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Abstract 
 

Peach (Prunus persica L. Batsch) produces climacteric fleshy fruits; their ripening is 

strictly regulated and relies mainly on the action of two hormones, auxin and ethylene. A 

peptide belonging to GOLVEN family, CTG134, was identified some years ago as a 

possible candidate to regulate the interaction between the two hormones. CTG134 was 

previously characterized in model systems Arabidopsis thaliana and Nicotiana tabacum, 

where it demonstrated to influence regulative processes in which above-mentioned 

hormones are involved. The goal of my PhD project was to test the function of GOLVEN 

peptides in the regulation of peach fruit ripening. During this thesis work, genes belonging 

to GOLVEN family were identified, through the use of bioinformatic tools. Among them, 

genes transcribed during ripening stages, crucial for fruit development, were determined. 

Another peptide shared the CTG134 expression profile, CTG512. Both were transcribed 

during climacteric stage and were induced by auxin and not by ethylene. To complete its 

functional characterization, CTG134 was expressed in Solanum lycopersicum under the 

control of a fruit specific promoter. Despite no evident phenotype was detected, fruit 

sampling allowed to test the expression system used by reporter gene GUS, and 

transcriptomic analysis allowed to verify that CTG134 influences transcription of ethylene 

related genes possibly inducing its synthesis by inducing expression on an involved gene 

and increasing tissue sensitivity by partial inhibition of a receptor transcription. To perform 

preliminary functional characterization, CTG512 was expressed in Arabidopsis e tobacco. 

Siliques presented ovule and embryo abortion, correlated to transgene expression level. 

This phenotype is associated to auxin and ethylene action, which are necessary for ovule 

and embryo development. Results obtained uphold the hypothesis that GOLVEN peptides 

act as hormone peptides, and together with auxin and ethylene, they participate to regulate 

fruit developmental steps fundamental for its quality. 
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Riassunto 
 

Il pesco (Prunus persica L. Batsch) produce frutti carnosi e climaterici, la cui maturazione 

è un processo altamente regolato che dipende principalmente dall’azione di due ormoni, 

auxina ed etilene. Un peptide appartenente alla famiglia GOLVEN, CTG134, è stato 

identificato alcuni anni fa come possibile candidato alla regolazione dell’interazione tra i 

due ormoni. CTG134 è stato precedentemente caratterizzato nei sistemi modello 

Arabidopsis thaliana e Nicotiana tabacum, dove ha dimostrato di influire in processi 

regolativi in cui sono coinvolti i due ormoni sopra citati. L’obiettivo del mio progetto di 

dottorato era di caratterizzare funzionalmente i peptidi GOLVEN e identificare il loro ruolo 

durante la maturazione della pesca. Durante questo lavoro di tesi sono stati identificati i 

geni presenti nel genoma di pesco appartenenti alla famiglia GOLVEN, avvalendosi di 

strumenti bioinformatici. Tra questi sono stati determinati i geni trascritti nelle fasi 

climateriche, cruciali per la maturazione del frutto. Oltre a CTG134 un altro peptide 

condivideva il suo stesso profilo trascrizionale, CTG512. Entrambi sono trascritti durante 

la fase climaterica e vengono indotti da auxina, ma non da etilene. CTG134 è stato espresso 

in Solanum lycopersicum sotto il controllo di un promotore frutto specifico in modo da 

proseguire la sua caratterizzazione funzionale. Nonostante non siano stati riscontrati 

fenotipi evidenti, il campionamento dei frutti di pomodoro ci ha permesso di testare il 

funzionamento del sistema di espressione attraverso il gene reporter GUS, e l’analisi 

trascrittomica ha permesso di verificare che CTG134 influisce su geni correlati all’etilene 

presumibilmente in modo da indurne la sintesi mediante l’induzione trascrizionale di un 

gene coinvolto in essa, ed allo stesso tempo aumentare la sensibilità dei tessuti inibendo 

parzialmente la trascrizione di un recettore. CTG512 invece è stato espresso in Arabidopsis 

e tabacco per effettuare una caratterizzazione funzionale preliminare. Le silique 

presentavano aborti ovulari ed embrionali correlati al livello di transgene espresso. Questo 

fenotipo è associato all’azione di auxina ed etilene che sono necessari per lo sviluppo di 

ovulo ed embrione. 

I risultati ottenuti supportano l’ipotesi che i peptidi della famiglia GOLVEN agiscano come 

peptidi ormonali, ed in concerto con auxina ed etilene, intervengano nella regolazione delle 

fasi della maturazione del frutto fondamentali per lo sviluppo delle qualità organolettiche. 

  



4 

 

 

  



5 

 

Introduction 

 

The fruit 

The main feature of terrestrial vascular plants is their sessile nature: they carry out their 

entire life cycle, from germination to senescence, in the same place. To ensure the spread 

of the species, plants have developed different strategies. The production of fruit is part of 

the definition of Angiosperms; the fruit apparatus is meant to protect the seeds and allow 

their dispersal. 

Fruit has been “invented” several times in angiosperm evolution and their shape and 

characteristics are very disparate. However, the mass of different fruit produced by 

Angiosperms can be ordered using their main features: dry or fleshy, dehiscent or 

indehiscent, fused or free carpels (Knapp and Litt, 2013). 

Dry fruits dispersal strategies are mainly based on abiotic effectors; for instance, the 

approach of maple is based on wind which spreads the winged dry indehiscent samaras. 

Arabidopsis instead produces dehiscent siliques which set the seeds free by opening of the 

valves that remain themselves with the mother plant. 

On the other hand, fleshy fruit producing plants rely on endozoochory. The ripe fruits bait 

vertebrate animals, mainly birds and mammals; if the seeds are small enough to be ingested 

they are able to survive digestion and are deposited far away from the mother plant, if too 

big they are discarded at some distance. The unripe fruits instead are unattractive and 

protect developing seeds. 

The ripening process can be very different among fleshy fruits but share some common 

features: conversion of starch to sugars, modification of cell wall structure and texture, 

alterations in pigment biosynthesis, accumulation of flavour and aromatic volatiles 

(Giovannoni, 2001). 

Fleshy fruits can be divided in two main group. At the onset of ripening, a burst in 

respiration rate and a dramatic increase in ethylene level can be detected in climacteric 

fruits, and not in aclimacteric ones. Apples, peaches and tomatoes are examples of 

climacteric fruits; strawberry, oranges and grapes instead are aclimacteric (Grierson, 2013). 
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Fleshy fruit ripening 

Till 50 years ago it was a common opinion that ripening and senescence were degradative 

processes caused by tissue and cellular decay. Nowadays we know that ripening is an active 

and regulated developmental process that leads to modulation in thousands of gene 

expression levels (Alba et al., 2005).  

As said before, the function of the organ fruit is to, first protect developing seeds, and latter 

to bait frugivores to help spread the mature seeds. To attract possible consumers the fruit 

undergoes some modifications: 

• Anthocyanins are stored in the vacuolar compartments contributing to changing 

fruit pigmentation ; 

• chlorophyll is degraded and chloroplasts are transformed in chromoplasts, where 

pigments such as lycopene or β-carotene are accumulated; 

• the starch accumulated during fruit development is degraded to glucose and 

fructose, these two sugars can represent up to 4% of the fresh weight of the fruit; 

• the good flavour of the ripe fruit is due also to organic acids such as malic and citric 

acids, synthetized during ripening process; 

• volatile compounds are synthetized to attract consumers; 

• cell wall structure is modified by the action of several different enzymes, such as 

polygalacturonase (PG), pectin methylesterase (PME) and expansin (EXP), 

resulting in the softening of the pericarp; 

• loss of cell wall integrity leads also to a generally enhanced susceptibility to 

opportunistic pathogens. 

Fleshy fruit development can be divided in distinct stages. The starting point of this process 

is, usually, ovule fertilisation; in the first stage the ovary tissues undergo rapid cell division; 

then the division rate decreases and cells undergo a distention phase at the end of which the 

pericarp has reached its final size (mature green stage in tomato, the model species for 

studying fleshy fruit development and ripening). 

At the onset of the following step, ripening, respiration increase and ethylene spike are 

detected in climacteric fruits. Ethylene synthesis is regulated in an autocatalytic manner, 

unlike in the vegetative tissues. After ripening senescence occurs (Figure 1). 
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Figure 1: Tomato fruit development and ripening.  MG = mature green, BR = breaker, RR 

= red ripe (from Seymour et al., 1993). 

Arabidopsis is the model organism to study nearly all the developmental process in 

angiosperms, but its fruits, siliques, are dry. The model system used for the study of 

climacteric fleshy fruits is tomato. It has been selected thanks to its convenient features: its 

genome is diploid and more than 1000 molecular markers have been identified, with an 

average genetic spacing of less than 2cM (Tanksley et al., 1996). Further, deep expressed 

sequence tag (EST) resources, an extensive germplasm collections and a well-characterized 

mutant stocks contribute to the utility of this experimental system (http://solgenomics.net/, 

http://ted.bti.cornell.edu/). Moreover, in 2012 the genome sequence has been publicly 

released (http://solgenomics.net/organism /Solanum_lycopersicum/genome, (Sato et al., 

2012). Last but not least, it is easily transformed. 

Thanks to all this favourable characteristics the tomato ripening process has been largely 

investigated, allowing to get a detailed insight into climacteric fruit ripening and the role 

of ethylene on it. Nonetheless, the relationship between climacteric respiration and ethylene 

production is not fully elucidated yet, but this phytohormone is crucial for the correct 

progression of ripening process (Seymour et al., 2013). The critical role of ethylene for 

ripening induction has been demonstrated by suppression of its biosynthesis genes 

(Grierson, 2013). Autocatalytic ethylene biosynthesis is active during ripening and involves 
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new forms of synthesis enzymes which are not subject to autoinhibition. To activate its 

signalling network ethylene is perceived by a family of membrane receptors, some of them 

are specifically induced at the onset of ripening. Ethylene receptors work as inhibitors of 

ethylene response, but when they bind ethylene the inhibition is relieved and a signaling 

process leads to the ethylene response (Grierson, 2013; Klee and Giovannoni, 2011). The 

signalling response involves the action of particular transcription factors (Seymour et al., 

2013).  Tomato mutant lines allowed to understand the whole mechanism. Loss-of-function 

mutants that fail either to produce elevated ethylene or to respond to exogenous ethylene 

cause impaired ripening. However not all the pathways involved in ripening are ethylene 

dependent (Giovannoni, 2007). A gene involved in the ethylene mediated pathways is 

RIPENING INHIBITOR (RIN; Vrebalov et al.,2002) which act upstream to the ethylene 

signal cascade and its mutation leads to failure in the ripening process also in presence of 

exogenous ethylene perceived by the fruits. An homologue of RIN has been isolated in 

strawberry, likely meaning as a common class of ripening regulators similar in climacteric 

and non-climacteric fruits may exist (Seymour et al., 2011). Moreover a protein of grape, 

a fruit considered non climacteric, can partially rescue rin tomato phenotype (Mellway and 

Lund, 2013) upholding the idea of gene conservation between climacteric and non-

climacteric fruits (Ampopho et al., 2013).  

 

Peach ripening 

Peaches are drupes, so their seed is enclosed in a stony endocarp. They are climacteric. The 

kinetics of drupe development and in particular of peach fruit can be described by a double-

sigmoid curve, divided in four stages: S1, S2, S3, S4 (Zanchin et al., 1994). The shape of 

the curve is due to an alternation of fast growing stages (S1 and S3) and slow growing 

stages (S2 and S4). 

Peach fruit development is slightly different from the model of tomato:  

• S1   both cell division and distension occur; 

• S2   slow growing stage during which hardening of the endocarp (pith) takes place; 

• S3  growing rate increases again due to cell expansion; 

• S4  growth slows down but does not stop, fruit reaches its final size and eventually 

ripens. 
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Figure 2: Peach growth diagram. PH = pith hardening phase. DAFB = days after full bloom 

(redrawn from Bonghi et al., 2011).  

At the onset of ripening several genes change their transcriptional profile and many of them 

are influenced by the dramatic increase of ethylene production occurring inside the fruit. 

Ethylene is the phytohormone usually linked to climacteric ripening but also auxin plays a 

role: an increase of auxin level has been detected in peach mesocarp (Miller et al.,1987) 

and auxin related genes has been demonstrated to be upregulated by the ripening transition 

(Trainotti et al., 2007) 

Peach ripening is a highly coordinated program regulated not only by mother plant, but also 

by signals coming from the seed (Bonghi et al., 2011). All the changes occurring during 

ripening contribute to mature fruit quality (Trainotti et al., 2003, 2006). Time of harvest is 

strictly linked with fruit organoleptic qualities; on-tree physiological ripening leads to an 

increase in sugar and flavour compounds and a decrease in total acids (Vizzotto et al., 1996; 

Visai and Vanoli, 1997; Etienne et al., 2002). Unfortunately peaches and nectarines, after 

being picked from the tree, are subjected to rapid softening and ripening, thus limiting their 

shelf-life and causing enhanced sensitivity to damage during transport. To avoid fruit 

discard during market chain and therefore financial loss, peaches are harvested at early 

stage of ripening leading to a reduction of flavour and aroma.  
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Ethylene 

Ethylene (C2H4) is a gaseous molecule, and it is known to be a plant hormone since 1901 

(Neljubov, 1901). It is involved in the regulation of a great number of plant developmental 

processes; we can mention seed germination, leaf and flower senescence and abscission, 

cell elongation and of course fruit ripening. 

Ethylene biosynthetic pathways starts from the amino acid methionine. The enzyme S-

adenosyl methionine synthetase converts methionine to S-adenosyl methionine (SAM). In 

the second step, the rate limiting one, SAM is converted to 1-aminocyclopropane-1-

carboxylic acid (ACC) and 5’-deoxy-5’methylthioadenosine (MTA) by the enzyme ACC 

synthase [ACS (Adams and Yang 1979)]. Methionine reserve is not depleted by the 

production of ethylene because MTA is recycled thanks to the Yang cycle (Miyazaki and 

Yang, 1987). In the final reaction ACC oxidase (ACO) turns ACC in ethylene, CO2 and 

cyanide. To elude toxic side effects cyanide is converted into β-cyanoalanine by β-

cyanoalanine synthase (Figure 3). 

 

Figure 3: The ethylene biosynthetic pathway 

As mentioned before, ACS determines the rate of ethylene synthesis. ACS gene is part of a 

multimember family whose elements are differentially regulated. ACS proteins can be 

divided in three groups according to the structure of their C-terminal domain: 

• the proteins of the first group have an extended C-terminal domain in which are 

present four conserved serine residues. Three of them are phosphorylation target of 
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mitogen-activated protein kinase 6 (MPK6), the remaining serine is the 

phosphorylation site of calcium dependent protein kinase (CDPK); 

• in the second group, proteins present only the CDPK phosphorylation site in their 

C-terminal domain; 

• protein of the third group have short C-terminal domains without phosphorylation 

sites (Argueso et al., 2007). 

