithmic velocity profile:

Dzz = 0.067u∗h, (1.10)

where h is the water depth and u∗ is the shear velocity. An approximate expres-

sion of the coefficient Dyy valid for uniform straight channels was empirically

derived by Fischer et al. (1979) based on laboratory and field experiments:

Dyy = 0.15u∗h. (1.11)

In natural streams, characterized by variations of both flow depth and width

(presence of meanders for example), enhances transverse mixing. Under these

conditions, Fischer et al. (1979) suggested the following relationship:

Dyy = 0.6u∗h . (1.12)

For longitudinal mixing it can be often assumed that Dxx =Dyy .

1.4 Dispersion

Dispersion is the mixing process that arises from advection and diffusion in pres-

ence of velocity gradients. Role of velocity gradients becomes clear if, after the

6



1.4 Dispersion

MODELING OF TRANSPORT PROCESSES 4.1 - General Modeling Overview 

45 

u (x,t)

u (x,T2)
∼

u (x,T1)
∼
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t
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_ _

Figure 1.2. Example of the three mixing zones in a river. Near the injection (a) there is

a strongly three dimensional process whereas further downstream the concentration has

only an evident transversal gradient (b). When transversal concentration gradients are

averaged by lateral mixing, only longitudinal gradients are relevant (c). The averaging

process over the transversal area, typical of a one-dimensional models, can give good

approximation of the real process only in (c) whereas other more complex models should

be applied to model zones (a, b).

time-averaging procedure described in § 1.3, also a spatial-averaging procedure

is performed. A spatial-averaging procedure is often convenient to simplify the

description of mass transfer by averaging velocity and concentration over the

vertical direction (shallow water approach), over a transverse direction or over

a cross-section (unidirectional approach). Each mixing process is characterized

by its typical spatial scale(s) of interest and therefore can be described only by a

specific spatial-averaging procedure.

The example of a river (Figure 1.2) can be chosen to explain this concept:

immediately around the injection point, the mass transfer is strongly three di-

mensional and is strongly dependent on the type of the injection and on the local

flow regime. For this reason, to adequately model mass transfer near the injec-

tion point, is important to use a three dimensional model that takes into account

the complete set of spatial and temporal variables. At some distance from the

7



1. Physical transport processes in natural environments

injection, when the complete mixing along the vertical direction is already hap-

pened, transversal and longitudinal concentration gradients control the process.

In this case, a vertical (depth) averaging procedure can be performed reducing

the complexity of the model to a two dimensional, depth-averaged model. Fur-

ther downstream, when also transversal concentration gradients have been mod-

ulated, only longitudinal concentration gradients control the mixing process. In

this case a cross sectional-averaging procedure can simplify the model leading to

a one-dimensional model.

1.4.1 Two dimensional depth-averaged model

To model a natural system for which the depth is small compared to the other

two horizontal dimensions, equation (1.9) is integrated over the depth obtaining:

∂(hC)
∂t

+
∂(hUC)
∂x

+
∂(hVC)
∂y

=
∂
∂x

(
Exxh

∂C
∂x

)
+
∂
∂y

(
Eyyh

∂C
∂y

)
(1.13)

where U, V , C are depth averaged quantities and Eii are horizontal dispersion

coefficients. Values of these coefficients depend on the handled problem and

specific formulations can be used. Some examples related to vegetation density

have been introduced in the next chapters.

1.4.2 One dimensional cross-sectional averaged model

In the case of cross-sectional averaging of the physical quantities, and no ad-

ditional exchange fluxes through the lateral boundary are considered, the mass

balance equation is reduced to the one-dimensional form:

∂C
∂t

+U
∂C
∂x

=
1
A
∂
∂x

(
AK

∂C
∂x

)
, (1.14)

where C and U are the cross-sectional average concentration and flow velocity,

respectively, A is the flow cross-sectional area [L2], and K is the longitudinal
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1.4 Dispersion

MODELING OF TRANSPORT PROCESSES 4.1 - General Modeling Overview 
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∼
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Figure 1.3. Differences in longitudinal transport processes in relation to the value of

transversal mixing. In presence of fast trasversal mixing, the solute particles move with

the average flow velocity and thus longitudinal dispersion has a low value. In presence of

slow transversal mixing, the solute moves with local velocity of flow leading to a relevant

longitudinal dispersion.

dispersion coefficient [L2 T−1]. Under the assumption of constant A and K , the

solution of equation (1.14) for an instantaneous injection of a mass of tracer M0

in x = 0 at time t = 0 is given by:

C(x, t) =
M0/A√
4πKt

exp
[
−(x −Ut)2

4Kt

]
. (1.15)

The magnitude of the longitudinal dispersion coefficient K varies from case to

case and is strongly related to the mixing velocity along the transversal direc-

tion. Usually, when transversal turbulent diffusivity Dyy is small, longitudinal

dispersion is high and, in contrast, when transversal turbulent diffusivity Dyy is

9



1. Physical transport processes in natural environments

high the value of longitudinal dispersion is small. The competitive role of the

transverse turbulent mixing process against the non-uniformity of the velocity

distribution in determining the variance of the concentration distributions is due

to the ability of the solute particle to sample the cross sectional area (Figure 1.3).

If the transverse mixing process is fast, solute particles sample the entire cross

sectional area experimenting the whole velocity profile. Particles move with the

same average velocity U and the spreading of the solute along the longitudinal

direction is therefore limited. On the contrary, if transverse mixing is slow, par-

ticles tend to maintain the same position in the flow domain experimenting only

a limited velocity range. This characteristic produces a longitudinal spreading

of the solute cloud that lead to an higher value of longitudinal dispersion coeffi-

cient. To note that vertical turbulent mixing act in the same manner as transverse

turbulent mixing but has a limited role due to the fact that vertical mixing can

be regarded, in natural rivers, as instantaneous. An approximated relationship

for K valid for streams with large width-to-depth ratios was suggested by Fischer

(1975):

K = 0.011
U2B2

r

hu∗
, (1.16)

1.5 Additional fluxes on the boundary

In § 1.4 a formulation of one-dimensional mass transfer equation has been pro-

posed assuming the absence of mass solute fluxes through the river bed and

through water surface. Although very useful, this simple model can describe

only a small part of the real mixing processes in natural environments. Presence

of retention in dead zones, advection and diffusion of decaying or volatile solutes,

hyporheic contamination and solute consumption by biological components can

clearly modify the mass transfer equation. For this reason, equation (1.14) can be
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1.5 Additional fluxes on the boundary

extended in order to account for these different processes as follows:

∂CA
∂t

+
∂QC
∂x

=
∂
∂x

(
AK

∂C
∂x

)
±FBP ±FABr − k′CA± S , (1.17)

where Q is the discharge of the river [L3 T−1], FB is the mass flux [ML−2 T−1] of

solute through the wetted perimeter P [L], FA is the mass flux of solute [ML−2 T−1]

through the surface Br [L], k′ is a decay rate [LT−1] and the term S [ML−1 T−1] is

a general production/consumption term.

The decay of a solute represented by the term −k′CA is a spontaneous phe-

nomenon independent of the presence of other substances and is almost ever

associated with the radioactive decay of the substances. Radioactive decay is

however a very rare mechanism that acts at very long time scales. For common

engineering purposes, this mechanism is often discarded but its mathematical

formulation is very helpful to treat other non-conservative processes in natural

environments. Other phenomena, although not related with the natural radioac-

tive decay, can be indeed rewritten with the same mathematical formulation. This

is the case of a first order decay chemical breakdown in wetlands or the loss of a

volatile solute through the water surface.

Other mass exchanges with different types of storage zones as vegetated pock-

ets, dead zones and permeable layers can happen in natural environments, as

illustrated in Figure 1.4. Experimental observations of the presence of these ad-

ditional boundary fluxes that can not be represented with the classical advection-

diffusion equation have been provided since the early 50’s by a number of studies

using tracer tests (Elder, 1959; Krenkel and Orlob, 1962; Thackston and Schnelle,

1970; Nordin and Sabol, 1974; Day, 1975; Nordin and Troutman, 1980). These do-

mains have fundamental role in determining the fate of transported substances

for three reasons: first of all, they increase the dispersion of solute in the sur-

face water; second, they control the exchange between the stream water and the

11



1. Physical transport processes in natural environments

Figure 1.4. Illustration of the transport processes acting in a river. The downstream

transport of solutes is governed by advection and hydrodynamic dispersion in the main

stream, and by mass exchanges with different retention zones. These include vertical

exchanges with the underlying sediments, where adsorption process may take place; lat-

eral exchanges with surficial dead zones, typically vegetated pockets; and horizontal hy-

porheic flows induced by planimetric variation of the stream direction. (Figure kindly

provided by authors, (Marion et al., 2008)).

surrounding aquifer; third, they govern the storage of contaminants into the bed

sediments. In the last 40 years, several models have been proposed to represent

these additional fluxes and the retention effect caused by the transient storage

of substances in these retention domains: among the others, it has to mention

the TSM model presented by (Bencala and Walters, 1983), OTIS model proposed

by (Runkel, 1998) and the most recent STIR model (Marion and Zaramella, 2005;

Marion et al., 2008) that has been taken as a reference model for the analysis pre-

sented in the next chapters.
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Chapter 2
STIR model: application to three river environments1

2.1 Introduction

Retention processes in streams affect the fate of nutrients and contaminants by

controlling mass exchanges between different compartments. A distinction is

typically drawn between a main channel, where the velocity is relatively high,

and different retention domains, where the flow velocity is relatively slow. Veg-

etated zones, side pockets of recirculating or stagnant water and the porous

medium represent storage domains where solutes can be temporarily retained

and gradually released over time. While temporarily trapped in the storage

zones, solute can be adsorbed onto sediments or uptaken by the microfauna,

therefore retention are important in determining both the vulnerability of a river

to contamination processes and the long term evolution of a fluvial ecosystem.

The increasing interest in mass exchanges with storage zones, in particular with

the hyporheic zone, has led to the formulation of different mathematical models.

The Transient Storage Model (TSM) presented by (Bencala and Walters, 1983) has

1The contents of this chapter have been published in: A. Bottacin-Busolin, A. Marion, T. Mus-

ner, M. Tregnaghi, M. Zaramella, Evidence of distinct contaminant transport patterns in rivers

using tracer tests and a multiple domain retention model, Advances in Water Resources, 34 (2011),

737-746.
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2. STIR model: application to three river environments

been widely applied in the last decades to both large rivers and small streams. In

the TSM, the net mass exchange between the main channel and the storage zones

is represented as a first-order mass transfer implying an exponential residence

time distribution (RTD) (Hart, 1995). More complex mathematical formulations

have been developed in the last few years to represent mass exchanges with the

hyporheic zone. Haggerty et al. (2000) suggested an advection-dispersion mass

transfer equation in which the transient storage is expressed through a convolu-

tion integral of the in-stream concentration and a residence time distribution. A

similar mathematical formulation was used by Wörman et al. (2002) who devel-

oped a model (ASP, advective-storage path) based on Elliott and Brooks (1997a,b)

theory of bedform-induced hyporheic exchange. Recently the application of a

fractional advection-dispersion equation (Deng et al., 2006) and of the Contin-

uous Time Random Walk (Boano et al., 2007) has also been suggested. In this

chapter, the general residence time approach of the STIR model (Solute Trans-

port In Rivers) (Marion and Zaramella, 2005; Marion et al., 2008) is used.

2.2 Overview of the STIR model

The STIR model (Solute Transport In Rivers) was presented in its first form by

Marion and Zaramella (2005) and then further extended by Marion et al. (2008).

The model represents classical longitudinal dispersion of a solute in a river cou-

pled with transient storage mediated by different storage domains, each of them

is characterized by a proper residence time distribution. Differently from other

classical models as OTIS and TSM, STIR approaches the problem of the propaga-

tion of a solute along the river using a stochastic approach: the time needed by a

particle to travel a distance x, indicated with T , is a random variable with proba-

bility density function r(t;x) and can be viewed as a sum of the time spent in the

main current (TW characterized by its probability density function rW (t;x)) and

of the time TS that is the sum of the single residence times within the N storage
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2.2 Overview of the STIR model

domains ( TS =
∑N
i=1TSi).

A particle, during its permanence in the superficial main current, can be

trapped n times in the i-th retention domain. The number of times the par-

ticle is trapped is a discrete random variable Ni with conditional distribution

pi(n|TW = tW ). If each trapping event is assumed to be independent to the other,

the time TSi spent in each retention domain is characterized by the following

conditional density:

rSi|n(t) = ϕi(t) ∗ . . .∗︸︷︷︸
n times

ϕi(t) = [ϕi(t)]
∗n , (2.1)

where the symbol (∗) denotes time convolution and ϕi(t) represents the probabil-

ity density function of the specific retention domain. The conditional density of

TSi given TW = tW is thus:

rSi(t|tW ) =
∞∑
n=0

pi(n|tW )rSi|n(t) , (2.2)

where pi(n|tW ) is the uptake probability of a particle to be trapped n times, given

TW = tW . For uniformly spaced storage zones, the uptake probability can be

modeled by a Poisson distribution with parameter αitW where αi represents the

flow rate into the storage zone per unit superficial volume. Equation (2.2) holds

for each N -th retention domain, thus, the conditional density of the total time TS

spent in the retention domains, given TW = tW is:

rS(t|tW ) = rS1
(t|tW ) ∗ . . . ∗ rSN (t|tW ) . (2.3)

The probability density function rW (t;x) of the time TW spent in the main current

can be derived from the solution of the advection diffusion equation. For an input

mass pulse, when the computational domain is x > 0 and boundary condition at
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2. STIR model: application to three river environments

infinity C(x→∞, t) = 0, holds:

rW (t;x) =
x

2
√
πKt3

exp
[
−(x −Ut)2

4Kt

]
. (2.4)

Once rS(t|tW ) and rW (t;x) are known, is possible to express the overall residence

time distribution within a stream reach of length x as:

r(t;x) =
∫ t

0
rW (t − τ ;x)rS(τ |t − τ)dτ . (2.5)

Equation (2.5) can be therefore used to determine the in-sream solute concentra-

tion (Bottacin Busolin, 2010): the quantity r(t;x)dt represents the fraction of mass

flowing through the downstream section in the time interval [t, t + dt], and the

flux is given by the convolution of r(t;x) with the input flux. For a mass pulse

concentrated in time this is given by M0/Aδ(t). The variation per unit time of

the total concentration is equal to the opposite of the divergence of the local flux,

(M0/Aδ(t)) ∗ r(t;x), hence:

∂Cδ(x, t)
∂t

= − ∂
∂x

∫ t

0
M0/Aδ(t)r(t − τ ;x)dτ = −M0

A

∂r(t;x)
∂x

, (2.6)

where the subscript δ is used to denote the solute concentration generated by a

mass pulse. From the solution of Equation (2.6), through time convolution, can

be derived solutions for other kind of boundary conditions different from mass

pulse.

2.3 Application of STIR in three rivers: sites description

The basin of the Yarqon River spreads out along a wide area of the Israeli territory,

from the West Bank down to the plain of Tel Aviv. The total extension of the basin

is approximately 1805 km2. The most important affluent of the Yarqon River is

the Ayalon River, which drains all the southern area, including Jerusalem region,
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2.3 Application of STIR in three rivers: sites description

Figure 2.1. Pictures of the Yarqon river illustrating typical study reaches.

and flows into the Yarqon River 2 km upstream of its estuary. It flows entirely

along the coastal strip: the total length is 28 km, the sources altitude is about 50

m above sea level, and its average bed-slope is 0.0018. These characteristics of

the river profile involve the formation of many meanders, which are typical of

mild bed slopes. The population of the entire river basin counts approximately

750,000 inhabitants. Agricultural and industrial activities are present in this

area, as well as trading and urban development, leading to one of the highest

population density in Israel. The growth of the population, associated to the

industrial and agricultural development since 1948, made water quality of the

Yarqon River increasingly polluted. Contamination is mainly due to the drawing

of the river sources and the drainage of the industrial effluents into the main river.

A picture of a typical study reach is given in Figure 2.1. In the study reach, the

river is characterized by thick bank vegetation, no submerged vegetation on the

bed and a sandy bed. The Brenton torrent is an Italian torrential stream located

in the area of Treviso in Northern Italy. The tributary catchment has an area of

approximately 60 km2 and the elevation from the average sea level varies from

45 to 496 m; the length of the channel is about 13.5 km with an average slope

of 0.0042. The Brenton catchment basin was formed for the most part by the

deposition of sediments transported by the Piave river since the last glaciations.
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2. STIR model: application to three river environments

Figure 2.2. Pictures of the Brenton torrent illustrating typical study reaches.

