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Abstract  

In last decades surface plasmon resonance has known an increasing interest in the 

realization of miniaturized devices for label-free sensing applications. The research in the 

direction of such plasmonic sensors with innovative performance in sensitivity and resolution 

opened to a wide range of unexpected physical phenomena. This work is aimed at 

understanding and modeling the physical principles of plasmonic platforms which support the 

exploitation of propagating plasmon modes for sensing purposes. Surface plasmon polaritons 

excitation and propagation on metallic gratings have been deeply studied and fully analyzed 

with theoretical models, numerical simulations and optical characterizations of fabricated 

samples. In particular the physics underlying azimuthal rotation of these nanostructures and 

the polarization role in this configuration have been theoretically and experimentally 

examined.  The rotated configurations revealed considerable benefits in sensitivity and this 

improvement has been demonstrated by analyzing the optical response to surface 

functionalization and liquid solutions flowing through an embodied microfluidic cell. The 

exploitation of this plasmonic phenomenon in the conical mounting led to the design and 

realization of a promising setup for a new class of compact and innovative grating-based 

sensors. The different approaches, modeling – numerical – experimental, through which the 

problem has been examined, provided an exhaustive investigation into the physics of grating-

coupled surface plasmon resonance and its innovative and original applications for advanced 

sensing devices.     
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Abstract  

Negli ultimi decenni la risonanza plasmonica di superficie ha conosciuto un crescente 

interesse nella realizzazione di dispositivi minaturizzati per applicazioni sensoristiche label-

free. La ricerca nella direzione di sensori plasmonici con prestazioni innovative in sensibilita’ e 

risoluzione ha aperto ad un vasto panorama di inattesi fenomeni fisici. Questo lavoro di tesi 

ha l’obbiettivo di capire e analizzare i pricipi fisici su cui si basano i supporti plasmonici che 

sfruttano l’eccitazione di onde di superficie per fini sensoristici. L’eccitazione e la 

propagazione di plasmoni polaritoni di superficie su reticoli metallici sono state studiate e 

analizzate a fondo con modelli teorici, simulazioni numeriche e caratterizzazioni ottiche di 

campioni nanofabbricati. Nello specifico la fisica della rotazione azimutale di queste 

nanostrutture e il ruolo della polarizzazione in questa configurazione sono state esaminate con 

strumenti sia teorici che sperimentali. La rotazione del reticolo plasmonico ha rivelato 

considerevoli benefici in sensibilita’ e questo effetto e’ stato testato e dimostrato analizzando 

la risposta ottica a funzionalizzazioni di superficie e tramite l’analisi di soluzioni liquide 

flussate attraverso una cella microfluidica integrata. L’applicazione di questo fenomeno 

plasmonico ha portato all’individuazione di una configurazione promettente per una nuova 

classe di sensori a base plasmonica compatti e innovativi. I differenti approcci, modellistico – 

numerico – sperimentale, con cui il problema e’ stato affrontato, hanno fornito un’analisi 

completa della fisica della risonanza plasmonica di superficie con reticoli metallici e delle sue 

innovative applicazioni per dispositivi sensoristici avanzati.   
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Preface 

Plasmonics is the study and application of the interactions of optical-frequency 

electromagnetic waves with electrons in metals. One key advantage of plasmonic devices is 

that they provide the possibility to confine and exploit electromagnetic oscillations at optical 

frequencies to a size that is much smaller that the wavelength in vacuum. This is useful for 

creating intense and concentrated electromagnetic fields that can be used as extremely 

sensitive probes for spectroscopy or in order to enhance light interaction with matter in any 

application which requires it. In last decades Plasmonics has known an increasing interest in 

a growing range of scientific fields and its advances and progress have offered promising ideas 

for applications in many areas: sensing, solar cells, optoelectronics and communication. The 

possibility to exploit material properties at the nanoscale and to control light interaction with 

matter revealed new unexpected phenomena and opened the route to new research-threads in 

many disciplines: physics, material science and information engineering, biotechnology, 

biochemistry and medicine. In this way Plasmonics has increasingly become a cross-

disciplinary research field, where contributions of different backgrounds, engineering and 

physics as well as biology and chemistry, is needed in order to provide the required know-

how so to design and realize such plasmonic devices. 

Advances in nanotechnology in last decades provide the needed instrumentation and 

facilities for the manipulation and control of matter at the nanoscale. However a preliminary 

study of design and analysis in necessary in order to optimize the optical response of such 

nanostructures and provide to nanofabrication the proper windows of process for the 

realization of optimized devices. Once the components have been fabricated and assembled, a 

characterization step is performed to verify the real optical behaviour and compare results 

with the theoretical expectations. Thus the realization of a plasmonic device should consider 

and overcome each step of this chain of processes: simulation – fabrication – characterization. 

This is a sort of technological translation of the galileian scientific method that moves from 

hypothesis and verification to the comparison of experimental data with the formulated 

theory which results either reinforced or corrected.  
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This thesis deals with the design and realization of plasmonic gratings for sensing 

applications and is the result of an interdisciplinary work of three years on plasmonics. Both 

a theoretical analysis of the problem and an experimental activity of fabrication and 

characterization have been required, as well as the intergration of the physics background 

with the acquisition of material science and engineering expertise.  

Plasmonic gratings are nanostructured metallic surface that support the excitation and 

propagation of Surface Plasmon Polaritons (SPPs). These modes are localized surface-waves 

propagating along the interface between a metal and a dielectric medium and have rise in the 

coupling of electromagnetic-field with electron-plasma oscillations inside the metal. Thanks to 

the great confinement of the electromagnetic energy at the nanoscale on the surface, these 

modes are extremely sensitive to interface properties and reveal themselves as a powerful 

probe for surface analysis and sensing applications. The change in refractive index of the 

medium, for example due to a change in concentration of an analyzed solution, or to the 

binding of molecules to the metal surface, alters the propagation constant of surface plasmon 

polaritons and changes the coupling conditions of incident light. In this way a variation in 

resonance conditions can be transduced into a measure of surface functionalization or solution 

concentration: this is the basic principle of moderm Surface Plasmon Resonance (SPR) 

sensors.  

Since its first demonstration for the study of processes at the surfaces of metals and 

sensing of gases in the early 1980s, SPR sensing has made vast advances in terms of both 

development of technology and its applications for label-free fast and compact sensors. In 

particular the application for detection of chemical and biological species has gained 

considerable importance and interest in several fields: medical diagnostics, environmental 

monitoring, food safe and security. Common SPR affinity biosensors consist of a 

biorecognition element that is able to interact with a particular selected analyte in solution 

and an SPR transducer, which translates the binding event into an output signal. The core of 

the transducer is the optical platform, such as a metallic grating, on which surface plasmon 

polaritons are optically excited and propagate.  
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 In this work an analysis of surface plasmon polaritons excitation and propagation on 

metallic gratings has been carried out with the use of physical models and numerical analysis. 

A numerical algorithm has been implemented in order to rigorously compute the grating 

optical behaviour and to select the proper geometry and materials that optimize grating 

response for sensing purposes. The rigorous approach of numerical simulation provides a 

complete and reliable analysis of the electromagnetic field and allows also computing the 

plasmonic field on the metal surface. This considerable result offers a near-field point of view 

of the phenomenology which far-field experimental techniques cannot give otherwise, and 

exhibits one of the most remarkable skills that simulation codes can perform. Moreover 

simulation results have been compared with the real optical response of fabricated metallic 

gratings and a successful matching of theoretical and experimental data is shown. The 

fabricated gratings have been realized by interferential lithography technique, a fabrication 

process that provides periodic pattern with great coherence over large areas. The metal 

deposition on such patterned samples promotes the modulated surface to a metallic grating. 

Several characterization techniques have been employed for quality-check and otpical analysis 

of the samples: scansion electron and atomic force microscopy (SEM-AFM), spectroscopic 

ellipsometry, reflectivity analysis. The suitability of these grating supports for sensing has 

been tested and proved with surface functionalization and with the flowing of solutions into a 

microfluidic cell embodied to the samples. Functionalization with self-assembling monolayer 

of simple molecules such as alkanethiols and organic polymers has been done in solution and 

the optical response after the process has been compared with the response of a bare sample. 

Differences in the optical spectra are a clear evidence of grating sensitivity and can give 

information, once the system has been properly calibrated or modelized, either on the coating 

layer or on the analyte-concentration flowing into the cell. 

One of the most important result of this thesis work is the explanation and demonstration 

of the sensitivity enhancement with an azimuthal rotation of the grating support. If a grating 

is azimuthally rotated, more SPPs can be supported with the same illuminating wavelength 

and a refractive index sensitivity al least one order of magnitude greater than that in a 
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conventional configuration with null azimuth can be provided. Moreover the symmetry 

breaking with grating rotation makes incidence polarization have a fundamental role on 

surface plasmon polaritons excitation: p-polarization is no longer the most effective, as stated 

in literature, but polarization must be tuned to a different value in order to optimize the 

coupling. The optimal value is strictly dependent on the azimuth value and on the resonance 

conditions, that change after a functionalization of the grating surface. This important result 

suggests the use of polarization as a parameter for sensing and provide the possibility to 

realize more compact, fast and cheap grating-coupled SPR sensors based on polarization 

modulation. The experimental demonstration with a polarization-scan analysis before and 

after the functionalization of a properly rotated grating, clearly shows the promising and 

competitive performances of this technique.  

In addition, the study of a nanoporous metallic substrate has been done. Thanks to the 

concomitance of plasmonic properties and an enhanced surface-to-volume ratio, a grating in 

nanoporous gold guarantees an improved sensitivity to surface functionalization. Nanoporous 

gold properties have been studied with several characterization techniques and a periodic 

modulation has been patterned on by focused-ion-beam lithography. Moreover, by acting on 

specific parameters during the fabrication process, it is possibile to control porosity 

nanostructure and thus tune the optical and plasmonic features of this material.  

  

In summary, the content of this thesis work is organized as it follows: 

Chapter 1: Plasmonics on metallic gratings. A brief introduction to surface plasmon 

polaritons properties is given, e.g. propagation and extinction lengths, dispersion relation, 

transverse-magnetic nature. A description of the commonly employed metals is provided and 

the typical configurations (prism/grating-coupling) for surface plasmon polaritons excitation 

are described. More details on calculations are postponed in appendices A and B. The 

chapter ends with a summary of surface plasmon resonance sensors: the most important 

characteristic of an SPR sensor are described and last advances are reported. 



- 15 - 

 

Chapter 2: Vectorial model. The phenomenology of surface plasmon polaritons excitation 

on metallic gratings is analysed and explained through the use of the vectorial model. This 

simple approach, based on the momentum-conservation law at resonance condition, provides 

a useful tool in order to understand surface plasmon dependence on the incidence parameters, 

such as wavelength, azimuth and polar angles. Polarization role on SPP excitation in the 

conical mounting is tackled and vectorial model allows to give an heuristic explanation of this 

phenomenon. Moreover, the model provides an analytical formulation of the optimal 

polarization angle that well fits experimental data.    

Chapter 3: Chandezon’s method. Limitations of the vectorial model impose the necessity 

of a more rigorous approach to metallic gratings. Chandezon’s method provides an efficient 

algorithm to exactly solve the problem of a monochromatic plane-wave incident on a 

patterned surface. The algorithm has been implemented in MATLAB environment and 

simulation codes have been used to compute the reflectivity of multi-layered stacks with a 

sinusoidal profile. The usefulness of the code for grating design has been shown through a 

procedure of profile optimization of a sinusoidal bimetallic grating. Therefore the simulated 

optical response of a multilayered metallic grating has been successfully compared with 

experimental data of reflectivity analysis on the fabricated model. In last section, the results 

of the near-field computation of the plasmonic modes propagating on the grating surface are 

shown and discussed. 

Chapter 4: Experimental: nanofabrication and characterization. This part is dedicated to 

the modern techniques and instruments for the fabrication and characterization of plasmonic 

gratings. Interferential lithography process and soft-lithography technique for grating-replica 

production are explained, with experimental pictures and results from the characterization 

measurements performed during this thesis work. With soft-lithography technique a 

microfluidic cell has been realized and the system has been embodied to a grating for a 

calibration test with water-solutions of sodium-chloride flowing through the cell: reflectivity 

meaurements for increasing sodium-chloride concentrations are reported. Functionalization 

processes with self-assembling monolayer of alkanethiols and polyethilenoxide are described. 
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In last sections, the nanofabrication and characterization of nanoporous gold substrates is 

presented. Physical and optical properties of nanoporous gold samples fabricated in different 

experimental conditions are reported and discussed. In particular, the analysis highlighs the 

plasmonic properties of this material.  

Chapter 5: Improving the performance of Grating-Coupled SPR. The consequences of 

symmetry breaking with azimuthal rotation, experimentally shown and theoretically 

described in chapters 2 and 3, are here exploited in order to enhance surface plasmon 

resonance sensitivity. The phenomenon of sensitivity enhancement with increasing azimuth is 

explained and experimental results are presented that demonstrate and confirm this 

improvement. An analysis of sensitivity dependence on azimuth is performed by 

functionalizating grating surface with dodecanethiol (C12) or polyethileonxide (PEO) self-

assembling monolayer and with sodium-chloride solution flowing through the embodied cell. 

The combination of azimuthal rotation and enhanced sensitive surface, provides a further 

sensitivity enhancement with the choice of a nanoporous-gold sensing platform. The idea of a 

new grating-coupled surface plasmon resonance analysis based on polarization modulation is 

proposed and described. The performance of this technique is experimentally tested on a C12-

functionalization and results confirm the possibility to use the phase term of the polarization 

scan as a parameter for high-resolution sensing. Moreover this result improves SPR 

technology with the possibility to realize a new generation of more compact, fast and 

economic grating-based sensors. 

    

31 January 2012, Padova 

 

 
          Gianluca Ruffato 

 

 

 

 

 



- 17 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In memory of Alessandro 



- 18 - 

 

 
 
 

  



- 19 - 

 

1 Plasmonics on metallic gratings 

1.1 Introduction 

Surface Plasmon Polaritons (SPPs) are electromagnetic waves propagating along the 

interface between a metal and a dielectric medium and have origin from the coupling of the 

electromagnetic field with electron-plasma density oscillations inside the metal. SPPs are 

localized solutions of Maxwell’s equations: field intensity decays exponentially from the 

surface with an extension length of the same order of the wavelength inside the dielectric and 

almost one order shorter in the metal1. These features make SPPs extremely sensitive to the 

optical and geometrical features of the supporting interface, such as shape, roughness and 

refractive indices of the facing media.  

Since these modes have a non-radiative nature, the excitation with a wave illuminating 

the metallic surface is possible only in such proper configurations that provide the 

wavevector-matching between the incident light and SPP dispersion law (Surface Plasmon 

Resonance - SPR). A solution is to couple a prism to the metal in order to properly increase 

incident light momentum and achieve SPP excitation (Kretschmann-Raether configuration), 

however this system suffers from cumbersome prism presence and alignment. A more 

amenable and cheaper solution consists in Grating-Coupling SPR (GCSPR), where the metal 

surface is modulated with a periodic corrugation.  

Actually grating-coupling has been the first method in order to exploit surface plasmon 

resonance: the plasmonic behaviour of such modulated metallic surfaces had been discovered 

since the early years of the last century by R.W. Wood2 who observed an anomalous lowering 

in light reflected by metallic gratings illuminated under certain conditions. Fano has proven 

that these anomalies are associated with the excitation of electromagnetic surface waves on 

the surface of the diffraction gratings3. In 1968 Otto4 and Kretschmann5 independently 

demonstrated that the drop in reflectivity in the attenuated total reflection (ATR) method is 

due to surface plasmon excitation. The physical explanation of this phenomenon and the 

connection between Wood’s anomalies and surface plasmons was finally established by J.J. 

Cowan and E.T. Arakawa6: a plane-wave illuminating the patterned area is diffracted by the 
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periodic structure and it is possible for at least one of the diffracted orders to couple with 

SPP modes.  

Because of the peculiar capability of harvesting light and confine it to the surface, surface 

plasmon resonance has known an increasing interest in the design and realization of 

miniaturized devices based on plasmonic platforms for sensing purposes. Surface plasmon 

modes in fact are extremely sensitive to changes in the refractive index of the facing dielectric 

medium: a thin coating film or the flowing of a liquid solution alter SPP dispersion curve and 

cause resonance conditions to change. Thus it is possible to detect refractive index variations 

by simply analyzing resonance shift: it is the basis of modern SPR-sensing devices. The 

strong compatibility of gratings with mass production makes these SPP couplers extremely 

attractive for fabrication of low-cost SPR platforms for applications in a wide range of fields: 

bio- and chemical sensing 7,8, medical diagnostics9, environmental analysis10, food safety and 

security11. 

1.2 Surface Plasmon Polaritons 

If a plane interface between two semi-infinite media with dielectric permettivity Aε  
and 

Bε  
is considered and we look for localized solutions of Maxwell’s equation that propagate 

along the surface, boundary conditions for EM-fields12 impose specific prescriptions on 

materials and the resulting propagating modes, the so called Surface Plasmon Polaritons 

(SPPs) exhibit peculiar features (see Appendix A).  

 

 

Figure 1-1: Pictorial description of SPPs propagation along a metal-dielectric interface. Extinction of 

the electromagnetic field along the propation direction and exponential decay from the interface inside 

each medium.  
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The two media in fact have to exhibit permittivities with opposite signs at the considered 

wavelength: 

 0A Bε ε⋅ <  (1.2.1) 

   i.e. if the former medium has a positive dielectric permettivity 0Aε ≥  (dielectric), the 

latter one have to necessarily show 0Bε <  (metal). Thus Surface Plasmon Polaritons are 

supported by the interface between a metal and a dielectric medium and exhibit the following 

characteristics (see Figure 1-1 and Appendix A): 

• SPP are Transverse-Magnetic (TM) modes: the magnetic field is parallel to the 

interface and perpendicular to the propagation direction. Transverse Electric 

(TE) modes are not supported by this configuration. 

• SPP wavevector SPPk  is given by:  

 

3
2

1 1 2
2

1 1 1

2 2

2
A A

SPP
A A

k i
ε ε ε ε επ π

λ ε ε λ ε ε ε

     
= +

+ +
 (1.2.2) 

where 0Aε >  (dielectric), ( )1 0ε <  and 2ε  are respectively the real and 

imaginary parts of the permettivity Bε  in the metallic medium, λ  is the 

considered wavelength. It is worth noting that 2SPPk ε   ℑ ∝ , i.e. SPP 

dissipation is strictly related to the adsorption contributions inside the metal. 

The traveling SPPs are damped with a propagation length 

( ) 1
2SPP SPPL k

−   = ℑ , tipically between 10 and 100 mm in the visible range, 

depending on the configuration. 

•  EM-field intensity decays exponentially in direction normal to the surface with          

decay lengths Al  and Bl  inside the two media:    

 1
22

A
A

A

l
ε ελ

π ε

+
= −  (1.2.3) 

 1
2
1

2
A

Bl
ε ελ

π ε

+
= −  (1.2.4) 
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Thus the SPP field falls off exponentially in the normal direction with a 

characteristic  length in the order of the exciting wavelength into the diectric 

medium and about one order shorter inside the metal.   

Therefore Surface Plasmon Polaritons are localized solutions of Maxwell’s equations, 

propagating along the surface between a dielectric medium and a metal. In order to analyze 

SPP dispersion curve and the excitation of these modes on a metallic surface, an analytical 

description of the dielectric permettivity of the metal is necessary. As it will be explained in 

the following section, a free-electron gas approach is a good approximation to describe in the 

visible range the optical response of the metals of interest for plasmonic applications.    

1.3 Metals - Drude model 

 

Figure 1-2: dielectric permettivity real 1ε  and imaginary 2ε  parts for common metals: silver (Ag), 

aluminum (Al), gold (Au), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), palladium (Pd), 

platinum (Pt), titanium (Ti). 

In Figure 1-2 dielectric permettivity real 1ε  and imaginary 2ε  parts are showed in the 

range 200 1500− nm for the most common metals13. Most of metals exhibit a common trend 

in the VIS-nearIR spectral range: 1ε  decreases for increasing wavelength and is negative in 

the VIS-IR range, while 2ε  increases with wavelength.    

Over a wide frequency range, the optical properties of metals can be explained by a 

plasma model, where a gas of free electrons of number density N  moves against a fixed 

background of positive ion cores (Drude model 14). In this model, details of the lattice 

potential and electron-electron interactions are not taken into account. The electrons oscillate 
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in response to an applied electromagnetic field and their motion is damped via collisions 

occurring with a characteristic collision frequency 1 /γ τ= , where τ  is known as the 

relaxation time of the free electron gas, typically in the order of 1410− - 1510−  s at room 

temperature. This model provides the following expression for the dielectric permettivity as a 

function of the frequency ω  (see Appendix B): 

 ( )
2

2
1 p

i

ω
ε ω

ω ωγ
= −

+
 (1.3.1) 

Thus the real and imaginary parts are given by: 

 ( )
2 2

1 2 2
1

1

pω τ
ε ω

ω τ
= −

+
 (1.3.2) 

 ( )
( )

2

2 2 21

pω τ
ε ω

ω ω τ
=

+
 (1.3.3) 

where
 pω , the so called Plasma Frequency, is given by: 

 
2

0
p

Ne

m
ω

ε
=  (1.3.4) 

where 0ε  is vacuum permettivity, m  and e  are respectively electron mass and charge. As 

we saw in previous section, the imaginary part of SPP wavevector is proportional to the 

adsorption contribution of metal dielectric permettivity (see eq. (1.2.2)), thus it is not only 

necessary that the material exhbits a metallic behaviour ( )1 0ε < , but it should be also 

appreciable to reduce dissipation sources. As Figure 1-2 shows, the lowest adsorption in the 

visible range is exhibited by the three noble metals: Copper (Cu), Silver (Ag) and Gold (Au). 

In Table 1-1 Drude parameter for noble metals are collected. The free-electron response of 

these metals is quite similar, since they hold the same electronic structure in the outer shells, 

( ) 10 11n d ns− , and the same lattice structure (Face Centered Cubic - FCC) with almost 

comparable interatomic distances: 132 (Cu), 145 (Ag), 136 (Au) pm.   
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Figure 1-3: dielectric permettivity real 1ε  and imaginary 2ε  parts of noble metals Cu, Ag, Au. 

Table 1-1: Drude parameters of noble metals. 

 ( )p eVω  15(10 )sτ −  21 3(10 )N cm−  

Copper - Cu 9.31 12 60.0 

Silver - Ag 9.02 16 58.6 

Gold - Au 8.36 10 50.8 

 

At lower wavelengths (higher frequencies) in the near-UV, permettivity values for real 

metals markedly diverges from Drude’s model. For noble metals, an extention to this model 

is needed in the region pω ω> , where the response is dominated by free s  electrons, since 

the filled d  band close to the Fermi surface causes a highly polarized environment. This 

residual polarization due to the positive background of the ion cores can be described by 

adding a constant contribution ε∞  (usually 1 10ε∞≤ ≤ ). Moreover, the applicability of the 

free-electron model breaks down due to the occurrence of interband transitions of sp  

electrons to the conduction band, leading to an increase of 2ε  in the nearUV-VIS range. 

These adsorption contribution can be taken into account and described in the permettivity 

function in the form of Lorentz-oscillator terms, centered at a resonance frequency iω  and 

with a band-width ,iτω , amplitude iA . After these considerations, a more realistic model for 

the dielectric permettivity of a real metal is given by: 

 ( )
2

2 2 2
,

pi

i i i

A

i iτ

ω
ε ω ε

ω ω ω ω ω ωγ
∞= − −

− + +
∑  (1.3.5) 
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   Because of the absence of interband transitions in the visible range (see Figure 1-3), 

silver seems to be the best choice for the realization of plasmonic supports for the excitation 

and propagation of surface plasmon polaritons, however this metal is exposed to oxidation in 

air and the surface gets coated by a layer of silver oxide which affects SPP propagation and 

silver affinity. On the other hand, gold exhibits a peculiar chemical stability in air, but the 

strong interband transitions up to 550∼ nm affects the optical response in the nearUV-VIS 

range. As regards copper, it exhibits a strong adsorption in the near-UV and is exposed to 

oxidation in air as well. 

Thus the best choice seems to be a silver substrate coated by a thin layer of gold in order 

to prevent silver oxidation in air.     

 

1.4 Excitation of Surface Plasmon Polaritons 

Figure 1-4 shows the dispersion curve ( ),kω  for surface plasmon polaritons propagating 

on a silver surface in air, calculated using equation (1.2.2) for SPPk  and tabulated values for 

silver permettivity (Palik). In the same picture, the dispersion relation for a plane wave in air 

is reported (light line).  

It is worth noting that SPP dispersion curve lies totally on the right of the light line and 

no intersection takes place. Thus propagating surface plasmons have a non-radiative nature: 

once these modes are excited, coupled energy propagates along the interface as far as it is 

dissipated by metal adsorptions. On the other hand, the non-radiative nature of SPPs implies 

that excitation by a direct illumination of the metal surface is not possible and propagating 

surface plasmons can be excited only in such proper configurations that provide the 

momentum-matching between incident light and surface modes15. Two alternative 

configurations are possible: 

• Prism-Coupled Surface Plasmon Resonance (PCSPR) 

• Grating-Coupled Surface Plasmon Resonance (GCSPR). 
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Figure 1-4: SPP dispersion curve on the interface between silver and air (solid line). Comparison with 

dispersion curve of light in air (dashed line). 

1.4.1 Prism-Coupled Surface Plasmon Resonance  

Introduced for the first time by the prioneerig works of Otto and Kretschmann in 1968, 

prism-coupling configuration provides SPP excitation in the attenuated total reflection 

(ATR) method. In this configuration a prism is exploited in order to increase incident light 

momentum and achieve the momentum-matching condition. This technique consists in giving 

rise to surface polaritons at the metal-dielectric surface thanks to the passage of the exciting 

wave through a medium with a refractive index pn  greater than the dielectric one. In this 

way photons gain the momentum-gap which is necessary for the matching of the light line 

with the SPP dispersion law and the incident electromagnetic wave couples with surface 

electron excitations: 

 
2

sinSPP pk n
π

θ
λ

   ℜ =  (1.4.1) 

where θ  is the incidence angle. In the simplest configuration, three different layers are 

employed: a prism to increase photon momentum and the metal-dielectric sequence. Two 

setups are possible: Otto’s configuration and Kretschmann-Raether’s configuration 16. In the 

former the dielectric medium is sandwiched between the prism and the metal at a distance of 

about λ . The evanescent field couples with SPP modes at the dielectric-metal interface. In 
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the latter setup instead, the metal layer is placed in the middle: the electromagnetic field 

decreases esponentially in the film and excites SPPs at the interface between metal and 

dielectric medium (Figure 1-5).  

 

Figure 1-5: Prism-coupling mechanism. In the inset graph: Kretschmann’s configuration. 