The last step of ethylene biosynthesis is driven by ACO. This is a mononuclear, non-heme 

iron enzyme encoded by a small multimember family. 

ACS and ACO are encoded by multimember family so ethylene biosynthesis can be 

regulated at multiple control points. In climacteric fruits two different ethylene biosynthesis 

systems are present; the pathway is identical but different ACS and ACO genes are involved. 

System 1 is involved in vegetative growth, stress response and early fruit development. A 

negative feedback regulation is present so exogenous ethylene application inhibits the 

pathway. System 2 instead, is involved in floral senescence and fruit ripening and is 

regulated by an autocatalytic feedback. In this case, exogenous ethylene application 

stimulates the synthesis, while ethylene antagonist molecules, such as 1-

methylcyclopropene (1-MCP) , inhibit this system (McMurchie et al., 1972) inhibit it.  

How plant switches from system 1 to system 2 is still unknown but there are some hints 

that suggest this commutation can be independent by ethylene itself (Nakano et al., 2003). 

 

Ethylene perception and signalling pathway 

Ethylene receptors are integral proteins associated to the endoplasmic reticulum (ER). They 

have protein kinase activity and work as negative regulators of the ethylene signalling 

pathway. In absence of ethylene, receptors suppress signalling response, while after binding 

of the hormone suppression is removed. 

Receptor mutation, impairing ethylene binding, leads to ethylene insensitivity like 

ETHYLENE RESPONSE 1 (ETR1) in Arabidopsis (Chang et al., 1993) and NEVER-RIPE 

(Nr) in tomato (Lanahan et al., 1994). 

Ethylene receptors are encoded by multimember gene families, for instance in tomato seven 

genes are present. On the basis of gene and protein structures, ethylene receptors are 

divided in two subfamilies. In subfamily 1 proteins have the highest similarity with 



12 

 

histidine kinases, proteins of subfamily 2 instead have acquired serine kinase activity 

(Moussatche and Klee, 2004). 

ETR4, ETR6 and NR tomato receptors are highly expressed during fruit ripening. 

Expression reduction of ETR4 or ETR6 leads to enhance ethylene sensitivity with different 

outcomes like earlier fruit ripening; this phenotype can be restored by overexpression of 

NR showing functional complementation inside this family (Tieman et al.,2000). 

In absence of ethylene, receptors block signalling pathway. Kevany et al.(2007) showed 

that ethylene binding induces receptor protein degradation. This mechanism could explain 

also the paradox of expression increase of ethylene receptors – negative regulators – when 

ethylene action is needed the most, during fruit ripening. 

Downstream of ethylene receptors CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) is 

present. It is a serine/threonine protein kinase (Kieber et al., 1993). CTR1 is the most 

expressed of its family in tomato fruit and it is induced by ethylene and ripening. CTR1 

loss of function mutants in Arabidopsis lead to constitutive ethylene response, indicating 

that it acts as negative regulator like receptors (Adams-Phillips et al.,2004) (Leclercq et al., 

2002). The ethylene receptors also interact with ETHYLENE INSENSITIVE 2 (EIN2), 

that acts downstream of CTR1 as positive regulator. EIN2 can migrate from ER to nucleus 

to activate the transcriptional ethylene response mediate by EIN3/EIL1(ETHYLENE 

INSENSITIVE LIKE1); otherwise it can also function in a cytosolic process of 

translational control (Merchante et al., 2013; Ju and Chang, 2015; Li et al., 2015; Merchante 

et al., 2015) At the bottom of ethylene signal cascade EIN3 and its homologous EIL1 bind 

as homodimers the promoters of ETHYLENE RESPONSE FACTORS (ERF) genes (Solano 

et al., 1998; Chang et al., 2013) 

 

Auxin 

Auxins are a class of hormones with morphogen-like characteristics. They guide different 

growth processes and responses to stimuli. In the class of auxin are comprised “natural” 

compounds produced by plants and synthetic molecules able to mimic natural auxin action. 

Auxin biosynthesis in plant is a complex topic and is not fully elucidated yet. 

Indole-3-acetic acid (IAA) is the most abundant natural auxin and the first one discovered 

in 1928 by Frits Went and Kenneth Thimann. IAA can be produced by plant in two major 

pathway: the tryptophan (Trp)-independent and Trp-dependent pathways (Mano and 

Nemoto, 2012). 
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In Trp-independent pathway the likely precursor is indole-3-glycerol phosphate or indole 

but biochemical processes are still unclear (Zhang et al., 2008), however a cytosol-localized 

indole synthase (INS) is fundamental for the initiation of this biosynthetic pathway (Wang 

et al., 2015). 

On the other hand several Trp-dependent pathways have been proposed: the indole-3-

acetamide (IAM) pathway; the indole-3-pyruvic acid (IPA) pathway; the tryptamine 

(TAM) pathway and the indole-3-acetaldoxime (IAOX) pathway. Not all the genes 

involved in this pathways are known and it is not clear if all pathways are present in all 

plant species (Figure 4). 

The principal contributor to free IAA level is the IPA pathway, the only one in which every 

step from Trp to IAA has been determined. Tryptophan is converted to indole-3-pyruvic 

acid by TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) protein 

family, then YUCCA (YUC) family of flavin monooxygenases converts IPA to IAA using 

NADPH and O2 (Zhao, 2012). 

If need arises plants can release auxin not only by de novo synthesis pathway but also from 

auxin storage forms. 

Plant auxin pool is made up of free active auxin, conjugated auxin, inactive precursor 

indole-3-butyric acid (IBA) and inactive methyl ester form MeIAA. There are three types 

of auxin conjugates: ester-linked simple and complex carbohydrate conjugates, amide-

linked amino acid conjugates and amide-linked peptide and protein conjugates. 

Composition of auxin conjugates varies between species (Korasick et al., 2013). Auxin 

storage forms help plant to regulate auxin homeostasis during growth and development 

(Cohen and Bandurski, 1982). 

 

Auxin signalling pathway 

Auxin signalling pathway is very short, consisting of only three key components: 

TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) F-

box proteins, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional 

repressors and AUXIN RESPONSE FACTORs (ARFs) transcription factors. Auxin binds 

a coreceptor made by TIR1 and Aux/IAA stabilizing their interaction, In this way TIR1 

promotes  Aux/IAA ubiquitin-based degradation (Calderon-Villalobos et al., 2012) (Gray 

et al., 2001). 
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Figure 4:  Potential IAA biosynthetic pathways. Arrows in pathways for which enzymes have 

been identified are solid and arrows in pathways that have not been identified are dashed and 

may be single or multiple steps. (From Korasick et al., 2013). 

Aux/IAA proteins repress ARF activity by binding them through PB1 domain. They have 

no DNA binding domain but are recruited by ARF proteins (Tiwari et al., 2004). 

Aux/IAA proteins are composed of three different domains: 

• one or two N-terminal EAR or EAR-like repressor motifs;  

• a central region that is required for the TIR1/AFB interaction and for degradation; 

• and a C-terminal PB1 domain necessary for both homo- and heterodimerization 

with ARF proteins (Guilfoyle, 2015). PB1 domain seems to mediate also Aux/IAA 

head-to-tail multimerization (Dinesh et al., 2015). 

Downstream in the signalling pathway we can find ARF protein family. They can be 

divided into three classes. Class A proteins are glutamine rich in the middle region and are 

classified as transcriptional activators; class B and class C ARFs are classified as 

repressors.  
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ARFs bind so called auxin responsive elements (AuxREs) in the promoter of auxin 

responsive genes. AuxRE are minimal cis-regulator  sequences containing a TGTC motif; 

they can be found in simple or composed forms. 

ARFs are compose of three regions: 

• at the N-terminal region there is a B3 DNA binding domain between two 

dimerization domains; 

• the middle region has the function of transcriptional regulation; 

at the C-terminal there is a PB1 domain that mediates oligomerization and dimerization 

with Aux/IAA proteins (Weijers and Wagner, 2016). 

 

Hormonal crosstalk 

Plant hormones are essential regulators of growth processes. Although they are usually 

studied individually, they exert their functions interacting one to each other. 

Ethylene and auxin interact to control several developmental processes. They can regulate 

common target genes. When the two hormones regulate the same target they do it 

independently and in the target gene promoter are present both Ethylene Responsive 

Elements (EREs) and Auxin Responsive Elements (AuxREs) (Robles et al., 2013). This is 

called primary cross-talk; on the contrary, when they reciprocally regulate the activity of 

key biosynthesis, transport and signalling genes, creating a complicate feedback loop, the 

process is called secondary crosstalk (Figure 5). 

As usual Arabidopsis is the model organism used to investigate this interplay.  

Auxin and ethylene can act synergistically or antagonistically. Even in the regulation of 

similar processes their interaction is different: they act synergistically to reduce primary 

root elongation, but in lateral root formation and elongation auxin acts as a promoter 

opposed by ethylene.   

In general ethylene influences many aspects of auxin-dependent development by altering 

auxin signalling, synthesis and transport. When auxin accumulation is needed to start a 

process (i.e. lateral root formation or gravitropic response) ethylene alters auxin synthesis 

and transport to regulate the gradient formation (Muday et al, 2012). 
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Figure 5: Model of auxin–ethylene crosstalk. (From Muday et al., 2012) 

Auxin is well known to induce ethylene synthesis by promoting the expression of ACS4 in 

Arabidopsis (Abel et al., 1995). In the ACS4 promoter a number of AuxRE can be found 

(Woeste et al., 1999). This kind of crosstalk is documented also in other plant species like 

tomato (Abel and Theologis, 1996) and peach (Trainotti et al., 2007), both bearing fleshy 

fruits. At the onset of ripening an auxin peak has been documented in both fruits, just before 

the climacteric ethylene increment (Figure 6) (Miller et al., 1987; Pan et al, 2011), (Gillaspy 

et al., 1993 Mounet et al., 2012). Moreover recent papers highlight auxin role also in apple 

ripening (Shin et al., 2015). Taken together these results suggest a possible key role of 

auxin in the regulation of ripening in climacteric fleshy fruits, although the mode of action 

may vary according to the species. 
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Figure 6: IAA concentration and ethylene evolution in peaches cv Redhaven. (from Miller et 

al., 1987). 

 

Plant peptides 

Peptides are small molecules of the plant peptidome, the mature peptides have  an arbitrary 

maximum length of 100 amino acids. They are involved in the regulation of several 

processes: plant growth and development, reproduction, pathogen response, symbiotic 

interaction and stress response. Due to their small size, peptides are difficult to be detected 

either by gene prediction and mass spectroscopy so the number of peptide genes present in 

plant genomes is probably underestimated. 

Plant peptides can be classified on the basis of their origin: they can derive from a non-

functional precursor (1), from a functional precursor (2) or do not derive from a precursor 

(3) (Tavormina et al, 2015) (Figure 7). 
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Figure 7: The Diversity of Plant Peptide Synthesis. (From Tavormina et al., 2015) 

1) Peptides derived from non-functional precursor undergo proteolytic cleavage and can be 

post-translationally modified. The majority of them are apoplastic and are directed to enter 

the secretory pathway by a N-terminal signal sequence (NSS). They are, in turn, divided in 

three groups: 

• peptides that undergo specific post translational modification. The mature peptide 

released after processing is less than 20 amino acids. They have few or no Cys 

residues, and undergo modification essential for their functions, such as Pro 

hydroxylation (ProHyp), ProHyp glycosylation (mainly arabinosylation), and Tyr 

sulfation. They act as signalling molecules perceived by specific receptors; their 

mode of action is still unclear but they may activate kinase cascades. They are 

involved in regulation of several developmental processes. Examples of this kind 

of peptides are CLE (Cock and McCormick, 2001) and ROOT GROWTH 

FACTORS/GOLVEN/CLE-LIKE peptides (Matsuzaki et al., 2010; Whitford et al., 

2012; Meng et al., 2012); 
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• cysteine rich peptides; they contain a cys rich domain, but vary a lot in length and 

primary sequence between families. Cys residues form disulphide bonds essential 

for peptide folding and activity. The majority of them have antifungal and 

antibacterial activity but some are involved also in pollen recognition, abiotic stress 

response and other features. Examples of cys-rich peptides are LURE (Okuda et al., 

2009) and RALFs (Pearce et al., 2001); 

• non cysteine rich peptides without post translational modifications; they are 

released from preprotein by proteolytic cleavage and contain functionally important 

amino acids critical for their functions like Pro, Gly and Lys residues. They are 

mainly involved in plant defence response. Examples are SYSTEMINS (Pearce et 

al., 1991) and PLANT ELICITOR PEPTIDES (Pearce et al.,2008). 

2) Peptides can derive also from a functional precursor after proteolytic cleavage. The 

precursor protein has a different function from the derived peptide. They are called 

cryptides (from cryptic). Till now in plant only 3 cryptides have been identified (Pimenta 

and Lebrun, 2007). 

3) The last category comprises peptides that are not derived by a precursor but are 

transcribed by small Open Reading Frames (sORFs) whose transcript is no longer than 100 

codons. All the peptides reported in this group are involved in plant development and 

regulation of gene expression. Small ORFs can be of three kind: 

• upstream sORFs that are located in 5’ leader sequence of a main coding region. 

They are long from 1 to 92 codons and influences the expression of the main ORF. 

Although the translation of these sORFs has been demonstrated (Andrews and 

Rothnagel, 2014; Juntawong et al., 2014), the peptides derived are not detected by 

mass spectroscopy maybe due to their rapid turnover in the cell; 

• primary transcripts of miRNA contain small ORFs which are translated to miRNA-

ENCODED PEPTIDES (miPEPs). Even in this case ORFs translation is proved but 

peptides are not detected by mass spectroscopy (Juntawong et al., 2014); 

• main ORFs whose transcript is no longer than 100 amino acids. Six of them have 

been reported till now in plants. An example is POLARIS peptide (Chilley et al., 

2006). 
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Plant peptide receptors 

All peptide receptors identified till now belong to the family of receptor like kinases 

(RLKs). The Arabidopsis genome contains more than 600 genes of this family (Gish and 

Clark, 2011). In particular, peptide receptors have been identified inside the Leucine Rich 

Repeat -RLK (LRR-RLKs) subfamily. LRR-RLKs are composed by three domains: 

• an extracellular domain corresponding to N-terminal protein portion in which we 

can find the signal peptide and the ligand binding domain; 

• the transmembrane domain; 

• the cytosolic domain with serine threonine function. 

 

In the N-terminal region of LRR-RLK proteins we can find up to 32 LRR domains, tandem 

repeats of nearly 24 amino acids. As the name suggests, this amino acid stretches are rich 

in leucines that are highly conserved. LRR-RLKs bind various ligands and the specificity 

of the interaction could be due to the high degree of variability flanking the consensus core 

(Afzal et al., 2008). 