The transported sediments are primarily coarse debris of grit and limestone. The

bed is made of a thick, high permeable layer of gravel and is characterized by

the presence of iron hydroxide due to the dissolving and hydrolyzing effect that

meteoric waters, containing carbonic acid, exert on the gravel. The overall length

of the study reach is about 5.8 km. The channel is primarily straight but has a

few 90◦ bends and a few large radius bends. The channel cross-section is regular

with no flood plains and without sensible variations of the flow cross sectional

area, except for a few localized contractions. The channel bed is almost entirely

natural, with only a few quite short reaches in which the banks are reinforced

with concrete or stone. The banks are thickly vegetated (Figure 2.2).

The Desturo canal is a small 5.6 km-long drainage canal which is part of the

drainage basin of the Venice Lagoon in Northern Italy. The canal is located just

outside of an urban settlement and is used for irrigation purposes. The Desturo

canal is affected by pollution due to distributed inputs of fertilizers used in agri-

cultural activity. However, the main sources of pollution are due to input of water

from a waste-water treatment plant of the nearby Monselice village and to inputs

of non-treated water during rain periods from urban drainage systems. The total

length of the study reach is equal to 3300 m and has almost uniform characteris-
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Figure 2.3. Pictures of the Desturo canal illustrating a typical study reach.

tics with few channel bends. The channel cross section is trapezoidal with flood

plains and natural banks. The vegetation on the banks is quite thin, with virtu-

ally no masts and bushes. The sediment bed is made of a sandy-silty material and

at the time of the tests the channel bottom was characterized by the presence of

algae, submerged vegetation, and pieces of marsh reeds (Figure 2.3).

2.4 Methods

2.4.1 Tracer Tests

Tracer tests were carried out in the Yarqon river in April 2005, in the Brenton

torrent in June-July 2007, and in the Desturo canal in October 2007. The experi-

ments consisted in both instantaneous (slug) and continuous (step) injections of

rhodamine WT (RWT) fluorescent dye. For step injections, a peristaltic pump

was used to ensure a constant continuous rate of input throughout the injection

period. In each test RWT concentrations were measured at two downstream sec-

tions with a sampling period of 10 s using portable field fluorometers (Turner

Design SCUFA). In addition to tracer concentrations, the fluorometers measured

water turbidity, which was then used in the detrend procedure of the tracer BTCs
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to remove artifact generated by variations of water turbidity. Part of the curves

are excluded from the analysis presented here due to poor quality of the data,

either because the concentration signal was too noisy or because the tail values

of the concentration curves could not be obtained for sufficiently long times to

permit an unambiguous determination of the model parameters. The location of

the injection and the measurement sections was chosen so that the study reaches

could be considered as approximately uniform. The length of the reaches, L,

varies from around 660 to 1900 m for the Yarqon river (Table 2.1 a)), from 620

to 2160 m for the Brenton torrent (Table 2.2 a)), and from 260 to 340 m for the

Desturo canal (Table 2.3 a)). In all cases, the distance from injection allowed the

tracer to be well mixed over the cross-section at the measurement stations.

In Tables 2.1, 2.2 and 2.3 the value of the mass recovery ratio, rM , is also

reported. This is defined as:

rM =

∑
jQCobs,j∆t

M0
, (2.7)

whereQ is the flow discharge, Cobs,j is the j-th observed tracer concentrations,

and ∆t is the sampling interval. In the Yarqon river rM varies from 0.71, in reach

4, to 0.89 in reach 1. It is interesting to note that lowest recovery ratio is found in

reach 4 which is significantly longer than the other reaches. This might indicate

a positive correlation between the value of the unrecovered mass and the reach

length, though a consistent pattern is not observed. In the Brenton torrent the

recovery ratio varies from 0.74 to 0.80, with lower values associated to longer

reaches, whereas rM ranges from 0.83 to 0.88 in the Desturo canal. If we compare

the values of the recovery ratios in the different streams, we observe that higher

ratios are found in the Desturo canal, where the permeability of the substrate

material is relatively low, whereas lower ratios are found in the Brenton torrent,

which has high bed permeability compared to the other streams. Intermediate
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values are found in the Yarqon river. Higher recovery ratios are generally asso-

ciated with streams with minimal hyporheic exchange, since the probability of

the tracer to enter the bottom sediments and reenter the stream beyond the mon-

itoring point is minimal. In our experiments, recovery ratios also varied with

reach lengths and cross-sections, but a consistent pattern between the variables

across the systems studied was not observed. Flow discharges during the tracer

tests were obtained from data provided by local consortia equipped with their

own meters. The flow cross-sectional area was inferred from technical cartog-

raphy of the channel sections and partly from direct measurements along the

study reaches. Values of the flow discharge Q, average flow velocity U , and mean

advective travel time tad = L/U are reported in Tables 2.1, 2.2 and 2.3 for the

Yarqon river, the Brenton torrent and the Desturo canal, respectively. The ranges

of flow discharges considered in the tracer experiments are 0.21− 0.41m3 s−1 for

the Yarqon river, 0.68−1.5m3 s−1 for the Brenton torrent, and 0.042−0.053m3 s−1

for the Desturo canal. Mean advective travel times in the study reaches ranges

from about 1 to 3 h for the Yarqon river, from 10 to 50 min for the Brenton torrent,

and from 20 to 40 min for the Desturo canal.

2.4.2 STIR model closures

Here the STIR model is applied using two distinct modeling closures to represent

transient storage. In both cases the residence time distribution in the storage

zones is decomposed as follows:

ϕ(t) =
1
α

[α1ϕ1(t) +α2ϕ2(t)] , (2.8)

where

α = α1 +α2 , (2.9)
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where Here, α1 and ϕ1(t) are the transfer rate and residence time PDF associated

to short timescale retention, respectively, and α2 and ϕ2(t) are the transfer rate

and residence time PDF associated to longer timescale retention. The decom-

position given by equations (2.8)-(2.9) can be interpreted as a two-storage zone

representation of transient storage where shorter timescales are expected to be

associated to surface dead zone storage, whereas longer timescales are associated

to hyporheic exchange.

In the first modeling closures the decomposition involves two exponential

RTD’s:

ϕ1(t) =
1
T1
e−t/T1 , (2.10a)

ϕ2(t) =
1
T2
e−t/T2 . (2.10b)

whereas the second one involves an exponential RTD for and a power law dis-

tribution approximating Elliott and Brooks (1997a) solution for bedform-induced

hyporheic exchange. Using the approximation given by Bottacin-Busolin and Mar-

ion (2010), this can be written as:

ϕ2(t) =
π
T2

[
1

(t/T2 + 2)2 −
1
4
exp

(
− π

2(π − 2)
t
T2

)]
(2.11)

which clearly decays as t−2 at longer times.

In order to fully characterize the transport in the study reach, the model

parameters must be estimated using an inverse approach. Calibration param-

eters include the longitudinal dispersion coefficient K [L2 T−1] and the exchange

parameters characterizing the exchange with the retention domains, that is the

transfer rate into the first storage zone α1 [T−1] and in the second storage zone

α2 [T−1] and the relevant timescales of retention T1 and T2 [T]. Using the average

channel width Br and flow depth h based on technical cartography and partly
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on direct in situ measurements, the average cross-sectional area is calculated as

A = Brh, and the average velocity as U = Q/A. Following Bottacin-Busolin et al.

(2009), model calibration is performed in mixed scale using a linear scale to fit

the bulk of the curve and log-scale to fit the tail. This is accomplished by mini-

mizing the following root mean square error:

RMSE =

 1
N


∑
i∈IU

(
Csim,i −Cobs,i

)2(
maxi∈I Cobs,i −mini∈I Cobs

)2

+

∑
I∈IL

(
logCsim,i − logCobs,i

)2(
maxi∈I logCobs,i −mini∈I logCobs,i

)2


1/2

(2.12)

where Cobs and Csim are the observed and simulated concentration values, re-

spectively, IU and IL are the sets of the observed values higher and lower than

a given threshold concentration, respectively, I = IU ∪ IL is the total set, and N

is the number of elements in I . The threshold value was set equal to 20% of

the peak concentration. The concentration values closer to zero are neglected in

calculating, generally by excluding from the computation 5% of the total set cor-

responding to the lowest values (Bottacin-Busolin et al., 2009). The optimization

is performed using the differential evolution method for global optimization by

Storn and Price (1997).

In addition to model calibration, an estimate of the uncertainty associated to

the optimized value of each parameter is given as follows. For each parameter

we determine the range of values in which the RMSE differs from the optimal

(i.e. the minimum) value by less than 5%, provided that the other parameters are

optimized accordingly. It should be stressed that this interval is not obtained by

individually varying each parameter while keeping fixed the others, but search-

ing for other values of the other parameters that produce similar fits according

to the described criterion. In other words, if we change the value of a parameter

in that range, we need to adequately change the values of the other parameters
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to obtain a similarly good fit. Thus, this interval of variation provides a measure

of the equifinality of the model parameters, rather than a measure of the model

sensitivity to the variation of an individual parameter. Large variation intervals

imply higher degrees of equifinality, and therefore a larger set of combinations of

the model parameters that produce similar BTCs.

2.5 Results and Discussion

Transient storage processes in natural streams generate a delay in the down-

stream transport of a tracer inducing longer tails in the observed BTCs and in-

creasing the skewness of the concentration distributions. Here, the STIR solute

transport model has been used in combination with tracer test data to character-

ize transient storage in three case studies.

2.5.1 Two exponential RTDs model

The results of the calibration of the STIR model with the two exponential clo-

sure for the storage time distribution are presented in Table 2.1 b), Table 2.2 b),

Table 2.3 b) for the Yarqon river, the Brenton torrent and the Desturo canal, re-

spectively. A graphical comparison between the experimental data and the sim-

ulated breakthrough curves is given in Figure 2.4 for the Yarqon river, Figure 2.5

for the Brenton torrent, and in Figure 2.6 for the Desturo canal. Breakthrough

curves are plotted using the normalized quantities t∗ = (t−t)/tad for time, where t

is the centroid of the input concentration distribution, and C∗ = C/Cmax for con-

centration, where Cmax is the peak concentration. The curves are plotted in both

linear and semi-log scale to emphasize their tail behavior, on which the reten-

tion parameters are primarily dependent. In the first three reaches of the Yarqon

river the values of the longitudinal dispersion coefficient, K , are quite consistent,

with an average value of 0.3m2/s, whereas in the fourth study reach the value

is substantially higher, K = 2.80m2/s. This is due to a larger channel width in

reach 4, which changes from about 6 m, in reach 2 and 3, to about 8 m in reach 4,
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and a lower water depth, which combined yield similar values of the flow cross-

sectional area. The higher discharge characterizing the Brenton torrent produces,

as a consequence, higher values of the longitudinal dispersion coefficient, which

is very similar in all the four reaches and is about 2.0 m2/s. In the Desturo canal

the K is rather small, that is about 0.1m2/s, as a consequence of the relatively

small channel width and flow discharge. Again, the value of K is quite consistent

in all the four reaches of the Desturo canal. In the study reaches of the Yarqon

river the average timescale T1 of fast transient storage varies from 163 to 436 s,

with an average value of 262 ± 152 s (Table 2.1 b)). The mean residence time T1

associated to long timescale retention varies from 1720 to 3781 s and appears to

be higher for increasing reach lengths. In Reach 3 of the Yarqon river, the opti-

mization procedure converges to α ' 0, whereas the timescale T1 converges to a

relatively high value compared to the other reaches (T1 = 436 s), indicating that

a single exponential distribution is sufficient in this case to adequately represent

the BTC. In the study reaches of the Brenton torrent the timescale T1 ranges from

51 s to 104 s, with an average value of 68 ± 25 s, and it is clearly higher for in-

creasing reach lengths (Table 2.2 b)). The same increasing trend is visible for the

timescale T2 which varies from 733 s to 1735 s as the reach length, L, increases

from 620 to 2160 m. In the Desturo canal the timescale T1 ranges from 60 s to

171 s, with average 117 ± 48 s, whereas T2 ranges from 280 to 397 s, with average

352 ± 50 s. In this case, a clear increasing trend of T1 and T2 with the reach length

is not apparent.

25



2. STIR model: application to three river environments

Author's personal copy

trends as a function of the reach length L or of the average advec-
tive travel time, tad.

The higher values of the timescale T2 characterizing the Brenton
torrent and the Yarqon river compared to the Desturo canal can be
seen as a consequence of the higher permeability of the bed, which
implies signi�cant hyporheic �uxes in the subsurface. In the Destu-
ro canal, the low permeability of the bed implies that the subsur-
face �uxes are extremely small, and the observed retention
e�ects are likely to be primarily due to surface dead zones and,
in particular, to the thick submerged vegetation characterizing
the channel bed. Nevertheless, it is not possible to compare unam-
biguously the properties of short timescale retention in the
streams analyzed. In the Brenton torrent the longitudinal disper-
sion coef�cients are an order of magnitude greater than those
found in the Desturo canal, which allows a wider range of retention
phenomena to be lumped in the parameter DL.

An important parameter of the two-exponential RTD model is
given by the ratio of the two timescales of retention T2/T1. When
this ratio is close to 1, the breakthrough curves can be well repre-
sented by a single exponential distribution, and hence the conven-
tional TSM model with a single storage zone is expected to provide
acceptable approximations of the experimental data. This is the
case of the Desturo canal for which the mean ratio is T2/T1 is
3.3 ± 1.1. In a semi-log graph, the corresponding breakthrough
curves tend to follow a linear pattern after the concentration peak.
High ratios are instead found in the Yarqon river and the Brenton
torrent, for which the average ratio T2/T1 is 11.3 ± 5.3 and
16.3 ± 7.1, respectively. When plotted in semi-log scale, the rele-
vant breakthrough curves shows a long tail behavior. In particular,
in the case of the Brenton torrent, the decreasing part of the curve
is characterized by a clear change of slope ( Fig. 2 ): the part of the
curve between the concentration peak and the bend is associated
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Fig. 2. Observed and simulated breakthrough curves for the Yarqon river.
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Figure 2.4. Observed and simulated breakthrough curves for the Yarqon river (left) in

linear scale and (right) semi-log scale.
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2.5 Results and Discussion

Reach 1 2 3 4

(a) Study reaches

L (m) 1084 816 657 1887

Q (m3 s−1) 0.21 0.21 0.43 0.41

A (m2) 1.06 2.18 2.71 2.15

tad (s) 5391 8345 4141 9895

rM (s) 0.89 0.86 0.80 0.71

(b) Parameters of STIR model with two exponential RTDs

K (m2 s−1) 0.24±0.002 0.25±0.012 0.49±0.04 2.80±0.20

α1 (×10−4 s−1) 7.4±0.03 9.4±0.7 7.3±0.4 7.3±0.5

α2 (×10−4 s−1) 0.25±0.001 0.78±0.04 0 0.54±0.01

T1 (s) 163±2 109±8 436±15 340±23

T2 (s) 2382±24 1720±62 — 3781±75

RMSEa (×10−2) 1.36 4.36 10.29 5.85

(c) Parameters of STIR model with exponential plus pumping RTD

K (m2 s−1) 0.24±0.006 0.25±0.03 0.49±0.05 2.80±0.25

α1 (×10−4 s−1) 7.7±0.1 15.0±1.6 7.3±0.5 9.6±0.8

α2 (×10−4 s−1) 0.29±0.005 1.1±0.1 0 0.58±0.05

T1 (s) 153±2 63±7 436±21 255±25

T2 (s) 485±17 297±31 — 530±37

RMSEa (×10−2) 1.71 5.29 10.29 7.86

a The parameter RMSE is unitless.

Table 2.1. Summary of test and model parameters for the Yarqon River. Values of opti-

mized parameters are reported as the intervals for which model optimization produces

an RMSE differing by less than 5% from the global optimum value. The RMSE reported

in the table corresponds to the global optimum.

The transfer rates are found to be higher in the Desturo canal, with α1 in the
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2. STIR model: application to three river environments

range (10.1 − 13.5) × 10−4 s−1 and α2 = (0.70 − 4.27) × 10−4 s−1, compared to the

Brenton torrent where α1 = ((2.8−15.5)×10−4 s−1 and α2 = (0.06−0.26)×10−4 s−1,

and the Yarqon river, where α1 = (7.3−9.4)×10−4 s−1 and α2 = (0−0.78)×10−4 s−1.

It can be noticed that the transfer rate associated to the longer timescale reten-

tion component are at least an order of magnitude lower than the transfer rate

associated to the shorter one. This is consistent with the fact that fast transient

storage in surface dead zones is typically characterized by high exchange fluxes,

whereas the transient storage in the hyporheic zones is associated to relatively

small transfer rates and long residence times. The values of a1 and a2 do not

exhibit particular trends as a function of the reach length L or of the average ad-

vective travel time, tad . The higher values of the timescale T2 characterizing the

Brenton torrent and the Yarqon river compared to the Desturo canal can be seen

as a consequence of the higher permeability of the bed, which implies significant

hyporheic fluxes in the subsurface. In the Desturo canal, the low permeability

of the bed implies that the subsurface fluxes are extremely small, and the ob-

served retention effects are likely to be primarily due to surface dead zones and,

in particular, to the thick submerged vegetation characterizing the channel bed.

Nevertheless, it is not possible to compare unambiguously the properties of short

timescale retention in the streams analyzed. In the Brenton torrent the longitu-

dinal dispersion coefficients are an order of magnitude greater than those found

in the Desturo canal, which allows a wider range of retention phenomena to be

lumped in the parameterK . An important parameter of the two-exponential RTD

model is given by the ratio of the two timescales of retention T2/T1. When this

ratio is close to 1, the breakthrough curves can be well represented by a single

exponential distribution, and hence the conventional TSM model with a single

storage zone is expected to provide acceptable approximations of the experimen-

tal data. This is the case of the Desturo canal for which the mean ratio is T2/T1

is 3.3 ± 1.1. In a semi-log graph, the corresponding breakthrough curves tend
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2.5 Results and Discussion
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to quicker exchange processes and determines primarily the value
of T1 and a1; the subsequent part the curve is associated to long
term retention and is related to the parameters T2 and a2. The ris-
ing part of the curve is mainly associated to advection and disper-
sion processes in the main channel and the steepness of the curve
depends primarily on the value of the longitudinal dispersion
coef�cient.

If we consider the uncertainty associated with the optimal value
of the model parameters, we notice that the interval of variability
that allows similar curve �tting, in the sense described in Sec-
tion 3.3 , is found in most cases to be less than 17% of the optimal
value. If we consider the variability that characterizes environmen-
tal applications, this level of uncertainty can be considered as
acceptable for a model. Exceptions apply for the cases, e.g. one Yar-
qon reach and one Desturo reach, where the second component of
transient storage appear to vanish, and an equivalent comparative
equi�nality validation procedure could not be applied. Further-

more, it is important to observe that this variability of the model
parameters does not a�ect the comparative analysis of the model
parameters between the di�erent streams presented above. When-
ever the exchange rate of the second storage component is di�er-
ent from zero, the two storage zone model cannot be substituted
by a single exponential RTD model while keeping a similar quality
of the �t. This implies that the model is not over-parameterized
when the two-exponential RTD closure is used.

4.2. Exponential RTD plus pumping RTD model

The parameters obtained by calibration of the model assuming
an exponential RTD and the pumping RTD are reported in Table 1 c
for the Yarqon river, Table 2 c for the Brenton torrent, and Table 3 c
for the Desturo canal. The relevant simulated BTCs are presented in
Figs. 2–4 , respectively. The results show the this modeling closure
can well represent the breakthrough curve in the case of the
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Fig. 3. Observed and simulated breakthrough curves for the Brenton torrent.
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Figure 2.5. Observed and simulated breakthrough curves for the Brenton torrent (left)

in linear scale and (right) semi-log scale.
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2. STIR model: application to three river environments

to follow a linear pattern after the concentration peak. High ratios are instead

found in the Yarqon river and the Brenton torrent, for which the average ratio

T2/T1 is 11.3 ± 5.3 and 16.3 ± 7.1, respectively. When plotted in semi-log scale,

the relevant breakthrough curves shows a long tail behavior. In particular, in the

case of the Brenton torrent, the decreasing part of the curve is characterized by a

clear change of slope Figure 2.5: the part of the curve between the concentration

peak and the bend is associated to quicker exchange processes and determines

primarily the value of T1 and α1; the subsequent part the curve is associated to

long term retention and is related to the parameters T2 and α2. The rising part

of the curve is mainly associated to advection and dispersion processes in the

main channel and the steepness of the curve depends primarily on the value of

the longitudinal dispersion coefficient. If we consider the uncertainty associated

with the optimal value of the model parameters, we notice that the interval of

variability that allows similar curve fitting, in the sense described in section 3.3,

is found in most cases to be less than 17% of the optimal value. If we consider

the variability that characterizes environmental applications, this level of un-

certainty can be considered as acceptable for a model. Exceptions apply for the

cases, e.g. one Yarqon reach and one Desturo reach, where the second component

of transient storage appear to vanish, and an equivalent comparative equifinal-

ity validation procedure could not be applied. Furthermore, it is important to

observe that this variability of the model parameters does not affect the compar-

ative analysis of the model parameters between the different streams presented

above. Whenever the exchange rate of the second storage component is different

from zero, the two storage zone model cannot be substituted by a single exponen-

tial RTD model while keeping a similar quality of the fit. This implies that the

model is not over-parameterized when the two-exponential RTD closure is used.
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2.5 Results and Discussion

Reach 1 2 3 4

(a) Study reaches

L (m) 620 1080 1560 2160

Q (m3 s−1) 1.5 1.5 1.5 0.68

A (m2) 1.45 1.34 1.57 0.96

tad (s) 599 962 1632 3036

rM (s) 0.80 0.83 0.76 0.74

(b) Parameters of STIR model with two exponential RTDs

K (m2 s−1) 1.98±0.10 2.01±0.16 1.85±0.12 1.95±0.005

α1 (×10−4 s−1) 2.8±0.2 15.5±0.6 5.0±0.3 4.9±0.07

α2 (×10−4 s−1) 0.26±0.01 0.11±0.004 0.18±0.004 0.6±0.001

T1 (s) 51±4 52±2 66±3 104±1

T2 (s) 733±56 912±58 1081±47 1735±105

RMSEa (×10−2) 4.94 2.53 3.26 2.90

(c) Parameters of STIR model with exponential plus pumping RTD

K (m2 s−1) 1.98±0.13 2.00±0.19 1.91±0.13 1.97±0.08

α1 (×10−4 s−1) 2.8±0.29 1.59±0.66 5.10±0.35 4.9±0.1

α2 (×10−4 s−1) 0.29±0.02 0.12±0.006 0.20±0.009 0.07±0.002

T1 (s) 52±8 51±3 65±4 104±3

T2 (s) 198±23 290±28 280±22 474±45

RMSEa (×10−2) 4.98 2.52 3.30 2.92

a The parameter RMSE is unitless.

Table 2.2. Summary of test and model parameters for the Brenton torrent. Values of op-

timized parameters are reported as the intervals for which model optimization produces

an RMSE differing by less than 5% from the global optimum value. The RMSE reported

in the table corresponds to the global optimum.
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2. STIR model: application to three river environments

2.5.2 Exponential RTD plus pumping RTD model

The parameters obtained by calibration of the model assuming an exponential

RTD and the pumping RTD are reported in Table 2.1 c) for the Yarqon river, Ta-

ble 2.2 c) for the Brenton torrent, and Table 2.3 c) for the Desturo canal. The

relevant simulated BTCs are presented in figures 2.4, 2.5 and 2.6, respectively.

The results show the this modeling closure can well represent the breakthrough

curve in the case of the Yarqon river and the Brenton torrent where the tails are

relatively long. In these cases model optimization converges to the very simi-

lar values of the storage parameters of the first exponential retention component

and dispersion coefficient, which turn out to be exactly the same for the Brenton

torrent. This reassuring result indicates that, when the ratio of the timescales of

two retention components is very high, the parameters of the first retention com-

ponent are only weakly affected by the particular closure assumed for the second

storage component, provided that this can approximate the experimental curve

sufficiently well. Conversely, in the case of the Desturo canal the parameters

of the first storage component, as well as the longitudinal dispersion coefficient,

sensibly changes, and the timescale parameter of the hyporheic component be-

comes extremely low, with values of T2 ranging from 0 to 0.15 s, indicating the

absence of hyporheic transport. Analysis of the RMSE and visual inspection of

the curve fits reveal that the combination of an exponential and a pumping RTD

can still provide a good approximation of the breakthrough curves, but the re-

sulting parameters lose physical sense, and there is an inversion of the expected

behavior of the two storage components: the timescale of the first component

increases to represent the long timescale processes whereas the pumping compo-

nent turns out to represent the short term component. In the case of the Yarqon

river and the Brenton torrent, the pumping RTD shows a scale dependent behav-

ior of the relevant timescale, which increases from T2 = 297s for L = 816m to
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Yarqon river and the Brenton torrent where the tails are relatively
long. In these cases model optimization converges to the very sim-
ilar values of the storage parameters of the �rst exponential reten-
tion component and dispersion coef�cient, which turn out to be
exactly the same for the Brenton torrent. This reassuring result
indicates that, when the ratio of the timescales of two retention
components is very high, the parameters of the �rst retention com-
ponent are only weakly a�ected by the particular closure assumed
for the second storage component, provided that this can approx-
imate the experimental curve suf�ciently well. Conversely, in the
case of the Desturo canal the parameters of the �rst storage com-
ponent, as well as the longitudinal dispersion coef�cient, sensibly
changes, and the timescale parameter of the hyporheic component
becomes extremely low, with values of T2 ranging from 0 to 0.15 s,
indicating the absence of hyporheic transport. Analysis of the

RMSE and visual inspection of the curve �ts reveal that the combi-
nation of an exponential and a pumping RTD can still provide a
good approximation of the breakthrough curves, but the resulting
parameters lose physical sense, and there is an inversion of the ex-
pected behavior of the two storage components: the timescale of
the �rst component increases to represent the long timescale pro-
cesses whereas the pumping component turns out to represent the
short term component.

In the case of the Yarqon river and the Brenton torrent, the
pumping RTD shows a scale dependent behavior of the relevant
timescale, which increases from T2 = 297 s for L = 816 m to
T2 = 3781 s for L = 1887 m for the Yarqon river, and from
T2 = 198 s for L = 680 m to T2 = 474 s for L = 2160 m for the Brenton
torrent. As pointed out above, a similar behavior was observed for
the two exponential RTD model. The dependence of the timescale
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Fig. 4. Observed and simulated breakthrough curves for the Desturo canal.
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Figure 2.6. Observed and simulated breakthrough curves for the Desturo canal (left) in

linear scale and (right) semi-log scale.
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2. STIR model: application to three river environments

T2 = 3781s for L = 1887m for the Yarqon river, and from T2 = 198s for L = 680m

to T2 = 474s for L = 2160m for the Brenton torrent. As pointed out above, a sim-

ilar behavior was observed for the two exponential RTD model. The dependence

of the timescale on the length of the study reach might be related to the fact that

longer reaches implies that longer transport paths become active, which in turn

implies a lengthening of the tails of the breakthrough curves. The assumption of

a power-law RTD as the one associated to pumping derived by Elliott and Brooks

does not make the problem independent of the length scale of the study reach.

The intervals of variability in which “similar” fits can be obtained using the expo-

nential plus pumping RTD modeling closure is found to be less than 21% of the

optimal parameter values for the Yarqon river and the Brenton torrent. A higher

uncertainty is found in the case of the Desturo canal, which is linked to the in-

adequacy of the pumping RTD to represent the tails of the break-through curves.
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2.5 Results and Discussion

Reach 1 2 3 4

(a) Study reaches

L (m) 262 305 336 278

Q (m3 s−1) 0.045 0.045 0.053 0.042

A (m2) 0.19 0.21 0.36 0.31

tad (s) 1114 1440 2329 2040

rM (s) 0.88 0.83 0.86 0.84

(b) Parameters of STIR model with two exponential RTDs

K (m2 s−1) 0.10±0.007 0.14±0.01 0.09±0.007 0.10±0.008

α1 (×10−4 s−1) 13.5±0.4 10.1±0.6 11.0±0.3 11.0±0.9

α2 (×10−4 s−1) 2.73±0.11 1.50±0.13 0.07±0.06 4.27±0.35

T1 (s) 99±5 171±10 140±5 60±5

T2 (s) 367±19 365±16 397±16 280±11

RMSEa (×10−2) 2.02 5.40 1.96 4.29

(c) Parameters of STIR model with exponential plus pumping RTD

K (m2 s−1) 0.27±0.04 0.18±0.04 0.11±0.01 0.06±0.007

α1 (×10−4 s−1) 4.94±0.29 7.52±0.68 5.77±0.26 8.79±0.14

α2 (×10−4 s−1) 3225±622 145±31 8686±1859 0

T1 (s) 291±8 237±15 215±3 218±5

T2 (s) 0.0077±0.0015 0.13±0.03 0.0015±0.0005 —

RMSEa (×10−2) 2.22 5.37 1.74 3.24

a The parameter RMSE is unitless.

Table 2.3. Summary of test and model parameters for the Desturo canal. Values of op-

timized parameters are reported as the intervals for which model optimization produces

an RMSE differing by less than 5% from the global optimum value. The RMSE reported

in the table corresponds to the global optimum.
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2.6 Implications and findings

The results presented here show that the use of two storage components in a

multi-domain solute transport model does not lead to an over-parameterization

of transient storage. In the recent years, a few works (Gooseff et al., 2007; Haggerty

and Wondzell, 2002) discussed the application of exponential and power-law RTD

models to represent tracer BTCs in natural streams. Those works showed that

a power-law RTD can sometimes represent the observed RTDs and be a better

alternative to an exponential RTD transient storage model. Yet a clear physi-

cal explanation for the power-law RTD has not been given. The pumping RTD

used here is asymptotically a power-law and was derived analytically by Elliott

and Brooks (1997a) for the case of bedform-induced hyporheic exchange, under a

few simplifying assumptions. The results of this work show that this particular

form of the RTD can provide a good representation of the observed BTCs, but

only in streams where hyporheic exchange is an important storage component.

This evidence suggests that tracer BTCs can embed signatures of specific storage

processes which can be identified by inverse modeling. It is further shown that

a two-exponential RTD can provide a good alternative to the exponential plus

pumping RTD model, giving an excellent curve fit in all the cases considered.

Interestingly, when there is significant hyporheic exchange, the first storage com-

ponent appears to be only marginally affected by the choice of exponential RTD

instead of a pumping RTD for the second storage zone. We feel that the different

behavior of a pumping RTD compared to exponential RTD for the long term tran-

sient storage may become visible if longer tails of the BTCs were available. How-

ever, it is apparent from this work that typical tracer BTCs do not contain enough

information at long time scales to discriminate the validity of either assumptions.

It is unlikely that field tracer tests could ever be improved to such extent due to

the presence of background noise, and turbidity and temperature fluctuations.
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2.7 Conclusions

This may be an interesting point for future research performed in very well con-

trolled laboratory experiments using instruments with high resolution. With the

only exception of two of the study reaches analyzed, a single exponential RTD

model, as the TSM, is unable to fully represent the experimental data if we min-

imize the difference between model simulations and data using a combination of

linear scale for the bulk of the BTC, and log-scale for the tails. The use of a single

exponential RTD model may therefore underestimate the long-time component

associated to hyporheic flows. The use of a transient storage modeling closure

derived by physical modeling of hyporheic exchange can in principle provide

an estimate of the volume interested by solute penetration. As pointed out by

Gooseff et al. (2003), the influence of hyporheic exchange on stream nutrient cy-

cles is determined by the time-rate of nutrient transformations. Long hyporheic

residence times are not necessary to support biogeochemical processes occurring

at fast rates, such as nitrification and uptake of soluble reactive phosphorous,

but may have an important impact on mineralization of dissolved organic carbon

(DOC) and nitrogen (DON), which can occur over timescales of days to weeks.

