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A B S T R A C T

Terrestrial Laser Scanners (TLSs) permit to capture three dimensional models of
outcrops in the form of point clouds. Each point of a point cloud is the result of
a sampling operation on the outcrop’s surface, made trough a laser beam. This
operation records the 3D coordinates of the point and the backscattered laser
energy as an intensity value. Potentially, the intensity can be converted into a
reflectance and used to discriminate different materials.

When series composed of limestone and marl alternations are considered,
TLS intensity can be used as a proxy for the lithology and converted into
intensity-logs which were demonstrated to be a promising source of time series
for cyclostratigraphic analysis.

This thesis started from that result and had the main goal of exploiting
that method to produce long time series, which are essential to the study of
long period (> 1 Myr) Milankovitch cycles in sediments. In this perspective
the following themes were investigated: a) The effect exerted on measured
intensities by shales and chert. Limestone, clay (shales) and chert make most
of many deep water sedimentary successions. b) The identification of a simple
method to normalize the intensities, to minimize the effects of distance from
the outcrop and of the incidence angle of the laser beam. c) The creation of a
software package, composed by a C++ library and a Graphical User Interface
(GUI) for simplifying the user interaction with the data that is needed for
generating the time series.

Three case studies from the Central-Italy Apennines have been considered:

I) The Smirra section (Scaglia Rossa Fm. and Scaglia Variegata Fm. ), composed
of pelagic calcareous homogenites was the playgroud to compare TLS
intensities to calcimetric analyses carried out on samples taken from the
outcrop. Results demonstrate that TLS can be used as a proxy for CaCO

3

content even in series characterized by minimal lithological variations.

II) The Mulini section (Maiolica Fm.). TLS sensitivity to chert was investigated
by comparing laboratory-measured reflectance spectra to TLS intensity. It
is shown that the low-reflectance of chert can be exploited to distinguish
it from limestone. A method based on a Support Vector Machine (SVM)
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classifier was thus implemented to recognize chert semi-automatically on
TLS point clouds.

III) The Vispi Quarry (Maiolica Fm., Marne a Fucoidi Fm., Scaglia Bianca Fm.). In
this outcrop an almost continuous 200m-thick stratigraphic succession is
exposed spanning from the upper Maiolica Fm. to the Bonarelli level, and
representing ca. 20 Myrs. This outcrop was ideal to tackle the problem
of retrieving long time series for cyclostratigraphic analysis. An original
method and dedicated software were developed to achieve this task. With
these original tools, it was possible to produce a 150m-long time series
with resolution down to the centimeter, starting from ∼ 30 point clouds.

The methods and algorithms introduced to cope with the long time series
creation from point clouds have been implemented in a C++ library, names
SPC. Easy access to the data structures and methods defined in SPC is instead
provided by a GUI, in the form of a toolbar for the CloudCompare software.
The proposed toolkit is available over the internet at https://github.com/

luca-penasa.

https://github.com/luca-penasa
https://github.com/luca-penasa


S O M M A R I O

I Terrestrial Laser Scanners (TLSs) permettono di creare modelli tridimensionali
di affioramenti, nella forma di nuvole di punti. Ogni punto di una nuvola
di punti è il risultato di un’operazione di campionamento sulla superficie
dell’affioramento, fatta usando un raggio laser. Questa operazione registra
le coordinate 3D del punto e l’energia retroriflessa del laser, detta intensità.
Potenzialmente, l’intensità può essere convertita in una riflettanza ed essere
usata per discriminare matteriali differenti.

Quando si considera una serie composta da alternanze di calcari e marne,
l’intensità può essere usata come proxy per la litologia e venir convertita in log di
intensità, questi si sono dimostrate essere promettenti serie temporali per l’analisi
ciclostratigrafica.

Questa tesi prende il via da questo risultato, ed ha avuto l’obiettivo principale
di esplorare i metodi necessari a produrre serie temporali lunghe, che sono
essenziali per studiare cicli Milankoviani di lungo periodo (> 1 Myr) nei
sedimenti. In questa prospettiva le seguenti tematiche sono state sviluppate:

a) L’effetto di argilliti e selci sull’intensità misurata. Calcare, argilla e selce
formano infatti la maggior parte dei sedimenti nelle successioni di acqua pro-
fonda. b) L’identificazione di un metodo semplificato per la normalizzazione
delle intensità, per minimizzare gli effetti della distanza dall’affioramento e
dell’angolo di incidenza del raggio laser. c) La creazione di un pacchetto soft-
ware, composto da una libreria C++ e da una Graphical User Interface (GUI) per
semplificare l’interazione dell’utente con i dati, che è necessaria per generare le
serie temporali.

Tre casi studio dagli Appennini dell’Italia Centrale sono stati considerati:

I) La sezione di Smirra (Scaglia Rossa Fm. e Scaglia Variegata Fm. ), composta
da una omogenite calcarea pelagica, questo caso è stato usato per comparare
le intensità del TLS a calcimetrie ottenute da campioni dell’affioramento.
I risultati dimostrano che il TLS puó essere usato come proxy per il
contenuto in CaCO

3
, anche quando la serie è caratterizzata da variazioni

litologiche minime.

II) La sezioni dei Mulini (Maiolica Fm.). La sensitività alla selce è stata in-
vestigata, comparando misure di riflettanza ottenute in laboratorio con
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l’intensità del TLS. Si dimostra che la bassa riflettanza della selce può
essere impiegata per distiguerla dal calcare. Un metodo basato su un
classificatore Support Vector Machine (SVM) è stato implementato per
permettere il riconoscimento semi automatico della selce sulle nuvole di
punti da TLS.

III) La Cava Vispi (Maiolica Fm., Marne a Fucoidi Fm., Scaglia Bianca Fm.). In
questo affiormanento è esposta una sezione stratigrafica continua di quasi
200m in spessore, che va dalla parte superiore della Maiolica Fm. fino al
Livello Bonarelli, e rappresenta ca. 20Myrs. Questo affioramento ha fornito
il caso ideale per affrontare il problema di ottenere serie temporali lunghe
per le analisi ciclostratigrafiche. Una metodologia originale e un software
dedicato sono stati sviluppati per questo compito. Con questi strumenti
è stato possibile produrre una serie di 150m a risoluzione centimetrica,
partendo da ∼ 30 nuvole di punti.

I metodi e gli algoritmi introdotti per l’estrazione di serie temporali da nuvole
di punti sono stati implementati in una libreria C++, detta SPC. Un accesso
facilitato alle strutture dati e ai metodi definiti in SPC viene invece fornito da una
GUI, sottoforma di una toolbar per il software CloudCompare. Il toolkit proposto
è disponibile in internet all’indirizzo https://github.com/luca-penasa.

https://github.com/luca-penasa
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angle (ϑ) are recorded. These values can be converted
to an euclidean reference system, centered in the de-
vice, obtaining the [x, y] couples for each point (p1 to p5

in figure). This concept can be extended with an addi-
tional direction to obtain a complete 3D laser scanning
system. 3

Figure 1.3 Orbital parameters in the Milankovitch band 9

Figure 1.4 Umbria-Marche basin lithostratigraphic units 12

Figure 3.1 Typical experimental setup for calibration of a device
based on targets with known reflectance. The target (or
the scanner) can be moved in different locations and ro-
tated to provide different readings of intensity, as the
distance and the angle change. A more effective scheme
is proposed by Fang et al. (2015) where many small tar-
gets are placed in the same scene following a geometric
pattern. 28

Figure 3.2 Keypoints (k1 to k4) are 3D points lying on the object
surface. Keypoints are placed by the user on locations
which are expected to be homogeneous in terms of ma-
terial and locally flat. The keypoint k2 is seen by two
different stations (S1 and S2), under different scattering
angles and distances, thus providing two independent
observations (one for station) 30

ix



x List of Figures

Figure 3.3 Two point clouds, Ca and Cb, are the results of two scans
made from different stations. For each keypoint the lo-
cal normal ~nk is estimated, using points from both the
scans. The distance of the keypoint from the device d, the
incidence angle α and the target’s intensity at the key-
point depends on the device position and are estimated
independently for each overlapping scan. 30

Figure 3.5 Scatterplot of the observations collected at the keypoints
(Figure 3.4c). Color by measured intensity. Intensities ap-
pear to decrease both with the distance and the scattering
angle. Top plot shows the relationship between intensity
and angle for the fixed distance of 130± 0.7m (the two
horizontal lines). A similar plot for distance vs. intensity
(angle 45± 0.5 ◦) is given on the right. Colors for these
two plots are by scan’s origin. 37

Figure 3.6 Even sampling of the resulting Radial Basis Function
(RBF) model for the Ranigitikei dataset. 38