In Arabidopsis several peptide receptors have been characterized and they all work as 

heterodimers; examples are the PSK receptor (Wang et al., 2015; Matsubayashi et al., 

2006), the CLV3 receptor (Shimizu et al., 2015; Ohyama et al., 2009) and the IDA receptor 

(Cho et al., 2008).  

 

ROOT GROWTH FACTOR/GOLVEN/CLE-LIKE peptides 

ROOT GROWTH FACTOR/GOLVEN/CLE-LIKE peptides are a family of hormone 

peptides identified in Arabidopsis by three independent laboratories. In 2010 Matsuzaki et 

al. reported them for the first time and called them Root Meristem Growth Factors (RGF); 

then in 2012 Meng et al. and Whitford et al. reported on their functions calling them CLE-

like (CLEL) and GOLVEN (GLV) peptides respectively. For clarity from here after they 

will be referred as GLV.   

GLV genes were identified by three independent in silico studies. The gene family 

comprises 11 members (Figure 8); as CLE18 differs from other GLV for its primary 

structure it is here not included. 
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Figure 8: Summary of the nomenclature of GLV/RGF/CLEL genes (From Fernandez et al., 

2013) 

In GLV genes we can recognize two domains: the N-terminal domain containing the signal 

peptide for the address to the secretory pathway and the C-terminal domain in which we 

can find the conserved motif that should correspond to mature peptide and responsible for 

their biological activities. These two domains are connected by a region with low sequence 

similarity among prepropeptides of the family.  

The mature peptide sequence was demonstrated for 4 peptides (Figure 9) (Matsuzaki et al., 

2010; Whitford et al., 2012); their length varies from 13 to 18 residues and they carry two 

types of posttranslational modifications, tyrosine sulfation and hydroxylation of one of the 

proline residues. 

Tyrosine sulfation enhance the activity of synthetic peptides (Matsuzaki et al., 2010; 

Whitford et al., 2012) but proline hydroxylation has not been connected to any function for 

GLV peptides. 

GLV genes are expressed throughout the entire plant but every gene has its specific 

expression pattern. In the primary root 9 out of 11 genes are expressed and can be divided 

into three groups (Fernandez et al., 2013). The first group of genes is expressed in the 

quiescent centre and/or columella cells; genes of the second group are expressed in the 

meristematic region above the QC; and the third group of genes are expressed in region of 

the root above the meristem. These distinct expression zones could signify different 
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Figure 9: The structure of GLV precursor proteins consists of two conserved domains 

connected by a variable region. The sequence of the native peptides has been identified for 

GLV1, 2, 3, and 11. (SO3) indicates a sulphated tyrosine residue, and (Hyp) refers to a 

hydroxyproline residue. SP, signal peptide; GLV, GLV motif (From Fernandez et al., 2013) 

functions inside the peptide family. GLV expression has been detected also in shoot tissue 

like hypocotyl, shoot apical meristem (SAM), cotyledon, leaf, stem, and flower (Fernandez 

et al., 2013). Also in this case GLV genes are correlated to specific cells and tissues. 

However GLV functions have been identified only in root till know. GLV peptides are 

involved in: 

• root gravitropic response. They affect auxin fluxes controlling PIN2 protein 

turnover and accumulation (Whitford et al., 2012). This function is connected to 

the overexpression phenotype of wavy roots on tilted plate (golven in Dutch); 

• control of primary root meristem size. RGF1 controls PLETHORA proteins amount 

at translational and posttranslational levels (Matsuzaki et al., 2010); 

• root hair elongation (Fernandez et al., 2013); 

• lateral root development. GLV6 peptide level is critical for the right cell division 

pattern at lateral root primordia ( Fernandez et al., 2015). 

 

In shoot tissue GLV1 and GLV2 mutants have impaired hypocotyl gravitropic response but 

the mechanism is still unknown and is not clear if it can be similar to root phenotype. 

However several other GLV genes are expressed in shoot tissues but no phenotype has been 

observed so far. 
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RGF/GLV/CLEL receptors 

During 2016 three independent papers were published about GLV receptors (Ou et al., 

2016; Song et al., 2016; Shinohara et al., 2016). The three groups identified the receptors 

by different approaches.  

Ou et al. started from the hypothesis that BAK1 should be the coreceptor and pair with 

another LRR-RLK to regulate root growth and development; they performed yeast two 

hybrid assay to find LRR-RLK(s) able to physically interact with BAK1; among the 

interactors five belonged to LRR-RLK family IX. Then they used reverse a genetic 

approach to test whether these five candidates regulate root development. Quintuple 

mutants are insensitive to GLV peptides and have short root phenotype. Ou et al. called 

them RGF1 INSENSITIVE (RGI) from 1 to 5 (Ou et al., 2016). 

Song et al. identified the same genes, this time called RGF RECEPTORs (RGFRs) by 

adopting a “signature motif-guided” structure approach. In a previous study about the 

interaction between AtPep1 and its receptor PEPRs that belong to LRR-RLK subfamily XI 

they found that the asparagine residue at the C-terminal end of AtPep1 forms salt bridges 

with two arginines of the receptor (RxR motif) (Tang et al.,2015). The RxR motif is 

conserved in all members of subfamily XI so they hypothesized that this RLK subfamily 

may recognize peptide ligands with the last amino acid as asparagine or histidine. Thus 

they purified the extracellular domain of subfamily XI LRR-RLKs and checked for their 

interaction with a pool of peptides that have a free C-terminal histidine or asparagine. In 

this way they identified RGFR1 for its interaction with RGF1, and by sequence alignment 

the other four receptors. Additional analyses helped to identify two motifs necessary for 

RGFR1-RGF1 interaction: the RxR motif together with an D and a L residues interact with 

peptide C-terminal aspargine; and the RxGG motif interacts with the sulfate group at the 

peptide N-terminus. The RxGG motif is peculiar of the RGFRs and appears to determine 

the specificity of their interaction with RGF peptides. Song at al. have also reported that 

RGFR1 interact with SERK to perceive RGF1 (Song et al., 2016). 

Matsubayashi group instead selected 95 candidates among LRR-RLKs, expressed them in 

BY-2 cell lines and used photoaffinity assay with RGF1 to identify three RGFR. Triple 

Arabidopsis mutant for receptors genes have a short-root phenotype with reduced meristem 

size and reduced expression levels of PLT1 and PLT2 (Shinohara et al., 2016).  
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CTG134: a peach GOLVEN peptide 

The peach gene CTG134 was identified through microarray experiments performed in the 

course of a project on peach ripening (Trainotti et al., 2007). Transcriptomic data were 

collected about peach fruit ripening kinetic and hormone treatments on fruits. From the 

analyses on these data CTG134 gene was highlighted thanks to its peculiar expression 

profile: CTG134 expression is induced by ripening, by auxin treatment and by 1-

methylcyclopropene (1-MCP) treatment, while ethylene treatment does not affect CTG134 

expression. Microarray data were confirmed by RT-PCR (Figure 10) (Tadiello, 2010; 

Tadiello et al., 2016) 

 

Figure 10: The initial data about ctg134. Panel I: expression profiles of ctg134 analysed in 

different plant tissues and during fruit development and ripening (from stage 1 to late stage 

4) and after different hormonal treatments (panel II) in pre-climacteric S3II fruits. In the 

panel III is presented the ctg134 expression profile after treatments with 1-MCP in class 0 

(pre-climacteric) and class 1 fruits (onset of climacteric) (from Tadiello, 2010). 

CTG134 expression profile makes it a possible candidate as a mediator in the cross talk 

between auxin an ethylene during peach ripening. CTG134 gene encodes for a 174 amino 

acids sequence. Hydrophobicity profile of the protein points out the presence of a signal 

peptide in the N-terminal domain that rules the release to the apoplast. It was initially 

annotated as a protein of unknown functions but in 2010 RGF/GLV peptides were 

characterized in Arabidopsis and CTG134 shares some common features with them, in 

particular the C-terminal domain where the conserved motif of RGF/GLV family can be 

found (Figure 11). 

CTG134 preliminary functional characterization was carried out by a former PhD student 

(Busatto, 2012). Tobacco and Arabidopsis heterologous systems were used to study 

CTG134 promoter and protein. 
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Figure 11: Sequence alignment of the c-terminal domain of ctg134 and RGFs. The sequences 

show the conserved Asp-Tyr motif that is essential for post- translational sulfation. 

Transgenic lines harbouring the proCTG134:GUS construct shows a staining pattern on 

plant tissue correlated to the auxin ethylene cross talk, in particular organ abscission sites 

and lateral root primordia. Transgenic seedlings were also used to confirm proCTG134 

induction by auxin. 

35S:CTG134 construct was used instead to create overexpressing tobacco and Arabidopsis 

lines. Tobacco transgenic lines showed an increase in root hair number and length and an 

increase in capsule size. These two phenotypes are linked to ethylene action and could be 

due to increased hormone synthesis or increased sensitivity. ACO genes expression were 

not affected in transgenic lines supporting the hypothesis of enhanced ethylene sensitivity 

(Busatto, 2012). 

Arabidopsis transgenic seedlings confirmed the root hair phenotype and displayed also the 

GOLVEN phenotype during tilted plate assays. The latter support CTG134 belonging to 

RGF/GLV/CLEL peptide family (Busatto et al. 2017). 
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Aim of the work 
 

My PhD thesis was integrated in a project which goal is to unravel the genetic and hormonal 

regulation of peach ripening. Previous studies indicated a gene encoding a GOLVEN-like 

peptide, CTG134, as a candidate to be a key player in this process as a possible mediator 

of the auxin-ethylene interactions. 

Within this framework, the aim of my work was to investigate the GOLVEN family in 

peach, by identifying all genes belonging to this family and performing the functional 

characterization of those involved in the ripening regulation. In particular the attention was 

focused on the molecular mechanisms by which GOLVEN-like genes mediate the 

interactions between the phytohormones auxin and ethylene. 

Since there are no protocols available to transform peach plant, reverse genetic approaches 

for the functional characterization had to be performed on heterologous systems. For this 

purpose three plant models systems have been chosen: Arabidopsis thaliana and Nicotiana 

tabacum were useful to obtain preliminary data, while Solanum lycopersicum, as model 

system for fleshy fruits, can help us to understand the GOLVEN peptides role in the 

ripening process. 
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Materials and methods  
 

Solutions and media  

TAE 1X:  

Tris-Acetate   40 mM  

EDTA pH 8     1 mM  

 

TE:  

Tris-HCl   10 mM  

EDTA pH 8    1 mM  

 

LB medium  

NaCl    10 g/L  

Yeast extract     5 g/L  

Tryptone   10 g/L  

Agar   15 g/L  

pH 7  

 

SOC broth medium  

Tryptone      20 g/L 

Yeast extract        5 g/L 

NaCl      0.5 g/L  

KCl    0.19 g/L  

MgCl2   0.95 g/L  

MgSO4     1.2 g/L  

Glucose     3.6 g/L  

 

YEB medium  

Sucrose   5 g/L  

Tryptone   1 g/L  

Yeast extract   5 g/L  

Beef extract   5 g/L  

Agar    20 g/L  
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MgSO4         0.049 g/L  

 

MS  

Murashige and Skoog medium (MS) basal salt mixture 4.4 g/L  

Sucrose   30 g/L  

Plant Agar     6 g/L  

pH 5.6 – 5.8  

 

MS ½  

MS basal salt mixture 2.2 g/L  

Sucrose    15 g/L  

Plant Agar      6 g/L  

pH 5.6 – 5.8  

 

TAB1  

MS including vitamins   4.4 g/L  

6-Benzylaminopurine (6-BAP)  1 mg/L  

Indole Acetic Acid (IAA)   0.2 mg/L  

Sucrose     30 g/L  

Plant Agar     6 g/L  

pH 5.6 – 5.8  

 

TAB2  

MS including vitamins   4.4 g/L  

6-Benzylaminopurine (6-BAP)  1 mg/L  

Indole Acetic Acid (IAA)   0.2 mg/L  

Sucrose     30 g/L  

Plant Agar     6 g/L  

Kanamicyn     200 mg/L  

Cefotaxime     500 mg/L  

pH 5.6 – 5.8  

 

TAB3  

MS including vitamins   4.4 g/L  
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Sucrose     30 g/L  

Plant Agar     6 g/L  

Kanamicyn     200 mg/L  

Cefotaxime     500 mg/L  

pH 5.6 – 5.8  

 

MMA medium  

MS salts    4.4 g/L  

MES     2.13 g/L  

Sucrose    20 g/L  

Acetosyringone   200 μM  

pH 5.6 

 

Ø MS  

MS basal salt mixture   4,3 g/L  

Morel vitamine mixture 1000X  1 mL/L  

Myo-inositol     0,1 g/L  

Glycine     2 mg/L  

Glucose     20 g/L  

 

T210  

MS basal salt mixture    4,3 g/L  

Vitamine B5 vitamine mixture 1000X  1 mL/L  

MES       0,5 g/L  

Glucose      30 g/L  

IAA       0,1 mg/L  

Zeatin       1 mg/L  

Agar       7 g/L  

pH 5.6 – 5.8  

 

½ MS  

MS basal salt mixture   2,15 g/L  

Morel vitamine mixture 1000X  0,5 g/L  

Myo-inositol     0,05 g/L  
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Glycine     1 mg/L  

Sucrose     10 g/L  

Agar      5,4 g/L  

pH 5.6  

 

MS for tilted plate assay 

MS medium including vitamins  2.2 g/L 

Sucrose     10 g/L 

MES      0.5 g/L 

Agar      12 g/L 

pH 5.6-5.8 

 

RNA Extraction Buffer CTAB  

CTAB    2%  

PVP K30   2%,  

Tris-HCl pH 8  100mM  

EDTA pH 8  25mM  

NaCl    2 M  

spermidin   0.5 g/L  

β -mercaptoethanol  2% (added just before the use)  

 

DNA extraction buffer  

Sorbitol   0.35 M  

Tris    0.1 M  

EDTA    5 mM  

pH 8  

 

Lysis nuclei buffer  

Tris    0.2 M  

EDTA    0.8 M  

NaCl    2 M  

CTAB    2%  
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Total Protein Extraction Phospate Buffer  

Sodium Phosphate Buffer pH 7  50 mM 

EDTA pH8     10 mM  

Glycerol     10%  

β -mercaptoethanol    0.2%  

TritonX-100     0.1%  

 

Reaction Buffer for enzymatic GUS assay  

Sodium Phosphate Buffer pH 7    50 mM 

EDTA pH8       10 mM  

Glycerol       10%  

TritonX-100       0.1% 

DTT        5 mM 

Sarkosyl       0.1% 

4-methylumbelliferyl β-D-glucuronide (MUG)  2 mM  

 

Reaction Buffer for histochemical GUS assay  

Sodium Phosphate Buffer pH 7  100 mM  

EDTA pH8     1 mM 

TritonX-100     0.1%  

K3Fe(CN)6     0.5 mM  

K4Fe(CN)6     0.5 mM  

Methanol     20%  

X-Gluc     0.521 g/L  

 

Clearing solution 

Chloral hydrate  160 g 

Glycerol    50ml 

H20    100 ml 

 

Bacterial strains and plant material  

Escherichia coli: strains DH10B and DB3.1  

Agrobacterium tumefaciens: strains LBA4404 and GV3101  
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Nicotiana tabacum: cv Samsung NN  

Arabidopsis thaliana: cv Columbia  

Prunus persica: cv Red Haven  

Solanum lycopersicum cv Florida Petite  

 

Total RNA extraction  

Total RNA was extracted from leaves and fruits as described in Chang et al. (1993) using 

a modified protocol to increase the yield.  