2.7 Conclusions

In this study a multiple domain general residence time solute transport model

has been applied to tracer tests data from different streams. The analysis has

shown that streams are characterized by different responses to a solute injec-

tion, revealed by model parameters. Two distinct forms of the residence time

distribution in the storage domains have been considered. These modeling clo-

sures can be considered as double domain closures assuming a first domain to

be associated to short timescale retention and the second one to long term re-

tention. In both models the first storage domain is associated to an exponential

residence time distribution. The second storage component is represented in the

two models with another exponential distribution and with a power law distri-
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bution derived by theoretical modeling of bed form induced hyporheic exchange,

respectively. In streams where hyporheic exchange is a significant retention com-

ponent calibration of the model assuming two exponential RTDs yields relatively

high retention timescales of the second storage domain and a relatively high ra-

tio between the timescales of slow and fast exchange. In that case a model as-

suming the second storage component to be represented by the RTD derived by

Elliott and Brooks (1997a) for pumping exchange due to bed forms provides an

equivalently good approximation of the observed breakthrough curves. The fit-

ting procedure, based on a global optimization algorithm, converges to the same

values of the dispersion coefficient and of the parameters of the first exponen-

tial retention component. The observed stability of the model parameters allows

for a direct comparison of the model results for the two different modeling clo-

sures. Conversely, when modeling closure assuming an exponential and a pump-

ing RTD is applied to streams where hyporheic exchange is limited, the model

fails to properly represent the observed breakthrough curves. Furthermore the

model parameters change in such a way the that results between the two differ-

ent transient storage modeling closures are difficult to compare, and uncertainty

arises about the interpretation of the model parameters since the observations

are not well reproduced. In both models the timescales of retention are found to

be dependent on the length scale of the study reach, which points out that a more

comprehensive approach is still needed to properly compare retention properties

of different study reaches. Overall, the results show that a multiple domain solute

transÂňport model like STIR can be used to characterize river transient storage

processes in terms of average retention times, and demonstrate that streams that

are very different in terms of channel size, substrate material and presence of

submerged vegetation, show also distinct retention patterns.
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Chapter 3
Bimodality of wetland residence time distributions

and their modeling1

3.1 Introduction

Vegetation plays a major role in controlling the fate of contaminants in natu-

ral and constructed wetland. Accurate estimates of the contaminant removal

efficiency of a wetland require separate knowledge of the residence time statis-

tics in the main flow channels, where the flow velocity is relatively higher, and

in the more densely vegetated zones, where the velocity is smaller and most of

the biochemical transformations occur. A conceptual wetland characterized by a

main flow channel (MFC) and lateral vegetated zones (LVZs) is modeled here us-

ing a two-dimensional depth-averaged hydrodynamic and advection-dispersion

model. The overall effect of vegetation is described as a flow resistance repre-

sented in the hydrodynamic model as a function of the stem density.

The removal efficiency of natural and constructed wetlands is controlled by

the time spent by contaminants in the vegetated zones (Persson et al., 1999). Veg-

1The contents of this chapter are described in: T. Musner, A. Bottacin-Busolin, M. Zaramella,

A. Marion, A contaminant transport model for wetlands accounting for distinct residence time

bimodality, Ecological Engineering (submitted)

39



3. Bimodality of wetland residence time distributions and their modeling

etation plays an important role for two main reasons: first, dense vegetated zones

locally decrease the flow velocity, creating stagnant zones and favoring the sed-

imentation of suspended solids; second, plant roots and associated epiphytic

biofilms are responsible for the transformation of the transported substances as

a result of biochemical processes. Vegetation, in combination with the wetland

topography, can also produce hydraulic shortcuts that can substantially decrease

the overall efficiency of a wetland.

Constructed wetlands for waste water treatment are often designed with ref-

erence to an average water residence time (Kadlec and Wallace, 2009), but this can

lead to significant inaccuracies in the estimation of the wetland efficiency (Kadlec,

2000). Zero-dimensional models are often used because of their simplicity, but

they are inadequate to represent complex spatial patterns resulting from het-

erogeneous vegetation distributions, which significantly affects the contaminant

removal of a wetland (Akratos and Tsihrintzis, 2007; Kadlec and Wallace, 2009).

One-dimensional transient storage models have been widely used to represent

the transport and retention dynamics in rivers due to vegetation and permeable

beds (Runkel and Broshears, 1991; Bencala and Walters, 1983; Gooseff et al., 2003),

but a major question is whether these models can represent the more complex hy-

drodynamics found in natural and constructed wetlands. Recent studies (Keefe

et al., 2004; Martinez and Wise, 2003) have used transient storage models to as-

sess the contaminant removal in constructed wetlands providing in some cases

a good approximation of the breakthrough curves. However, these models fail

to describe in general the different flow paths through vegetation and the main

flow channels, which can result in a clear bimodality of the solute breakthrough

curves. A bimodal behavior of the hydraulic residence time distributions (RTDs)

induced by riparian vegetation has been experimentally observed in a real wet-

land by Martinez and Wise (2003) and in a conceptualized lowland river by Pe-

rucca et al. (2009).
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3.2 2-D depth-averaged model

Since spatial heterogeneity plays a fundamental role in controlling the fate

of contaminants, a two-dimensional approach is more appropriate to describe

transport dynamics in wetlands. Although two-dimensional hydrodynamic mod-

els have already been used in the past (Persson et al., 1999; Somes et al., 1999), the

formulation of more detailed models accounting for vegetation distribution is rel-

atively recent (Arega and Sanders, 2004; Jenkins and Greenway, 2005). However,

the use of these models do not display a clear relationship between vegetation

density and hydraulic RTDs.

Following Jenkins and Greenway (2005), a two-dimensional depth-averaged

model is applied here to a conceptual wetland characterized by a central main

flow channel (MFC) and lateral vegetated zones (LVZs). Contaminant transport

simulations are performed for different vegetation densities to analyze the ef-

fect on the hydraulic RTDs of the degree of channelization of a wetland. A

one-dimensional transport model is proposed and calibrated against the RTDs

derived with the two-dimensional depth-averaged model. The behavior of the

model parameters is then analyzed as a function of the system parameters and

analytical relationships are provided for the average residence times and flow

discharges in the MFC and in the LVZs.

3.2 2-D depth-averaged model

If the vertical gradients are sufficiently small compared to the horizontal gra-

dients, the transport of a substance in a wetland can be well represented by a

two-dimensional, depth-averaged model. Such a model can account for hori-

zontal variations of flow resistance associated with different vegetation densities,

and can be used to describe mass and momentum exchanges between main flow

channels and vegetated zones.
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3. Bimodality of wetland residence time distributions and their modeling

3.2.1 Hydrodynamic model

Under the assumption of hydrostatic pressure, steady-state flow, negligible wind

and Coriolis forces, the depth-averaged velocity field and water depth satisfy the

following equations (Wu, 2007):

∂(hU )
∂x

+
∂(hV )
∂y

= 0 (3.1)

∂(hU2)
∂x

+
∂(hUV )
∂y

= −gh∂zs
∂x
− τ

b
x

ρ
− τ

v
x

ρ
(3.2)

∂(hUV )
∂x

+
∂(hV 2)
∂y

= −gh∂zs
∂y
−
τby
ρ
−
τvy
ρ

(3.3)

The quantities U and V represent the depth-averaged velocities [LT−1] in the x-

and y- directions, respectively, h is the water depth, zs is the water surface ele-

vation [L], and ρ the water density [ML−3]. The shear stresses τbx and τby account

for bed resistance, whereas τvx and τvy account for vegetation resistance along the

x- and y- direction, respectively. Equation (3.2) and equation (3.3) assume that

Reynolds stresses are negligible compared to bed and vegetative resistance. In

channelized wetlands, Babarutsi et al. (1989) experimentally showed that bed

friction dominates and Reynolds stresses can be neglected when cbD Lh/h > 0.1,

where Lh is the the horizontal length scale of recirculation zones. Since typical

values of cbD vary between 0.009 and 0.003 in tidal wetlands, this model is ex-

pected to resolve recirculation zones where Lh/h > 10–30 (see Arega and Sanders,

2004).

The contribution of bed friction to bed shear stresses is computed by adapting

the one-dimensional relationships proposed by Kadlec (1990) to a two-dimensional

velocity field, which leads to:

τbx = ρcbDU
√
U2 +V 2 (3.4)
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3.2 2-D depth-averaged model

τby = ρcbDV
√
U2 +V 2 (3.5)

The bed drag coefficient cbD [−] in equation (3.4) and equation (3.5) combines both

laminar and turbulent stresses, and can be calculated as follows (Kadlec, 1990):

cbD =
3ν

h
√
U2 +V 2

+ f 2gh−1/3 =
3
Reh

+ f 2gh−1/3 (3.6)

where ν is the kinematic viscosity [L2 T−1] and f is the Manning’s friction coef-

ficient [TL−1/3]. For depth-Reynolds numbers Reh less than 500 the first term

prevails, whereas the second term prevails for depth-Reynolds numbers greater

than 12 500 (Kadlec, 1990). The sum of the two terms therefore provides a com-

plete description of the bed shear stresses for a wide range of depth-Reynolds

numbers.

Vegetation drag is modeled in a similar way by representing aquatic plant

stems as an array of randomly distributed cylinders with a uniform diameter d

[L], as suggested by Kadlec (1990) and by Arega and Sanders (2004):

τvx =
1
2
ρcvDnldU

√
U2 +V 2 (3.7)

τvy =
1
2
ρcvDnldV

√
U2 +V 2 (3.8)

where n is the superficial stem density [L−2], l is the submerged stem length [L]

and cvD is the vegetation drag coefficient. For fully emergent vegetation, as con-

sidered in this work, the submerged stem length can be taken as the water depth.

The behavior of the vegetation drag coefficient for an individual cylinder is well

known (Bennett and Myers, 1962; White, 1991) and shows a decreasing trend for

increasing stem Reynolds numbers, defined as Red =
√
U2 +V 2 d/ν. Other stud-

ies (Ergun, 1952; Petryk, 1969; Nepf , 1999; Hill et al., 2001; Blevins, 2005) have

shown that neighboring cylinders can produce a velocity reduction and, as a con-
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sequence, a reduced drag (Tanino and Nepf , 2008). Nevertheless, cumulative ef-

fects of multiple wake interactions can be neglected for sufficiently sparse vege-

tation, i.e. when the solid volume fraction ad is lower than 0.1 (Raupach, 1992).

Here, the parameter a represents the frontal area of vegetation per unit volume

[L−1], and can be written as a function of the superficial stem density, a = nd, if

the plants are modeled as cylinders.

Nepf (1999) performed numerical and laboratory experiments for superficial

stem densities lower than 2500 stems/m2 and a stem diameter of 2 mm, cor-

responding to a solid volume fraction ad = nd2 ≈ 0.01, and found relatively

constant values of cvD . Such values are common in natural and constructed wet-

lands. Tanner (2001) measured the superficial density of vegetation in pilot-scale

constructed wetlands and found 1400–1500 stems/m2 of Schoenoplectus Taber-

naemontani and densities higher than 2000 stems/m2 of Schoenoplectus Validus.

Hocking (1989) and Parr (1990) found superficial vegetation densities of Phrag-

mites Australis ranging from 70 to 250 stems/m2. Other hydraulic studies on

diffusion in emergent vegetation (Nepf et al., 1997) and vegetation drag (Hall and

Freeman, 1994) used densities ranging between 200–2000 stems/m2 and 400–800

stems/m2. In this study, a vegetation density in the range between 50 and 800

stems/m2 is considered, for which the vegetation drag coefficient depends only

on the stem Reynolds number, Red . A continuous range of Red was modeled using

the relationship proposed by Kadlec (1990). This relationship is based on labora-

tory tests performed by Wieselberger (1921) for laminar flows, and Tritton (1959)

for turbulent flows. Kadlec’s formulation, similar to the one proposed by White

(1991), is given as follows:

cvD =
10µ

ρd
√
U2 +V 2

+ 1 =
10
Red

+ 1 =
10
Reh

h
d

+ 1 (3.9)
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3.2 2-D depth-averaged model

3.2.2 Solute transport model

Solute transport of a passive tracer through a wetland is simulated with a depth-

averaged solute transport model,

∂(hC)
∂t

+
∂(hUC)
∂x

+
∂(hVC)
∂y

=
∂
∂x

(hExx
∂C
∂x

+ hExy
∂C
∂y

) +
∂
∂y

(hEyx
∂C
∂x

+ hEyy
∂C
∂y

)

(3.10)

where C is the depth-averaged solute concentration [ML−3], U , V are the verti-

cally integrated velocity components [LT−1] in the x-, y-directions respectively.

The coefficients Ei,j [L2 T−1], i, j = x,y, account for both turbulent diffusion and

shear dispersion due to vertical velocity gradients. Nepf (1999) proposed the fol-

lowing relationship for the transverse diffusivity:

ET
Ud

= αT [cvDad]1/3 +
β2

2
ad (3.11)

In equation (3.11), the first term represents the turbulent diffusivity, whilst the

second term represents the effect of mechanical dispersion through emergent

vegetation. The coefficient αT = 0.81 [–], derived by Nepf (1999) from experi-

mental data, accounts for horizontal turbulent diffusion, whereas the coefficient

β = 1 [–] represents a scale factor that accounts for the transverse motion of a

solute particle through stems along a characteristic distance ∆y = βd. The tur-

bulent diffusivity is based on the assumption that all the energy extracted from

the mean flow through stems is converted into turbulent kinetic energy. This

assumption is valid for Red < 200, when the effect of viscous drag is significant.

As experimentally confirmed by Nepf (1999), for sufficiently small stem densi-

ties, ad < 0.01, mechanical dispersion is small compared to turbulent diffusion

and the second term can be neglected. Experimental tests performed with stem

Reynolds numbers in the range between 90 and 2000 (typical value ≈ 200 – 300)

show that this is not the case for the lower end of the range, where mechani-
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3. Bimodality of wetland residence time distributions and their modeling

cal diffusion dominates. However, Lightbody and Nepf (2006) used this assump-

tion as a first approximation to determine the longitudinal dispersion coefficient

EL using field velocity measurements in the range between 0.1 and 0.24 cm s−1

(Red = 2–360). The proposed longitudinal dispersion coefficient is written as a

combination of the stem-scale and the depth-scale dispersion process as follows:

EL
Ud

=
1
2
cvD

3/2 +
Uh
Dz

Γ (3.12)

where Dz = α2[cvDad]1/3Ud is the vertical turbulent diffusion coefficient and Γ

is the non-dimensional velocity shape factor. According to Lightbody and Nepf

(2006) for the coefficient Dz, the value α2 = 0.1 was chosen to account for the

vertical turbulent diffusion. The first term of equation (3.12) accounts for the

stem-scale longitudinal dispersion process, whereas the second term accounts

for the dispersion induced by vertical velocity gradients. As noted by Lightbody

and Nepf (2006), the first term of equation (3.12) is typically much smaller than

the second term, and can be neglected. For the range of stem Reynolds numbers

investigated in this work it is reasonable to consider only the first term of equa-

tion (3.11) and only the second term of equation equation (3.12). These relation-

ships were adapted for the two-dimensional model by expressing the dispersion

tensor as in Arega and Sanders (2004):

Exx = EL + (EL −ET )
U2

U2 +V 2 (3.13)

Exy = Eyx = (EL −ET )
UV

U2 +V 2 (3.14)

Eyy = ET + (EL −ET )
V 2

U2 +V 2 (3.15)
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3.2 2-D depth-averaged model

3.2.3 Residence time distributions

The physical and chemical transformations of dissolved solutes in a wetland de-

pend on the time spent by a particle in the vegetated zones. The residence time

of a solute particle can vary to a wide degree due to different flow paths, veloc-

ity gradients and hydraulic short-circuits (Somes et al., 1999), making a statistical

description in terms of probability distributions more appropriate for analyz-

ing the problem (Somes et al., 1999; Kadlec and Wallace, 2009). Hydraulic RTDs

provide a measure of the variability of the detention time and can be a valu-

able tool for assessing the efficiency of contaminant removal. By using a two-

dimensional depth-averaged hydrodynamic model in combination with a solute

transport model, it is possible to numerically derive the RTDs as a function of

the system variables. Other studies have used a similar approach to characterize

the hydraulic response of a wetland (Wörman and Kronnäs, 2005).

The mass outflow, Ṁ [MT−1], is given by the temporal convolution between

the mass inflow, Ṁin, and the probability density function of the residence time,

φ(t):

Ṁout = (φ ∗ Ṁin)(t) =
∫ t

0
φ(τ)Ṁin(t − τ)dτ (3.16)

In this work the expression “residence time distribution” (RTD) is used inter-

changeably to denote the probability density function of the residence time, φ(t).

In general, the mass inflow Ṁin can be time-dependent, and can be written as

the product of the input concentration Cin(t) [ML−3] and the inflow discharge

Qin(t) [L3 T−1], hence Ṁin = Cin(t)Qin(t). Under the assumption of steady-state

flow, Qin(t) = Q and assuming a constant concentration at the inlet, Cin, equa-

tion (3.16) can be arranged in the form:

Ṁout

CinQ
=

∫ t

0
φ(τ)dτ (3.17)

47



3. Bimodality of wetland residence time distributions and their modeling

The right hand side of equation (3.17) represents the cumulative distribution

function of the wetland hydraulic residence time, denoted by Φ(t). Under steady

flow conditions, the water inflow equals the water outflow, therefore Ṁout =

Cout(t)Q. Equation (3.17) then becomes:

Cout(t)

Cin
=

∫ t

0
φ(τ)dτ = Φ(t) (3.18)

and hence:

φ(t) =
dΦ(t)

dt
=

d
dt

(
Cout(t)

Cin

)
(3.19)

Equation (3.19) provides the link between solute breakthrough curves and RTDs.