Figure 3.7 The intensity field merged after normalization. Colors by
normalized intensities. The bedrock has now assumed
an average value of 1 while the vegetation systemati-
cally shows lower intensity values. The overall distri-
bution of intensities (small graph on colorbar) is now
compressed and most of the effects of the distance are
suppressed 39

Figure 4.1 The Smira section for which CaCO
3

and the TLS time
series were compared. 41

Figure 4.2 TLS scan compared to a photograph. Correlation be-
tween time series, scan and photograph highlighted by
the arrows. 43

Figure 4.3 The average intensity for the point-cloud, obtained by
gaussian convolution of the intensity values. These large-
scale intensity variations are due to superficial alteration
of the rock rather than from lithological-controlled inten-
sity variations. Furthermore they are inconsistent with
the stratification. The smoothed intensity has been sub-
tracted from the original intensity for accounting for
variations of intensities unrelated to lithology. 47



List of Figures xi

Figure 4.4 Intensity field displayed as colors. The portion used for
computing the final time series is highlighted by the
dashed polygon. 48

Figure 4.5 Enlargement of Figure 4.7 which shows some patterns
clearly identified in both the time series. These packs of
strata are of ∼ 1 m in average in thickness. 50

Figure 4.6 Simplified model which explains the intensity vs. CaCO
3

behavior at Smirra. CaCO
3

was collected on limestones
only, while intensity is sensitive to shales and cherts. The
CaCO

3
content of a stratum is not constant, but instead

appears to be higher at the middle of the stratum while
it decreases in proximity of the interlayers. 51

Figure 4.7 Correlating the TLS time series to the litholog and the
CaCO

3
series requires to take account of the errors that

may have been introduced by the manual logging of the
lithologic log and the consequent inaccuracy in the strati-
graphic positioning of the samples collected for CaCO

3

analysis. 52

Figure 4.8 Result of the automated matching between the two time
series. Ordinate scale is the CaCO

3
wt.%. The intensities

have been rescaled both in the mean and in standard
deviation to be comparable with the CaCO

3
time se-

ries. 53

Figure 4.9 Scatterplot of the matched CaCO
3

series and the corre-
sponding intensity values. A strong linear correlation can
be observed. See text details. 53

Figure 4.10 Spectral coherency between the CaCO
3

and intensity, be-
fore and after the matching. The matching process (which
works in the spatial domain) uses the local maxima and
minima to create a mapping between the two time series.
This process leads to an increase of coherency of some
frequency bands. In the original time series, the various
components are slightly out-of-tune and do not show up
as strong coherency values. After the matching, some
specific bands are powered and their coherency increase.
These bands represent cyclicities which are present in
both time series. 54



Figure 4.11 Spectra of CaCO
3

time series before and after matching.
The main peaks are mostly preserved by the matching
process, but the frequencies of these peaks have been
generally shifted toward higher frequencies, compatible
with a compressions of the CaCO

3
time series introduced

by the matching. Multi Taper Method (MTM) with p =

4 55

Figure 4.12 Spectrum of the intensity time series obtained from MTM,
with p = 3. Overlayed the expected Milankovitch fre-
quencies, as predicted by the Laskar10a solution for the
eccentricity component and the Laskar04 for the obliquity
and precession. 56

Figure 4.13 Spectrum of the CaCO
3

time series obtained from MTM,
with p = 3. The original dataset of CaCO

3
has been re-

sampled to produce an evenly spaced time series (Fs = 50
cycles/m). Overlayed the expected Milankovitch frequen-
cies, as predicted by the Laskar10a solution for the ec-
centricity component and the Laskar04 for the obliquity
and precession. 57

Figure 5.1 Chert samples and host rock 62

Figure 5.2 Maiolica Fm. as seen though a standard camera 65

Figure 5.3 Point cloud representing the outcrop, colored by inten-
sity 65

Figure 5.4 Intensity correction for the distance effect 68

Figure 5.5 Representation of a SPIN image 69

Figure 5.6 Examples ofSPIN images for some points 70

Figure 5.7 Spectrophotometer data for chert and limestone 73

Figure 5.8 First step of SVM classification. Rock vs. vegetation 74

Figure 5.9 Second step of SVM classification. Limestone vs. chert 74

Figure 5.10 Details of the first step 75

Figure 5.11 Detail of second step 77

Figure 5.12 Limestone, chert and vegetation can be differentiated on
the basis of the their aspect in the SPIN domain 79

Figure 6.1 Location o the Vispi quarry. Geographic data courtesy of
OpenStreetMap contributors. 82

Figure 6.2 First part of the time series, from 0 (Bonarelli level) to
80 meters. Higher stratigraphic positions correspond to
older strata. 88

xii



List of Tables xiii

Figure 6.3 Second part of the time series, from 80 to 160meters. 89

L I S T O F TA B L E S

Table 1.1 An example of point cloud data. Each row represents
a 3D point in an euclidean space (R3). For each point
additional scalar values may be present as intensities
or, e. g., Red-Green-Blue (RGB) color data. While the
coordinates are expressed in meters, the intensity values
are normally just an integer Digital Number (DN) without
explicit physical meaning. 6

Table 2.1 Commonly used kernels for Kernel Smoothing 19

Table 3.1 The set of features estimated for each observation. 29

Table 3.2 Device used and basic information on the dataset that
will be taken into consideration 31

Table 5.1 Number of training vectors for each labeled category
76

Table 5.2 Results of the two-steps classification 76

Table 6.1 Technical specifications for the OPTECH ILRIS 3D laser
scanner, from Franceschi et al. (2009). Notice that a slightly
different wavelength of 1541 nm has been reported by
Larsson et al. (2007). This difference is totally negligible
for our purposes. 84





1
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1.1 laser scannig devices

A Terrestrial Laser Scanner (TLS) device is basically the upgraded version of a
laser rangefinder. A laser rangefinder is a device which uses a narrow laser beam
to measure the distance to a surface.

Depending on the design, a laser rangefinder would normally work by either:

1. measuring the Time Of Flight (TOF) of a laser impulse. The TOF is then
converted into a distance (given the speed of light is known), or

2. by using an amplitude modulated continuous laser beam. In this case
the distance is computed as difference in phase of the return signal, with
respect of the emitted one.

Irrespective of the method used, the laser beam reaches the target surface and
is then diffused in all directions. One of the scattered rays will eventually come
back to the receiver, triggering the distance measurement.

1



2 introduction

Figure 1.1: OPTECH ILRIS 3D terrestrial
laser scanner during scanning.

Coupling a laser rangefinder with a
mechanical and optical directional sys-
tem (made by electro-mechanical actu-
ators, mirrors and/or prisms), which
controls the direction of the laser
beam, the system can be used to mea-
sure many distances in an automatic
way, thanks to the controlled steering
of the laser beam, followed by a range
determination.

This upgrade lead to a new type of
rangefinders, improved devices that
can automatically collect a large num-
ber of measures. These devices are
known as profilometers (see Figure 1.2)
when they are mainly engineered to
take distance measures on a line, but
in the more general case the device is
able to steer the laser beam on two in-
dependent axis, permitting to obtain
a complete 3D object scanning, gener-
ally known as laser scanners.

When laser scanning devices are used from ground they are known as
Terrestrial Laser Scanners (TLSs), in contrast to their airborne counterpart,
called Airborne Laser Scanners (ALSs).

For example, considering a generic (and highly simplified) TLS, the direction
of the laser beam could be expressed as a couple of angles (ϑ and ϕ), which
together with the distance d define a point in a spherical coordinate system
which can be eventually converted in cartesian coordinates:

x = d sin ϑ cosϕ, y = d sin ϑ sinϕ, z = d cos ϑ (1.1)

The formulas are here diagrammatically simplified, and it would comprise
more complex computations in a real-world application (i. e. terms account-
ing for specific design characteristics of the device would be introduced into
Equation 1.1).

Each new measure made will eventually produce a triplet of values [x, y, z],
and thus a point in an euclidean reference frame.
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rangefinder
(laser emitter
and receiver)

opto-mechanical
scanning unit

Target surface
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range (d)

x-axis
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is

Figure 1.2: Diagrammatic representation of the working principle of a laser scanning
system, a profilometer, in this case. The direction of the laser beam is con-
trolled by an opto-mechanical system which steers the laser beam. This
allows the system to measure the distance to the surface at incremental
values of ϑ, implementing a scanning pattern. For each measure, a distance
(d) together with an angle (ϑ) are recorded. These values can be converted
to an euclidean reference system, centered in the device, obtaining the [x, y]

couples for each point (p1 to p5 in figure). This concept can be extended
with an additional direction to obtain a complete 3D laser scanning system.

1.1.1 Intensities

The laser rangefinder incorporated in a TLS exploits the light reflected by the
surface to obtain a measure of distance. The portion of light that is retro-reflected
depends on the characteristics of the material of the object (namely its reflectance
ρ), the angle of incidence of the laser beam on the surface, the distance from
the device and some other factors (e. g. the atmospheric conditions).

Most laser scanning devices record the strength of the reflected signal as a
Digital Number (DN), called intensity (I). This fact lead many researchers to
speculate about the possibility to invert the intensity information, to obtain
a reflectance (ρ) value. This problem corresponds to the problem of finding a
transformation T(I) which maps the intensity values to reflectances:
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ρ = T(I) (1.2)

The problem of finding a good T(I) can be divided into two subproblems:

• determine the shape of the T(I) function, namely to determine the algebric
expression of the model. This equals to identify the constants, parameters
and variables and how these relate to each other trough algebric operators;

• once the function is known, determine the values of its parameters, using
some kind of experimental dataset for solving the problem via least
squares minimization.

The solution of these problems would allow to retrieve the reflectance of
the scanned object, which can potentially be used to infer information on the
material scanned.

Some authors approached these issues from an experimental point of view
(see e. g. Pfeifer et al., 2008; Kaasalainen et al., 2011), identifying two major
factors controlling the measured intensity: the distance from the device and the
angle of incidence of the laser beam with the surface. They also demonstrated
that the recorded intensity values can be converted into reflectances when a
good mapping T(I) is identified (Pfeifer et al., 2008).

On the other hand, other authors were more interested in the practical use
of the intensities: they were using intensities to discriminate rocks (Franceschi
et al., 2011; Burton et al., 2011), to detect damaged areas on historical buildings
(Armesto-González et al., 2010), to quantify moisture content in aeolian sand
deposits (Nield et al., 2011), to identify biological crusts on structures (González-
Jorge et al., 2012) and for studying salt marshes (Guarnieri et al., 2009).

While the experimental approach led to important advances in the under-
standing of the effects of distance and incidence angle, a unique and effective
solution for performing a reliable radiometric calibration of a TLS still does not
exists.

Depending on the context, the device and their needs, the authors interested
in making a practical use of intensities designed their own correction formulas. In
most of the cases, these formulas permit a normalization of the values, removing
or at least reducing the effects of distance and in some cases of the incidence
angles. This kind of correction produces a corrected intensity value, rather than a
true reflectance measure.

In Chapter 3 of this thesis the aspect of exploiting intensities is discussed,
and an original method to perform an approximate radiometric normalization
is presented. This method is generic enough to be applied in most of the cases
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without any special preparation and is applicable also when the original device
is not accessible. It is designed to be data adaptive and uses a method for model
calibration that is based on user-selected keypoints.

1.1.2 Point clouds

In last decades TLSs devices have become extremely popular. This popularity
is probably the result of a decrease in prices and an overall maturation of the
technology itself, a process driven and supported by a progressive acceptance
of this technology by the community of professional surveyors (Shan and Toth,
2009).

The interest by the professionals for laser scanning devices is largely due
to the fact that these provide a direct source of dense and accurate three-
dimensional data, which can be used in the normal surveying practice almost
instantly. In fact, TLSs produce data in the form of point clouds. This name well
conveys what these data look like: a set of three-dimensional points scattered in
space, densely representing the surface of the target.

Table 1.1 shows how the raw data of a point cloud may look like. A single
point cloud can normally reach sizes of several millions of points, and a dataset
is commonly composed by many point clouds.

The fact that a TLS can capture and freeze the geometric aspect of a scene
- like a “3D photograph”- in the form of a point cloud directed the interest
of many scientific communities toward these devices, that were regarded as a
possible new and still unexplored source of data for their specific studies.

This interest in TLS, as a data source for highly specific tasks had, as a
by product, an increasing interest in the methodological aspects of point cloud
processing, which requires skills going from linear algebra to data mining,
together with a good amount of programming practice.

The extraction of useful information from a point cloud is everything but an
easy task. In fact, as well explained by Shan and Toth (2009), it requires highly
multi-disciplinary skills:

[. . . ] the full exploitation of LiDAR s potentials and capabilities
challenges for new data processing methods that are fundamentally
different from the ones used in traditional photogrammetry. Over the
last decade, there have been many significant developments in this field,
mainly resulting from multidisciplinary research, including computer
vision, computer graphics, electrical engineering, and photogram-
metry. Consequently, the conventional image-based photogrammetry and
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Table 1.1: An example of point cloud data. Each row represents a 3D point in an
euclidean space (R3). For each point additional scalar values may be present
as intensities or, e. g., RGB color data. While the coordinates are expressed in
meters, the intensity values are normally just an integer Digital Number (DN)
without explicit physical meaning.

X Y Z intensity

6.4290 38.5237 −0.7459 837

6.4288 38.5222 −0.7416 783

6.4289 38.5229 −0.7394 883

6.4293 38.5258 −0.7401 857

6.4305 38.5358 −0.7473 920

6.4314 38.5423 −0.7508 931

6.4316 38.5438 −0.7500 905

6.4327 38.5524 −0.7557 924

6.4333 38.5574 −0.7578 927

vision is gradually adapting to a new subject, which is primarily concerned
with point clouds data collection, calibration, registration, and informa-
tion extraction.

The problem of information extraction from these data is a key aspect when
trying to adopt TLS as new data source for tasks which would have been
accomplished in other ways. Transforming a dataset like the one of Table 1.1
into something useful is a matter of processing those numbers and transform
them into a more concise representation, familiar to the user. Whether the
user is trying to detect the orientation of pear leaves (Balduzzi et al., 2011), to
appreciate lithologic variations in a stratigraphic sequence (Franceschi et al.,
2011) or to compute forest inventory parameters (Moskal and Zheng, 2011),
point clouds need to be transformed into something meaningful for the specific
investigation (the orientation of the leaf, a stratigraphic log or the diameter of a
log).

This problem is twofold, i. e., it is highly dependent on the possibilities
the software used for processing the data offers in terms of interaction and
automation:
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• the user needs to interact with and visualize the data. Consider the exam-
ple of a geologist exploring a point cloud which represents an outcrop.
We shall call this digital representation of an outcrop, or any digital repre-
sentation of it, a Virtual Outcrop (VO). He/she may want to measure a
bedding attitude. This task is easily done in the field using a compass, but
when dealing with a VO, some kind of virtual compass will be needed.

• the processing must be automated as much as possible. The dataset can
become huge really easily and if the same operation needs to be repeated
many times some kind of automation becomes important. The geologists
who wants to measure hundreds of bedding attitudes will definitely
appreciate some kind of automation

These are the first two obstacles which are encountered when trying to adopt
point clouds as a new data source, which received special attention in this thesis.
The first of these two points will be discussed in Chapter 2, where a set of
algorithms for the extraction of stratigraphic information from point clouds are
introduced. The implementation of these and other algorithms is also discussed
and some key choices in the structure of the implementation are presented.
Chapter 5 instead illustrates the second point: some specific tasks can be almost
completely automated.

1.2 intensity as a rock-type proxy

The possibility to use the intensity measured from TLSs as a proxy of rock
properties has been investigated by several authors. Pesci et al. (2008) used TLS
intensity together with RGB data to recognize different lithotypes in a volcanic
context, Franceschi et al. (2009) then proved that intensity from an infrared
TLS could be used to discriminate marls and limestone. Burton et al. (2011)
applied a similar investigation to sandstones and shales, highlighting a negative
correlation between intensity and the corresponding γ-ray log, and reinforcing
the concept of obtaining stratigraphic logs from TLS intensities.

The idea of using reflectance as fingerprints of different rock-types is a well
exploited fact in remote sensing (Clark and Roush, 1984): but adopting these
methods in the case of TLSs require some specific considerations.

Commercial TLSs use monochromatic sensors: they can provide reflectance
information of the target only for the narrow band at which their lasers emits.
This implies that the intensities coming from a well calibrated TLS cannot be
directly compared with data from spectral libraries (e. g. the ASTER spectral
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library from Baldridge et al., 2009) by means of measures of spectral similarity
(van der Meer, 2006).

The intensity can potentially be converted into a reflectance value but in most
of the cases it is preferable to normalize it obtaining a corrected intensity. The
corrected intensity is a dimensionless scalar field which can be considered as a
proxy for the reflectance.

The feasibility to exploit this proxy to extract information on the material
require to take into consideration two aspects:

(this will be discussed in depth in Chapter 3)

1. the corrected intensity must be proved to be a good proxy of the reflectance
which could be measured with dedicated devices as spectrophotometers.
A correlation should be verified between the normalized intensities and
the measured reflectance.

2. the reflectance itself should be thought as a proxy of some lithologic
property of interest. This relationship requires to be verified and cannot
be simply assumed.

This duplicity also reflects a problem of sensitivity of TLS intensity data. If
a variation in a lithologic property is proved to affect the measured reflectiv-
ity under experimental conditions (i. e. with a spectrophotometer), that same
variation could be too small for being appreciated by the TLS.

In Chapter 5 the results of a laboratory investigation of the reflectance spectra
of chert and limestone are reported, demonstrating that these two lithologies can
be distinguished at a Near InfraRed (nIR) wavelength. The corrected intensities
from a scan have then be used to set up a supervised classification algorithm,
proving that the corrected intensities can be used as a valid proxy for chert.

Chapter 4 illustrates the feasibility to use the corrected intensities as a proxy
for the content of CaCO

3
on a stratigraphic sequence composed by apparently

homogeneous limestone.

1.3 cyclostratigraphic applications

Cyclostratigraphy is the study of astronomically forced climatic cycles as
recorded into sedimentary successions. Quasi-periodic changes in the orbital
parameters induce variations in the total quantity of solar energy received by
the Earth, hence contributing to the climate at a global scale.
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Global climatic changes act as external forcings on the depositional systems
that may be recorded as quasi-periodic variations in lithological, geochemical
and/or palontological properties in the sediments (Hinnov and Hilgen, 2012).

ECCENTRICITY

PRECESSION

OBLIQUITY

Figure 1.3: Orbital parameters in the Milankovitch band

Orbital cycles of cyclostratigraphic interest lay in the Milankovitch band with
periods between 10 to 1000 kyr. These orbital variations change the amount
and the distribution of insolation through time (House, 1995) and are precession,
obliquity and eccentricity

.
The recognition and the study of orbitally induced forcing on climate is

made through the study of climatic time series. A time series is a collection of
scalar values, build of successive measurements of the same variable, typically
repeated over a time interval. It constitutes a record of the changes of some
system’s property over the time.

In the case of Earth climate, these properties are climatic proxies which are
used to infer past states of the climatic system. Henderson (2002) illustrates
some proxies which can be used to reconstruct properties of the past oceans
(like salinity, temperature, etc). In the context of cycostratigraphy, the proxies
do not necessarily have to be representative of a specific variable of the system,
proved that they can be considered sensible to the climate.

Accessing to long, densely sampled and uninterrupted time series is a funda-
mental aspect and it is also one of the major problems in climatic studies. Long
time series can be produced by drilling the continental or oceanic sediments
and submitting the retrieved cores to various measurements, but this can be
made only in the perspective of expensive and large collaborative projects (see
ODP ).

Rampino et al. (2000), in his paper Tempo of the end-Permian event: High-
resolution cyclostratigraphy at the Permian-Triassic boundary, gives an example of
the data that can be retrieved from a core. In his cyclostratigraphical analysis he
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used time series derived from the γ-ray log and the density estimates (which
are automatically retrieved by some core-loggers) together with the isotopic
record of 13C obtained by mass spectrometry. The fact that the data collection
of a γ-ray log is almost totally automated permitted him to obtain a time series
of 1561 samples, against the 379 samples composing his carbon isotope record.
Retrieving isotopic data is a time consuming and expensive operation which in
general can be done on a limited number of samples.

In the seek for faster data-acquisition methods, Mix et al. (1995) demon-
strated that the reflectance spectra, measured with a spectrometer (i. e. 511 data
channels covering most of the visible and the nIR bands), can be calibrated to
provide actual percentages of CaCO

3
, opal, and nonbiogenic components in the

sediments of the eastern tropical Pacific Ocean.
These automated methods can be applied on cores but are obviously subordi-

nate to large limitations when working on outcrops. The usage of TLS in the
nIR wavelength for fast and accurate time series retrieval was demonstrated by
Franceschi et al. (2011), showing not only the feasibility of the method but also
employing the data in a concrete study case. Burton et al. (2011) compared the
TLS intensity to the γ-ray log of the same stratigraphic sequence, highlighting a
negative correlation.

Retrieving long time series would permit to study long orbital periodicities
(> 2Myr) that have been observed in recent numerical solutions of the solar
system dynamic (Laskar et al., 2011) but that have been rarely observed in the
geologic record.

An accurate observation of long-period cycles would permit to disentangle
some important open questions on the dynamics of the solar system, with an
important feedback of geology in the field of the mechanics of the solar system.

In particular, it could give the crucial information to chose among alternative
numerical solutions of the solar system dynamic in deep time, prior to 50 Ma,
when the chaotic behavior of the system causes different solutions to diverge.

1.4 geosetting

Cyclostratigraphers are interested in time series from continuous sections, that
are mostly provided by deep sea sediments which have the higher possibilities
in terms of preservation of orbitally forced cycles. Most of these series are
dominated by a carbonatic component in which a terrigeneous and a siliceous
component of biogenic origin vary through time. Best stratigraphic sections on
land are thus those of deep marine sedimentary environments.
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Because of this reason, the studied sections are part of the continuous and
long pelagic carbonate sequence of the Umbria-Marche basin. This sequence
developed on a isolated passive continental margin, called Adria or Adriatic
Promontory (Channell et al., 1979), part of the African continental platform.
The Umbria-Marche sequence is part of the Central Sector of the Northern-
Appenines fold-and-thrust belt. During Late Triassic and Early Jurassic, this
area was occupied by a carbonate pltform that, underwent extensional tectonics.
Normal faulting with block tilting produced a set of subsiding regions, each
characterized by different subsidence rates, in an horst-and-graben fashion
(Cresta et al., 1989). This tectonic-controlled paleogeography produced different
depositional environments with carbonate platform sediments from those of
inter-platform basins (Santantonio, 1994). This tectonic phase controlled the sub-
sidence until Middle Jurassic. In regions where platform depositional rates were
keeping up with subsidence, thick shallow-water sequences were deposited,
as in the Lazio-Abruzzi carbonate platform. The Umbria-Marche region, in
contrast, became a basin with emipelagic sedimentation (Cresta et al., 1989).

The Umbria-Marche succession is then characterized by a syndepositional
extensional activity during Jurassic, that produced a lithologic differentiation
between basinal and platform facies. Also the Creataceous-Paleogene formations
show thickness variations due to tectonism.

From Middle Miocene, the sequence was subjected to tectonic shortening,
with the development of thrusts, folds and associated contractional structures.
This tectonism is associated with the development of the Apennines fold-and-
thrust belt (Marchegiani et al., 1999).

A stratigraphic column showing main lithostratigraphic units is reported in
Figure 1.4, original names were maintained for consistency with the literature.
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1.5 the quest for long time series

The cyclostratigraphic application of TLS proposed by Franceschi et al. (2011)
suggested the possibility to obtain cyclostratigraphic time series in a fast and
geometrical accurate way. The most appealing part was probably the speed with
which these time series could be reconstructed: one day of work in the field
is potentially enough for building tens of meters of series. But there were still
some issues to be solved and some open questions which required attention.

The nIR wavelength at which some devices worked, as the OPTECH ILRIS 3D
used by Franceschi et al., was demonstrated to be sensible to the different clay
content which characterizes marls and limestone alternations. It was clear that
the TLS intensity of the ILRIS 3D device was correlated with hydrous minerals
content (i. e. clays). But was it possible to observe also more subtle variations of
this parameter? Or maybe only major lithologic transitions (as from a limestone
to a > 50%-clay marl) were strong enough to influence the intensity?

Furthermore another lithology is often present in the Umbria-Marche series.
Chert is a common component in various formations, and although it is not
always abundant in absolute terms, its presence has been sometimes connected
with climatic conditions, making its presence a possible proxy of the orbital
forcing (e. g. Ikeda et al., 2010; Erbacher et al., 1996; Muttoni and Kent, 2007;
Batenburg et al., 2012).

The dimensions of the laser footprint increases with the distance, while
the geometric resolution of a scan decreases. Furthermore, the intensities are
normally discretized on a number of levels which tend to decrease with the
distance (only 4− 5 levels at 50 meters). In practice, better quality scans can
be obtained when scanning small portions of a wide outcrop at a time from a
nearby position (Franceschi et al. suggested at a distance < 50 m). This necessity,
together with the limited field of view of the ILRIS 3D (40

◦× 40
◦), contribute in

reducing the area of outcrop that can be retrieved with each scan.
Scanning large outcrops would thus require a considerable number of scans.

Each one of them should be processed for normalizing the intensities and
extracting the time series. Each time series requires to be stratigraphically
correlated to the others, to produce an unique and long composite time series:
we needed to create a dedicated software component to perform these and
other operations. The processing and the management of these data required
the automation and the optimization of the algorithms in use. These algorithms
are described in Chapter 2.
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This chapter presents a selection of the tools and algorithms which have been
developed for point cloud processing and time series generation, and that have
been extensively used throughout this thesis, especially in Chapter 6.

These algorithms have been created because available tools are not fulfilling
the typical need of the sedimentary geologist.

During the development of these codes a fairly large amount of python1 (e. g.
Langtangen, 2008) programming was involved for the prototyping. python has
been, in general, the language of choice for the data analysis and plotting.

When the algorithms evolved and became more complex and demanding in
terms of performance, a lower level language was needed thus most of the code
was migrated to C++. More than 250000 lines of code compose the final toolkit.
All code is kept online at https://github.com/luca-penasa and can be freely
downloaded and compiled.

We will not give a complete description of all the algorithms that were
implemented, also because no really high-level math is involved in the process
of extracting time series, and giving an in-depth overview of the many technical
choices and tricks involved in writing well performing code for this task would
require too much space in this thesis.

1 www.python.org
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The C++ code which has been produced for this project is released as open-
source software and we redirect the interested reader to the code itself, which
has been a major effort of this thesis and represents a valuable contributions on
its own.

In this chapter, we will instead review the basic mathematical background of
the time series reconstruction problem from point clouds and then, in a second
part, we will discuss how this has been approached and implemented within
the two major software contributions of this thesis: the SPC C++ toolkit and the
Vombat plugin for CloudCompare.

2.1 basics of point cloud processing

Point clouds are a fairly recent new data type. A point cloud is a set of 3D points
in space which provides a dense representation of objects and surfaces in a
three-dimensional context. Point clouds are the basic data type that is provided
by an increasing number of devices. Terrestrial Laser Scanners (TLSs), Air-
borne Laser Scanners (ALSs), range cameras (as the popular Microsoft Kinect),
photogrammetric and structure-from-motion methods are becoming more com-
mon every day, and with them, point clouds are acquired and processed in an
increasing number of contexts.

Without going into the details of the various technologies to acquire geometric
information from the environment, we will assume our point clouds to be simply
an unstructured list of 3D points as depicted into the introduction (Section 1.1.2).

Unstructured, in the case of point clouds, means that the list of points we
are considering does not follow any specific order, thus we cannot exploit any
a-priori knowledge about the internal ordering of this list to our advantage. This
will be clearer considering an example, that will also serve to introduce some
basic formalism.

Consider a point cloud P which is composed by a number n of 3D points.
Each point is a triplet of scalars pi = [xi, yi, zi].

P = {p0,p1, . . . ,pn} (2.1)

A common problem require to find all the points of P which are contained in
a given sphere with radius r and centered in c = [cx, cy, cz]. Clearly the problem
consists in finding all the points which satisfy:

‖p− c‖ < r (2.2)
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Although this problem may seem trivial, when dealing with large point
clouds, this approach would require to compute the distance to the sphere’s
center for each point, and then check if this distance is lower than the radius r.
This must be done for each point given we does not have any a-priori information
that allows us to restrict the computation to a smaller set. When the number
of points that must be checked is large, this solution becomes impractical,
especially if this operation must be carried out many times.

In fact this operation is one of the most common queries that are performed
on point clouds, and permits to find the neighbors2 of a given point p. Being able
to access the neighbors of a point is fundamental, for example, for estimating
the local normal n = [nx, ny, nz] of the underlying surface.

This example shows how processing point clouds is inherently different from,
e. g., image processing. The extraction of useful information from point clouds
requires skills going from linear algebra to data mining, together with a good
amount of well optimized programming practice.

By the way, various solutions to this problem exist, permitting to perform
this operation in an efficient way, but we will not go more in depth than this.

2.2 from clouds to time series

Franceschi et al. (2009) suggested that a way for exploiting the information
contained into point clouds is to reduce the data to the more familiar represen-
tation of a time series. Time series are in fact the fundamental data used in any
cyclostratigraphic analysis.

These time series should in particular represents how some property (quan-
tified by a variable) of the rocks changed over geological time. These two as-
pects are of fundamental importance for producing reliable time series for
cyclostratigraphy. Weedon (2003) identifies some guidelines for producing good
cyclostratigraphyc time series:

1. Consistent environmental conditions. The measured variable must have
been recorded in a stable environment, without major changes, e. g. of
facies.

2. Unambiguity of the variable meaning. The variable should show an un-
ambiguous relationship with one or more properties of the sedimentary
system.

2 There are other ways to define the neighborhood of a point. For example the nearest N points
from the given location.
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3. Existence of the time-thickness relationship. For a meaningful time series
analysis the stratigraphic position must be related with time.

In our case, the properties are represented by some kind of variable that is
linked with the points of the point cloud. We will consider mainly the intensity
provided by most TLSs but the same methods are obviously applicable to any
other scalar field that may be associated with the points, either because it is
inherently dependent on the method (e. g. intensity for TLS, Red-Green-Blue
(RGB) for photogrammetry, etc) or because it results from some kind of data
set merging, e. g. from hyperspectral cameras (see Sterzai et al., 2010; Kurz
et al., 2012b,a). More insights on the relationship between the intensity and
rock-properties are given in Chapter 4 and Chapter 5.

As regard the geological time, obviously we need to consider a proxy for it,
that is the stratigraphic position.

Our first objective is thus to associate each point of the cloud with two scalar
fields, one representing the rock property we want to measure and a second
representing the stratigraphic position of the point. While the considered rock-
property field comes directly from the normalized intensity, and hence the point
cloud itself, the stratigraphic position must be estimated.

We thus seek for a function SP(p) which, for each point p provides a strati-
graphic position. A simple approach is to define this function as the distance
from an user defined plane:

SP(p) = n̂ ·p+ d (2.3)

For a given point p = [x, y, z]T , its stratigraphic position is given by the
distance of the point from the plane defined by the unit normal n̂ and the origin-
to-plane distance d. A point laying on the plane itself will have a stratigraphic
position of 0, one on the same (opposite) side the normal is pointing to, will
have a positive (negative) value. This simplified model represents what we
will call for simplicity a Stratigraphic Reference Frame (SRF), equivalent of the
folding rule used in the field for measuring stratigraphic thicknesses. Its unit
normal n̂ defines a direction in space for which the stratigraphic position, and
thus the time, strictly increases or possibly decreases.

The plane which defines the SRF must be aligned with the bedding planes of
the stratigraphic sequence we are studying, such that all the points laying on a
given layer or bed will receive an equal stratigraphic position. The normal can
be promptly estimated as the best fitting plane of a subset of points which are
hand-picked by the user on the same stratigraphic level.
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The d parameters permits to shift the SRF in the direction of its normal, if
we have a specific point p0 for which the stratigraphic position Sk is know
we can compute a new d to match this constraint. We want to minimize the
stratigraphic position computed by the SRF with respect to its expected value:

n̂ ·p0 + d− Sk = 0 (2.4)

and thus

d = Sk − n̂ ·p0 (2.5)

This simplified model allows to uniquely define a stratigraphic position for
each point of the cloud. Together with the intensity, it can be used to estimate a
time series via Kernel Smoothing (KS).

The statistical techniques known as KS permit the estimation of a real valued
function starting from a set of unevenly spaced noisy observations (a good
treatise about kernel smoothing methods is found in Hastie et al., 2009).

Let first define the kernel function as:

Kλ(x0, x) = D

(
|x0 − x|

λ

)
(2.6)

where x0, x ∈ R, | · | is the absolute value, λ is a constant parameter (kernel
radius or bandwidth) and D(t) is a real valued function, which value is usually
decreasing with increasing distance between x and x0. Commonly used kernels
D(t) are reported in Table 2.1. Note that the notation 1A is a simple short form
for the function3:

1A(x) =

1 if x ∈ A,

0 if x /∈ A.
(2.7)

where A is any given set.
Given ŷ(x0) is a continuous function of x0, the Nadaraya-Watson kernel-

weighted average, that is the smooth estimation of the unknown y(x0) function,
is defined by:

ŷ(x0) =

N∑
i=1
Kλ(x0, xi)yi

N∑
i=1
Kλ(x0, xi)

(2.8)

3 Formally known as indicator function. Given an element x of the set X, and a subset A ∈ X the
function is 1 if x ∈ A and is 0 if x /∈ A.
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Kernel D(t)

Uniform (box) 1
2 1{|t|61}

Epanechnikov 3
4(1− t

2) 1{|t|61}
Gaussian 1√

2π
e−

1
2t
2

Cosine π
4 cos

(
π
2 t
)

1{|t|61}

Table 2.1: Commonly used kernels for Kernel Smoothing

where N is the total number of observations, and yi is the observation at xi.
Note that this formulation actually corresponds to a weighted average, where
the weights are given by the kernel function, centered in x0 and which effect
(radius) is scaled by the λ parameter.

The ŷ(x0) function can then be evaluated at evenly spaced x0 values, recon-
structing in this way a suitable time series to be used in spectral analysis.

A new set of x0 positions at which the ŷ(x0) function is evaluated from
Equation 2.8 can be computed subdividing the range of the x0 variable at evenly
spaced points, given a step ∆x.

2.3 spc and vombat

SPC is a C++ library including all the algorithms needed to extract time series
from point clouds. It defines a set of classes which are the basic building blocks
of the processing pipeline. These objects can be created by the user accessing the
SPC library from C++ code or via a Graphical User Interface (GUI) provided by
a CloudCompare’s plugin (Vombat).

2.3.1 SPC

SPC contains all the object definitions, the computational algorithms and the IO

facilities for saving and loading the data. It is highly based on the PCL library
(Rusu and Cousins, 2011).

Here is a summary of the objects which are provided by SPC, which are also
exposed by Vombat:
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Reference On Disk

Point clouds are normally fairly big entities to be loaded and visualized. It then
makes sense to have an object which keep track of the point cloud without actu-
ally loading it. A Reference On Disk object implements this concept, providing
a reference to a point cloud which can be loaded only when really needed, e. g.
when extracting the time series.

Attitude

An attitude is a measure of the orientation of a plane in 3D space, together with
its position. It can be fully described in 3D by a single equation, here in normal
Hessian form:

n̂ ·p− d = 0 (2.9)

SPC provides a dedicated method for computing attitudes. These are used
within SPC to represent a bedding plane attitude in a specific location of the
outcrop. The user can hand-pick one or more sets of points which are expected
to lay on the same plane. The parameters of the plane are then obtained by
either linear or non-linear fitting of the plane in a least squares sense.

Sample

A Sample is a point in 3D space, which can be defined by the user and is used
to represent any point that may be of interest on the outcrop, e. g. a point
where an actual rock sample was collected. It is defined by a single point in R3:
p = [px, py, pz].

Stratigraphic Reference Frame (SRF)

It implements the stratigraphic positioning system explained in the last sections.
It is fully defined by a single equation, which can be directly derived from an
Attitude:

SP(p) = n̂ ·p+ d (2.10)

In this sense any Sample can be projected in the stratigraphic reference system
using this last equation to obtain its stratigraphic position in the considered
SRF. Alternatively, the stratigraphic position of a Sample can be provided by
the user, in such a case the stratigraphic position of the Sample is fixed, e. g. for
defining where a SRF must have its stratigraphic zero.
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Region Of Interest (ROI)

A Region Of Interest in SPC implements a simple but effective way to provide
repeatable selections of points on point clouds. This object, once created, can
be used to extract subsets of points from any point cloud. It is defined by a
polyline in 3D with the vertexes laying on a user-defined plane. The polyline
is then extruded of an user-specified offset in both the plane’s sides to define
a volume. The extraction is performed checking each point for being inside or
outside the defined volume.

Stratigraphic Tie Constraint

A Tie Constraint can be defined between two or more Samples. When two samples,
which are associated to different SRFs, are tie constrained their Stratigraphic
positions are constrained to be the same, forcing the two SRFs to align in a
stratigraphic sense, thus providing a composite framework.

2.3.2 Vombat

Vombat, which stays for “Virtual Outcrop Basic Analysis Tool ”, provides an
intuitive interface for handling the objects defined by SPC, which can thus
be created and edited from within CloudCompare (Girardeau-Montaut, 2014)
instead of requiring C++ code.

This plugin allows for the definition of the objects and also to reconstruct
the time series, but once the parameters and the objects have been defined the
plugin can also be neglected and the data extraction process can be performed
only using SPC.
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Luca Penasa and Dimitri Lague. Self-normalization of terrestrial lidar intensity
using scene-available targets. in preparation, 2015

3.1 introduction

Terrestrial Laser Scanners (TLSs) are great tools for capturing the geometry
of target objects, but the geometric information does not provide any direct
knowledge about the underlying material. In some cases an indirect relationship
between the target material and local geometric properties of the point cloud
can be drawn and exploited for classification purposes (Brodu and Lague, 2012),
but in the most general case this step is not obvious and additional information
is needed in order to draw conclusions on the materials under investigation.

22
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TLSs are active devices, thus the intensity recorded may be considered the
result of a sampling operation made under controlled conditions on the target
surface. The laser beam reaches the surface, and is scattered in all directions.
One of the rays will eventually return to the device more or less suppressed,
depending on the reflectance of the target, the incidence angle, the range and
other factors related to the atmospheric absorption and some other device-
related factors. This sampling is then repeated for each three-dimensional point
captured by the device.

Most devices record intensity as standard practice thus most of existent points
clouds coming from TLS are equipped with an intensity scalar field, directly
associated to the points.

It is thus clear how much appealing may be the idea to invert the intensity
into some kind of scalar field describing the target material (i. e. obtaining the
reflectivity ρ, or some other scalar that may be considered as a proxy for the
reflectivity itself). Recently, also full-waveform hyperspectral lidar based on
broad-spectrum lasers emitters have been proposed (Kaasalainen et al., 2007b;
Chen et al., 2010), and although they are still experimental devices their potential
has been proved in some circumstances (Hakala et al., 2012; Suomalainen et al.,
2011; Kaasalainen et al., 2010b).

Various authors demonstrated the viability of inverting the intensities to
obtain reflectance information from commercial TLSs performing detailed ex-
periments (e. g. Pfeifer et al., 2008; Kaasalainen et al., 2011) on various devices.
The behavior of the intensity from TLSs has been particularly investigated in
respect to the distance and the incidence angle (Krooks et al., 2013; Anttila et al.,
2011), but also the effects of moisture (Kaasalainen et al., 2010a) and surface
irregularities (Pesci and Teza, 2008) have been considered. In a recent paper,
Fang et al. (2015), considered also the defocusing of the receiver’s optics. The
effect of incomplete overlap between the laser beam and the receiver’s field of
view, which may affect biaxial systems, has still to be systematically investigated
in literature (Pfeifer et al., 2008; Fang et al., 2015). Airborne Laser Scanners
(ALSs) systems have been subjected to a similar research activity (e. g. Ahokas
et al., 2006; Höfle and Pfeifer, 2007; Kaasalainen et al., 2007a; Jutzi and Gross,
2009) and much of that work can be considered to some extent valid also for
TLSs.

Additionally, time-invariance of model’s parameters would require better
investigations (Wang and Lu, 2009) and the manipulation of the intensities from
the device itself and/or the proprietary softwares add a layer of complexity that
is not easy to disentangle.
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On the other hand, the viability of using the intensities as a material proxy
have been demonstrated also in many practical cases, to discriminate rocks
(Franceschi et al., 2011; Burton et al., 2011), to detect damaged areas on his-
torical buildings (Armesto-González et al., 2010), to quantify moisture content
in aeolian sand deposits (Nield et al., 2011), to identify biological crusts on
structures (González-Jorge et al., 2012) and for studying salt marshes (Guarnieri
et al., 2009). In such contexts a normalization of intensities have been generally
adopted, rather than a complete radiometric calibration (which would provide
real reflectance measures).

The normalization shall remove the effects of variables which exert an effect
on the measured intensities but do not directly depend on the material itself,
namely the distance and the incidence angle. Although the physics underlaying
the calibration problem is mostly understood (especially after Fang et al., 2015),
it is still not easy to obtain a good normalization of the intensities for practical
applications.

The calibration problem requires to face with two tasks: a) determine the
algebric expression of the calibration model, and b) determine the values of the
parameters of the model.

Models derived from the lidar equation have been generally adopted, although
they require to face with various device-specific optimizations (especially for
near-distances) to be really effective (Kaasalainen et al., 2011; Fang et al., 2015).
Another approach which has been pursued uses black-box models, which are not
directly linked to the physics of the device, but can give better results (Pfeifer
et al., 2008).

Regardless of the type of model chosen, the parameters of the model are
estimated by means of a least squares solution, against a dataset of observations.
These observations have been normally acquired by experimental data collection,
using targets for which the reflectance is known (for a proper calibration) or can
be assumed to be homogeneous and constant (for a normalization, see e. g. Fang
et al., 2015, which also reports an effective scheme for placing the calibration
targets). These approaches are normally fairly complex and require a certain
amount of experimental setup and post-processing of the data.

We illustrate here a generalized solution for extracting a set of calibration
observations from overlapping point clouds taken from different stations. The
method is based on the user-selection of keypoints laying on one or more
homogeneous materials. Each keypoint that is seen from more than one station
defines an set of homologous points on different scans for which the geometric
variables (distance from the sensor and incidence angle) and the observed
intensity are extracted from the point clouds. The observations extracted are
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accompanied by additional features which can be employed to design weighting
strategies for the parametrization of the model.

Our method simplifies the extraction of calibration data and can be used to
refine or fit any calibration model. We demonstrate the effectiveness of this
approach using a simplified black-box model based on a Radial Basis Function
(RBF) smoother, showing that it can be used to significantly improve the quality
of intensity data in many circumstances which do not require an absolute
radiometric calibration.

3.2 intensity calibration and normalization

It is often assumed that the calibration model for lidar devices can be derived
from the lidar equation, here simplified for extended, Lambertian-behaving
targets (Pfeifer et al., 2008):

Pr =
πPeρ cos(α)
4r2ηatmηsys

(3.1)

where Pr is the received power and Pe the emitted power; ρ is the target
reflectivity, α the incidence angle, r the range and ηatm and ηsys are terms
accounting for atmospheric and device-related transmission.

Intensity values I provided by TLSs are normally digital numbers, and a
physical meaning for them can only be inferred, so that it is common to consider
them as linearly related to the received power, although this may be not strictly
true, so that I = aPr with a some unknown constant.
Pe is normally not recorded by the device, so that it must be considered a

constant although it has been evidenced (Wang and Lu, 2009) that in some
devices it may be time-dependent. The atmospheric transmissivity term can be
considered as negligible for most TLS applications while the transmissivity of
the system can be considered constant. It then makes sense to group constant
terms and reduce the calibration problem to:

Ir = k
ρ cos(α)
r2

; with k =
πaPe

4ηsys
(3.2)

In the perspective of finding a way to correct intensities independently from
the specific device, we can further simplify the model in order to get rid of the
cosα and the r2 terms. In fact, it has been shown that they cannot be considered
optimal explanatory terms for all the devices (Pfeifer et al., 2008; Jutzi and
Gross, 2009). We substitute them with a generic function f(r, α;β) which shape
and parameters β are to be determined:
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I = kρf(d, α;β) (3.3)

Whether f(d, α) is obtained from the physical modeling of the system or
a general-purpose interpolator function is used, the model calibration task
reduces to finding an estimate of the parameters β and the constant k, so
that ρ = I/(kf(α, d, β̂)) can be computed for any point of the cloud under
investigation. This formulation of the calibration would permit to obtain ρ values
from the intensities. This approach requires the use of targets with known
reflectance and is subordinated to some important assumptions (as the linearity
between the power and the measured intensity and the stability in time of the
model’s parameters).

A simpler approach can be provided by a normalization, in place of a proper
radiometric calibration. In this case the final goal is to produce a correction or
normalization of the intensities with respect to the main factors which are
unrelated to the reflectance (i. e. the distance and the incidence angle). In this
case generic targets can be employed and the normalized intensity will provide
information on the relative reflectance of the materials in respect to the targets
reflectance (Fang et al., 2015).

The reflectivity of a generic target is normally unknown. To take account
of this, Equation 3.3 needs to be modified. Instead of obtaining a reflectance
measure ρ, a value Icorr is obtained: this value is proportional to ρ but also to
some terms that are assumed to be constant (see Equation 3.3).

I = Icorrf(d, α;β) (3.4)

This normalized intensity Icorr is then the result of the measured intensity I
divided for a smooth function of the distance and the scattering angle.

Icorr =
I

f(d, α;β)
(3.5)

This formulation of the calibration problem leads to a normalization of the
intensities values rather than nailing them to a reflectance scale. For many data
elaborations as classification, thresholding, dataset merging and visualization,
the normalization of the intensity data appears as a huge improvement over the
raw intensities. In these cases an imperfect or approximate normalization has
no substantial impact in terms of interpretation.
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3.3 calibration dataset from keypoints

The problem of finding the parameters β is normally addressed by means of
least squares, minimizing the objective function:∥∥I− Icorr · f(α, d)‖2 (3.6)

For solving the minimization problem of Equation 3.6 a calibration dataset
formed by the observations of the measured intensity, under controlled inci-
dence angles and distances, is needed. For each observation, also a Icorr variable
(in place of the reflectance itself) should be defined (this last point will be
discussed in Section 3.4.1).

It has been shown that reference targets can be used for collecting a calibration
dataset (e. g. Kaasalainen et al., 2009a; Fang et al., 2015): a set of artificial targets
which are homogeneous in terms of material can be placed at different distances
and scattering angles combinations as in Figure 3.1.

The intensity response of the targets is then repeatedly measured for many
configurations of the target and the observations of the incidence angle, the
distance to the target, the measured intensity and the reflectivity (if known)
are tabulated and used to parametrize the calibration model. Although this
approach is clearly preferable is has some drawbacks: a) it requires an adequate
experimental setup together with a certain amount of processing time for
the extracting the information needed, contributing in making the method
difficult to replicate; b) the targets used for calibration are often almost perfect
lambertian scatterers, while natural materials often deviate from the cosine-law,
as commonly observed in some natural contexts (Hartzell et al., 2014; Pesci and
Teza, 2008; Franceschi et al., 2009); c) it is not easily applicable for scans for
which the original device is not accessible (e. g. scans provided by third-parties).

We generalized a data extraction method so to become easily operable with
any surface that may be considered as a calibration target. This method can be
employed to simplify the calibration dataset extraction, also from many TLS
datasets that already exist.

3.3.1 Keypoint approach

A TLS survey is normally composed by a set of point clouds, each being the
result of the scanning of the target object from a different station. Overlapping
scans are often present in a dataset. In this context, information for obtaining
an intensity normalization may be present into the dataset in two forms:
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Figure 3.1: Typical experimental setup for calibration of a device based on targets with
known reflectance. The target (or the scanner) can be moved in different lo-
cations and rotated to provide different readings of intensity, as the distance
and the angle change. A more effective scheme is proposed by Fang et al.
(2015) where many small targets are placed in the same scene following a
geometric pattern.

1. as an a-priori knowledge of the materials. The user may be able to identify
in the scene one or more subsets of keypoints which are expected to have
the same corrected intensity after normalization

2. as overlapping scans: for the same point that was captured from two or
more scan stations, the TLS records different intensities. This difference
can be ascribed to the effects of different distances and/or scattering angles
and should be minimized when the intensities are properly normalized.

Target surfaces are identified by the user using a set of keypoints. The problem
of extracting good keypoints from unstructured point cloud data is a wide and
well known issue for object recognition (Mian et al., 2010) and automatizing
this operation would require a fairly more complex treatment. We will assume
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the keypoints are defined by the user by hand-picking a set of keypoints into
the scene.

Each keypoint defines a point on the object’s surface that can be considered
homogeneous in terms of material and locally flat. The spherical neighborhood
of the keypoint is considered in order to sample the variables of interest.

For each keypoint, a unique normal of the underlying surface is computed (see
Figure 3.2). A best fitting plane is computed by means of eigendecomposition
of the covariance matrix (Mitra et al., 2004) . The points coming from all the
available scans which sampled that location are used, see Figure 3.3. The
eigenvalues deriving from the normal estimation, which can be used as a
measure of flatness of the plane (Brodu and Lague, 2012) are also stored.

A keypoint may be seen from different scan stations, hence the same underly-
ing surface has been scanned one or more times, from different points of view.
For each keypoint, each scan will produce an additional unique observation
of the calibration features: comprising the distance, the incidence angle and
the measured intensity (see Figure 3.3). Table 3.1 reports the features that are
estimated for each observation.

Table 3.1: The set of features estimated for each observation.

Feature Description

Distance d The keypoint-to-station distance

Intensity I The measured intensity, computed as weighted average of
the neighbor’s intensity. Each point’s intensity is weighted
by its distance to the keypoint itself

Intensity Std Istd The standard deviation of the intensity, computed as
a weighted standard deviation of the points used for
computing I

Incidence angle α The incidence angle of the laser beam with the surface.
Computing using the local normal estimated for this
keypoint (see previous table)

Number of Neighbors NN the number of neighboring points used for computing I

This keypoint-based procedure can be used to automate the process of ex-
tracting the calibration observations from a dataset, the same procedure can
be employed also with artificial reference targets with know reflectance if a
complete calibration is desired.
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Figure 3.2: Keypoints (k1 to k4) are 3D points lying on the object surface. Keypoints are
placed by the user on locations which are expected to be homogeneous in
terms of material and locally flat. The keypoint k2 is seen by two different
stations (S1 and S2), under different scattering angles and distances, thus
providing two independent observations (one for station)
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Figure 3.3: Two point clouds, Ca and Cb, are the results of two scans made from
different stations. For each keypoint the local normal ~nk is estimated, using
points from both the scans. The distance of the keypoint from the device d,
the incidence angle α and the target’s intensity at the keypoint depends on
the device position and are estimated independently for each overlapping
scan.
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3.4 method validation

This approach to normalization has been tested on a dataset, chosen so to
represent an usage case in which normalized intensity may give important
additional information over the original intensity field. The data extracted via
the keypoint-based method will be presented and discussed.

Table 3.2: Device used and basic information on the dataset that will be taken into
consideration

Case Device Context Data Ref.

Rangitikei River Leica Scanstation 2 Vegetation Lague et al. (2013)

This case has been chosen so to represent an usage cases that have been
proposed in literature. The first case concerns the possibility to use intensity
to identify vegetation from a natural scene. In Lague et al. (2013) the approach
proposed by (Brodu and Lague, 2012) was used for vegetation identification and
removal. That approach is based purely on the geometric aspect of vegetation.
They also proposed that a better classification result could be obtained using
the normalized intensities.

In this example we will show how it is possible to identify a scattered set of
keypoints which are expected to posses the same reflectance and exploit them
to calibrate an adaptive model to normalize the intensity of the scene.

The dataset is composed several point clouds, each derived from a different
station. The point clouds were geometrically registered. The coordinates of the
device’s center have been exported for each different station.

3.4.1 A simplified normalization model

Penasa et al. (2014) showed that in some contexts a simple correction for intensi-
ties could be obtained using a moving average method considering all the data
points in the scan. Such operation implicitly requires that no correlation between
the distance and the reflectivity exists and hence the detrending operation will
reduce to a correction of the distance effect only.

Considering a specific scan for which we want to find a good normalizing
function, independently from the specific device, if we can accept some uncer-
tainty we don’t need to find a normalization function able to predict with equal
accuracy the whole range of scattering angles and distances that are possible
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(i. e. the whole nominal range at which the device may work), but it is instead
more sensible to find a function that is:

• able to accurately normalize intensities at varying angles and distances
for the majority of points in the specific scan. This also implies that the
scan itself can be used as a good source of data for calibrating the model:
if the 95 % of the points in a scan which require normalization are at a
distance between 40 to 80 meters from the station, we may be satisfied of
a model able to correctly normalize the intensities in that range, and thus
parametrized with observations in that range only.

• that is reasonably well behaved out of these bounds. Considering the remain-
ing 5% of points, for which we are accepting an approximated correction,
they will still be corrected in a reasonable way (e. g. corrected intensities
not going to infinite).

Although in this case a well-behaved function may imply smoothness and
monotonicity, we can simplify looking for a function that is unlikely to introduce
unwanted artifacts (as may happen using high degree polynomials that can
easily lead to bumps and periodicities).

Pfeifer et al. (2008) gave an in-depth sight on possibly eligible calibration
functions f(α, d) for Equation 3.4. They also demonstrated the need to use highly
data adaptive models in order to explain the complex intensities behavior of
some devices.

Furthermore a function for which the parameters are linearly estimable (via
linear least squares minimization) is highly desirable over functions requiring
non-linear least squares minimizations.

Radial Basis Functions (RBFs) are a good candidate being often used for
function approximation, and are especially suited for scattered and multidimen-
sional data. This allows to use the same scheme if we want to correct for both
distance and angle or just for the distance.

A RBFs interpolant is defined by a set of fixed nodes (ni) in the [d, α] space.
At each node a weight (or coefficient) is associated.

For a given x = [α, d], for which the correction factor has to be computed, the
value of f(α, d) corresponds to the sum of all the node coefficients, weighted
by a radial basis function which is proportional to the distance of x to the
considered node ni. A polynomial in x is often added to fit the overall trend:

f(x) =

N∑
i=1

βiφ(‖x−ni‖) + P(x), (3.7)



3.4 method validation 33

If φ is a gaussian, points distant from the domain defined by the nodes will
receive a zero weighting and f(x) will approximate the polynomial P(x).

In the classical RBF interpolator, a data point to be modeled corresponds to
each of the nodes, with the result that for each observation (a [d, α, I] triplet) a
new parameter β must be estimated. The method permits in fact to obtain an
exact interpolation. In the case of intensity modeling we can use a regular grid
of nodes, placed in the [d, α] domain, reducing the number of parameters and
obtaining a smoothing effect.

In the case of a RBF smoother, f(d, α) function is linear in the parameters and
a unique solution can be found by linear least squares (provided the system is
solvable).

Considering that the set of keypoints on the same material we may expect
that all of them should show the same Icorr value (the intensity value after
correction). Being interested in a normalization of intensities, we may simply
set it to 1 (or ay other arbitrary value) for all of them.

The system of equations to be solved is thus in the form:

1 f(d0, α0) = I0

1 f(d1, α1) = I1

. . .

1 f(dn, αn) = In

(3.8)

where n is the total number of observations on the considered material. Each
row of the system represents an observation of a triplet [d, α, I], of a specific
keypoint as seen from a specific station. Simplifying, after the correction all
the observation must have the same intensity value (i.e 1), being on the same
material.

3.4.2 Weighted solution

The model solution can be easily modified into a weighted last squares problem,
to account for the different reliability of each observation. For each keypoint
an unique local normal is computed via eigen-decomposition of the covariance
matrix (Mitra et al., 2004). From the eigenvalues a flatness index er can be
computed (Brodu and Lague, 2012), which represents the amount of variance
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explained along the direction of the normal over the other directions (i. e. the
other eigenvectors):

er =
λ0

λ0 + λ1 + λ2
(3.9)

This index can be used to express how much the underlaying surface is planar.
Notice that λ0 is the lower of the eigenvalues. This implies that, for a perfectly
planar surface, er tends to 0. On the other hand when λ0 increases, we have
λ0 ∼ λ1 ∼ λ2 in the most extreme case, for which er tends to 1/3. Designing a
weighting coefficient to account for the underlying planar geometry leads to:

wer = 1− 3er (3.10)

wer is almost 1 for highly planar surfaces and tends to 0 for patches in
which the points are scattered equally in all directions (e.g. vegetation, complex
geometries etc.) for which the estimated normal do not completely make sense
for the purposes of our investigation. Notice that the two extreme cases are
more theoretical than practical, and, the case of a 0 weight will probably never
happen, implying no observation is completely discarded from the solution.
This point is important for certain [distance, angle] domains for which a small
number of observations may be present and completely discarding them may
be not a good choice.

Another weight we may want to take into account is the standard deviation
of the intensity values σint, when it is high it may suggest that the underlying
patch is composed of more than just one material, and thus under-weighting
this observation is desirable. A natural choice is to use the reciprocal of the
inverse of the variance:

wint =
1

σ2int
(3.11)

The two weighting factors can then be used to weight the observations and
thus solve the calibration problem by means of weighted least squares.

3.5 results and discussion

Figure 3.4 shows the Ranigitikei dataset which is composed of 4 point clouds
(Figure 3.4a), each coming from a different scan operation. The scene is com-
posed by two materials (Lague et al., 2013) that are expected to show different
reflectance: vegetation and the bedrock. Minor variations of the bedrock compo-
sition are expected to have small or negligible effects on the recorded intensity
due to the long ranges.
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(a) The Ranigitikei dataset, composed by 4 partially overlapping clouds, each taken from a
different station. Each point cloud have has a different color to visualize the overlapping
areas.

(b) The intensity field of the Ranigitikei dataset, before normalization. The colorbar also shows
a histogram of intensities, which is spread on a large range, mainly due to the effect of
distance.

(c) The ∼ 1000 keypoints semi-automatically selected on the bedrock.

Figure 3.4: The Ranigitikei dataset
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When the dataset is merged without any normalization (Figure 3.4b the
effects of the distance from the device are evident. The intensities from this
device (Leica Scanstation 2) are exported as a 12 bit unsigned integer (thus in
the range [−2047, 2048]). These values have been shifted to the range [0, 4095]

before any further processing.
Figure 3.4c shows the keypoints that have been extracted semi-automatically

from the clouds. In this case the point clouds have been merged and cleaned
from most vegetation by manual editing. The resulting point cloud has then
been downsampled so to end up with ∼ 1000 keypoints, each separated by the
nearest by ∼ 2 meters.

Figure 3.5 shows the data extracted from the point clouds using the method
described in Section 3.3. For each keypoint, a spherical neighborhood of 0.1 m
was considered to compute local normals and average intensities. The plots at
the top and at right show the relationship between the variables of interest, here
highlighted by their 1st order polynomial fit.

These values have been modeled by means of RBF smoothing, the model
consists of 24 nodes, 6 for the distance and 4 for the angle. The node have been
evenly distributed in the [α, d] space. A gaussian has been used as weighting
basis function (as kernel). The surface representing this model is shown in
Figure 3.6 and highlights a clear correlation between distance and intensity.
The effect of incidence angle is here less pronounced, as expected for a natural
scenario.
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Figure 3.5: Scatterplot of the observations collected at the keypoints (Figure 3.4c). Color
by measured intensity. Intensities appear to decrease both with the distance
and the scattering angle. Top plot shows the relationship between intensity
and angle for the fixed distance of 130± 0.7m (the two horizontal lines). A
similar plot for distance vs. intensity (angle 45± 0.5 ◦) is given on the right.
Colors for these two plots are by scan’s origin.
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Figure 3.6: Even sampling of the resulting RBF model for the Ranigitikei dataset.
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Figure 3.7: The intensity field merged after normalization. Colors by normalized in-
tensities. The bedrock has now assumed an average value of 1 while the
vegetation systematically shows lower intensity values. The overall distribu-
tion of intensities (small graph on colorbar) is now compressed and most of
the effects of the distance are suppressed
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from the paper

Marco Franceschi, Luca Penasa, Jan Smit, