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General introduction 

The presence of fluorine atoms in the structure of an organic molecule alters in an 

extraordinary way its physico-chemical properties and the countless applications of organo-

fluorine compounds are a strong testimony of it. 

The unique properties of fluorinated surfaces (low surface tension, dielectric constant, friction 

coefficient) derive from the particular features of the C-F bond (Chapter 1).  

Thanks to their exceptionally low intermolecular interactions, fluorinated compounds produce 

surfaces with very low interfacial energies which are hardly wet by aqueous and organic 

liquids, have anti-adhesive properties and low friction coefficients. Thanks to these unique 

properties fluoro-polymers play an important role in various fields of modern industry. 

Fluorinated thermoplastic polymers endowed with high thermal stability, low dielectric 

constants, excellent chemical resistance, very low surface tensions have now become 

commonly used both in the industrial practice and in everyday life applications (non-stick 

cookware, waterproof and breathable fabrics, optical fibers, to name a few). 

In 2006 the EPA (Environmental Protection Agency) demonstrated the bio-accumulative 

effects of several perfluoro organic compounds with long perfluoro alkyl chain (and their 

derivatives). This environmental aspect led to the progressive banning of all long chain 

fluorotelomers compounds within 2015 (Chapter 2). Many of these compounds are currently 

comprised in the candidate list for SHVC (substances of very high concern) enclosed in the 

CLP Regulation. As a consequence of these decisions companies involved in the manufacture 

and marketing of fluoro-compounds for surface treatment are replacing long perfluorinated 

alkyl compounds with shorter ones.  

The shortening of the chain length of the fluorinated moiety has posed challenging 

technological issues because of the dramatic loss of performances. 

The goal of researchers is to find new molecular solutions able to maintain the same 

performances of “old” long chain molecules with shorter compounds.  

In this work the study of alternative fluorinated polymers, obtained  by controlled radical 

polymerization techniques (Chapter 3) were investigated. In particular, the synthesis of 

fluoroalkyl styrene monomer with short fluorinated chain was carried out (Chapter 4) and the 

optimization of the synthesis of its precursor, 4’-nonafluorobutyl acetophenone, was also 

studied. The fluoroalkyl styrene monomer was polymerized by conventional radical 

polymerization and controlled radical polymerization (Chapter 5).  

Further, the telomerization of polyvinylidene fluoride in presence of 1-iodoperfluorobutane 

and trifluoromethyl iodide as chain transfer agents were investigated. The telomers 

synthesized were characterized by NMR analyses and the structure of the telomers chains 

were determined (Chapter 6). 

 

  



Introduzione generale 

La presenza di atomi di fluoro all’interno di una molecola organica è in grado di alterarne le 

proprietà chimico-fisiche in modo significativo e le innumerevoli applicazioni dei composti 

fluorurati ne sono la prova. 

Le proprietà superficiali dei composti fluorurati sono attribuibili alle particolari caratteristiche 

del legame C-F. (Capitolo 1). 

Le basse interazioni intermolecolari proprie dei composti fluorurati conferiscono alle superfici 

proprietà chimico-fisiche uniche: difficile bagnabilità da parte di liquidi acquosi ed organici, 

spiccate proprietà anti-adesive e basso coefficiente d’attrito. I composti fluorurati giocano 

pertanto un ruolo importante in svariati ambiti dell’industria moderna. I polimeri termoplastici 

fluorurati sono dotati di alta stabilità termica, bassa costante dielettrica, eccellente resistenza 

chimica, bassissima tensione superficiale. 

Nel 2006 l’EPA (Environmental Protection Agency) dimostrò gli effetti di bio-accumulo di 

diversi composti perfluoroorganici dotati di una lunga catena perfluoroalchilica (e relativi 

derivati). Gli aspetti ambientali hanno portato alla progressiva dismissione di tutte le molecole 

fluorocarburiche a catena lunga entro il 2015 (capitolo 2). Alcuni di questi composti sono già 

presenti nella candidate list per le SVHC (substances of very high concern) del Regolamento 

CLP. 

In conseguenza di queste decisioni le aziende coinvolte nella produzione e 

commercializzazione di prodotti foluorurati hanno cercato di adeguarsi rimpiazzando i 

prodotti fluorurati a lunga catena fluorocarburica con prodotti a catena corta.  

L’accorciamento della catena fluorocarburica ha posto un problema tecnologico legato alla 

perdita delle performance dei nuovi composti fluorurati. Lo scopo dei ricercatori è quello di 

sintetizzare nuove molecole, in grado di mantenere le stesse performance dei vecchi composti 

a catena lunga e che non ne presentino più le caratteristiche di bioaccumulo e tossicità. 

In questo lavoro di ricerca si è studiata un’alternativa ai composti fluorurati a lunga catena per 

applicazioni superficiali utilizzando tecniche di polimerizzazione radicalica controllata di 

monomeri a corta catena fluorurata (Capitolo 3). In particolare, si è studiata la sintesi di un 

monomero fluoroalchil stirenico a catena fluorocarburica corta, ottimizzando la sintesi del suo 

precursore, il 4’-nonafluorobutil acetofenone (Capitolo 4). Il monomero fluoroalchil stirenico 

è stato quindi polimerizzato attraverso una reazione di polimerizzazione radicalica 

convenzionale e controllata (Capitolo 5).  

Infine, si è studiata la telomerizzazione del vinilidene fluoruro in presenza di 1-

iodoperfluorobutano e trifluorometilioduro come chain transfer agents. I telomeri sintetizzati 

sono stati caratterizzati attraverso misure di spettroscopia NMR, le quali hanno permesso di 

determinare la struttura delle catene (Capitolo 6).  
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Chapter 1. Characteristics and properties of fluorinated compounds 

Introduction 

Global demand of fluorine-containing chemicals is forecast to rise 3.9 percent per year to 3.5 

million tons in 2016, valued at $19.6 billion
1
. The growing success of fluorinated compounds 

is due to the unique properties of the carbon-fluorine bond that affects the characteristics of 

the fluorinated materials. In this chapter the 

chemical and physical aspects of the fluorine 

atom and fluoro-carbon bond is presented. The 

F-C bonds are the basic “brick” for the 

building of fluorinated organic compounds 

investigated in this work.  

The properties of fluorine 

Numerous properties typical of fluorinated materials can be anticipated by comparing the 

fundamental properties of fluorine with those of other elements (Table 1)
2
. The low 

polarizability combined with the high ionization potential and small Van der Waals radius of 

fluorine imply very weak intermolecular reactions. For instance, the bond energy of fluorine 

molecule (F-F) is only 157 kJ/mol, weaker than the bond energies of hydrogen H-H (434 

kJ/mol) and chlorine Cl-Cl (242 kJ/mol)
3
. Conversely, the bond energy of C-F in CF4 is 546.0 

kJ/mol, higher than the bond energy of C-H in CH4 (446.4 kJ/mol) or C-Cl in CCl4 (305 

kJ/mol). The higher energy of C-F bond is due to its strong polarization (
δ+

C-F
δ-

) due to the 

very high electronegativity of fluorine which produce a strong electron-withdrawing effect 

when bonded to carbon. For these reasons the formation of C-F bonds is difficult and it 

explain the fact that in nature only 12 compounds containing C-F bonds have been found
4
. 

The greater strength of carbon-fluorine over the carbon-hydrogen bond leads to a considerable 

thermal stability for perfluorocarbon systems. The ionization potential (IP) is the highest 

except for those of helium and neon. Therefore, electrons are drawn strongly toward the 

fluorine nucleus. For this reason the electro dipole of fluorine atoms is small. As 

consequence, intermolecular Van der Waal’s attractive force between fluorine-containing 

compounds, is small. Moreover, the electronic configuration of fluorine with non-bonding p-

electrons, shield the carbon backbone from attack giving to fluorinated materials anti-

corrosive and stability towards oxidation.  
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Atom IPa [kcal/mol] EAb [kcal/mol] αv
c [Å3] rv

d [Å] χp
e 

H 313.6 17.7 0.667 1.20 2.20 

F 401.8 79.5 0.557 1.47 3.98 

Cl 299.0 83.3 2.18 1.75 3.16 

Br 272.4 72.6 3.05 1.85 2.96 

I 241.2 70.6 4.7 1.98 2.66 

Table 1.1 Atomic physical properties. a) ionization potential; b) electronic affinity; c) atom polarizability; d)Van der 

Waals radius; d) Pauling’s electronegativity. 

The C-F system 

1.1.1 Electronegativity and Density 

Fluorine is the highest electronegative atom and for this reason it is always electron-

withdrawing when bound to carbon. Consequently the C-F system is polarized and have a 

strong ionic character. All these properties ensure to C-F bond the highest bond energy 

compared to the other C-X systems (Table 1.2)
3
. 

 

 H F Cl 

Bond energies of C-X in C-X4 [kJ∙mol-1] 446.4 546.0 305.0 

Table 1.2. Comparison between the bond energies of some compounds. 

Saturated perfluorocarbons have densities typically about 2.5 times those of corresponding 

hydrocarbons and they have greater compressibility and viscosities.  

1.1.2 Boiling point 

The boiling points of perfluorocarbons are close to the homologous hydrocarbons. 

Conversely, if we compare the molecular weight of this two categories of compounds, such as 

CF4 (PM = 88) and n-hexane (PM = 78), the boiling points are very different: -128 °C and -

161 °C respectively (Table 1.3). 

 

 Boiling point [°C] 

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 10 

n-CnF2n+2 -128 -78 -38 -1 29 57 82 104 125 144 

n-CnH2n+2 -161 -88 -42 -0.5 36 69 98 126 151 174 

Table 1.3. Boiling points of linear perfluorocarbons and alkanes.  
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In contrast with hydrocarbons, the branching on perfluorinated systems does not significantly 

affect the boiling point of the molecules as reported in Figure 1.1 

CF3 CF2 CF2

CF3

CH3 CH2 CH2

CH3

CF3 CF

CF3

CF2

CF3

CH3 CH

CH3

CH2

CH3

CF3 C

CF3

CF3

CF3 CH3 C

CH3

CH3

CH3

b.p. 29.3 °C b.p. 36.1 °C

b.p. 30.1 °C

b.p. 29.5 °C

b.p. 27.9 °C

b.p. 9.5 °C

CF2 CF2 O CF2 CF2 CF3CF3

CH2 CH2 O CH2 CH2 CH2CH3

b.p. 56.0 °C

b.p. 90.0 °C

CH3 CH O CH CH3

CH3 CH3

CF3 CF O CF CF3

CF3 CF3

CF2 C

O

CF2 CF2CF2 CF3CF3

CF C CF

O

CF3

CF3

CF3

CF3

CH2 C

O

CH2 CH2CH2 CH2CH3

CH2 C CH2

O

CH2

CH2

CH2

CH2

ALKANES ETHERS

KETONES

b.p. 69.0 °C

b.p. 54.0 °C

b.p. 143.5 °Cb.p. 75.0 °C

b.p. 73.0 °C b.p. 123.7 °C  

Figure 1.1 Effect of the branching on the boiling points of perfluorocarbons and hydrocarbons. 

In the case of perfluro ethers and perfluoroketones the difference of boiling point is more 

enhanced and it is due to the low intermolecular force. 

1.1.3 The steric effect 

Replacing hydrogen in organic molecule by fluorine modify the steric effect of the systems. In 

fact, the Van der Waals radii of hydrogen is 1.20 Å, for fluorine is 1.40 Å. Also, the C-F 

length (1.38 Å) is longer than those of C-H (1.09 Å). Consequently, the CF3 group is more 

sterically demanding than methyl substituent group (Figure 1.2) with a Van der Waals volume 

of 16.8 Å
3
 for CH3 and 42.6 Å

3
 for CF3

5
. 

The steric effect influence the behavior of fluorinated molecules that differ from the 

“classical” chemistry. For instance, the spatial configuration of polyethylene is all-trans, while 

for PTFE is helical
6
.  
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H

H

H
F

F

F

16.8 A3 42.6 A3

1.1.4 Acidity and basicity 

The introduction of perfluoroalkyl group into the backbone of organic acid such as alcohols 

and carboxylic acids increase the acidity of the system and this is due to the high 

electronegativity of the fluorine. 

 

Alcohol n° fluorine pKa  Carboxylic acid n° fluorine pKa 

CH3CH2OH - 15.9  CH3COOH - 4.76 

CF3CH2OH 3 12.4  CH2FCOOH 1 2.59 

(CH3)3COH - 19.2  CHF2COOH 2 1.34 

(CF3)3COH 9 5.1  CF3COOH 3 0.52 

Table 1.4. pKa values of some organic acids and alcohols. The introduction of fluorinated atoms in the carbon chain 

increase the acidity of the substances. 

The substitution of one hydrogen with fluorine in carboxylic acid increases the acidity of 

about 100 times while the presence of trifluoromethyl group increase the acidity 1000 times 

(Table 1.4). All the secondary and tertiary fluorinated alcohols were strongly acidic because 

of the cumulative inductive effect of the fluorine atom present in the molecules
7
. Interesting, 

the acidity of perfluoro-t-butanol is comparable with the acidity of acetic acid. 

Correspondingly, fluoroalkyl groups lower the strength of bases, examples for amines are 

reported in Table 1.5. 

 

Amine n° fluorine pKb 

CH3CH2NH2 - 10.6 

CF3CH2NH2 3 5.7 

C6H5NH2 - 4.6 

C6F5NH2 5 -0.36 

Table 1.5. pKb values of some amines. The introduction of fluorinated atoms in the carbon chain decrease the basicity 

of the substances. 

Figure 1.2. Comparison between the Van Der Waals volume of CH3 and CF3 substituent. 
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The lack of basicity decrease the reactivity of secondary perfluoro amines (RF)2NH that do 

not react, for example, with boron trifluoride, hydrogen chloride or trifluoroacetic acid 
8
. Also 

the oxygen atoms in perfluoro-ethers and perfluoro-ketones are poor electron donor
9
. For 

example, hexafluoroacetone is so no basic and it cannot be protonated in solution by 

superacids 
2
.  

1.1.5 Thermal stability 

In monohaloalkanes, the C-F bond is about 25 kcal mol
-1

 stronger than C-Cl bond and this is 

due to the poor leaving-group ability of fluoride ion. Therefore, alkylfluorides are 102-106 

times less reactive than the corresponding alkylchloride in typical SN1 or SN2 reactions. Table 

6 summarize the bond dissociation energies for ethanes. From the data is remarkable that α-

fluorination always increases C-F and C-O bond strengths but does not have significantly 

influence on the other atoms. Conversely, β-fluorination increases C-H bond but does not 

influence the C-F bonds.  

 

 BDE [kcal mol-1] 

X CH3CH2-X CH3CF2-X CF3CH2-X CF3CF2-X 

H 100.1 99.5 106.7 102.7 

F 107.9 124.8 109.4 126.8 

Cl 83.7 - - 82.7 

Br 69.5 68.6 - 68.7 

I 55.3 52.1 56.3 52.3 

Table 1.6. Bond dissociation energies (BDE) of ethanes. 

The thermal stability of perfluorocarbons decrease with increasing the chain length or chain 

branching. Indeed, the most thermo stabile perfluorocarbons is the CF4 whose C-F bond 

thermolyze over 2000 °C. Conversely, perfluorocarbons with tertiary C-C bonds thermolyze 

around 300 °C. Perfluoroethers are more thermally stable than PCFs, thanks to the presence of 

strong C-O bonds. For example, poly-(CF2CF2O) decompose at 585 °C, 10 times slower than 

poly-(CF2CF2). Hydrofluorocarbons are less thermally stable than their PFCs counterparts and 

this is due to the rapidly elimination of HF that starts above about 350 °C 
6
. 

1.1.6 Surface properties 

The perfluorinated ethers and amines have low surface tensions (see appendix), typically 15-

16 mN∙m
-1

. The surface tensions of hydrocarbons are always greater than those of 

corresponding perfluorocarbons (Table. 1.7)
2
.  
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Surface tension [dyn∙cm-1] 

Structure Perfluorocarbons (X = F) Hydrocarbons (X = H) 

n-C5X12 9.4 a 15.2 a 

n-C6X14 11.4 a 17.9 a 

n-C8X18 13.6 a 21.1 a 

C6X6 22.6 b 28.9 c 

Table 1.7. Surface tension of perfluorocarbons and hydrocarbons measured at 25 °C (a) , 23 °C (b) and 20 °C (c). 

Applications of fluorinated compounds 

The unique properties of fluorinated compounds mentioned above have continuously 

increased the use of these materials in a wide range of industrial applications. In this 

paragraph a non-exhaustive list of examples of commercial applications will be mentioned. 

1.1.7 Refrigerants 

A fluid for mechanical refrigeration must be thermically and chemically stable and non-

corrosive and should posses suitable vapor-pressure characteristics. Further it should be non-

toxic and non-flammable. Until 30’s, when there was the advent of chlorofluorocarbons 

(CFCs) 
10

 there was no fluid displaying these properties all together. The principal CFCs used 

were CF2Cl2, CFCl3, CHFCl2. Their volatility and inertness posed environmental issues 

because they dissociate under short wavelength up to the stratosphere, releasing chlorine 

atoms which catalyze the decomposition of ozone. Consequently, the CFCs were replaced 

with the HFCs such as CF3CFH2 (HFC-134a) which are  chlorine free and are not dangerous 

for the ozone. 

1.1.8 Fire-fighting agents 

Fire extinguishing foams of various types are known for use against fire for polar and non-

polar flammable liquids such as hydrocarbon solvents, kerosene, crude oil and so on. Often, 

these foams additionally provide the ability to form a film on the surface of a liquid. The film 

formed should inhibit the re-ignition of the flammable liquids. Aqueous film forming foam 

(AFFF) concentrates are concentrated aqueous solutions that can be diluted and used as 

extinguish flammable liquids fire. The concentrates can contain fluorinated surfactants in low 

concentration (usually 6-8 %) which contribute to improve the extinguishing power of the 

fire-fighting agents. Further the extremely low interfacial tension obtained with fluorinated 

surfactants allows an easy spreading of the foam on surfaces facilitating the extinguishing 

procedure in case of fire in closed and narrow places such as planes or tanks. Different 

examples of fluorinated agents are reported in literature
11-15

. 
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1.1.9 Lubricants 

Perfluoropolyethers (PFPEs) with high molecular weights are commercialized as lubricants 

(see Figure ). The characteristics of these compounds are the long liquid range, they remain 

fluid from -100 °C to 350 °C. consequently they find application in the lubrication of 

precision instruments, from the mechanism of watches to computer discs. 

 

1.1.10 Medical and pharmaceutical applications 

Perfluorocarbons are inert to microbiological attack and can dissolve significant amounts of 

oxygen, for these reason perfluorocarbons can be used as artificial blood
16

. The incorporation 

of fluorine into a biologically active molecule may modulate the absorption, the transport 

through membranes before reaching the correct site of action and produce the desired effect 

on the appropriate enzyme site
17

. Also, the presence of fluorinated groups in the drugs can 

increase their acidity or decrease their basicity. For example, the presence of the 

trifluoromethyl groups can enhance the lipophilicity of an aromatic substrate to facilitate the 

transport of the drug. In Figure 1.4 are reported some examples of commercialized drugs that 

contain fluorinated groups. 
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Figure 1.4. Examples of commercial drugs containing fluorinated moieties. 

1.1.11 Surfactants 

Molecules that bear both hydrophobic and hydrophilic parts are called surfactants. These 

compounds can be classified either cationic, anionic, amphoteric or non-ionic 
18

. Fluorinated 

surfactants, thanks to the fluorinated moieties, contribute to increase the hydrophobic 

behaviour of the molecules. In particular, fluorinated surfactants have a lower surface tension 

respect to hydrocarbon counterpart and for these reason sometimes they are called “super 

surfactants” and exhibit a lower critical micellar concentration (c.m.c.)
19

. Hystorically the 

production of perflurosurfactants began in 1949 by 3M with the production of perfluorooctane 

sulfonyl fluoride (C8F17SO2F). From 1949 to 2002 3M manufactured approximately 3665 t of 

PFOS 
20

. The whole of perfluorosulfonates (PFSAs, CnF2n+1SO2F) such as the mentioned 

perfluorooctane sulfonate (PFOS), and the perfluorocarboxylic acids (PFCAs, CnF2n+1COOH) 

represent the most known class of perfluorosurfactants. The physical and chemical properties, 

such as persistence and volatility, vary depending on the length of the functional groups.  

Because of their environmental and health toxicity the production of surfactants based on 

PFOA and PFOS has almost ceased (see Capther 2).  

Thanks to both hydrophobicity and oleophobicity, join to their chemical and thermal 

inertness, fluorosurfactants are used in more than 200 applications 
20-24

 including soil and 

stain-repellents, fire fighting foams, paints, lubricants, clothing fabrics, textile, leather, 

carpets, and paper coatings, electroplating, photographic emulsifiers, pressure sensitive 

additives, waxes, polishes, pharmaceuticals, insecticides, or involved in cosmetics 

formulations. 