In particular, if a constant unitary concentration, Cin = 1, is imposed as a bound-

ary condition at the inlet, the hydraulic RTD can be obtained by numerically

differentiating the output concentration Cout(t) with respect to time.

3.2.4 Model application

The flow domain considered in this work is given by a rectangular wetland with

length L = 200 m, width B = 50 m, and constant bed elevation. The choice of

a zero bed slope is supported by the evidence that in many natural wetlands

the bed elevation does not vary significantly in the streamwise direction, and

the effect of bed slope can often be neglected (Wörman and Kronnäs, 2005; Wu,

2007). The flow domain is characterized by a main flow channel surrounded by

vegetated zones on both sides. The channel follows the center line of the wetlands

and has a uniform breadth b. The wetland inlet and outlet coincide with the end

sections of the main channel. Two different values of the channel width were

considered in this work: b = 5 m and b = 10 m.

For the flow equations (3.1) and (3.3), the boundary conditions are given by

the inflow at the inlet,Q = 0.5 m3 s−1, and the water depth at the outlet, h = 0.5 m.

For the solute transport equation, the boundary conditions are given by a con-
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n1

n2

n2

n1
n2 n2

Figure 3.1. Illustration of the conceptual wetland analyzed in this work. A depth-

averaged hydrodynamic model is applied to a rectangular flow domain with different

vegetation densities in the main channel and in the lateral vegetated zones. The aver-

age vegetation density of the wetland is kept constant for all simulations and different

combinations of discharge and main channel widths are investigated.

stant unitary concentration at the inlet, C = 1 kgm3, an open boundary condi-

tion at the outlet, and the no-flux condition on the remaining part of the flow

boundary. The equations are solved via a finite element method using COMSOL

Multiphysics® with quadratic shape functions. The computational grid is made of

approximately 150000 triangular elements, with higher spatial resolution near

the inlet and the outlet, and a maximum element size of 2m.

Simulations of the hydraulic RTD are performed in three steps: first, the

steady-state flow field is derived by solving the flow equations (3.1) and (3.3); sec-

ond, the transport equation is solved using the previously calculated flow field

until the concentration at the outlet becomes constant; finally, the average con-

centration at the outlet is calculated as a function of time, and the hydraulic RTD

is derived by numerical differentiation of the output concentration according to

equation (3.19).

A uniform value of the Manning’s roughness coefficient f = 0.02 m−1/3 s (usu-

ally associated with clean earth) was assumed to represent the bottom flow re-
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3. Bimodality of wetland residence time distributions and their modeling

sistance, whereas a sequence of increasing vegetation densities were imposed for

the vegetative resistance. No friction was considered on the lateral walls of the

wetland domain.

In the simulations, the average vegetation density of the whole wetland,

n̄ =
n2(B− b) +n1b

B
(3.20)

was kept constant and equal to 650 stems/m2. In equation (3.20), B denotes the

wetland width, b is the MFC width and ni , i = 1,2, are the vegetation densities

in the MFC and the LVZs, respectively. Starting from an initial homogeneous

configuration with n1 = n2 = n, a sequence of decreasing vegetation densities

was imposed in the main channel, varying from n1 = 650 stems/m2 down to

50 stems/m2. The resulting vegetation density in the lateral zones was then calcu-

lated from equation (3.20) by keeping n constant and solving for n2. This allowed

to analyze the statistics of the residence time for a range of degrees of channeliza-

tion while keeping the average vegetation density as constant. Ten density ratios

n∗ = n1/n2 were considered for each width ratio b∗ = b/B. Note that the parameter

n∗ represents the degree of uniformity of the vegetation density in the wetland,

which increases as the degree of channelization decreases, and is equal to 1 when

the vegetation density in the MFC is the same as in the LVZs. In this case, there

is no real distinction between MFC and LVZs.

3.3 1-D solute transport model

In the two-dimensional model presented in the previous section, the hydraulic

RTDs are determined in three steps: first, the 2-D depth-averaged flow equa-

tions are solved to derive the steady-state velocity field; second, the 2-D depth-

averaged transport equation is solved for a continuous input resulting in a con-

centration field as a function of time; finally, the RTD is derived by calculating the
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3.3 1-D solute transport model

derivative of the average concentration at the outlet according to equation (3.19).

The complexity of such a modeling process can be substantially reduced if a pa-

rameterization of the RTDs is available in which the model parameters can be

linked to physical characteristics of the system. One-dimensional models are

generally easier to calibrate and more suitable for inverse-modeling using tracer

tests (e.g. Keefe et al., 2004), especially when a closed-form solution of the un-

derlying 1-D equations can be derived analytically. Here, a parameterization of

the hydraulic RTDs is presented based on the one-dimensional residence time

formulation proposed by Marion and Zaramella (2005) and Marion et al. (2008).

In order to represent the effect of the differential transport in the MFC and the

LVZs, the overall RTD is expressed as a weighted sum of two residence time dis-

tributions individually describing the residence time statistics in the MFC and in

the LVZs. The overall RTD in a wetland segment of length x is therefore written

as follows:

φ(t;x) = w1r1(t;x) + (1−w1)r2(t;x) (3.21)

where w1 is a weight parameter [–] and r1 and r2 are the hydraulic residence

time distributions in the MFC and in the LVZs, respectively. In the model ap-

plication presented in this work the variable x is replaced by the longitudinal

extension of the wetland, L, since the focus of the analysis is on the residence

time statistics in the whole wetland. However, the dependence on the coordi-

nate x is maintained in equation (3.21) for sake of generality and to preserve the

one-dimensional structure of the STIR formulation (Marion et al., 2008).

The functional form of the individual RTDs, r1 and r2, is derived from the

solution of the advection-dispersion equation for a mass pulse at x = 0, and is

given by:

ri(t;x) =
x√

4πKit3
exp

[
−(x −Uit)2

4Kit

]
(3.22)

where the subscript i takes the value 1 for the MFC, and 2 for the LVZs.
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3. Bimodality of wetland residence time distributions and their modeling

The model defined by equation (3.21) and equation (3.22) depends on five

parameters characterizing the transport dynamics of a passive tracer in a chan-

nelized wetland, namely, the average flow velocities U1 and U2, the longitudinal

dispersion coefficients, K1 and K2, and the weight parameter w1. If the flow dis-

charges are denoted by Q1 and Q2 and the flow cross-sectional areas are denoted

by A1 and A2, thenU1 =Q1/A1 andU2 =Q2/A2. The weight factorw1 can then be

calculated as the fraction of the total discharge flowing through the main chan-

nel, w1 =Q1/Q, where Q =Q1 +Q2 is the total discharge.

The above-described model was implemented as an extension of the software

STIR, which provides an extendable modeling framework and a set of optimiza-

tion routines for model calibration2. This particular extension is referred to as

STIR-DTD, where the acronym DTD stands for Double Transport Domain. Al-

though in this study the transport dynamics in the MFC and in the LVZs is rep-

resented as a purely advection-dispersion process, the software allows to incor-

porate additional retention processes via specific RTDs.

The capability of the model to reproduce the observed RTDs was analyzed by

calibrating the model against the results of the two-dimensional simulations. The

RTDs resulting from equation (3.21) and equation (3.22) were fitted to the RTDs

generated according to Section § 3.2.3 and the behavior of the parameters was

analyzed as a function of the degree of channelization. The calibration parame-

ters are given by the velocities U1, U2, and the dispersion coefficients K1 and K2,

whereas the weight factor w1 was imposed using the definition w1 = Q1/Q and

the flow discharge Q1 calculated from the hydrodynamic model.

Whilst the parameter calibration procedure provides a way to assess the suit-

ability of the functional form equations (3.21) and (3.22) to represent the numer-

ically simulated RTDs, a direct modeling approach may be preferable in predic-

tive studies even if a certain degree of approximation is involved. Here, an ap-

2The software is available for download at www.wetengineering.com.
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proximate relationship is derived for the dischargesQ1 andQ2 that can be used to

calculate the parameters U1, U2 and w1. The relationship is based on Manning’s

equation, U = f −1
eq R

2/3
h S1/2, in which Rh is the hydraulic radius [L], S the slope

of the energy line [–], and feq is an equivalent roughness coefficient representing

the flow resistance due to vegetation and bed friction. The Manning’s roughness

coefficient, feq, is linked to the sum of the bed and vegetation shear stress, τ , by

the relationship

feq =
1
U
R2/3
h

(
τ
γRh

)1/2

=
1
U
R1/6
h

(
τ
γ

)1/2

(3.23)

where the equation τ = γRhS was used to link the total shear stress to the en-

ergy slope, S. If the hydraulic radius is approximated with the water depth, h,

the equivalent Manning’s roughness coefficient for fully emergent vegetation be-

comes:

feq =
1
g1/2

(
f 2g +

3νh−2/3

U
+

5νh4/3

U
n+

dh4/3

2
n

)1/2

(3.24)

The first two terms of equation (3.24) are associated with the bed roughness,

whereas the last two terms represent the contribution to the shear stress due to

vegetation. Under the flow conditions analyzed in this work, the first two terms

are generally much smaller than the others. Also, with exception for the lower

end of the range of Reynolds numbers, the third term can be considered small

compared to the fourth. Under these assumptions, the equivalent Manning’s

roughness coefficient can be written as

feq =
(
dh4/3

2g
n

)1/2

(3.25)

Since Q =Q1 +Q2, it follows that:

Q2

Q
=

(
1 +

Q1

Q2

)−1

(3.26)
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Q1

Q
= 1−

(
1 +

Q1

Q2

)−1

(3.27)

Assuming that the energy slope S is the same in the MFC and in the LVZ, the

ratio Q1/Q2 can be expressed using Manning’s equation combined with equa-

tion (3.25):
Q1

Q2
=
feq2

feq1

A1

A2

(
Rh1

Rh2

)2/3

=
(
n2

n1

)1/2
b

B− b
=

1
√
n∗

b∗

1− b∗
(3.28)

Finally, replacing equation (3.28) in equation (3.26) and equation (3.27) yields:

Q2

Q
=

(
1 +

1
√
n∗

b∗

1− b∗

)−1

(3.29)

Q1

Q
= w1 = 1−

(
1 +

1
√
n∗

b∗

1− b∗

)−1

(3.30)

Equation (3.29) and equation (3.30) provide a relationship between the non-

dimensional discharges, Q1/Q andQ2/Q, the vegetation density ratio, n∗, and the

non-dimensional channel width, b∗. The equations can be used to calculate the

weight w1 =Q1/Q, and the velocities U1 =Q1/(bH) and U2 =Q2/H(B− b), where

H is the average water depth. In the following section, the results of the model

calibration and the two-dimensional simulations are compared with the predic-

tions from (equation (3.29), equation (3.30)), and an attempt is made to clarify

the parametric dependence of the dispersion coefficients K1, K2 as a function of

the density ratio, n∗.

3.4 Results and discussion

Figure 3.2 shows the effect of different vegetation densities on the velocity field.

For a homogeneous roughness distribution, the velocity profile becomes approxi-

mately uniform at a distance of 20–25m from the wetland inlet. The most signifi-

cant velocity gradients are located in proximity of the inlet and the outlet section,
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with higher velocities in the center line and significantly smaller velocities at the

corners (Figure 3.2a).

As the difference between stem density in the main channel and in the lateral

banks increases, the flow is increasingly confined in the main channel and a first

evidence of the bimodal behavior appears in the RTD (Figure 3.2b). In the most

channelized case (Figure 3.2c), the hydraulic RTD shows an evident bimodality,

indicating that mass transport is characterized by two distinct time scales as-

sociated with the transport in the main flow channel (MFC) and in the lateral

vegetated zones (LVZs). The development of a clear bimodality as n∗ decreases

supports the decomposition of the overall RTD into two components according

to equation (3.21).

A comparison of the RTDs is presented in Figure 3.3 for a constant flow dis-

charge Q = 0.5 m3 s−1 and for two different values of the parameter b∗ = b/B. In

the figure, the residence time is normalized by the mean hydraulic residence time

in the wetland, defined as TR = BLH/Q, where H is the average water depth [L]

and L is the wetland length [L]. When the RTDs are plotted in a semilogarithmic

scale, it becomes apparent that the RTDs decay exponentially and the slope of

the tails depends on the ratio of vegetation density, n∗. As n∗ decreases, the slope

of the tails decreases and the distributions resemble more closely the solution of

a conventional advection-dispersion equation. The shape of the RTDs is also af-

fected by the width of the main channel. For a larger width, b∗ = 0.2, the RTDs

decay more slowly than for b∗ = 0.1, indicating a slower transport in the LVZs.

Also, for b∗ = 0.2 the peak of the faster component is higher than for b∗ = 0.1, due

to the higher discharge in the MFC.

As the ratio n∗ = n1/n2 decreases, the mean velocity in the lateral vegetated

zones decreases whereas the mean velocity in the main channel increases. This

behavior is showed in Figure 3.6 and confirmed by the pattern of the mean resi-

dence times in each zone as a function of the density ratio, n∗ (Table 3.1 and Table
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Figure 3.2. Comparison between three selected velocity fields for a flow discharge

Q = 0.5 m3 s−1 and a main channel width b = 10 m. Hydraulic residence time distri-

butions (RTDs) are plotted in non-dimensional form using the average residence time

TR = BLH/Q as a reference time scale. For a uniform vegetation distribution of 650

stems/m2 (a), the flow velocity is almost uniformly distributed, with diverging and con-

verging flow regions in proximity of the inlet and the outlet. In the intermediate case

(b), with 717 stems/m2 in the LVZs and 384 stems/m2 in the MFC (n∗ ≈ 0.53), a slight

bimodality becomes apparent: the velocity field is more channelized, with higher ve-

locities in the main channel. In the third case (c), with 800 stems/m2 in the VZs and 50

stems/m2 in the MFC (n∗ ≈ 0.06), the residence time statistics is characterized by two dis-

tinct timescales, associated with the faster transport in the MFC and the slower transport

in the LVZs, respectively. The result is a pronounced bimodality of the RTD.
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Figure 3.3. Comparison between non-dimensional hydraulic RTDs for a discharge of

Q = 0.5 m3s−1 and two MFC widths, b = 5 m (a) and b = 10 m (c). Curves are normalized

by the average water residence time in the wetland, TR = BLH/Q, and plotted in linear

than in logarithmic scale. The logarithmic plot (b) and (d) shows a linear behavior of the

curves at longer times.
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Figure 3.4. Comparison between the results from 2-D depth-averaged model and the

1-D transport model for Q = 0.5 m3s−1 and b = 5 m.
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Table 3.1. Best-fit model parameters for Q = 0.5m3 s−1 and main channel width b = 5 m.

n∗ (-) 1.00 0.887 0.777 0.669 0.564 0.461 0.360 0.261 0.164 0.070

w1 (-) 0.101 0.107 0.114 0.121 0.130 0.142 0.157 0.177 0.208 0.267

K1 (×10−2 m2 s−1) 3.56 4.46 9.58 10.4 10.3 11.2 12.8 17.0 25.7 47.8

K2 (×10−2 m2 s−1) 6.88 7.43 7.14 6.82 6.62 6.68 6.72 6.78 6.96 7.83

U1 (×10−2 m s−1) 2.25 2.20 2.35 2.67 2.96 3.25 3.61 4.08 4.83 6.41

U2 (×10−2 m s−1) 2.02 2.02 2.00 1.97 1.95 1.92 1.88 1.83 1.75 1.61

T1 (×103 s) 8.90 9.11 8.50 7.48 6.76 6.15 5.55 4.91 4.14 3.12

T2 (×103 s) 9.92 9.92 10.0 10.1 10.3 10.4 10.6 10.9 11.4 12.4

Pe1 (×104) 2.10 2.17 2.27 2.40 2.54 2.72 2.96 3.29 3.85 5.15

Pe2 (×104) 9.38 9.35 9.31 9.26 9.22 9.18 9.13 9.08 9.02 8.93

3.2). For decreasing values of n∗ the time scale of transport in the MFC, T1 = L/U1,

decreases and the time scale of the transport in the LVZs, T2 = L/U2, increases.

The fraction w1 =Q1/Q of the total discharge flowing through the main channel,

calculated in the central region of the domain where the flow is not affected by

inlet and outlet effects, is shown in Table 3.1 and Table 3.2.