1.4.2 Grating-Coupled Surface Plasmon Resonance  

 

Figure 1-6: Grating coupling mechanism 

An alternative solution in order to optically excite surface plasmons polaritons is based on 

the diffraction of light incident on a metallic grating. Incident light momentum ( )k in  couples 

to grating crystal momentum G , whose modulus is given by: 

 
2

G
π=
Λ

 (1.4.2) 

  where Λ  is the grating period. Each diffracted order holds a momentum ( )k n given by: 
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 ( ) ( )k k Gn i n= + ⋅  (1.4.3) 

where n  is the diffraction order. Thus surface plasmon polaritons excitation takes place when the 

on-plane momentum component of a particular diffracted order equals SPP momentum kSPP : 

 ( )k k Gi
SPP n   ℜ = + ⋅�

 (1.4.4) 

In the classical mounting, where the scattering plane is parallel to the grating symmetry 

plane, i.e. ( )k Gi
�
� , the previous relation implies the following resonance equation:   

 
2 2

sinSPP ik n n
π π

θ
λ

   ℜ = +
Λ

 (1.4.5) 

where λ  is the illuminating wavelength, θ  is the incidence polar angle and in  is the 

refractive index of the dielectric medium facing the grating surface. This vectorial description 

of surface plasmon resonance in terms of grating momentum, only provides information about 

coupling conditions such as resonance wavelength and angle for a given grating period and 

stack. Further details about coupling strength, i.e. weights of the diffracted orders, are not 

provided by this approach and a more accurate analysis, such as a numerical solution of 

grating diffraction problem, is recommended (see Chapter 3). 

 

1.5 Plasmonics for sensing devices 

In principle, SPR sensors measure changes in the refractive index occuring at the surface 

of a metal film supporting propagating surface plasmons17. A surface plasmon excited by an 

incident wave, propagates along the metal surface and its evanescent field probes the medium 

in contact with the metal film. As eq. (1.2.2) shows, surface plasmon momentum is strictly 

dependent on the refractive index n  of the dielectric medium: 

 
2

2

2 M
SPP

M

n
k

n

επ

λ ε
   ℜ =

+
 (1.5.1) 
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where λ  is the illuminating wavelength, Mε  is the dielectric permettivity of the metal. 

Either a change in the refractive index n  of the facing dielectric or the coating of the metal 

surface with a thin film, gives rise to a change of the propagation constant SPPk  of surface 

plasmon modes and thus alter coupling conditions of the incident light, such as resonance 

angle or wavelength, coupling intensity and phase. On the basis of which characteristic of the 

light modulated by a surface plasmon is measured, SPR sensors are classified as sensors with 

angular, wavelength, intensity or phase modulation 18.  

In SPR sensors with angular modulation, a monochromatic light wave is used to excide 

SPPs and the strength of coupling between the incident wave and surface plasmons is 

observed at multiple angles of incidence: SPP excitation is observed as a dip in the angular 

spectrum of reflected light. The angle of incidence yielding the strongest coupling (reflectivity 

minimum) is measured and used as sensor output19. In wavelength modulation SPR instead, 

surface plasmons are excited by a beam of polychromatic light and the excitation is observed 

as a dip in the wavelength spectrum of reflected light: the wavelength yielding the strongest 

coupling corresponds to sensor output20. In SPR sensors with intensity modulation the 

strength of the coupling between the light wave and surface plasmons is measured at a single 

angle of incidence and wavelength and the intensity of light serves as sensor output21. In 

phase modulation SPR, the shift in phase of reflected light is measured at a single angle of 

incidence and wavelength of the light wave and used as sensor output22.  

SPR affinity biosensor consists of a biorecognition element that is able to interact with a 

particular selected analyte and an SPR transducer, which translates the binding event into 

an output signal. The core of the transducer is the optical platform on which a surface 

plasmon is optically excited and propagates, e.g. a modulated metallic grating or a flat 

Kretschmann’s stack. The biorecognition element is fixed in the proximity of the surface of 

the metal film supporting SPP modes and it recognizes and is able to interact with a selected 

analyte. Analyte molecules in a liquid sample in contact with the SPR sensor bind to the 

biorecognition elements, producing an increase in the refractive index at the sensor surface 

which is optically measured by SPP excitation and translated into an output signal. The 
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sensor response Y  to a given value X  of the measurand can be predicted by the sensor 

transfer function T , ( )Y T X=  determined from a theoretical model of sensor response or 

from a sensor calibration. Some of the most important characteristics of SPR sensor 

performance are: sensitivity, linearity, resolution, accuracy, limit of detection (LOD). 

1.5.1 SPR sensitivity 

Sensor sensitivity S  is the ratio of the change in sensor output Y  to the change in the 

measurand X , i.e. the slope in the calibration curve: 

 
Y

S
X

∂=
∂

 (1.5.2) 

Refractometric sensitivity nS  is a measure of the sensitivity of the SPR sensor to a 

change of the dielectric refractive index n  and is given by: 

 n
Y

S
n

∂=
∂

 (1.5.3) 

An interest quantity for solution analysis is the sensitivity cS  of a SPR biosensor to the 

concentration c  of an analyte in the solution: 

 c n
Y Y n n

S S
c n c c

∂ ∂ ∂ ∂= = =
∂ ∂ ∂ ∂

 (1.5.4) 

where /n c∂ ∂  is the refractive index change due to the analyte presence in the solvent.  

If instead the metal surface is coated with a biorecognition layer which is sensitivive and 

bind to a particular type of analytes in the analyzed solution, the concentration sensitivity 

cS  can be expressed as: 

 ,
eff effl l

c n eff
eff l l

n nn nY
S S

n n c n c

∂ ∂∂ ∂∂= =
∂ ∂ ∂ ∂ ∂

 (1.5.5) 

where ,n effS  denotes the sensitivity to a refractive index profile change (it is equivalent to 

nS ), /eff ln n∂ ∂  describes the variation of the effective refractive index due to a change in 

the refractive index ln  of binding layer, /ln c∂ ∂  expresses the refractive index change in the 
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layer due to the analyte concentration in the solution. The first term ,n effS  depends on the 

method of excitation of surface plasmons and on the modulation approach and it is referred 

as to an instrumental contribution, whereas the second term expresses the sensitivity of a 

surface plasmon to refractive index and is independent of the modulation method and the 

method of excitation of SPP: it mainly depends on the profile of the refractive index and of 

the SPP probing field (see section 4.5.1). 

1.5.2 Linearity 

Sensor linearity defines the extent to which the relationship between the measurand and 

the sensor output is linear over the working range. Linearity is usually specified in terms of 

the maximum deviation from a linear transfer function over the specified dynamic range. 

Sensors with linear transfer function are desirable as they require fewer calibration points to 

produce an accurate sensor calibration. However, response of SPR biosensors is usually a non-

linear function of the analyte concentration and therefore calibration needs to be carefully 

considered. 

1.5.3 Resolution and accuracy 

The resolution of a SPR biosensor is defined as the smallest change in the bulk refractive 

index that produces a detectable change in the sensor output and it is strictly related to the 

level of uncertainty of the sensor output: the sensor noise. The refractive index resolution nσ  

is typically expressed in terms of the standard deviation of noise of the sensor output Yσ  

translated to the refractive index of bulk medium: 

 Y
n

nS

σ
σ =  (1.5.6) 

where nS  is the refractive index sensitivity. Dominant sources of noise are the 

fluctuations in the light intensity emitted by the light source, shot noise associated with 

photon statistics, noise in conversion of light intensity into electric signal by the detector23. 

Noise in the intensity of light emitted by the light source is proportional to the intensity and 
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its standard deviation Lσ  can be given as r
L LIσ σ=  where r

Lσ  is the relative standard 

deviation and I  is the measured light intensity. Shot noise is associated with random arrival 

of photons on a detector and corresponding random production of photoelectrons. Photon 

flux usually obeys Poisson statistics and produces a shot noise Sσ  directly proportional to 

the square root of the detected light intensity: r
S S Iσ σ= , where r

Sσ  is a relative standard 

deviation. Detector noise consists of several contributions that originate mostly in 

temperature noise and its standard deviation Dσ  is independent on light intensity. The 

resulting noise of a measured light intensity Iσ  is a statistical superposition of all the noise 

components and is given by: 

 ( ) 2 2 2 2r r
I L S DI I Iσ σ σ σ= + +  (1.5.7) 

To reduce the noise, light intensity is averaged: time averaging involves the average of 

time series of intensity from the same detector, spatial averaging instead the average of the 

output of multiple detectors. As in the time domain all the noise contributions behave 

independently, the time averaging of  N  spectra reduces the total noise as follows: 

 N I
I

N

σ
σ =  (1.5.8) 

The noise in the light intensity is translated to sensor output noise by the data processing 

algorithm that is used to generate the sensor output. Although various methods for 

processing data from spectroscopic SPR sensors have been developed (centroid method24, 

polynomial fitting25, optimal linear analysis26), the noise in angular or wavelength spectra was 

found to transform to the noise in the sensor output in a similar fashion. Centroid method 

uses a simple algorithm which finds the geometric center of the SPR dip under a certain 

threshold. The centroid position cx  is calculated as follows using a weigth centroid 

algorithm27: 

 
( )

( )

2

2

i T ii
c

T ii

x I I
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=
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∑

 (1.5.9) 
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where ix  is the spectral position of the contributing intensity iI  and TI  denotes the 

threshold value. If the noise of each intensity value can be detected and treated as 

independent, the resulting standard deviation of calculated dip position cσ  can be calculated 

from eq. (1.5.9): 

 

2

2 2c
c ii

i

x

I
σ σ

     

∂
=

∂∑  (1.5.10) 

As demonstrated by Piliarik and Homola23, if a lorentzian profile is assumed for the 

portion of the SPR dip that is used for the centroid estimation, the following expression for 

resolution is given: 

 
1 T

n
n

w
K

d SN

σ
σ =  (1.5.11) 

where N  is the number of points used for the calculation of the centroid, Tσ  is the total 

intensity noise at the threshold, d  is the difference of intensities between SPR minimum and 

the threshold value, w  is the width of the resonance dip, nS  is the refractive index 

sensitivity of the device and K  is a factor depending on the relative contribution of the 

different sources of noise23, e.g. 1 0.5K =  for additive noise, 2 0.43K =  for shoit noise, 

3 0.38K =  for intensity noise, thus 2 2 2 2 2 2 2
1 1 2 2 3 3K g K g K g K= + + , where ig  indicate the 

weights of each noise source.  

This results shows that resolution strictly depends on resonance profile and, as expected, 

output noise. From eq. (1.5.11) resolution is proportional to output noise σ  and resonance 

width w , whereas it decreases with increasing sensor sensitivity nS  and depth of resonance 

dip d . The ratio / nw S  depends only weakly on the choice of coupler and modulation and 

therefore has only a minor effect on the sensor resolution. As a consequence of eq. (1.5.11), it 

is worth noting that resonance-dip width w  should be minimized while depth d  should be 

maximized in order to optimize the refractive index resolution nσ .    
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1.5.4 Limit of detection 

Limit Of Detection (LOD) is the concentration of analyte Lc  derived from the smallest 

measure LY  that can be detected with resonable certaintly and it is given by: 

 L b bY Y m σ= + ⋅  (1.5.12) 

where bY  is an estimation of blank (without analyte) sample output, bσ  is the standard 

deviation of the blank measure, m  is a numerical factor chosen according to the desired 

confidence level (typically 2.5-3 28). If 0bc = , the LOD concentration Lc  is given by: 

 b
L

c

m
c

S

σ⋅
=  (1.5.13) 

1.5.5 Advances in SPR Technology 

Currently, several groups are using different approaches to detect the change of refractive 

index with surface plasmon resonance sensors. Sensors using Prism-Coupled SPR (PCSPR) 

with Kretschmann configuration can be readily combined with any type of interrogation: 

angular, wavelength, intensity or phase modulation. Devices based on intensity modulation 

for sensing puroposes or SPR imaging showed refractive index resolutions down to 66 10−⋅  

RIU (Lechuga’s et al.29) and 62 10−⋅  RIU (Homola’s group30). Sensors based on spectroscopy 

of Surface Plasmons through angular or wavelength scanning, exhibit better performance in 

sensitivity and resolution. PCSPR typically show refractive index sensitivity for typical 

angular interrogation architecture that ranges between 50 150− ° /RIU31, with higher 

sensitivity at shorter wavelengths32, and refractive index resolutions in the orders 

6 710 10− −− . In the early 1990s, an angular modulation-based SPR sensor consisting of a 

light-emitting diode (LED), a glass prism and a detector array with imaging optics, was 

adopted by Biacore and resulted in a family of commercial SPR sensors with resolution down 

to 71 10−⋅  RIU. An SPR sensor with wavelength modulation and parallel channel 

architecture was reported by Homola’s group33 and it was demonstrated to be able to resolve 

refractive index changes down to 72 10−⋅  RIU. An improvement of Nenninger’s 
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configuration34 based on spectroscopy of long-range surface plasmon, demonstrated35 a 

resolution as low as 83 10−⋅  RIU. Nowadays numerous SPR sensors based on spectroscpy of 

surface plasmons are commercially available. However, PCSPR sensors suffer from 

cumbersome optical alignment and are not amenable to miniaturization and integration36. 

On the other hand, Grating-Coupled SPR (GCSPR) sensors with either wavelength or 

angular interrogation have been demonstrated to have sensitivity 2 3−  times lower37 than 

PCSPR, however GCSPR eliminates the prism presence and is more suitable to 

miniaturization. Grating couplers have not been used in SPR sensors as widely as the prism 

couplers, but their compatibility with mass production and the prism absence, make GCSPR 

an attractive approach for the fabrication of low-cost compact sensing devices. GCSPR has 

the intrinsic possibility to be used with different sensing architectures and interrogation 

systems. A parallel SPR angular detection was shown by Unfrict et al.38 to have the 

possibility for multi-detection for proteomic multiarray. Homola’s group39 demonstrated a 

miniaturized GCSPR sensor implemented with a CCD allowed detection sensitivity of      

50° /RIU and resolution of 65 10−⋅  over 200 sensing parallel channels. Alleyne40 has exploited 

the generation of an optical band gap by using prism-coupled to achieve sensitivity up to 

680° /RIU by bandgap-assisted GCSPR. A recent approach was reported by Telezhnikova 

and Homola41 with the development of a sensor based on spectroscopy of SPPs down to 

73 10−⋅  RIU. 

 

1.6 Conclusions 

In the light of what exposed in previous sections on surface plasmon polaritons features 

and their exploitation for sensing devices, we can draw the following conclusions: 

-  Grating-Coupled is rather preferable than prism-coupling, since it is more suitable to 

miniaturization and integration. Moreover, by acting on configuration and signal 

transduction, it is possible to achieve competitive sensitivity and resolution performance. 

-  A silver layer coated by a thin anti-oxidation gold film seems to be the best 

combination for realizing a plasmonic substrate with low adsorption and chemical stability. 
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-  Grating profile and materials should be properly chosen and optimized in order to 

provide the deepest and sharpest resonance dips.     
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2 Vectorial model 

2.1 Introduction 

The Vectorial Model provides a simple but effective approach for the study of surface 

plasmon polaritons excitation and propagation on periodic structures. In this analysis, the 

grating is modeled as a uniaxial crystal and the periodicity effect is exploited by the crystal 

momentum G , whose modulus is given by 2 /G π= Λ , where Λ  is the grating period. 

Incident light momentum couples with grating vector G  and surface plasmons are excited if 

the resonance condition for  the on-plane components is satisfied (eq. (1.4.4)).  

The equation of momentum-conservation law plays a fundamental role in this approach, 

since it represents the only available condition in order to describe and analyse the excitation 

of propagating surface plasmons. By applying this model, information about surface plasmon 

excitation dependence on incidence angles and wavelength can be obtained, however since 

further details such as grating profile and shape are not taken into account, this approach 

reveals a good approximation just for shallow gratings. An analysis of the effects of groove 

depth and shape on SPP resonance, should require a more complex and rigorous approach. 

In this chapter an introduction to SPP excitation on metallic grating is given and the 

dependence of resonance condition on the incidence wavelength and angles is described 

through the application of the vectorial model. The comparison with experimental results 

confirms the applicability of this method for resonance analysis. On the other hand, the 

necessity of exacly computing the intensity of the several diffracted orders, e.g. reflectivity, 

and in particular to analyse their dependence on the grating profile, imposes the choice of a 

numerical solution to the problem which will be considered in the next chapter. 

In following sections the results from vectorial model are compared with experimental 

results from reflectivity characterization of a bimetallic grating. Experimental data refer to a 

sinusoidal grating with period of 505 nm and amplitude of 25 nm, fabricated by UV 

interferential lithography in Lloyd’s mirror configuration. The fabricated pattern has an 

almost perfect sinusoidal profile with a local roughness of the order of 1 nm rms. Thereafter a 
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gold (7nm) /silver (37nm) bi-metallic layer was thermally evaporated (see experimental – 

chapter 4).  

2.2 Momentum-conservation law  

If a metallic grating is illuminated with fixed wavelength λ  and varying incident polar 

angle θ , a reflectivity dip appears in correspondence of the incidence angle resθ  at which the 

momentum-conservation law on the grating plane is satisfied: 

 ( )
||

k k Gi
SPP n= + ⋅    (2.2.1) 

where ( )k cos , sinSPP SPPk β β=  is the wavevector of the excited SPP, 

( )k( ) 2 / sin ,0i
resπ λ θ= ⋅

�
 is the on-plane component of the incident light wavevector, 

( )G 2 / cos , sinπ ϕ ϕ= Λ ⋅
 
is the grating momentum, Λ  being the grating periodicity.  

In the case of shallow grooves, the expression of SPPk
 
valid for flat interfaces is a good 

approximation (eq. (1.2.2)): 
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λ ε ε
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+
 (2.2.2) 

where mε  and Dε  are respectively the metal-side and the dielectric-side effective dielectric 

permittivity. In the considered reference frame, the scattering plane is kept fixed and parallel 

to the x-axis and the grating vector G  and the SPP momentum kSPP  form respectively 

angles ϕ  and β  with the x-axis positive direction (see Figure 2-4). Since the grating period 

Λ   is typically in the order of 500 nm, i.e. lower than the typical incident wavelength in the 

optical range, in our cases of interest the resonance order is usually 1n = − , thus eq. (2.2.1) 

becomes: 

 ( )k k Gi
SPP = −

�
 (2.2.3) 

In the case of null azimuth 0ϕ = ° , following expression leads to the scalar relation: 
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As Figure 2-1 shows, under resonance order 1n = − , resonance dips shift towards greater 

angles for increasing wavelength (cfr. Figure 2-2.a). By applying resonance eq. (2.2.4) to 

resonance angle position, it is possibile to reconstruct the dispersion relation kω − : 
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 (2.2.5) 

The estimated points ( ),kω  are reported in Figure 2-2.b and are well fitted by the 

theoretical curve calculated using eq. (2.2.2) for approximated surface plasmon momentum. 

 
Figure 2-1: experimental reflectivity in angular scan in the range 15 37° − ° , step size 0.2° , for incident 

wavelength in the range 675 800− nm, step 25nm, p-polarization. 

 

Figure 2-2: a) Resonance angle as a function of the incident wavelength (from Figure 2-1) and fitting 

model from eq.(2.2.4). b) Surface plasmon polaritons dispersion curve kω − , experimental data and 

model from eq.(2.2.4). 
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2.3 Azimuthal rotation of the grating plane 

After rearranging resonance equations (2.2.3) in the polar angle resθ  unknown, an 

analytical expression for the resonance angle is obtained42: 

 

2
2arcsin cos sinS

λ λ
θ ϕ ϕ

              
= −

Λ Λ∓ ∓  (2.3.1) 

where ( )/ 2 /SPPS k π λ= .  

 

Figure 2-3: a) Experimental reflectivity for polar angular scan in the range 15 40° − ° , step size 0.1° , 

at incident 675λ =  nm and increasing azimuth values 0 40ϕ = ° − ° , step 5° , p-polarization. b) 

Resonance angle resθ  as a function of azimuth ϕ : experimental points and fit with eq. (2.3.1). 

As a consequence of the last expression, SPPs are supported by a grating structure only in 

the azimuth range where the term under square-root is positive: 

 

2
2 sin 0S

λ
ϕ

     
− ≥
Λ

 (2.3.2) 

that is to say in the range between 0ϕ = °  and the maximum value maxϕ
 
given by: 

 max arcsin Sϕ
λ

     
Λ=  (2.3.3) 

For greater azimuth values, no resonance angle resθ  can exist. ( )θ ϕ−  
is an increasing 

function of azimuth: when azimuth increases, the resonance polar angle resθ  
shifts towards 

greater values (see Figure 2-3.a) as far as the resonance value in correspondence of the 

maximum azimuth maxϕ  is assumed.  
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Figure 2-4: scheme of the wavevector composition at resonance condition in the reciprocal k -space, 

both for null azimuth 0ϕ = °  and in the rotated-grating case 0ϕ ≠ ° . 

Depending on the grating period Λ  and on the illuminating wavelength λ , also a second 

solution θ+  in eq. (2.3.1) could exist between a limit azimuth value cϕ  and the maximum 

value maxϕ : in this range two resonance dips can be excited with the same incident 

wavelength at two distinct resonance angles θ− 
and θ+  . In correspondence of cϕ ϕ=  the 

resonance angle is equal to 90° , thus rearranging terms in eq. (2.3.1) we get the following 

expression for the critical azimuth cϕ : 

 

2
2

2
1

arccos

2
c

S
λ

ϕ
λ

            

− +
Λ=

Λ

 (2.3.4) 

On the other hand, ( )θ ϕ+  
is a decreasing function of azimuth: when azimuth increases 

from the critical value cϕ , the resonance angle resθ  
shifts towards lower values as far as it 

reaches the resonance value in correspondence of the maximum azimuth maxϕ .  

Also the increase in resonance-dip width with azimuth angle (cfr. Figure 2-3.a) can be 

explained by the geometrical description in wavevector space (Figure 2-4). The SPPk -circle 

has a natural width SPPk∆
 
that is related to SPP-decay and is associated to adsorption 

sources such as metal dissipation. For increasing azimuth the circle is intersected along a 

gradually increasing thickness, thus the width in wavevector-space scales with azimuth ϕ  as: 

 
( 0 )

( )
cos

SPP
SPP

k
k

ϕ
ϕ

ϕ

∆ = °
∆ =  (2.3.5) 
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In summary, in the case of 1n = −  resonance, resonance angle increases for increasing 

azimuth angle. For azimuth greater then a critical value cϕ , a second resonance appears 

which shifts in the opposite direction for increasing azimuth with respect to the first one. The 

two dips approach and merge into a single broad dip in correspondence of the maximum 

azimuth value maxϕ .   

 

2.4 Polarization Role in the conical mounting 

In the classical mounting, i.e. when the scattering plane is parallel to the grating 

symmetry plane, ( )( )k Gi
�
� , p-polarization (TM-mode) is the most effective for SPP 

excitation: while under s-illumination almost all incident energy is reflected away at every 

incidence angle, since TE-SPP cannot be supported, in the case of p-polarization instead, a 

dip appears in reflectivity in correspondence of the incidence angle resθ  at which the incident 

energy couples with surface plasmon modes and dissipates while propagating along the metal 

surface. On the other hand, as a consequence of the symmetry breaking after azimuthal 

rotation, not only p-polarized but also s-polarized light can contribute to SPP excitation: a 

reflectivity dip can appear under s-illumination and the far-field can exhibit a s-contribution 

also in the case of incident p-polarization (polarization conversion). As azimuth increases, p-

polarization is no longer the most effective for SPP excitation and the illuminating 

polarization must be tuned in order to optimize the coupling.  

 

 
Figure 2-5: scheme of the incidence frame. 
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Figure 2-6: Reflectivity for angular scan in the range 25 38° − ° , step size 0.1° , at incident 675λ =  

nm and azimuth 40ϕ = °  for different incident polarization α in the range 0 180° − ° , step size 30° . 

b) Reflectivity minima as a function of polarization angle and fit curve (eq. (2.4.1)). 

Reflectivity-minimum minR  exhibits a periodic dependence on the polarization angle α  

which is well fitted by a harmonic function:  

 ( )min 0 1 0cosR f f m α α= − ⋅ +  (2.4.1) 

where 0f , 1f ,m  and 0α  are expected to be fitting parameters that depend on the incidence 

angles and wavelength and on the optical properties of the metallic grating (layer materials 

and thicknesses).  

This behaviour can be explained by assuming that only the electric-field component that 

lies on the grating symmetry plane is effective for SPP excitation and the other components 

contribute to the reflectivity term, thus: 

 � � �( )e g n
2

R ∝ ⋅ ×  (2.4.2) 

where the versor �e  is paraller to the incident electric-field direction, �g  indicates the 

grating momentum direction and �n  is the normal to the grating plane. In the considered 

reference frame (see Figure 2-5) these versors have the following expressions: 
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� ( )
� ( )
� ( )

e

k

g

cos cos , sin , sin cos

cos , sin ,0

cos , sin ,0

θ α α θ α

β β

ϕ ϕ

=

=

=

 (2.4.3) 

This model43 forecasts that 2m = , i.e. the polarization oscillation has a π  periodicity, 

and gives an analytical expression for the phase term minα  as a function of the azimuth ϕ  

and the resonance angle θ :  

 0 2 2 2

cos sin2
arcsin

cos sin cos

θ ϕ
α

θ ϕ ϕ

     
= −

+
 (2.4.4) 

The coupling strength is maximized, i.e. the reflectivity depth is minimized, if the relation 

( )min 0cos 2 1α α+ =  is satisfied in eq. (2.4.1), where minα
 
is the optimal polarization angle. 

Thus we get the following relation: 

 0
min 2

k
α

α π= − +  (2.4.5) 

where k ∈ ℤ . A simpler expression for minα  as a function of the incidence angles ,θ ϕ  is 

given by:   

 ( )min arctan tan ·cos resα π ϕ θ= −  (2.4.6) 

Reflectivity spectra have been collected at the fixed azimuth value 56.5ϕ = °  for different 

incident wavelengths λ  in the range 600 640− nm, step 5 nm (see Figure 2-7). In 

correspondence of each resonance angle, a scan of the polarization angle α  (from 0°  to 180° , 

step 20° , 0α = °  and 90α = °  correspond respectively to p-polarization and s-polarization) 

registering for each resonance condition the corresponding optimal polarization minα . From 

the data analysis of all the samples performed at different wavelength it results that m  has a 

mean value of 2.004 0.002±  rad
-1, indicating that the polarization oscillation has a π  

periodicity in perfect accordance with the model (2.4.1) and that SPP excitation can be 

suppressed at min 90α ± °
 
as expected. Figure 2-9 reports the experimental data of the phase 

term 0α  as a function of the incident λ . Experimental points are well fitted by the curve 

given in eq. (2.4.4), both for the first (blue line) and second (red line) dip. 
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Figure 2-7: Experimental reflectivity for angular scan in the range 15 75° − ° , step size 0.2° , at 

incident walengths λ  in the range 600 640− nm, step size 5 nm, fixed azimuth 56.5ϕ = ° , 

polarization  140α = ° . 