Synthesis and Characterization of Fluorinated Compounds for Industrial Applications 

 

19 

1.1.12 Polymers 

Unlike organofluorine chemistry, the chemistry of fluoropolymers is rather recent. In 1934 

poly(chlorotrifluoroethylene), -(CF2-CFCl)n- was synthesized, then in 1938 Plunkett 

discovered poly(tetrafluoroethylene), (PTFE) -(CF2-CF2)n-, known with the commercial name 

of Teflon
®
 by DuPont de Nemours Co. Later, different homopolymers were synthesized, most 

from fluorinated olefins such as tetrafluoroethylene (TFE), vinyldiene fluoride (VDF), vynil 

fluoride (VF), and chlorotrifluoroethylene (CTFE). Perfluorinated homopolymers exhibit too 

high cristallinity rates, compromising their solubility in common organic solvents. Further, 

they are cross-linkable with difficulty. For this reason in the last decades a large number of 

co-polymers were developed 
25

. Co-polymers are composed of a mixture of co-monomers that 

can insert bulky side groups or may induce a certain disorder in the molecule that reduce the 

high cristallinity of homopolymers. For examples, fluorinated thermoplastics obtained by the 

copolymerization of VDF with HFP, such as KF Polymer
®

, Kynar
®
, and Solef

®
 

(manufactured respectively by Kureha, Arkema, and Solvay) are widely produced. In 

contrasts, fluoroelastomers such as Dyneon Elastomer
®
, Viton

®
, Daiel

®
, and Technoflon

®
, are 

produced by Dyneon, DuPont Performance Elastomers, Daikin or Solvay Speciality Polymers 

respectively. In general, fluoropolymers possess variable morphologies, from thermoplastics 

to elastomers and can be semicrystalline or totally amorphous.  

Floropolymers have found a large number of applications in chemical industries (high 

performance membranes), building industries (paints and coatings), petrochemicals and 

automotives, aerospace and aeronautics (elastomers used as packings, O-rings or diaphragms 

devote for extreme temperatures close to liquid hydrogen or hydrazine tanks in the booster of 

space shuttles), for optics (optical fibers), textile, fabrics or stone treatment (coating of old 

monuments), microelectronics
25-27

. More details about mechanism and strategies for the 

synthesis of fluoropolymers will be described in Chapter 3. 
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Appendix A: the surface tension 

Physical models and basic equations 

Consider a molecule P1 positioned in the bulk (Figure 1.5) of a liquid. The resultant of the 

forces acting on P1 is zero because the molecules positioned all around P1 interact with it 

with the same force. P1 is thus in equilibrium. A molecule P2 located at the air-liquid 

interface  is still in equilibrium but a different force resultant exists and an additional force 

must be invoked in order to compensate the asymmetrical attraction exercised by neighbors. 

This additional force is called surface tension between the liquid and vapor phases, γLV 

(sometimes it is indicates only as γL). 

 

 

 

 

 

 

 

 

 

Figure 1.5 Equilibrium of the forces that act on a molecule in the bulk and at the surface of a liquid. 

When a droplet of water is deposited on a solid surface three interfaces exists: solid-liquid 

(γSL), vapor-liquid (γLV),  vapor-solid (γSV). The balance between these three interfacial forces 

determine the shape of the drop and the value of the contact angle (Figure 1.6).  

 

 

 

 

 

 

Figure 1.6 Model of a drop on a solid surface. The scheme show the three interfacial forces in three phase contact 

angle. 

The contact angle is a very common measure of the hydro-phobicity of a solid surface. The 

relationship between surface tension and contact angle was first recognized by Young. At 

equilibrium, the contact angle is obtained by the balance of the surface tension forces: 

 

                 Eq. 1.1 

P1 

P2 
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This is called Young’s equation and    represents the contact angle. The quantity     ( or   ) 

can be easily measured directly by specific methods such as the Du Nouy ring or Wilhelmy 

plate. The measure of the contact angle and     are describe in the next paragraphs.     (or 

    is the only factor that is not directly measurable. 

The Young’s equation requires that the solid surface must be smooth, flat, homogeneous, 

inert, insoluble, non-reactive, and non-deformable. A surface with all this properties is 

referred as an ideal surface. However, most of the surfaces are non-ideal, and the measure of 

the contact angle with the Young’s equation is considered “apparent”. This means that the 

value of contact angle measured by the Young’s equation falls into an interval between the 

advancing (the largest) and the receding (the smallest) contact angle. The difference between 

these extremes is called contact angle hysteresis. The most important factors affecting the 

non-ideality of a surface are: contamination of either the liquid and solid surface, the surface 

roughness, and surface immobility on a macromolecular scale. 

Wenzel investigated the effect of roughness on the measure of the static contact angle which 

causes a hydrophobic fluid to behave as if it were more hydrophobic and a hydrophilic fluid 

to behave as if it were more hydrophilic. Wenzel highlighted the importance of the effect of 

the geometry of the surface. When a drop is sufficiently large compared with the roughness 

scale, and if the liquid completely penetrates into the roughness grooves of the solid surfaces, 

the measure of the contact angle can be evaluated as: 

 

             Eq. 1.2 

 

Where    is the Wenzel contact angle, and   is the average roughness ratio, defined as the 

ratio between the true and apparent surface area of the solid.  

A more accurately description of the contact angle phenomena for heterogeneous and rough 

surfaces was done by Cassie and Baxter. The apparent contact angle is related to the ideal 

contact angle by the equation: 

 

                       Eq. 1.3 

 

Where   ,    are the fractional area of the surface with contact angle    and    respectively. 

The value    is the Cassie’s contact angle, and Eq. 1.3 is called Cassie’s equation. In the case 

of non-wetting situation for a porous surface    is the fraction of air spaces which makes 

          , as         (e.g. : hydrophobic): 
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                  Eq. 1.4 

 

Eq. 1.4 is called the Cassie-Baxter’s equation. 

The theory proposed by Wenzel and Cassie is consistent and they have been widely used to 

predict the real surface behavior. The main problem that limit these theories is the evaluation 

of the average roughness and the accurately determination of the parameters   and   .For the 

these reasons the determination of contact angle of the polymers synthesized in this thesis is 

based on the Young’s model. 

 

The measure of the contact angle 

The measure of the contact angle is performed using a Drop Shape Analysis. The general 

method used to determine the contact angle is the sessile drop method. The surface of the 

solid should be as flat as possible. A liquid drop of fixed volume is deposited on the solid 

surface with the aid of a syringe. In this way the measure is independent from the size of the 

drop. The determination of the contact angles is based on the adaptation of the drop in the 

region of three-phase contact point to the solid surface. The instrument used for the measure 

has a camera which registers the shape of the drop. The software of the instrument use various 

functions and system of equations to calculate the shape of the drop. Once the proper function 

has been chosen, the contact angle can be determine from its derivative. The derivative of this 

equation at the baseline gives the slope at the three phase contact point and thus the contact 

angle.  

In this thesis the equation of a conical section was choice to adapt the shape of the drop. 

The measure of the contact angle can be differentiated in static contact angle and dynamic 

contact angle. In the measure of the static contact angle the drop is deposited on the surface 

and its shape and contact-angle is assumed to be time-independent. The dynamic contact 

angle describes the time evolution of both the shape and contact angle of drop at the liquid-

solid boundary during the wetting and dewetting processes. The dynamic contact angle 

measure is composed by two phases, the advancing and receding contact angle. Conversely 

from the static measurement in this case the syringe remains in the drop during the whole of 

the measurement. A drop of fixed volume is deposited on the solid surface and then it is 

slowly enlarged by adding more liquid. The contact angle initially increases, then the drop 

starts to wander over the solid surface: the contact angle is measured during the slow advance 

across the liquid surface. Once joint the fixed volume, the siring start to suk back the liquid 

from the drop and the system records the contact-angle between the liquid front and the 

wetted surface. The difference between the advancing and receding contact angle is called 
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hysteresis and it is a direct measure of the wettability of the surface: the smaller the hysteresis 

the smaller the surface wettability. 

 

The measure of solid-liquid interfacial tension 

Considering two phases with interfacial tension    and    respectively, the interfacial tension 

between them can be described as: 

 

    |     | Eq. 1.5 

 

Where     is the interfacial tension  between the two phases. 

Good and Girifalco
28

 improve Eq. 1.5 with the introduction of a new parameter  , a 

complicate function of the molecular size and determined empirically. 

 

             √      Eq. 1.6 

 

Fowkes 
29

 took into account the dispersion forces    
     

 ) present in all atoms and 

molecules(caused by the temporary asymmetrically charge distribution) 

 

            √  
    

  
Eq. 1.7 

 

Owens and Wendt
30

 considered the contribute of the polar forces that involve certain 

molecules and originated by the electronegative of different atoms: 

 

        Eq. 1.8 

 

Eq. 1.8 express the interfacial tension as the sum of the interfacial tension due to the polar 

contribution and to the dispersive contribution. 

Assuming the parameter   = 1 combining Eq. 1.6-1.8 is possible to obtain the expression of 

the interfacial tension according to Owens-Wendt: 

 

            (√  
    

   √  
    

 ) 
 

Eq. 1.9 
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If the value of polar and dispersive components of one phase is known (commonly those of 

liquid) then the polar and dispersive components of the second phase can be calculated from 

the value of the contact angle. 

Mathematically, Eq. 1.9 is a geometric mean, is also possible to use different expression using 

the harmonic mean or the geometric-harmonic mean. Such method provides different results, 

the choice of the mean depends on the kind of system studied
31

. 

The method of Owens-Wendt use Eq. 1.9, that can be rewrite: 

 

            (√  
    

   √  
    

 ) 
 

Eq. 1.10 

 

Considering the Young’s equation (Eq. 1.1) and transforming this relationship as a straight 

line equation        : 

 

   √
     

 

  
  √

  
 

  
  

 

  
      

 

  

√  
 

 
 

Eq. 1.11 

 

  √  
  

 

 

 

  √  
  

 

 

If the values   ,   
 ,   

  are known for various test liquids and if the contact angles   to the 

solid surfacehave been measured then, a straight line can be build by points (x1, y1), (x2, y2), 

etc.. Once the straight line have been drawn is possible to determine the slope   and intercept 

 , which the value   
 
,   

  are obtain. Usually, for this method two different liquids are used: 

distilled water and diiodomethane.   
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Chapter 2. The environmental problems associated to 

perfluorinated compounds 

As shown in the previous chapter the particular physico-chemical properties associated with 

perfluorinated compounds allow their wide spread use every day-life, industrial and 

institutional applications. In the early 90’s many studies demonstrated the accumulation of 

fluorinated compounds in the environment and in human tissues
1
. The U. S. Environmental 

Protection Agency (EPA) in agreement with the eight major companies involved in the 

production of fluorinated compounds through the voluntary 2010/2015 PFOA Stewardship 

Program aim to the complete elimination of ‘long-chain’ perfluorochemicals by 2015. 

Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate 

(PFOS) 

Perfluorinated chemicals (PFCs) are a class of organic compounds characterized by a 

completely fluorinated moiety and a functional group. PFCs do not occur naturally, and they 

have been produced and used in commercial and industrial applications for over 60 years
2
. 

PFCs are extremely persistent and the high energy bond of the C-F bond contrast the typical 

environmental degradation processes
3
. Perfluorooctanoic acid (PFOA) and perflurooctan 

sulfonate (PFOS) are the reference compounds in the environmental studies of 

bioaccumulation of PFCs. PFCs could be classified in ‘short-chain’ compounds (when the 

number of perfluorinated carbon atoms is are less than six and ‘long-chain’ (when the number 

of perfluorinated carbon atoms is higher than 6) such as PFOA and PFOS. 

 

 Figure 2.1. PFOA and PFOS transport near discharge source8. 



Chapter 2. The environmental problems associated to perfluorinated compounds 

28 

Source of exposure of PFOA/PFOS 

PFOA is used as polymerization aid in the production of fluoropolymers such as Teflon
®4

. 

The possible PFOA/PFOS route to the environment are mainly two: direct exposure and 

indirect exposure. The main direct PFOA source of contamination is the manufacturing and 

use of ammonium perfluorooctanoate (APFO). 

PFOS emissions are produce directly by the 

manufacture, use, and application of perfluoroalkyl 

sulfonate (PFAS). In particular, direct sources of 

exposure of PFOA and PFOS are mainly due by 

released in wastewater streams of repellent treated 

carpets, waterproof apparel, and aqueous fire 

fighting foams. About 85% of the emission are 

caused by the disposal from consumers of carpets, 

clothes, paper, and packaging
5
. An example of 

indirect PFOA and PFOS source of exposure are 

fluorotelomer alcohols (FTOHs) and 

perfluorooctane sulfonyl fluoride (POSF)-based 

chemicals which can degrade in PFOA and PFOS 

respectively
4,6,7

. 

PFOA properties are different from other persistent 

and bioaccumulative pollutants such as 

polychlorinated dioxine, furans, and pesticides 

(like chlordane and DDT). In contrast with other 

pollutants, PFOA and PFOS are water-soluble 

does not bind well to soil or sediments, and 

bioaccumulate in serum rather in fat. For these 

reasons PFOA and PFOS are distinctive as 

persistent and bioaccumulative organic compounds 

that are important drinking water contaminants
8
. PFOA and PFOS migrates from air 

emissions from industrial facilities onto soil, followed by migration through the solid to 

groundwater (Figure 2.1). As consequence, drinking water is one of the most important source 

of human exposure of PFOA. Further, researchers demonstrate that the wastewater treatment 

plant effluents are one of the major sources of PFOA and PFOS
9,10

. Pistocchi and Loos
11

, 

estimate a map of European emissions of PFOA and PFOS (Figure 2.2). Skutlarek et al.
12

 

evidenced the contamination of PFOA and other PFCs in the Mohenne and Ruhr Rivers, 

important source of drinking water. PFOA was detected up to 33,900 ng/L in a creek near the 

site of contamination upstream of these rivers, and at up to 519 ng/L in drinking water from 

Figure 2.2. Map of PFOA (A) and PFOS (B) 

emissions  (t/a) for monitored catchments in 

Europe8. 
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the Mohenne River. Also, in Catalonia, Spain, PFOA was detected at up to 0.85 ng/L in 65% 

of 40 municipal water systems
13

. 

PFOA present in drinking water is not removed by standard water treatment processes such as 

coagulation, sand filtration, sedimentation, ozonation, or chlorination but it is removed by 

activate carbon
14,15

. The sources of exposure to PFOA or its precursors include not only 

drinking water but also food, migration of food packaging into food, treated fabrics (carpets, 

clothing), house dust, ski waxes
16

. Migration into food from PTFE-coated cookware is not 

considered to be significant exposure source
17

. Most of the studies confirm that the 

predominant exposure source is the diet. Unfortunately, the quantitative data are uncertain 

because there are few data on PFOA level in food, and PFOA levels differ from sample of the 

same foods obtained from different locations. For these reasons in Flanders, Belgium, 

estimates a PFOA dietary exposure of 6.1 ng/kg/day
18

, in Norway 0.6 ng/kg/day
19

, and in 

Netherlands 0.2 ng/kg/day 
20

. PFOA was detected in several samples of foods including 

bread, milk, microwave popcorn, meats, fish, butter, vegetables 
21

 

Health effects caused by PFOA/PFOS 

Given the widespread production and the use of fluorinated organics, it is not surprising that 

organic fluorine has been detected in the blood of individuals from the general public as well 

as industrial workers
22,23

. For workers handling fluoroorganics, organic fluorine levels of 1.0-

71.0 ppm have been reported in their blood serum. In individuals that have not been exposed 

to industrial fluorochemicals the concentration of organic fluorine range from 0.0 to 13.0 

ppm. Guy et al.
24

 suggested that there is a widespread contamination of human tissues with 

organofluorine compounds derived from commercial sources of PFOA. Two studies estimate 

the half-life of PFOA in humans: one
25

 considered 26 retired workers employed in the 

production of fluoroorganics chemicals, the median half life (followed up for 5 years) was 3.4 

years, the second
14

 is based on 200 people who had been exposed via public water supplies 

and followed for 1 year, the mean of half life of PFOA was 2.3 years. PFOA is completely 

absorbed by oral exposure
26

, through skin
27

, and by dust inhalation
28

. Most of the information 

on health effects in humans and animals are recent. Overt toxicity or mortality has not been 

reported in humans after accidental or intentional acute exposure to PFOA at concentration 

higher than those encountered in the workplace
29

. In 2009 the C8 Health Study provided 

information on the exposure to PFOA present in drinking water, serum level and biological 

changes on a large community (about 70,000 Ohio and West Virginia resident) exposed at 

wide range of PFOA levels ( ≥ 50 ng/L to over 3000 ng/L). For the first time many health 

endpoints have been significantly associated with PFOA levels
30

. These include elevated 

cholesterol and other serum lipid parameters , increased risk of elevated uric acid in adults, 

change in several indicators of inflammatory and immune response, delayed puberty in girls, 
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early menopause, thyroid disease in women. Forthcoming studies will evaluate other 

endpoints, including cancer incidence in this population. Studies on workers exposed directly 

to both PFOA and PFOS showed some consistency of increased cancer mortality and/or 

incidence, including bladder, kidney, and prostate cancer 
31

. More data are available in case of 

animals. PFOA induce tumours of the testicles, liver, and pancreas in rodents
32,33

.  

The 2010/2015 PFOA Stewardship Program 

After the numerous studies conducted on PFOA/PFOS, the U.S. EPA concluded that evidence 

was suggestive that PFOA is carcinogenic in humans. In its review of that risk assessment in 

2006 U.S. EPA concluded that PFOA is “likely to be carcinogenic for humans”
34

. In the same 

year U.S. EPA initiated the 2010/2015 PFOA Stewardship Program
35

, in which the eight 

major companies involved in the production of fluorinated organic chemicals, committed 

voluntary to reduce facility emission and product content of PFOA and related chemicals. The 

two goals of the PFOA Stewardship Program were: 

1) To commit to achieve, not later than 2010, a 95% reduction, measured from a year 

2000 baseline, in both: facilities emissions to all media of PFOA, precursors chemicals 

that can break down to PFOA, and related high homologue chemicals. 

2) To commit working toward the elimination of PFOA, PFOA precursors, and related 

higher homologue chemicals from emission and products by five years thereafter, or 

no later than 2015. 

To ensure transparency, companies submit each year annual public reports on their progress 

toward the goals. Global production of PFOA was phased out in the last years, U.S. serum 

levels have declined markedly, from a geometric mean of 30.4 ng/mL in 1999-2000 to 13.2 

ng/mL in 2001-2008
36

. As part of the voluntary stewardship effort by major manufacturers to 

reduce the use of PFOA, new fluorinated and polyfluorinated compounds, including short 

chain length PFCs, are being developed as alternatives to PFOA, PFOS and other long chain 

perfluorinated compounds
37

. In 2011 U.S. EPA proposed the third Unregulated Contaminant 

Monitoring Rule finalized to determining the concentration and spatial distribution of 

contaminants in public drinking water. In this list are proposed not only PFOA and PFOS but 

also perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), 

perfluorohexansulfonic acid (PFHxS) and perfluorobutanesulfonic acid (PFBS). PFBS shows 

low toxicity based on substantial toxicological database. While PFBS is persistent in the 

environment, it has a relatively short half life in humans, based on a study of production 

workers 
25

, the half life in human blood averaged 28 days, substantially shorter that the half-

life of the other ‘long-chain’ PFCs. Despite PFBS with four completely fluorinated carbon 

atoms is considered a ‘short chain’ perfluorinated compound U.S. EPA decide to put it in the 

list of monitored substances. This can be explained because, after the banning of long chain 
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PFCs, producers used ‘short chain’ perfluorinated compounds, specially PFBS, as alternatives 

to PFOA and PFOS. The increasing use of PFBS suggest to U.S. EPA to put this compound in 

the list of the monitoring contaminant of drinking water. 

Final considerations 

The use of fluorinated organic compounds has increased throughout this century, and they are 

ubiquitous environmental contaminants. PFCs are contaminants that differ in several ways 

from most other well-studied organic pollutants for its extreme resistance to environmental 

degradation. In particular, perfluorooctanoic acid (PFOA) and perfluorooctan sulfonate 

(PFOS), present in different source of exposure, persist in humans with an half-life of several 

years and are widespread found in the serum of population worldwide. Considering the 

numerous health endpoints  associated with human PFOA exposure, the U.S. EPA classified 

PFOA as “likely to be carcinogenic in humans” and, in agreement with the major companies 

involved in the production of fluorinated chemicals, the C8 and their precursors were banned 

by the 2010/2015 PFOA Stewardship Program. 

Nowadays, the companies substitute their ‘long-chain’ perfluorinated carbon products with 

‘short-chains’ ones. Conversely, this replacement caused a decay in the chemical-physical 

performances of these compounds. For this reasons the goal of this research is the design of 

new molecules with ‘short-chains’ perfluorinated carbon atoms, but with well-defined 

architecture able to guarantee similar performances to ‘long-chains’. In the next chapters will 

be explained the ways adopted to reach the synthesis of C4 fluorinated compounds with 

particular chemical structure able to guarantee physical-chemical properties closed with the 

“long-chain” commercial products. 
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Chapter 3. The Fluorinated Polymers 

This chapter describes the synthesis of the most important fluorinated monomers industrially 

produced. Furthermore, examples of fluorinated polymers and co-polymers commercially 

available are supplied. 

General characteristics of fluoropolymers  

Fluoropolymers are attractive because of their high versatility: they can be either 

thermoplastic, elastomeric, semicrystalline or totally amorphous. Highly fluorinated polymers 

exhibit high thermal, chemical, aging, and weather resistance, excellent inertness to solvents,  

hydrocarbons, acids and alkalis, low surface energy (oil and water repellency), low dielectric 

constants, low flammability and low refractive index
1
. The high dissociation energy of the 

strong C-F bond (see Chapter 1) imparts outstanding resistance to oxidation and to hydrolytic 

decomposition
2
. However, fluoropolymers have several drawbacks: the homopolymers are 

often crystalline, which hence induces a low solubility in common organic solvents. Further 

they are not easily curable or crosslinkable
3
. This disadvantage can be exceeded by using 

fluorinated copolymers with sterically hindered side groups which produce a disorder in the 

macromolecule structure 

reducing the degree of 

crystallinity compared to 

homopolymers. Fluopolymers 

can be classified into two 

categories: (a) high fluorinated 

polymers with a fluorinated 

backbone or with only short and 

highly fluorinated side groups (such as tetrafluoroethylene (TFE), hexafluoropropylene 

(HFP), perfluoromethyl vinyl ether (PFVE), and vinylidene fluoride (VDF)), and (b) 

perFluoroAlkyl (FA)
4
 polymers, having an hydrocarbon backbone and a long perfluorinated 

pendant chain such as F(CF2)n with n = 4-18 (Figure 3.1).  

Despite their high price, fluoropolymers have been successfully used in many industrial 

applications such as: chemical resistant coatings in chemical and petrochemicals processes, 

high performances membranes in fluids separations,  transmission fluids in automotive, 

elastomeric and plastic materials for harsh environments in space and aerospace applications, 

in cores and claddings of optical fibers, as stain resistant coatings for textiles, stone, paper, 

wood and metal treatments, microelectronics
2,5-8

.  

* CF2-CF2 *

n

*

O O(CH2)2(CF2)nF

CH3

CH2*
n

(a) (b)

Figure 3.1. Examples of fluoropolymers: high fluorinated 

fluoropolymers (a) PTFE, and FA (b) poly(fluoroalkyl methacrylate)s. 
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Synthesis and polymerization of commercial fluorinated 

monomers 

Industrially relevant fluorinated monomers are olefins and alkenes containing one or several 

fluorine atoms. The synthesis of fluorinated monomers is expensive, often involving extreme 

and dangerous reaction conditions. Most of them are gaseous and their polymerization 

requires to be carried out in high pressure autoclaves.  

Fluoroalkenes commercially available in greater amounts are tetrafluoroethylene (TFE),  

vinylidene fluoride (VDF), chlorotrifluoroethylene (CTFE), hexafluoropropene (HFP), vinyl 

fluoride (VF), and fluorinated acrylates. 

3.1.1 Tetrafluoroethylene 

Tetrafluoroethylene (TFE) (b.p. = -76 °C) is the most used fluorinated monomers in homo- 

and co-polymerization. It is produced by a noncatalytic gas-phase pyrolysis of 

chlorodifluorometane at 600-900°C at atmospheric or subatmospheric pressure. In these 

conditions difluorocarbene is formed which undergoes a dimerization reaction quasi-

instantaneously (Scheme 3.1). Although this process requires a CFC as starting point, this 

method is still currently used by the main manufacturing companies (3M, Du Pont, Asahi, 

Solvay-Solexis, Daikin, etc.)
9
. TFE is an explosive monomer and it must be handled with 

care. Its homopolymer, polytetrafluoroethylene (PTFE), is commercial available with 

different names such as Teflon
®

 (DuPont), Algoflon
®
 (Solvay-Solexys), Fluon

®
 PTFE (Asahi 

Glass), Hostaflon
®
 ( Dyneon), and Polyflon

®
 (Daikin)

9,10
. 

 

 

 

 

TFE is polymerized with extremely high molecular weight, in order to limit the crystallinity 

in the final product and to give the desired mechanical properties. The initially prepared, high 

molecular weight PTFE has a crystallinity of over 90% and a melting point of about 341°C. It 

displays remarkable properties such as  thermostability, good stability to fire, very good 

surface properties. PTFE is insoluble in most of the solvents, acids, base and fuels. Besides, 

this polymer keeps a good flexibility even at low temperatures and displays low friction 

coefficient, dielectric constant, and dissipation factor, but has high volumic resistance and it is 

quite resistant to UV and to aging
9,10

. 

 

2 CHClF2 CF2=CF2   +  2 HCl

Scheme 3.1. Synthesis of TFE. 
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 Tg [°C] Tm [°C] Tdec [°C] TMe [°C] Tsc [°C] d [g/dm3] ε γc [mN/m] 

C2H4-CF2=CFCl 

(ECTFE) 

- 240 320 275 158 1.65 2.5 - 

C2H4-C2F4 

(ETFE) 

- 275 345 335 175 1.77 2.2 22 

C2F4-C3F6 

(FEP) 

- 265 330 318 200 2.15 2.0 18 

C2F4-CF2=CF-

OC3F7  (PFA) 

- 305 385 370 260 2.16 2.0 18 

CF2=CFCl 

(PCTFE) 

50 214 315 285 165 2.13 2.4 31 

C2F4 

(PTFE) 

(-100) 327 395 380 270 2.18 2.1 18 

CF2=CH2 

(PVDF) 

-40 170 342 225 150 1.76 8.0 25 

CH2=CHF 

(PVF) 

48 200 245 220 110 1.40 6.5 28 

Table 3.1. Properties of some fluorinated thermoplastics. Tg (glass transition temperature), Tm (melting temperature), 

Tdec (decomposition temperature), TMe (processing temperature), Tsc (continuous use temperature), d (densitiy), ε 

(dielectric constant), γc (critical surface tension). 

3.1.2 Vinylidene fluoride8,11 

Vinylidene fluoride (VDF) (b.p. -82 °C) has several advantages compared to TFE: it is less 

toxic and it is not explosive. VDF is easily homopolymerizes and co-polymerizes in presence 

of radicals. There are two routes for the synthesis of VDF: (1) starting from trichloroethane or  

(2) from HFC-152a (CH3-CF2H) (Scheme 3.2).  

The homopolymerization of vinylidene fluoride produces polyvinylidene fluoride (PVDF), 

which is a thermoplastic exhibiting interesting physical and electrical properties. PVDF is 

well-known for its high piezoelectricity, but also for its pyroelectric properties. PVDF has a 

typical degree of crystallinity of 50-70% with five crystalline polymorphisms. The spatial 

conformation created by the alternance of CF2 and CH2 groups all along the polymeric chain 
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confer to PVDF a particular polarity and an exceptional dielectric constant (8.0, see Table 

3.1). 

 

 

 

 

 

PVDF is inert to many solvents, oil, fuels and strong acids and shows low permeability to 

gases and liquids. It is resistant to UV, to aging and to ionizing radiations. However it is 

sensitive to bases which induce the dehydrofluorination of the -CF2-CH2- group yielding an 

insaturation. The Tg of PVDF is about -40 °C, while its melting point ranges from 158 °C to 

197 °C depending on molecular weight and number of chain defects. 

3.1.3 Chlorotrifluoroethylene9,10 

Chlotrifluoroethylene (CTFE) (b.p. -27.8 °C) is commonly used as refrigerant. Many reaction 

pathways for its synthesis are available (Scheme 3.3). The most frequently used is carried out 

in two steps: (a) fluorination of hexachloroethane with HF, catalyzed by antimony complex, 

followed by (b) dechlorination.  

CH3CCl3   +   HF

CH3CF2Cl CH2=CF2

CH3CF2H   +   Cl2

Scheme 3.2. Synthesis of vinylidene fluoride. 

Cl

F F

ClF

Cl

F

F F

Cl

+   Cl2

F

F F

Cl F

F F

Cl

F

F F

Cl F

F F

Cl

500-600°C

+   ZnCl2
50-100°C

Zn/MeOH

+

H

H H

Cl

CH2=CH2

FeCl3/Al2O3500°C

F

F F

H

400°C

H2NiO-Cr2O3

250-330°C

Bi or Ti
modified by Pd

F

F F

H

 HCl +

+

+

+ HCl

Scheme 3.3. Preparation of chlorotrifluoroethylene from 1,1,2-trichlorotrifluoroethane according to various 

strategies. 
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Thanks to its thermal properties and its chemical inertness PCTFE is a polymer of choice for 

military applications. PCTFE is resistant to radiations and it is regarded as the best polymer 

exhibits excellent thermal and gas barrier properties (especially against oxygen) and it is 

regarded as the polymer with the lowest permeability to gases and moisture. Its properties are 

assured in the temperature range -240 °C/+200 °C. Its glass transition and melting 

temperatures are 71-99 °C and 211-216 °C respectively. PCTFE homopolymers are currently 

produced by Honeywell and Daikin companies under Aclon
®
 and Neoflon

®
 tradenames. 

3.1.4 Vinyl fluoride8 

Vinyl fluoride (VF) (b.p. = -72 °C) is obtained by several methods: (a) fluorination of 

acetylene in HF medium, (b) elimination of HBr from 1,1-difluoro-2-bromoethane in the 

presence of zinc, (3) by pyrolysis of 1,1-difluoroethane (Scheme 3.4). 

 

 

 

 

 

 

 

 

 

3.1.5 Hexafluoropropylene9 

Hexafluoropropylene (HFPE) (b.p. = -29 °C) is obtained by several methods: (a) pyrolysis of 

PTFE (at 860 °C, 58% yield), (b) pyrolysis of TFE (at 750 °C, 82% yield), (c)  starting from 

CF3CF2CF2CO2Na (Scheme 3.5). Hexafluoropropylene do not homopolymerized, but it is 

commonly used in co-polymerizations. 

 

 

 

 

 

 

C CH H +    HF

HH

H F

H

F

F

H

H

H

HH

H Fpyrolysis

H

F

F

Br

H

H

HH

H FZn

Scheme 3.4. Examples of synthesis of vinyl fluoride. 
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3.1.6 Fluorinated (meth)acrylic monomers8 

This kind of monomers is usually identified with the acronym FA (perFluoroAlkyl) and their 

general formula is CH2=C(R)CO2C2H4CnF2n+1. Polyfluoro(meth)acrylates are synthesized by 

chemical functionalization of short perfluorinated oligomers obtained by telomerization of 

TFE.  

 

CF2-CF2* *

n

860 °C F3C F

FF F

F F

F

750 °C

CF3CF2CF2CO

O

Na

I2  +   IF5
[IF]

CF2=CF2

CF2CF2I

CF3CF2(C2F4)p-I
CH2=CH-Q

CnF2n+1-CH2-CHI-Q

CnF2n+1-C2H4-I

NaOH

CnF2n+1-CH=CH2

(NH2)2CS

CnF2n+1-CH2-CH2-SH

DMF/H2O
or NMP/H2O

CnF2n+1-CH2-CH2-OH

H2C

R

CH2 CH2 CnF2n+1

O

CF2=CF2

CF2=CF2

R = CH3, H

n = 4, 6, 8, 10, 12

Scheme 3.6. Step of industrial synthesis of fluorinated (meth)acrylates and other intermediates. 

Scheme 3.5. Examples of synthesis of hexafluoropropylene. 
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These polymers do not display the chemical and thermal properties of polymers with an 

highly fluorinated backbone but they are characterized by outstanding surface properties.   

These polymers find application in order to obtain hydrophobic and oleophobic coatings for 

surface protections (stain resistance finishes). Actually, fabric treatment used in the textile 

industry are one of the main applications of these products.  

On the market there are several examples of stain resistant finishes used for the protection of 

different materials such as: textiles, paper, wood, metals, stone 3M (Schotchgard
®
), Atochem 

(Foraperle
®
), by Daikin (Lezanova

®
) or by Asahi Glass (Asahiguard

®
) to name a few. 

Fluorinated copolymers 

Fluorinated homopolymers are synthesized by radical polymerization of fluoroolefins. They 

exhibit a crystalline structure, which induces a poor solubility in common organic solvents 

and are not easily cured or cross-linked
3
.  

The copolymerization of fluoroolefines with other monomers allows to obtain copolyemrs 

with many favourable features:   

(a) amorphous perfluoroplastics, which combine the outsanding properties of crystallyne 

perfluoropolymers, while adding high optical clarity, improved mechanical properties 

and a certain solubility in perfluoropolyether solvents.  

(b) Perfluoroelastomers, which combine the outstanding properties of crystalline 

perfluoropolymers and the elasticity typical of natural rubber, silicones, nitril-

butadiene polymers giving the possibility to obtain sealing materials for harsh 

conditions. 

(c) Polymers with reactive side chains such as bromine, epoxide, nitrile, cyanate useful 

for cross-linking, ion-exchange, hydrophilization. 

Fluorinated copolymers can be classified in three categories: (i) copolymers consisting of 

ethylenic fluorinated monomers, (ii) copolymers obtaining by the polymerization of 

fluorinated monomers and non-fluorinated monomers, and (iii) copolymers containing 

heteroatoms in the chains. In the next paragraph several examples of fluorinated elastomers 

belonging to the first two categories indicated above are examined. Also, a brief description 

of the heteroatoms copolymersare provided in paragraph 3.3.2. 

3.1.7 Fluorinated elastomers 

The synthesis of elastomers requires a mixture of monomers having bulky side chains in order 

to insert disorder within the chains. Examples of fluorinated elastomers
6,7,12-14

 are reported in 

Table 3.2 in which TFE and VDF are the basis monomers. Fluoroelastomers must display 

high chemical and thermal resistance assuring suitable mechanical properties even in harsh 
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conditions. At 150 °C while most of conventional elastomers lose their elasticity, 

fluoroelastomers maintain their elongation properties.  

 

In the same way, the stress resistance is improved (50% of the initial value for one year at 201 

°C). Fluoroelastomers resist both to polar and apolar solvents. The resistance to acids and 

alkalis varies depending on monomers present in the perfluoroelastomer backbone. Poly(TFE-

co-F2C=CFORF) copolymers are resistant to alkaline media (contrarily to elastomers based on 

VDF that undergo a dehydrofluorination). Finally, fluorocarbon elastomers exhibit an extreme 

resistance to compression set. In order to increase mechanical, thermal and chemical 

properties (mainly swelling), pefluoroelastomers must be crosslinked. Crosslinking is usually 

carried out in the presence of peroxides or with hexamethylene diamine carbonate.  

 

 HFP PMVE CTFE P 

VDF Daiel
®
 G801

(a)
 

Dyneon
®
 Elastomers

(b)
 

Tecnoflon
®
 N/FOR

(c)
 

SKF
®

-26
(d)

 

Viton
®
 A

(e)
 

 Dyneon
®
 

Elastomer
(b)

 

SKF
®

-32
(d) 

Voltalef
®(f)

 

 

TFE  Daiel
®
 Perfluoro

(a)
 

Dyneon
®
 Elastomer

(b)
 

Kalrez
®(e)

 

Tecnoflon
®
 PFR

(c)
 

 Aflas
®(f)

 

Viton
®
 Extreme TBR

(e)
 

VDF+TFE Daiel
®
 G 901

(a)
 

Dyneon
®
 Elastomer

(b)
 

Tecnoflon
®
 P/T/TN/FOR

(c)
  

Viton
®
 B/F/GF/GBL

(e)
 

Daiel
®
 LT

(a)
 

Dyneon
®
 Elastomer

(b)
 

Tecnoflon PL
(c)

 

Viton
®
 GLT/GFLT

(e)
 

 Aflas
®(f)

 

Table 3.2. Main commercial available elastomers. 

HFP = hexafluoropropylene (CF2=CFCF3) 

PMVE = perfluoromethyl vinyl ether (CF2=CFOCF3) 

CTFE = chlorotrifluoroethylene (CF2=CFCl) 

P = propylene (CH2=CHCH3) 

VDF = vinylidene fluoride (CF2=CH2) 

TFE = tetrafluoroethylene (CF2=CF2) 

(a) Daikin 

(b) 3M/Dungeon 

(c) Solvay Specialty Polymers 

(d) HaloPolymers 

(e) DuPont Performance Elastomers 

(f) Asahi Glass 

(g) Arkema North America 

 

The second series of elastomers is obtained by radical copolymerization of one fluorinated 

monomer with one or several non-fluorinated monomers. The most relevant example is 
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Aflas
®

 produced by the Asahi Glass Co. This poly(TFE-alt-propylene) copolymer has a 

alternated structure and its Tg  value worths -2 °C
6,7,12-14

. This copolymer is crosslinkable in 

many ways and its mechanical properties are excellent. However, and as expected, its thermal 

resistance is slightly lower than those of copolymers of fluorinated monomers (Table 3.3). 

 

 Tu [°C] Tg [°C] % F Trade name 

CH2=CF2/C3F6 -18 ÷ 210 -18 66 
(a)

Viton
®

 

C2H4/C3F6 0 ÷ 200 0 54 
(b)

Aflas
®

 

C2F4/CF2=CFOCF3 0 ÷ 280 -2 73 
(a)

Kalrez
®
 

CH2=CF2/C3F6/C2H4 -12 ÷ 230 -16 67 
(c)

Daiel
®

 

fluorosilicon  -65 ÷ 175 -68 37 
(d)

Silastic
®

 

fluorophosphazene  -65 ÷ 175 -65 55 
(e)

NPF
®
 

Table 3.3. Thermal properties of fluorinated elastomers. 

Tu = temperature of continuous use. 

Tg = temperature of glass transition. 

(a) DuPont Performance Elastomers 

(b) Asahi 

(c) Daikin 

(d) Dow Corning 

(e) Firestone. 

3.1.8 Copolymers containing heteroatoms in the chain 

The addition of nitrogen, phosphorus or silicon atoms in the fluorinated back-bone improve 

typical properties. An example of such materials are the fluorinated poly(phosphazene)s 

(Figure 3.7). 

 

 

 

 

 

 

Their Tg values are -70 °C and their properties are satisfactory up to 175 °C, whereas their 

average molecular weights are high (Mn are higher than 106 g.mol
-1

). Their chemical 

resistance are excellent and the presence of phosphorous atom impart to the resulting 

poly(phosphazene)s flame retardancy-properties.  

Another example of fluorinated copolymers containing heteroatoms in the main backbone are 

the fluorinated silicones. The most conventional fluorinated polysiloxane and commercialized 

Scheme 3.7. Synthesis of fluorinated poly(phosphazenes). 

+  NaORFN P

Cl

Cl n

N P

ORF

ORF n
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mainly by Dow Corning Company and recently by Momentive company, is synthesized from 

D3 cyclosiloxane (Figure 3.2). 

 

 

 

 

 

 

Tg value of this polymer is -68 °C and it is possible to cross-link it by various classical 

processes related to the silicone chemistry (e.g. peroxide or by SiH/Si-vinyl systems). 

Fluorosilicones are used for their swelling resistance in non-polar medium (e.g. in Skydrol 

Fluid
®

) even at 100 °C but they are mainly used to replace copolymers (based on 

fluoromonomers) when a good resistance at low temperature is required. 

Thermal depolymerization limits their stability at high temperature and this drawback led to 

extensive research on fluorinated silicones called “hybrid”
15-17

 (Figure 3.3). 

 

 

 

 

Improvement on the thermostability of the hybrid silicones was obtained introducing VDF, 

TFE and HFP units. Though the Tg values were acceptable (ranging from -50 to -20 °C), their 

thermostability was much higher (of ca. 200 °C) than that of commercially available 

fluorinated silicones mentioned above
15-17

. 

Polymerization of fluoromonomers 

Except for a few monomers such as fluorinated oxetanes, oxazonolines
19,20

, vinyl ethers with 

fluorinated side group
18,19

, hexafluoropropylene oxide
20,21

 and α-trifluoromethacrylic acids
22

 

most fluoropolymers are synthesized by conventional radical polymerization. Radical 

polymerization is easy and straightforward, usually it does not requires extreme reaction 

conditions, reactants do not need high purity. For these reasons more than 95% of 

fluoropolymers are prepared in this way
2
.  

* Si

CH3

CH2

O *

n
CH2

CF3

Si

R

R'

CH2 CH2 CF2 CH2 CH2 Si

R

R'

O

x
n

Figure 3.2. Example of commercial available fluorinated polysiloxane. 

Figure 3.3. Structure of “hybrid” fluorinated silicones. 
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3.1.9 Telomerization 

The processing of fluoropolymers is still difficult because several of them are not soluble and 

exhibit very high melting points. One of the most interesting strategies used in order to limit 

these drawbacks of fluoropolymers is the telomerization reaction. Telomerization, in contrast 

with polymerization usually leads to low molecular weight polymers, called telomers, or even 

to monoadducts with well-definied end groups. Such products are obtained from the reaction 

between a telogen or chain transfer agent (X-Y), and one or more (n) molecules of a 

polymerizable compound M called taxogen or monomer. Telogen X–Y should be easily 

cleavable by free radicals leading to an X∙ radical which will be able to react further with 

monomer. After the propagation of monomer, the final step consists of the transfer of the 

telogen to the growing telomeric chain. Telomers are intermediate products between organic 

compounds (e.g., n = 1) and macromolecular species (n >100). 