The value ofw1 for a channel width b = 5 m is approximately double the value

for b = 10 m, whereas w1 = 1 for the limit case of b = B. Figure 3.4 shows a com-

parison between the breakthrough curves generated with the 2-D model and the

curves generated with the calibrated one-dimensional model. As explained in

the previous section, in the calibration, the parameter w1 was imposed using the

flow discharge Q1 calculated from the 2-D simulations, whereas the parameters

U1, U2, K1 and K2 were optimized to obtain a best-fit with the 2-D model results.

A good agreement between the curves is found both in linear and in logarithmic
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3. Bimodality of wetland residence time distributions and their modeling

Table 3.2. Best-fit model parameters forQ = 0.5m3 s−1 and main channel width b = 10 m.

n∗ (-) 1.00 0.875 0.756 0.643 0.535 0.432 0.333 0.239 0.149 0.0625

w1 (%) 0.202 0.213 0.226 0.241 0.259 0.280 0.307 0.343 0.395 0.489

K1 (×10−2 m2 s−1) 4.38 6.44 7.63 8.04 8.70 9.77 11.7 15.1 21.0 35.8

K2 (×10−2 m2 s−1) 6.67 7.41 6.44 6.10 5.94 5.89 5.84 5.75 5.63 5.45

U1 (×10−2 ms−1) 2.20 2.17 2.47 2.68 2.90 3.14 3.44 3.83 4.43 5.54

U2 (×10−2 ms−1) 1.99 1.99 1.93 1.89 1.84 1.79 1.72 1.62 1.49 1.25

T1 (×103 s) 9.08 9.21 8.08 7.45 6.90 6.37 5.82 5.22 4.52 3.61

T2 (×103 s) 10.0 10.0 10.4 10.6 10.9 11.2 11.6 12.3 13.4 16.0

Pe1 (×104) 4.19 4.34 4.56 4.79 5.08 5.43 5.90 6.57 7.68 10.3

Pe2 (×104) 8.33 8.26 8.18 8.10 8.02 7.59 7.86 7.77 7.66 7.49

scale. The use of an advection-dispersion model for the two transport compo-

nents leads to a satisfactory representation of the RTDs, both in presence and

absence of a clear bimodality. The behavior of the tails is also well represented,

with only a slight deviation in the most channelized case. The model is there-

fore capable to represent the residence time statistics with good approximation,

matching the main time scales and the variance of the RTDs.

The conceptual model expressed by equation (3.29) and equation (3.30) link-

ing the weight w1 to the channel width, b∗, and the vegetation density ratio, n∗,

shows a good agreement with the flow discharges calculated in the 2-D simula-

tions. As shown in Figure 3.5, the model appears to slightly overestimate the

discharge flowing in the MFC (and consequently underestimate the discharge in

the LVZs), especially for smaller values of n∗. In this case, the vegetation density

in the main channel is lower and the velocity higher, making the magnitude of the
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Figure 3.5. Comparison between discharges calculated with the 2-D depth-averaged

model and equations (3.29)-(3.30). Results are plotted for b∗ = 0.1 and b∗ = 0.2.

first term of equation (3.24) comparable to the fourth term, which was neglected

in the derivation of equation (3.29) and equation (3.30). This term should be

taken into account if a higher accuracy is desired. However, the approximation

provided by equation (3.29) and equation (3.30) appears to be quite satisfactory

to determine the value of the weight factor w1, as demonstrated by the graph in

Figure 3.5.

The values of the Peclet number for the main channel, P e1 = U1b/ET ,1, and

the lateral vegetated zones, P e2 =U2(B−b)/2ET ,2, calculated using the transverse

diffusion coefficient in equation (3.11), are reported in Table 3.1 and 3.2, respec-

tively. The values indicate that the transport process is dominated by advection

both in the MFC and in the LVZs. In particular, it is interesting to note that the

nondimensional longitudinal dispersion coefficients, defined as K∗i = Ki/ET ,i , are

found to be proportional to the square of the Peclet number P e2
i . This means

that the ratio K∗i /Pe2 is approximately constant as the density ratio n∗ varies. De-

viations from a constant value are observed for density ratios close to one (i.e.

n∗ ≈ 1) for which the bimodality of the RTDs is much less pronounced, mak-
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ing the automatic parameter estimation unable to distinguish between the two

transport components. Overall, the parameterization of the RTDs expressed by

equation (3.21) and equation (3.22) can well reproduce the shape of the simulated

RTDs, and the approximate relationships in equation (3.29) and equation (3.30)

provide a reliable estimate of the repartition of the flow discharge in the MFC and

the LVZs. Although the parametric dependence of the dispersion coefficients K1

and K2 is not fully resolved, results show that the ratios K∗i /Pe2 are independent

of n∗ and depend only on the nondimentional channel width b∗.

3.5 Conclusions

A two-dimensional depth-averaged hydrodynamic model coupled with a solute

transport model was used to derive the hydraulic residence time distribution in

a conceptual wetland characterized by a main flow channel (MFC) and lateral

vegetated zones (LVZs). Results show that the repartition of the flow between

the main channel and the vegetated zones leads to a bimodal behavior of the
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hydraulic RTDs. The shape of the RTDs was modeled with an adapted version of

the STIR model, here called STIR-DTD, that uses two components to represent

surface transport. Although the model can be easily extended to account for

additional retention processes, the use of a conventional advection-dispersion

model for each transport component was shown to be sufficient to adequately

reproduce the observed bimodality, with a reasonable level of accuracy also for

the tail behavior of the RTDs. The best-fit model parameters were analyzed as a

function of the width of the MFC and the density ratio between the MFC and the

LVZs. The position of the two concentration peaks on the time axis is linked to the

average travel time in each zone, whilst the ratio between the non-dimensional

longitudinal dispersion coefficient and the square of the Peclet number was found

to be approximately constant. Approximate analytical relationships were derived

for the flow discharges in the MFC and in the LVZs, which allow to estimate part

of the model parameters in a predictive way.

The analysis presented in this work retains a number of limitations due to the

simplified geometry and topography of the simulated wetland. Even in the ide-
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alized case of a rectangular wetland with uniform bed elevation, the residence

time statistics depends on several variables, such as the flow discharge, the wet-

land aspect ratio, the geometry of the main channel and the vegetation density,

making the problem extremely complex to describe in a comprehensive way. The

methodology and the results presented in this work can, however, be a basis for

future studies aiming to clarify the relationship between contaminant removal

efficiency and design parameters of constructed wetlands for waste-water treat-

ment.
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Chapter 4
Optimal vegetation distribution in wetlands: an

automatic evolutionary algorithm1

4.1 Introduction

Pollution control in natural water bodies is one of the most important tasks of

our time. High concentrations of different dissolved organic chemicals, such as

carbon, nitrogen or phosphorus, can stress ecosystems, decrease overall environ-

mental quality and change the characteristics of the water for human uses. Over

the past 50 years, a great effort has been made to collect, control and process pol-

luted water with treatment plants specifically designed for wastewater. While

such an approach is effective with point sources (sources characterized by high

concentrations and relatively small volumes of fluid), its cost may be excessive

in presence of diffused sources (sources characterized by low concentrations and

big volumes of fluid). To treat wastewater in the latter cases, researchers pro-

posed to exploit the bio-geochemical processes present in natural environments,

1The contents of this chapter have been partially published in: M. Gaudesi, A. Marion, T. Mus-

ner, G. Squillero, A. Tonda, An Evolutionary Approach to Wetlands Design, SAC2013, 28th Sym-

posium On Applied Computing, Coimbra, Portugal, March 18 - 22, 2013
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for example adopting free surface constructed wetlands. Wetlands are small arti-

ficial basins, partially covered by water, used to purify and filtrate polluted water

by means of vegetation. Patches made of plant species that exploit dissolved or-

ganic matter present in water to support their vital functions (e.g., Phragmites

Australis, Typha Latifolia), are distributed over the wetland area in order to obtain

a valuable breakdown efficiency.

Designing an effective wetland, however, is a difficult task. While it is pos-

sible to determine the effect of a certain configuration of vegetation patches us-

ing simulation tools, the underlying dynamics are too complex to derive an in-

verse function. The only viable approach is therefore the classical trial and error,

deeply relying on human sensibility and experience. Vegetated areas are tenta-

tively placed by an expert, and the effect evaluated using simulation tools. Then,

the expert needs to manually tweak the characteristics and position of each veg-

etation patch until a satisfactory result is attained.

Over the past decade, evolutionary algorithms (EA) have been successfully

employed as optimization tools in many real-world applications (Yu et al., 2008;

Sanchez et al., 2012). EAs provide an effective methodology for tackling difficult

problems, when no preconceived idea about the optimal solution is available.

While it is not usually possible to mathematically guarantee that the optimal

solution will be found in a finite amount of time, EAs have been demonstrated

able to perform much better than traditional optimization techniques in several

practical non deterministic polynomial-time hard (NP-hard) problems.

This chapter proposes an automatic approach to wetland design. Candidate

layouts are generated by an EA that internally uses a state-of-the-art fluid dy-

namics simulator to evaluate water purification and water flow alterations. The

process is completely automatized, and it is not based on human experience or

sensibility. Nevertheless, experimental results clearly show that the best solution
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evolved is comparable to a solution devised by an expert starting from the same

premises.

4.2 Background

4.2.1 Wetlands

Cowardin (1979) defines a wetland as an ecosystem transitional between aquatic

and terrestrial ecosystems, in which the water table is usually at or near the sur-

face or the land is covered by shallow water (Bendoricchio and Jorgensen, 2001).

Before the extensive land reclamation through the last century, wetlands were

common along the coasts, where they functioned as a natural buffer between in-

ner agricultural zones and coastal areas. Today there is a pressing necessity to

restore these areas and their role, defining optimal design criteria to obtain, at

reasonable costs, the best removal efficiency.

The removal efficiency of natural and constructed free-surface wetlands is

controlled by the time spent by contaminants into vegetated zones (Persson et al.,

1999). The role of vegetation in wetlands is important for two main reasons:

water passing through vegetated zones decreases its local velocity, favoring the

sedimentation of suspended solids; and biochemical processes determine a trans-

formation of the dissolved substances. In combination with bathymetry, distribu-

tion of vegetation can produce preferential pathways of water (hydraulic short-

cuts) that can substantially decrease the overall efficiency of a wetland. Removal

efficiency is also affected by other hydrodynamic characteristics, as water depth

and discharge, both dependent on vegetation distribution and density (Akratos

and Tsihrintzis, 2007; Kadlec and Wallace, 2009). Wetlands constructed for waste

water treatment are often designed considering an average water residence time

(Kadlec and Wallace, 2009), even though these methods cannot adequately de-

scribe spatial configurations of vegetation in real wetlands (Kadlec, 2000). These

models, usually called zero-dimensional, are often used because they require a
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few data and are easy to manage. Nevertheless, zero-dimensional models pro-

duce significant inaccuracies in the prediction of the efficiency of contaminant re-

moval. Other one-dimensional models with transient storage were recently used

(Martinez and Wise, 2003) to assess the contaminant removal in a constructed

wetland, giving in most cases a good approximation of breakthrough curves.

These models, however, fail to describe different flow paths across the vegeta-

tion and through main channels. The evidence of different flow pathways results,

as described in previous chapter, in a clear bimodality of the solute breakthrough

curves, that account for the different characteristic time scales of water residence

time. Since spatial heterogeneity of the variables assumes a prominent role in

determining the removal efficiency, the use of a more detailed two-dimensional

approach becomes necessary to obtain reliable predictions.

4.2.2 Evolutionary Algorithms

Natural evolution is not a random process: although it is based on random varia-

tions, their preservation or dismissal is determined by objective evaluations. Dar-

winian natural selection is the process by which only those changes that are bene-

ficial to the individuals will spread into subsequent generations, and sometimes

it strikingly resembles an optimization process. Unlike most optimization pro-

cesses, however, it does not require the ability to design intelligent modifications,

but only the assessment of the effect of random modifications.

Several researchers, independently, tried to replicate such a characteristic to

solve difficult problems more efficiently. Evolutionary computation does not have

a single recognizable origin, but most scholars agree on identifying four macro

areas: genetic algorithms (Holland, 1992), evolution strategies (Schwefel, 1965),

evolutionary programming (Fogel, 1962), and genetic programming (Koza, 1992).

The different paradigms share some key concepts, and can be cumulatively

called evolutionary algorithms. An EA starts by generating an initial set of usu-
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ally random candidate solutions for the given problem. These solutions, called

individuals, are evaluated using problem-dependent metrics. The result of the

evaluation, that is, the goodness of the solution, is termed fitness. The set of can-

didate solutions, also known as population, is then sorted on its fitness values.

Subsequently, offspring is produced by altering the existing solutions: often the

best solutions have a higher probability of being selected for reproduction. Off-

spring might be added to the existing population, or replace it entirely; in any

case, some of the worst solutions are deleted before iterating the process, starting

from reproduction. When a given stop condition is met, the iterations end and

the best solutions are returned to the user.

Being based on a population, EAs are more robust than pure hill climbing.

Both small and large modifications are possible, but with different probabilities.

Sexual recombination makes it possible to merge useful characteristics from dif-

ferent solutions, exploring efficiently the search space. Furthermore, EAs are

quite simple to set up, and require no human intervention when running. They

are inherently parallel, and a nearly-linear speed-up may be easily achieved on

multiple instruction/multiple data (MIMD) architectures. Finally, it’s easy to

trade-off between computational resources and quality of the results.

4.3 Proposed Approach

The proposed approach exploits an evolutionary algorithm to create candidate

solutions to the wetland design problem, represented as a set of patches of veg-

etation to be placed inside the area at specific locations. Candidate solutions are

evaluated by simulating the water flow inside the wetland, keeping track of the

quantity of fluid being purified as well as several related metrics.

4.3.1 Mathematical Models

A wetland is modeled here using a two-dimensional depth averaged model that

solves hydrodynamics coupled with a two-dimensional solute transport equation
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with a first order decay term. Under the assumption of hydrostatic pressure, sta-

tionary flow, and negligible wind and Coriolis forces, the depth-averaged velocity

field and water depth can be described by the following equations (Wu, 2007):

∂(hU )
∂x

+
∂(hV )
∂y

= 0 (4.1)
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The quantities U and V represent the depth-averaged velocities [LT−1] along the

x and y direction, respectively, h is the water depth [L], zs is the water surface

elevation [L], and ρ the water density [ML−3]. The bed shear stresses τbx and τby

[ML−1 T−2] in the x and y direction respectively are calculated using the following

relationships:

τbx = ρcfmbU
√
U2 +V 2 (4.4)

τby = ρcfmbV
√
U2 +V 2 (4.5)

In the case modeled here, the bed slope is set to zero and the investigated velocity

range makes it possible to consider the friction coefficient as a constant. This as-

sumption generally holds where the velocity is sufficiently fast to assume turbu-

lent flow. For a flat bathymetry, the bed slope coefficientmb is unitary and the co-

efficient of friction cf can be rewritten using Manning’s equation as cf = gf 2h−1/3.

The effect of different vegetation densities is modeled here using different values

of Manning roughness coefficient f [TL−1/3]. This choice is confirmed by many

studies that relate vegetation density, stem diameter and flow conditions to an

equivalent roughness coefficient (Augustijn et al., 2006; Green and Garton, 1983;

White and Nepf , 2003). Fluid shear stresses Tij(i, j = x,y) associated to viscous and
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turbulent effects, are determined using the Boussinesq assumption:

Txx = 2ρ(ν + νt)
∂U
∂x

(4.6)

Txy = Tyx = ρ(ν + νt)(
∂U
∂y

+
∂V
∂x

) (4.7)

Tyy = 2ρ(ν + νt)
∂V
∂x

(4.8)

where ν, νt, are the kinematic and eddy viscosities [L2 T−1]. Since the kinematic

viscosity has a lower value than the eddy viscosity, it can be neglected in most

cases. For a turbulent flow regime, as it was assumed in this preliminary study,

νt can be expressed using Elder depth-averaged parabolic model (Elder, 1959) as

νt = αu∗h, where the term α is an empirical coefficient dims- and u∗ is the shear

velocity [LT−1].

For longitudinal dispersion Elder proposed a value of the coefficient α of

about 5.9 (Elder, 1959), for transverse dispersion, Fischer found that α is about

0.6 (0.3-1.0) in irregular waterways with weak meanders (Fischer et al., 1979).

In accordance with Arega and Sanders (2004) and Wu (2007), a value of α of 6.0

and 0.6 was chosen for the longitudinal and transversal dispersion coefficients

respectively.