 

 

 

Figure 2-8: Experimental reflectivity minima at fixed 56.5ϕ = °  reported as a function of the 

polarization angle 0 180α = ° − ° , step size 20° , for different incident wavelengths in the range 

600 635− nm, step 5 nm. Data have been fitted using eq. (2.4.1). 
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Table 2-1: parameter estimation from the fit of data in Figure 2-8 with eq. (2.4.1) 

λ (nm) 0f  1f  m
 0( )α °  

600 (I) 0.4726 0.1971 2.005 108.3595 

600 (II) 0.5249 0.2494 2.003 37.1052 

605 (I) 0.4678 0.2087 1.997 107.3980 

605 (II) 0.5032 0.2576 1.998 44.3879 

610 (I) 0.4642 0.2213 2.010 106.1403 

610 (II) 0.4863 0.2637 2.003 51.2243 

615 (I) 0.4602 0.2333 1.999 104.7854 

615 (II) 0.4706 0.2671 2.003 58.0174 

620 (I) 0.4554 0.2440 2.009 102.8037 

620 (II) 0.4586 0.2673 2.010 64.5736 

625 (I) 0.4507 0.2535 1.997 100.5446 

625 (II) 0.4493 0.2650 1.999 71.9077 

630 (I) 0.4549 0.2544 2.002 97.1915 

630 (II) 0.4484 0.2607 2.004 79.6195 

635(merged) 0.4655 0.2498 2.009 85.9224 

 

 

Figure 2-9: comparison of model (2.4.4) with experimental values of 0α  from data fit in Figure 2-8. 
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2.5 Conclusions 

The vectorial model provides a simple analytical approach to the description of surface 

plasmon polaritons excitation and propagation on metallic gratings. For given grating period 

and dielectric function of the stack, an estimation of the resonance angle can be calculated 

and its dependence on the incident wavelength and on the azimuth rotation well fits 

experimental data. Vectorial model allowed to understand the consequences of symmetry 

breaking after azimuthal rotation and provided an analytical expression for the optimal 

polarization angle which well reproduces the trend of experimental data: 

 mintan tan ·cos resα ϕ θ=  (2.5.1) 

where ϕ  is the azimuth angle and resθ  the resonance angle at the considered wavelength 

λ . Last expression of minα  will result extremely useful in chapter 4, when it will be necessary 

to select the incident polarization that optimized the reflectivity depth for sensing purposes. 

As the comparison with experimental data has showed, this formula provides a good 

approximation without the need of more rigorous calculations. 

On the other hand, the vectorial model is affected by strong limitations in the estimation 

of reflectivity curve trend, and in the calculation of diffracted-orders intensity in general. In 

order to properly estimate the reflectivity curve and study its dependence on the grating 

profile, a more rigorous approach to the problem is necessary.   
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3 Chandezon’s method 

3.1 Introduction 

In the previous chapter the vectorial model was introduced and exploited in order to 

analyze surface plasmon polaritons excitation on metallic gratings and understand the 

phenomenology underlying an azimuthal rotation of the structure and the polarization role in 

this configuration. However this model is a simple tool that allows identifying resonance 

position with an accuracy that decreases for increasing grating amplitude, i.e. when grating 

profile must be taken into account in order to properly describe the coupling of the incident 

light. Moreover, the vectorial model cannot predict coupling strength and thus it is not able 

to give a precise estimation of diffracted order weights, e.g. reflectivity or transmission 

intensity. 

 Therefore a rigorous approach is necessary in order to exactly solve the problem of a 

monochromatic plane wave incident on a patterned surface and to simulate the optical 

response of such multilayered patterned structures. In the past decades, several numerical 

methods have been developed in order to compute the optical response of periodically 

modulated multilayered stacks. Among these algorithms, Chandezon’s method (hereafter the 

C-method) revealed itself as one of the most efficient techniques for a rigorous solution of 

smooth grating diffraction problem. The algorithm is a curvilinear coordinate modal method 

by Fourier expansion that has gone through many stages of extension and improvement. The 

original theory was formulated by J. Chandezon et al.44,45 for uncoated perfectly conducting 

gratings in classical mountings. Various author extended the method to conical diffraction 

gratings46. G. Granet et al. 47, T.W. Preist et al. 48  and L. Li et al. 49  allowed the various 

profile of a stack of gratings to be different from each other, although keeping the same 

periodicity. Solving the vertical faces case in a simple manner, J.P. Plumey et al. 50 have 

showed that the method can be applied to overhanging gratings. In the numerical context, L. 

Li improved the numerical stability51 and efficiency52 of the C-method. 

In this work, the C-method has been implemented in MATLAB environement in order to 

compute the optical response of sinusoidal metallic gratings and compare the numerical 
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results with experimental data from reflectivity analyses on fabricated samples. Moreover a 

simulation code provides a fundamental tool for the optimization of grating supports that 

exhibit the best optical features. Thus simulation provides to nanofabrication the optimal 

windows of process for the realization of optimized optical components.   

3.2 The C-Method 

3.2.1 The coordinate transformation 

 
Figure 3-1: a) Scheme of the considered reference frame and scattering plane orientation. b) 

Coordinate transformation in Chandezon’s method (3.2.1). 

The setup is as it follows: the grating profile is described by a differential curve ( )y s x= , 

periodic in the x -direction with periodicity Λ . The basic feature of the C-method consists in 

the choice of a non-orthogonal coordinate system ( , , )u v w  that maps the interfaces between 

different media to parallel planes (see Figure 3-1.b): 

 

( )u y s x

v x

w z

= −
=
=

 (3.2.1) 

Since (3.2.1) is a global coordinates transformation, Maxwell’s equations covariant 

formalism is necessary. In a source-free medium the time-harmonic Maxwell equations in 

term of the covariant field component can be written as53 

 0ij
i jgg E∂ =  (3.2.2) 

 
1 ijk ij

j k jE i g H
cg

ω
ε µ∂ =  (3.2.3) 
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 0ij
i jgg H∂ =  (3.2.4) 

 
1 ijk ij

j k jH i g E
cg

ω
ε ε∂ = −  (3.2.5) 

ijkε  being the completely antisymmetric Levi-Civita tensori. The parameter g  is the 

determinant of the contravariant metric tensor ijg , ε  and µ  are respectively the dielectric 

permittivity and the magnetic permeability of the medium. The covariant formii ijg  is the 

following: 

 

21 ' ' 0

' 1 0

0 0 1

s s

g s

          

+
=  (3.2.6) 

In this case 1g = , since coordinate transformation (3.2.1) conserves volumes.  

The reference frame is the following: the y-axis is perpendicular to the grating plane and 

the grating vector G  is oriented along the x-axis positive direction (Figure 3-1.a). The 

scattering plane is perpendicular to the grating plane and forms an azimuth angle ϕ  with 

the grating symmetry plane. This reference frame is different from the choice in the previous 

section (chapter 2 - Vectorial model), in order to simplify the coordinate transformation 

(3.2.1) and the form of the metric tensor g  (3.2.6) after azimuthal rotation: with these 

conventions, the grating is kept fixed and the scattering plane azimuthally rotates.  

The incident wavevector ( )k i  is given by: 

 ( )k( )
0 0sin cos , cos ,sin sin ( , , )i

c

ω
θ ϕ θ θ ϕ α β γ= − = −  (3.2.7) 

and the wavevector of the n-th diffraction order has the following form: 

 ( )( )k , ,n
n nα β γ=  (3.2.8) 

                                            

i ijk
ε  equals 1  if ( ), ,i j k  is an even permutation of (1, 2, 3) , 1−  if it is an odd permutation, and 0  if any index is repeated. 

ii 
' ' ' '

i j

i j i j ij
g δ= Λ Λ  where 

ij
δ  is Kronecker’s delta, i

j
Λ

 
is the Jacobi’s matrix associated to the coordinate transformation:

/i i j

j
x xΛ = ∂ ∂ . The metric tensor 

ij
g

 
allows calculating covariant components 

i
v  of a vector v  from contravariant ones iv

and vice-versa:  j

i ij
v g v= , i ij

j
v g v= . 
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where 0n n Gα α= + ⋅  and ( )2 2 2i
n nkβ α γ= − − . 

With these definitions and after some algebraic manipulations, curl equations (3.2.3) and 

(3.2.5) can be rearranged into the following system of differential equations in the tangential 

components unknown ( ), , ,x z z xH E H E : 

 
2 2 2

' 1 1

1 ' 1 ' 1 '
x z

z x x

H Es i
i E H E

u x x xs s s

γ
ωε

ωµ ωµ

             

∂ ∂∂ ∂= + + +
∂ ∂ ∂ ∂+ + +

 (3.2.9) 

 
2

2 2 2

' 1 1

1 ' 1 ' 1 '
z z z

x

E E Hs
i i H

u x xs s s

γ γ
ωµ

ωε ωε

     

∂ ∂ ∂
= + + −

∂ ∂ ∂+ + +
 (3.2.10) 

 
2

2 2 2

' 1 1

1 ' 1 ' 1 '
z z z

x

H H Es
i i E

u x xs s s

γ γ
ωε

ωµ ωµ

     

∂ ∂ ∂
= − − −

∂ ∂ ∂+ + +
 (3.2.11) 

 
2 2 2

' 1 1

1 ' 1 ' 1 '
x z

z x x

E Hs i
i H E H

u x x xs s s

γ
ωµ

ωε ωε

             

∂ ∂∂ ∂= − + − +
∂ ∂ ∂ ∂+ + +

 (3.2.12) 

where we used the following relation: 

 i
i

F
i F

z
γ

∂
=

∂
 (3.2.13) 

where F  stands for , , ,x z z xH E H E . In fact, since the grating vector has no components in 

the z-direction, momentum z-component is conserved (see eq. (2.2.1)) and is a constant 

parameter of the problem.  

3.2.2 Bloch-Floquet’s theorem 

As suggested by Bloch-Floquet’s theorem (see appendix C), thanks to the periodicity of 

the media in the x-direction a generic field ( , , )F x y z (where F  may stand for , , ,x z z xH E H E ) 

can be expanded in pseudo-Fourier series: 

 ( ), , ( ) mi xi z
m

m

F x u z e F u e αγ
+∞

=−∞
= ∑  (3.2.14) 

where ( )mF u  is a function periodic in x .  
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Likewise, also the profile functions ( )2( ) 1 / 1 'C x s= +  and ( )2( ) '/ 1 'D x s s= +  in eq. 

(3.2.9) - (3.2.12) are periodic in x  and can be expanded as well (see Appendix D). Laurent’s 

ruleiii can been applied for the Fourier factorization54, assuming the continuity of profile 

function derivative. In the case of  sharp edges instead, equations should be rearranged in 

order to make the inverse-rule factorization applicable55. Since in our case of interest the 

grating profile is a regular function, after applying Laurent’s factorization we get the 

following system of equations in the Fourier space: 

 
1m

x m n n n
z m m n x m m n n z m m n x

n n n

H
i E D H C E C E

u

γ
ωε α α α α

ωµ ωµ− − −
∂

− = + − +
∂ ∑ ∑ ∑  (3.2.15) 

 
2m

z n n n
m n n z m n n z m n x

n n n

E
i D E C H C H

u

γ γ
α α ωµ

ωε ωε− − −

     

∂
− = + + −

∂ ∑ ∑ ∑  (3.2.16) 

 
2m

z n n n
m n n z m n n z m n x

n n n

H
i D H C E C E

u

γ γ
α α ωε

ωε ωµ− − −

     

∂
− = − − −

∂ ∑ ∑ ∑  (3.2.17) 

 
1m

x m n n n
z m m n x m m n n z m m n x

n n n

E
i H D E C H C H

u

γ
ωµ α α α α

ωε ωε− − −
∂

− = − + + −
∂ ∑ ∑ ∑  (3.2.18) 

3.2.3 Truncation 

After truncation56 to a finite order N , the problem consists in the numerical solution of a 

system of 8 4N +  first order differential equations in each medium: 

 
U

Ui T
u

∂− =
∂

 (3.2.19) 

where ( )U , , , , , , , , , , ,N N N N N N N N
x x z z z z x xH H E E H H E E− − − −= ⋯ ⋯ ⋯ ⋯

 
is a 8 4N +  vector 

and T  is a 8 4N +  squared matrix:  

                                            

iii For given functions ( )f x  and ( )g x  that are continuous, smooth, bounded and periodic, either everywhere in the domain or 

piecewise with concurrent jump discontinuities, the Fourier cofficients of ( ) ( ) ( )h x f x g x=  can be obtained from the Fourier 

coefficients of ( )f x  and ( )g x  by: 
n n m m
h f g

−
= ∑ . 
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             

=  (3.2.20) 

where 1, 2 4A A D…  are 16 matrices of size 2 1N + , given for ( ), ,m n N N∈ − + by: 

 2

1

1
2

3

4

mn m m n

mn mn m m n n

mn m n
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−

     
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 (3.2.21) 
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     

=

= −

= − +

=

 (3.2.24) 

The problem is led to the diagonalization problem of the matrix T  and the solution 

U ( )j u  in the j-th medium can be expressed as a function of eigenvectors V j
q  and 

eigenvalues j
qλ  of the matrix T :  

 U ( ) V
j
qi uj j j

q q
q

u b e
λ= ∑  (3.2.25) 

where j
qb  are the weights of the corresponding eigenmodes in the expansion.  
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3.2.4 Boundary conditions 

Thereafter boundary conditions in each medium must be imposed: continuity of the 

tangential components at each interfaces and outgoing-wave conditions in the first (air) and 

last (substrate) media. This leads to a system of 8 4N +  equations in 8 4N +  unknowns 

that can be solved numerically. Further details of algebraic manipulations and numerical 

calculations are postponed to Appendix D. 

Once the mathematical problem has been solved, the electromagnetic fields can be 

computed inside each j-th medium: 

 ( ), ,
j
n m

N N
i u i xj i z j

mn
m N n N

F x u z e F e eλ αγ
+ +

=− =−
= ∑ ∑  (3.2.26) 

where F  stands for , , ,x z z xH E H E , and mnF  are the F -field mn -Fourier weight. 

Transversal components ,y yE H  are calculated from Maxwell’s equations (3.2.2)-(3.2.5) as a 

function of tangential components.  

By applying the metric tensor to covariant components iF , the contravariant components 

iF , which represent the physical fields, can be obtained. For incident wavelength λ , polar 

and azimuth angles ( ),θ ϕ   and polarization α , the implemented algorithm yields the spatial 

dependency of the diffracted fields everywhere in space for the modeled grating stack. An 

estimation of reflection and transmission coefficients for the different diffraction orders, in 

particular transmittance and reflectivity values ( 0 -diffraction orders) can be obtained. By 

analyzing real and imaginary parts of eigenvalues j
qλ  in (3.2.26) it is possible to distinguish 

between propagating and evanescent modes, which respectively contribute to far-field and 

near-field solutions. Thus by selecting only the evanescent contributions in the configurations 

where surface plasmon polaritons are excited, it is possible to describe the localized plasmonic 

fields of the excited modes.  
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3.3 Results 

3.3.1 Grating design and optimization 

The C-Method has been implemented in MATLAB  code and simulations have been 

performed57 with a truncation order N = 6. The simulated stack reproduces the typical 

multilayer gratings that we fabricate in laboratory by laser interference lithography in the so 

called Lloyd’s configuration (see chapter 4). This fabrication technique produces patterned 

areas with an almost perfect sinusoidal profile and a great homogeneity over cm2. Thereafter 

the fabricated masters are replicated by soft-lithography technique by imprinting onto a thin 

polimeric resin film63 (NOA61) exposed to UV light. Finally, the resin grating is coated by 

thermal evaporation with a multilayer metallic film: 5 nm of chromium adhesion layer, a 

silver film of optimized thickness, a gold layer of about 7 nm in order to prevent silver 

oxidation.  

Silver thickness must be properly chosen in order to optimize the plasmonic response of 

the structure, i.e. the coupling of SPPs with the incident light, and the optimal thickness 

strictly depends on the amplitude of grating modulation. Simulations have been performed at 

the incident wavelength 632λ = nm for several values of the profile amplitude in the range 

20-60 nm and for varying silver thickness in the range 10-80 nm, in the case of a sinusoidal 

grating with fixed period 500Λ = nm, gold thickness 7 nm and a fixed chromium adhesion 

layer of 5 nm over a NOA61 substrate.  

As Figure 3-2 shows, for each amplitude value a silver thickness exists that optimizes the 

coupling of incident light with SPP modes, i.e. that minimizes the depth of the reflectivity 

dip. Figure 3-3 shows some examples of reflectivity curves in angular scan for optimal 

combinations of profile amplitude and silver thickness. For increasing amplitude of the 

grating profile, the optimal silver thickness decreases (Figure 3-2) and the corresponding 

reflectivity curve becomes broader (Figure 3-3). This result seems to suggest the choice of a 

shallow grating modulation with the evaporation of the corresponding optimal thickness of 

silver: for an amplitude 30A = nm the optimal silver thickness is around 80 nm. On the 

other hand, the coating with a great quantity of metal could affect the preservation of the 



- 57 - 

 

original pattern and cause lacks in accuracy of the final profile. The evaporation of about 40 

nm of silver instead, could assure the control of the grating profile and at the same time a 

reasonable value for the reflectivity-dip FWHM (Full Width at Half Maximum). In the 

following analyses, an amplitude 44A = nm has been considered and the grating optical 

response has been simulated for the corresponding optimal thickness of  the silver film 

37.5Agd = nm.  

 

Figure 3-2: Reflectivity minimum as a function of profile amplitude and silver-film thickness for fixed 

period 500Λ = nm, fixed gold-film thickness 7 nm, incident wavelength 632λ = nm (sinusoidal 

profile). Superimposed blue line: optimal configurations.  

 

Figure 3-3: Reflectivity in angle scan for values of amplitude and silver thickness along the optimal 

configuration line in Figure 3-2: amplitude range 30-60nm, step 4 nm. 
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3.3.2 Reflectivity analysis: classical and conical mounting 

If the incident wavelength is kept fixed at 632λ = nm, the resonance angle resθ  shifts 

towards greater values for increasing azimuth, according to eq. (2.3.1). Figure 3-4 exhibits 

the reflectivity spectra in angular interrogation at p-polarization ( 0α = ° ) for the azimuth 

values 0 ,10 ,20 ,30 ,40 ,45 ,50 ,53.5 ,54.5ϕ = ° ° ° ° ° ° ° ° ° . As this figure shows, if p-polarization is 

maintained, dips become broader and shallower for increasing azimuth resonance since p-

polarization becomes less effective for SPP excitation. The inset graph shows the resonance 

angle trend as a function of the azimuth angle: dip positions resθ  have been evaluated using 

a weighted centroid algorithm27 and the data ( ),resθ ϕ  have been fitted using (2.3.1) with the 

parameter S  unknown. The resulting estimation 1.036S =  allows calculating the limit 

azimuth values 52.91cϕ = °  and max 55.03ϕ = °  (see section 2.2). 

 

Figure 3-4: Reflectivity spectra for angular interrogation, variable azimuth 

0 ,10 ,20 , 30 , 40 , 45 ,50 ,53.5 ,54.5ϕ = ° ° ° ° ° ° ° ° °  for the incident wavelength 632λ =  nm,  p-polarization   

( 0α = ° ). In the inset graph: resonance angle resθ  as a function of the azimuth angle ϕ : simulation 

data points and fit with vectorial model (solid line). 

 Figure 3-5 displays the reflectivity data in the case of azimuth 53.5ϕ = ° . This value is 

greater than cϕ  and thus it is possible to excite two SPP modes with the same incident 

wavelength. As the figure shows, two distinct resonance dips appear in correspondence of the 

resonance angles 33.36θ− = °  and 70.21θ+ = ° . In this configuration, the incident 
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polarization angle α  has been tuned in the range 0 150° − °  with step size 30° . Reflectivity 

depth strictly depends on polarization: the deepest dip is obtained for a polarization which is 

different from 0α = °  (p-polarization) and moreover the two dips have different phase terms 

0α . The minimum of reflectivity minR  as a function of the polarization angle exhibits a trend 

which is well fitted by a harmonic function with a period of  180° , see eq. (2.4.1). In Figure 

3-6 the harmonic trend is calculated for a polarization scan in a period of 180° , for different 

azimuth angles 0 ,30 ,53.5ϕ = ° ° °  (double SPP excitation), 56°  (merged dips) and the phase 

dependence on grating rotation is clearly demonstrated.  

While for 0ϕ = ° (classical mounting) the minimum is obtained, as expected, at 0α = °  

(or 180° ), on the other hand for increasing azimuth the optimal polarization decreases both 

for the first and the second dip (in the range where it exists) and the two phases converge to 

the same value in correspondence of the dip merging close to the azimuth value maxϕ : 

min(30 ) 149α ° = ° , min(53.5 , ) 135Idipα ° = ° , min(53.5 , ) 158IIdipα ° = ° , min(56 , ) 143mergedα ° = ° . 

The map in Figure 3-6 of the reflectivity minima as a function of both polarization and 

azimuth angles, provides a complete description of this phenomenology.           

 

Figure 3-5: Reflectivity spectra  for angular interrogation at azimuth 53.5ϕ = °  for the incident 
wavelength 632λ = nm, variable incident polarization α  in the range 0 150° − ° step 30° . 
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Figure 3-6: a) Reflectivity minima as a function of polarization for azimuth angles 

0 ,30 ,53.5ϕ = ° ° °  (I and II dip), 56°  (merged dips) at incident wavelength 632λ = nm. 

b) Reflectivity map as a function of polarization and azimuth angles for first and second dip. 

Superimposed blue lines: optimal polarization angle calculated with the vectorial model eq.(2.4.6). 

 

3.3.3 Comparison with experimental data 

The optical response of a fabricated metallic grating has been computed with truncation 

order 6N =  and numerical results have been compared with experimental data from 

reflectivity analysis of the real sample58. The simulated stack reproduces the multilayer 

structure of the considered grating: air (upper medium), Au (8 nm), Ag (35 nm), Cr (9 nm), 

photoresist (70 nm), Si (substrate). For each layer the optical constants (refractive index n, 

extinction coefficient k) have been extrapolated from ellipsometric analysis (see section 4.3.3) 

and have been inserted into the code. From AFM analysis, the grating profile results 

sinusoidal with period 505 nm and peak-to-valley amplitude 26 nm. 

As Figure 3-7 shows in the case of illuminating 700λ = nm at polarization 30α = ° , 

numerical estimation of grating reflectivity well fits experimental data within instrumental 

errors ( 2%)∼ . Reflectivity measurements have been performed by means of the 
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monochromatized 75 W Xe-Ne lamp of a spectroscopic ellipsometer VASE (J. A. Woollam), 

with angular and spectroscopic resolution respectively 0.01°  and 0.3 nm 

Figure 3-8  shows reflectivity spectra for angular interrogation at null azimuth 0ϕ = °  for 

incident wavelengths λ  in the range  675 775− nm with step size 25nm, p-polarization           

( 0α = ° ). In angular interrogation, reflectivity dips shift towards greater resonance angles for 

increasing wavelength as expected. Numerical results perfectly reproduce experimental data 

trends. From dip position it is possible to reconstruct SPP dispersion relation kω −  using eq. 

(2.2.5). 

 Figure 3-9 exhibits reflectivity spectra in angular interrogation for the azimuth values 

0 ,10 ,20 ,30 ,40 ,44ϕ = ° ° ° ° ° ° , incident wavelength 675λ =  nm and p-polarization ( 0α = ° ). As 

the figure shows, if p-polarization is maintained, resonance dips become broader and 

shallower since p-polarization becomes less effective for SPP excitation. 

 Figure 3-10 shows reflectivity data for incident 675λ =  nm in the case of azimuth 

40ϕ = ° : polarization is tuned in the range 0 180° − °  with step size 30° . Reflectivity depth 

strictly depends on the incident polarization and the deepest dip is obtained for a 

polarization 141α = °  which is different from 0α = °  (p-polarization) in the case of classical 

incidence. The minimum of reflectivity as a function of polarization angle exhibits a trend 

which is well fitted by a harmonic function with a period of 180 degrees.  

In Figure 3-11 experimental minima as a function of polarization for azimuth angles 

0 ,40ϕ = ° °  at the incident wavelength 675λ = nm and for 53ϕ = °  at 610λ = nm are 

plotted with the corresponding simulated curves superimposed. In the case 53ϕ = °  two 

SPPs can be excited with the same wavelength 061λ = nm: two distinct resonance dips 

appear in reflectivity spectra at the resonance angles 41.8θ− = °  and 63.4θ+ = °  and the 

resonance depth changes with a different phase 0α  for the two modes. 

 Table 3-1 collects 0α  
estimations for the considered azimuth configurations: 0α  has been 

calculated from the fit of experimental and simulated data points in Figure 3-11 with 

eq.(2.4.1) and from the application of eq. (2.4.4) to the experimental values ( ),resθ ϕ .  
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Figure 3-7: Reflectivity spectra for angular interrogation at null azimuth 0ϕ = °  for incident 

wavelengths 700λ =  nm, polarization 30α = ° . Experimental data points and simulation results 

(solid lines). 

 

 

 
 

Figure 3-8: Reflectivity spectra for angular interrogation at null azimuth 0ϕ = °  for incident 
wavelengths λ  in the range 675 775−  nm with step 25  nm, p-polarization ( 0α = ° ). Experimental 

data points and simulation results (solid lines). 
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Figure 3-9: Reflectivity spectra for angular interrogation, variable azimuth 

0 ,10 ,20 , 30 ,40 ,44ϕ = ° ° ° ° ° °  for the  incident wavelength 675λ =  nm,  p-polarization ( 0α = ° ). 

Experimental data points and simulation (solid lines). In the inset graph: resonance angle resθ  as a 

function of the azimuth angle ϕ : experimental points and simulation curve (solid line). 

 
 

 

 
 

Figure 3-10: Reflectivity spectra  for angular interrogation at azimuth 40ϕ = °  for the incident 
wavelength 675λ =  nm, variable incident polarization α  in the range 0 150° − ° , step 30° . 

Experimental data points and simulation results (solid lines). 
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Figure 3-11: Reflectivity minima as a function of polarization for azimuth angles 0ϕ = ° (blue line), 

40ϕ = ° (red line) at incident 675λ =  nm, and for 53ϕ = °  at 610λ =  nm (double SPP 

configuration – green lines). Experimental data points and simulation results (solid and dashed lines). 

 

Table 3-1: estimation of phase 0α  from fit of experimental data with eq. (2.4.1), from simulations in 

Figure 3-11 and from the application of vectorial model (eq. (2.4.4)). 