Other differences between telomerization and polymerization are the following: (i) in 

telomerization, fragments of the initiator mainly induce the rupture of the telogen, whereas in 

polymerization, they add onto the monomer, (ii) the groups at the ends of the chain are 

significant from a chemical point of view because the molecular weights are low. 

A telomerization reaction is the result of four step: initiation, propagation, termination and 

transfer. Telomerization can be initiated from various processes: photochemical (in presence 

of the UV rays), in presence of radical initiator or redox catalysts, thermally, or initiated by X- 

or γ-rays. Depending on the process different mechanism are involved.  

The general mechanism of telomerization is reported in Scheme 3.8, where XY, 

CF2=CRR’,ki, kp1, kTe, and ktr represent the telogen, the monomer, the rate constant of 

initiaton, the rate constant of propagation, termination, and transfer respectively
23

. 
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Example of fluorinated fluoroalkenes used in telomerization are VDF, TFE, CTFE, and HFP. 

3.1.10 Controlled Radical Polymerization 

Studies on telomerization helped researchers to synthesize polymers with controlled 

architecture and properties. Several teams have taken part in the evolution of radical 

telomerization toward controlled radical polymerization
24

. 

Since the mid-90s, controlled radical polymerization has drawn much interest from both 

academic and industrial researchers. In the years new 

techniques  have been proposed and developed in 

order to control the reactivity of free radicals. Such a 

control gives a “living” character to the radical 

polymerization. However, for radical polymerization 

the truly living character is far from being attained 

and it seem preferable to use the term “controlled” 

process, rather than “living” process. The general 

principle of the methods is based on a reversible activation-deactivation process (Scheme 3.9) 

between dormant chains (or capped chains) and active chains (or propagating radicals).  

A2 2A

A  +   XY X  +  AY

X  +  CF2=CRR' X(C2F2RR')

INITIATION

PROPAGATION

X(C2F2RR') CF2=CRR' X(C2F2RR')2

X(C2F2RR')n CF2=CRR' X(C2F2RR')n+1

X(C2F2RR')n X(C2F2RR')p X(C2F2RR')p+nX

TERMINATION

TRANSFER

X(C2F2RR')n X-Y X(C2F2RR')n  +  X+

+

+

+

ktr

kTe

kpn

kp1

ki

P X P

+M

kp

dormant 
chain

kact

kdeact

active chain 
(propagating)

Scheme 3.8. General mechanism of telomerization. 

Scheme 3.9. Reversible activation in 

controlled radical polymerization (CRP). 
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Actually, controlled radical polymerization (CRP) has attracted a growing interest due to the 

ability of this process to control the polymeric structures and architectures
2,25

. Controlled free-

radical polymerization enables 

to apply free-radical 

polymerization to the 

synthesis of well-defined 

polymers with predictable 

molar masses and narrow 

polydispersities
26

. Example of 

different methods that lead the 

controlled free-radical 

polymerization are: i) 

nitroxide-mediated radical 

polymerization (NMP)
27,28

, ii) 

atom transfer radical 

polymerization (ATRP)
29-31

, 

iii) iodine transfer 

polymerization (ITP)
23,32-41

, 

iv) reversed addition-

fragmentation chain transfer 

(RAFT)
42,43

, v) 

macromolecular design by 

interchange of xanthate 

(MADIX)
44

 vi) organo-heteroatom radical polymerization
45,46

, and CRP controlled by boron 

derivatives
47-53

, vii) organo-cobalt mediated radical polymerization, OCRP, based on 

(Co(acac)2)
54

. Schemes of the activation-deactivation process of CRPs are reported in Scheme 

3.10. 

Iodine transfer polymerization 

Iodine transfer polymerization was one of the radical living process developed in the late 

1970s by Tatemoto at the Daikin company
32,33,37

. In this polymerization perfluoroalkyl 

iodides are used as chain transfer. The highly electron withdrawing of perfluorinated group 

(RF) allow the lowest level of the CF2-I bond-dissociation energy (BDE). Various fluorinated 

monomers have been used in ITP
23

. Basic similarities in these living polymerization systems 

are found in the stepwise growth of polymeric chains at each active species. The active living 

centre, generally located at the end-groups of the growing polymer, has the same reactivity at 

Pn

+M

kpkd
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+ O N

R

R'

Nitroxyde-mediated radical polymerization (NMP)

Pn X

kact

kdeact

+Mtn X/L Mtn+1 X2/L+

Atom transferradical radical polymerization (ATRP)

Pm

+M

kpkex

kex

+Pn

+M

kp

Pm I Pn I+

Iodine transfer radical polymerization (ITP)

Pn

+M

kp

S C

S

Z

Pm

Pn S C

S

Z

Pm

Pn S C

S

Z
Pm

+M

kp

+

kadd
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+
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Pn

+M
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Pn O N

R
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Reverse addition-fragmentation chain transfer process: RAFT (Z stands for alkyl or aryl group) 
and Madix (Z = Oalkyl)

Scheme 3.10. Various reversible activation processes of CRP. 
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any time during polymerization, even when the reaction is stopped. In the case of ITP of 

fluoroolefins, the thermal active bond is always the C-I bond originated from the initial iodine 

containing both chain transfer agent and monomer. The mechanism (Scheme 3.11) can be 

described as follows. The initiating radical A∙ generated by thermal decomposition of a 

conventional radical initiator (such as AIBN) in step a), adds onto M monomer and the 

resulting radical propagates 

(step b)). The exchange of 

iodine from the transfer 

agent, R-I, to the 

propagating radical, Pn∙, 

results in the formation of 

the polymer alkyl iodide, Pn-

I, and a new initiating 

radical, R∙ (step c)). In step 

d), R∙, generated from the 

alkyl iodide or the Pn∙, adds 

onto a monomeric unit and 

propagates. As in any 

radical process, the 

termination occurs in ITP 

polymerization (step f)). 

Minimizing the termination 

step remains essential to 

keep a good control of the 

polymerization. Ideally in 

ITP, to obtain polymer with a narrow molar mass distribution, the rate of exchange should be 

higher than that of the propagation.  

As for telomerisation, also iodine transfer polymerization can be easily applied to fluorinated 

alkenes: ITP make it possible to control the polymerization of monomers such as VDF or 

TFE. This is observed by the linear increase in the mean degree of polymerization (DPn) with 

VDF conversion. This behavior is observed when a R-CF-I transfer agent is used and 

evidenced the controlled character of the polymerization of VDF. Conversely the use of R-

CH2-I chain transfer agent evidenced a poor control of the polymerization. These results 

suggested that when a chain transfer with a structure close to that of the dormant polymer is 

used the controlled behavior is improved.  
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Scheme 3.11. General mechanism of iodine transfer polymerization (ITP). 
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Chapter 4. Synthesis of 4’-nonafluorobutyl styrene 

Monomers and polymers containing telomeric fluorinated moieties have been used for long 

time because of their unique combination of useful surface properties such as: hydrophobicity, 

lypophobicity, oleophobicity, resistance to ageing and oxidation, chemical inertness, low gas 

permeability. They have found many applications in surface coating in metal, stone, plastic, 

paper, textiles, leather, automotive and petrochemical industries
1
. In this chapter the synthesis 

of a fluorinated monomer bearing a ‘short-chain’ fluorinated moiety, 4’-nonafluorobutyl 

styrene is investigated. The aim of this Chapter is the investigation of many crucial 

parameters of this three-steps synthesis such as the optimization of the synthesis of the first 

intermediate, the evaluation of the role of chemical variables such as reactants, solvents, 

ligands and physical parameters such as temperature. For each step the synthesis procedure is 

described and the products obtained are characterized by IR, 
1
H NMR, 

19
F NMR, GC-MS 

analysis. 

Introduction 

Shafrin and Zisman
2
 formulated the Constitutive Law of Wettability in which they affirmed 

that “the wettability of organic surfaces is determined by the nature and packing of the 

surface atoms or exposed groups of atoms of the solid and is otherwise independent of the 

nature and arrangements of the underlying atoms and molecules”. For understanding this 

statement it is important to underline that the surface atoms attract each other by highly 

localized attractive force fields, such as London dispersion forces, which decrease in intensity 

with the sixth power of distance. The influence of such a field of force become unimportant at 

a distance of only a few atoms diameters. For this reason, surface properties are localized only 

in the first ten angstrom of the surface, and they can be deeply modified by coating. 

The Constitutive Law of Wettability emphasizes not only the crucial role of the nature of the 

surface atoms, but also the effect of their structural organization on the surface itself. 

Molecules having long fluorinated moieties (at least 8 to 12 completely fluorinated carbon 

atoms) show highly ordinate structures due to the liquid crystal behavior of the rigid 

fluorinated side groups
3-12

.  

Wang et al.
7
 studied the semifluorinated side-chain end-structures of crystalline 

semifluorinated block copolymers. On the basis of structural analysis, at room temperature, 

semifluorinated side chains with less than six -CF2- segments form a disordered isotropic 

phase with both -CF3 and -CF2- groups exposed to the surface. In contrast, semifluorinated 

side chains with more than six -CF2 units form higher ordered phases, with only -CF3 groups 

exposed to the surface. In particular, with more than ten fluorinated carbon atoms a crystalline 
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phase with a uniform hexagonal close packed array of perfluorinated  side chains is formed. 

The resulting surface morphology consists of a regular and smooth surface covered with -CF3 

groups (Fig. 4.1). This behavior is due to the superficial rearrangements of the long 

fluorinated chains. In the case of long fluorinated chains the exposition of the -CF3 groups on 

the surface is more favored than in short ones; this results in a marked decrease of the surface 

energy due to the lower surface energy of the close-packed -CF3 structure compared to  -CF2 

system (Table 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hare et al.
13

 measured surface tensions of perfluorinated carboxylic acids, showing a decrease 

of the critical surface tension as the length of the fluorocarbon chain increased. This implies 

that long fluorinated chains have better surface properties than short ones. As explained in 

Chapter 2, long perfluorinated chains are persistent in the environment and have strong 

bioaccumulative effects
14-25

 and they will be banned as stated by the PFOA Stewardship 

Program launched by U.S. EPA in 2006. The use of shorter chain is detrimental to surface 

properties because of the partial or complete loss of highly structuring liquid-crystal 

properties. One of the strategies adopted to increase the molecular rigidity of short chain 

fluorinated telomers is the introduction of a phenyl or biphenyl group as molecular spacer. 

Figure 4.1. Schematic representation of the semifluorinated side chain end structures of semifluorinated copolymers 

with different fluorinated chain length F(CF2)m [7]. 
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surface structure γC [mN ∙ m
-1

] 

a) 6 

b) 15 

c) 24 

Table 4.1. Critical surface tension of a) perfluoro carbon chain, b) semifluorinated carbon chain, c) hydrocarbon 

chain. 

The introduction of the phenyl ring 

The introduction of phenyl rings impart to side chains less flexibility enhancing  the self-

assembling tendency of pendant chains. The intermolecular interaction between aromatic 

rings in the side chains induces an high level of lateral order of side chains increasing the 

packing of superficial -CF3 groups
12

. 

 

The synthesis of 4’-nonafluorobutyl styrene was achieved in three steps (Scheme 4.1):  (1) 

reduction of 4’-nonafluorobutyl acetophenone, (2) reduction in the presence of NaBH4 

leading to the formation of alcohol, (3) dehydration in the presence of KHSO4 leading to the 

desired monomer (3). The synthesis of 4’-nonafluorobutyl acetophenone is a cross coupling 

reaction and it is described in the next paragraph. In order to optimize the global yield of the 

synthesis a series of changes of the experimental conditions were carried out. 
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Scheme 4.1. Synthetic route for the preparation of 4’-nonafluorobutyl styrene (3). 
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Cross-coupling reaction in presence of perfluoroalkyl iodide. 

The synthesis of fluorinated organic compounds that bear an aromatic ring directly linked to a 

fluorinated alkyl group via copper catalysis cross-coupling reaction was first discovered by 

McLoughlin and Thrower
26,27

 and revisited and improved by Chen and Tamborsky who used 

this reaction pathway for the introduction of trifluoromethyl groups in bromoaromatics
28,29

 

and bromoheterocyclic
30-32

. α-Fluoroalkyl-substituted aromatic compounds are used as 

pharmaceuticals and agrochemicals
 
intermediates

33-36
, liquid crystals

37,38
, and precursors for 

hydrophilic and hydrophobic silane coupling agents
39,40

. Many different routes have been  

reported for the synthesis of fluoroalkyl-substituted aromatics. Bravo et al.
41

 reported the free-

radical perfluoroalkylation of aromatics with 1-iodo-perfluorobutane in presence of benzoyl 

peroxide and Cu(II). Huang et al.
42

 reported the fluoroalkylation of aromatics with 

per(poly)fluoroalkyl chlorides initiated by sodium dithionite in dimethylsulfoxide and 

Knauber et al.
43

 reported the copper catalyzed trifluoromethylation of aryl iodides employing 

potassium (trifluoromethyl)trimethoxyborate. Recently,
44

 a copper-catalytic method in which 

the copper complex is reusable was discovered.  Among all the methods proposed that of 

McLoughlin and Thrower proved to be the most efficient and regiospecific for the 

perfluoroalkylation of 4’-bromoacetophenone because the introduction of perfluoroalkyl 

chains in the aromatic ring occurs exclusively at the halogen site and the formation of biaryls 

is excluded. This work deals with the synthesis of 4'-nonafluorobutylacetophenone by the 

reaction between 1-iodo-perfluorobutane and 4'-bromoacetophenone in the presence of N,N 

dimethylformamide or dimethylsulfoxide as the solvent, catalysed by different transition 

metals such as Fe
0
, Cu

0
, or metal salts CuBr, CuCl2 (Scheme 4.1). The effects of ligands, 

solvents, temperature and metal catalysts were investigated to optimize the reaction by finding 

the best experimental conditions. 

Br

O

+ C4F9

OMetal catalyst / ligand

DMF or DMSO

C4F9I

Metal catalyst: Cu0

CuBr

CuCl2

ligand: 2,2' -bypiridine
HMTETA
PMTETA

Fe0

solvent: DMF

DMSO

(1)

 

Scheme 4.2. Synthesis of 4’-nonafluorobutylacetophenone from the metal-assisted cross-coupling of 1-iodo-

perfluorobutane (1) with 4’-bromoacetophenone. 
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Synthesis of 4’-nonafluorobutyl acetophenone (1) 

4.1.1 Materials and Methods 

Iron, copper, copper(I) bromide, copper(II) chloride, 2,2 bipyridine, N,N,N’,N’’,N’’’,N’’’-

hexamethyltriethylenetetramine (HMTETA), N,N,N’,N’’,N’’-pentamethyldiethylenetriamine 

(PMTETA), 4'-bromoacetophenone, N,N dimethyl-formamide (DMF) and dimethylsulfoxide 

(DMSO) were purchased from the Aldrich Chemical Company. 1-Iodo-perfluorobutane was 

purchased by Maflon s.p.a.. The solvents were used as received. All the reactions were 

conducted under nitrogen atmosphere. 

The conversion (χ, Eq. 4.1) was assessed by the sum of the values of the integrals (∑ , Eq. 

4.2) of the signals relative to 4’-bromoacetophenone measured by 
1
H NMR spectroscopy at 

initial time (0) and at the end   ) of the reaction. 

  
 ∑      ∑    

 ∑    
 Eq. 4.1 

 

∑  ∫
   

       

 
 ∫

   
       

 
 ∫          Eq. 4.2 

Where ∫   
     

  represents the integral of the signal assigned to     centered at   ppm. 

4.1.2 General procedure for the synthesis of 4'-nonafluorobutylacetophenone, 

C4F9C6H4COCH3 (1). 

In a 100 mL round bottom flask, equipped with a magnetic stirrer and a reflux condenser, a 

mixture composed of 1.0 mol of 4'-bromoacetophenone, 4.0 mol of N,N dimethylformamide, 

1.0 mol of 1-iodoperfluorobutane, 4.6 mol of copper and 0.1 mol of 2,2-bipiridine were 

heated under stirring for 20 hours at 60 °C. After the reaction, the copper powder was 

removed by filtration and the liquid layer was washed three times with 30 mL of water and 30 

mL of diethyl ether, separating each time the ether layer. The ether was removed under 

reduced pressure and the 4'-nonafluorobutylacetophenone (b.p. 66-69 °C/0.2 mmHg) was 

distilled as a colorless liquid.  
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4.1.3 Chemical characterization of 4’-nonafluorobutylacetophenone 

Hereafter are reported the chemical characterization of 4’-nonafluorobutylacetophenone:IR 

(Figure 4.2), 
1
H NMR (Figure 4.3), 

13
C NMR (Figure 4.4-4.5), 

19
F NMR (Figure 4.6), , and 

GC-MS spectroscopy (Figure 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 

IR (cm
-1

): 3422 (νas, C=O), 1695 (νs, C=O), 1613-1577 (νs, phenyl ring), 1202-1274 (δs, 

CF2,CF3), 1349 (τ, CH3).  
 

Figure 4.2. IR spectrum of 4’-nonafluorobutyl acetophenone. 
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1
H NMR (CDCl3) δ: 2.64 ppm (3H, s, CH3); 7.69 ppm (2H, d, J= 8.5 Hz, m-protons from 

C=O); 8.07 ppm (2H, d, J= 8.5 Hz, o-protons from C=O).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. 1H NMR spectrum of 4’-nonafluorobutyl acetophenone in CDCl3. 

Figure 4.4. 13C NMR of 4’-nonafluorobutyl acetophenone in CDCl3. 
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13
C NMR (CDCl3) δ: 196.8 ppm (s, C=O); 139.8 ppm (s, p-carbon from CF2); 132.8 ppm (t, 

2
JC-F = 24 Hz, p-carbon from C=O); 128.3 ppm (s, o-carbons from C=O); 127.2 ppm (t, 

2
JC-F = 

6 Hz, m-carbons from C=O); 118.8 ppm (t, 
2
JC-F = 33 Hz, CF3-CF2-CF2-CF2-Ph); 115.9 ppm 

(t, 
2
JC-F = 33 Hz, CF3-CF2-CF2-CF2-Ph); 115.4 ppm (t, 

2
JC-F = 33 Hz, CF3-CF2-CF2-CF2-Ph); 

113.1 ppm (m, 
2
JC-F = 33 Hz, CF3-CF2-CF2-CF2-Ph); 26.5 ppm (s, CH3).  

 

a) b) 

c) d) 

 

Figure 4.5. 1H,13C-HMQC of 4’-nonafluorobutyl acetophenone, a) full scale, b) and c) aromatic carbons, d) 

fluorinated carbons moieties. 
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19
F NMR (CDCl3) δ: -81.0 ppm (CF3-CF2-CF2-CF2-Ph); -125.6 ppm (CF3-CF2-CF2-CF2-Ph); 

-122.8 ppm (CF3-CF2-CF2-CF2-Ph); -111.6 ppm (CF3-CF2-CF2-CF2-Ph).  

 

 

 

 

Figure 4.6. 19F NMR of 4’-nonafluorobutyl acetophenone in CDCl3. 

C4F9

O + 2 e-

C4F9

O

C4F9

O

- CO

C4F9

m/z = 338 m/z =323

m/z = 295

-C4F9

O

m/z = 119

Scheme 4.3. Possible fragmentation of 4’-nonafluorobutyl acetophenone. 
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Spectral data: MS m/z (rel. ab. %): 338 ([M]
+
, 10%); 323 ([M-CH3]

+
, 100%); 295 ([M-

COCH3]
+
, 20%); 119 ([M-C4F9]

+
, 5%).  

Anal. Calcd for C12F9H7O : C, 42.6 % ; F, 50.6 % ; H, 2.1 %. Found: C, 41.9 % ; F, 50.9 % ; 

H, 2.0 %. 

Results and discussion 

4’-Nonafluorobutylacetophenone was synthesised by varying one or more experimental 

parameters for each run. All the reactions were carried out for a fixed time of 20 hours to 

compare the results obtained. The development of the optimum conditions is discussed below, 

taking into account various factors. 

4.1.4 Effect of the metal catalyst 

Transition metal-catalyzed cross coupling reactions of organic halides containing a C-X bond 

(X = I, Br, Cl, OTf, OTs, etc..) with organometallic reagents are among the most important 

transformations for carbon-carbon bond formation.  

 

 

 

 

Figure 4.7. . GC-MS spectrum of 4’-nonaflurobutyl acetofenone (1). 
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Exp metal ligand solvent [RFI]0/[ligand]0/[metal]0/[solvent] T [°C] η
**

 % χ
*
 % 

1 Fe0 - DMFa 1/0/4.6/4 130 - - 

2 Fe0 - DMSOb 1/0/4.6/4 130 - - 

3 Fe0 2.2-bipyridine DMF 1/0.1/4.6/4 100 - - 

4 CuBr - DMF 1/0/4.6/4 130 - - 

5 CuBr - DMSO 1/0/4.6/4 130 - - 

6 CuBr HMTETAc DMF 1/0.1/4.6/4 80 - - 

7 CuCl2 - DMF 1/0/4.6/4 130 - - 

8 CuCl2 - DMSO 1/0/4.6/4 130 - - 

9 CuCl2 2,2-bipyridine DMF 1/0.1/4.6/4 80 - - 

10 Cu0 - DMF 1/0/4.6/1 130 50 70 

Table 4.2. Series of reactions of synthesis of 4'-nonafluorobutylacetophenone from cross-coupling of 1-perfluorobutyl 

iodide with 4’-bromoacetophenone (reaction time of all runs: 20 hrs). 