Glassware was left in an oven for 4 hours at 200°C to inactive RNAse. Solutions were 

prepared with water previously treated with 0,1% DEPC (diethylpyrocarbonate) and 

sterilized by autoclaving. 2 grams of fruit sample were grinded in a mortar with liquid 

nitrogen. The powder was poured into a tube with 20 mL of CTAB extraction buffer 

preheated at 65°C. After strong agitation, 20 mL of chloroform/3-methyl-1-butanol (24:1 

v:v) were added, the sample was placed on an orbital shaker for 15 minutes and then 

centrifuged at 4000 x g for 30 minutes. The extraction with chloroform/3-methyl-1-butanol 

was repeated twice. RNA was precipitated overnight with LiCl (2 M final solution). The 

LiCl addition at the proper concentration allows the selective RNA precipitation and the 

remaining in solution of DNA, sugars and phenols.  

The day after, samples were centrifuged at 4000 x g for 90 minutes at 4°C. The pellet 

(containing the RNA) was washed with 5 mL of cold 80% ethanol and then it was re-

suspended, after drying it, in mQ DEPC H2O. Protocol can be scaled down on the basis of 

starting material weight. 

 

qReal-Time PCR  

Quantitative Real-Time polymerase chain reaction (qRT-PCR) is a technique used to 

amplify and simultaneously quantify a targeted DNA or cDNA molecule. qRT-PCR is 

mainly used to provide quantitative measurements of gene transcription. The technology 

may be used in determining how the genetic expression of a particular gene changes over 

time, such in response of time, tissue origin or different treatments. cDNAs were 

synthesized by means of the "High Capacity cDNA Archive Kit" (Applied Biosystem), 

which uses random examers as primers. Total RNA, pre-treated with 1unit/µg of RNA of 

DNaseI, was used as starting template.  
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Reactions were carried out in a total volume of 10 μL using the “Syber green PCR master 

mix” (Applied Biosystems), with 0.05 pmoles of each primer The instrument used was the 

“CFX96 Touch™ Real-Time PCR Detection System” (BioRad). PCR conditions were as 

follow:  

o 50°C for 2 min  

o 95°C for 10 min (incubation to activate the enzyme)  

o denaturation at 95°C for 15 sec  

o annealing at 60°C for 15 sec  

o extension at 65°C for 34 sec  

At the end of PCR reaction, the dissociation curve was performed from 60°C to 95°C.  

The obtained Ct values were analyzed by means of the “Q-gene” software (Muller et al., 

2002) and “qBase” algorithm (Helleman et al., 2007) by averaging three independently 

calculated normalized expression values for each sample. The numerical values obtained 

with these calculations were transformed into graphics by means of the “GraphPad Prism 

7” software (GraphPad Software, USA). 

 

DNA extraction  

DNA was extracted from 50-100 mg leaves as described in Fulton et al. (1995). After leaves 

grinding with the micro-pestle 750 μL of extraction buffer were added (composed by 1 

volume of DNA extraction buffer, 1 volume of lysis nuclei buffer,0.4 volume of sarkosyl 

5% w/v and 3-5 mg/mL of NaHSO3), and the sample incubated at 65°C for 20 minutes.  

After a short cooling, 750 μL of chloroform/3-methyl-1-butanol (24:1 v:v) were added, the 

sample was mixed by vortexing and then centrifuged at 10000 x g for 10 minutes to separate 

the aqueous phase from the organic one. The aqueous phase was transferred to another 

microcentrifuge tube. 

DNA was precipitated by addition of 1 volume of isopropanol and collected by 

centrifugation at 10000 x g for 10 minutes and then washed with 70% ethanol.  

After a short drying, the sample was dissolved in 30-50 μL of TE with RNAse A (5 μg/mL)  

 

Determination of the concentration of nucleic acids  

DNA and RNA yield and purity were checked by means of UV absorption spectra 

(Eppendorf BioSpectrometer® basic) with the following wavelengths: 230 nm, 260 nm, 

Repeated 40 times 
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280 nm, 320 nm. Readings were carried out in a quartz cuvette and mQ H2O was used as 

blank. The concentration of RNA or DNA was expressed in ng/μL: 

A260 * molar absorption coefficient * dilution factor 

The peak of absorption of proteins is 280 nm, while 230 nm is for sugars, so the ratio with 

A260 allows to understand the purity of the sample. If A260/A280 is higher than 1.8, the 

sample is free of protein contaminations; in the same way, if A260/A230 is higher than 1.8, 

the sample is free of sugar contaminations.  Molar absorption coefficient is 50 ng/μL for 

DNA and 40 ng/μL for RNA. 

DNA and RNA integrity was ascertained by electrophoresis in agarose gel with TAE 1X 

buffer followed by ethidium bromide staining.  

 

PCR reaction  

PCR reactions for screening purpose were carried out using GoTaq® Flexi DNA 

Polymerase (Promega) and following reaction mix: 

o Green Buffer 5X   5 μL 

o MgCl2 25 mM   2.5 μL  

o dNTPs 10 mM    0.5 μL  

o forward primer 10 µM  1 μL   

o reverse primer 10 µM   1 μL  

o GoTaq polymerase(5u/μL)  0.125 μL  

o Genomic DNA/plasmid  100 ng/ 0.5 ng 

o H2O mQ to a total volume of  25μL 

For the PCR reactions used in cloning operations it was used the Phusion® High-Fidelity 

DNA Polymerase (NEB) with following reaction mix: 

o 5X Phusion HF Buffer  10 μL 

o dNTPs 10 mM    1 μL  

o forward primer 10 µM  2.5 μL   

o reverse primer 10 µM   2.5 μL  

o Phusion DNA polymerase(2u/μL) 0.5 μL  

o Genomic DNA/plasmid  100 ng/ 0.5 ng 

o H2O mQ to a total volume of  50 μL 
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The reactions were carried out in the GeneAmp PCRSystem 9700 (Applied Biosystem) with 

the following program:  

o Initial denaturation  95°C for 2 min  

o 40 amplification cycles 

▪ 95°C for 30 sec  

▪ annealing for 30 sec  

▪ 72°C, 1 min/kb 

o Final extension  72°C for 2 min  

To test, if the PCR reactions were performed successfully, 10 µL of PCR products were 

loaded into agarose gel (from 1 to 1.8%, depending on the amplicon length).  

 

PCR product purification  

For the PCR product purification the PureLink™ PCR Purification Kit (Invitrogen) was 

used. This technology is based on the matrix resident in the column that specifically but 

reversibly binds DNA under optimal conditions allowing proteins and other contaminants 

to be removed. Nucleic acids are easily eluted with deionize water or low salt buffer. When 

PCR reaction produced multiple amplicons of different length, the entire reaction was 

loaded in agarose gel to separate them. The PCR product of expected length was cut by gel 

and purified using the PureLink™ Quick Gel Extraction Kit (Invitrogen). 

 

PCR products cloning by TA cloning technology  

The purified PCR product was cloned by means of the commercial kit 

pCR®8/GW/TOPO®.TA Cloning® (Invitrogen) into the pCR8-TOPO vector (Fig 12).  

The kit takes advantage of the Taq polymerase non-template-dependent terminal 

transferase activity that adds a single deoxyadenosine (A) to the 3′ ends of PCR products. 

The linearized vector supplied in the kit has single, overhanging 3′ deoxythymidine (T) 

residues. This allows PCR inserts to ligate efficiently with the vector. 

Topoisomerase I from Vaccinia virus binds to duplex DNA at specific sites (CCCTT) and 

cleaves the phosphodiester backbone in one strand (Shuman, 1991). The energy from the 

broken phosphodiester backbone is conserved by formation of a covalent bond between the 

3′ phosphate of the cleaved strand and a tyrosyl residue of topoisomerase I. 
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Figure 12: pCR®8/GW/TOPO® map. 

The phospho-tyrosyl bond between the DNA and enzyme can subsequently be attacked by 

the 5′ hydroxyl of the original cleaved strand, reversing the reaction and releasing the 

topoisomerase. 

Following the protocol, 4 µL of PCR products were added to 1 µL of Salt Solution and 1 

µL of linearized vector in a standard microcentrifuge tube. After gently mixing, the vial 

was incubated for 5 minutes at room temperature. 2 µL of cloning mix were used to 

electroporate E. coli cells. 

 

Escherichia coli electroporation  

After TA Cloning process, the resultant vector was transferred to E. coli cells by means of 

electroporation. This procedure allows the introduction of foreign plasmid in culture cells.  

The electroporation was performed with an electric discharge of 1500 V (“Invitrogen 

Electroporator II”, capacity 50 μF). Bacteria were put in 1 mL of SOC at 37°C for 45 

minutes and afterward were plated on LB supplemented with appropriate antibiotic. Only 

cells transformed with the plasmid can grow on selective medium. Colonies were controlled 

for the presence of the correct inserts by means of PCR and sequencing.  

 

Preparation of plasmid DNA  

A single colony was inoculated in 3 mL of LB broth with the proper antibiotic and was 

grown over night at 37°C in a rotary incubator. 2 mL of culture were put in an 

microcentrifuge tube and were centrifuged for 5 minutes at maximum speed. The pellet 

was re-suspended in 200 μL of P1 re-suspension solution (100 μg/mL RNAse A; 50 mM 

Tris-HCl, 10 mM EDTA, pH 8.0). Subsequently, 200 μL of P2 lysis solution (0.2 M NaOH, 
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SDS 1%) were added and the tubes were inverted gently. Finally 200 μL of cold P3 

neutralization solution (3.0 M KAc, pH 5.5) were added after 1 minute incubation; the 

sample was mixed and centrifuged at 4°C at maximum speed for 10 minutes. The 

supernatant was withdrawn and a same volume of phenol/chloroform/3-methyl-1-butanol 

(25:24:1, v:v:v) was added. The solution was mixed by vortexing and centrifuged. The 

aqueous phase was transferred to another microcentrifuge tube and a same volume of 

chloroform/3-methyl-1-butanol (24:1, v:v) was added. After centrifugation the aqueous 

phase was withdrawn and DNA was precipitated adding 2 volumes of EtOH 100% and 

incubating the tube at -20°C for 30 minutes or -80°C for 10 minutes. The tube was 

centrifuged at 16000 x g at 4°C for 15 minutes. The pellet was washed with 500 µL of 

EtOH 70% and it was centrifuged at 16000 x g at 4°C for 5 minutes. The pellet was dried 

and then it was re-suspended in 50 μL of mQ H2O.  

 

Cloning with the Gateway technology  

The Gateway technology is an universal cloning method based on the site-specific 

recombination properties of bacteriophage lambda. This technology provides a rapid and 

highly efficient way to move DNA sequences into vector system for functional analysis 

and protein expression. Lambda recombination is catalyzed by a mixture of enzymes that 

bind to specific sequences (att sites, abbreviation of attachment sites), bring together the 

target sites, cleave them, and covalently attach the DNA (from the pCR®8/GW/TOPO® 

kit manual).  

The DNA fragments to transfer are flanked by modified att sites upon which the enzyme 

mix (phage integrase and integration host factor) acts. Two recombination reactions 

constitute the basis of the Gateway technology: attB attP (“BP clonase”) and attL attR (“LR 

clonase”, Hartley et al., 2000) (Fig 13).  

 

Figure 13: Schematic representation of possible recombination reactions with the Gateway 

system. 
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Since in the pCR®8/GW/TOPO® plasmid the insert is flanked by attL sites, it is suitable 

to be used in a LR-Clonase reaction with a destination vector featured by attR sites 

(Gateway™ LR Clonase™ II Enzyme mix, Invitrogen).  

As described in the standard producer protocol a reaction mix was prepared in a 

microcentrifuge tube by addition of 150 ng of entry clone (i.e. pCR®8/GW/TOPO®), 150 

ng of destination vector and enough TE Buffer pH 8 to reach a total volume of 8 µL. Then 

2 µL of LR Clonase II enzyme mix were added and the reaction mix was incubated at room 

temperature for one hour. Thereafter, 1 µL of proteinase K was added and the tube was 

placed at 37°C for 10 minutes, with the aim to stop the clonase reaction. Finally 2µL of this 

mixture were electroporated into E. coli cells strain DB10B that is sensitive to ccdB gene.  

The transformed cells were selected both by antibiotic positive selection and by ccdB 

(control of cell death) negative selection. The destination vector has different antibiotic 

resistance from the entry clone. The ccdB gene is maintained in the non-recombinant 

vectors and it leads lethal effect in most E. coli strains. Colonies grown on plate were 

checked by means of PCR. Plasmid DNA was extracted from the positive colonies and it 

was used to transform A. tumefaciens. 

 

Cloning in the pPR97-derived vector  

 

 

Figure 14: The GW-modified pPR97 vector map, used for promoter study 
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A pPR97-derived vector (12.20 kb) that has the kanamycin resistance was used for stable 

transformations carried out to measure promoter activity (Fig. 14). The promoter sequences 

to be tested were cloned before the GUS reporter gene interrupted by a plant intron 

(Vancanneyt et al., 1990).  

To make easier the cloning operation, a CC_rfA gateway cassette was inserted upstream to 

the reporter gene by means of the restriction site SmaI. The CC_rfA system allowed to 

clone the promoter sequences with a simple reaction of recombination. 

. 

Cloning in the pGREEN-derived expression vector  

To carry out overexpression studies a pGreen derived vector was used (Hellens et al., 

2000). It was modified to give both kanamycin and ampicillin resistance in bacteria (Fig 

15).  

 

Figure 15: pGreen derived vector map, used for overexpression study 

An expression cassette driven by the constitutive 35S CaMV promoter is harbored in the 

T-DNA. A CC_rfA gateway cassette was inserted downstream the promoter, by means of 

the EcoRV restriction site that was present in the polylinker, in a similar manner as 
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described in the preparation of the pPR97-derived vector. The antibiotic resistance for plant 

selection is kanamycin.  