Solute transport of a reactive tracer through the wetland is simulated with a

depth-averaged solute transport model accounting for the effect of advection, tur-

bulent diffusion, dispersion and decay. In the simulations, the tracer is assumed

to interact with vegetation and the chemical breakdown due to the permanence

in the vegetated zones is modeled with a first order decay relationship. The equa-

tion governing the transport of a reactive tracer in the wetland can be modeled

as:
∂(hUC)
∂x

+
∂(hVC)
∂y

=
∂
∂x

(hExx
∂C
∂x

) +
∂
∂y

(hEyy
∂C
∂y

)− hkC (4.9)
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whereC is the depth-averaged solute concentration [ML3],U , V are the vertically

integrated velocity components under steady flow conditions [ML−1 L−2] in the x,

y directions respectively. Coefficient Exx, Eyy [L2 T−1], account for both turbulent

diffusion and dispersion. For simplicity, constant homogeneous value of Exx, Eyy

is chosen (10−5 m2 s−1) throughout the entire domain.

4.3.2 Evolutionary Core

The EA used is µGP (Sanchez et al., 2011), is a versatile toolkit developed at Po-

litecnico di Torino in the early 2000s and available under the GNU Public License

from Sourceforge2. µGP original use was to assist microprocessors’ designers in

the generation of programs for test and verification, hence, the greek letter µ in its

name. But over the years has been used as optimizer in a much wider spectrum

of problems, including numerical optimizations.

The algorithm initially creates a set of random candidate solutions to the

given problem, that are then evaluated, and sorted by their fitness value (see

Subsection § 4.3.3). Offspring is then created favoring the fittest individuals and

also trying to favor diversity among the population. New candidate solutions are

then evaluated and added to the initial population. Solutions are again sorted,

and the worst ones are removed until the population returns to its original size.

The process is then iterated, starting from offspring generation, until a stop con-

dition is reached.

Two categories of genetic operators are used to generate the offspring: mu-

tations, or single-parent operators, and crossovers, or recombination operators.

Mutation operators create new candidate solutions by altering one single par-

ent solution; crossover operators mix the information contained in two or more

parents solutions to create offspring. The most common operators are available

2http://ugp3.sourceforge.net/
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inside µGP, but the toolkit also implements differential evolution and other oper-

ators specially calibrated for real parameters.

µGP, relying on an external configuration file, constraints the individuals, rep-

resented internally as multigraphs, to sensible structure, and maps the internal

individuals to valid solutions of the problem. In the specific context, each in-

dividual encodes a candidate wetland configuration, that is, it describes the fea-

tures of the several vegetation patches, with variable number of occurrences from

20 to 35, that are going to be placed over the wetland area; the order in which the

patches are described within the individual is irrelevant. All vegetation patches

are assumed to be of circular shape. Since they can overlap, however, they can

create more complex shapes. Each patch is characterized by its position (x, y co-

ordinates expressed in real values) over the wetland, its radius, and the friction

value of the center. Position of vegetation patch is constrained by the size of the

wetland; its radius is constrained following the minimum and maximum size of

typical vegetation areas that characterize real wetlands. Friction value is selected

among several values associated to different kinds of vegetation.

Intuitively, vegetation patches tend to be denser in the middle and sparser

near their outer bounds. Thus, vegetation density in an individual present two

discontinuities, at radius/2 and 3 ∗ radius/4 respectively, where the friction value

in the center is higher. Friction value is increased in the common parts in case

two vegetated patches overlap. A sample individual is presented in Figure 4.1.

4.3.3 Fitness Function

The definition of an appropriate fitness function is a key aspect in the use of

an EA. The process of evolution is based on differential survival, that is, differ-

ent individuals must have a different chance to spread their offspring in future

generations. In the artificial environment modeled by an EA, it is essential that

different individual get different fitness values. It is a common practice to include
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Figure 4.1. Phenotype of an individual: graphic representation of the genotype, repre-

sented by a list (center, radius etc.) of features that characterizes each vegetation patch.

Darker green indicates a higher coefficient of friction.

in the fitness some heuristic knowledge, in order to help the EA explore the most

promising regions of the search space.

In µGP, the fitness is not a single value but a vector of positive coefficients. The

individual A is considered to be fitter than the individual B if the first j elements

of the two fitness vectors are equal, and the (j + 1)− th element of the A’s fitness

is greater than the (j + 1)− th element of the B’s fitness. In the context of wetland

optimization, three values have been used.

In order to evaluate the goodness of a candidate wetland layout, a simulation

of the hydrodynamic field is performed extracting computed values of discharge

Q [L3 T−1] and water depth h [L] at the inlet and at the outlet sections of the

wetland. During the simulation, a reactive tracer with a known concentration is

injected at the inlet. Thanks to the presence of vegetation the tracer is gradu-

ally degraded and reaches the outlet section. Mass fluxes Ṁin and Ṁout [MT−1]

passing through these sections are measured, and the difference between the two

values represent the first parameter of the fitness function. In order to obtain the

optimal vegetation distribution, this difference must be maximized.

74



4.4 Experimental Evaluation

On the other hand, a candidate layout must still let the water flow, avoiding

configurations where the vegetation is so dense to make the flow impossible. The

energy requested by the water to flow can be represented by the difference be-

tween the water depth at the inlet and outlet section. This difference represents

the second parameter of the fitness function. This parameter is minimized by

the algorithm: solutions that completely block the water flow are then heavily

penalized.

The third and last fitness parameter measures the difference of discharge be-

tween the inlet and the outlet sections of the wetland. This value assures that the

stationary flow conditions are reached and that the mass fluxes are finely com-

puted. This discharge difference is strongly minimized.

4.4 Experimental Evaluation

The flow domain is given here by a 200m-long-by-100m-wide rectangular wet-

land. The length of the wetland allows the solute to spread throughout the cross

section and make sure that the whole vegetated area can act on the breakdown

process. The elevation of the bed is assumed to be constant, as in a large set of

natural wetlands the bed topography does not vary significantly in space and the

effect of bed slope can be discarded (Wörman and Kronnäs, 2005; Wu, 2007).

Inlet and outlet sections (each 10 m wide) are located symmetrically in the

middle of the shorter sides of the wetland domain. A constant discharge of

0.2m3 s−1 is imposed at the inlet section and a constant water depth of 0.5 m

acts as the downstream boundary condition at the outlet section. The remaining

boundary is treated as impermeable (no flux condition) and no friction is applied

to the lateral walls. Reactive solute with a constant concentration of 1kgm−3

is injected at the inlet section and, once the steady state is reached, the average

value of concentration at the outlet section is calculated in order to define the
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value of the fitness function. An adaptive triangular mesh is used to ensure nu-

merical stability and resolution in case of steep gradients of the hydrodynamic

and solute transport solutions.

A value of the Manning roughness coefficient and a particular decay value

are assigned to each node of the grid, according to the particular generated indi-

vidual. The value of decay coefficient k [T−1] is assigned only to those zones in

which vegetation is present, assuming higher values in zones with higher rough-

ness coefficient. Decay coefficients are conveniently scaled compared to natural

ones in order to obtain a measurable breakdown (not affected by numerical er-

rors) at the outlet sections. Manning roughness coefficients vary from 0.02sm−1/3

to 0.20sm−1/3 and decay coefficients vary from 10−6 s−1 to 10−5 s−1. A zero value

of the decay coefficient is assigned to the zones without vegetation.

The evolutionary core exploited is µGP version 3.2.0 (revision 198). Fitness

of each individual is evaluated solving equations (4.1)-(4.3) and equation (4.9)

by a free, open source code called TELEMAC2D, part of the wider set of pro-

grams openTELEMAC (Galland et al., 1991; Hervouet et al., 1994). The code has

been specifically modified in order to meet the requirements of the performed

simulations.

Each individual evolved by µGP is converted to the TELEMAC2D format: a

map of the nodes in the basin is created and to each node covered by a vegetation

patch is assigned the correct law of friction and the relative decay coefficient. In

order to reduce the computation time required to simulate an entire population,

individual processing is distributed on two machines: through this approach and

by means of EAs’ parallelism characteristics, it is possible to process different

individuals at the same time. For this purpose, GNU Parallel (Tange, 2011), a

shell tool for executing jobs in parallel using one or more computers, is used to

distribute the computing effort.
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Figure 4.2. Progressive optimization of candidate solutions. On the left, the best layout

in the population, for several generations. On the right, a graph showing the increase in

the best fitness value as the EA proceeds.

The optimization process is run on two distributed machines, configuring the

system in order to simulate up to 4 individuals at the same time on each machine.

The first machine is equipped with an Intel Core i5-2500 CPU running at 3.3

GHz, while the second is equipped with an Intel Core i7-950 CPU running at 3.06

GHz. By means of this configuration, it was possible to evaluate a maximum of

eight individuals at the same time, requiring an average computation time of 80

minutes for each individual.

To check the functioning of the optimization system, two different numerical

experiments have been performed: the first one, with a wider range of free op-

timization parameters, has been performed to check the ability of the system to

give reasonable results in term of vegetation distribution and density; the second

one, with a limited number of free parameters has been performed to observe the

geometric characteristics of an optimal vegetation distribution in terms of mass
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degradation.

The first experiment fixes a maximum number of vegetation patches but does

not limit a total amount of vegetated surface. The optimization algorithm can

modify the position of the vegetation patches, the radius and the value of the

Manning’s roughness coefficient. Each vegetation patch can be freely positioned

over the wetland surface by the genetic algorithm starting from an initial random

population of 20 individual (µi = 20). The EA uses a set of 12 genetic operators

applied at each step of evolution (λ = 12)3. µGP constantly adjusts the activation

probabilities of each genetic operator in order to enhance the evolution process.

In the second experiment, the vegetational cover has been fixed to a maximum

value of 60% of the total wetland surface. A single uniform roughness coefficient

corresponding to an uniform vegetation density has been imposed for each veg-

etation patch. A unique law of friction (and therefore a single decay coefficient

equal to 5×10−6s−1) was applied to the mesh nodes covered by vegetation and no

decay properties were assigned to the zone not covered by vegetation. Manning

roughness coefficients were set to 0.20 sm−1/3 to nodes with vegetation, and 0.02

sm−1/3 otherwise. The EA has been configured to create a random initial popu-

lation of 20 individuals (µi = 20), on which 12 genetic operators (λ = 12) chosen

among the 20 available in µGP tool have been applied at each evolution stage.

The entire process evolved for 90 generations, for a total of 1070 individuals gen-

erated. During the individual generation, all those individuals characterized by

a vegetation cover larger than 60%, were discarded in order to hold the initial

constraint of a fixed vegetation.

3Differently from the usual terminology, in µGP "λ" represents the number of genetic operators

activated in each generation. Since each genetic operator may generate any number of individuals

(even zero), the true offspring size cannot be defined.
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INDIVIDUAL C

INDIVIDUAL B

INDIVIDUAL A

Figure 4.3. Three stage of the optimization performed keeping a fixed maximum value

of vegetation cover equal to 60%. One of the initial individuals (individual A) is char-

acterized by a poor vegetational cover, whilst individuals B and C reach the maximum

vegetation even with a different disposition of vegetated patches. Individual C is charac-

terized by the maximum mass removal efficiency.
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4.5 Results and Discussion

Results of the first test were reached after approximately 100 generations and

1100 individuals analyzed and are described in Figure 4.2. Three individuals

at three different evolution stages are shown as a reference for the whole opti-

mization process. It is interesting to note that each individual presents the same

number of vegetated patches. Individual A, at the initial stage of the evolution,

shows a poor vegetative covering and vegetation patches are characterized by

both dense and sparse vegetation (brighter color for some patches compared to

the others). Level of mass degradation is around 20%. During the computation,

the evolution promotes individuals to spread over the wetland surface and to de-

velop a thicker vegetation. This is clear in the case of the individual B, in which

the percentage of superimposed vegetation patches decreases. Patches tend to

cover the maximum available wetland surface by reaching the maximum allowed

radius of 20 m: patches diameter becomes indeed more homogeneous compared

to individual A and the remaining small vegetated areas does not impact on the

degradation process. In this case, mass degradation increases and reaches a value

close to 32%. As the evolution proceeds, the vegetative cover tends still to in-

crease (individual C) even though mass degradation values show an asymptotic

behavior from generations 45 to 70. That means that, at this stage of evolution,

processed individuals are very similar to each other and the population can be

regarded as mature. Under the assumption of the model, mass degradation per-

centage of the best individual reaches a satisfying 43%, approaching values that

are common in real constructed wetlands (Haberl et al., 1995).

Results of the second experiment are described in Figure 4.3. Among indi-

viduals of first generations, its possible to note some individuals (individual A,

for example) which are characterized by a low number of vegetated areas clearly

separated between each other. This configuration produces a low filtration ca-
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pacity due to the limited decay process acting along the wetland. Individual A

is characterized by a removal efficiency of 21% related to the inlet concentration.

As evolution proceeds, vegetational cover tend to increase and the evolutionary

algorithm generates individuals which respect the maximum cover constraint.

The maximum number of patches is rapidly reached and the maximum radius of

each patch grows fast in order to reach the 60% value. In order to define more

complex configurations, the EA is able to combine position and dimensions of

each area, creating complex shapes and allowing a better filtering performance.

A direct comparison between individual B and individual C in Figure 4.3 allow

to identify shapes and characteristics of vegetation patches that optimizes the

breakdown efficiency: both individual B and C are indeed characterized by a

vegetated coverage very close to the imposed limit of 60%, but have a different

fitness value. Individual B belongs to the third generation, in which evolution

is still very close to the starting stage and, although the maximum vegetation

coverage is reached, is characterized by a filtering amount to 27%. Individual C

instead, represents the best configuration achieved in this experiment: vegeta-

tive cover is comparable to individual B but presents a filtering performance of

33.2%. The difference between these two configurations can be addressed to the

length of the flow pathways between the inlet and the outlet zones: vegetation

disposition in individual C forces the water to pass through vegetation following

a longer pathway, whereas vegetation disposition in individual B allow the solute

to reach the outlet section in a faster way passing through the lower end of the

wetland domain.

4.6 Conclusions

Wetlands are artificial ponds, extensively used to filtrate and purify water. Achiev-

ing an optimal design for this purpose is an extremely complex task, usually

carried on by experts on the basis of fluid dynamics simulations. In this chap-
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ter, an evolutionary algorithm is applied to the wetlands design problem. Each

candidate solution is evaluated by a state-of-the-art fluid dynamics simulator,

on the basis of several relevant metrics. Experimental results on the best solu-

tion provided by the algorithm show a performance comparable with human-

devised designs, despite the absence of human intervention during the optimiza-

tion process. Future works will include a more complex individual representa-

tion, with patches of several different shapes and a more refined management

of friction values. Managing larger populations, or different sub-population,

might also prove beneficial to the quality of the final solutions: nevertheless, the

computational-intensive simulations needed to evaluate a single candidate rep-

resent a severe bottleneck. For this reason, further developments will probably

exploit the parallelism innate in evolutionary algorithms, using clusters or grids

to speed up the process. Finally, the choice of decay coefficients has a predom-

inant role in determination of the final breakdown efficiency: a more detailed

analysis on a real case should be used to demonstrate the potential of the pro-

posed approach, that shows promising results in this first experience.
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Chapter 5
Random field modeling of wetlands1

5.1 Introduction

In the previous chapter, an automatic genetic optimization procedure has been

performed to define the best vegetation distribution that produces the maximum

mass breakdown efficiency. Nevertheless, a more comprehensive work is needed

to identify spatial vegetation characteristics (size of vegetation patches, complex

shapes, position related to the inlet and outlet zones..) that produce the optimal

breakdown efficiency. A series of numerical experiments that mimic the effect

of vegetation density on wetland efficiency have been therefore performed us-

ing, as a reference, a known spatial probability density function. This work will

allow to define, if any exists, the best set of statistical parameters of a randomly

distributed vegetation in order to achieve the maximum removal efficiency. Com-

pletely emergent vegetation is simulated by means of a two-dimensional depth

averaged model that solves coupled hydrodynamic- and advection-diffusion equa-

tions with the presence of a first order decay term. Decay coefficient is assumed

proportional to vegetation density in order to account for the effect of vegetation

1This chapter provides a brief preview of the first results coming from the last work on the

effect of random spatial vegetation distributions on wetland efficiency.
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on the chemical breakdown. Preliminary results suggest the definition of non-

dimensional parameters which are able to relate statistical parameters of spatial

random distribution to discharge and removal efficiency. At this stage, only a few

combination of parameter have been investigated, but first considerations can be

made in order to address next simulations.