                *Conversion calculated by 1H NMR spectroscopy as reported in the material and methods part. 

                **Yield. 

                a) DMF = N,N-dimethylformamide 

                b) DMSO = dimethyl sulfoxide 

                c) HMTETA = N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetramine 

For constructing new alkyl chains several transition metals could be used. In the synthesis of 

4’-nonafluorobutylacetophenone by cross-coupling reactions copper metal only was 

efficiently used as the catalyst. Different kinds of transition metals and metal salts were tested 

as potential catalysts: Fe
0
, CuBr, CuCl2 (entries 1-9, Table 4.2), but these attempts to get the 

desired product systematically failed. For the effectiveness of the synthesis, the [metal]0 / [1-

iodo-perfluorobutane]0 molar ratio must be at least 2 / 1. The high amount of required copper 

could be explained by the reaction mechanism proposed by McLaughlin and Thrower
45,46

 

(Scheme 4.4). 

 

Scheme 4.4. General mechanism of the synthesis of perfluoroalkyl aromatic compounds via copper-assisted cross-

coupling reaction26,27.  

The mechanism of copper-assisted cross-coupling reaction must be similar to that involved in 

the reaction between halogenoaromatic compounds and cuprous acetylides
47

. The mechanism 

is composed of two steps: first, in the metallation stage, the fluoroalkylcopper compound is 

formed as a solvated complex, then it interacts with the aromatic halide which is followed by 

an exchange between the halogen and the perfluoroalkyl chain on the aromatic derivative. To 
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stabilize the fluoroalkylcopper complex formed in the former stage the solvent must also 

induced a ligand effect onto copper.  

4.1.5 Effect of the solvent 

For the success of the cross-coupling reaction with perfluoroalkyliodides a polar aprotic 

solvent must be used. For this purpose, N,N-dimethylformamide (DMF) and 

dimethylsulfoxide (DMSO) were both used as solvents. The comparison on the effect of both 

these solvents is shown in Table 4.3. Changing the solvent while keeping all the reaction 

conditions unmodified does not affect the yield and conversion. Conversely, the quantity of 

both solvents have a remarkable effect on the reaction yields (Exp. 11-15 for DMF, and Exp. 

16-20 for DMSO).  

Exp metal solvent [RFI]0/[metal]0/[solvent] T [°C] η
**

% χ
*
 % 

11 Cu0 DMF 1/4.6/1 130 50 70 

12 Cu0 DMF 1/4.6/2 130 54 72 

13 Cu0 DMF 1/4.6/3 130 54 73 

14 Cu0 DMF 1/4.6/4 130 58 75 

15 Cu0 DMF 1/4.6/5 130 58 75 

16 Cu0 DMSO 1/4.6/1 130 51 70 

17 Cu0 DMSO 1/4.6/2 130 53 72 

18 Cu0 DMSO 1/4.6/3 130 54 72 

19 Cu0 DMSO 1/4.6/4 130 58 75 

20 Cu0 DMSO 1/4.6/5 130 58 75 

Table 4.3. . Series of reactions of synthesis of 4'-nonafluorobutylacetophenone from cross-coupling of 1-perfluorobutyl 

iodide with 4’-bromoacetophenone (reaction time of all runs: 20 hrs). 

                *Calculated by 1H NMR spectroscopy as reported in the material and methods part. 

................**Yield. 

                a) DMF = N,N-dimethylformamide 

                b) DMSO = dimethyl sulfoxide 

Furthermore, an increase in the initial [solvent]0 / [1-iodo-perfluorobutane]0 molar ratio from 

1 to 4 induced a 8% yield increase while a further increase from 4 to 5 was not beneficial (as 

noted in Figure 4.1). These results confirm previous studies and revealed that the optimized 

solvent / 1-iodo-perfluorobutane molar ratio is 4 / 1. 
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Figure 4.8. Effect of the [solvent]0 / [C4F9I]0 initial molar ratio in the yield in the copper-assisted cross-

coupling reaction of 1-iodoperfluorobutane with 4’-bromoacetophenone using DMF or DMSO as the 

solvent (Table 4.3). 

4.1.6 Effect of the ligand 

The important effect of the ligand on the copper mediated cross-coupling reaction can be 

explained by examining the mechanism proposed in the paragraph above. For the synthesis of 

4’-nonafluorobutylacetophenone, 2,2’-bipyridine, HMTETA, PMTETA were used as 

complexing ligands (Figure 4.8). It has been shown that a catalytic amount of these 

compounds was particularly beneficial to the reaction yield. Using DMSO and DMF as 

solvents, without ligands, the reaction conversion was limited to 75% and the yield did not 

exceeded 58% in 20 hours (Exp. 21-22, Table 4.4).  

Exp. metal ligand solvent [RFI]0/[ligand]0/[metal]0/[solvent] T [°C] η
**

 % χ
*
 % 

21 Cu0 - DMSO 1/0/4.6/4 130 58 75 

22 Cu0 - DMF 1/0/4.6/4 130 58 75 

23 Cu0 HMTETA DMF 1/0.1/4.6/4 80 60 88 

24 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 60 62 88 

25 Cu0 2.2-bipyridine DMSO 1/0.1/4.6/4 60 62 88 

26 Cu0 PMDETA DMF 1/0.1/4.6/4 100 69 90 

27 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 80 73 93 

28 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 100 73 99 

Table 4.4. Series of reactions of synthesis of 4'-nonafluorobutylacetophenone from cross-coupling of 1-perfluorobutyl 

iodide with 4’-bromoacetophenone (reaction time of all runs: 20 hrs). 

                *Calculated by 1H NMR spectroscopy as reported in the material and methods part. 

…………**Yield. 

                a) DMF = N,N-dimethylformamide 

                b) DMSO = dimethyl sulfoxide 

                c) HMTETA = N,N,N’,N’’,N’’’,N’’’-hexamethyltriethylenetetramine. 
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A presence of catalytic amount of an amino ligand induced an increase of both conversion and 

yield (entries 20-25, Table 4.4). From these results, 2,2-bipyridine is regarded as the best 

ligand that led to conversion higher than 90% and yield higher than 70% depending on the 

temperature.  

4.1.7 Effect of temperature 

For the copper-mediated cross-coupling reaction of 1-iodo-perfluorobutane and 4’-

bromoacetophenone, the effect of temperature is noted by comparison of entries 21, 24, 25 

(Table 4.5) in which three different temperatures were used, 60, 80 and 100 °C.  

Exp. metal ligand solvent [RFI]0/[ligand]0/[metal]0/[solvent] T [°C] η
**

 % χ
*
 % 

29 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 60 62 88 

30 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 80 73 93 

31 Cu0 2.2-bipyridine DMF 1/0.1/4.6/4 100 73 99 

Table 4.5. Series of reactions of synthesis of 4'-nonafluorobutylacetophenone from cross-coupling of 1-perfluorobutyl 

iodide with 4’-bromoacetophenone (reaction time of all runs: 20 hrs). 

                *Conversion calculated by 1H NMR spectroscopy as reported in the material and methods part. 

…………**Yield. 

                a) DMF = N,N-dimethylformamide 

As displayed in Figure 4.9 when the temperature increases, a linear increase in conversion 

was observed. Conversely, the yield increases almost linearly from 60 to 80 °C and then it 

reached a plateau to 73% indicating that a further temperature increase was not necessary.  

 

 

 

 

 

 

 

PMDETA HMDETA 2,2-bipyridine

N
N

N N
N

N
N

N N

Figure 4.9. Ligands used in the synthesis of 4’-nonafluorobutyl acetophenone. 

Figure 4.10. Effect of the temperature on the yield and conversion for the reaction between Cu0, N,N-dimethylformamide, in the 

presence of 2,2-bipyridine (entries 21, 24 and 25, Table 1). 
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Conclusion 

The aim of this first part of this chapter is the optimization the synthesis of 4’-

nonafluorobutylacetophenone by the copper-assisted cross-coupling reaction, by changing the 

experimental conditions. The use of an aprotic polar solvent is compulsory for the success of 

the reaction as shown by the mechanism (Scheme 3.2), but changing N,N dimethylformamide 

or dimethylsulfoxide does not seems to have any significant effect on yield and conversion. 

Therefore, in view of a possible industrial application, DMSO should be preferred to DMF 

because the former is less toxic.  

The study conducted on the quantity of solvent required for the reaction showed that the 

optimum [solvent]0 / [1-iodo-perfluorobutane]0 molar ratio is 4. Different experiments were 

attempted to assess the role of the metal catalyst in the cross-coupling reaction. McLoughlin 

and Thrower showed that mercury and zinc were ineffective catalysts. The use of metallic 

iron and cupric and cuprous salts as potential metal catalysts was investigated, but the desired 

product was not obtained, and only copper metal led to obtain a significant yield. Among the 

complexing ligands used (2,2’-bipyridine, HMTETA, PMTETA), 2,2’-bipyridine gave the 

best results both for conversion and yield. Further, using 2,2’-bipyridine when the 

temperature increased from 60  to 100 °C showed a positive effect on reaction yield and 

conversion. 

Synthesis of 4’-nonafluorobutyl ethanol (2) 

The synthesis of 4’-nonafluorobutyl-styrene was achieved into two steps (Scheme 3.1), in 

which a reduction of 4’-nonafluorobutyl acetophenone (1, obtained in a previous paragraph), 

in the presence of NaBH4 as reducing agent, led to the formation of the alcohol (2), the 

dehydration of the latter, in the presence of KHSO4, conducted to synthesize the desired 

monomer (3).  

4.1.8 Materials  

2,2’ Azobisisobutyronitrile (AIBN), tetrahydrofuran (THF), methanol, acetonitrile (CH3CN), 

potassium hydrogen sulfate (KHSO4), sodium borohydride (NaBH4), diiodomethane (CH2I2) 

and toluene were purchased from the Aldrich Chemical Company. 1-Iodo-perfluorohexane 

was a gift from Elf Atochem. All the solvents and reagents were used with a purity of 98-

99%. AIBN was purified by recrystallization from methanol and dried under vacuum prior to 

use. 
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4.1.9 General procedure for the synthesis of 4'-nonafluorobutyl phenylethanol 

C4F9C6H4CH(OH)CH3 

4’-Nonafluorobutylacetophenone (1) (15.5 g, 45.8 mmol), sodium borohydride (1.8 g, 

47.7mmol), and THF (50 mL) as the solvent were stirring into a 100 mL round bottom flask 

in an ice bath. Methanol (50 mL) was slowly added drop-wise into the flask and the mixture 

was refluxed for 2 hours under heating after being stirred for 30 minutes at room temperature. 

Methanol was removed by distillation. Water was added to the ether solution and the ether 

layer was taken out. The ether was removed by rotavapor and 14.4 g of colorless oil (b.p. 60-

65 °C/0.2 mmHg) were obtained (yield: 90%).  

4.1.10 Chemical characterization of 4’-nonafluorobutyl phenylethanol 

Hereafter are reported the chemical characterization of 4’-nonafluorobutyl phenylethanol: IR 

(Figure 4.10), 
1
H NMR (Figure 4.11), 

19
F NMR (Figure 4.12), and GC-MS spectroscopy 

(Figure 4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IR (cm
-1

): 3350 (νas, -OH), 1347 (δs CH3), 1606 (νs, phenyl ring), 1145-1234 (δs, CF2, CF3), 

1079 (δas, CH), 753 (ρ, CH3). 
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Figure 4.11. IR spectrum of 4’-nonaflurobutyl phenylethanol. 
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1
H NMR of 4’-nonafluorobutyl phenylethanol (2), δ (in CDCl3): 1.48 ppm (3H, d, 

3
JHH = 6.0 

Hz, CH3); 2.29 ppm (1H, s, -OH); 4.93 ppm (1H, m, CH); 7.50 ppm (2H, dd, 
3
JHH = 16 Hz; 8 

Hz, protons form phenyl ring). 

Figure 4.12. 1H NMR spectrum of 4’-nonafluorobutyl acetophenone (2) (recorded in CDCl3). 
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19
F NMR spectrum of 4’-nonafluorobutyl phenylethanol δ: -81.1 ppm (CF3-CF2-CF2-CF2-Ph); 

-125.7 ppm (CF3-CF2-CF2-CF2-Ph); -122.8 ppm (CF3-CF2-CF2-CF2-Ph); -110.8 ppm (CF3-

CF2-CF2-CF2-Ph).  
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Figure 4.13. 19F NMR 4’-nonafluorobutyl phenylethanol (2) (recorded in CDCl3). 

C4F9

OH + 2 e-
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OH
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- CH3
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m/z = 340 m/z =323
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- CH3

C4F9

OH

m/z = 325

-C4F9

OH

m/z = 121

Scheme 4.5. Possible fragmentation of 4’-nonafluorobutyl phenylethanol (2). 
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GC-MS (rel. ab. %): 340 ([M]
+
, 5%); 325 ([M-CH3]

+
, 100%); 121 ([M-C4F9]

+
, 20%). 

4.1.11 General procedure for the synthesis of 4'-nonafluorobutyl styrene 

C4F9C6H4CHCH2 

A mixture composed of 4’-nonafluorobutyl phenylethanol (2) (14.41 g, 42.3 mmol), toluene 

(50 mL) and potassium hydrogen sulfate (4.02 g, 29.5 mmol) was heated under stirring at 100 

°C for 48 hours in a 100 mL round flask connected to a reflux condenser. The reaction was 

monitored by gas-chromatography. After reaction, the mixture was distilled under vacuum 

and a colorless liquid was obtained (9.35 g, b.p. 66-69 °C/0.39 mmHg, yield 77%).  

4.1.12 Chemical characterization of 4’-nonafluorobutyl styrene 

Hereafter are reported the chemical characterization of 4’-nonafluorobuty styrene (3): IR 

(Figure 4.14), 
1
H NMR (Figure 4.15), 

19
F NMR Figure 4.16), and GC-MS spectroscopy 

(figure 4.17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. GC-MS spectrum of 4’-nomaflurobutyl phenyletanol (2). 
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IR (cm-
1
): 1617 (νs, phenyl ring), 1206-1274 (δs, CF2, CF3), 825 (ρ, C=C). 
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Figure 4.15. IR spectrum of 4-nonafluorobutyl styrene (3). 

Figure 4.16. 1H NMR spectrum of 4’-nonafluorobutyl styrene (3) (recorded in CDCl3). 



Synthesis and Characterization of Fluorinated Compounds for Industrial Applications 

 

75 

1
H NMR of 4’-nonafluorobutyl styrene, δ (in CDCl3): 5.41 ppm (1H, d, cis =CH2, 

3
JHH = 10.0 

Hz); 5.87 ppm (1H, trans =CH2, 
3
JHH = 17.5 Hz), 6.71-6.82 ppm (1H, doublet of doublets,

 

3
JHH =17.5 Hz; 10 Hz, =CH); 7.52 ppm (2H, d, 

3
JHH = 10.0 Hz, m- protons from C4F9), 7.56 

ppm (2H, d, 
3
JHH = 10.0 Hz, o- protons from C4F9).  

19
F NMR, δ (in CDCl3): -81.1 ppm (CF3-CF2-CF2-CF2-Ph); -125.7 ppm (CF3-CF2-CF2-CF2-

Ph); -122.9 ppm (CF3-CF2-CF2-CF2-Ph); -111.0 ppm (CF3-CF2-CF2-CF2-Ph).  
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Scheme 4.6. Possible fragmentation of 4’-nonaflulorobutyl styrene (3). 

Figure 4.17. 19F NMR 4’-nonafluorobutyl styrene (3) (in CDCl3).
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GC-MS measurement m/z (rel. ab. %): 322 ([M]
+
, 20%); 253 ([M-CF3]

+
, 5%); 153 ([M-

C3F7]
+
, 100%, 103 ([M-C4F9]

+
, 5%, 77 ([Ph]

+
, 15%).  

 

 

 

 

 

  

Figure 4.18. GC-MS spectrum of 4’-nonaflurobutylstyrene (3). 
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Chapter 5. Polymerization of 4’-nonafluorobutyl styrene: surface 

and thermal characterizations of the resulting polymer 

4’-nonafluorobutyl styrene is polymerized both by conventional radical polymerization and 

by iodine transfer polymerization in presence of 1-iodoperfluorohexane as iodinated chain 

transfer. The polymer obtained is characterized by NMR, TGA, GPC, DSC and surface 

analysis. Furthermore, a kinetic study is performed  for the ITP of 4’-nonafluorobutyl styrene.  

Synthesis of poly(4’-nonafluorobutyl styrene) 

Literature reports only few examples of fluoroalkyl substituted styrene monomers
1
 and most 

of them were polymerized by conventional
2-4

 or controlled
5-9

 radical polymerization (Table 

5.1). 

 

Monomer polymerization Mn Mw/Mn Tg [°C] Td [°C] Ref. 

F

F

FF

F

 

  CONV. 

ATRP 

NMP 

470,000 

11,400 

3,500 

1.83 

1.21 

1.03 

107 

95 

- 

420 

436 

- 

3
 

5
 

7
 

 

CONV. 390,000 2.20 112 - 
3
 

 

CONV. 59,700 3.23 165 382 
4
 

 

CONV. 88,800 3.00 160 366 
4
 

Table 5.1. Methods of radical polymerization (CONV. stands for conventional radical polymerization, ATRP stands 

for atom transfer radical polymerization, and  NMP stands for nitroxy-mediated radical  polymerization) and thermal 

properties and molecular weights of some fluorinated and fluoroalkyl styrene based-polymers. 

CF3

FF

F

CF3

F

CF3

F3C
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To the best of our knowledge scarce fluorinated styrene monomers, e.g. 2,3,4,5,6-

pentafluorostyrene, has been polymerized under ATRP
5,10,11

 or NMP
7-9

 only. However, no 

fluorinated styrene has been polymerized under degenerative transfer.  

The conventional and controlled free-radical polymerizations of 4’-perfluorobutyl styrene 

have been investigated. First, the conventional radical polymerization was initiated by AIBN 

with an initial [3]0/[AIBN]0 molar ratio of 100, using acetonitrile as the solvent. Second, in 

iodine transfer polymerization of monomer (3), the initiator was required together with the 

iodine chain transfer agent (in the present case 1-iodoperfluorohexane was chosen) (Scheme 

5.1).  

 

 

 

 

 

 

That controlled radical polymerization was carried out in similar experimental conditions, but 

with the presence of 1-iodoperfluorohexane as the chain transfer, with [3]0/[AIBN]0 and 

[3]0/[C6F13I]0 initial molar ratios of 100 and 20, respectively. That reaction was simply carried 

out at atmospheric pressure and after purification the resulting poly(4’-nonafluorobutyl 

styrene) was characterized by spectroscopy and chromatography. 

5.1.1 Materials 

2,2’ Azobisisobutyronitrile (AIBN), tetrahydrofuran (THF), methanol, acetonitrile (CH3CN), 

diiodomethane (CH2I2) and toluene were purchased from the Aldrich Chemical Company. 1-

Iodo-perfluorohexane was a gift from Elf Atochem. 4’-Nonafluorobutylacetophenone (1) was 

synthesized as in a previous chapter
12

 from the cross coupling reaction of 1-

iodoperfluorobutane with 4’-bromoacetophenone. All the solvents and reagents were used 

with a purity of 98-99%. AIBN was purified by recrystallization from methanol and dried 

under vacuum prior to use.  

5.1.2 Radical polymerization of 4’nonafluorobutyl styrene by conventional radical 

polymerization 

The conventional radical polymerization of 4’-nonafluorobutyl styrene was carried out in a 50 

mL two necked round flask equipped with a magnet bar, a rubber septum and a condenser 

C4F9

+ C6F13I

C4F9

C6F13
I

nAIBN  80 °C

CH3CN

(3) (4)

Scheme 5.1. Iodine transfer polymerization of 4’-nonafluorobutyl styrene (3) in the presence of 1-

iodoperfluorohexane as the chain transfer agent, initiated by AIBN. 
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connected to argon source, and containing 10.1 mg (1.02∙10
-2

 mol∙L
-1

) of AIBN, 2.00 g (1.03 

mol∙L
-1

)
 
of 4’-nonafluorobutyl styrene, and 4 mL of acetonitrile. The flask was evacuated and 

backfilled with argon for 20 minutes and 5 thaw-freeze cycles were applied prior to the 

polymerization. The reaction mixture was then placed in an oil bath, pre-heated at 80 °C for 

270 minutes. Then, the solvent was removed by rotavapor, the residue was solubilized in 

minimum of THF and precipitated from a large excess of cold methanol. After filtration, the 

precipitated product was dried in a vacuum oven at 60 °C for 15 h and 1.00 g (yield 50%) of a 

white powder was obtained. 