Phase 0( )α °  Experimental
 

Vectorial model Simulation 

675λ = nm 
0α = °  

0.5 0.7±  0  0.07 0.04±  

675λ = nm 
40α = °  

101.2 0.7±  101.1 0.3±  101.31 0.01±  

610λ = nm 
53α = ° (I dip) 

107.4 1.6±  104.1 0.2±  105.43 0.82±  

610λ = nm 
53α = ° (II dip) 

72.42 2.28±  71.2 0.1±  73.2 0.54±  

 

3.3.4 Near-field numerical analysis 

The electromagnetic field on the metallic surface has been computed under resonance 

condition at the corresponding optimal polarization values. The following graphs display 

some examples of this near-field numerical calculation. Figure 3-12 reports the magnetic field 

z-component over an area of 2 2m mµ µ×  for classical incidence: null azimuth and p-

polarization ( 0 , 0ϕ α= ° = ° ). The x- and y-components are obviously null: the propagating 
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SPP is p-polarized. H-field intensity in air as a function of the distance from the grating 

surface is reported: the decay is exponential as expected from the theory.  

 

Figure 3-12: Magnetic field (z-component) calculation on the grating surface at SPP resonance 

condition for 632λ =  nm, null-azimuth, p-polarization, resonance polar angle 13.12resθ = ° . Magnetic 

field intensity as a function of the distance from the grating surface into air. Fit curve and estimated 

extinction length L .  

 

Figure 3-13: Magnetic- field component calculation on the grating surface at SPP resonance 

condition for 632λ =  nm, azimuth 53.5ϕ = ° , polarization min 135α = ° , resonance polar angle 

33.36resθ = °  (I dip) . Vector sum of eq. (2.2.1) is superimposed to each graph. Magnetic field 

intensity as a function of the distance from grating surface into air: fit curve and estimated extinction 

length L . 
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Fitting with an exponential curve allows to estimate the extinction length L  which results 

equal to 362 nm and comparable with the decay length of SPPs propagating on a flat 

metallic surface in the PCSPR59.  

After the sample is azimuthally rotated, a different polarization is needed to optimize the 

coupling: the excited surface plasmon polaritons are no longer p-polarized as Figure 3-13 and 

Figure 3-14 show respectively for the first ( 33.36θ− = ° ) and the second dip ( 70.21θ+ = ° )  at

53.5ϕ = ° , where all magnetic-field components are different from zero. Vector sum in 

momentum conservation law, eq. (2.2.3), has been superimposed to each graph in order to 

clearly represent grating orientation (G  is perpendicular to the grating grooves), the 

scattering plane (parallel to ( )
||
k in ) and the direction of SPP propagation (parallel to kSPP ).      

 

 

Figure 3-14: Magnetic- field component  calculation on the grating surface at SPP resonance 

condition for 632λ =  nm, azimuth 53.5ϕ = ° , polarization min 158α = ° , resonance polar angle 

70.21resθ = °  (I dip) . Vector sum of eq. (2.2.1) is superimposed to each graph. Magnetic field 

intensity as a function of the distance from grating surface into air: fit curve and estimated extinction 

length L . 
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3.4 Conclusions 

A numerical code has been implemented in MATLAB environment, which exploits 

Chandezon’s method for a rigorous solution of metallic gratings diffraction problem. The 

written routines overcome vectorial method limitations and provide a rigorous calculation of 

diffraction orders intensity.  

The existence of amplitude values and layer thicknesses that optimize the optical response 

has been shown through the optimization process of a sinusoidal bimetallic grating of 

unknown amplitude and silver thickness. 

Polarization phenomenology with azimuthal rotation has been numerically studied and 

deepened with an analysis of the resonance dip dependence on incidence angles.  

The reflectivity response of a real sample has been simulated and results are well-fitted by 

experimental data, proving the efficiency and the reliability of the implemented algorithms. 

Numerical simulations exhibit their most peculiar feature in the computation of the 

plasmonic electromagnetic-field on the metal surface. This remarkable result offers a near-

field point of view of the phenomenology which far-field experimental techniques cannot 

provide. The display of plasmonic wave-fronts propagating on the grating surface, confirms 

out-of-scattering plane propagation and the generic polarization state of these modes in the 

conical mounting.  
  



- 68 - 

 

 

 

    
  



- 69 - 

 

4 Experimental: nanofabrication and characterization 

4.1 Introduction 

Modern nanotechnology has provided a wide range of instrumentation and techniques for 

the realization of multi-layered patterned structures for plasmonic applications. In this 

chapter several techniques for the nanofabrication of metallic periodic surfaces are presented: 

interferential lithography, soft-lithography for grating-replica process, focused ion beam 

lithography. All these techniques have been approached and exploited during this thesis work 

for the fabrication of plasmonic gratings. Afterwards we describe the techniques that we used 

for the optical and physical characterization of grating quality, performance and response.  

A microfluidic cell has been realized by soft-lithography and has been embodied to 

grating samples. By analizing the resonance shift for an increasing concentration of solution 

flowing through the cell, it is possible to calibrate the sensing device and get an estimation of 

its resolution and sensitivity to refractive index change.  

Further studies of grating functionalization with self-assembled monolayers have been 

performed. In particular, we analysed the optical response to functionalization with thiolate 

molecules, in our case alkanethiols, that bind to the gold surface in the form of a compact 

thin monolayer thanks to the great affinity of the sulphur group with gold. A more complex 

functionalization is offered by poly(ethyleneoxide), that is well-known for its anti-fouling 

property which provides the proper resistance to non-specific protein adsorption. PEO-buffer 

layers have been deposited on gratings and the resulting sensing platform has been 

characterized.  

A section dealing with the fabrication and characterization of nanoporous gold films closes 

this chapter. This nanostructured material, thanks to the concomitance of a great surface-to-

volume ratio and the tunable plasmonic behaviour in the near-infrared, reveals promising 

features for the realization of patterned surface for sensing applications (see chapter 5). 
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4.2 Nanofabrication of Metallic Gratings 

4.2.1 Interferential Lithography 

Interferential Lithography (IL) is the preferred method for the fabrication of periodic 

patterns that must be spatially coherent over large areas. It is a conceptually simple process 

where two coherent beams interfere in order to produce a standing wave which can be 

recorded over a sensitive substrate. The spatial period of the pattern can be as low as half 

the wavelength of the interfering light, allowing for structures down to about 100 nm using 

UV radiation. 

The wave incident on the recording layer is given by the interference of two coherent 

waves generated by similar monochromatic sources (same wavelength λ ), but different travel 

paths ( )k k1 2≠ , and their intereference gives rise to a standing wave of dark and bright 

intensity fringes in correspondence of interference minima and maxima: 

 E
2 2

0
4

cos sinI E x
π

θ
λ

     
⋅∼ ∼  (4.2.1) 

 where θ  is the incidence angle, x  a coordinate on the sample plane, 0E  the amplitude of 

the incident electric fields. The illuminated substrate is usually a photoresist, a material that 

changes its solubility in a particular solvent, known as developer, after being exposed to 

radiation in a specific range. A photoresist film is usually spread over a substrated, e.g. glass 

or silicon wafer, with a spin coating procedure: an excess amount of resist solution is placed 

over the substrate which is then rotated at high speed until the fluid is spread on the surface 

and the desired thickness is achieved.  

As eq. (4.2.1) shows, the period Λ  of the standing wave is a function of the incident 

wavelength λ  and of half the angle at which the two beams intersect θ : 

 
2sin

λ

θ
Λ =  (4.2.2) 

Thus the smallest grating periodicity mΛ  is limited by the wavelength λ  of the light 

source and the resolution of the resist layer: / 2m λΛ ∼ . The recorded pattern reproduces 
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the exposing standing waves and thus records an almost sinusoidal profile, depending on 

resist resolution. When more than one exposure is done, a wide variety of periodic structures 

is allowed to be patterned. 

Two-beams interference is preferred because of its simplicity and  because it can be done 

on very large areas, however the main limitation of this technique is that only a 1D periodic 

pattern can be exposed at once. IL offers advantages over several lithographic techniques 

such as Electron Beam Lithography (EBL) or Focused Ion Beam (FIB) due to its ability to 

define patterns over large areas in a single, fast, maskless exposure.  

In Lloyd’s Mirror Interferometer60, one source is simply replaced by a 90°  mirror. Lloyd’s 

mirror is rigidly fixed perpendicular to the surface and used to reflect a portion of incident 

wavefront back to the other half (Figure 4-1). The angle of interference and thus the grating 

periodicity are set just by rotating the mirror/substrate assembly around the point of 

intersection between the mirror and the substrate. Simple trigonometry guarantees that the 

light reflected off the mirror is always incident at the same angle as the original beam. Thus 

in Lloyd’s mirror only a single beam is used, moreover since the mirror is fixed with respect 

to the substrate, vibration of the setup or wandering of the incoming beam do not affect the 

exposure: this results in a more stable configuration and prevents the need of phase locking 

systems. Furthermore it allows to change and control grating period without any alignment 

or critical adjustment between two different sources and thus the system is very convenient 

to calibrate and tune. 

        

Figure 4-1: a) Lloyd’s mirror setup for Interference Lithography. b) Lloyd’s mirror in details. 
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The basic principles in order to record a pattern of desired period and amplitude are the 

following: 

• Grating period:Grating period:Grating period:Grating period: the incident beam angle has to be properly adjusted in order to 

obtain the desired peridicity. It is only necessary to rotate the mirror in order to 

set the corresponding incidence angle. 

• Grating amplitude:Grating amplitude:Grating amplitude:Grating amplitude: amplitude is controlled by varying the distance of the mirror 

from the beam source, in order to control the intensity incident on the sample. 

The higher the intensity on the resist, the higher the amplitude that is obtained 

after resist development. 

It is worth considering that the flatness and cleanliness of the mirror are very critical 

otherwise the fabricated grating could be easily distorted. Many sources of laser beam 

disturbance during the exposure time could lead to a blurring or a loss of resolution on the 

exposed surface, e.g. the intrinsinc laser instability or environmental vibrations that cause 

movements of mechanical and optical components. All these effects induce vibration modes 

which can affect interference fringes in different ways: fringe drifting and pitch blurring. In 

the case of Lloyd’s mirror setup, small vibrations of the assembly do not cause fring drift as 

the image source created by the mirror automatically compensates the noise. However, a 

relative motion of the point-source with respect to the interferometer may induce pattern 

distortions. Since a change in the incident angle between beam and interferometer is related 

to a change in periodicity, the fluctuation of the fringe period during the exposure may cause 

contrast and resolution losses. The pin-hole vibration, that could induce a laser beam drift of 

several microns after 1 m of beam propagation, is mainly due to clean room air flux that 

impinges on the optical table. For this reason the whole setup has been properly enclosed in 

damping boxes that are set closed only when the system is running and kept open during the 

rest of the time.  

In our system a 50 mW Helium-Cadmium (HeCd) laser emitting TEM00 single mode at 

325 nm was used as light source. After a 2 m long free-space propagation, the expanded laser 

beam illumintes both the sample and the perpendicular mirror. The designed sample holder 
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offers translational and rotational degrees of freedom, while a rigid mechanical connection 

between the mirror and the sample-chuck prevents phase distortion. The possibility to 

translate the sample stage in two directions allows a fine positioning of the system in the 

zone where the Gaussian beam distribution reaches its maximum and the best conditions in 

terms of beam intensity, uniformity and spatial coherence are achieved. On the other hand 

the sample stage rotation around vertical axis, with 8 mrad resolution, allows a fine setting of 

fringes periodicity.  

The IL fabrication process of the metallic gratings performed in this work proceeded 

through a sequence of steps61,62: resist spinning, IL exposure, resist devolpment, methal 

evaporation. Exposures were performed over silicon samples of 2 2×  cm2 surface area. Silicon 

wafers were pre-baked for 20 30−  minutes at 120°C. A bottom coating (XHRiC-11, BARC) 

was spun (5000 RPM, 30 seconds) in order to obtain a 100 nm-thick anti-reflection layer. 

After a soft baking step (175°C for 1 minute) the substrate was coated with a 100 nm thick 

film of photoresist S1805 (Microposit, Shipley European Limited, U.K.) and Propylene glycol 

monomethyl ether-1,2-acetate (PGMEA) solution (ratio 2:3) at the spinning rate 6000 RPM 

for 30 seconds. UV exposure was performed with a laser incidence angle of 19°  and a 

constant integrated exposure dose 80 mJ/cm2  for sinusoidal grating with period 500∼ nm 

and amplitude 30∼ nm. Thereafter a developing solution of MICROPOSIT MF-319 and 

water in ratio 10:1 was used.  

After the exposed resist has been developed, the result is a photonic crystal: a dielectric 

periodic surface which has no plasmonic feature yet. In order to realize a plasmonic crystal, 

the dielectric grating must be coated with a metallic layer of proper thickness. The fabricated 

metallic gratings have been realized by thermal evaporation. This technique is based on the 

boiling off or sublimation of heated pieces of metal onto a substrate in a vacuum chamber     

( 6 710 10− −−  torr). The metal target is usually evaporated by passing a high current (about 

100 150− A) through a highly refractory-metal containment structure (boat), e.g. molibdenus 

boats for silver, tungsten boats for gold. The containment structure in fact must be made of 

a metal with a fusion temperature higher than the evaporating metal. This method is called 
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resistive heating. Evaporated metal condenses on the sample into a growing metal layer. By 

varying current intensity the deposition rate can be controlled: a typical rate is in the order 

0.1 0.3−  nm/s.    

4.2.2 Soft Lithography: grating replica 

Soft-lithography is a useful technique in order to replicate pre-fabricated patterns with a 

nanometric resolution. It consists in making at first the negative replica of a pattern master 

onto a siliconic polymer and then in imprinting this pattern onto a photopolymeric substrate 

that cures when exposed to UV light (see Figure 4-2). 

In principle, a plasmonic grating could be obtained, as explained in the previous section, 

by simply coating a developed resist surface with specific noble metals, such as silver and 

gold over few nanometers of chromium or titanium as adhesion layers. However, many bio-

molecular surface functionalization methods involve the use of organic solvents that may 

attack the photoresist pattern. To avoid this problem, a replica molding approach was 

adopted in order to produce thiolene copies of the gratings. Commercial thiolene resin 

(Norland Optical Adhesive63 – NOA61) was used in order to exploit its relatively good 

resistance to organic solvents.  

Resist patterns were replicated onto the thiolene resist film supported on microscope glass 

slides using polydimethylsiloxane (PDMS) molds. The latter were obtained by replicating the 

resist grating masters using RTV615 silicone. Base and catalyst of the two component 

silicone were mixed 10:1 ratio and degassed under vacuum (Figure 4-2.a). The PDMS was 

then cast against the resin masters and cured at 60°C, well below the resist post-exposure 

bake temperature (115°C) in order to prevent the resist pattern from distortion (Figure 

4-2.b) and after 2 hours the PDMS was peeled off from the resist master (Figure 4-2.c).  

In order to obtain rigid and stable supports, the PDMS molds were bounded to glass 

slides by exposing the flat backside of the PDMS mold and the glass slide to oxygen plasma 

before contacting them. The PDMS mold was then used to UV imprint the initial pattern 

onto a drop of NOA61 resin dripped on top of a glass slide by just slightly pressing the mold 

onto the liquid resin and exposing it to the UV light (365 nm) of a Hg vapor flood lamp 
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(Spectroline SB-100P) at a distance of about 10 cm for 20 minutes (Figure 4-2.d-f). After 

removing the PDMS mold, the replicated NOA61 grating can be coated with metal layers by 

thermal evaporation. 

 
Figure 4-2: scheme of soft-lithography process for grating replica. 

4.2.3 Focused Ion Beam (FIB) Lithography 

FIB lithography uses a collimated and focused beam of accelerated ions that directly hit 

the sample surface and sputter a small amount of material64. Depending on the accelerating 

voltage and on the selected ion current, sample surface is milled and the desired pattern is 

recorded on the exposed area. Since this technique consists in directly milling the exposed 

surface, grating profile which is usually obtained by performing FIB lithography on a metal 

surface is almost digital, with amplitude values strictly related, at a fixed accelerating 

voltage, to current intensity and exposition time. 

FIB instrument consists of a source for the generation of the ion beam, an accelerating, 

focusing and scanning system of electromagnetic lenses, a vacuum chamber directly 

connected to the ion column, where the sample is located and exposed. The use of an ion 

beam provides an interaction with the exposed area that is limitated to its surface: ions 

interact and remove surface atoms, and dwell time and size are controlled with great 

resolution down to a nanometer scale. Since the exposed surface is scanned with a 

nanometric-size writing spot, FIB lithography requires much longer times than interferential 

lithography. However FIB technique provides higher resolution on lithography and a 

complete control on pattern design.     
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In this work FIB lithography was performed by means of the gallium ion source (Ga+) of 

the dual beam system FEI Nova 600i instrument. This system guarantees a resolution down 

to 5 nm for an accelering voltage of 30 kV. Ion beam can be selected in the range from 1.5pA 

up to 20 nA. This instrument also provides an Energy-Dispersive X-ray spectroscopy (EDX) 

analysis system for the elemental and chemical analysis of the sample. The stimulated 

emission of characteristic X-rays from the specimen is produced by the high-energy ion or 

electron beam that is focused on the sample. Since an X-ray energy pattern is characteristic 

of the energy difference between electron shells and thus of the element from which they are 

emitted, this allows the elemental composition of the inspected target to be detected and 

estimated. Energy-peak intensity provides information on the relative percentages of the 

detected elements. 

4.3 Optical characterization 

4.3.1 Scanning Electron Microscopy (SEM) 

Scanning eletron microscope images the sample surface by scanning it with a high energy 

electron beam65. Electrons interact with the atoms that compose the sample and produce 

signals that yield information about target surface topography, composition and physical 

properties such as electrical conductivity. Primary electrons are emitted by thermionic 

emission from a metallic filament cathode (usually tungsten or lanthanum hexaboride) or by 

a thermal field emission tip (Schottky emitter) and are accelerated towards an anode. The 

electron beam, with energy typically from a few hundred eV up to 30 keV, is focused by a 

system of condenser lenses into a beam with a very fine local spot sized 0.4 nm to 5 mm. The 

electron beam passes through pairs of scanning coils or pairs of deflector plates in the 

electron column which deflect the beam horizontally and vertically so that it scans in a raster 

fashion over a rectangular area of the sample surface. Both the column and the target 

chamber are under high vacuum ( 6 710 10− −− mbar) in order to avoid electron scattering by 

air molecules. When primary electrons interacts with the target, they loss energy by repeated 

scattering and adsorption within a teardrop-shape volume (interaction volume), which 
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extends from less than 100 nm to around µm into the surface. The size of the interaction 

volume depends on the electron energy and atomic number and density of the target. The 

interaction between primary electrons and sample results in the back-reflection of high-energy 

electrons by elastic scattering, production of secondary electrons by inelastic scattering and 

emission of electromagnetic radiation. The most common imaging technique consists in 

collecting the low-energy secondary electrons ( 50E < eV). These electrons originate within a 

few nanometers from the surface and are usually detected by an Everhart-Thornley detector 

which is a type of scintillator-photomultiplier device. The resulting signal is displayed as a 

two-dimensional intensity distribution. The brightness of the signal depends on the number 

of secondary electrons reaching the detector: if the beam enters the sample perpendicularly to 

the surface, the activated region is uniform around the axis of the beam and a certain 

number of electrons are emitted. As incidence angle increases, the escape distance of one side 

of the beam will decrease and more secondary electrons will be emitted. In this way steep 

surfaces and edges tend to be brighter than flat zones, which results in images with a well-

defined, three-dimensional appearance. The spatial resolution depends on the size of the 

electron spot, which is related to the electron energy and the focusing system and it can be 

also limited by the size of the interaction volume. In our case, resolutions down to few 

nanometers can be achieved.  

  

Figure 4-3: SEM inspections of a gold metallic grating, period 420∼  nm, amplitude 30∼ nm. 
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Figure 4-3 refer to SEM analysis of a gold grating with period of about 420 nm and 

amplitude 30 nm, fabricated by interferential lithography. A considerable homogeneity over 

mµ  size is appreciable. Inspections have been performed with the electron column of the dual 

beam system FEI Nova 600i. 

4.3.2 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) consists in a scanning technique that produces very 

high resolution 3D images of sample surfaces64,65. This technique can be used either in a static 

or a dynamic mode. In the static mode, the sharp tip at the end of a cantilever is bought in 

contact with the sample surface. During initial contact, atoms at the end of the tip 

experience a very weak repulsive force due to orbital overlap with atoms on the sample 

surface. This force causes a cantilever deflection which is measured by optical detectors. 

Deflection can be measured to within 0.02 nm, so for typical cantilever spring constant of 

10N/m, a force as low as 0.2 nN can be detected. In the dynamic operation mode instead, the 

tip is bought in close proximity (within a few nms) to and not in contact with the sample. 

The cantilever is deliberately vibrated either in amplitude modulation (AM) or in frequency 

modulation (FM) mode. Very weak Van Der Waals attractive forces are present at the tip-

sample interface. In the two modes, surface topography is measured by laterally scanning the 

sample under the tip while simultaneously measuring the cantilever deflection or the shift in 

resonant frequency/amplitude of the cantilever. Piezo-translators are used to scan the sample 

or alternatively to scan the tip. A cantilever with extremely slow spring constant is required 

for high vertical and lateral resolutions at small forces, but at the same time a high resonance 

frequency is desiderable (from 10 to 100 kHz) in order to minimize the ratio to vibration 

noise. This requires a tip with extremely low vertical spring constant (typically from 0.05 to 

1 N/m) as well as a low mass (in the order of 1 ng). Common cantilevers are fabricated in 

silicon, silicon oxide or silicon nitride and lateral dimensions are in the order of 100 µm with 

thickness of about 1 µm. Tip is required to be robust and have a small curvature radius       

( 10∼ nm). The cantilever deflection is measured by means of an optical laser system. The 

beam is directed onto the back of the cantilever very close to its free end, while the reflected 
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beam is directed onto a quad-photodetector, i.e. two pairs of photodiodes. The differential 

signal from the different photodiodes provides information on the cantilever deflection. In the 

dynamic mode, the cantilever is driven into oscillations near its resonance frequency. When 

the tip approaches the sample, the oscillation is damped, frequency and phase change. The 

variation is the feedback signal and topography is given by varying the z-position of the 

sample in order to keep amplitude oscillations constant or the resonance frequency fixed. 

Figure 4-4 and Figure 4-5 refer to AFM analysis with VEECO D3100 Nanoscope IV of a 

bimetallic sinusoidal grating fabricated by interferential lithography. The sharp Fourier 

spectrum in Figure 4-5 supports the approximation of the grating profile with a perfect 

sinusoid. 

  

Figure 4-4: AFM analysis of a sinusoidal metallic grating, period 500∼ nm, and 3D reconstruction. 

 

Figure 4-5: AFM analysis, profile and Fourier weights of a periodic gold grating: period 500∼ nm, 

amplitude 25∼ nm, roughness rms 1.2∼  nm. 
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4.3.3 Spectroscopic Ellipsometry  

Ellipsometry is a useful technique for the study of optical and geometrical properties of 

thin films66. It is a non-destructive optical characterization based on the analysis of the 

polarization state of light reflected by sample surface. By analyzing the polarization of the 

reflected beam, information about thickness and refractive index of thin films can be 

obtained. 

In this work spectroscopic measurements have been performed by means of the 

spectroscopic ellipsometer VASE (J. A. Woollam), with angular and spectroscopic resolution 

respectively 0.01°  and 0.3 nm. This setup consists in a Xenon-Neon lamp (75W) as a light 

source with a monochromator and focusing system that allow selecting wavelengths in the 

range 270 2500− nm. Polarization state is controlled with a first polarizer and the output 

light that hits the sample is reflected into a detector arm, consisting in a rotating polarizer 

(analyzer) and a photodiode system for signal conversion and amplification. This instruments 

performs Rotating-Analyzer Ellipsometry (RAE) analysis. RAE was perfected by Aspnes at 

al.67 in 1975. In 1990, a group from the Pennsylvania State University first developed a real-

time instrument that utilized a photodiode array as a light detector68. In order to overcome 

the disadvantages of RAE, a compensator was first added by Roseler et al.69 in 1984. 

The typical result of an ellipsometric analysis is expressed in term of the ellipsometric 

angles ψ  and ∆  which are defined from the ratio of the amplitude reflection coefficients70 

(Fresnel’s coefficients) for p- and s-polarization: 

 tan
p i

s

r
e

r
ρ ψ ∆= = ⋅  (4.3.1) 

Therefore ψ  represents the angle between reflected p- and s-polarizations, while ∆  

expresses the phase difference: 
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Thus common ranges for ellipsometric angles are 0 90ψ° ≤ ≤ °  and 0 360° ≤ ∆ ≤ ° . 

 

Figure 4-6: measurement principle of spectroscopic ellipsometry. 

Ellipsometry measurement can be expressed in terms of Jones matrices of polarization 

states and polarizer elements71,72. By examining the RAE setup using Jones formalism, the 

ellipsometric instrument with polarizer-sample-analyzer (PSAR) configuration is expressed as: 

 L ( ) ( ) Lout inAR SR Pα β= −  (4.3.3) 

where Lout  represents the Jones vector of the light recorded by the detector and is given 

by: 

 L
0
A

out

E 
 
 
  

=  (4.3.4) 

Lin represents the normalized Jones vector corresponding to normalized incident light: 

 L
1

0in

 
 
 
  

=  (4.3.5) 

The parameter α  of the rotation matrix ( )R α  represents the rotation angle of the 

analyzer, while β  is the angle of the polarizer. In order to express the light transmission 

through the polarizer, we first rotate the coordinates so that the transmission axis of the 

polarizer becomes parallel to the Eip axis. After the light passes through the polarizer ( )P , 

the coordinates are rotated again towards the reverse direction to restore the coordintes back 

into the original position. In Jones matrix formalism, this is expressed by ( ) ( )R PRβ β− . 

Nevertheless, the Jones vector cannot describe unpolarized (natural) light. Thus, with respect 
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to the light emitted from a light source, only the light transmitted by the polarizer P  is 

taken into account and the rotation matrix ( )R β  can be neglected. Similarly the rotation 

matrix ( )R α−  is eliminated from ( ) ( )R ARα α−  since light transmitted through the analyzer 

( )A  is detected independently of the coordinate rotation.  

 

Figure 4-7: optical configuration of ellipsometric instruments in rotating analyzer setup (RAE) with 

(a) or without (b) a compensator.  

In matrix representation, eq. (4.3.3) becomes: 
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where the Jones matrix S  corresponding to light reflection by the sample is given by iv: 
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The proportional constant ( )/ cossr ψ  in previous equation can be neglected, since only 

relative changes are taken into account in ellipsometry measurements. Thus eq. (4.3.6) is 

reduced to: 
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 (4.3.8) 

                                            

iv The Jones matrix S in eq. (4.3.7) represents the light reflection by an optical isotropic sample. When a sample shows optical 

anisotropy, such as birifrangence or dicroism, the generalized Jones matrix has non-zero off-diagonal elements 
ps
r  and 

sp
r . 
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By expanding eq. (4.3.8) we get: 

 cos cos sin sin sin cosi
AE eβ α ψ β α ψ∆= +  (4.3.9) 

And light intensity measured by the detector results: 

 ( )2

0 1 21 cos2 sin2AI E I S Sα α= = + +  (4.3.10) 

where 1S  and 2S  are given by: 
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Thus light intensity varies as a function of the analyzer angle 2α . In RAE, the Stokes 

parameters 1S  and 2S  are measured as the Fourier coefficients of the harmonic terms in 2α . 