Since it is a construct derived from the pGreenII, it needs the pSoup as a supplementary 

vector to replicate autonomously in Agrobacterium. This latter expresses the repA gene that 

acts in trans upon the pSa Ori sequence. The RepA is therefore resident on the separate 

plasmid pSoup. This plasmid can be co-electroporated with pGreen vectors, or 

Agrobacterium cells can be prepared to be competent for transformation already containing 

it (Busatto, 2012). 

 

Two component expression system 

To perform functional characterization in tomato we decided to use a transcriptional 

activation system made up of two modular activities (Figure 16): a DNA-binding function 

and a transcription activation function each one used to prepare specific transgenic lines: 

the driver-lines and the responder-lines. 

 

Figure 16:Schematic diagram of the binary transactivation system. Transgene 

expression is induced by the interplay of an activator construct and a reporter 

(responder) construct. The pattern of target gene expression will reflect the pattern 

of activator expression (from Moore et al., 1998). 

 

Dr. Ian Moore kindly provided us the pOp/LhG4 vector series (Moore et al., 1998). Our 

attention was focused on the pBin-(35S)-LhG4At0 (driver vector) and the pH-TOP 
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(responder vector) that were modified in our laboratory to use the Gateway technology. 

The resulting vectors (Busatto, 2012) were used in this work. 

 

pGreen 2A11_LhG4 driver vector 

The driver vector is based on the pGreen backbone and the T-DNA contains the fruit 

specific 2A11 (Solyc07g049140.2) promoter leading the transcription of the synthetic 

transcription factor LhG4, deriving from the original pBin-(35S)-LhG4At0 vector (Busatto, 

2012; Figure 17). Antibiotic resistance for bacteria selection are kanamycin and ampicillin. 

Transgenic plants can be selected by kanamycin. 

As described before for pGreen derived overexpression vector, also pGreen 2A11_LhG4 

vector needs pSoup to replicate. 

 

Figure 17: pGREEN_2A11_LhG4 map. Driver vector. 

 

pHTOP_GWA responder vector 

The responder vector used in this work derives from the pHTOP vector of the pOp/LhG4 

vector series. In the T-DNA the pOp6 promoter drives the expression of the gene of interest 
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(GOI), that can be cloned using the gateway technology, and on the other hand the 

expression of the reporter gene GUS (uidA) (Figure 18). The pOp6 promoter is silent in 

responder plants and can be activated only in presence of the transcription factor LhG4; so 

to obtain GOI expression responder and driver plants must be crossed. In F1 plants GUS 

assay can be used as indirect proof of GOI expression. 

pHTOP:GWA vector harbours two antibiotic resistance for plant growth, hygromycin and 

kanamycin; and one resistance gene for bacterial growth, kanamycin (Busatto, 2012). 

 

Figure 18: T-DNA map of responder vector pHTOP_GWA. 

 

Transformation of Agrobacterium tumefaciens  

For the transformation, the two different strains LBA4404 and GV3101 of Agrobacterium 

tumefaciens were used. 0.5-1 μg of plasmid DNA were mixed with A. tumefaciens and the 

sample was incubated for 5 minutes on ice, 5 minutes in liquid nitrogen and 5 minutes at 

37°C. Then, it was diluted with 1 mL of YEB and it was shaken for 4 hours at 28°C and 

then the bacteria were plated on YEB medium with proper antibiotics [for strain LB 4404: 

kanamycin 50 mg/L (for vector presence) and streptomycin 100 mg/L; for strain LB 3101: 

kanamycin 50 mg/L (for vector presence), gentamycin 25 mg/L, rifampicin 100 mg/L]. 

Colonies grown on plates were screened by PCR. 

 

Transformation of Nicotiana tabacum  

The protocol of Fisher and Guiltinan (1995) was used for the transformation of tobacco 

plants (N. tabacum cv Samsung NN). 50 mL of YEB medium were inoculated and the 

culture of Agrobacterium was grown at 28°C. The sample was centrifuged at 3000 x g for 

20 minutes at 4°C and the pellet was re-suspended in 20 mL of MS medium. Young green 

and undamaged leaves were collected from in vitro grown tobacco plants and parallel cuts 

were realized with a scalpel on the leaf surface. The petiole was cut off. These leaves were 
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soaked in the Agrobacterium culture for 10 minutes, they were dried with chromatography 

sterile paper and then they were placed on TAB1 co-cultivation medium. After two days of 

co-cultivation at 25°C in the dark, leaves were washed by immersion in MS medium and 

then they were dried on sterile paper. Leaves were transferred in plates with TAB2 medium 

and were placed in a growth chamber at 25°C with a photoperiod of 16 hours of light and 

8 hours of dark until callus growth. Shoots of 1-3 cm in length were slashed with a cut of 

45° and then they were transferred in plates with TAB3 (the rooting medium). Each shoot 

was called with a serial number. After about 20 days, the plants were moved into soil and 

they were placed in the Department of Biology greenhouse. Before potting, each plant was 

tested by PCR on genomic DNA to confirm the transgene presence.  

 

Trasformation of Solanum lycopersicum  

The protocol of Fillati (1987) was used for the transformation of tomato plants (S. 

Lycopersicum cv Florida petite).  

Seeds were sterilized in 5% NaClO 0.1% tween-20 for twenty minutes and then washed in 

sterile water for three times. Sterilized seeds were sown on ½ MS medium and placed in 

the growth chamber at the same condition of tobacco plants. Ten days old cotyledons were 

collected from in vitro grown tomato seedlings, and the proximal ends were explanted. The 

explants were placed on T210 plates in presence of 200 μM acetosyringone. After one days 

50 mL of YEB medium were inoculated and the culture of Agrobacterium was grown at 

28°C overnight. The sample was centrifuged at 3000 x g for 20 minutes at 4°C and the 

pellet was re-suspended in 3 mL of ØMS medium. Aliquots of 1 mL from this suspension 

were added to plates filled with 29 mL of ØMS + 200μM acetosyringone. The conditioned 

explants were soaked in the Agrobacterium culture for 5 minutes, they were dried with 

sterilized paper and then they were placed on the same plates previously used. After two 

days of co-cultivation at 25°C in the dark, the infected cotyledons were transferred into 

fresh T210 plates with selective antibiotics and were placed in a growth chamber at 25°C 

until shoots growth. Calluses with shoots growing on them were transferred into magenta 

boxes with T210 until shoots reached a reasonable size. Shoots of 4-5 cm in length were 

cut off with a scalpel and they were transferred into ½ MS (rooting medium). After rooting, 

the plants were moved into soil and they were placed in the Department of Biology 

greenhouse. Before potting, each plant was tested by PCR on genomic DNA to confirm the 

transgene presence.  
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Transient transformation of tomato leaves  

Growth and induction of Agrobacterium was carried out according to Kapila et al. (1997). 

A culture of Agrobacterium GV3101 was grown at 28 °C in YEB medium and the proper 

antibiotics, buffered with 10 mmol/L MES [2-(N-morpholino) ethanesulphonic acid] to pH 

5.6 and acetosyringone (20 μmol/L) was added. When the culture reached an OD600 of 

about 0.8, according to Spolaore et al, (2001), it was centrifuged and the pelleted bacteria 

were resuspended up to a final OD600 of 2.4 and incubated 1 hour at 22 °C in MMA medium. 

In tomato, the Agrobacterium suspension was injected in the lower page of the leaf with a 

sterile 2 mL syringe without needle. Agroinfiltrated plant material was incubated for at 

least 48 hours and then used for the proper assay.  

 

Arabidopsis thaliana transformation  

To transform A. thaliana plants with Agrobacterium the Floral Dip protocol was used 

(adapted from Clough and Bent, 1998). This technique is fast and easy because circumvents 

traditional tissue culture processes.  

For floral dip transformation of Arabidopsis, plants are grown to a stage when they have 

just started to flower. The reproductive inflorescences were clipped off to stimulate the 

growth of many new young inflorescences. These were dipped briefly in a suspension of 

Agrobacterium, sucrose 5% and the surfactant Silwet L-77 0.05% with a low vacuum 

presence. The plants were maintained for a few more weeks until mature and then, progeny 

seeds were harvested and they were germinated on selective medium (i.e. containing 

kanamycin) to identify successfully transformed progeny.  

 

Seeds sterilization  

To sterilize the Arabidopsis seeds we performed a wash in EtOH 70% for 15 minutes on 

an orbital shaker and then a rapid wash in EtOH 100%. 

The tobacco seeds were sterilized with a protocol similar to tomato one that include the 

following steps:  

• 1 wash with 5% bleach and Tween-20 0.1% for 20 min;  

• 4 rinses with sterile mQ H2O for 10 min each.  
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Chloral Hydrate clearing of Arabidopsis tissues  

Chloral hydrate was used to optically clear parts of the plant, Arabidopsis thaliana, for 

examination under the light microscope. First plant tissue (i.e. siliques) was fixed in a 

solution of 9 parts ethanol: 1 part acetic acid over night at room temperature. The tissue 

was washed 2 times with 70% Ethanol for 30 minutes each wash. Then plant tissue was 

incubated in clearing solution overnight. After incubation tissue was ready to be examined 

(Berleth and Jurgens,1993). 

 

GUS histochemical assay  

The gene uidA, also named GUS, encodes a β-glucuronidases enzyme and it is widely used 

as a reporter gene in plant organisms, because the endogenous glucuronidase activity is 

very low in most parts of plant species. Moreover the enzyme is stable and allows to study 

both the promoter expression pattern by means of histochemical assays and the induction 

kinetics by means of enzymatic assays.  

For the histochemical assay the plant sample was dipped in the histochemical buffer under 

vacuum condition to increase the buffer penetration in the tissues. The reaction is 

performed at 37°C overnight. In this time the X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-

glucuronide), a substrate of β-glucuronidase, is cleaved to produce glucuronic acid and 

chloro-bromoindigo. When oxidized, chloro-bromoindigo dimerizes to produce the 

insoluble blue precipitate dichloro-dibromoindigo. The day after samples were bleached 

with a solution of acetic acid and methanol in a 1:4 ratio. The treated plant tissues were 

preserved in ethanol 70%. The blue staining intensity is related with the promoter activity.  

 

GUS enzymatic assay  

To quantify the β-glucuronidase activity the enzyme was used with the substrate 4-

methylumbelliferyl-ß-D-glucuronide (MUG). β-glucuronidases catalyzes hydrolysis of β-

D-glucuronic acid residues with release of the fluorescent molecule 4-

methylumbelliferone.  

To extract all the soluble proteins, the plant material (in this case tomato fruits) was frozen 

in liquid nitrogen and then grinded with pestle and mortar. 1mL of protein extraction buffer 

were added to more or less 0.1 g of powder. The homogenate was centrifuged twice at 

16000 x g for 15 min and the clear supernatant was moved into a new 1.5 mL tubes.  



48 

 

The GUS enzymatic assay was carried out by incubating 80 μL of protein extract with 350 

μL of reaction buffer, containing the MUG, at 37 °C. 50 μL of the reaction mix were 

withdrawn at serial time intervals (5 minutes, 30 minutes, 60 minutes, 120 minutes and 

overnight) and the reaction was stopped in 150 μL of 0.2 M Na2CO3. The released 4-

methylumbelliferone (4-MU) was quantified with a DTX880 Multimode Detector 

(Beckman Coulter) according to the manufacturer's instructions.  

Each data point was normalized by protein quantification carried out according to the 

standard Bradford protocol [5 μL of protein extract mixed with 150 μL of Bradford solution 

(Bradford, 1976)]. 

The fluorescent values were used to plot a line, whose slope represents how quickly the 4-

MU (MU/min) is released. The GUS activity was expressed as nmol of 4-MU released x 

min-1  x μg-1 protein (Jefferson et al., 1987).  

 

Light microscopy.  

For the observation at the stereo microscope, the samples were placed for viewing directly 

under the objective lens. The instrument used was a LEICA MZ 16F.  

 

Sequencing and analysis  

DNA sequencing was performed at BMR Genomics (Padua). Sequence manipulations, 

analyses and alignments were performed using “Lasergene” software package 

(DNASTAR). 
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List of primer used 

 

Name Sequence Notes 

T2A11_for CGTTGTTCTTTTGACGACCACT Solyc07g049140  

RT-PCR T2A11_rev GGGGGTATGTCTCGAAGAGC 

TACS4_for 2 AGCGCGAAAAGGTTGAGAGA Solyc05g050010 

RT-PCR TACS4_rev 2 GATCCAGGGGAGACGTTGAG 

TACS2_FOR TGTTAGCGTATGTATTGACAACTGG Solyc01g095080  

RT-PCR from Hao 

et al. 2016  

TACS2_REV TCATAACATAACTTCACTTTTGCATTC 

ETR2_FOR AACAAAGCGGCGGAACTTGATC Solyc07g056580 

RT-PCR ETR2_REV TCGGCATCCACAAAGCACACTC 

CAC_FOR CCTCCGTTGTGATGTAACTGG Solyc08g006960 

RT-PCR from 

Rodriguez et al. 

2008  

CAC_REV ATTGGTGGAAAGTAACATCATCG 

EXP_FOR GCTAAGAACGCTGGACCTAATG Solyc07g025390 

RT-PCR from 

Rodriguez et al. 

2008 

EXP_REV TGGGTGTGCCTTTCTGAATG 

Yucca8_for ACACACAAGGGAAAACTCCTGT Solyc06g008050 

RT-PCR Yucca8_rev CGGTGCCACATGAAAACCTC 

TPG_for GAGGAACTATCAATGGCAATGGA Solyc10g080210 

RT-PCR TPG_rev CCAGAAGGTTAAGGCCGTTG 

TACO_for TCATACAGACGCAGGAGGCA Solyc07g049530 

RT-PCR TACO_rev GCATGGGAGGAACATCGATC 

NOR_for ACGATGCATGGAGGTTTGTATTG Solyc10g006880 

RT-PCR NOR_rev TTAAGTCCATCGTCCTCGTTGTTC 

RIN_for AAACATCATGGCATTGTGGTGAGC Solyc05g012020 

RT-PCR RIN_rev ATGGTGCTGCATTTTCGGGTTGTA 

CTG134rt_for CCACAACCACTAACACCCCTTCAA Prupe.7G256100 

RT-PCR CTG134rt_rev TTAGCTTTCGCATCACCATCTTCC 
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CNR_for AACAAATGGGAAGGGAAGAGAAGC Solyc02g077920 

RT-PCR CNR_rev GCACTGATCGACCTGGCAAGAA 

TAGL1_for TCAGCCAAATTACGAAGATGC Solyc07g055920 

RT-PCR TAGL1_rev AAGCTGGAGAGGAGTTTGGTCA 

NCED1_for TATGCTTATTTGGCTATCGCTGAA Solyc07g056570 

RT-PCR NCED1_rev TTGCTGTTGGGGTCTCTTGGTAAA 

Ethyl_rec_for ATCGAAGTACTGGAGGGGAAGGTC Solyc09g075440 

RT-PCR Ethyl_rec_rev TGGGAGGCATAGGTAGCAGAGG 

SQ_001 TTCCCAGGTTGAGCTGAAGAAA Prupe.5G072500.1 

RT-PCR SQ_002 TTGTGAATGGGTGGCTTCCT 

SQ_005 GAACGAAGCACAGCAGAGAC Prupe.2G138500.1 

RT-PCR SQ_006 TTTCTTGTGGGGAACACGCC 

ACTIN8_for CTCAGGTATTGCAGACCGTATGAG AT1G49240 RT-

PCR ACTIN8_rev CTGGACCTGCTTCATCATACTCTG 

LhG4_qrt_for GACTGGGCGTGGAGCATCTGGT 
LhG4 RT-PCR 

LhG4_qrt_rev GTCGCCTTCCCGTTCCGCTATC 

PpN1_for CTAGTTGGGTGGAAGAAGGAAGC Prupe.8G137600.1 

RT-PCR PpN1_rev TTCGAAGCCAAAGCAACTACATC 

LT306 ATGACAACTCCATCTCTAGCA CTG134 / 

Prupe.7G256100.1 

CDS amplification 

Pp_ctg134_cds_rev TCAGTTGTGTATCGGAGGTTTTC 

SQ_009 CTCTCATAATATGTCTTCCATTG CTG512 / 

Prupe.5G072500.1 

CDS amplification 

SQ_010 CCGGATATGTCTAGGACTTTC 
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Results and Discussion 
 

1. Identification of GOLVEN peptides genes in peach genome 

In the Arabidopsis genome there are 11 genes of the ROOT GROWTH 

FACTOR/GOLVEN/CLELIKE (RGF/GLV/CLEL) family. Being the peach genome size 

similar to that of Arabidopsis and the two species relatively closed, I expected a similar 

number of genes also in peach. 

To find peach GOLVEN genes I started from Arabidopsis gene and peptides sequences. 

GLV genes and peptides sequences were submitted to all BLAST 

(https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi) algorithms. The resulting sequences were 

checked for the presence of the GLV motif. 

However GLV sequences are poorly conserved except for the C-terminal motif that 

corresponds to the mature peptide. So to complete the research I looked at Arabidopsis GLV 

peptides C-terminal sequences and defined a consensus motif to be used in ScanProsite 

(http://prosite.expasy.org/scanprosite/) webtool. I used the following motif written in 

standard IUPAC code: D-Y-x(7,10)-P-x-[HN]-N. 

BLAST and ScanProsite results were filtered for: 

• position of the GLV motif at C-terminus; 

• maximum length of 200 amino acids / 600 nucleotides; 

• no function annotated. 

The resulting putative peach GLV genes were the following, including the already known 

CTG134: 

• Ppa022333m / Prupe.1G293600.1 

• Ppa024432m / Prupe.2G138500.1 

• Ppa022084m / Prupe.5G072500.1  

• Ppa012499m / Prupe.5G236600.1 

• Ppa012311m / Prupe.7G256100.1  CTG134 

• Ppa026989m / Prupe.1G295400.1 

• Ppa015253m / Prupe.3G247600.1 

• Prupe.6G166000.1 

• Prupe.6G166400.1 

https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi
http://prosite.expasy.org/scanprosite/
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Ppa codes refer to peach genome version 1, Prupe codes are more recent and refer to 

version 2.1. Genes identified only with Prupe code were not predicted in genome version 

1 (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ppersica) . 

Arabidopsis GOLVEN peptides are apoplastic so peach peptides sequences were checked 

for the presence of a secretion signal peptide using the webtool SignalP 

4.1(http://www.cbs.dtu.dk/services/SignalP/) (Petersen et al.,2011). All peach peptides 

hold a signal peptide at the N-terminus except for Ppa012499m / Prupe.5G236600.1 that 

could be a false positive.  

GOLVEN expression profiles 

I performed a preliminary survey on gene expression on Istituto Genomica Applicata (IGA) 

public database: 

 (http://services.appliedgenomics.org/fgb2/iga/prunus_public/gbrowse/prunus_public/). 

From RNASeq data four GLV genes were expressed in fruit tissues: 

• ppa022333/ Prupe.1G293600.1, 

• ppa024432/ Prupe.2G138500.1, 

• ppa022084/ Prupe.5G072500.1 / CTG512 

• and CTG134 (Ppa012311m / Prupe.7G256100.1).  

I made a comparison with microarray data available in the laboratory (Trainotti et al., 

2006). 

Table 1 reports GLV genes expression profiles from microarray data in peach mesocarp. 

This microarray dataset is about fruit development kinetics: S1 (I and II), S2, S3 (I and II) 

and S4 are fruit developmental stages (see Introduction). The “maximum value” column 

reports the maximum number of counts per gene detected; these values are useful to give 

an idea of how much every gene is expressed in peach mesocarp. 

Number of counts are expressed as percentage of the maximum value recorded.  

For three genes data are not available because they were not predicted yet when microarray 

assay was performed. Microarray and  IGA RNAseq data were in accordance. 

 

  

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ppersica
http://www.cbs.dtu.dk/services/SignalP/
http://services.appliedgenomics.org/fgb2/iga/prunus_public/gbrowse/prunus_public/
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They were then confirmed by qRT-PCR (Figure 19). ppa022333/ Prupe.1G293600.1 

expression was not detectable by qRT-PCR maybe due to its low level, in agreement with 

maximum value detected in microarray. Gene ppa024432/ Prupe.2G138500.1 is expressed 

in the early stages of fruit development with a peak at S1 stage. CTG512 / ppa022084/ 

Prupe.5G072500.1 displays the same interesting profile of CTG134: during fruit 

development CTG512 and CTG134 are expressed mainly at the ripening stages (S3 II, S4 

I , S4 II). 

To complete the expression analysis CTG512 and CTG134 transcription were detected by 

qRT-PCR also on ripening fruit samples treated with hormones (Figure 20). 

 

Gene name v1 Gene name v2.1 Lab name 
Maximum 

value 

Fruit developmental stages 

S1 I S1 II S2 S3 I S3 II S4 

ppa022333m Prupe.1G293600.1  37,15 2,69 2,69 2,69 2,69 2,69 100 

ppa024432m Prupe.2G138500.1  55,36 67 100 2 2 2 2 

ppa022084m Prupe.5G072500.1 CTG512 24319,86 0 0 0 0 0 100 

ppa012499m Prupe.5G236600.1  1,00 100 100 100 100 100 100 

ppa012311m Prupe.7G256100.1 CTG134 15076,76 0,14 0,01 0,01 0,01 0,39 100 

ppa026989m Prupe.1G295400.1  1,0 100,0 100,0 100,0 100,0 100,0 100,0 

ppa015253m Prupe.3G247600.1         

 Prupe.6G166000.1         

 Prupe.6G166400.1         

Table 1: microarray data about GOLVEN peptide genes. ( from Trainotti et al., 2006) 
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Figure 19: Expression profile of selected peach GLV genes in leaves, flower, and fruit at 

different developmental stages determined by qRT-PCR Data were normalized on 

Prupe.8G137600. Bars are the standard error of the means.  

 

 

Figure 20: Expression of peach CTG134 and CTG522  on hormone treated fruit samples. a ) 

preclimacteric Red Haven S3II fruits treated with either ethylene (C2H4) or auxin (NAA). 

Hormone treatments lasted for 36 h (Trainotti et al., 2007). b ) Stark Red Gold fruits were 

graded immediately after harvest into 3 classes by decreasing ranges of the index of 

absorbance difference (Ziosi et al., 2008). Fruits were treated with 1-methylcyclopropene (1-
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MCP, an ethylene inhibitor) for 12 h. Data are expressed as percentage of sample with 

greatest expression for each gene. Bars are the standard error of the means.  

Again CTG512 and CTG134 have similar expression profiles. Auxin treatment on S3 II 

fruits induces CTG512 and CTG134 expression, on the other hand ethylene treatment have 

no effect. Moreover also 1-MCP, an ethylene antagonist, induces their expression;  these 

results uphold the idea that they are involved in auxin-ethylene crosstalk. 

From this preliminary data we could hypothesize that also CTG512 could be involved in 

auxin-ethylene interplay during peach ripening. 

  



56 

 

2. CTG134 functional characterization in tomato 

Two components expression system 

CTG134 has been partially characterized exploiting the tobacco and Arabidopsis 

heterologous systems before the start of my PhD project (Busatto, 2012; Busatto et al., 

2017). Both systems are useful models for gene functional characterization, but they 

produce dry fruits that do not allow to complete the analysis of complex molecular 

mechanisms triggered by climacteric ethylene in fleshy fruits. Tomato is a model system 

for studying fleshy fruits. 

In order to avoid pleiotropic effects due to 35S promoter use, and regeneration problems 

during plant transformation, an over-expression system composed by two components was 

employed. The system is an adaptation of the LhG4-based one developed by Moore and 

co-workers (Moore et al., 1998, 2006). It is based on transactivation and usage of a fruit 

specific promoter.  

The vector pGREEN_2A11_LhG4 was used to produce tomato DRIVER lines. 2A11 gene 

(Solyc07g049140) (Pear et al., 1989) expression is strictly correlated to tomato fruit 

ripening (Figure 21) and its promoter has been extensively used in biotechnological 

approaches (Van Haaren and Houck, 1993; Davuluri et al., 2005; Estornell et al., 2009 are 

some examples). In driver lines the synthetic transcription factor LhG4 is expressed in fruits 

under the control of the 2A11 promoter. 

 

Figure 21: 2A11 (Solyc07g049140) expression profile as obtained from Tomato Expression 

Atlas website: http://tea.solgenomics.net/expression_viewer . 

http://tea.solgenomics.net/expression_viewer
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To produce tomato RESPONDER lines, the CTG134 coding sequence was cloned inside 

pHTOP_GWA vector. The pOp6 promoter, inside the T-DNA, drives the expression at one 

side of the gene of interest (CTG134) and on the other side of the reporter gene GUS (uidA). 

To achieve CTG134 expression in tomato fruits, DRIVER and RESPONDER lines must 

be crossed because pOp6 promoter needs LhG4 binding to be activated (Figure 22). 

 

Figure 22: Two component expression system. After crossing between driver and responder 

lines the transcription factor LhG4 can bind the pOp6 promoter and activate CTG134 and 

GUS expression. 

Preparation of transgenic lines  

Transgenic lines were obtained by Agrobacterium tumefaciens infection, and verified by 

rooting in selective medium and by PCR on genomic DNA (data not shown). 

Four driver lines and four responder lines were produced: 

• 2A11_LhG4 #13 

• 2A11_LhG4 #15 

• 2A11_LhG4 #16 

• 2A11_LhG4 #20 

 

To proceed with the functional characterization, verified transgenic lines were transferred 

to the departmental greenhouse. As expected driver and responder lines did not show any 

particular phenotype. T0 transgenic plants were employed in crossings. 

The responder cassette was silent before crossing, therefore to check if it was functional, 

young leaves of responder lines were infiltrated with A. tumefaciens carrying the vector 

pBIN_35S_LhG4, in which the expression of LhG4 is under control of the constitutive 

CaMV 35S promoter. The histochemical assay allowed to verify GUS activity. The 

transgenic cassette was functional in all four responder lines (Figure 23). GUS 

histochemical assay was performed also on not-infiltrated leaves to verify if the promoter 

was really silent and indeed this was the case. 

• pOp6_CTG134 #2 

• pOp6_CTG134 #12 

• pOp6_CTG134 #17 

• pOp6_CTG134 #18. 
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Figure 23: GUS activity of tomato responder lines. Young leaves were infiltrated with A. 

tumefaciens harbouring pBIN_35S_LhG4 vector to activate the responder cassette. Leaves 

were sampled after three days and stained following standard protocols. As expected, blue 

staining is detected only in infiltrated sectors. 

The LhG4 transgene is expressed only in fruit tissues, therefore to check its transcription, 

fruits from driver lines should have been sampled. However, to produce F1 plants in time 

to be analysed during PhD, priority was given to use flowers to perform crossings. CTG134 

and GUS expression in F1 plants would have been an indirect verification of driver lines 

functionality in correctly driving gene expression in fruits during ripening. 

Driver and responder lines were crossed following the scheme illustrated in figure 24. 

Crossings were performed based on flowering time of each plant. 

 

Figure 24: Tomato plant crossing scheme. Every cross is identified by a letter code in the first 

column. Reciprocal crossings were performed. In the fourth column Y (yes) and N (no) specify 

if the cross has been performed or not. 
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In this thesis work, results obtained with offspring of cross “A” will be described. 

 

F1 plants analysis 

57 F1 plants from cross A were obtained. Their genotypes were verified by PCR on 

genomic DNA: 

• 2A11_LhG4 and pHTOP_CTG134 (in short: 2A11_CTG134)  27 plants; 

• 2A11_LhG4  7 plants; 

• pHTOP_CTG134  17 plants; 

• WT  6 plants. 

As mentioned before T0 heterozygous plants were utilized, therefore crossing results could 

be useful also to infer if T-DNA inserted in single or multiple copies in parental lines. From 

a Punnet diagram I could infer frequencies of the four possible F1 genotypes if single T-

DNA insertion occurred: each genotype was represented by a quarter of the total plants 

(Figure 25). For a total of 57 plants, 14 per genotype. Experimental data confuted single T-

DNA insertion hypothesis. 

 

Figure 25: Punnet diagram of Driver and Responder line cross. “D” and “d” mean Driver 

line insertion locus with or without transgene; “R” and “r” mean Responder line insertion 
locus with or without transgene. 

The 2A11 promoter has been extensively used to express transgenes in tomato. Estornell 

and co-workers in 2009 detected GUS activity driven by 2A11 promoter from 12-18 days 

post anthesis (dpa).  

Flowers on 2A11_CTG134 F1 A plants were then marked at anthesis to follow fruit 

development and 20-25 dpa fruits were sampled to carry out GUS staining and verify 

transactivation system functionality (Figure 26). Nearly all 2A11_CTG134 plants 

demonstrated GUS activity in fruits. GUS staining was focused mainly on vascular 
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elements of fruit pericarp. GUS histochemical assay was performed also on control fruits 

that did not stain. 

 

Figure 26: GUS activity in 2A11_CTG134 F1 tomatoes. GUS staining of 20-25 dpa tomatoes 

from #A14 plant. 

Among GUS positive plants, 8 were selected based on number of fruits on plant, in order 

to have a minimum of nine. 

2A11_CTG134 fruits did not show evident difference compared to control, therefore I 

decided to sample fruits for RNA extraction. Transcriptomic analysis had a double 

function: verify if CTG134 influenced transcription of any ripening related gene and on the 

other hand give us hints to focus phenotypic analysis on specific features of fruit 

development. 

Fruits were sampled at mature green (30-40 dpa), breaker and red ripe stages. A section of 

sampled fruits was used to perform GUS staining (Figure 27). GUS staining intensity 

decreased in breaker and red fruits compared to mature green ones; far off from being 

caused by decreased GUS expression, this phenomenon was probably due to insufficient 

diffusion of staining buffer inside fruit tissues. GUS staining was performed also on leaves 

and flowers to verify if 2A11 promoter was active only in fruit tissues. 
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Figure 27: GUS staining on 2A11_CTG134 tomato tissues. Leaves, flowers and fruits sampled 

from 2A11_CTG134 and control plants were used to perform GUS staining. CTR = control; 

L = leaf; F = flower; G = 20-25 dpa green fruits; MG = 30-40 dpa mature green fruits; BR = 

breaker fruits; RED = red ripe fruits. 

Further molecular characterization was performed on a smaller set of clones starting from 

the collected material. The choice was based on GUS activity detected in all the mature 

green fruits sampled. Since all plants analysed derived from a single cross I expected 

similar results in all clones, however GUS activity varied among plants and also between 

fruits sampled from a single plant.  Even if GUS gene expression level was similar, protein 

activity is influenced also by posttranslational modifications that affect protein abundance.  

Transcriptomic analyses were performed on three plants with high, medium and low GUS 

activity (#A40, #A45 and #A51, respectively) (Figure 28). 
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Figure 28: GUS fluorometric assay data. Fluorometric data are the means of three fruits from 

each clone. C+ = positive control, 35S_GUS tobacco leaf; C- = negative control, 2A11_LhG4 

mature green fruits. 

 

Transcriptomic analyses 

Since plants and fruits were phenotypically similar to controls, I tested whether CTG134 

overexpression had an impact on gene transcription. Thus, I have performed qRT-PCR 

experiments choosing ripening related genes or some of those involved in hormone 

biosynthesis and signal transduction; their expression profile could provide an overview on 

tomato ripening process. qRT-PCR data were normalized on Solyc08g006960 and 

Solyc07g025390 expression (Rodriguez et al., 2008).  

As control, three plants with different genotypes were used: a 2A11_LhG4 driver plant and 

a pOp6_CTG134 responder plant derived from the “A” cross and a wild type plant. The 

control plants showed similar expression profiles of all genes monitored. 

At first, CTG134 expression was examined. Control plant pOp6_CTG134 expressed 

CTG134, but at negligible levels in comparison with 2A11_CTG134 plants (Figure 29). 

Therefore pOp6 promoter was a little leaky. CTG134 was expressed at similar levels in 

2A11_ CTG134 plants and also among different fruit stages, except for #A51 that showed 

a decrease in transgene expression after mature green stage. 
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Figure 29: CTG134 expression in transgenic tomatoes. Each stage datum is the mean among 

three fruits. Green bars: mature green fruits; orange bars: breaker fruits; red bars: red ripe 

fruits. Mature green datum of clone #A40 is set as 1. Error bars are standard deviation from 

the mean. WT and 2A11_LhG4 were verified negative by PCR on cDNA. 

CTG134 overexpression did not cause great alterations: ripening time was not affected 

(Supplementary Figure 44) and ripening related transcription factors RIN (RIPENING-

INHIBITOR, Solyc05g012020) NOR (NON-RIPENING, Solyc10g006880) CNR 

(COLORLESS NON-RIPENING, Solyc02g077920) and TAGL1 (TOMATO AGAMOUS-

LIKE 1, Solyc07g055920) followed the same expression profile in control and 

2A11_CTG134 samples. POLYGALACTURONASE (PG) (Solyc10g080210) is a well-

known ripening marker and its expression was not influenced too. Also 2A11 transcription 

was detected and no feedback effect by CTG134 was found (Figure 30). 

YUCCA8 (Solyc06g008050) is involved in auxin two-step biosynthetic pathway and its 

gene expression was not affected. Also abscisic acid biosynthesis seemed to be not altered 

looking at NCED1 (9-CIS-EPOXYCAROTENOID DIOXYGENASE1, Solyc07g056570) 

expression profile (Figure 30). 
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Figure 30: 2A11_CTG134 fruits qRT-PCR data. Data are averaged on three fruits; data are 

expressed as percentage of stage with greatest expression for each gene. Rows represent genes 

and columns represent groups of three fruits. DR = 2A11_LhG4 driver plant; RES = 

pOp6_CTG134 responder plant; MG = mature green fruits; BR = breaker fruits; RED = red 

ripe fruits. Original data are reported in supplementary figure 45. 

 

On the basis of CTG134 functional characterization in tobacco and Arabidopsis I focused 

my attention on ethylene related genes: ACS2 (Solyc01g095080) ACS4 (Solyc05g050010) 

and ACO1 (Solyc07g049530) are involved in ripening specific ethylene biosynthesis; ETR2 

(Solyc07g056580) is a receptor expressed during plant vegetative growth and NR 

(Solyc09g075440) receptor is associated to fruit ripening. ACS2 ACO1 and ETR2 were not 

influenced (Figure 30), while ACS4 and NR changed their profile in presence of CTG134 

(Figure 31). 

 In 2A11_CTG134 plants ACS4 shifted its profile, and the expression peak could be seen in 

breaker stage instead of red ripe stage. NR expression decreased in red ripe fruits compared 

to control plants. On clone #A51 these effects are less striking in accordance with GUS 

activity data and CTG134 expression data.  
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Figure 31: ACS4 and NR expression profile. To simplify graph interpretation only driver line 

control (2A11_LhG4) data are shown. Mature green of control line datum is set as 1. Symbols 

represent single fruit data, bars represent mean between three fruits. Error bars are standard 

deviation from the mean. 

On breaker stage a big standard deviation could be noticed; this variability made not 

significant the difference between control and 2A11_CTG134 samples. This phenomenon 

was common to the majority of genes; for #A40 and #A45 the outlier fruit was always the 

same. Breaker stage is a fruit developmental phase in which many changes take place in a 

short time interval; incorrect sampling could be blamed for fruits lack of uniformity.  

However , even if data were not statistically significant, CTG134 effect on ACS4 and NR 

transcription profile was supported by the fact that many other genes, tested on the same 

RNA samples, did not show transcriptional variations; presumably CTG134 at one hand 

induced ethylene synthesis acting on ACS4, on the other hand it enhanced fruit sensitivity 

to ethylene by repressing NR transcription. 

By GUS assay we knew that CTG134 should be expressed already in 20 dpa fruits, and by 

transcriptomic analyses we knew for certain that its expression is similar in mature green 

(30-40 dpa) breaker and red ripe fruits. These preconditions made me to expect a “CTG134 

effect” already in mature green fruits, but qRT-PCR data highlighted it on later stages. 

However CTG134 peptide needed a receptor to make the difference, therefore starting from 

Arabidopsis GOLVEN receptors sequences I looked for putative GOLVEN receptors in 

tomato genome and I checked their expression profile on online databases. Only one out of 

five was expressed in fruit ripening stages (Figure 32). Solyc07g065860 expression 

increased during fruit development and reached its highest value after breaker stage. 

Receptors abundance could be the cause of late “CTG134 effect”. 
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Figure 32: Tomato putative GOLVEN receptors expression profiles from Tomato Expression 

Atlas website: http://tea.solgenomics.net/expression_viewer . 

From a general point of view these data supported the hypothesis that CTG134 is involved 

in an auxin-ethylene crosstalk, in particular regulating ethylene synthesis and signal 

transduction. 

However, CTG134 characterization in tomato system is still at the beginning, and results 

obtained till now was useful to focus future phenotypic analyses on specific aspects of fruit 

development. Since CTG134 action took place in breaker and red ripe stages, it could be 

interesting to follow fruit senescence on and off the vine. 

 

  

http://tea.solgenomics.net/expression_viewer
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3. CTG512 functional characterization 

In my PhD project, I took over the functional characterization of the CTG512 gene since 

its discovery in the peach genome. Data available at early 2015 opened two possible 

working hypotheses: i) CTG512 function was redundant to that CTG134; ii) CTG512 

function was different and a) independent to that of CTG134 or b) dependent to that of 

CTG134. By using overexpressing lines and treating plants with synthetic form of the 

peptide, I tried to elucidate the CTG512 biological function and its possible mode(s) of 

action. 

 

Preparation of constructs and transgenic lines.  

In order to study CTG512 function by its overexpression, its coding sequence (CDS) was 

amplified by peach fruit cDNA and cloned in a modified pGREEN vector using Gateway 

technology. In the T-DNA of the resulting vector, named pGREEN_35S_CTG512, the 35S 

CaMV promoter drives the expression of CTG512 CDS. 

pGREEN_35S_CTG512 vector was used to transform Arabidopsis thaliana and Nicotiana 

tabacum. 

Transgenic lines were selected by antibiotic resistance and transgene insertion confirmed 

by PCR. 

Nicotiana tabacum  CTG512 overexpressing lines 

Nearly 40 clones were obtained by tobacco transformation and all of them were checked 

by multiple round of rooting in presence of kanamycin and through PCR on genomic DNA. 

Transgenic plants were transferred to departmental greenhouse and their growth was 

followed paying attention to general appearance of plants and particular parameters, chosen 

because altered by peptides of the same family in previous studies. 

I looked at distance between first root hair and root tip, root hair length and number, leaves 

length/width ratio, hypocotyl length and presence of embryo abortion in the capsules. 

Unfortunately till now tobacco 35S::CTG512 plants did not show any evident phenotype 

under standard greenhouse conditions (data not shown). In the future transgene expression 

should be checked. 

Arabidopsis thaliana CTG512 overexpressing lines 

Arabidopsis transgenic seedlings were selected by kanamycin resistance and by PCR on 

genomic DNA. Transgenic lines obtained were selected also for single T-DNA insertion: 
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50 seeds for every plant were sown on selective medium and after two weeks resistant 

(green) seedlings were scored. The ratio between green resistant seedlings and 

white/sensitive ones should be 3:1 in single insertion lines, following Mendelian Law of 

segregation (Figure 33). 

 

 

Figure 33: Transgene segregation assay. In the right, a plate of line #17 is used as an example. 

Lines selected for following characterization are highlighted in green. 

 

From results of transgene segregation assay it can be observed that transgenic plants 

produce a substantial percentage of seeds unable to germinate. 

GLV peptide CTG134 was functionally characterized in heterologous system Arabidopsis 

thaliana (Busatto et al., 2017). A striking phenotype of 35S_CTG134 transgenic lines was 

the alteration of root gravitropic response, leading to curly (golven) roots when seedlings 

were grown on a tilted plate (Whitford et al., 2012). CTG512 belongs to the same family 

of CTG134 and the first feature of CTG512 overexpressing lines I looked at, was seedlings 

root pattern on tilted plate (Figure 34). CTG512 overexpressing seedling did not show the 

“golven” phenotype, except for #18. 
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Figure 34: Arabidopsis seedlings grown on tilted plate. Arabidopsis seedlings were grown on 

a 45° tilted plate and observed at 5 DAG (days after germination). Solid medium contains 

12g/L of agar to force root growth on the plate surface and to avoid medium penetration. 

Black bar is 5 mm. 

 

Figure 35: Arabidopsis GLV mature sequences. Whitford et al., in 2012 identified 

GLV1/RGF6 (At4g16515), GLV2/RGF9 (At5g64770) and GLV3/RGF4 (At3g30350) mature 

sequences by mass spectroscopy; previously in 2010 Matzuzaki et al. identified GLV11/RGF1 

(At5g60810) sequence with the same technique. 
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To confirm root phenotype of CTG512 peptide, avoiding dosage influences, synthetic 

peptide was produced and tested on wt seedlings on tilted plate assay. 

Since GLV mature peptide sequences were identified by mass spectroscopy (Whitford et 

al., 2012; Matsuzaki et al., 2010) (Figure 35), I inferred putative mature CTG512 sequence 

by alignment of its whole sequence with previously verified ones (Figure 36). 

 

 

 

Figure 36: Alignment of whole CTG512 sequence with other GLV peptides mature sequences. 

The alignment was performed using MEGA6 software. CTG512 whole sequence was 

compared with GLV mature sequences identified by mass spectroscopy (see Figure 5) and 

with sequences of synthetic peptides verified to be functional in in vitro cultures (Busatto et 

al.,2017; Fernandez et al., 2015). The green box highlight the proposed sequence of the mature 

CTG512 peptide that was used to produce a synthetic peptide. 
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Figure 37: Synthetic GLV peptides treatment. Wild type Columbia_0 seeds were sowed on 

MS medium with 12 g/L agar supplemented with 100 nM of synthetic peptide. Plates were 

tilted at an angle of 45° and seedlings were observed at 5 DAG. Black bar is 5 mm. 

Wild type seedlings treated with CTG512 synthetic peptide had the “golven” root 

phenotype, like seedling treated with synthetic CTG134 (Figure 37). This results was in 

contrast with overexpressing lines whose roots behaved like wild type ones. My hypothesis 

was that CTG512 synthetic peptide was administered in too high concentration, leading to 

a cross-activity with the receptor(s) able to sense CTG134. Moreover it has to be noted the 

synthetic peptide was designed without the three C-term amino acids on the basis of real 

peptide sequences. It may be that in Arabidopsis root CTG512 was not processed properly 

thus avoiding to expose the terminal N necessary for proper receptor binding (Song et al., 

2016) 

The vegetative growth of transgenic lines was similar to WT plants (Supplementary Figure 

46), except for #18 whose plants had a dwarf phenotype and produced very few mature 

siliques per plant (Figure 38). Again #18 had a phenotype completely different from that 

of other transgenic lines. 
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Figure 38: Left panel: comparison between 35S_CTG512 #18 (left) and WT (right). Right 

panel: particular of #18 plant. 

Then I checked transgenic lines phenotype on reproductive tissues and I observed in 

particular the siliques. 

The dwarf phenotype of line #18 precluded to observe the green mature siliques and their 

seeds, in order to collect the very few of them for the following generations. 

The other clones showed siliques differing from the WT (Figure 39 and 40). 

 

Figure 39: Green mature siliques seed set. Siliques were collected at mature green stage when 

embryos inside seeds are fully developed and seeds are green. Black bar is 2 mm. 
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Figure 40: Fruit set data. Each column height indicates the number of total seeds/ovules 

present in siliques. Error bars are standard deviation from the means. 

35S_CTG512 clones have slightly different siliques phenotype (Figure 39) (Figure 40): 

• #13 had several events of embryo abortion per silique. Embryo abortion can be 

recognized as seeds of yellow/white colour instead of green (Figure 41). Some 

ovule abortions occurred (Figure 41); 

• #15 displayed several events of ovule abortion; 

• #16 had a less severe phenotype with some events of embryo and some events of 

ovule abortion. Not all siliques showed the phenotype. 

The siliques phenotype was consistent with high number of not germinating seeds observed 

during transgene segregation assay. 

 

Figure 41: Particular of embryo and ovule abortion. Black bar is 500 µm. 
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Guessing if abortion occurred in a specific embryo developmental stage, siliques from line 

#13 were cleared using chloral hydrate in order to see embryo inside seeds (Figure 42). 

Embryo abortion occurred at different developmental stages and the cause could be the 

dosage effect of CTG512 peptide in different segregating individuals .  

 

 

Figure 42: Analysis of embryo aborted seeds. The clearing protocol allows to see embryo 

inside the seed. Embryo abortion occurs at different stages:  a) b) globular stage; a) heart 

stage; c) triangular stage; d) torpedo stage. In a) b) c) d) are present also fully developed 

embryos. Black bar is 500 µm. 

 

To understand if phenotypic variance among 35S_CTG512 lines was due to different 

expression levels of the transgene, young leaves were collected from three plants of each 

lines and RT-PCR was performed on cDNA synthetized from them (Figure 43). 

Expression data obtained by qRT-PCR partially correlated with observed phenotypes. 
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Figure 43: CTG512 expression levels in Arabidopsis overexpressing lines. qRT-PCR 

expression data of CTG512 normalized on ACTIN8 (AT1G49240). Error bars are standard 

deviation from the mean. 

If we did not take in account line #18, expression data were consistent with silique 

phenotypes. Line #15 had the highest expression level of the transgene and the most severe 

silique phenotype: siliques contained less seeds/ovule than WT and other lines, and lot of 

ovules were not fertilized. Lines #13 and #16 had similar transgene expression levels and 

their silique phenotype was not so different.  

Line #18 was an outgroup among the lines analysed. The dwarf phenotype could be due to 

the position of transgene insertion, but the seedling root golven phenotype cannot be 

explained by the positional effect and not even by the transgene expression level. Maybe 

the whole plant phenotype was due to a combination of the two factor plus post translational 

regulation. 

Embryo and ovule abortion observed in CTG512 over expressing lines was very intriguing 

because they were correlated with action of phytohormones ethylene and auxin. Ethylene 

was demonstrated to be essential together with auxin for ovule development in tobacco 

(Martinis and Mariani, 1999) and orchid flowers (Zhang and O'Neill, 1993). Auxin 

moreover is involved in different stages of embryo development ( Liu et al., 1993; Cheng 

et al., 2007). To better elucidate CTG512 action on Arabidopsis ovule and embryo 

development, RNAseq experiments should be performed on reproductive tissues, such as 

flowers and immature siliques. 
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Supplementary figures 
 

 

 

Figure 44: Tomato ripening time, scored as days from anthesis to reach breaker stage. Data 

reported (days post anthesis, DPA) are the means among three fruits from each plant. 

Differences among plants were not significative (according to ANOVA and Dunnett's multiple 

comparisons test). 
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GENE DR MG DR BR DR RED WT MG WT BR WT RED RES MG RES BR RES RED #A40 MG #A40 BR #A40 RED #A45 MG #A45 BR #A45 RED #A51 MG #A51 BR #A51 RED

Mean 1,01 415,12 687,53 4,87 543,33 627,51 0,20 440,44 644,44 1,13 430,40 461,44 2,42 676,06 447,98 0,35 627,97 649,03

SD 0,15 157,33 189,15 6,82 106,34 80,40 0,03 35,66 135,80 0,68 164,10 115,97 1,47 389,06 74,10 0,21 427,32 76,07

Mean 1,12 79,18 50,91 1,47 72,54 39,31 0,29 42,37 38,72 2,54 71,86 24,99 2,99 88,88 26,60 1,52 73,06 37,69

SD 0,57 16,54 16,64 1,80 11,04 4,63 0,07 15,82 14,67 1,20 29,26 10,16 1,12 18,06 4,60 0,38 15,86 6,47

Mean 1,01 2,03 1,25 0,85 1,26 1,51 0,69 1,22 0,94 0,61 1,99 0,63 0,70 2,65 0,69 0,57 2,00 1,42

SD 0,15 0,95 0,63 0,05 0,59 0,40 0,09 1,05 0,44 0,12 0,83 0,71 0,05 0,60 0,02 0,16 0,86 0,30

Mean 1,01 1,19 0,74 0,89 0,85 0,89 0,61 1,00 0,55 0,70 0,97 0,74 0,76 1,46 0,50 0,57 0,81 0,84

SD 0,13 0,07 0,07 0,28 0,15 0,10 0,10 0,12 0,05 0,08 0,22 0,08 0,05 0,50 0,07 0,08 0,24 0,15

Mean ND 308015,30 98525,85 1,15 294794,40 96852,63 ND 556481,60 184302,50 1,28 686324,90 97965,48 14,47 1017608,00 26833,51 ND 1056134,00 774618,90

SD ND 246523,98 89606,54 0,79 267172,01 35996,34 ND 286039,48 229163,09 0,92 387801,95 79327,01 18,88 727669,73 11644,19 ND 774044,81 1179622,30

Mean 1,09 0,63 0,20 1,39 0,26 0,25 0,98 1,08 0,21 0,90 1,16 0,47 0,82 1,13 0,21 1,35 1,84 0,99

SD 0,59 0,24 0,04 0,29 0,12 0,04 0,61 0,80 0,26 0,17 0,32 0,20 0,27 0,27 0,05 0,14 0,78 0,75

Mean 1,18 2,17 1,33 NA NA NA NA NA NA 0,49 2,21 1,15 0,87 1,51 2,02 0,84 3,52 3,13

SD 0,87 0,84 0,23 NA NA NA NA NA NA 0,06 2,29 0,37 0,06 0,55 0,13 0,27 2,30 1,96

Mean 1,06 8,93 16,03 1,07 8,99 10,78 0,39 8,90 13,60 1,40 9,49 10,51 1,56 9,98 3,01 0,98 10,99 18,42

SD 0,41 4,67 5,42 0,70 2,89 0,58 0,16 2,55 2,80 0,45 3,83 0,08 0,52 4,12 0,31 0,37 4,82 3,56

Mean 1,05 12,50 4,51 0,78 8,09 4,60 1,34 6,41 3,08 1,31 8,51 3,25 1,14 12,84 1,49 0,97 5,90 4,30

SD 0,35 7,26 1,74 0,31 3,65 1,18 0,37 2,49 1,64 0,52 3,48 0,27 0,23 1,49 0,43 0,33 2,19 1,91

Mean ND 1,28 1,55 ND 10,46 1,36 ND 0,93 2,47 ND 2,08 0,16 ND 2,72 0,96 ND 1,91 1,08

SD ND 0,96 0,55 ND 7,09 1,55 ND 0,83 2,62 ND 1,70 0,02 ND 1,30 0,60 ND 2,84 0,45

Mean 1,04 55,56 91,67 1,40 76,49 67,45 0,86 49,25 82,45 1,79 108,51 24,86 0,72 119,49 30,46 1,39 111,74 102,99

SD 0,38 32,75 34,56 0,23 18,53 26,32 0,51 18,88 26,78 0,83 70,66 27,95 0,42 70,93 13,35 0,40 45,84 27,61

Mean 1,48 10,63 5,17 1,19 9,06 9,69 0,78 8,05 5,68 1,20 8,80 3,49 1,21 13,87 2,73 1,18 6,92 5,08

SD 1,19 2,78 3,01 1,25 3,08 2,09 0,57 1,06 4,12 0,92 2,02 2,06 0,43 2,92 0,56 1,26 3,13 1,65

Mean 1,00 2,07 1,46 0,84 1,42 1,42 0,56 2,38 1,09 0,86 1,80 1,80 1,16 2,32 1,12 0,55 1,45 1,61

SD 0,05 0,30 0,14 0,18 0,57 0,07 0,08 0,15 0,63 0,20 0,42 0,44 0,19 0,87 0,10 0,09 0,22 0,37

Mean 1,03 24,60 25,14 1,04 24,36 23,93 1,41 18,14 22,68 1,24 21,84 7,72 1,01 32,83 10,04 1,04 14,88 11,18

SD 0,33 11,35 9,90 0,18 1,79 7,02 0,56 10,12 13,99 0,26 12,75 5,77 0,04 15,85 2,46 0,30 1,16 1,77
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Figure 46: Comparison between WT plant and 35S_CTG512 clones. Vegetative growth of 

transgenic plants is similar to wild type plant except for #18. 
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Conclusions 
 

The goal of my PhD project was to test the function of GOLVEN peptides in the regulation 

of peach fruit ripening and, more broadly, of climacteric fruits, after the initial 

characterization of CTG134 (Busatto, 2012). In doing so, the hope was also to contribute 

to the elucidation of the molecular steps that link auxin and ethylene actions. The first task 

of my PhD project was to identify genes belonging to the GOLVEN family in the peach 

genome. GOLVEN genes have a low sequence conservation degree and can be recognized 

by coding sequence length and a twelve amino acid long C-terminal motif. These features 

made the bioinformatic search complex: Blast results were often false positive and 

ScanProsite webtool was very useful to speed up the search. Also gene prediction was 

impaired by these preconditions and maybe not all peptide encoding genes have bene 

predicted yet. Nine GOLVEN genes have been identified, including the already known 

CTG134; there was no certainty as to have picked up them all but in Arabidopsis thaliana 

this family comprised 11 genes, a comparable number. Then expression pattern of peach 

GOLVEN genes was ascertained by exploiting online RNAseq databases and in house 

microarray data, and later verified by qRT-PCR. Their expression was spread in different 

plant tissues: fruit, root, and leaf. For our goal, CTG134 and CTG512 were appealing 

because they were specifically expressed during fruit ripening related stages. Auxin 

treatment upregulated their expression whereas ethylene treatment had no effect. This 

behaviour made me think that they were not involved in late ripening and senescence but 

could be pre-climacteric and implicated in climacteric regulation. In particular they could 

influence ethylene synthesis or regulate its sensitivity acting on its receptors and/or signal 

transduction pathway. The hypothesis was supported also by CTG134 and CTG512 

upregulation upon 1-MCP treatment. 

Previous characterization of CTG134, in Arabidopsis and tobacco heterologous systems, 

highlighted its action in developmental processes in which the auxin-ethylene interplay is 

fundamental, like tobacco capsule and root hair growth (Busatto et al., 2017). Solanum 

lycopersicum, the model system for fleshy fruit study, has been employed to proceed in its 

functional characterization. CTG134 overexpression has been achieved by the use of a 

transactivation system, based on LhG4 synthetic transcription factor (Rutherford et al., 

2005), along with a fruit specific promoter. Fruit specific promoter allowed to gain 

transgene expression only in the desired organ at specific developmental stages and avoid 
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pleiotropic effects, that could impair fruit development. Instead transactivation expression 

system usage avoided adverse effects of transgene in the regeneration phase of the 

transformation protocol; moreover driver and responder lines could be exploited in the 

future to express other transgenes or test other specific promoters, respectively. CTG134 

expression in tomato did not cause any evident phenotype on fruit appearance and 

development that we could evidence, but we cannot rule out this possibility, that will be 

tested on the following generations when both driver and responder alleles will be brought 

to homozygosity. Nonetheless, fruits were sampled to investigate transgene effect on the 

transcriptome. Genes to be monitored were chosen to obtain an overview of the ripening 

process. Not surprisingly, CTG134 did not influence transcription factors behaviour, 

instead it conditioned the expression profile of two ethylene related genes. CTG134 induced 

ACS4 expression in breaker stage and thus, presumably, boosted ethylene synthesis; 

moreover, it promoted ethylene sensitivity through the downregulation of NR, one of its 

receptors, that is the most abundant one in red ripe fruits (Kevany et al., 2007). From an 

evolutionary point of view peach is farther distant from tomato than Arabidopsis but their 

fruits share fleshy and climacteric features. Even if the work on 2A11_CTG134 tomatoes 

is still at the beginning, the results achieved afforded support to the hypothesis formulated 

on the basis of  peach fruit expression data: CTG134 cooperates in climacteric regulation 

by inducing ethylene synthesis and sensitivity. 

As regards CTG512 , the second GLV peptide involved in peach ripening, its coding 

sequence was expressed in Arabidopsis and tobacco under the control of 35S CMV 

promoter. This approach allowed me to make a comparison to CTG134 data previously 

achieved in the same organisms transformed using the same tools (e.g. the same binary 

vector was used to prepare the overexpression cassette), and speculate on the relationship 

between the two peptides (Busatto et al., 2017). CTG512 overexpression caused ovular and 

embryo abortion inside Arabidopsis silique; higher transgene expression produced a more 

severe phenotype with more ovule than embryo abortions. Also this phenotype was 

correlated to the phytohormones ethylene and auxin. Ethylene is known to be fundamental 

for ovule development (Martinis and Mariani, 1999; Zhang and O'Neill, 1993). Beyond 

inducing ethylene synthesis necessary for ovule development, auxin is involved in several 

stages of embryogenesis. Indeed, it is necessary for establishment of bilateral symmetry of 

embryo (Liu et al., 1993) and formation of embryonic organs (Cheng et al., 2007). To get 

more insights into CTG512 mechanism of action, transcriptomic analyses should be 
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performed on specific tissues like flowers and young siliques. As regards its action during 

fleshy fruit ripening, its functional characterization in the tomato systems should be 

employed also for this gene. Also the study of CTG512 promoter is already in progress and 

it will help to better define the tissue and cell types where it is expressed and thus to better 

dissect its role during the peach ripening process.  

Phenotypes derived from CTG512 overexpression was different from those observed when 

overexpressing CTG134 in Arabidopsis and tobacco (Busatto et al., 2017). Therefore 

overexpression data supported an independent role of the two GLV peptides in peach fruit. 

It has to be determined whether  they act in a synergic or antagonistic manner. To 

understand if they are independent or not, and how they influence each other, the creation 

of double overexpressing lines could be a possible future strategy. Also, applications of 

combinations of synthetic peptides on the Arabidopsis root should be pursued to get 

insights on their action. 

Peach fruit needs a huge amount of ethylene to trigger ripening and CTG134 could help 

the switch to system 2 synthesis and/or act on ethylene sensitivity to reinforce the hormone 

positive feedback; CTG512 role is not yet clear. 

To exert their function, hormone peptides like GOLVEN need receptor(s), and findings in 

Arabidopsis strongly suggest they should belong to LRR-RLK of subfamily XI (Shinohara 

et al., 2016; Ou et al., 2016; Song et al., 2016). On the basis of homology to Arabidopsis 

GOLVEN receptors (RGFR/RGI), a list of putative peach receptors was generated and 

screened for co-expression with CTG134 and CTG512 by use of  microarray data. Indeed 

receptors should be present at the same time of ligand peptides during the ripening process. 

In this way some candidates were picked out and they are going to be validated. 

The biological role of GLV peptides during peach ripening is still a puzzle but several 

fragments have been identified, ordered and put on the table and will help to get a better 

picture of the peach ripening process and, more in general, on the auxin-ethylene crosstalk. 
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