5.2 Modeling overview

Simulation have been performed using the modeling framework defined in Chap-

ter 3 adapting the solute transport equation in order to account for mass break-

down. For the sake of completeness, main equations are rewritten here in their

more simplest form, leaving the detailed description to the dedicated chapter.

5.2.1 Hydrodynamic model

Under the assumption of hydrostatic pressure, incompressible fluid, steady-state

flow, negligible wind and Coriolis forces, the depth-averaged velocity field and

water depth satisfy the following equations (Wu, 2007):

∂(hU )
∂x

+
∂(hV )
∂y

= 0 (5.1)

hU
∂U
∂x

+ hV
∂U
∂y

= −g ∂
∂x

(
h2

2

)
− τ

b
x

ρ
− τ

v
x

ρ
+ ghix (5.2)

hU
∂V
∂x

+ hV
∂V
∂y

= −g ∂
∂y

(
h2

2

)
−
τby
ρ
−
τvy
ρ

+ ghiy (5.3)

The quantities U and V represent the depth-averaged velocities [LT−1] in the x-

and y- directions, respectively, h is the water depth, ix and iy are the bottom slopes

[−] along the x- and y- direction respectively, and ρ the water density [ML−3]. The

shear stresses τbx and τby account for bed resistance, whereas τvx and τvy account for

vegetation resistance along the x- and y- direction, respectively. Reynolds stresses

are assumed to be negligible compared to bed and vegetative resistance and the
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5.2 Modeling overview

contribution of bed friction to bed shear stresses is computed by adapting the

one-dimensional relationships proposed by Kadlec (1990) to a two-dimensional

velocity field.

The hydrodynamic field has been solved using a formal analogy between equa-

tions (5.1), (5.2) and (5.3) and the weakly compressible Navier-Stokes equations:

∂(ρU )
∂x

+
∂(ρV )
∂y

= 0 (5.4)
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) ∂U
∂x
−
(2
3
η − kdv

) ∂V
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∂
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[
η
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∂V
∂x

)]
+Fx

(5.5)
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∂
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η
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∂U
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+
∂V
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)]
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(5.6)

where ρ is the fluid density [ML−3], η is the dynamic viscosity [ML−1 T−1] and

kdv is the dilatational viscosity [ML−1 T−1]. A direct comparison of equations (5.1)

and (5.4) shows the correspondence between the water depth h and the weakly

compressible fluid density ρ, whereas a complete superposition of the remaining

terms of of equations (5.2) and (5.5) can be obtained imposing p = 1/2gh2 and

kdv = 2/3η = 0. Under these conditions, both the equations have the same ve-

locity field and the numerical procedure used to solve the weakly compressible

Navier-Stokes equations can be used to solve the hydrodynamic field described

by equations (5.1), (5.2) and (5.3). This formal analogy has been used in order

to exploit the complete and powerful set of routines provided by the COMSOL

Multiphysics® software.
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5. Random field modeling of wetlands

5.2.2 Solute transport model

Solute transport of a reactive tracer through a wetland is simulated with a depth-

averaged solute transport model,

∂(hC)
∂t

+
∂(hUC)
∂x

+
∂(hVC)
∂y

=
∂
∂x

(hExx
∂C
∂x

+ hExy
∂C
∂y

)+

∂
∂y

(hEyx
∂C
∂x

+ hEyy
∂C
∂y

)− hkC
(5.7)

where C is the depth-averaged solute concentration [ML−3], U , V are the ver-

tically integrated velocity components [LT−1] in the x-, y-directions respectively

and k is the decay coefficient [T−1]. The coefficients Ei,j [L2 T−1], i, j = x,y, account

for both turbulent diffusion and shear dispersion due to vertical velocity gradi-

ents. Values of coefficients Ei,j have been calculated as described in Chapter 3

expressing the dispersion tensor as in Arega and Sanders (2004):

Exx = EL + (EL −ET )
U2

U2 +V 2 (5.8)

Exy = Eyx = (EL −ET )
UV

U2 +V 2 (5.9)

Eyy = ET + (EL −ET )
V 2

U2 +V 2 (5.10)

where EL and ET represent the dispersion coefficients along the longitudinal and

transversal flow direction, respectively.

5.3 Model application

The flow domain considered in this work is given by a rectangular wetland with

length L = 400 m, width B = 300 m, and constant bed elevation. The choice

of a zero bed slope is supported by the evidence that in many natural wetlands

the bed elevation does not vary significantly in the streamwise direction, and

the effect of bed slope can often be neglected (Wörman and Kronnäs, 2005; Wu,
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5.3 Model application

2007). The flow domain is characterized by an inlet and outlet section b = 10 m

and vegetation density n, expressed as stems/m2 is randomly distributed over the

wetland area.

The random field that describes vegetation density distribution over the wet-

land domain has been built using the free, open-source algorithm proposed by

Bellin and Rubin (1996). Although the algorithm allow to reproduce random

fields characterized by different spatial probability density functions, a simple

Gaussian space probability density function with homogeneous correlation length

has been adopted for this work. Varying the three parameters of the Gaussian

PDF, (mean µ, variance σ and correlation length lc), a number of 135 random

fields was created. Three means of 400, 800 and 1200 stems/m2 characterized by

nine correlation lengths (5-10-15-20-25-30-35-40-45 m respectively) and three

variances have been simulated. The variance of each field has been fixed in order

to obtain only positive values of vegetation density.

For the flow equations (equation (5.1)–equation (5.3)), the boundary condi-

tions are given by the inflow at the inlet and the water depth at the outlet, h =

0.5 m whereas the remaining boundary is treated as impermeable. Hydrody-

namic field is computed varying the flux boundary condition at the inlet section

until the same head loss of 0.03 m between the inlet and the outlet section has

been reached for all tests. The choice to fix the head loss between inlet and outlet

section appear reasonable as in large lowland basins, hydraulic safety and re-

moval efficiency has a primary importance in relation to the amount of treated

water.

For the solute transport equation, the boundary conditions are given by a con-

stant unitary concentration at the inlet, C = 1, an open boundary condition at the

outlet, and the no-flux condition on the remaining part of the flow boundary. The

equations are solved via a finite element method using COMSOL Multiphysics®

with quadratic shape functions. The effect of vegetation on breakdown efficiency
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5. Random field modeling of wetlands

Density Random Field (stems m-2)

Velocity Field (m s-1)

Figure 5.1. Random vegetation density field for a mean µ = 400, a variance σ = 10000

and a correlation length lc = 45m. Velocity field follows the main characteristics of the

vegetation density: velocity module appear to be higher in zones characterized by low

vegetation density.
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5.3 Model application

Velocity Field (m s-1)

Density Random Field (stems m-2)

Figure 5.2. Random vegetation density field for a mean µ = 1200, a variance σ = 90000

and a correlation length lc = 45m. Velocity field follows the main characteristics of the

vegetation density: velocity module appear to be higher in zones characterized by low

vegetation density.
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5. Random field modeling of wetlands

has been evaluated assuming a decay coefficient linearly proportional to stem

density in order to account for different mean stem densities and for local patches

of thicker vegetation. Examples of two different vegetation density fields and of

the related velocity fields are shown in Figure 5.1 and in Figure 5.2. Values of

discharges and removal efficiency have been measured for each case and plotted

as a function of statistical parameters of the random density fields.

5.4 First results and considerations

First results are shown in Figure 5.3: as the mean stem density increases, the

overall vegetation resistance increases and, keeping a constant head loss, the en-

tering discharge decreases (Figure 5.3 c). Mass removal efficiency EM =Min−Mout

[MT−1] (Figure 5.3 a) is related to removal efficiency E = (Cin − Cout)/Cin [−]

through the discharge: although other mean densities should be analyzed in

order to have a clearer trend, it can be seen that mass efficiency tends to de-

crease the rate of growth as the mean density increases. A presence of a peak

on the mass removal efficiency can be therefore expected as the mean vegeta-

tion density increases. Removal efficiency, expressed only as a function of the

concentration difference between the outlet and the inlet sections, seem to be

linearly correlated with mean vegetation density although an asymptotic behav-

ior to 100% can be expected for larger mean densities. Figure 5.3 d shows the

correlation between statistical parameters of the random density field, the dis-

charge Q and the parameter Myv +Mxv . Miv represents a sort of first moment

of the density around the x- y- axis defined by the inlet/outlet sections. The

subscript v accounts for a weighting procedure based on the local velocity field,

that assigns low importance to high density regions (assumed to have an higher

breakdown effect) located in dead zones characterized by low velocity and there-

fore, low fluxes. Plotted variables in Figure 5.3 d are combined in order to obtain

two non-dimensional quantities. The good correlation between these two non-
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Figure 5.3. System variables as a function of the mean density a), b), c) and correlation

of the system variable and statistical parameter of the random distribution written in a

non-dimensional way.
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5. Random field modeling of wetlands

dimensional quantities suggests the presence of a relationship between system

parameter that will be analyzed more deeply in the next future.

5.5 Conclusion

A first attempt to identify a proper mean, variance and length scale of a randomly

distributed vegetation which assures the best overall efficiency has been made in

this work. Efficiency can be expressed in terms of mass and in terms of concen-

tration in relation to the wetland management requirements. Present regulations

and design principles focus their attention only on a removal efficiency written as

a function of concentration difference between the inlet and the outlet sections

but a more comprehensive evaluation should be done considering also the to-

tal amount of removed mass. A good correlation between statistical parameters,

removal efficiency and discharge suggest that the problem can be parametrized

with the principal statistical parameters of the random vegetation density distri-

bution. The role of the parameter Myv +Mxv , that describes the position of the

thicker vegetated areas in relation to the inlet and the outlet sections could be

important to predict the wetland efficiency, but a more comprehensive analysis

is needed to confirm performed.
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Notation

The symbols and notation appearing in this thesis are listed below. Within the

main body of the text, symbols are usually defined at their first usage within a

chapter, or at other times when needed for clarity. In some cases equations have

been presented using the same notation used in the original papers; in other

cases, original notation has been altered to better fit with the surrounding mate-

rial.

Acronyms

ADE Advection-Dispersion Equation;

BTC Breakthrough Curve;

DOC Dissolved Organic Carbon

DON Dissolved Organic Nitrogen

EA Evolutionary Algorithm;

LVZ Lateral Vegetated Zone;

MFC Main Flow Channel;

MIMD Multiple Instruction Multiple Data.

PDF Probability Density Function;

RMSE Root Mean Square Error;

RTD Residence Time Distribution;

RWT Rodhamine-WT;
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Notation

STIR Solute Transport In Rivers;

TSM Transient Storage Model;

Roman symbols

Upper case

A average stream cross-sectional area [L2];

B wetland width [L];

Br river width [L];

C concentration [ML−3];

C∗ dimensionless concentration, C∗ = C/Cmax [ - ];

Cobs observed concentration [ML−3];

Csim simulated concentration [ML−3];

Cmax peak concentration of BTCs [ML−3];

Cin constant concentration at the inlet section of the wetland [ML−3];

Cout concentration at the outlet section of the wetland [ML−3];

Cδ concentration resulting from a mass pulse [ML−3];

Dm molecular diffusion coefficient [L2 T−1];

Dij components of the turbulent diffusion tensor [L2 T−1];

Dz vertical turbulent diffusivity [L2 T−1];

E removal efficiency [- ];

Eij components of the dispersion tensor [L2 T−1];

EL longitudinal dispersion coefficient in a canopy [L2 T−1];

EM mass removal efficiency [MT−1];

ET transversal dispersion coefficient in a canopy [L2 T−1];

FA exchange flux across the surface [ML−2 T−1];

FB exchange flux across the river bed [ML−2 T−1];

H mean water depth over the wetland domain [L];

I set of observed concentration values, I = IU ∪ IL ;
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Notation

IL set of observed concentration values lower than a given threshold concen-

tration;

IU set of observed concentration values higher than a given threshold con-

centration;

K longitudinal dispersion coefficient for a 1D model [L2 T−1];

Ki MFC and LVZ longitudinal dispersion coefficients of the STIR-DTD model

[L2 T−1];

L length of study reach [L];

Lh horizontal size of the recirculation zones [L];

M0 injected mass [M];

Ṁin mass flux entering the wetland [MT−1];

Ṁout mass flux exiting the wetland [MT−1];

Miv first velocity-weighted moment of the density field around the x, y direc-

tions [T−1];

P wetted perimeter [L];

Q flow discharge [L3 T−1];

Q flow discharge passing through a wetland under stationary conditions

[L3 T−1];

Qi flow discharge passing MFC and LVZs [L3 T−1];

S source/sink term [ML−1 T−1];

Ta timescale for the time-averaging procedure [T];

Ti timescales for retention processes [T];

Tij turbulent shear stresses [ML−1 T−2];

U depth-averaged flow velocity along x direction [LT−1];

V depth-averaged flow velocity along y direction [LT−1].
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Notation

Lower case

a frontal vegetation area per unit volume [L−1]

b wetland inlet/outlet width [L];

b∗ non dimensional inlet ratio [- ];

c local instantaneous concentration [ML−3];

c̃ time average of the local instantaneous concentration [ML−3];

ciD drag coefficients due to vegetation and bottom drag [- ];

cf coefficient of friction in the 2D depth averaged equations [- ];

d stem diameter [L];

f Manning’s roughness coefficient [TL−1/3];

feq Manning’s roughness coefficient equivalent to bed and vegetative resis-

tance [TL−1/3];

g gravity acceleration [LT−2];

h water depth [L];

ix iy bed slopes along the x and y directions [- ];

k′ decay rate [LT−1];

k decay coefficient [T−1];

kdv dilatational viscosity [ML−1 T−1];

l submerged stem length [L];

lc corelation length of the spatial random vegetation density field [L];

mb slope coefficient [- ];

n vegetation density [L−2];

n∗ non dimensional density ratio [- ];

p pressure [ML−1 T−2];

pi conditional probability distribution of the random variableNi [ - ];

r overall residence time distribution within a stream of length x [T−1];

ri probability density function (PDF) of the generic residence time [T−1];
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Notation

rM mass recovery ratio [- ];

rW probability density function (PDF) of the residence time the surface water,

TW [T−1];

rS probability density function (PDF) of the overall residence time in the

storage zones, TS [T−1];

rSi probability density function (PDF) of the overall residence time in the i-th

storage domain, TSi [T−1];

rSi |n conditional residence time probability density function (PDF) in the i-th

storage domain given that a particle has entered the storage domain n

times [T−1];

t time [T];

t averaging timescale [T];

t∗ dimensionless time [- ];

tad average advection time, tad = L/U [T];

u velocity vector, u = (u,v,w) [LT−1];

u velocity component in the x-direction [LT−1];

ũ time average velocity component in the x-direction [LT−1];

ũ time average of velocity field, ũ = (ũ, ṽ, w̃) [LT−1];

u∗ shear velocity [LT−1];

v velocity component in the y-direction [LT−1];

ṽ time average of the velocity component in the y-direction [LT−1];

w velocity component in the z-direction [LT−1];

w̃ time average of the velocity component in the z-direction [LT−1];

w1 weight of the STIR-DTD model [- ];

x position vector, x = (x,y,z) [L];

x spatial coordinate [L];

y spatial coordinate [L];

z spatial coordinate [L];
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Notation

zs water surface elevation [L];

Calligraphic symbols

Ni number of times a particle enters the i-th storage domain (random vari-

able) [ - ];

T total residence time in the study reach (random variable) [T];

TS overall residence time in the storage zones (random variable) [T];

TSi overall residence time in the i-th storage domain (random variable) [T];

TW residence time in the surface water (random variable) [T].

Greek symbols

Upper case

∆tinj time length of injection period [T];

∆y transversal motion of a particle passing through a canopy [L];

Γ velocity shape factor [- ];

Φ mass flux of solute [ML−2 T−1];

Φ cumulative distribution function of the wetland RTD [-];

Lower case

ααi transfer rates [T−1];

αT coefficient for the transverse diffusivity [- ];

β scale factor for the transverse motion of a particle in a canopy [- ];

λ number of genetic operators used EA [-];

χ general variable used for the time-averaging procedure;

χ̃ general time-averaged variable;

χ′ fluctuation of the general variable around the time-averaged value;

µ mean vegetation density of the random field [L−2];

µi number of individuals of the initial generation used by EA [-];

ν kinematic viscosity [L2 T−1];
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Notation

νt turbulent viscosity coefficient [L2 T−1];

η dynamic viscosity [ML−1 T−1];

ϕi probability density function (PDF) of the residence time in the i-th stor-

age domain [T−1];

σ variance of the density random field from the mean density value [L−4];

ρ water density [ML−3]

τ
j
i shear stresses due to bottom and vegetation resistance [ML−1 T−2];
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