If the analyzer rotates continuously with time at a speed of tα ω= , where ω  is the angular 

frequency of the analyzer, we can express the light intensity as a function of time as follows: 

 ( )0 1 2( ) 1 cos2 sin2I t I t tγ ω γ ω= + +  (4.3.12) 

By transforming cos2 , sin 2 ,cos2 , sin 2β β ψ ψ  using double-angle formulas, we get the well-

known forms for the normalized Fourier coefficients: 
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Solving for the ellipsometric angles ψ  and ∆  we finally get the following equations: 
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In spectroscopic ellipsometry with RAE configuration, ellipsometric angles ( , )ψ ∆  are 

extracted from the Fourier coefficients 1 2( , )γ γ
 
using eq. (4.3.14). In this method therefore, 

the polarization state of reflected light is determined from a variation of light intensity with 

the analyzer angle, thus in principle left-circular polarization cannot be distinguished from 

right-circular polarization since these states exhibit the same light intensity variation versus 

the analyzer angle. This is the reason why the measurement range for ∆  becomes half: 

0 180° ≤ ∆ ≤ ° . Moreover it can be demonstrated73 that the measurement error δ∆  as a 

function of the errors of Fourier coefficients ( )1 2,δγ δγ , increases drastically at 0 ,180∆ ≅ ° ° . 

A solution to overcome this problem consists in the use of a compensator ( )C  before (or 

after) the sample. In terms of optical matrices and vectors, the sequence is described by: 

 L ( ) ( ) Lout inAR CSR Pα β= −  (4.3.15) 

where C  is given by: 

 
0

0 1

ie
C

δ− 
 
 
  

=  (4.3.16) 

In previous description the fast axis of the compensator has been chosen in the direction 

of s-polarization, rather than p-polarization, and the consequent phase shift δ  is a function of 

wavelength λ . By substituting Jones forms of matrices in eq. (4.3.15), we find out that the 

compensator introduced into RAE, only shifts the ∆  value without any effects on ψ . The 

compensator does not change the amplitudes of p- and s-polarizations but changes the 

relative phase difference between the two. Accordingly, RAE with compensator can be 

described by simply replacing ∆  with ' δ∆ = ∆ −  in the equations previously derived. If we 

replace ∆  with '∆  in eq. (4.3.9), we obtain: 

 ( )( )2

0 1 2 31 cos2 cos sin sin2AI E I S S Sα δ δ α= = + + −  (4.3.17) 

By performing at least two measurements with different δ (e.g. rotating the compensator 

axis), it is possible to obtain the two values 2S  and 3S  separately74, and ∆  can be 

determined in the whole range 0 360° − ° . Moreover in RAE measurements with 



- 85 - 

 

compensator, since the value '∆  can be shift of the quantity δ , we can correct and eliminate 

the error observed at 0 ,180∆ ≅ ° ° .  

Once ellipsometric measurement on a sample has been completed and angles ( ),ψ ∆  have 

been collected, it is necessary to perform data analysis in order to extract physical 

information such as either optical constants ( ),n k  or thickness d  of the films that constitute 

the analyzed stack. Thus a model of the dielectric function of the sample is necessary in order 

to fit experimental data and get an estimation of the optical properties that are left as free 

parameters.  

Following ellipsometric data and fit results (sample 1, 2) refer to the analysis of the 

typical stacks that constitute the metallic gratings realized by interferential lithography and 

soft-lithography techniques. A small part of the sample is usually left unpatterned during the 

process and ellipsometric analysis is finally performed on this flat zone in order to get an 

estimation of the thicknesses of the several metallic and dielectric layers deposited on the 

substrate. The optical constants of each material have been measured separately by 

performing ellipsometric analysis of a single layer deposited over a known substrate. In this 

way the complex refractive index n ik+ , or the complex dielectric permettivity 1 2iε ε+  

equivalently, have been estimated for the employed materials: metals (gold, silver, 

chromium), resist Shipley1805, NOA61 resin, glass substrate and silicon wafer. 

Sample 1Sample 1Sample 1Sample 1. . . . Silicon substrate. Metallic grating fabricated by interferential lithography of a 

resist layer (Shipley1805). Optimized thicknesses of silver and gold have been thermally 

evaporated over (nominally 37 nm Ag coated by 7 nm of Au). 

 
Figure 4-8: ellipsometric angles ψ  and ∆  of the flat multilayered stack of sample 1:  Ag/Au layer 

over a dielectric film (resist Shipley1805) on a silicon substrate. Experimental data: spectroscopic 

ellipsometry in the range 300 900− nm, step size 10 nm, incidence angles 50 60 70° − ° − ° . 
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Figure 4-9: ellipsometric angles ψ  and ∆  of the flat multilayered stack of sample 1: a bimetallic 

Ag/Au coating over a dielectric film (resist Shipley1805) on a silicon substrate. Experimental data and 

fit curves (red lines) 

Table 4-1: results from fit of ellipsometric data in Figure 4-9, RMSE = 1.8. 

roughness 0.58 0.02±  

Au 5.31 0.09±  

Ag 38.26 0.24±  

resist 85.16 0.42±  

SiO2 2.12 0.18±  

substrate (Si) 

    

Sample 2Sample 2Sample 2Sample 2. . . . Resin (NOA61) substrate, over a glass support. Metallic grating fabricated by 

soft-lithography replica of a pre-fabricated master. An optimized thickness of gold has been 

thermally evaporated over a thin adhesion film of chromium (nominally 40 nm Au, 5 nm of 

Cr). 

 
Figure 4-10: ellipsometric angles ψ  and ∆  of the flat multilayered stack of sample 2: a gold film over 

a chromium adhesion layer (resist Shipley1805) on a dielectric substrate (NOA61 resin on glass). 

Experimental data: spectroscopic ellipsometry in the range 300 1400− nm, step size 10nm, incidence 

angles 50 60 70° − ° − ° . 
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Figure 4-11: ellipsometric angles ψ  and ∆  of the flat multilayered stack of sample 2: a gold film over 

a chromium adhesion layer (resist Shipley1805) on a dielectric substrate (NOA61 resin on glass). 

Experimental data and fit curves (red lines). 

Table 4-2: results from fit of ellipsometric data in Figure 4-11, RMSE = 2.1. 

roughness 0.70 0.03±  

Au 38.99 0.16±  

Cr 3.41 0.09±  

substrate (NOA61) 

 

Ellipsometry simulationEllipsometry simulationEllipsometry simulationEllipsometry simulation. . . . An ellipsometry analysis on patterned zones, exhibits the 

characteristic resonance features related to surface plasmon excitation. Figure 4-12 refer to 

the sinusoidal grating on sample 2, with period 502 nm, amplitude 27 nm. Simulation curves 

from the numerical approach with C-method (chapter 3), well fit the experimental data: 

 

Figure 4-12: ellipsometric angles Ψ  and ∆  for a sinusoidal bimetallic grating (sample 2). 

Experimental data and comparison with numerical calculations based on Chandezon’s method. 

Different azimuthal rotation of the grating support are considered: 0 ,10 ,20 , 30 , 40ϕ = ° ° ° ° ° . 
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While in angular scan, the resonance dip shifts towards greater polar angles for increasing 

azimuth (cfr. Figure 2-3.a), in wavelength scan instead resonances exhibit an opposite 

behaviour as expected from eq. (2.3.1).   

4.4 Microfluidic cell 

4.4.1 Cell fabrication 

A glass/PDMS microfluidic cell 400 microns deep and 8 mm wide was built as follows: 

first a two-level relief mold featuring the channel layout was produced on a microscope glass 

slide by liquid photopolymerization photolithography using NOA61 (Norland Products) 

optical adhesive according procedures75 previously described in the soft-lithography section 

(4.2.2).  

 

Figure 4-13: picture and scheme of the microfluidic cell. 

Polydimethylsiloxane (PDMS) pre-polymer was prepared by mixing GE RTV615 curing 

agent and base compound in 1:10 ratio. After degassing under vacuum, the pre-polymer was 

cast onto the mold and a glass slide covered with a polyethilene sheet - acting as an anti-

stick layer - was pressed using a weight on top of the PDMS covered mold. Curing was 

performed on a hotplate at 100 C°  for ca 30 min. The resulting cured PDMS piece represents 

a rubber gasket with an aperture in the detection zone and inlet ports distant from the 
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detection zone so that tube connectors can be placed farther apart and do not obstruct the 

optical path (see Figure 4-13). The PDMS gasket is then oxygen plasma bonded to the glass 

slide with predrilled inlet/outlet holes. Separately prepared PDMS blocks ( 5 5 5× × mm3) 

with cored tube access holes are plasma bonded on the opposite side of the glass slide in 

correpondence of the holes in the glass slide. Microbore Tygon tubing (Cole Parmer 0,06’’  

O.D., 0.02’’ I.D.) is pressure fitted into the holes of the PDMS blocks. 

4.4.2 Grating calibration with sodium-chloride solutions 

 The microfluidic cell was embodied to a fabricated metallic grating and the optical 

response of the system has been analyzed in reflectivity during the flowing of water solutions 

with different concentrations of sodium-chloride. Solutions have been prepared by dissolving 

into 200 ml of water an increasing mass of sodium-chloride up to 50 g, step 10 g.       

Reflectivity measurements were collected in a / 2θ θ  symmetric configuration using 

ellipsometer VASE monochromatized 75W Xe lamp, for scans of the incidence polar angle 

with step 0.2° , fixed wavelength 840λ = nm. The sample was mounted on a rotation stage 

for azimuthal rotation with accuracy 0.01° . 

 

Figure 4-14: Reflectivity in polar angular scan at incident wavelength 840λ =  nm, null-azimuth, p-

polarization, for increasing NaCl concentration in water solution: 0-50 g, step 10 g, in 200 ml of water. 

A variation in the refractive index n  of the medium, results in a change of resonance 

conditions and thus in a shift of the resonance angle for fixed incident wavelength. Figure 

4-14 shows reflectivity spectra in angular scan at the incident wavelength 840λ = nm for 
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increasing concentration of the flowing solution into the cell. Since the refractive index 

increases for increasing concentration, there is a shift in the resonance dip towards lower 

angle values, as expected from eq. (2.2.4):  
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m m
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mm

n
n
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ε ελ λ
θ

εε
= − ≅ −
Λ Λ ++

 (4.4.1) 

where we used the approximation 2
m nε ≫ . For each reflectivity curve, resonance angle 

position has been estimated using a weighted centroid algorithm27. Sodium-chloride mass 

concentration m (g/l) in the aqueous solution has been converted in refractive index variation 

n∆  with respect to the initial distilled-water flowing through the cell. The salinity, 

expressed as grams of salt dissolved in a kilogram of solution, has been converted in 

refractive index by using tabulated data available in literature76. 

 

Figure 4-15: refractive index variation as a function of sodium chloride mass concentration in water 

solution and fit curve (data from Dorsey76).  

Figure 4-16 exhibits the shift θ∆  of the resonance angle as a function of the calculated 

refractive index variation n∆ . A linear fit of the collected data allows estimating the 

refractive index angular sensitivity , /nS RIUθ
   ° : 

 ,nS nθ

θ∂=
∂

 (4.4.2) 
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The fabricated metallic grating exhibits a sensitivity 64.9 /nS RIU= °  for 840λ = nm. 

Sensitivity Sθ  can be improved just by an azimuthal rotation of the grating support (see 

chapter 5, section 5.2.4).  

 

Figure 4-16: Resonance angle shift as a function of refractive index variation of water solution with 

increasing NaCl concentration, wavelength 840λ =  nm, null azimuth, p-polarization. Linear fit and 

refractive index sensitivity estimation.  

 

4.5 Functionalization of grating surface 

4.5.1 Effective Medium Approximation (EMA) for thin coating films 

Once plasmonic gratings have been fabricated with the previously explained techniques, 

their optical response and refractive index sensitivity have been tested by means of a 

functionalization of the metal surface with thin self-assembling coating layers. The 

comparison of reflectivity data before and after functionalization provides information on the 

change of plasmonic resonances, such as angular θ∆  or wavelength λ∆  shifts of dip 

position. In order to estimate the refractive index sensitivity /nS Y n= ∆ ∆ , where Y  could 

stand for λ  or θ , depending on the selected modulation, an estimation of the effective 

refractive index variation n∆  due to a monolayer functionalization is necessary. Once 

surface plasmon polaritons are excited, the confined electromagnetic field experiences a 

dielectric medium which is different because of the presence of the adsorbed layer. The 
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effective permettivity effε  is calculated by averaging the permettivity ( )zε  over the depth of 

the whole multilayered structure, always weighting the local refractive index with a factor 

that takes into account the exponential decay of the field77. This average is therefore 

calculated with the depth integral: 
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where L  is the extention length of the excited SPP. From Maxwell’s equations we get an 

analytical expression for the extention length as a function of the exciting wavelength λ  and 

the surrounding media (see eq. (1.2.3) and appendix A for more details): 
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where mε  is the dielectric permittivity of the metal side. For a single-layer 

functionalization of thickness d  and dielectric permettivity lε  we find out from eq. (4.5.1): 
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eff l eε ε ε ε
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Since the layer thickness is usually much thinner than the SPP extention length in air 

( )2/ 10d L −∼  it is reasonable to approximate: 

 ( )0 0
2

eff l
d

L
ε ε ε ε ε∆ = − ≅ −  (4.5.4) 

After inserting last expression into (4.5.2) and rearranging terms, we get a 3rd degree 

polynomial equation to be solved in L  unknown: 
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2l l M l
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L d d Lπ ε π ε ε ε π ε ε λ ε ε ε ε λ
 
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+ − + − + + + − =  (4.5.5) 

 Once L  has been calculated with the condition 0L ≥ , after putting the value into 

eq.(4.5.4), we get the following estimation for the effective refractive index change: 
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Thus if film thickness and optical properties, in term of complex dielectric permittivity, 

are known, it is possible to get an estimation of the corresponding variation effn∆  in the 

effective refractive index which is experienced by the excited surface plasmon polariton at the 

considered wavelength. 

A self-assembled monolayer (SAM) is an organized layer of amphiphilic molecules78 in 

which one end of the molecule, the head group, shows a specific affinity for the substrate. 

SAMs also usually consist of a tail with a functional group at the terminal end. SAMs are 

created by the chemisorption of the hydrophilic head groups onto the substrate followed by a 

slow two-dimensional organization of tail groups into the densely packed structure of a single 

covering monolayer. 

4.5.2 Alkanethiol self-assembling monolayers 

In the case of noble metal surfaces, alkanethiols are the most commonly used molecules 

for SAMs. Alkanethiols r-CnH2n+1S (CnH2n+2S without the tail group -r) are molecules with an 

alkyl chain ( )nC C−  as the back-bone, a tail group -r, and a -SH head group. They are used 

on noble metal substrates because of the great affinity of sulphur for these metals. The 

sulphur-gold interaction is semi-covalent and has a strength of approximately 45kcal/mol. 

 

Figure 4-17: scheme of dodecanethiol structure: CH3(CH2)11SH. Binding onto the gold substrate. 

Alkanethiol SAMs produced by adsorption in solution are typically made by immersing a 

substrate into a diluite solution of alkanethiols in ethanol or methanol for several hours (12-

24 hrs). The spontaneous assembly of the molecules is known to form a densely packed and 
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highly oriented structure on a metallic surface79. The monolayer thickness depends obviously 

on the alkyl chain length. In our cases of interest we functionalized gold surfaces of the 

fabricated plasmonic platforms with a self-assembled monolayer of dodecanethiol (C12H26S, 

hereafter C12) at room temperature in ethanol. 

The substrates were pre-cleaned in a basic peroxide solution (5:1:1 double distilled H2O, 

30% H2O2 and 25% NH4OH) for 10 minutes, rinsed in double distilled water and dried under 

N2 flux. The cleaned sample was submerged in 4 mM solution of dodecanethiol in ethanol for 

about 48 hrs and therefore rinsed thoroughly with ethanol for at least 5 minute, followed by 

drying under nitrogen stream. C12 has been assumed to form a monolayer 1.46 nm-thick with 

refractive index 1.458n = 80. 

4.5.3 Polyethylene Oxide (PEO) buffer layer 

In this contest, a typical SPR biosensor architecture can be simply described as a metal 

nanostructured substrate (usually gold or silver) onto which is tethered the analyte-specific 

probe (biorecognizing or sensing element). Due to the expected high sensitivity, the ideal 

biorecognizing surface should be able to sense the analyte of interest even at very low 

concentration and reject non-specific interactions with other components of the biological 

sample, which are often in much larger concentration than the analyte itself. In order to 

prevent non specific interactions, a non-fouling hydrophilic polymer is generally linked to the 

sensing surface along with the biorecognizing ligand (generally an antibody or a DNA probe), 

i.e. between the metal surface and the sensitive element18.  

One possibility is to use poly(ethyleneoxide) (PEO, also called polyethylene glycol – PEG: 

C2nH4n+2On+1, Figure 4-18), a linear bi-functional amphiphilic polymer, well known for its 

resistance to nonspecific protein adsorption81. Its two ends can be functionalized with 

different chemical groups according to the envisaged final use.  

 

Figure 4-18: poly(ethylene oxide) - PEO structure: H(-O-CH2-CH2-)nOH.  
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Within the specific case of SPR application, a thiol group can be attached to one end for 

gold-polymer binding, while the other end can be used as the biorecognizing element (e.g. a 

peptide, antibody or nucleic acid probe). Bio-recognizing layers on top of gold surfaces are 

commonly built up following a multiple step approach, in which a first deposition of a 

thiolated compound (that forms the first self-assembled monolayer) is later followed by a 

bioconjugation step through which the biosensing element is covalently linked to the other 

end of the thiol compound. However, the efficiency of each of these step may vary with some 

deposition variables (e.g. the degree of thiol oxidation, the pH and concentration of the 

reagents in covalent coupling) and this can lead to later inter-assay sensing variability. In 

order to reduce this risk, a standardized deposition strategy is desirable in which the sensitive 

variables are minimal. This can be achieved by carrying out the deposition through a single 

step procedure using a thiol derivative with its second-end that already contains both the 

sensing ligand and the PEO moiety. The PEO compounds synthesized in this work have been 

tailored under this aim.  

Thus a model PEO derivative (mPEO-Cys) was synthesized82: at one end a methoxy-

group (-CH3) is contained instead of the biorecognition element, while at the opposite end a 

cysteine residue is used for gold-polymer binding. Thiol-protected end-functionalized mPEO-

Cys (α-methoxy-ω-trt-cys-polyoxyethylene) was synthesized by coupling S-trityl-cysteine to 

the hydroxyl end of monomethoxy-PEO 5KDa MW (mPEO5000-OH). In this reagent (α-

methoxy-ω-trt-cys-polyethyleneoxide), the reactive cysteine thiol residue is protected from 

oxidation by the trityl (Trt) group which can be easily removed by acidic treatment with 

trifluoroacetic acid (TFA)  prior to gold surface incubation. The starting mPEG-OH was 

dissolved in anhydrous chloroform and activated as N-hydroxy-succinimidylcarbonates by 

adding two equivalents of di-succinimidylcarbonate (DSC) in the presence of triethylamine 

(TEA). The reactive intermediate was isolated by diethylether precipitation and later added, 

under mixing, to a 2 mM trt-Cysteine solution in 0.1 M borate buffer pH 8.5. After 2 hrs at 

room temperature the final product was extracted with dichloromethane, the organic solution 

was dried over MgSO4, filtered, and the product was isolated after diethylether precipitation. 
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Definitive substrates were pre-cleaned in a basic peroxide solution (5:1:1 double distilled H2O, 

30% H2O2 and 25% NH4OH) for 10 minutes, rinsed in double distilled water and dried under 

N2 flux. 

The trt-protective group was removed just before deposition by dissolving the α-methoxy-

ω-trt-cys-poly(ethyleneoxide) powder in the minimum amount of TFA for 20 minutes at 

room temperature. N2-saturated double distilled H2O was then added up to reach 1 mM final 

thiol concentration. The insoluble trityl residue was removed by centrifugation (10.000g, 4 C° , 

10 min). mPEO-Cys deposition was then carried out in a nitrogen-fluxed incubation chamber 

by immersing the plasmonic substrate in the surnatant solution varying the incubation time 

of the substrates in the solution from 1 to 48 hrs. At scheduled times samples were removed 

and rinsed thoroughly with bi-distilled H2O in order to remove physisorbed molecules. They 

were then dried in vacuum (10-7 atm) in a desiccator for 90 min. The final surfaces were 

stored under N2 atmosphere and far from light. 

 

Figure 4-19: AFM images of mPEO-Cys films obtained upon incubation time of 30 hrs onto flat (a) 

and nanostructured (b) subtrates. Starting from surface profiles after mPEO-Cys deposition (c), the 

seaweed pattern can be schematized indentifying two different polymer conformations (d): a folded-

chain structure and a mushroom-like conformation. 
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Figure 4-20: AFM profile of a PEO dendrite boundary. 

mPEO-Cys film morphology is the starting point for the determination of polymer surface 

density: from AFM images (Figure 4-19(a) and (b)), both flat and nanostructured surfaces 

covered by a mPEO-Cys film show a seaweed pattern83, which is schematized in Figure 

4-19(d). 

A three-folded chain structure (F) of thickness 11Fd = nm (considering that the whole 

mPEO-Cys length is approximately 33 nm) and a mushroom conformation (M) of thickness 

2Md = nm are present. We assume that the evolution of polymer molecular conformation is 

composed by a starting mushroom regime which evolves into a folded regime as molecular 

surface density increases, thus as incubation time increases. 

Starting from these hypotheses, the total number of mPEO-Cys molecules adsorbed onto 

the surface can be divided into a molecular fraction f  which identifies the mushroom-like 

conformation, and a molecular fraction 1 f−  identifying the folded-chain conformation. 

Assuming that the volume-change that may occur passing from a PEO molecule in 

solution to a PEO molecule adsorbed on the surface is negligible, we can consider the 

following relationship for an estimation of the area covered by a single molecule in 

mushroom-like conformation:  

 3 24

3 g M Mr d rπ π≈  (4.5.7) 

where gr  is the tabulated PEO gyration radius in solution, 2.80gr ∼ nm, and Mr  is the 

radius of a single PEO molecule in the mushroom-like conformation. From eq. (4.5.7) we get 
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a value of 3.73nm for Mr . By assuming an average radius Fr  of 0.12nm for mPEO-Cys 

chain84, the area occupied by a single molecule in a three-folded conformation FA  is also 

calculated. The surface density number N  of polymer molecules adsorbed in the mushroom 

and in the three-folded chain conformations, weighted by the corresponding covering fraction 

( f  and 1 f−  respectively) is given by: 

 
1

M F

f f
N

A A

−= +  (4.5.8) 

where MA  and FA  are the surface areas occupied respectively by a single molecule in the 

mushroom and in the three-folded chain regimes, given by 2
M MA rπ=  and 23F FA rπ= ⋅ . 

The value of f  is directly related to the refractive index variation induced by the layer 

adsorbed onto the metallic grating substrate. The functionalization causes a variation n∆  of 

the effective refractive index and a consequent shift θ∆  of the resonance polar angle. By 

applying an Effective Medium Approximation (EMA) (eq. (4.5.1)), we get the following 

expression for the refractive index variation as a function of the covering fraction f : 
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where 0ε  and PEOε  are respectively the surrounding-medium and mPEO-Cys dielectric 

permittivies, ML  and FL  are SPP-extention lengths into mPEO-Cys layer in the mushroom-

like and in the three-folded zone respectively, and Md  and Fd  are the thicknesses of the 

mPEO-Cys layer in the two different conformations. From the experimental value of the 

resonance angle shift θ∆ , it is possibile to get an estimation of the refractive index change 

n∆ : 
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∂∆ = ∆
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 (4.5.10) 

Once the mushroom-like covering fraction f  is calculated from previous equation, the 

resulting surface density units N  from eq. (4.5.8) can be converted into mass surface density 

(ng/cm2).  
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SPR analysis of PEO-grafted gratings has been perfomed for increasing time of 

functionalization process 1-48 hrs (see Figure 4-21). Our experiment gives a mPEO-Cys 

surface density of 568.1 66.5± ng/cm2 after a polymer deposition time of 30 hrs, with 

0.91f ∼ , comparable with the value of 590.7 69.9±  obtained after 48 hrs of deposition. 

Thus we can consider 30 hrs an ideal time for a nanostructured surface saturation, finding 

the condition needed for the anti-fouling effect of the biosensing layer.  

 
Figure 4-21: estimated PEO density from SPR analysis as a function of the incubation time in 

solution.   

 

4.6 Nanoporous gold substrates 

4.6.1 Nanoporous gold fabrication 

Nanoporous gold (NPG) has known a growing interest in last decades due to its potential 

applications in such areas where the concomitance of a high surface-to-volume ratio and the 

noble-metal chemistry provides benefits in performance and activity: actuation85, catalysis86, 

supercapacitance87, sensing88. This material exhibits a 3D bicontinous porous structure from 

few tens to hundreds of nanometers scale, depending on fabrication parameters, which is 

originated by a spontaneous pattern formation during the selective leaching of the least noble 

metal from Au alloys89,90. This process results in a sponge-like material (see Figure 4-22) with 
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a large surface-to-volume ratio and a lower free-electron density that exhibits a metallic 

behavior below the near-infrared range and thus can support excitation and propagation of 

Surface Plasmon modes.   

  

Figure 4-22: top-view and cross-section of a self-standing 100nm thick layer of nanoporous gold, 

fabricated from chemical dealloying of a Au20Ag80 leaf. 

Nanoporous gold samples have been fabricated by dealloying of silver-gold alloys in 

different experimental conditions. Each sample has been observed and characterized with 

several techniques: scansion electron microscopy (SEM) for pore-size inspection, transmission 

electron microscopy (TEM) for structure analysis, Electro-Impedance Spectroscopy (EIS) for 

roughness estimation, Rutherford Back Scattering (RBS) for compositional analysis. 

Rectangular glass substrates were accurately degreased in boiling acetone and dried. A 

10-nm Cr layer was deposited on glass as an adhesion promoter. Subsequently a Au layer 

about 100 nm thick was deposited by thermal evaporation over Cr. Finally, a layer about 

240nm thick of Ag75Au25 alloy was deposited in a DC turbo sputter coater (Emitech K575X, 

Emitech Ltd., Ashford, Kent, UK), using a silver/gold alloy sputtering target 

Ag62.3/Au37.7wt%, GoodFellow. The sputtering was performed at room temperature under 

Ar gas flow at a pressure of 7x10-3 mbar and a DC sputtering current of 25 mA.  