5.1.3 Radical polymerization of 4’nonafluorobutyl styrene by iodine transfer 

polymerization 

Iodine transfer polymerization of 4’-nonafluorobutyl styrene was carried out in the same 

conditions as above. The mixture was composed of 10.1 mg (1.02∙10
-2

 mol∙L
-1

) of AIBN, 2.00 

g (1.03 mol∙L
-1

) of 4’-nonafluorobutyl styrene, 138.0 mg (5.15∙10
-2

 mol∙L
-1

) of 1-

iodoperfluorohexane, 153.7 mg (0.26 mol∙L
-1

) of 1,2-dichloroethane and 4 mL of acetonitrile. 

After bubbling argon for 20 minutes, and 5 thaw-freeze cycles were applied, the reactant 

mixture was placed for 270 minutes in a oil bath pre-heated at 80 °C. The same purification 

procedure was adopted as above. Samples were periodically withdrawn from the medium 

during the polymerization to monitor the monomer conversion by 
1
H and 

19
F NMR 

spectroscopy. The precipitated product was dried in vacuum oven at 60 °C for 15 h, 1.01 g 

(yield 50%) of white polymer was obtained.  

Characterization 

The average number of monomer units present in the final polymer was calculated by 
19

F 

NMR. In the case of iodine transfer polymerization (ITP), the 
19

F NMR spectrum (Figure 

5.1), exhibits an overlapping between the signals assigned to CF2 of the perfluorobutyl chain 

resulting from the monomer units and the signals of perfluorohexyl that belong to the chain 

transfer (C6F13I) moiety. However, the CF3 end groups were the only ones to be distinguished 

by two different peaks: one centered at -82.14 ppm (signal a) assigned to the perfluorobutyl 

chain arising from the pendant styrene and that at -82.44 ppm (signal m) attributed to the CF3 

group resulting from the perfluorohexyl of the chain transfer agent. Hence, the integrals of 

these signals obtained from the 
19

F NMR spectrum enabled us to assess the average monomer 

units present in the polymer, as DPn (Eq. 5.1).  

 

    
(∫     

       ∫         
)  ∑(∫     

       ∫         
)

                                                  
 

Eq. 5.1 
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Where ∫     
 stands for the integral of signal of CFi in x unit (monomer or CTA). 

Subtracting the values of the integrals assigned to the fluorinated moiety in the fluorinated 

pendant chains (∫           
) from the integral of the peaks corresponding to the chain 

transfer agent (∫         
) enabled us to obtain an average DPn value of 8 monomeric units. 

 

 Mn PDI Td (10 %) 

conventional 7400 1.30 305 

controlled (ITP) 7500 1.15 305 

Table 5.2. Values of the average molecular weight (Mn), polydispersity index (PDI) measured by GPC (gel permeation 

chromatography), and temperature of the thermal stability after 10% of the loss of the polymer (TGA), obtained by 

conventional and controlled radical polymerization of 4’-nonafluorobutyl styrene 

Figure 5.1. 19F NMR spectrum of poly(4’-nonafluorobutyl styrene) synthesized by CRP (recorded in TDF), 

[3]0:[C6F13I]0:[AIBN]0=100:5:1. 
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The values of polydispersity indices (PDI) are 1.30 for the conventional polymerization and 

1.15 for the iodine transfer polymerization (ITP). The thermal stability (Figure 5.2) of the 

polymers was satisfactory (the 10% of the weight loss under air was achieved from 305 °C, 

Table 5.2) and the melting point (Tm) was 47 °C, as evidenced by the DSC chromatogram 

reported in Figure 5.3. 

Figure 5.2. TGA thermograms of the polymer (under air) obtained by conventional and controlled radical polymerization 

of 4’-nonaflurobutyl styrene. 

Figure 5.3. DSC spectrum of poly(4’-nonafluorobutyl styrene). 
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Kinetics of iodine transfer polymerization of 4’-nonafluorobutyl 

styrene (3) 

The kinetics of radical homopolymerization of monomer (3) by ITP was monitored from the 

calculation of the integrals assessed from the 
1
H NMR spectrum of 4’-nonafluorobutyl 

styrene. 
1
H NMR spectroscopy was used to monitor the conversion ( ) using 1,2-

dichloroethane as the internal standard. In fact, 1,2-dichloroethane was added to the reaction 

mixture as it exhibits a singlet at 3.66 ppm assigned to four equivalent protons (Figure 5.4). 

When the polymerization reaction was carried out in the presence of acetonitrile as the 

solvent, the NMR spectrum does not exhibit the signals characteristic of the polymer but only 

those of the monomer, because the polymer precipitates when it is formed. However, these 

NMR spectra (Figure 5.4) enabled to monitor the fluorostyrene conversion versus time during 

ITP of 4’-nonafluorobutyl styrene. 

 

Figure 5.4. 1H NMR spectra of samples from the controlled radical polymerization of 4’-nonafluorobutyl styrene in 

presence of C6F13I after 40 min (bottom), 60 min, 90 min, 180 min and 270 min (top) of reaction (recorded in CDCl3). 
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4’-Nonafluorobutyl styrene conversion ( ) was calculated according to Eq. 5.2. 

 

  
        

    
     

 

Eq. 5.2 

 

Where      and     represent the initial concentration of (3) monomer and the concentration 

of the monomer at time t, respectively. Values of   were assessed from the integrals of the 

signals of 4’-nonafluorobutyl styrene deduced from the 
1
H NMR measurements (Eq. 5.3). 

 

 

    
(∫     

       

       
 ∫    

       

       
  ∫    

       

       
)
   

 (∫     
       

       
 ∫    

       

       
  ∫    

       

       
)
 

(∫     
       

       
 ∫    

       

       
  ∫    

       

       
)
   

 Eq. 5.3 

 

 

The results of the calculation of   are reported in Table 5.3. The maximum of 4’-

nonafluorobutyl styrene conversion was reached at 84.9 % after 270 minutes. 

Time (min) [M]/[M]0 ([M]0-[M])/[M]0 ln ([M]0/[M]) 1-exp(-kd*t/2)   (%) 

0 1 0 0 0 0.0 

40 0.9929 0.0071 0.0072 0.1393 0.7 

60 0.9200 0.0800 0.0834 0.2015 8.0 

120 0.5071 0.4929 0.6790 0.3624 49.3 

180 0.2100 0.7900 1.5606 0.4908 79.0 

270 0.1514 0.8486 1.8876 0.6367 84.9 

Table 5.3. Evolution of the 4’-nonafluorobutyl styrene conversion monitored by 1H NMR spectroscopy ([monomer]0 : 

[AIBN]0 : [C6F13I] = 100 :1 : 5 at 80 °C). 

Values of fractional conversion versus time are plotted in Figure 5.4, and showed no evidence 

of the Trommsdorf’s effect. 
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The mechanism of free-radical polymerization
13,14

 requires that the polymerization rate be of 

first order with respect to the monomer and of half-order with respect to initiator 

concentration. Using the Tobolsky’s equation
15

 (see appendix B): 

 

  (
    
   

)     √
     
    

     
   
   Eq. 5.4 

 

and plotting the experimental values of    (
    

   
) versus      

   

   enabled us to assess the 

value of the square of the propagation rate to the termination rate, kp
2
/kt, (Figure 5.6) from the 

slope of the straight line
16

. For the determination of the value of kp
2
/kt , considering the rate of 

decomposition of the initiator
17

, kd (AIBN in acetonitrile at 80 °C) as 1.25 ∙10
-4

 s
-1 

 and the 

efficiency of the initiator
15

 ( ) as 0.6. 

 

Figure 5.5. Fractional conversion of 4’-nonafluorobutyl styrene (([M]0/[M])/ [M]0) versus time for the controlled 

radical polymerization of 4’-nonafluorobutylstyrene (3) in the presence of 1-iodoperfluorohexane as the chain transfer 

agent ([monomer]0 : [C6F13I]0 : [AIBN]0 = 100: 5 :1) at 80 °C. 
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The kp
2
/kt  value of 4’-nonafluorobutyl styrene obtained is 3.62 10

-2
 (L mol

-1
 s

-1
) at 80 °C. 

Table 5.4 lists kp
2
/kt  values for different styrenic monomers. Considering that is difficult to 

compare kp
2
/kt  values calculated from different surveys because the results can be influenced 

by temperature, the solvent and the initiator (as evidenced by the first three values obtained  

by the polymerization of styrene), it is found a higher kp
2
/kt  values respect to that of the 

others monomers.  

Monomer kp
2
/kt (L mol

-1
 s

-1
) T(°C) initiator Ref. 

Styrene 8.37 ∙ 10
-3 100 AIBN 15 

Styrene 3.84 ∙ 10
-3 80 DTBP* 18 

Styrene 1.11 ∙ 10
-3 60 DTBP* 18 

Pentafluorostyrene 2.96 ∙ 10
-3 60 AIBN 19 

4’-nonafluorobutyl styrene (3) 3.62 ∙ 10
-2 80 AIBN This work 

Vinylbenzyl chloride 3.40 ∙ 10
-3 80 AIBN 20 

p-chlorostyrene 2.92 ∙ 10
-4 30 AIBN 21 

p-methylstyrene 1.70 ∙ 10
-4 30 AIBN 21 

Table 5.4. Values of kp
2/kt for different styrenic and fluorinated styrenic monomers.  

*DTBP stands for di t-butyl peroxide. 
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Figure 5.6. Ln([M]0/[M]) versus 1-exp(-kd*t/2) for the controlled radical polymerization of 4’-nonafluorobutyl styrenee 

initiated by AIBN at 80 °C, in the presence of C6F13I as chain transfer agent. Slope = 2.6644. 
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Contact angle assessment 

Polymers surface morphology affects their surface properties
22-25

. One of the most important 

property of fluoropolymers is the hydro- and oleophobicity
26,27

 which can be assessed by 

contact angle measurements between solid and liquid interfaces. Spontaneous spreading of a 

solvent (water or diiodomethane) onto the surface of a polymer film has been studied with the 

sessile drop method (see Chapter 1, appendix A). Three different types of contact angles can 

be measured: i) static contact angle, θs (a drop is produced before the measurements and has a 

constant volume during the experiment), ii) advancing contact angle, θa (the mean of the 

contact angle measurements during the advancing of the liquid boundary over a dry clean 

surface), and iii) receding contact angle, θr (the mean of the contact angle values measured 

during the retreating of the liquid boundary over a previously wetted surface). The contact 

angle hysteresis is defined as the difference between the advancing and the receding angles 

(∆θ = θa- θr)
28

. 

Advancing and receding contact angles are determined by the needle-syringe method using a 

stainless steel needle connected with an automatically microliter  syringe (diameter of the 

needle 0.5 mm). Solvent introduction and withdrawal are monitored by a video camera that 

recorded the profile during the process. All calculation methods are based on the sessile drop 

method, while the surface energies calculation are assessed by the Owens-Wendt method
29

.  

 

  

Figure 5.7. Drops of water (left, θ = 110° ÷ 1°) and diiodomethane (right, θ = 85° ÷ 1°) deposited on a surface treated 

with a poly (4’-nonafluorobutyl styrene) polymerized by ITP. 

Values of static contact angles are calculated for water and diiodomethane drops on the 

surface of a glass spin-coated with poly(4’-nonafluorobutyl styrene) (Figure 5.7), to calculate 

the surface tension of the solid. Measurements were achieved onto coatings of polymers 

obtained both by conventional and controlled radical polymerization of 4’-nonafluorobutyl 

styrene. A comparison between them is reported in Table 5.5. Polymers achieved by 

controlled radical polymerization showed a water and diiodomethane static contact angle of 

110° ± 1° and 85° ± 1° respectively, while for that obtained by conventional method, the 

static contact angles were 103° ± 1° and 84° ± 1°, respectively. 
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Static contact angles of a surface spin-coated with poly(4’-nonafluorbutyl styrene) are 

comparable with those obtained by Takahara’s team with poly(2-perfluorooctyl-ethyl 

acrylate)
30

. It is important to underline that poly(2-perfluorooctyl-ethyl-acrylate) have four -

CF2- units more than poly(4’-nonafluorobutyl) styrene. The total surface energy of poly(4’-

nonafluorobutyl styrene) synthesized by conventional radical polymerization calculated by the 

Owens and Wendt equation
29

 is  18 ± 2 mN∙m
-1

. The polymer obtained by ITP, has a value of 

the surface energy of 15 ± 2 mN∙m
-1

. 

 PDI water contact 

angle (degree) 

CH2I2 contact 

angle (degree) 

polar part 

(mN/m) 

disperse part 

(mN/m) 

surface tension 

(mN/m) 

poly(4’-nonafluorobutyl 

styrene)  

1.30 103 ± 1 84 ± 1 3 ± 1 15 ± 1 18 ± 2 

1.15 110 ± 1 85 ± 1 1 ± 1 14 ± 1 15 ± 2 

poly(2-perfluorooctyl-ethyl 

acrylate)30 

1.86 122 99 - - 7.7 

1.05 115 103 - - 9.4 

Table 5.5. Comparison between the static contact angle measurements and surface tension of poly(4’-

nonafluorobutylstyrene) and poly(2-perfluorooctyl-ethyl acrylate)30 with broad and narrow PDI, achieved by 

conventional and controlled radical polymerization, respectively. 

These results underline that ITP process improves not only the PDI but also the hydro- and 

oleophobicity of the polymer. Yamaguchi et al.
30

 compared the surface properties of poly(2-

perfluorooctyl-ethyl acrylate) with broad (Mw/Mn = 1.86) and narrow (Mw/Mn = 1.05) 

polydispersity indices synthesized by surface-initiated ATRP on a flat silicon substrate. These 

authors found that contact angle hysteresis strongly depended on the PDI of such 

fluoropolymers. Conversely, no significant differences were noted between static contact 

angles assessed on poly(2-perfluorooctyl-ethyl acrylate) with broad and narrow PDI. The 

relationship between PDI values and surface free energy for poly(4’-nonafluorobutyl styrene) 

is in agreement with that obtained by Takahara’s group for poly(2-perfluorooctyl-ethyl 

acrylate) (Table 5.6). 

 

PDI θa
a (degree) θr

b (degree) hysteresisc (degree) 

poly(4’-nonafluorobutyl styrene)  

1.30 102 ± 1 84 ± 1 18° ± 2 

1.15 113 ± 1 66 ± 1 47° ± 2 

poly(2-perfluorooctyl-ethyl acrylate)30 

1.86 128 105 23 

1.05 115 80 35 
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Table 5.6. Comparison between the dynamic water contact angle measurements of poly(4’-nonafluorobutylstyrene) 

and poly(FA-C8) with narrow and broad PDI.  
a
θa = advancing contact angle, bθr = reciding contact angle, c hysteresis = θa-θr. 

  

Figure 5.8. Advancing and receding water contact angle values assessed with water drop on surface spin-coated with 

poly(4’-nonafluorobutyl styrene) surface synthesized by conventional radical (left) and iodine transfer polymerization 

(right). 

Values of advancing and receding water contact angles are reported in Figure 5.8. In the case 

of broad PDI of poly(4’-nonafluorobutyl styrene), the mean advancing contact angle (θa) was 

102° ± 1°, while the average receding contact angle (θr) was 84° ± 1° with a hysteresis of 18° 

± 2°. Instead, in the case of narrow PDI the poly(4’-nonafluorobutyl styrene) mean advancing 

contact angle (θa) reached 113° ± 1°, while mean receding contact angle (θa) was 66° ± 1° 

with an hysteresis of 47° ± 2°. In conclusion, water repellency of poly(4’-nonafluorobutyl 

styrene) is strongly influenced by the PDI value. In analogy with the work reported by other 

authors
30,31

, the relationship between the aggregation state of the fluorinated chains and PDI 

should deserve to be further investigated. 

Conclusion 

For the first time, the iodine transfer polymerization (ITP) of 4’-nonafluorobutyl styrene 

controlled by 1-iodoperfluorohexane has been reported and compared to the conventional 

radical one. As expected, polymers obtained by ITP displayed more narrow polydispersity 

index (PDI = 1.13) than those achieved from the conventional radical polymerization (PDI = 

1.30). The thermal stability of the polymers was satisfactory, and the 10% of the weight loss 

under air was achieved from 305 °C. The kinetic of radical homopolymerization enabled us to 

assess the kp
2
/kt value (3.62 ∙10

-2
 L ∙ mol

-1
∙sec

-1
 at 80 °C). Measurements of the static contact 

angles in the presence of water and diiodomethane, and dynamic contact angles, in the 

presence of water were performed on spin-coated surfaces with poly(4’-nonafluorobutyl 

styrene) achieved from both strategies. Values of contact angles evidenced the satisfactory 

hydro- and oleophobicity of the polymers synthesized, and no significant differences were 
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detected by the static contact angles between the polymer synthesized by ITP and that 

obtained by conventional radical polymerization with a surface tension of 15 ± 2 mN∙m
-1 

and 

18 ± 2 mN∙m
-1

, respectively. Conversely, an increase of hysteresis in polymer with lower 

polydispersity index (47° ± 2°) compared to those with higher PDI (18° ± 2) was observed. 

The results obtained suggest a strong correlation between PDI values and surface properties of 

poly(4’-nonafluorobutyl styrene). The influence of the PDI onto the molecular aggregation 

state and the fluorinated groups should be further investigated. However, the hidro- and oleo-

phobicity of poly(4’-nonafluorobutyl styrene) are comparable with those of polyperfluoro 

acrylate with longer perfluorinated chains. This comparison evidenced the ability of the 

phenyl rings to form an efficient structure and candidate the poly(4’-nonafluorobutyl styrene) 

as an alternative to long perfluorinated coatings.  
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Appendix B: the Tobolsky’s equation 

 

The general mechanism of the free radical polymerization is reported in Scheme 5.2
13

. The 

monomer is indicated as (M). The monomer radical (M∙) could be formed by thermal 

initiation (A1) or, in a second way by addition of radicals. In the former case, the radicals 

(2R∙) are originated by the decomposition of the initiator (I) (A2). 

 

The radicals formed can recombine by a first order reaction (A3) or react with the monomer 

and initiate the polymer chains (A4). The initiator efficiency factor     is determined by the 

fraction of radical produced by the primary cleavage of the initiator that start the polymer 

chains (Eq. 5.5). 

  
          

                  
 

 

  

     
  

 Eq. 5.5 

Once the radical monomer (M∙) is formed it can react with a monomer (M) starting the 

propagation reaction (A5). The termination reaction can occurs by disproportion (A7) or by 

coupling reaction (A8). The mechanism of free-radical polimerization requires that the 

polymerization rate be first order with respect to monomer and half-order with respect to 

2M
ki

2M

I 2R

2R R2

2R 2M 2M

M + M

M + M P + M

M M 2P

M M P

M I P + R

kd

kr

ka

kp

ktr

ktd

ktc

kI

+

+

thermal initiation

formation of non-radical products

M

disproportionation

coupling+

+

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

Scheme 5.2. General mechanism of free radical polymerization. 
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initiator concentration
14

. A6 and A9 represents the chain transfer reaction with the monomer 

and with the initiator respectively.  

Assuming steady state assumption: 

 

     √
             

       
 Eq. 5.6 

The rate of polymerization is: 

 
    

  
                 √

             

       
 Eq. 5.7 

If we are disregarding the polymer produced by thermal polymerization, Eq. 5.7 can be 

rewritten as: 

 
    

  
       √

       

       
 Eq. 5.8 

If we put the sum of the specific rates of combination and diproportionation as: 

           
Eq. 5.9 

and the rate of disappearance of the initiator: 

 
    

  
       Eq. 5.10 

Integrating from the initial concentration of the initiator [I]0 and if the initiator is all added at 

the beginning of the polymerization, one obtains: 

          
     

Eq. 5.11 

 

Substituting Eq. 5.11 into Eq. 5.8 and integrating we obtain the Tobolsky’s equation 
15

: 

 



Chapter 5. Polymerization of 4’-nonafluorobutyl styrene: surface and thermal characterizations of the resulting polymer  

94 

  (
    
   

)     √
     
    

    
    

   Eq. 5.12 

Plotting the experimental values of   (
    

   
) versus      

   

   is possible to extrapolate the 

value of kp
2
/kt from the slope of the straight line. 
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Chapter 6. Telomerization of VDF in presence of CF3I and C4F9I as 

chain transfer agents 

Polyvinylidene fluoride (PVDF) exhibits various interesting properties
1-5

 such as chemical 

inertness, resistance to acids,  piezo- and pyroelectrical properties. Further, PVDF has found 

applications in the semiconductor industry
6,7

, nuclear industry
8
, in paints and coatings

9
, 

mechanical substrates for fuel cells membranes
4,10

, elastomers for gaskets in space shuttles
10

. 

VDF-containing telomers are valuable products as perfluorooctanoate surfactant substituents, 

precursors of hybrid silicones
11

, and original thermoplastic elastomers
4,10

. In literature there 

are several examples of radical telomerisation of VDF by different chain transfer agents 

(CTA)
4
. In particular, the use of perfluoroalkyl iodides (CnF2n+1I)

12-16
 exhibit high transfer 

constants and produce VDF telomers with the iodine as terminal group that can be used for 

further functionalizations
17

. 

In this chapter the telomerisation of VDF by Iodine Transfer Polymerization (ITP) in presence 

of CF3I as chain transfer is presented. Tert-butyl peroxypivalate (TBPP) is used as initiator, 

that is commonly used in this kind of reactions. Bis(4-tert-butylcyclohexyl)peroxydicarbonate 

(Perkadox
®
 16s) as alternative initiator is also tested.  