The composition of alloy (Ag75Au25) was selected on the basis of literature reports, 

indicating that: (i) 20 At% Au content is a practical lower limit to warrant a tough porous 

material91, whereas at lower Au content the porous structure generated by dealloying tends 
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to fall apart; (ii) above 26 At% Au the dissolution of Ag atoms is partial and a substantial 

amount of Ag remains buried, unaffected by dissolution, in the nanoporous structures92;    

(iii) samples with Au content of 28 At% or higher undergo anodic dealloying only upon 

application of high potentials, inducing oxidation of surface Au atoms and formation of a 

low-quality, brittle gold layer. Hence, for most purposes the range 22-25 At% Au is optimal, 

and we selected the upper limit to get the denser final material. 

The dealloying process was performed with two alternative procedures: i) chemical, 

exposing  the samples to a concentrated HNO3 solution (65%, Fluka puriss. pro analysis) for 

4hrs at 20 C° (sample Ca) or 1 h at 65 C° (sample Cb); ii) electrochemical, performed anodising 

the electrodes at the constant potential E = 0.980 V vs a Saturated Calomel Electrode 

(SCE), in 0.1 M HClO4 (made up from 60% HClO4, Fluka puriss. pro analysi), for 2 hrs at 

20 C° (sample Ea) or 30 min at 65 C° (sample Eb), using electrochemical cell and tested 

procedures93,94. Each sample was then washed in two steps, first in a fresh 0.1 M HClO4 

solution (1 h), then in distilled water (2 hrs), gently dried in a nitrogen stream and stored.   

Figure 4-23.a shows examples of the chronoamperometric curves recorded in 

electrochemical experiments, using a logarithmic time scale to better show phenomena 

occurring soon after closing the circuit. The current evolution suggests an intuitive division of 

the dissolution process in three main steps: rapid Ag dissolution from the outermost alloy 

layers; progress of dissolution towards deeper regions of fresh alloy, until reaching the back 

gold substrate; slow dissolution of residual Ag from the depleted alloy.  

Comparison of experiments at 20 C°  and at 65 C°  shows that the latter conditions give 

larger current in the first minute, and a more rapid decay at longer times. The integrated 

dissolution charge, reported as a function of time in Figure 4-23.b, shows for the process 

performed at higher temperature larger intermediate and final values, indicating more rapid 

and more exhaustive Ag dissolution: anodization at 65 C°  actually involves a total charge 

somewhat above the theoretical value  of 175-180 mC cm-2, possibly due to some oxidation of 

the Au surface. 
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Figure 4-23: Time evolution of (a) current density j and (b) integrated charge Q during anodic 

treatment of Ag75Au25 alloy in 0.1 M HClO4, at E = 0.98 V vs SCE, 20T C= °  (sample Ea) and 

65T C= °  (sample Eb). 

For each sample the porosity has been evaluated with Electrochemical Impedance 

Spectroscopy (EIS) by estimating the roughness factor, namely the ratio /r r gf A A=  

between the measured surface area rA  and the corresponding geometric area gA  of an ideally 

flat sample, assumed equal to the ratio between the respective capacities in the low frequency 

domain ( /r r gf C C≅ ). EIS measurements were taken using a Solartron 1254 Frequency 

Response Analyzer and a Solartron 1286 Electrochemical interface, both controlled by a 

ZPlot-ZView commercial software. The frequency range 20 kHz to 0.1 Hz was explored with 

8 points per decade. The double layer capacitance is estimated as the value of the quantity 

1
2 ''fZπ

−     at 8.4f = Hz, in the frequency range typically extending from 50 Hz to 0.2 Hz in 

which the imaginary impedance ''Z−  shows an almost ideal dependence on frequency (slope 

close to -1.0 in the log-log plot), and compared with the capacity of a smooth gold surface. 

The roughness factor rf  thereby obtained is reported in the 2
nd row of table 4.3. 
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The dealloying process entails a significant volume contraction, estimated at about 20% 

for bulky samples95 and thin films96 of composition similar to ours. Using this value, the 

effective density of the NPG is estimated as 0.25/0.80 ≅ 0.31 relative to the density of bulk 

gold, corresponding to a void fraction fv  of about 0.69. This value may be compared with 

the values in table 4.3, estimated from Rutherford Back-Scattering (RBS) spectrometry: the 

agreement is good (void fraction ca. 0.68) for the sample Eb, showing little residual Ag, 

whereas for the other samples the decrease of void fraction is qualitatively consistent with the 

increase of residual silver. 

 

Figure 4-24: SEM micrographs of nanoporous gold surface: chemical sample Ca and Cb, 

electrochemical samples Ea and Eb . 

SEM micrographs were performed, with the semi-in-lens cold cathode field emission 

scanning electron microscope source of the dual beam FEI Nova 600i instrument. 

Micrographs were taken at about 5 kV accelerating voltage, using in-lens detector in pure 

secondary electron signal mode. SEM analysis has been used to get estimations of average 

pore size and film thickness. In samples fabricated at room temperature the diameter of gold 

ligaments is around 12 nm for chemical (Ca) and 15 nm for electrochemical dealloying (Ea). 

Samples fabricated at higher temperature present a greater porosity and ligament size rises 

up to 36 nm and 41 nm for chemical (Cb) and electrochemical (Eb) samples, respectively 

(table 4.3). In fact the high temperature is supposed to increase Au atoms mobility during 
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dealloying process and to promote gold ligaments growth. The factor rf  correlates with the 

pore size: the bigger the pore the lower the increment of area with respect of that of a non-

porous layer. 

HRTEM measurements have been done on a Jeol JEM3010 instrument operated at 

300kV, LaB6 cathode, resolution at Scherzer defocus 0.17 nm.  

Digital HRTEM images were recorded with a Gatan Multiscan CCD camera MSC794 

(1024 x 1024 pixels, pixel size 24 x 24 microns, gain corrected and antiblooming enabled). 

Speciments for TEM analysis were prepared using mechanical polishing, dimpling and low-

angle Ar-ion milling. Inspection of sample Eb is reported in Figure 4-25.   

 

Figure 4-25: TEM analysis of gold ligaments structure of sample Eb. 

RBS spectra were recorded with a 2MeV α beam with a scattering angle of 170° . 

Analysis were performed by means of an homemade simulation code implementing standard 

equations for RBS spectra calculation. In order to distinguish between the gold signal coming 

from the NPG and that coming from the above Au layer, spectra where collected on the bare 

Au-Cr-Glass substrates. The simulations of these spectra were used as a fixed starting point 

to simulate the full  sample. Analyses of RBS measurements allow estimating the Au and Ag 

atomic areal density in the porous layer AuD  and AgD . There are two contributions to the 

total measured dose associated to gold atoms: the gold in the ligaments of the porous 

structure and the bulk gold beneath in the substrate. Once the contributions are 

distinguished, from the knowledge of the thickness of the two layers it is possible to evaluate 

the gold fraction in the nanoporous layer. Assuming a volume density of the bulk fraction of 

the NPG layer equal to the Au volume density ( AuN ) and considering the real thickness of 
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the layer as estimated by SEM SEMt  images, it is possible to evaluate the fraction of void fv  

in the NPG according to the relation: 

 1
Au Ag

f
Au SEM

D D
v

N t

+
= −

⋅
 (4.6.1) 

 This formula is a good approximation considering the very small difference in atomic 

density between AuAg alloy and Au.  

The result is reported in the 3rd row of table 4.3. As can be noted the data are about 0.64 

in good agreement with what expected on the basis of the above considerations and quite 

independent on the NPG production procedure. Moreover / ( )Ag Au AgD D D+  quantifies the 

residual concentration of Ag that is reported in the last row of the table. As can be noted 

from these data, the high temperature promotes silver dissolution while at room temperature 

chemical dealloying seems to be more efficient than electrochemical technique in silver 

etching.  

 

Table 4-3: Properties of samples: roughness factor rf  from capacity evaluation by EIS; average pore 

size from SEM inspections; void fraction fv  and residual silver fraction from RBS analysis.    

 Ca Cb Ea Eb 

Pore size (nm) 12 36 15 41 

rf  35.9 11.6 28.5 13.3 

( )5%fv ±  0.61 0.64 0.61 0.68 

Ag%  11 7 16 2 

 

4.6.2 Optical analysis 

Spectroscopic ellipsometry between 300 and 2400 nm (10 nm step) was recorded with 

VASE Spectroscopic Ellipsometer (J.A. Woollam). The goniometer controlled optical bench 

was set for three different angles of incidence on the sample (50 ,60 ,70° ° ° ) and ellipsometric 

angles ψ  and ∆  were recorded in the rotating polarizer analysis setup (RAE). Data were 

analyzed with W-VASE software (J. A. Woollam). A comparative ellipsometric analysis of 
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bare Au-Cr-Glass substrate and nanoporous gold samples allows extrapolating the complex 

permittivity 1 2iε ε+  and thus the complex refractive index n ik+  of nanoporous gold.  

Fully dense gold films exhibit a negative dielectric constant in the optical range for 

wavelengths above 550 nm (cfr. Figure 1-3). The result is the yellow colour and plasmonic 

properties in the visible range. In contrast, nanoporous gold films do not become plasmonic 

at visible wavelengths but rather in the near IR, depending on void content and structure, 

i.e. pore size. Results of ellipsometric analysis highlight different optical properties for 

samples prepared with different dealloying processes and temperatures (Figure 4-26). 

 

Figure 4-26: Dielectric permittivity real 1ε  and imaginary 2ε  parts. Comparison between evaporated 

gold (data from Palik13) and nanoporous-gold chemical (Ca - Cb) and electrochemical samples (Ea - Eb) 

To understand how the plasmonic response changes with the preparation technique, we 

examine the effective frequency-dependent dielectric function ( )ε ω . In the range from near-

UV to near-IR, the permittivity is well described with a Lorentz-Drude model, eq. (1.3.5): 
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 (4.6.2) 

where ε∞  takes into account the constant contribution to polarization due to d  band 

electrons close to the Fermi surface. UVε  is a Lorentz oscillator that describes the 3d  energy 

band-to-Fermi Level interband transition centered at a frequency UVω  in the UV range with 

a band-width ,UVτω . Dε  represents the Drude contribution due to free s-electrons. The 
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Lorentz contribution IRε  is added in order to describe the behavior of the dielectric response 

in the near IR range. This extra term enables excellent fits to dielectric constant of 

nanoporous films and is associated to the excitation of localized surface plasmons97.  

For each sample the permittivity values calculated from ellipsometric analysis have been 

fitted with the oscillator model (4.6.2) in order to get an estimation of the fitting parameters. 

Results are collected in Table 4-4. In nanoporous gold the intraband absorption term in the 

UV range is weaker than in bulk gold: inside gold ligaments each Au atom interacts with 

much fewer atoms than in bulk metal and this results in a discretization of dipole transitions 

between sp  electron eigenstates and so in the weakening or disappearance of the transition of 

d  electrons to the conduction band101. The reorganization of gold atoms also affects the 

relaxation time τ  of free carriers in the Drude term  which is shorter than for bulk gold, 

since it is related to the scattering processes in the material.  

The effective density NPGN  of free carriers in nanoporous gold can be estimated from 

plasma frequency pω  (see eq. (1.3.4)): 
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=  (4.6.3) 

where e  and m  are electron charge and mass and 0ε  is the void permittivity.  

As expected, free-charge density is lower in nanoporous gold samples than in bulk gold 

obviously because of the lower metal fraction. Despite the void fraction fv  is almost the same 

for all samples and around the value 2/3 (see table 4.3), the effective free-charge density is 

up to one order lower than the expected fraction. In sample Cb  for example, fabricated by 

chemical dealloying at 65T C= ° , the free-electron density is 5% of bulk gold value AuN  and 

it is about half the density for sample Ca, fabricated at room temperature with the same 

process. The resulting free-charge density is lower than the expected 66% of bulk gold and 

moreover it results quite different in samples fabricated at different working temperatures.  
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Table 4-4: fitting parameters using eq. (4.6.2) 

 Ca Cb Ea Eb Bulk 

ε∞  2.04 1.69 2.11 1.63 5.92 

( )p eVω  3.04 1.96 3.59 2.26 8.36 

( )fsτ  6.05 4.32 4.86 3.46 10.05 

( )2IRA eV 4.63 7.23 1.95 6.73 Abs 

( )IR eVω  1.25 1.32 1.50 1.55 Abs 

, ( )IR eVτω 1.66 2.09 0.93 2.06 Abs 

( )2UVA eV 24.95 28.18 45.73 28.50 86.65 

( )UV eVω  4.79 5.18 5.01 5.11 4.71 

, ( )UV eVτω 4.49 3.51 6.52 3.82 3.15 

 

A Maxwell-Garnett (MG) approach can be employed to model the effective dielectric 

constant of nanoporous layer by assuming the medium as a system of void inclusions into a 

continuous gold matrix98. Typically associated with the MG model99, the geometric effect is 

taken into account with a corrective parameter L , the effective depolarization factor, that 

describes the optical response of the inclusions and depends on their shape and structure (e.g. 

1 / 3L =  in the case of spherical inclusions). The resulting relation between the effective free 

electron density NPGN  in nanoporous gold and the free charge density AuN  of bulk gold is 

given by: 
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− −
 (4.6.4) 

where fv  is the void fraction. By inserting into eq. (4.6.4) the values of void fraction from 

RBS measurements and the free-charge density ratio µ  calculated from the previous optical 

analysis, it is possible to get an estimation of the depolarization factor L  for each sample 

(see Table 4-5).  

Samples fabricated at the same working temperature, although with different dealloying 

processes, exhibit similar depolarization values. The average factor is 0.9L ∼  for samples 

fabricated at higher temperature and results higher than the average value 0.7L ∼  for the 

same dealloying processes at room temperature. As expected from eq. (4.6.4), the free-charge 
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density ratio µ  decreases for increasing depolarization L , at fixed void fraction fv . In fact 

the free-carrier density NPGN , and consequently the plasma frequency pω , is lower for 

samples fabricated at greater temperature, i.e. with greater pore size, although gold density is 

almost the same.  

Clearly gold ligament size and shape affect the effective free-electron density and this 

results in different optical response and metallic behaviour. 

 
Table 4-5: fitting parameters. 

 Ca Cb Ea Eb Bulk 

21 3(10 )N cm− 6.73 2.79 9.35 3.70 50.78 

µ  0.13 0.05 0.18 0.07 1 

fv  0.61 0.64 0.61 0.68 0 

L  0.75 0.89 0.65 0.85 - 

4.6.3 Plasmonic properties 

Plasmonic properties of nanoporous gold films have been previously shown in recent 

papers. For example, Yu et al.100 demonstrated excitation of both propagating and localized 

surface plasmon resonances in NPG membranes. Dixon et al.101 reported surface plasmon 

resonances in ultra-thin films of supported nanoporous Au, and Maaroof et al.102 showed that 

the plasmonic behavior of nanoporous gold films can be tuned by controlling the porosity 

through the initial gold fraction in the selected alloy.  

In those papers however, Surface Plasmon Polariton (SPP) excitation was performed in 

the Kretschmann’s configuration where a prism is employed in order to couple illuminating 

radiation with surface plasmon modes. The cumbersome prism presence and the related 

alignment problems can be overcome with a periodic patterning of the metallic surface that 

couple diffracted light and offer a solution more suitable to miniaturization and embodiment.  

In this work the surface of nanoporous gold substrates has been patterned in order to 

support SPPs excitation and propagation on the structure. FIB lithography was performed 

by means of the ion source of the dual beam system using 30 KeV of accelerating voltage and 

a beam probe current of 280 pA. Digital grating arrays over an area 640 640m mµ µ× large 
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were fabricated with a single exposure. The geometry of the grating (duty cycle, period and 

thickness of the walls) was fixed in order to obtain a plasmonic resonance in the near infrared 

(near-IR) spectral range. When a metallic grating is designed in order to support propagating 

plasmonic modes, pattern period should be of the same order of the illuminating exciting 

wavelength: typical grating period is about 500 nm for an evaporated gold surface (cfr 

chapters 2, 3). Since nanoporous gold exhibits a redshift of metallic behavior, pattern period 

must be properly dimensioned. Taking into account nanoporous gold plasmonic properties, 

gratings 50 nm thick with a period of 1000 nm (duty cycle 0.5) have been patterned (see 

Figure 4-27).  

   

Figure 4-27: SEM micrographs of sample Eb patterned area. 

Reflectivity measurements have been collected on the patterned zone in a / 2θ θ  

symmetric configuration, using ellipsometer VASE Xe lamp (75 W), with wavelength λ  

scanned from 1250 to 1530 nm with step size of 5 nm, at fixed incident angle 20θ = °  (see 

Figure 4-28). 

In the considered wavelength range, resonance broadening and position seem to be mainly 

affected by sample porosity. Samples fabricated at higher temperature (Cb - Eb) exhibit a 

broader resonance with respect to samples fabricated at room temperature (Ca - Ea). 

Comparing samples at room temperature, sample Ea shows a lower width than sample Ca, 

possibly because of the greater percentage in residual silver (16% versus 11%). The resonance 

broadening in samples Xb (where X stands for E or C) is mainly related to the increasing in 
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pore size: a greater porosity results in an increase of dissipation sources and in a consequent 

decrease of surface plasmons life-time. In samples Xa  resonance wavelength resλ  is around 

1380 nm and it is shorter than in samples Xb  where it is near 1410 nm. Dip position seems to 

mainly depend on fabrication temperature rather than on the dealloying  technique. For each 

sample, reflectivity spectra have been collected with different incident wavelengths λ  in the 

range 1350-1650 nm, step size 50 nm, for angle interrogation from 15°  to 40° , step 0.1° . 

 

Figure 4-28: Reflectivity for wavelength scan in the range 1250-1530 nm with step size 5 nm for 

incidence angle 20° . 

Resonance polar angle resθ  shifts toward greater values for increasing wavelength and it is 

possible to reconstruct SPP dispersion curve kω −  (energy VS wavevector) from eq. (2.2.5). 

For each incident wavelength λ , SPP momentum SPPk  has been calculated from resonance 

position by applying the equation for grating coupling.  

In Figure 4-29 experimental data points of SPP dispersion curve are plotted for each 

sample. NPG curves differ from the dispersion relation of bulk gold and curves for samples 

with the same dealloying temperature overlap. This results, as expected, in a dependence on 

porosity and thus on the fabrication temperature, rather than on the dealloying technique. 

For a given energy, SPP momentum decreases with increasing porosity, i.e. fabrication 

temperature.   
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Figure 4-29: Dispersion curve E(eV) - k(nm-1) for Surface Plasmons Polaritons on nanoporous gratings 

and comparison with a bulk gold grating. 

 

4.7 Conclusions 

In this chapter the nanofabrication and characterization techniques for metallic gratings 

production have been exposed with the support of experimental references to the fabricated 

samples. 

The plasmonic platforms considered in this thesis are sinusoidal metallic gratings 

fabricated by interferential lithography in the Lloyd’s mirror configuration. This technique 

provides 1D sinusoidal patterns with great coherence over large areas. The developed surface 

(master) can be directly coated by metals or in turn replicated by soft-lithography process in 

order to obtain several copies (replica) of the same structure.  

Microscopy techniques (SEM-AFM) provide a quality-check of the patterned surface. 

AFM in particular gives a nanometric inspection of grating geometry and provides precise 

estimations of period, amplitude and harmonic contributions to the profile function. 

Spectroscopic ellipsometry is essential for the characterization of the grating stack in terms of 

thickness and refractive index of each constitutive layer. If the permittivity of each material 

is known, an estimation of layer thickness can be obtained with angstrom-precision in order 
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to model and simulate the optical response or to compare the real thicknesses with the 

nominal values given by fabrication. 

Functionalization processes with simple organic thiolate molecules such as dodecanethiol 

(C12) and polyethileonxide (PEO) have been performed. Dodecanethiol is a simple way to 

coat the metal surface and analyze the optical response to grating functionalization. PEO can 

be used as a test-layer as well, but at the same time it represents a fundamental buffer layer 

for the realization of plasmonic platforms for sensing purposes based on grating-coupling. 

Thanks to its anti-fouling property, it is used in fact in order to prevent non-specific 

interactions with non-analyte molecules and reduce signal-to-noise ratio and the overall 

resolution.  

In last sections, the nanofabrication and characterization of nanoporous gold substrates 

are introduced and described. Experimental results reveal nanoporous gold as a promising 

material for plasmonic devices, thanks to its enhanced surface-to-volume ratio and the 

concomitance with a tunable metallic behavior in the near-infrared. In the next chapter the 

exploitation of patterned substrates of nanoporous gold for the detection of surface 

functionalization will be performed and discussed.  
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5 Improving the performance of Grating-Coupled SPR 

5.1 Introduction 

In our recent works42,43,103 we experimentally and theoretically described the effects of 

grating azimuthal rotation on surface plasmon excitation and propagation. More SPPs can be 

supported with the same illuminating wavelength and a sensitivity up to 1000o/RIU is 

achievable for the second dip, which is one order of magnitude greater than that in a 

conventional configurations. Moreover the symmetry breaking with grating rotation makes 

polarization have a fundamental role on surface plasmon polaritons excitation, and 

polarization must be tuned after grating rotation in order to perform measurements under 

the best coupling conditions.  

In next section we report the most important results of this research on improving 

grating-coupled SPR (GCSPR) performance with azimuthal rotation. Sensitivity 

enhancement has been experimentally tested with self-assembling monolayer functionalization 

of PEO and C12 and with sodium-chloride solutions flowing through an embodied 

microfluidic cell. 

These results led to the design of an innovative GCSPR setup based on polarization 

modulation in the conical mounting: with respect to other SPR configurations, the system is 

left fixed during the analysis and just a polarization scan is performed. This setup offers 

promising performance in sensitivity and resolution and opens the route to the realization of 

a new class of more compact, faster and cheaper SPR sensing devices. 

Finally, performance of nanoporous gold gratings combined with an azimuthal rotation of 

the structure are shown and described. Thanks to the concomitance of plasmonic behavior 

and enhanced surface-to-volume ratio, nanoporous gold seems to guarantee a greater 

sensitivity than bulk gold gratings and thus reveals an interesting and useful material for the 

realization of plasmonic platform for sensing devices. 
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5.2 Sensitivity enhancement by azimuthal rotation 

5.2.1 Theory of sensitivity enhancement with azimuthal rotation 

The analysis of the wavevector components allows a description of double SPP excitation 

using the schematic shown in Figure 5-1 and Figure 5-2. The excitation of SPPs on a grating 

is achieved when the on-plane component of the incident light wavevector and the diffracted 

SPP wavevector kSPP  satisfy the momentum conservation condition (see eq. (1.4.4)): 

 ( ) ( )k
2 2

sin 1,0 cos , sinSPP res
π π

θ ϕ ϕ
λ

= ⋅ −
Λ

 (5.2.1) 

where resθ  is the resonance polar angle, ϕ  is the azimuth angle, Λ  is the grating pitch, 

λ  is the illuminating wavelength. Only the first diffraction order ( 1n = − ) is used because 

in our cases of interest, grating momentum G  is always greater than kSPP . All quadrants of 

the circle in Figure 5-1 can be explored for SPP excitation as long as eq. (5.2.1) is satisfied. 

For symmetry reason, only yk  positive half space is considered. 

The largest circle in the k  space represents equi-magnitude G  vectors at different 

azimuthal orientation. The two smaller circles represent all possible SPPk  vectors with equal 

magnitude respectively before and after surface functionalization and whose modulus, for 

shallow gratings, can be approximated by (see eq. (1.2.2)): 

 ( )2 2 m eff
SPP

m eff

k M
ε επ π

λ
λ λ ε ε

= =
+

 (5.2.2) 

where mε  and effε  are the dielectric permittivity of the metal and the dielectric side 

respectively. After functionalization, SPP modulus increases because of the small increase in 

effε  due to the surface coating.  

The dashed line at the tip of the circle of radius G  represents the x-component of the 

photon wave-vector ( )k in
�

, the only component that participates in SPP excitation. The line 

is scaled linearly in sin inθ  so that the full length of the line at the incident angle inθ  of 90°  

corresponds to the maximum value of ( )k in
�

.  
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Figure 5-1: Schematic picture of wave-vector combination. The large circle represents equi-magnitude 

G  vectors. The smaller circles represent equi-magnitude vectors SPPk  before (a), and after (b) surface 

functionalization. The blue arrows represent a photon wavevector and the red arrows represent the 

SPP propagation direction. The letters A and B represent the vector with azimuthal rotation 0ϕ = °  

and 0ϕ ≠ °  respectively.  

 

The intersections of the ( )k in
�

 dashed horizontal line with the smaller kSPP  circle 

determine the conditions for which eq. (5.2.1) is satisfied and allows the identification of both 

incident angle resθ  for SPP resonance excitation and SPP propagation direction, β . We 

consider first the case of the uncoated sample - the smallest of the semicircles. For example, 

point B     on the G  circle is identified by the azimuthal angle ϕ  and allows the excitation of 

SPP at two possible conditions: '
1B  and ''

1B , with β−  and β+     respectively. Within the 

double SPP range (point B ), a small increment in wavelength makes the points '
1B  and ''

1B  

merge to form a very broad resonance as shown by wavelength dependence of the reflectivity 

spectra (Figure 5-5.b). On the contrary, at 0ϕ = °  (point 1A ) it is clear that the photon 

wave-vector can intersect the SPP circle only in the first quadrant but not the second, thus 

exciting only a single SPP for each wavelength (Figure 5-5.a).   
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Figure 5-2: Schematic picture of wavevector combination for the 2nd SPP excitation. The large circle 

represents equi-magnitude G  vectors. The smaller circles represent equi-magnitude vectors SPPk  

before (a), and after (b) surface functionalization. The blue arrows represent a photon wavevector and 

the red arrows represent the SPP propagation direction. The letters A and B represent the vector with 

azimuthal rotation 0ϕ = °  and 0ϕ ≠ °  respectively. 

The same argument is applicable for light exciting SPP on the functionalized sample. Due 

to the larger SPPk , different excitation condition is expected. The intersection points changes 

from '
1B  and ''

1B  to '
2B  and ''

2B  and from 1A  to 2A . The sensitivity of the GCSPP is higher 

at high azimuthal angles because the condition for double SPP excitation around the 

circumference of the SPPk  circle generates a shifts in k -space between points '
1B  and '

2B , 

which is much larger than that between points 1A  and 2A  provided by a single SPP 

excitation condition for 0ϕ = ° . 

The estimated refractive index sensitivity S  of this configuration can be defined as:  

 
||

||

SPP

SPP

k k
S

n k k n

θ θ ∂ ∂∂ ∂= =
∂ ∂ ∂ ∂

 (5.2.3) 

In order to calculate S , we assumed the rippling amplitude A  of the grating is so shallow 

( / 0.05A Λ ∼  in our case) that the dispersion curve of SPP traveling at the metal-dielectric 
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interface of a grating can be approximated by the case of a flat sample as described by eq. 

(5.2.2). The analytical expression for the sensitivity in angular interrogation can be found as:  

 

2

3
2 2

0

sin1 2cos sin
1

cos cos sin

res
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+ −
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−
Λ

 (5.2.4) 

where M  is defined in eq. (5.2.2), 0n  is the refractive index of the surrounding dielectric 

medium, the resonance angle resθ  is given by eq. (2.3.1) for fixed λ .  

 

Figure 5-3: Sensitivity S as a function of grating azimuthal angle ϕ  for the two dips in SPR sensor 

with angular interrogation.  The right y-scale refers to sensitivity values normalized to the first dip 

sensitivity at 0ϕ = ° : ( ) / ( 0 )S Sη ϕ ϕ= = ° .  

 

Figure 5-4: Sensitivity S as a function of grating azimuthal angle ϕ  for the second dip in SPR sensor 

with angular interrogation.  The right y-scale refers to sensitivity values normalized to the first dip 

sensitivity at 0ϕ = °  ( ) / ( 0 )S Sη ϕ ϕ= = ° . 

The functional behavior of sensitivity for the first and second SPP dip is shown in Figure 

5-3 for a typical wavelength of 606λ = nm. Both sensitivities diverge when ϕ  approaches its 
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critical value MAXϕ , i.e. the maximum ϕ  angle that supports SPP resonances. In this 

configuration, incident photon momentum is tangential to the SPPk  circle and its length 

equals to the xk - component of the grating momentum so that the denominator in eq. (5.2.4) 

becomes null. Another condition for second dip sensitivity singularity is when the ϕ  

approaches the critical azimuthal angle, cϕ , necessary to excite double SPP resonances, 

namely when the full length of the incident photon momentum is required to intersect the 

edge of the SPPk  circle. Since the incident angle 90inθ = ° , cos θ  in the denominator of the 

first term eq. (5.2.4) approaches 0  and S  diverges.  

Although azimuth ϕ  values close to the critical values provides a great enhancement in 

S (up to 2400° /RIU, 35 times higher than 0ϕ = ° ), these configurations should be avoided 

because of experimental limits. For cϕ ϕ≅ , resθ  becomes large 70 80θ ≥ ° − °  and broad, 

becoming impossible to resolve the SPP minimum. In addition, when maxϕ ϕ≅  the two 

resonance dips merge into a single broad dip which makes the two minima hardly 

distinguishable. Thus only limited parts of the azimuthal angular range are suitable for 

enhancing sensitivity significantly. The best conditions correspond to the middle of the “U-

shape” of second dip functional behavior (Figure 5-4) where the sensitivity ranges from 900°

/RIU to 1100° /RIU, about 15 times higher than 0ϕ = °  whose value is 67° /RIU. The 

sensitivity computed for the first SPP dip is smaller all over this range but it still provides 

values of the order of 500° /RIU. 

5.2.2 Test of sensitivity enhancement with dodecanethiol functionalization 

Sensitivity enhancement with azimuthal rotation has been tested with a C12-

functionalization of a bimetallic (37Ag/7Au) grating, period 487 nm, amplitude 25 nm. 

Reflectivity analyses performed before and after C12-coating are collected in Figure 5-5.a-b. 

The figure shows the experimental evidence of the azimuth rotation, where reflectivity 

spectra are reported at different wavelengths. As a reference Figure 5-5.a reports the 

reflectivity spectra using the conventional GCSPR configuration with 0ϕ = ° . In this 

configuration, the difference in the reflectivity minima resonance angle θ∆  before and after 

C12 is typically less than 0.05° . On the contrary after an azimuthal rotation of the grating 
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to an angle ϕ  of about 60° , larger angular differences can be observed between the 

reflectivity dips (Figure 5-5.b). The resonance shift can reach values up to 3.1°  as for the 

incident wavelength 618λ = nm. By increasing wavelength from 606 to 618 nm, the two 

resonance dips in the reflectivity spectra get closer while resonance shift increases from 1.8°  

to 3.1° , until the two resonances merge together into a single broad dip at 620 nm. 

The experimental determinations of the wavevector ( )
||
ink  of the incoming light necessary 

for the SPP excitation have been successfully fitted with the help of eq.(2.3.1), using as 

fitting parameters only the effective index of refraction and azimuthal angle (see Figure 

5-6.a). After surface functionalization we have determined a total increment in index of 

refraction equal to 0.00357 0.00007n∆ = ±  RIU. This is a value that agrees with the 

estimation of 0.0038n∆ = RIU performed for effective refractive index change generated by 

a full surface coverage of close-packed self assembled C12 molecules, considering their length 

1.46 nm with dielectric constant 12 2.12Cε = . Also the theoretical sensitivity determination 

(cfr. Figure 5-3) is in good agreement with the experimental determination obtained as a ratio 

between θ∆ , the angular differences before and after C12 coating and the n∆  

determination. The average experimental sensitivity is of the order of  520° /RIU for the first 

dip and reaches maximum values of 857°/RIU for the second dip.  
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Figure 5-5: Comparison of SPR between uncoated (dashed line) and C12-coated 

(solid line) Au grating. (a) Grating with 0ϕ = ° , where different line colors 
correspond to different incident wavelengths; and (b) 61.6ϕ = °  (2 SPPs by single 

wavelength excitation condition) 
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The final error of the refractive index determination has been estimated on the basis of 

chi-square minimization based on a priori determination of the SPP angular position. The 

reflectivity minima of this preliminary data set have been determined with a typical 

uncertainty of 0.07° . However the a posteriori determination of the SPP angular average 

deviation with respect to the dispersion curve best fit is much smaller, on the order of  

0.015° , as can be confirmed by a simple graphical inspection (Figure 5-6.a). Taking into 

account this more realistic value for the final evaluation of the uncertainty, the value of

510nσ
−∼ RIU. However, because our experimental system has an instrumental resolution of 

0.001° , we believe it will be possible to greatly decrease the present angular uncertainty by 

increasing the statistical signal-to-noise ratio and using appropriate algorithms for data 

analysis. We expect that experimental uncertainties of n∆  on the order of 75 10−⋅ RIU is 

achievable. In order to better describe the detection improvement given by azimuthal 

rotation, we have also measured the typical figure of merit for angular and yield interrogation 

respectively defined as: 

 
FWHM

S
FOM θ

θ θ
=
∆

 (5.2.5) 

 coat uncoat
Y

uncoat

Y Y
FOM

Y

−
=  (5.2.6) 

where FWHMθ∆  is the angular full width at half maximum of the reflectivity minima, 

whereas coatY  and uncoatY  are the minimum yield of the reflectivity spectra collected before 

and after C12 functionalization at SPR resonances.  

Figure 5-6.b shows the angular and yield FOM at zero and after the azimuthal rotation 

for all the reflectivity spectra. It clearly appears an enhancement of both the figures of merit 

after the azimuthal rotation that amounts up to a factor 4 and 10 for the angular and yield 

FOM  respectively. This means that the distance between two dips, before and after the 

functionalization, scales with a factor greater than the enlargement of the reflectivity dip 

width. Moreover,  it is noted that the reflectivity yield is even more sensitive than the 

angular position. It clearly appears from the reflectivity spectra of Figure 5-5 that whereas 
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the minimum yield between coated and uncoated are almost the same for zero azimuth, it 

changes dramatically after azimuthal rotation. Finally, we note that both the angular and the 

yield FOM  have similar functional behavior: they increase approaching the condition of two 

dips merging when 90β β+ −= = ° .  

 
Figure 5-6: a) Energy dispersion curve for the ||k  necessary for SPP excitation 

before (solid line) and after (dashed line) C12 SAM functionalization. The 

experimental data obtained by the reflectivity minima of Figure 5-5 have been fitted 

using eq. (5.2.1). b) Figure of merit for angular (•,■) and yield ( ο, □) interrogation of 

the SPR reflectivity minima. 

Although resonance dip becomes broader for increasing azimuth rotation, resonance angle 

shift increses with a factor which is greater than the broadening rate, thus the angular figure 

of merit FOMθ  increases and sensing performance improvement is preserved and guaranteed. 

In fact from eq. (5.2.5) we have: 
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where the angular broadening θ∆  can be expressed in term of the wavevector 

uncertainty k∆ (eq. (2.3.5)): 

 
( ) (0 )1

( )
2 cos 2 cos cosFWHM

res res

k kϕλ λ
θ ϕ

π θ π θ ϕ

∆ ∆ °
∆ ≅ =  (5.2.8) 

Putting last equation into the previous one (eq. (5.2.7)) we get the normalized figure of 

merit Φ : 
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res
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θ
Φ =

° °
 (5.2.9) 

which is an increasing function of the azimuthal angle ϕ (cfr Figure 5-7).  

 

Figure 5-7: normalized figure of merit Φ  for the first dip as a function of the azimuth angle ϕ . 

 

5.2.3 Test of sensitivity enhancement with PEO functionalization 

We analysed the plasmonic response of a sinusoidal gold grating with period 505 nm an 

amplitude 26 nm. All SPR measurements were performed in the / 2θ θ  symmetric 

configuration with incidence angle scan by a step of 0.1°  at the incident wavelength 

675λ = nm. Reflectivity data were collected before and after PEO-functionalization (after 48 

hrs exposition in PEO solution) for increasing value ϕ  of grating rotation in the range from 

0°  to 46° . In the rotated configuration case, since coupling strength and thus resonance 
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depth, strictly depends on the incidence polarization angle α , polarization has been properly 

tuned in order to optimize reflectivity dips. As it was previously demonstrated, resonance-

angle shift increases with azimuth (see Figure 5-8): at the limit azimuth 46ϕ = °  we get a 

shift ( 46 ) 8.36θ ϕ∆ = ° = °  which is almost 16 times the response in the non-rotated case 

( 0 ) 0.53θ ϕ∆ = ° = ° (Figure 5-8.b). Figure 5-8.a shows reflectivity curves before and after 

PEO-coating in the classical non-rotated configuration ( 0ϕ = ° ) and in the case of 45ϕ = ° . 

While in the former the grating is illuminated with p-polarization ( 0α = ° ), in the latter 

configuration the polarization has been set to 120°  in order to optimize resonance depth. By 

applying an EMA model (eq. (4.5.9)), we can estimate that the excited SPPs experience a 

change in the effective refractive index 38.4 10n −∆ = ⋅  and the resulting sensitivity rises from 

63.1Sθ = °/RIU for null azimuth, up to 995.2Sθ = °/RIU for the rotated case with 46ϕ = ° . 

 
Figure 5-8: reflectivity dips before (solid line) and after (dashed line) grating functionalization with 

mPEO-Cys SAM for incident wavelength 675λ = nm, at null azimuth (p-polarization, 0α = ° ) and 

45 ( 120 )ϕ α= ° = ° . Resonance angle shift and sensitivity enhancenent ( ) ( )/ 0S Sη ϕ ϕ= = °  as a 

function of the azimuth angle rotation.  

5.2.4 Test of sensitivity enhancement with microfluidic cell 

The fabricated metallic gratings exhibits a sensitivity ( 0 ) 64.9Sθ ϕ = ° = ° /RIU for 

840λ = nm (cfr Figure 4-16). Sensitivity Sθ  can be improved just with an azimuthal 

rotation of the grating plane. For the same fixed concentration of 10g(Nacl) in 200ml(water), 
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corresponding to a refractive index variation with respect to distilled water 39.6 10n −∆ = ⋅ , 

reflectivity spectra have been collected for increasing azimuth angle ϕ  up to 43°  at the same 

incident wavelength. As Figure 5-9 shows, resonance angle shift increases monotonically in 

modulus with increasing azimuth angle from ( 0 ) 0.59θ ϕ∆ = ° = °  to ( 43 ) 5.57θ ϕ∆ = ° = °

corresponding to a sensitivity enhancement (43 ) / (0 ) 9.5θ θ∆ ° ∆ ° =  of almost one order of 

magnitude: (43 ) 616.8Sθ ° = ° /RIU.  

This sensitivity-enhancement technique with azimuthal rotation has been exploited to 

reveal a lower sodium-chloride concentration than previous ones. A mass of 0.56 g has been 

dissolved into 200 ml of water and the resulting refractive index change is 45.4 10n −∆ = ⋅ . 

With this solution flowing through the microfluidic cell, reflectivity measurements have been 

performed for increasing grating rotation. 

 
Figure 5-9: Resonance angle shift and sensitivity enhancement  as a function of azimuth angle in the 

range 0 43ϕ = ° − ° . Incident wavelength 840λ = nm. NaCl concentration: 10g in 200ml of water (
39.6 10n −∆ = ⋅ ). 

The inset picture in Figure 5-10 shows the reflectivity spectra before and after salt 

dissolution for null azimuth and after grating rotation up to 43° . While in the classical 

mounting, i.e. null azimuth, this variation is not detectable within the experimental error, in 

the conical mounting instead a grating azimuthal rotation increases SPR sensitivity and thus 

the system allows revealing the resonance angle shift.  
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Figure 5-10: Resonance angle shift as a function of azimuth angle in the range 0 43ϕ = ° − ° . Incident 

wavelength 840λ = nm. Sodium-chloride concentration: 0.56g/200ml(water), 45.4 10n −∆ = ⋅ . In the 

inset graph: reflectivity curve before (blue) and after (red) NaCl dissolution into water, angular scan 

for azimuth values 0°  and 43° .  

Resonance dips become broader when azimuthal angle increases, however the resonance 

angle shift θ∆  scales with a factor greater than the enlargement of the dip full width half 

maximum FWHMθ∆ . Thus the angular figure of merit FOMθ  increases and the detection 

improvement by azimuthal rotation is preserved. In this case we have 

(43 ) / (0 ) 4.3FOM FOMθ θ° ° ≅ . 
 

5.3 Polarization modulation 

In previous sections we experimentally and theoretically described the effects of grating 

azimuthal rotation on surface plasmon excitation and propagation. More SPPs can be 

supported with the same illuminating wavelength and a sensitivity enhancement of al least 

one order of magnitude is achievable than that in the conventional configurations. Moreover 

the symmetry breaking with grating rotation makes polarization have a fundamental role on 

surface plasmon polaritons excitation.  

As decribed in section 2.4, the minimum of reflectivity minR  exhibits a harmonic 

dependency on the incidence polarization α  with a periodicity of 180° (see (2.4.1)): 

 ( )min 0 1 0cos 2R f f α α= − +  (5.3.1) 
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where 0f , 1f  and 0α  are fitting parameters that depend on the incidence angles ( ),θ ϕ , 

incident wavelength λ  and on the optical properties of the stack (thickness and dielectric 

permittivity of each layer). By assuming that only the electric field component lying on the 

grating symmetry plane is effective for SPP excitation, we obtained an analytical expression 

for the optimal polarization minα  as a function of the azimuth angle ϕ  and the resonance 

angle resθ  (eq. (2.4.6)): 

 mintan tan cos resα ϕ θ= ⋅  (5.3.2) 

If the grating surface is functionalized, the effective refractive index n  of the dielectric 

medium changes and resonance conditions are different. As a consequence of the shift in the 

resonance angle resθ  for a fixed azimuth ϕ , there is a shift 0α∆  in the phase term 0α : 

 0
0 n

n

α
α

∂
∆ = ∆

∂
 (5.3.3) 

This result opens the route to a new GCSPR-configuration with polarization 

interrogation104. In this setup the grating is rotated of an azimuthal angle ϕ  which is kept 

fixed. The illuminating wavelength λ   is fixed and the incoming light impinges on the grating 

at the resonance angle resθ . A rotating polarizer between source and sample-holder allows 

changing the polarization incident on the grating. Reflectivity data collected during a 

polarization scan can be fitted using eq. (5.3.1) and a variation of fitting parameters, e.g. 

amplitude 1f  or phase 0α , can be used in order to detect grating functionalization or for 

solution-concentration analysis, once the system has been properly calibrated.  

The sinusoidal grating used in this study, with a period of 505 nm and amplitude of 

26nm, was fabricated by interferential lithography (IL). The resulting grating has an almost 

perfect sinusoidal profile with a local roughness of the order of 1.5 nm rms. Subsequently the 

metallic grating was formed by thermally evaporating a gold (40 nm) metallic layer over 5 

nm of chromium adhesion layer. Optical measurements have been performed in 

θ/2θ  symmetric reflectivity configuration, using the 75W Xe lamp of VASE Ellipsometer (J. 
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A. Woollam). A self-assembled monolayer of dodecanethiol was deposited on the gold coated 

grating surfaces at room temperature. 

 
Figure 5-11: Reflectivity for angular scan in the range 15 75° − ° , step size 0.2° , at incident 
625λ = nm (blue line), 635λ = nm (red line) and azimuth 57.8ϕ = °  for incident polarization 

140α = ° , before (solid line) and after (dashed line) functionalization with C12.  

First of all, reflectivity spectra have been collected in angular scan to identify the 

resonance angle position with a weighted centroid algorithm. In order to exploit the shift 

enhancement, grating was azimuthally rotated and kept fixed at the value 57.8ϕ = °  wherein 

double SPP excitation is supported for the selected wavelength 625λ = nm (Figure 5-11). In 

correspondence of the resonance angles, respectively 30.8θ− = °  and 55.1θ+ = °  for the first 

and second dip, a polarization scan has been collected in the range 0 180α = ° − ° , step 10° , 

before and after C12 functionalization (Figure 5-12). The same analysis has been performed 

at the wavelength 635λ = nm, for the same azimuth, when the two dips merge into a single 

broad one centered in 44.3θ = ° (see Figure 5-11).  

Reflectivity data as a function of polarization have been fitted with a least square 

algorithm105 using eq. (5.3.1): the phase shifts 0α∆  with their errors ασ   have been estimated. 

In order to performe a least square study, eq. (5.3.1) has been linearized in a new system of 

variables ( ) ( ), cos2 , sin 2i i i iX Y α α= : 
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( )0 1 0 0 1 0 1 0

0 1 2

cos 2 cos2 cos sin2 sin

  = 

i i i i

i i

y f f f f f

f A X AY

α α α α α α= − + = − + =

+ +
 (5.3.4) 

where 1 1 0cosA f α= −  and 2 1 0sinA f α= . Thus by applying the least square method to 

eq. (5.3.4) we get an estimation of parameters 0 1 2( , , )f A A  from the experimental N  couples 

( ),i iX Y  and we manage to calculate the corresponding values of 1f  and 0α : 

 

2 2
1 1 2

1
0 2 2

1 2

cos

f A A

A

A A
α γ

= +

= = −
+

 (5.3.5) 

The error on 0α  is given by: 
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∂ ∂∂ ∂= +
∂ ∂ ∂ ∂−

∑ ∑  (5.3.6) 

where iσ  is the error on the respective iy . Results are collected in Table 5-1.   

 

Figure 5-12: Reflectivity minima at incident 625λ = nm (blue line: I dip, green line: II dip), 

635λ = nm (red line), fixed azimuth 57.8ϕ = ° , resonance polar angles 30.8θ = ° ( 625 nm, I dip), 

55.1° ( 625 nm, II dip), 44.3° ( 635 nm, merged dips): polarization scan before (solid line) and after 

(dashed line) functionalization with C12. In the inset picture: phase shift 0α∆ .  
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By modelling the effective refractive index change effn∆  with an effective medium 

approximation, it is possible to estimate the corresponding phase sensitivity Sα  and 

moreover to calculate the refractive index resolution: 

 ,n S
α

α
α

σ
σ =  (5.3.7) 

C12 has been assumed to form a monolayer 1.46 nm-thick with refractive index 

1.458n =  and results in effn∆ ( 625 nm) = 450.5 10−⋅  and effn∆ ( 635 nm) = 448.1 10−⋅ . In 

the case of double SPP excitation ( 625λ = nm), the phase shifts result 

0( ) 1.834 0.001Iα∆ = ± ° (first dip) and 0( ) 2.353 0.001IIα∆ = ± ° (second dip), corresponding 

respectively to sensitivity values ( ) 363.2S Iα = °/RIU and ( ) 465.9S IIα = ° /RIU, refractive 

index resolutions 6
, ( ) 2.7 10n Iασ

−= ⋅ RIU and 6
, ( ) 2.1 10n IIασ

−= ⋅ RIU. For 635λ = nm, we 

get 0 4.919 0.002α∆ = ± ° , 1022.7Sα = ° /RIU and 6
, 2.0 10n ασ

−= ⋅ RIU.  

Table 5-1: . Comparison between angular and polarization interrogation GCSPR with the considered 

setup. Estimated sensitivity and resolution. 

dips I II merged 

( )nmλ  625  625  635  

n∆  35.1 10−⋅  35.1 10−⋅  34.8 10−⋅  

( )θ∆ °  2.51 0.14±  3.92 0.15±  -- 

0( )α∆ °  1.884 0.001±  2.353 0.001±
 

4.919 0.002±
 

( / )S RIUθ °
 492.2  768.6  -- 

( / )S RIUα °
 363.2  465.9  1022.7  

, ( )n RIU
θ

σ  42.8 10−⋅  41.9 10−⋅  -- 

, ( )n RIU
α

σ  62.7 10−⋅  62.1 10−⋅  62.0 10−⋅  

 

Thus refractive index changes of order 610−  RIU are easily detectable and the resolution 

can be further improved to 7 810 10− −−  by reducing output noise Iσ  (i.e. the errors iσ  on  

iy ) or by increasing the number N  of the collected points during the polarization scan, since 

we can assume that: 
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 I

N
α

σ
σ ∝  (5.3.8) 

Furthermore this technique provides a resolution at least two order greater than polar 

angle modulation with the same setup, which results around 4
, 10n θσ

−∼ , since angle 

accuracy decreases when azimuth increases because of dip broadening. Moreover, while angle-

modulation SPR becomes difficult near the merging dip condition, since dip position is hardly 

detectable, in the polarization-modulation case the analysis is still valid and it assures a 

greater sensitivity. 

Thus we experimentally demonstrated a new GCSPR technique based on polarization 

interrogation in a fixed conical mounting setup. Since the output trend is a well-known 

function of polarization, this method assures a great accuracy on fitting parameters and their 

dependence on grating surface conditions provides a solution to detect and quantify surface 

functionalization or solution concentration. This method assures a competitive resolution 

down to 810−  and limits the mechanical degrees of freedom just to the polarization control. 

The option of using an electronic modulator instead of a rotating polarizer, further assures 

the possibility to realize very compact, fast and low-cost high-resolution plasmonic sensors.  

 

5.4 Nanoporous gold substrate 

The nanoporous gold substrate of sample Cb, fabricated by chemical dealloying of a 

Ag75Au25 alloy (see section 4.6.1), has been patterned by FIB lithography. Focused Ion Beam 

(FIB) lithography was performed by means of the ion source of the dual beam FEI system 

using 30 kV of accelerating voltage and a beam probe current of 280 pA. Taking into account 

the lower plasma frequency of NPG and the resulting shift of metallic behavior in the IR 

range, a grating about 50 nm thick with a period of 1000 nm (duty cycle 0.5) has been 

patterned (Figure 5-13.a) over an area 640 640m mµ µ× . A cross section of the grating 

pattern shows that the typical amplitude of the grating is confined within the first 70 nm of 

the surface NPG (Figure 5-13.b). For comparison with the gold NPG case, a grating with 
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period of about 400 nm was patterned on a typical gold bulk film of 80 nm thickness 

evaporated over a silicon substrate.  

A self-assembled monolayer (SAM) of benzenethiol (Thiophenol, C6H5SH) was deposited 

on the gold coated grating surfaces at room temperature. The substrates were submerged in a 

3-mM solution of benzenethiol in methanol for about 48 hrs, then rinsed thoroughly with 

ethanol for at least 5 minutes and dried in a nitrogen stream106. Measurements on gold 

gratings were performed in air environment in a θ/2θ symmetric reflectivity configuration, 

with θ scanned with step size of 0.2° , using ellipsometer 75 W Xe lamp, monochromatized at 

1400λ = nm for NPG grating and at 600λ = nm for the evaporated gold (EVG) grating. 

Reflectivity data for increasing azimuth angles have been collected before and after 

benzenethiol-functionalization from the patterned NPG surface107. We previously 

demonstrated how the azimuthal rotation of the grating can enhance sensing capability up to 

at least one order of magnitude. Furthermore, after grating azimuthal rotation, p-polarization 

is no longer the most effective for SPP excitation and incident polarization must be tuned to 

the optimal value in order to enforce coupling strength and optimize resonance depth.   

 

Figure 5-13: SEM micrographs of the FIB pattern on the nanoporous gold surface (a) and cross-section 

(b). 

Data points in Figure 5-14 show the increasing of resonance angle shift with azimuth 

rotation for the optimized polarization α  of light ( 0α = °  for p-polarization, i.e. the electric 

field lies on the scattering plane). At the limit azimuth value of 45°  and polarization 
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140α = ° , a shift ( 45 ) 4.05NPGθ ϕ∆ = ° = °  is measured, which is almost 65 times grater than 

the shift for null azimuth and p-polarization ( 45 ) 0.06NPGθ ϕ∆ = ° = ° ( 0α = ° ).  

 

Figure 5-14: a) Reflectivity for NPG grating before (solid line) and after (dashed 

line) functionalization at null azimuth and p-polarization, and at azimuth 40ϕ = °

( )140α = ° . Red solid line: reflectivity data for non-patterned NPG surface. b) 

Resonance angle shift θ∆  as a function of azimuthal rotation after functionalization: 

experimental data of functionalized NPG grating (period 1000Λ = nm, incident 

wavelength 1400λ = nm – blue points) are compared with shifts for an evaporated-

gold (EVG) grating ( 400Λ = nm, 600λ = nm – green points). 

Resonance dips become broader for increasing azimuth value, however the resonance 

angle shift θ∆  scales with a factor greater than the enlargement of the dip full width half 

maximum FWHMθ∆ . Thus the angular figure of merit FOMθ  increases and the detection 

improvement by azimuthal rotation is preserved. In our case ( 45 ) 0.277FOMθ ϕ = ° = that is 

18.5 times greater than ( 0 ) 0.015FOMθ ϕ = ° = .  

In order to compare the sensitivity of the plasmonic gratings, reflectivity data have been 

also compared with the optical response of an evaporated gold (EVG) grating after the same 

functionalization process. EVG surface has been patterned with a period 400Λ = nm in order 

to excite SPPs in the visible range, where the angular response for EVG is greater since the 

sensitivity to a thin coating layer decreases with wavelength. For incident 600λ = nm and 

azimuth 45ϕ = ° ( 135α = ° ) we measure a shift ( 45 ) 0.82EVGθ ϕ∆ = ° = ° .  
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The choice of evaluating the EVG and NPG gratings at different wavelengths has been 

motivated to compare them at the respective maximum of sensibility. The greater dip shift in 

the case of patterned NPG is explained by the enhanced binding surface per unit area of the 

nanopores. Analyte molecules in fact, not merely bind in the form of a thin coating layer on 

the outer surface, but, in the case of NPG, penetrate into the pores and bind to the inner 

surface, inducing a greater change of the effective index of the plasmonic support.  

 

5.5 Conclusions 

Azimuthal rotation of the plasmonic support has been demonstrated to considerably 

increase grating sensitivity to refractive index change. A sensitivity up to one order greater 

than that in the classical mounting with null azimuth can be achieved just with a rotation of 

the sensing platform. Experimental results with C12/PEO functionalization and 

measurements in cell support this improvement and confirm the benefits of azimuthal control 

for sensing purposes.  

The setup of a grating-based sensing configuration with polarization modulation has been 

tested with C12 functionalization and results confirm the promising possibilities that are 

opened up by this invention.  

The concurrent exploitation of azimuthal rotation and enhanced surface in nanoporous 

gold gratings, has been demonstrated to provide a further possibility of improving sensitivity 

performance in plasmonics application for sensing devices.  
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Conclusions 

Plasmonic gratings have been demonstrated to assure a high-sensitive optical response to 

surface functionalization and to represent a promising and irreplaceable component for the 

realization of label-free devices for sensing purposes with considerable performance in 

refractive index sensitivity and resolution. The problem of designing and realizing metallic 

gratings for sensing applications has been studied and analysed through each step of the 

process-chain: simulation - nanofabrication - characterization.  

A numerical algorithm, based on Chandezon’s method, has been implemented in order to 

provide such a complete analysis of the diffraction problem of a multi-layered patterned 

surface that overcomes limitations of simpler and less rigorous analyses like the vectorial 

model. However both methods reveal benefits and usefulness in the realization of a grating-

coupled surface plasmon resonance device. The numerical code provides a precise estimation 

of grating reflectivity and is an essential tool to design, for given geometry and material 

choice, the optimal profile that optimizes the coupling strength of incident light with surface 

plasmon polaritons. Thus simulation is useful for providing to nanofabrication the proper 

windows of process for the production of optimized supports. Moreover simulation supplies a 

near-field analysis of the plasmonic fields on gratign surface, which experimental techniques 

could hardly give.  

As regards the nanofabrication of these components, interferential lithography is the 

preferred method for fabricating periodic pattern with a spatial coherence over large areas, 

while grating-replica process by soft-lithography assures the possibility of a fast and cheap 

throughput of perfectly replicated gratings. With respect to prism-coupling, grating 

nanofabrication technology assures the possibility to miniaturize and integrate the sensing 

components without a considerable increase of the total expenditure. Moreover, our results 

further highlight grating-coupling advantages rather than prism-coupling thanks to the 

sensitivity enhancement with azimuthal rotation. An enhancement at least one order greater 

than the conventional mounting has been theoretically and experimentally demonstrated. If 

the azimuthal rotation of the grating support increases refractive index sensitivity, on the 
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other hand incident polarization must be tuned in order to best couple incident light and 

optimize the optical response. The vectorial model provides an analytical expression of the 

optimal polarization that can be easily estimated from the incidence angles without the use of 

complex numerical algorithms.  

The dependence of polarization angle on the resonance conditions, suggests the 

exploitation of a new SPR configuration based on polarization modulation in the conical 

mounting. The phase term of a polarization scan, which is proportional to the optimal 

polarization, has been experimentally demonstrated to be a sensitive parameter for surface 

functionalization analysis. Moreover, this sensing configuration hugely simplifies the 

mechanical complexity of the device by limiting the degrees of freedom just to the rotating 

polarizer. The option of using an electronic modulator instead of a rotating polarizer, might 

further assure the possibility of realizing very compact, fast and low-cost high-resolution 

plasmonic sensors based on polarization modulation. This innovative sensing configuration, 

that exploits both azimuthal-rotation and polarization-scan for high-resolution sensing, led to 

the registration of a US and European patent. 

Further research is needed in order to completely understand phase-term shift dependence 

on refractive index changes. The analysis of the phase shift for increasing sodium-chloride 

concentration of water solution flowing through the microfluidic system could provide useful 

information on its behaviour and moreover give an estimation of the linearity range.  

The first prototype of a grating-coupled SPR device that exploits this innovative 

configuration has been recently assembled and is under testing right now. 

The research on nanoporous-gold led to the design of promising plasmonic structures for 

sensing which combines the greatly enhanced surface-to-volume ratio with the plasmonic 

features of this material in the near-infrared. The tunability of the plasma frequency and the 

greater sensitivity to functionalization, reveals nanoporous gold as an interesting and 

powerful material for the realization of nanopatterned platforms for sensing purposes.  
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Appendix A 

Surface Plasmon Polaritons as propagating localized solutions of Surface Plasmon Polaritons as propagating localized solutions of Surface Plasmon Polaritons as propagating localized solutions of Surface Plasmon Polaritons as propagating localized solutions of 

MaxwellMaxwellMaxwellMaxwell’ssss    equationsequationsequationsequations    

 

We consider a trasverse-magnetic (TM) plane-wave which propagates in the positive x-direction 

along the interface between two media A and B. Since we are looking for localized electromagnetic 

waves, the magnetic field H  should exhibit the following form: 
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 (A.1) 

where ,A zk  and ,B zk  must be positive in order to describe an electromagnetic wave localized at the 

interface 0z = . From the continuity condition of magnetic field components at 0, ( , )z x t= ∀ , it 

follows that A Bω ω ω= = , A BH H H= =  and , ,A x B x xk k k= = : 

 

( )

( )

0 0 0

0 0 0

x A z

x B z

ik x k z iwt

ik x k z iwt

z x z t H e e

z x z t H e e

− −

+ −

> =

< =

,

,

H( , , ) , ,

H( , , ) , ,

 (A.2) 

Calculating the curl of H  and applying Maxwell equations we get the following expressions for the 

electric field components: 
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 (A.3) 

The boundary conditions on the electric field components imposes that , ,A x B xE E=  at 0z = , 

thus we get: 

 , ,
0

A z B z
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k k

ε ε
+ =  (A.4) 
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Since ,A zk  and ,B zk  must be real and positive, it follows that:  

 0A Bε ε⋅ <  (A.5) 

It is worth noting that if the former medium A is a dielectric, the latter medium B  has to exhibit 

0Bε <  for this surface waves to exist. Using eq. A.4 and the definition of ,i zk  obtained substituting 

the solution into the wave equation:  

 

2

2
,i z x ik k

c

ω
ε
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 (A.6) 

we obtain an explicit expression for the wavevector xk  of surface plasmon polaritons as a function 

of frequency ω : 
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 (A.7) 

If we consider instead a trasverse-electric (TE) plane-wave propagating along the same structure 

and we look for a solution of Maxwell equations which is localized at the interface between the two 

media, as in the previous case fields have to exhibit the following form: 
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 (A.9) 

The continuity of the tangential components at 0z =  gives the following condition: 

 ( ), , 0A z B zk k E+ =  (A.10) 
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However since the real parts of ,A zk  and ,B zk  must be positive in order to describe a localized 

wave, the only possible solution is 0E = . Thus an s-polarized SPP cannot propagate along a planar 

metal-dielectric interface.  

As we mentioned above, surface plasmon polaritons are surface waves localized at the interface 

between a metal and a dielectric medium. Field amplitude decays exponentially, in the direction 

perpendicular to the surface, as ,exp( )i zk z− . The value of the distance at which field intensity falls to 

1 / e  is: 
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Inserting eq. (A.7) into (A.6) we get: 
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where 1ε  is the real part of metal dielectric permittivity. 

From dispersion relation (A.7), if the dielectric function of the metal is complex 1 2B iε ε ε= + , 

obviously SPP wavevector is complex. In the approximation 2 1ε ε≪ , we have: 
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 (A.13) 

Thus the real and imaginary parts of SPP wavevector are given by: 
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 (A.14) 

The intensity of a surface plasmon wave decreases exponentially in the propagation direction as 

( )exp 2 SPPx k − ℑ   . The propagation length at which intensity decreases to 1 / e  is: 

 
1

2SPP
SPP

L
k

=
 ℑ  

 (A.15) 

 Table A collects propagation and extinction lengths for SPPs at the interface between air/water 

and noble metals (gold/silver), for 632λ = nm ( 12.1 1.3Au iε = − + , 17.0 0.7Ag iε = − + , 1Airε = , 

1.78Waterε = ). 

 

Table A: propagation and extinction lengths of SPPs propagating at dielectric/metal interfaces.  

Stack  

( 632λ = nm) 
SPPL (µm) Al (nm) Bl (nm) 

Air/Au 10.0 335.6 27.8 

Air/Ag 38.0 403.0 23.7 

Water/Au 3.8 180.9 26.8 

Water/Ag 14.8 220.8 23.1 
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Appendix B 

Dielectric function Dielectric function Dielectric function Dielectric function ofofofof    metals: the Drude modelmetals: the Drude modelmetals: the Drude modelmetals: the Drude model    

 

Optical properties of metals can be coarsely described by the Plasma Model, where a gas of free 

independent electrons of density number n  moves in a background of fixed positive ion cores. This 

simple model, also known as the Drude Model, does not take into account details of the lattice 

potential, nevertheless it provides a valid description of metal optical behaviour over a wide frequency 

range, up to the ultraviolet for alkali metals, whereas in noble metals interband transitions occur at 

visible frequencies limiting the validity of this approach.  

Under the presence of an external electric field E , the motion (t)x  of an electron in the plasma 

sea is given by the solution of: 

 
2

2

d d
m m e

dtdt
γ= − −

x x
E  (B.1) 

where 1 /γ τ= , 319.11 10m −= ⋅ kg is the electron mass and 191.6 10e −= ⋅ C is the electron 

charge. In Drude theory τ  is the relaxation time of the electron sea and it is usually around the order 

1410− s. If we assume a harmonic time dependence with frequency ω  for the driving field, a particular 

solution is given by 0
i tt e ω−=x( ) x . Substituting this expression into eq. (B.1), after rearranging 

terms we obtain: 

 
( )2

e
t t

m iω ωγ
=

+
x( ) E( )  (B.2) 

Electrons displacement gives rise to a macroscopic polarization P : 

 
( )

2

2

ne
en

m iω ωγ
= − = −

+
P x E  (B.3) 

where n  is the free electron density. From the constitutive relation ( )0 1rε ε= −P E , we obtain 

an explicit form for the relative dielectric function of the metal in plasma approximation: 
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where  

 
2

0
p

ne

m
ω

ε
=  (B.5) 

is the so called plasma frequency of the free electron gas. This is the frequency of a free collective 

longitudinal oscillation of the electron gas (volume plasmons). Due to the longitudinal nature of these 

excitations, volume plasmons do not couple to trasverse electromagnetic waves and can only be excited 

by particle impacts.  

For ω γ≫ , the imaginary part in eq. (B.4) is negligible and the dielectric function is reduced to: 

 
2

2
( ) 1

p
r

ω
ε ω

ω
= −  (B.6) 

that is a good approximation in the near-UV and UV range.  

 
Figure A- 1: dielectric function real (blue line) and imaginary (red line) parts according to Drude 

model in the case 8p eVω = , 0.1eVγ = . 
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Appendix C 

BlochBlochBlochBloch----FloquetFloquetFloquetFloquet’s theorems theorems theorems theorem    

 

Bloch-Floquet’s theorem prescribes the mathematical form for the solutions of the wave-equation 

in a periodic dielectric medium. In the original formulation it deals with Maxwell equations solution in 

1D photonic crystals and it is very similar in its statements and corollaries to Bloch’s theorem for 

electrons in periodic potentials. 

If we consider the two curl Maxwell equations and we look for harmonic time-dependent modes 

with frequency ω , we have: 

 

( ) ( )

( ) ( ) ( )

E x H x

H x x E x

0

0

i

i

ωµ

ωε ε

∇× =

∇× = −
 (C.1) 

We can decouple these two equations by dividing the second equation by ( )ε x  and then taking 

the curl. Thereafter by using the first equation to eliminate the electric field, we get an equation 

entirely in the magnetic field H , the wave-equation: 

 
( )

( ) ( )
2

2

1

c

ω

ε

  ∇ × ∇ × =  
H x H x

x
 (C.2) 

which, with the divergence equation 0∇ ⋅ =H , completely describes the magnetic field.  

Wave equation (C.2) assumes the form of an eigenvalue problem, once we define with �L  the 

operator on the left side: 

 � ( ) ( )
2

2
L

c

ω  = H x H x  (C.3) 

Thus the problem leads to determine the modes ( )H x  that are eigenfunctions of the given operator 

with respect to the eigenvalue 2 2/ cω . It can be demonstrated that the considered operator is linear 

and hermitian with respect to the inner product of vector fields: 

 ( ) ( ) ( )d= ⋅∫
*

F,G x F x G x  (C.4) 
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Bloch-Floquet’s theorem prescribes the form of solutions for eq. (C.2) in such configurations where 

the dielectric function ( )ε x  is a periodic function and describes the structure of a photonic crystal: 

 ( ) ( )ε ε= +x x R  (C.5) 

where R  is any lattice vector in the form 1 1 2 2 3 3n n n= + +R a a a , with in  integer numbers and 

ia  a proper lattice vector basis. A useful construction is represented by the reciprocal lattice, i.e. the 

set of such points 1 1 2 2 3 3m m m= + +G b b b  , with im  integer numbers, that: 

 2 pπ⋅ =G R  (C.6) 

for any vectors G  and R  belonging respectively to the reciprocal and direct lattices and p  an 

integer number. 

We consider a 1D photonic crystal, i.e. a structure that is periodic in only one direction. If we 

orient the x-axis in the crystal direction, the lattice is completely described by the lattice vector 

0 0a=a ( , , ) , where a  is the linear dimension of the unit cell. Reciprocal lattice is one dimensional too 

and it is fully described by the lattice vector ( )2 0 0aπ=b / , , . In this configuration, the theorem 

states that solutions of eq. (C.2) have the following form108: 

 ( ) ( )i
k ke ⋅= k xH x h x  (C.7) 

where kh  is a function that preserves the crystal periodicity: 

 ( ) ( )k kn+ =h x a h x  (C.8) 

Since the dielectric function is periodic in the lattice vector direction, the hermitian operator �L  

commutes with the discrete translational operator 
�
nT : 

 � ( ) ( )nT f f n= +x x a  (C.9) 

 � �, 0nT L  =  
 (C.10) 
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Thus the two operators admit a system of common eigenfunctions109 and the eigenfunctions of �L  

can be expressed as a linear superposition of 
�
nT  eigenfunctions. These modes assume the simple form 

of plane waves and can be classified by specifying k : 

 
� ( )k x ak x k x k ai ni i in
nT e e e e

⋅ +⋅ ⋅ ⋅= =  (C.11) 

However not all values of k  yield different eigenvalues. If k  is incremented by an integer multiple 

of the reciprocal vector b , the same state is left unchanged, since: 

 ( ) 2 1
i m n ipe e π

⋅ = =b a
 (C.12) 

because of reciprocal vector definition (eq. C.6). Thus: 

 
� � ( )i mi i i
n nT e T e e e

+ ⋅⋅ ⋅ ⋅= =k b xk x k x k a  (C.13) 

Since any linear combination of the degenerate eigenfunctions is itself an eigenfunction with the 

same eigenvector, we can consider linear combinations and put them in the form: 

 ( ) ( ) ( ) ( )i m i
k k m k

m

y z e e
+ ⋅ ⋅= =∑ k b x k x

,H x c , h x  (C.14) 

where ( ) ( )k kn+ =h x a h x . 

In this way the discrete periodicity in the x-direction leads to a x-dependence for a generic solution 

that is simply expressed by the product of a plane wave ie ⋅k x  modulated by a x-periodic function 

( )kh x . 

At fixed yk  and zk , the Bloch state with wavevector xk  and the one with wavevector xk mb+  are 

identical. Since the xk -state that differs by integer multiples of b  are not different from a physical 

point of view, also the mode frequency must be periodic in xk : 

 ( ) ( )mω ω= +k k b  (C.15) 

Thus we only need to consider xk  in the range / /xa k aπ π− ≤ ≤ , values that define the First 

Brillouin zone. 

An important consequence of Bloch-Floquet’s theorem is that, as a continuous translational 

symmetry leads to the conservation of the wavevector in that direction, as a consequence of the 
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disceret translational symmetry the k  vector is a conserved quantity, modulus the addition of a 

reciprocal lattice vector G : 

 i f= +k k G  (C.16) 

where in the case of a 1D crystal we have 2 /G m aπ=

�

. Since the operator �L  has not complete 

translational invariance in the presence of a non-uniform medium, its eigenstates will not be 

simultaneous eigenstates of the momentum operator, that is to say of the continuous translational 

operator. Nevertheless k  is a natural extention of the momentum to the case of a photonic crystal and 

it is usually known as the crystal momentum, to emphasize this similarity, however it should not be 

confused with an effective momentum, but considered as a set of numbers that classify the state of the 

system.  
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Appendix D 

ChandezonChandezonChandezonChandezon’s method s method s method s method ----    AAAAddendum.ddendum.ddendum.ddendum.    

 

Incident fieldIncident fieldIncident fieldIncident field    

The incident magnetic field with wavevector (3.2.7), in the new coordinate frame (3.2.1), leaving 

out time dependence, is given by: 

 ( ) ( ) ( )( )0 0i x z i u s xi i i i
x y zH H H e e

α γ β+ − +=( )H , ,  (D.1) 

A generic incident plane-wave can be described as the superposition of a TM-mode and of a TE-

mode. Thus the electromagnetic fields in the z-direction, according to the reference frame in Figure 

3-1, are given by: 

 

cos cos sin

cos cos sin

i
z TM TE

i
z TE TM

H H H

E E E

ϕ θ ϕ

ϕ θ ϕ

= −

= +

 (D.2) 

and using Fourier series we get: 
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∑

∑
 (D.3) 

where mα  is given by eq. (3.2.8) and 

 ( ) ( )( )
0

1 i s x t mGx
mL t e dx

Λ − +=
Λ ∫  (D.4) 

For the x-components, inserting eq. (D.3) into Maxwell equations we find out: 
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 (D.5) 
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where we used the relation 0 0/ 'sα β = . 

 

Asymptotic diffracted fieldsAsymptotic diffracted fieldsAsymptotic diffracted fieldsAsymptotic diffracted fields    

The outgoing diffracted field is a superposition of those diffracted orders that satisfy the following 

conditions: 

 0 0n nβ β   ℑ = ℜ >     (D.6) 

where nβ  is given by eq. (3.2.8). We define U  the set of the P  values that satisfies previous 

conditions. Fourier developrments in the x-direction become: 
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 (D.7) 

After substituting last expressions into Maxwell’s equations, we find out the expressions for the 

diffracted order x-components: 
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( ) ( ) ( )
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∑∑

∑∑

(D.8) 

where we used the following identity: / 'n n sα β = . 

    

Continuity bContinuity bContinuity bContinuity boundary conditionsoundary conditionsoundary conditionsoundary conditions  

Solutions of the eingenvalue problem for the matrix T  in the j-medium (eq. (3.2.19)) is given by 

eq. (3.2.25) which can be expressed in vectorial form by: 

 j j j ju M u= Φw ( ) ( )b  (D.9) 
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where jb  is a vector with components j
qb , jΦ  is a diagonal matrix with elements 

j
mi uj

mn mne
λδΦ = , 

M  is a matrix whose columns are the eigenvectors j
qV . Thus the problems lies in the determination of 

the coefficients j
qb  in each medium. Tangential-field components must be continuous at the media 

interfaces. The continuity of w  at each interface ju  imposes that: 

 1 1 1j j j j j j
j jM u M u+ + +Φ = Φ( )b ( )b  (D.10) 

from this condition and noting that 
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1 1

1 1

( ) ( )

( ) (0) 1

j j j j
j j j j j

M M
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u u u u d

u

−

− −

+ +

 Φ Φ = Φ − = Φ  

Φ = Φ =

 (D.11) 

we finally get the relation between 0b  and 1M +b : 

 0 1 1M MM + +Θ =b b  (D.12) 

where 

 ( ) ( ) ( ) ( )
1 1 1

1 1 1 0 0
1

M M M j j j
M jM d M M d M M d M M d

− − −     Θ = Φ ⋅ ⋅ Φ ⋅ ⋅ Φ Φ −          … …  (D.13) 

where jd  is the thickness of the j-layer, d  is the total thickness of the whole stack. Since we are 

interested in determining the asymptotic diffracted field, i.e. the calculation of the efficiencies of the 

diffracted orders, the problem is to determine the coefficients 1M +b . 

 

OutgoingOutgoingOutgoingOutgoing----wave conditionswave conditionswave conditionswave conditions    

Outgoing-wave conditions impose strict restrictions for the solutions in the first and last media. In 

the substrate, we can keep only the componets 0
qb  whose 0

qλ  corresponds to waves with amplitude 

decreasing for y→−∞  or which are propagating downward. Since the u  dependence is given by 

( )0exp qi uλ , we must keep such 0
qλ  that: 

 0 0 00 0 0q q qor andλ λ λ     ℑ < ℑ = ℜ <            (D.14) 
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In the first medium instead, the situation is much more complicated since we have to distinguish 

between the incident field, the asymptotic field and the evanescent field contribution: 

 01 1 1 1 i uM M M Mu M u e M u
β−+ + + += Φ + + Φw ( ) ( )b L ' '( )B  (D.15) 

where L  is a ( )4 2 1N + -vector given, from eq. (D.3) and (D.5), by: 
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 (D.16) 

with m  assuming values from N−  to N . 

'M  is a ( )4 2 1 2N P+ ×  matrix and B  is a 2P  vector: 
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(D.17) 
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,

,
B  (D.18) 

with m  assuming values from N−  to N , n U∈ . 

The outgoing-wave condition in the first medium imposes that we must keep only such 

components 1M
qb
+  whose 1M

qλ
+  satisfies:  

 1 0M
qλ
+ ℑ >    (D.19) 
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TruncationTruncationTruncationTruncation    

After truncation to order N , matrix T  has a size 4(2 1)N +  and we have to solve in each medium 

its eigenvalue problems in order to determine the matrices jM  and jΦ . From the form of T  it can be 

demonstrated44 that the number of values 0
qλ  that satisfies conditions (D.14) is equal to 2(2 1)N +  

and the number of unkown components 0
qb  is exactly 2(2 1)N + . In the same way the number of 

values 1M
qλ
+  satisfying eq. (D.19) is 2(2 1 )N P+ − , so the number of unknown components in 1M+b  

is 2(2 1 )N P+ − . Moreover B  has 2P  components to be determined. In this way eq. (D.12) is a 

linear system of 4(2 1)N +  equations with 4(2 1)N +  unknowns. By using the classical theory of 

determinants of finite order56, it can be shown that the solutions of an eigenvalue problem with 

truncated matrices tends to the exact solution for increasing truncation order.  

 

Application to sinusoidal gratingsApplication to sinusoidal gratingsApplication to sinusoidal gratingsApplication to sinusoidal gratings    

In this work we implemented Chandezon’s method for the solution of the diffraction problem of 

multi-layered sinusoidal gratings with profiles described by the function ( )s x : 

 ( ) siny s x A Gx= =  (D.20) 

where A  is grating amplitude and 2 /G π= Λ  grating momentum, Λ  being the period.  Fourier 

coefficients mC  and mD  of profile functions ( )C x  and ( )D x  in eq. (3.2.15) to (3.2.18) are given by:  
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with the position m p n= −  and m  even values. We applied Euler’s definitions of trigonometric 

functions and the binomial series. From previous development we get the following form for Fourier 

coefficients mC : 

( )

( )

21

0/2

1 2 !
( 1 )

! 2
! !

2 2

0

nn

m
in m

m

AG n
even m C i

n m m
n n

odd m C

+∞ −

=≥

     = − −               + −         

=

∑ ∏

 (D.22) 

( )

( )

( )
( )

2

2

1
2 1

00

2 1 12 11
2 ( )

2

00 0

1

01

2

'( )
( )

1 '( )

cos

1 cos

1
( 1 ) cos

!

2 1 !1
( 1 )

! 2 ! 2 1 !

1
( 1 )

!

n
n

in

n nn
iGx p n

in p

n

im
n

s x
D x

s x

AG Gx

AG Gx

i AG Gx
n

nAG
i e

n p n p

i
n

+∞ −
+

==

++∞ +− − −

== =

+∞ −

=+
≥

=
+

=
+

 
 = − − 
  

  +   = − −      + −  

 
 = − −
 

∑ ∏

∑ ∑∏

∑ ∏
( )2 1 2 1 !

2 1 1
! !

2 2 2 2

n

imGx

m

nAG
e

m m
n n

++∞

=−∞

    +                + + − −             

∑
 (D.22) 

with the position 2 2 1m p n= − −  and m  odd values. From previous development we get the 

following form for Fourier coefficients mD : 
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As regards the coefficients ( )mL t  in the expansion of the incident (D.16) and propagating fields 

(D.17), they describe the Fourier weights of the function ( )its xe− . From the definition D.4 we have: 
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where we substituted n p m− = . Thus we obtain the following expression:  
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Previous calculations may result useful in order to get an approximated expression of the 

coefficients mC  and mD  in case of shallow gratings ( / 0.01 0.10A Λ ÷∼ ) without losing too much in 

accuracy. For example, by approximating to the  fifth order in the ratio /Aρ = Λ  we have: 

 

Order nC  nD  

0  ( ) ( )2 4
1 2 6πρ πρ− +  0  

1±  0  ( ) ( )3 5
3 10πρ πρ πρ− +  

2±  ( ) ( )2 4
4πρ πρ− +  0  

3±  0  ( ) ( )3 5
5πρ πρ− +  

4±  ( )4πρ  0  

5±  0  ( )5πρ  

5n >  0  0  

 

Other modal methods for diffraction gratingsOther modal methods for diffraction gratingsOther modal methods for diffraction gratingsOther modal methods for diffraction gratings    

At the time Chandezon introduced his method, another modal method, the Rigorous Coupled-

Wave Analysis110,111 (RCWA) was widely used. This method consists in eliminating the y-dependency 

of the complex permittivity so that it is possible to write the solution inside the grooves as a Fourier 

expansion, since only a dependency on the periodic coordinate x is present. The way RCWA 
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accomplishes this, is by slicing up the grating domain so that inside each slice, the permittivity only 

depends on x. At the boundaries between two slices, the tangential components of the electromagnetic 

fields are continuous. In this way, the unknown reflection and transmission coefficients of the upper 

and lower halfspace can be connected to each other and determined as in Chandezon’s method. 

Introducing the Fourier expansion gives an eigenvalue problem of size 2 1N +  for both TE and TM 

polarization for every slice. Comparing RCWA and the C-method we have that:     

• There is one eigenvalue problem per layer of size 2 1N +  for RCWA instead of one per 

medium of size 4 2N +  for the C method. 

• RCWA solves one eigenvalue system for each polarization state, while the C method solves 

one eigenvalue system for both TE and TM polarization simultaneously. 

• RCWA approximates the grating interface, while the C-method does not. 

• RCWA can handle all types of diffraction gratings, including overhanging gratings, while 

the C-method is restricted to interfaces which can be described by a regular function of 

the periodicity coordinate. 

It can be shown that the number of layers needed to approximate the grating and obtain an 

accurate result, is the most important criterium and not the number of harmonics. Secondly, for 

general grating profiles the C-method will obtain the answer with less computational efforts in terms of 

truncation order.  

Thus the C-method is the most suitable and efficient method in case of periodic gratings described 

by a regular function, since no approximation of the profile is required with respect to RCWA. On the 

other hand RCWA represents the best choice in the case of a digital grating stack.  
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