Furthermore, telomerisation of VDF in presence of C4F9I as chain transfer agent and TBPP as 

initiator is carried out. The telomer C4F9-(VDF)2-I was used to synthesize the alcohol C4F9-

CH2CF2-CH2CF2-CH2-CH2-CH2-OH, an important intermediate for the synthesis of 

fluorinated acrylates.  

Introduction 

There are many examples of the reactivity of radicals with olefins reported in literature. 

According to Tedder and Walton
18,19

, “no simple property can be used to determine the 

orientation of addition of radicals”, which depends on polar and steric parameters and on 

bond strengths. The efficiency of the telomerisation process is influenced by the cleavage of a 

specie bearing a weak X-Y bond, called telogen. The bond dissociation energy (BDE) of the 

telogen X-Y (yielding X∙ and Y∙ radicals) has to be taken in account as an indicator of its 

intrinsic reactivity. The C-F bond is the most difficult to cleave whereas -CF2-I group has a 

better chance to be cleaved
20

 (Table 6.1). Considering the ability of telogens to initiate the 

telomerisation, the reactivity and the regioselectivity of the telogen radical X∙ toward the 

olefin is driven by precise rules. Usually, fluoroalkenes are regarded as electron poor olefins, 

and thus they easily react with nucleophilic radicals
4
. Walton et al. studied the kinetics of 

several radicals such as ∙CH3
21

,  Br3C
22

, CH2I
23

, CFHI
24

, C2F5 CF3(CF2)n (n = 6,7)
25

, to 

specific site of unsymmetrical fluoroalkenes.  
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RFI BDE [kJ ∙ mol
-1

] 

CF3I 220 

C2F5I 212 

n-C3F7I 206 

i-C3F7I 206 

n-C4F9I 202 

Table 6.1. Bond dissociatioin energies (BDE) of some RFI. 

They determined the rate constants of these radicals to both sites of these olefins and the 

corresponding Arrhenius parameters. Results were mainly correlated to the electrophilicity of 

radicals which add more easily to nucleophilic alkenes: more electrophilic the radical (i.e. the 

more branched the perfluoroalkyl radical), the more selective the addition to the -CH2- site 

(Table 6.2).  

Radicals         CH2=CF2 

CH2F 1 0.440 

CHF2 1 0.150 

CF3 1 0.032 

CF2CF3 1 0.011 

CF2CF2CF3 1 0.009 

CF(CF3)2 1 0.001 

Table 6.2. Probabilities of addition of chloro- and fluororadicals to both sites of VDF. 

Chambers et al.
26

 suggested the following reactivity series about VDF: CF3I ˂ C2F5I ˂ n-

C3F7-I ˂ I-C3F7-I mainly linked to the decrease of strength of the C-I bond. 
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The mechanism of the telomerisation of VDF 

In Scheme 6.1 the iodine transfer polymerization of VDF, in presence of 1-perfluoroalkyl 

iodide as chain transfer is presented. 

 

 

 

The mechanism of the telomerisation of VDF in presence of C4F9I as chain transfer agent, and 

TBPP as initiator is reported in Scheme 6.2 and it is chosen as example to explain the 

evolution of the reaction. 
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Scheme 6.2. Mechanism of telomerisation of VDF in presence of C4F9I as chain transfer agent and TBPP as initiator. 

Scheme 6.1. Iodine transfer polymerization of vinylidene fluoride in the presence of 1-iodoperfluoroalkane 
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In the initiation step the initiator, in this case TBPP, is thermally decomposed and it forms the 

radical specie R∙ which reacts with the chain transfer agent (C4F9I), breaking the C-I bond to 

form the perfluoroalkyl radical C4F9∙. The latter attacks the double bond of the VDF monomer 

to give the C4F9-CH2-CF2∙ radical.  

Chambers
26,27

 confirmed that the monoadduct coming from the radical addition of RF∙ to VDF 

is composed of two isomers RFCH2CF2I (95 %) and RF-CF2CH2I (5 %). However, recent 
1
H 

NMR and 
19

F NMR investigation demonstrate that C4F9-CH2-CF2-I is the only isomer 

produced by thermal telomerization of the VDF from the corresponding transfer agent
4,28

 

(Scheme 6.3) and the radical (called head-to-head) C4F9-CF2-CH2∙ in this case is not detected. 

  

 

Conversely, when in the propagation step the radical C4F9-CH2-CF2∙ reacts again with the 

VDF monomer, both the head-to-head and head-to-tail species are formed. This behavior 

could be explained considering the effect of the electronegativity of the fluorinated groups, 

that in the case of two or more consecutives CF2 groups is greater than in the case of alternate 

CH2-CF2- groups and oriented the attack on the hydrocarbon moiety of the VDF monomer. In 

conclusion, in this kind of reaction, the absence of head-to-head species (also called defects) 

in the chain, is possible only with one unit of monomer inside the telomer chain (C4F9-

(CH2CF2)-I). The termination of the chain can be accomplished into two ways: by coupling 

two radicals, or by a transfer process in which the growing radicals react with the chain 

transfer agent in order to form a new radical C4F9∙ and the telomer C4F9-(VDF)n-I. 

Furthermore, the higher the temperature, the higher the [RFI]/[VDF] initial molar ratio, the 

more selective the telomerization
28-31

 is.  

The telomerization of vinylidene fluoride with iodinated telogens has been carried out with 

two initiators: tert-butyl peroxypivalate (TBPP) and bis(4-tert-

butylcyclohexyl)peroxydicarbonate (Perkadox
®
 16s).  

 

CF3CF2CF2CF2 + H2C CF2

CF3CF2CF2CF2CH2CF2 + H2C CF2

 



CF3CF2CF2CF2CH2CF2

CF3CF2CF2CF2CH2CF2CH2CF2 NORMAL

CF3CF2CF2CF2CH2CF2CF2CH2 INVERSE

Scheme 6.3. Electrophilic attack of the C4F9∙ and C4F9CH2CF2∙ radicals onto VDF monomer. 
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The physical properties of the initiators are summarized in Table 6.3. 

 

TBPP Perkadox
®
 16s 

molecular weight [g∙mol
-1

] 174.2 398.5 

appearance solution of isodecane white powder 

density [g∙cm
-3

] 0.875 0.113 

half-life [°C] (0.1 hour) 94 82 

half-life [°C] (1.0 hour) 75 64 

half-life [°C] (10 hour) 57 48 

Table 6.3. TBPP and Perkadox® 16s properties. 

Telomerization of VDF with RFI as chain transfer  

6.1.1 Materials and methods 

Vinylidenene fluoride (VDF), and CF3I were kindly donated by Solvay, acetonitrile and n-

pentane were supplied by Aldrich. Acetonitrile was distilled over calcium hydride and then 

degassed from an argon flow for 10-15 minutes, prior to use. The initiators tert-butyl 

peroxypivalate (TBPP) and bis(4-tert-butylcyclohexyl)peroxydicarbonate (Perkadox
®
 16s) 

were purchased by Aldrich and Akzo Nobel respectively.  

The conversion χ of VDF was calculated as: 

  
    

    

    
  Eq. 6.1 

 

 

Where     
  is the quantity of VDF (and CF3I in the case it is used as chain transfer) initially 

filled in the autoclave, and    is the quantity of the unreacted VDF (and CF3I if used as 

chain transfer agent, because it is gaseous instead C4F9I). 

The yield η of the telomer synthesized is calculated as: 

  
    

    
      

  Eq. 6.2 

 

Where      is the total amount of telomer synthesized and     
  is the quantity of 

perfluorinated iodine initially introduced into the autoclave. 
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The characteristic properties of the telomers were calculated by the integrals of the signals 

measured by 
19

F NMR spectroscopy. In particular, the mean degree of polymerization (DPn) 

was calculated as: 

    
 

     
 
∑ ∫     

∑∫     
 Eq. 6.3 

 

Where ∫      and ∫      represents the values of the integral corresponding to the signals 

of the fluorine in the CF2 and CF3 groups respectively. 

  

Figure 6.1. The autoclave used for the telomerisation process. 

6.1.2 Telomerization of VDF using TBPP as initiator 

The reaction was carried out in 100 mL Hastelloy autoclave (Figure 6.1) equipped with inlet 

and outlet valves, a manometer, and a rupture disk, where were placed 1.30 g (7.5 mmol) of 

tert-butyl peroxypivalate (TBPP) and 20 mL of acetonitrile, and 20 mL of 1,1,1,3,3-

pentafluorobutane as solvent. Then the autoclave was cooled, degassed, and pressurized with 

10 bar of nitrogen to check the eventual leaks. Vacuum was performed to remove air. Then, 

the autoclave was left under vacuum for 15 minutes, after which, by double weighting, 11 g 

(56 mmol) of CF3I was first introduced in the autoclave, followed by 27 g (422 mmol) of 

VDF. Then the autoclave was progressively heated to 75 °C, corresponding to the half life of 

the TBPP. After reaction the autoclave was placed in an ice bath for about 30 minutes, 11 g of 

unreacted VDF and CF3I was released. After the opening of the autoclave a slurry composed 

of yellow solid and yellow liquid was obtained. The slurry, dissolved in acetone was 

precipitated in cold n-pentane. The solution was filtrated: the solid part, consisting of 11.2 g 

of a yellow powder (CF3I-TBPP-VDF1) and a filtrated yellow liquid was obtained. The 

yellow filtrated liquid was distilled and 1.5 g of yellow solid (CF3I-TBPP-VDF2) was 

obtained. (  = 71 %,   = 33 %). 
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6.1.3 Telomerizaton of VDF using (Perkadox® 16s) as initiator 

The procedures and purification techniques employed were similar to those for telomerization 

in presence of TBPP as initiator, the only variation is the amount of the initiator Perkadox
®

 

16s, which in this case was of 3.0 g (7.5 mmol) and the temperature of reaction that was fixed 

at 64 °C. After reaction the autoclave was placed in an ice bath for about 30 minutes, 2 g of 

unreacted VDF and CF3I were released. After purification 19.1 g of yellow powder (CF3I-

Perkadox-VDF1) and 3.5 g of yellow solid (CF3I-Perkadox-VDF2) were obtained. (  = 95 %, 

  = 60 %). 

6.1.4 Characterization of the telomers 

The 
1
H and 

19
F NMR spectra of the telomers, exhibit similar signals that can be divide into 

two main groups: signals that come from the “normal” telomer, which present a regular 

alternation between CF2 and CH2 groups (and also terminated with CF2I group), and signals 

originated by the fluorinated groups of the inverse monomer that present defect on the chain 

as head-to-head addition (-CH2-CF2-CF2-CH2-) or tail-to-tail addition (-CF2-CH2-CH2-CF2-), 

and terminated with CF2-CH2I group. In Figure 6.2 and 6.3 are reported two examples of CF3-

(VDF)n-I spectra of 
1
H NMR and 

19
F NMR respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1
H NMR (CDCl3) δ: 3.5 ppm (t, 

3
JHF = 17.5 Hz, 2H, -CF2-CH2I); 3.3 ppm (m, 2H, CF3-CH2-

CF2-), 2.7 ppm (m, (n-2) H, -CF2-CH2-CF2-). 
 

 

Figure 6.2. Example of 1H NMR of CF3-(VDF)n-I (recorded in CDCl3). 
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19
F NMR (CDCl3) δ: -61.6 ppm (q, 

3
JFH = 

4
JFF = 10.0 Hz, 3F, CF3-CH2-CF2-(C2F2H2)n-2-); -

88.3 ppm (m, 2F, CF3-CH2-CF2-(C2F2H2)n-2-); from -90 to -95 ppm (m, (n-2)F, CF3-CH2-CF2-

(CH2-CF2)n-2-, normal adduct); -38.2 ppm (m, 2F, -CH2-CF2I, normal adduct), from -112 to -

115 ppm (m, (n-2)F, CF3-CH2-CF2-(CF2-CH2)n-2-, inverse adduct), -108.1 ppm (m, 2F, -CF2-

CH2I, inverse adduct). 

Results and discussion 

Two telomerization reactions of vinylidene fluoride (VDF) by ITP, in presence of CF3I as 

chain transfer agent were carried out. In one was used tert-butyl peroxypivalate (TBPP) as 

initiator and in the other bis(4-tert-butylcyclohexyl)peroxydicarbonate (Perkadox
®
 16s). Each 

reaction produced two telomers, one with high mean molecular weight and one with lower. 

The two products obtained using TBPP as initiators were called CF3I-TBPP-VDF1 and CF3I-

TBPP-VDF2, instead, using Perkadox
®
 16s as initiator the two fractions of telomers obtained 

were called CF3I-Perkadox-VDF1 and CF3I-Perkadox-VDF2. 

Figure 6.3. Example of 19F NMR of CF3-(VDF)n-I (recorded in CDCl3). 
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Using the informations from the integrals of the signals obtained by 
19

F NMR measured for 

each of the four products synthesized is possible to calculate the percentage of defects (U%) 

present in each telomer (Eq. 6.4-6.5). 

 

        
∑∫            

∑∫                      
 Eq. 6.4 

 

 

        
∫            

 ∫    
        

        

∫            
 ∫     ∫    

       

       
 

        

        
∫           

 Eq. 6.5 

 

Also, the with the integrals of the signals of the 
19

F NMR is possible to calculate the mean 

degree of polymerization DPn (Eq. 6.6). 

 

     
∫            

 ∫     ∫    
       

       
 

        

        
∫           

 
 Eq. 6.6 

 

Then, the average mass weight is calculated following Eq. 6.7. 

 

                Eq. 6.7 

 

In Table 6.4 are summarized the values of U%, DPn and Mn of the telomers synthesized. 

 

 U % DPn Mw 

CF3I-TBPP-VDF1 5.2 % 18 1346 

CF3I-TBPP-VDF2 15.3 % 6 578 

CF3I-Perkadox-VDF1 6.2 % 17 1282 

CF3I-Perkadox-VDF2 16.4 % 10 834 

Table 6.4. Percentage of defects, mean degree of polymerization and average molecular weight of the telomers 

obtained by telomerization of VDF in presence of CF3I as chain transfer and TBPP or Pekadox® 16s as initiators. 
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Comparing the two fractions with higher Mw (CF3I-TBPP-VDF1 and CF3I-Perkadox-VDF1) 

few differences were noticed: using Perkadox
®
 16s as initiator a shorter chain is obtained (one 

VDF unit less), respect to TBPP telomer. Furthermore, CF3I-Perkadox-VDF1 showed a little 

higher percentage of defect respect to CF3I-TBPP-VDF1, but this behavior is evidenced also 

comparing the two lighter fractions CF3I-TBPP-VDF2, and CF3I-Perkadox-VDF2. Moreover, 

the latter telomer showed four monomer unit more than CF3I-TBPP-VDF2. Conversely, a 

marked difference is detected for the values of conversion of VDF and CF3I and yield, that are 

71 % and 33 % when TBPP is used and 95 % and 60 % for Perkadox
®
 16s. 

This trend can be derived by the different reactivity of Perkadox
®
 16s than TBPP, and it was 

confirmed monitoring the values of temperature and pressure during the telomerization 

reaction. Indeed, during the heating of the autoclave from the temperature of 20 °C to 75 °C 

(set point) the pressure arise gradually until 15 bar, than it stabilize itself during the reaction 

time, a successive pressure drop of about 8 bar indicates that the reaction has taken place. 

Conversely, using Perkadox
®
 16s and after the heating of the autoclave at 40 °C (the set point 

is 64 °C) the system increase autonomously and rapidly its temperature, until more than 80 

°C. During this time it was necessary to control the temperature by an external cooling for 30 

minutes, then the system stabilize itself. The pressure in this case arise readily following the 

temperature increasing, and as for the telomerization with TBPP, at the end of the reaction 

there was a pressure drop from 18 bar to about 1 bar, that means the reactant gasses (CF3I and 

VDF) react almost completely, in fact only 2 grams of unreacted gas were released, with 95 % 

of conversion.  

In conclusion, the remarkable difference between yield and conversion showed by the four 

telomers synthesized by radical telomerization of VDF in presence of CF3I as chain transfer 

agent has confirmed the strong influence of the nature of the initiators chosen. This behavior 

is described in previous studies on the radical telomerization of VDF with branched or linear 

perfluoroalkyl iodides
29,32-34

, telechelic diiodoperfluoroalkanes
28

, or 

iodoperfluoropolyethers
35

. The present study demonstrated the higher efficiency of bis(4-tert-

butylcyclohexyl)peroxydicarbonate (Perkadox
®
 16s) as initiator compared to tert-butyl 

peroxypivalate (TBPP). Other authors reported the good efficiency of another initiator tert-

amyl peroxypivalate
36

 (TAPP) for the telomerization of VDF in presence of CF3I as chain 

transfer, but in this case the yield rised up to 41 %. The excellent results obtained in the case 

of Perkadox
®

 16s contrast with the extremely high reactivity of this peroxide and makes it 

necessary to be careful to check the temperature and pressure of the system.  

6.1.5 Telomerization of VDF with C4F9I as chain transfer  

The telomerization of VDF in presence of C4F9I as chain transfer is carried out in a similar 

way as for the telomerization in presence of CF3I, using TBPP as initiators. The goal of the 
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reaction is the synthesis of telomers with one or two VDF units, and try to use these telomers 

as reagent for further reactions, demonstrating the decreased reactivity of the inverse adduct 

respect to the normal adduct. 

6.1.6 Telomerizaton of VDF using TBPP as initiator and C4F9I as chain transfer 

agent 

The reaction was carried out in 600 mL Hastelloy autoclave equipped with inlet and outlet 

valces, a manometer, and a rupture disk, where were placed 29.7 g (0.171 mol) of tert-butyl 

peroxypivalate (TBPP), 227.7 g (0.658 mol) of 1-iodo-perfluorohexane and 50 mL of 

acetonitrile as solvent. Then, the autoclave was cooled, degassed, and pressurized with 10 bar 

of nitrogen to check the eventual leaks. Vacuum was performed to remove air. Then, the 

autoclave was left under vacuum for 15 minutes, after which, by double weighting, 84.2 g 

(1.32 mol) of VDF were introduced. Then the autoclave was progressively heated to 74 °C, it 

arise 26 bar. After 16 hours of reaction the pressure drop arrived to 18 bar, the autoclave was 

placed in an ice bath for about 30 minutes, and 22.5 g of unreacted VDF was released (χ = 73 

%). After the opening of the autoclave 148.3 g of slurry was obtained (η = 47 %). The slurry, 

was distilled, obtaining fractions of telomers with different molecular weight. Among them, 

were obtained 21.7 g of C4F9-(VDF)1-I (b.p. 77 °C/20 mmHg) and 32.9 g of C4F9-(VDF)2-I 

(b.p. 96 °C/20 mmHg), respectively. The 
1
H NMR and 

19
F NMR characterization of the 

telomers are reported from Figure 6.4 to 6.7. Also, the mass spectra of the telomers are 

reported in Figure 6.8 and 6.9. 

6.1.7 1H and 19F NMR of C4F9-(VDF)-I and C4F9-(VDF)2-I telomers 

 

Figure 6.4. 1H NMR of the C4F9-CH2-CF2-I telomer (recorded in CDCl3).
 



Chapter 6. Telomerization of VDF in presence of CF3I and C4F9I as chain transfer agents 

108 

1
H NMR of C4F9-CH2-CF2-I (CDCl3) δ: 3.4 ppm (q, 

3
JHF = 16 Hz, 2H, -CF2-CH2-CF2-). 

19
F NMR of C4F9-CH2-CF2-I (CDCl3) δ: -81.0 ppm (s, CF3-CF2-); -125.8 ppm (s, CF3-CF2-); 

-124.2 ppm (s, CF3-CF2-CF2-), -122.6 ppm (s, CF3-CF2-CF2-CF2-CH2-), -38.1 ppm (s, -CF2-

I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. 1H NMR of the C4F9-(C2H2F2)-I telomer (recorded in CDCl3).
 

Figure 6.5. 19F NMR of the C4F9-CH2-CF2-I telomer (recorded in CDCl3). 
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1
H NMR of C4F9-CH2-(C2H2F2)-I (CDCl3) δ: 3.4 ppm (q, 

3
JHF = 16 Hz, 2H, -CF2-CH2-CF2-), 

2.8 ppm (q, 
3
JHF = 16 Hz, 2H, -CF2-CH2-CF2, normal adduct); 3.6 ppm (tt, 

3
JHF = 16 Hz, 

4
JHF 

= 4 Hz, CF2-CF2-CH2-I, recerse adduct). 

 

 

19
F NMR of C4F9-(C2H2F2)-I (CDCl3) δ: -81.0 ppm (s, CF3-CF2-); -125.6 ppm (s, CF3-CF2-); 

-124.4 ppm (s, CF3-CF2-CF2-), -112.6 ppm (s, CF3-CF2-CF2-CF2-CH2-), -40.0 ppm (s, -CF2-I, 

normal adduct), -107.8 ppm (s, C4F9-CH2-CF2-CF2-CH2I, reverse adduct), -90.3 ppm (s, C4F9-

CH2-CF2-CF2-CH2I, reverse adduct).  

 

 

 

Figure 6.7. 19F NMR of the C4F9-CH2-CF2-I telomer (recorded in CDCl3).
 

 
C4F9-CH2CF2CH2CF2-I

+2e-

C4F9-CH2CF2CH2CF2-I

m/z = 474 (absent)

-I
C4F9-CH2CF2CH2CF2

m/z = 347

-CH2CF2

C4F9-CH2CF2

m/z = 283

CF2-I

m/z = 177

Scheme 6.4. Possible fragmentation of C4F9-CH2-CF2-CH2-CF2-I. 
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C4F9-CH2CF2CF2CH2-I

+2e-

C4F9-CH2CF2CF2CH2-I

m/z = 474

-I
C4F9-CH2CF2CF2CH2

m/z = 347

-CF2CH2

C4F9-CH2CF2

m/z = 283

CH2-I

m/z = 141

CF2CH2-I

m/z = 191

 

 

Spectral data: MS m/z (rel. ab. %): 347 ([M-I]
+
, 20%); 283 ([M-CH2CF2I]

+
, 5%); 177 

([CF2I]
+
, 20%); 69 ([CF3]

+
, 60%). 

 

 

 

 

 

 

 

 

 

Figure 6.8. Mass fragmentation of C4F9-CH2-CF2-CH2-CF2-I. 

Scheme 6.5. Possible fragmentation of C4F9-CH2-CF2-CF2-CH2-I. 

Figure 6.9. Mass fragmentation of C4F9-CH2-CF2-CF2-CH2-I. 
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Spectral data: MS m/z (rel. ab. %): 474 ([M]
∙+

, 60%); 347 ([M-I]
+
, 2%); 283 ([C4F9CH2CF2]

+
, 

20%); 191 ([CF2CH2I]
+
, 100%); 69 ([CF3]

+
, 80%).  

Synthesis of C4F9-(VDF)2-CH2-CH2-CH2-OH 

The synthesis of a partially fluorinated alcohol with a vinylidene moiety was carried out in 

order to investigate the  synthesis of a VDF telomer. The reaction involves two steps: first the 

addition of allyl alcohol to C4F9-(VDF)2-I telomer (1) followed by a reduction with 

tributylstannane as reported in Scheme 6.6. 

 

 

 

 

 

 

 

6.1.8 Materials 

Allyl alcohol, tributyl stannane (SnBu3H), tetrahydrofurane (THF), 2,2’-azobis(2-

methylpropionitrile) (AIBN) was provided by Aldrich. C4F9(VDF)2I (1) was synthesized 

following the procedures reported above. 

6.1.9 Synthesis of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-OH (2) 

Allyl alcohol (1.0 g, 17.2 mmol) was added dropwise slowly to a mixture of C4F9(VDF)2I (5 

g, 10.5 mmol) (1) and AIBN (3.0 mmol) at 85 °C. The reaction mixture was stirred for 48 h. 

The evolution of the reaction was monitored by gas chromatographic measurements. 0.5 g of 

AIBN were added every 2 hours until the complete consumption of the peak relative to the 

iodine reagent. The crude product was washed by water and chloroform to remove the excess 

of allyl alcohol. The organic layer was removed with a separating funnel and the solvent was 

removed by rotavapor obtaining 5 g of yellow oil (53 % yield). 

6.1.10 Synthesis of C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH (3) 

In a two necked round flask, equipped with condenser and magnetic stirrer, cooled with ice 

and saturated with nitrogen, 5 g of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-OH (2) and 10 mL 

of THF were dissolved with 0.8 g of AIBN. 2.5 mL of tributylstannane were dropwise added. 

 
C4F9

-CH2CF2CH2CF2I      + OH

I

OHC4F9-CH2CF2CH2CF2

AIBN   80°C

I

OHC4F9-CH2CF2CH2CF2
OHC4F9-CH2CF2CH2CF2

SnBu3H

THF /N2

(1)
(2)

(3)

Scheme 6.6. Scheme of the synthesis of C4F9-(VDF)2-CH2-CH2-CH2-OH (3). 
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The mixture was initially stirred at room temperature and after was heated at 80 °C for 4 

hours. The THF was removed washing the crude product with water and chloroform. The 

organic layer was separated and the chloroform was removed by vacuum. Two liquid layers 

were obtained, a white upper layer and a red lower layer. The product was recover by vacuum 

distillation (b.p. 80°C/0.2 mmHg) obtaining 3 g of white solid (78 % yield). 

6.1.11 Chemical characterization of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-OH (2) and 

C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH (3) 

Hereafter are reported the chemical characterization of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-

OH (2) by 
1
H NMR (Figure 6.10), 

19
F NMR (Figure 6.11). 

 

 

1
H NMR of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-OH, δ (in CDCl3): 2.7 ppm (2H, m, C4F9-

CH2-); 2.6 ppm (4H, m, -CF2-CH2-CF2-CH2-); 4.4 ppm (1H, q, 
3
JHH = 4.0 Hz, CH2-CHI-CH2-

); 3.8 ppm (2H, m, CHI-CH2-OH); 5.9 ppm (1H, m, -OH). 

 

 

 

 

 

Figure 6.10. 1H NMR of the C4F9-(VDF)2-CH2-CHI-CH2-OH adduct (recorded in CDCl3).
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19
F NMR of C4F9-CH2CF2-CH2CF2-CH2-CHI-CH2-OH, δ (in CDCl3): -81.0 ppm (s, CF3-CF2-

); -125.8 ppm (s, CF3-CF2-); -124.4 ppm (s, CF3-CF2-CF2-), -112.7 ppm (s, CF3-CF2-CF2-

CF2-CH2-), -87.9 ppm (s, C4F9-CH2-CF2-); -95.1 ppm (s, C4F9-CH2-CF2-CH2-CF2-). 

 

 

 

 

 

 

 

Figure 6.11. 19F NMR of the C4F9-(VDF)2-CH2-CHI-CH2-OH adduct (recorded in CDCl3).
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Hereafter are reported the chemical characterization of C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-

OH (2) by 
1
H NMR (Figure 6.12), 

19
F NMR (Figure 6.13) and the mass fragmentation (Figure 

6.14) 

 

1
H NMR of C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH, δ (in CDCl3): 2.7 ppm (2H, m, C4F9-

CH2-); 2.6 ppm (4H, m, -CF2-CH2-CF2-CH2-); 1.8 ppm (2H, m, CH2-CH2-CH2-); 3.6 ppm 

(2H, t, 
3
JHH = 6 Hz, CH2-CH2-OH); 0.9 ppm (1H, m, -OH). 

 

 

 

 

Figure 6.12. 1H NMR of the C4F9-(VDF)2-CH2-CHI-CH2-OH adduct (recorded in CDCl3). 
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19
F NMR of C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH, δ (in CDCl3): -81.5 ppm (s, CF3-CF2-

); -126.3 ppm (s, CF3-CF2-); -124.8 ppm (s, CF3-CF2-CF2-), -113.0 ppm (s, CF3-CF2-CF2-

CF2-CH2-), -88.7 ppm (s, C4F9-CH2-CF2-); -95.5 ppm (s, C4F9-CH2-CF2-CH2-CF2-). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. 19F NMR OF C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH (recorded in CDCl3). 

Scheme 6.7. Possible fragmentation of C4F9-CH2CF2-CH2CF2-CH2-CH2-CH2-OH. 

C4F9-CH2-CF2-CH2-CF2-CH2-CH2-CH2-OH C4F9-CH2-CF2-CH2-CF2-CH2-CH2-CH2-OH
+ 2e-

m/z = 406 (absent)

-CH2-CH2-CH2-OH

m/z = 59

CH2OH

m/z = 31

C4F9-CH2-CF2-CH2-CF2-CH2-CH2-CH2

C4F9-CH2-CF=CH2-CF2-CH2-CH2-CH2

m/z = 389

-HF

m/z = 349

-OH
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Spectral data: MS m/z (rel. ab. %): 349 ([M-OH-HF]
+
, 10%); 63 ([CF3]

+
, 20%); 59 

([CH2CH2CH2OH]
+
, 20%); 31 ([CH2OH]

+
, 30%). 

Conclusion 

The telomerisation of VDF in presence of C4F9I as chain transfer and TBPP as initiator is 

carried out with 73% of conversion of VDF and 47% of yield. After distillation different 

fractions of telomers were obtained. Among them, a monoadduct (C4F9-CH2CF2-I) and a 

diadduct (C4F9-(C2H2F2)2-I) were isolated and characterized by 
1
H NMR and 

19
F NMR 

spectra. The characterization of the monoadduct evidenced the absence of the reverse telomer 

C4F9-CF2CH2-I, confirming the selectivity of the reaction of C4F9∙ radical on the VDF 

monomer. Conversely, the diadduct presents two species, one normal (C4F9-CH2CF2-CH2CF2-

I) and one reverse (C4F9-CH2CF2- CF2CH2-I). The diadduct was used as reactant for the 

synthesis of the intermediate C4F9-(VDF)2-CH2-CHI-CH2-OH by reaction with allyl alcohol. 

The intermediate was reducted with tert-butyl stannane and C4F9-(VDF)2-CH2-CHI-CH2-OH 

was obtained.  

The reaction with allyl alcohol evidenced the decreased reactivity of the reverse adduct 

compared to the normal one as evidenced by 
19

F NMR spectra. In fact, the signal at -40 ppm, 

assigned to the -CF2-I fluorinated group of the normal C4F9-VDF2-I telomer, disappeared 

showing that a reaction happened. Conversely, signals of the inverse diadduct are still present 

after the reaction with allyl alcohol.  

  

Figure 6.14. Mass fragmentation of C4F9-(VDF)2-CH2-CH2-CH2-OH. 
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Appendix C: half-life of initiators 

The half-life of a peroxide is defined as the time (t1/2) needed for one half of a given quantity 

of peroxide in dilute solution (the solution can influence its decomposition) to decompose at a 

given temperature. The decomposition rate is first order (Eq. 6.8)   

     

  
        Eq. 6.8 

 

Where [I] is the initiator concentration [mol∙L
-1

] and kd is the first order rate constant, that is 

possible to calculate from the equation of Arrhenius: 

     
   

  ⁄  Eq. 6.9 

 

Where A is pre-exponential factor [s
-1

], R is the constant of gases [J∙mol
-1

∙K
-1

], T is the 

temperature [K] and Ea is the activation energy [kJ∙mol
-1

]. 

Integrating Eq. 6.8 with the following boundary conditions: 

For initial state, 

                       Eq. 6.10 

 

And for the final state, 

                          Eq. 6.11 

 

We obtain 

              Eq. 6.12 

 

And then: 

     
     

  
 Eq. 6.13 

 

The higher the temperature corresponding to the half-life, more stable is the initiator. Half-life 

temperatures can vary based on the manner in which they are determined, especially the 

solvent used.  
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Chapter 7. Instruments 

In this chapter are described the instruments and experimental conditions used for the 

characterization of the products synthesized. 

Nuclear Magnetic Resonance 

1
H NMR (250 or 400 MHz) and 

19
F (250 or 400 MHz) and 

13
C NMR (250 or 400 MHz) 

spectroscopies: the NMR spectra were recorded on Bruker, AC 250 and AC 400 instruments, 

using deuterated chloroform or deuterated tetrahydrofuran as the solvents and 

tetramethylsilane (TMS) (or CFCl3) as the references for 
1
H (or 

19
F) nuclei, respectively. 

Coupling constants and chemical shifts are given in Hz and ppm, respectively. The 

experimental conditions for recording 
1
H (

19
F) NMR spectra were as follows: flip angle = 90° 

(30°), acquisition time = 4.5s (0.7 s), pulse delay = 2 s (5 s), number of scans = 16 (64), and 

pulse width = 5 µs for 
19

F NMR. 2D-heterocorrelated 
1
H-

13
C experiment were performed 

using a VSP-400 5 mm z-gradient probe in the reverse detection conditions. The proton and 

carbon assignments were obtained by standard chemical shift correlations and confirmed by 

2D homo- and hetero-correlated measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. NMR apparatus. 
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Infrared and GC-MS 

Infrared spectroscopy measurements were performed in transmission with a spectrometer 

Nicolet Avatar 10 P. The accuracy was ±2 cm
-1

. GC/MS spectra were measured on a Carlo 

Erba Instrument MFC 500/QMD1000 using a silica fused capillary PS264 column (30 m x 

0.25 mm) on a Finnigan Mat TSQ7000 (capillary column 30 m x 0.32 mm). Typical 

conditions were: temperature program 60 °C for 2 min, 10 °C min
-1

 to 280 °C. Helium was 

used as the gas carrier 1 mL min
-1

. 

 

 

 

 

 

 

 

 

 

Surface characterizations 

The static, advancing and receding contact angles were assessed using a KRÜSS GmbH 

EasyDrop, Drop Shape Analysis System, with a measuring range of 1-180°, volume of one 

drop of water: 5 μL, volume of one drop of diiodomethane: 2 μL, with a monochrome 

interline CCD, 25/30 fps camera with halogen lamp. The contact angles were determined 

using KRÜSS DSA1 v1.91 program. The values given in this present paper were obtained 

from the average of 10 measurements. 

 

  

Figure 7.2. IR spectrometer.  
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Figure 7.3. Tensiometer KRÜSS GmbH EasyDrop. 

The polymer film obtained for the contact angles assessments was formed using the spin 

coater (Karl Suss Technique SA apparatus, CT60 model). A solution of 20 mg of 4’-

nonafluorobutyl styrene in 2 mL of THF was placed on a 20 

mm x 20 mm x 1 mm of quartz substrate. The substrate surface 

was covered using a pipette and followed by spinning at 1000 

rpm for three minutes to spread and form a uniform thin film 

over the substrate (Figure 7.4).  

During the static contact angle determination, the size of the 

drop did not alter during the measurement. During the 

assessments of the advancing angle, the syringe needle 

remained in the drop. Advancing and receding contact angles 

were determined by the needle-syringe method, also carried out 

on the same polymer samples using a stainless steel needle 

connected with an automatically microliter  syringe (diameter of the needle 0.5 mm). The 

water introduction and its withdrawal were monitored by a video camera that recorded the 

profile during the process. All calculation methods were based on the sessile drop method, 

while the surface energies calculation were assessed by the Owens-Wendt method (see 

Appendix A). 

Gas chromatography (GC) 

Gas chromatography analyses were performed with a GC1000 DPC (Digital Pressure 

Control), Dani Instruments. The column is 15 m long, with 0.25 mm of internal diameter, 

stationary phase: PS 264. , mobile phase: helium with a flow of  26 mL · min
-1

.Temperature 

of the column 60 °C, injector temperature 250 °C, detector temperature 250 °C. The initial 

temperature was 60 °C and the final temperature was 250 °C, ΔT/Δt = 15°C · min
-1

.  

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Spin-coating. 

Figure 7.5. Gas chromatography detector. 
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Gel permeation chromatography (GPC) 

Gel permeation chromatography (GPC) was performed using a Spectra-Physics apparatus 

equipped with a set of two PLgel 5 μm MIXED-C columns from Polymer Laboratories. The 

eluent was pure THF at a flow rate of 0.8 mL min
-1

. The calibration curve was established 

using monodispersed PS standards from Polymer Laboratories. 

Thermogravimetric analyses (TGA) 

Thermogravimetric analyses (TGA) were carried out with a TGA 51 apparatus from TA 

instruments, under air, at the heating rate of 10 °C min
-1

 from room temperature up to a 

maximum of 500 °C. The sample size was 15 mg.  

Differential scanning calorimetry  

Differential scanning calorimetry (DSC) measurements were conducted using a Pyris 1 

apparatus from Perkin Elmer. Scans were recorded at a heating rate of 20 °C min
-1

 from -100 

to +150 °C and values of Tg and Tm were assessed from the second cycle. The sample weight 

was 10 mg. 

 

 



 

 

General conclusion  

Fluorinated compounds are attractive materials because of their unique properties, such as low 

polarizability, high idro- and oleophobicity, high thermal and chemical resistance, resistance 

to oxidation and hydrolytic decomposition, low flammability, low refractive index and low 

dielectric constants.  

Because of these outstanding properties, fluorinated compounds have been extensively used 

since mid-50’s in the synthesis of low-surface energy protective coatings for different 

surfaces (metals, paper, stone, wood, leather, textiles to name a few).  

Molecules having long fluorinated moieties (at least 8 to 12 completely fluorinated carbon 

atoms) show highly ordinate structures due to the liquid crystal behavior of the rigid 

fluorinated side group, but they are persistent in the environment and have strong 

bioaccumulative effects. This arises from the extreme stablity perfluorinated chain which 

cannot degrade under enzymatic or metabolic decomposition. As a consequence of the EPA’s 

2010/2015 PFOA Stewardship Program which aims to the complete elimination of long-chain 

perfluorochemicals by 2015 an urging need to find out alternatives has become a real 

challenge. 

The use of shorter chain is detrimental to surface properties because of the partial or complete 

loss of highly structured liquid crystal phases. One of the strategies adopted to increase the 

molecular rigidity of short chain fluorinated telomers is the introduction of a phenyl or 

biphenyl group as rigid molecular spacer.  

Polymers bearing fluorinated substituents connected to the polymer backbone by means of a 

phenyl group show improved surface properties due to the enhanced self-assembly behavior 

of the semifluorinated side group. In order to investigate this alternative, in this work a new 

short-chain fluorinated monomer, 4’-nonafluorobutyl styrene, has been first synthesized and 

then polymerized using different polymerization techniques. 

The synthesis of 4’-nonafluorobutyl-styrene was achieved in three steps: fluoroalkylation of 

bromo acetophenone, reduction of 4’-nonafluorobutyl acetophenone and, finally, dehydration 

of the latter, in the presence of KHSO4, enabled us to synthesize the desidered monomer. The 

synthesis of 4’-nonafluorobutylacetophenone was achieved by the cross-coupling reaction and 

optimized by changing experimental conditions. It was demonstrated that the use of an aprotic 

polar solvent is compulsory for the success of the reaction. Further the optimum [solvent]0 / 

[1-iodo-perfluorobutane]0 molar ratio is 4 and only the use of copper led to the formation  of 

the desired product. Moreover, among the complexing ligands used (2,2’-bipyridine, 

HMTETA, PMTETA), 2,2’-bipyridine gave the best results both for conversion (99 %) and 

yield (73 %), when the reaction was carried out at 100 °C. 

Subsequently, the 4’-nonafluorobutyl styrene was polymerized. For the first time, the iodine 

transfer polymerization (ITP) of 4’-nonafluorobutyl styrene, controlled by 1-
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iodoperfluorohexane has been reported and compared to the conventional radical one. As 

expected, polymers obtained by ITP displayed more narrow polydispersity index (PDI = 1.13) 

than those achieved by conventional radical polymerization (PDI = 1.30). Thermal stability of 

these polymers was satisfactory, and 10% of the weight loss under air was achieved at  305 

°C. The kinetic of radical homopolymerization enabled to assess the kp
2
/kt value (3.62 ∙10

-2
 l∙ 

mol
-1

∙sec
-1

 at 80 °C). Measurements of both static and dynamic contact angles in the presence 

of water and diiodomethane were performed on spin-coated surfaces with poly(4’-

nonafluorobutyl styrene) achieved from both strategies. Values of contact angles evidenced 

the satisfactory hydro- and oleophobicity of synthesized polymers, and no significant 

differences were detected between polymers synthesized by ITP and those obtained by 

conventional radical polymerization. Conversely, an increase of hysteresis in polymers with 

lower polydispersity (47° ± 2°) compared to those with higher PDI (18° ± 2) was observed. 

The results obtained suggest a strong correlation between PDI values and surface properties of 

poly(4’-nonafluorobutyl styrene).  

In the last part of the thesis, the telomerisation of VDF in presence of C4F9I as chain transfer 

and TBPP as initiator was carried out with 73% of conversion of VDF and 47% of yield. 

After distillation, different fractions of telomers were obtained. Among them, a monoadduct 

(C4F9-CH2CF2-I) and a diadduct (C4F9-(C2H2F2)2-I) were isolated and characterized by 
1
H 

NMR and 
19

F NMR spectra. The characterization of the monoadduct evidenced the absence of 

the reverse telomer C4F9-CF2CH2-I, confirming the selectivity of the reaction of C4F9∙ radical 

on the VDF monomer. Conversely, the diadduct presents two species, one called “normal” 

(C4F9-CH2CF2-CH2CF2-I) and one called “reverse” (C4F9-CH2CF2- CF2CH2-I). The diadduct 

was used as reactant for the synthesis of the alcohol C4F9-(VDF)2-CH2-CHI-CH2-OH 

obtained by radical addition of diactud to allyl alcohol followed by the reduction with tert-

butyl stannate.  

The reaction with allyl alcohol evidenced the decreased reactivity of the reverse adduct 

compared to the normal one as evidenced by 
19

F NMR spectra. In fact, the signal at -40 ppm, 

assigned to the -CF2-I fluorinated group of the normal C4F9-VDF2-I telomer, disappeared 

showing that a reaction happened. Conversely, signals of the inverse diadduct are still present 

after the reaction with allyl alcohol, demonstrating the less reactivity of the reverse adduct.  
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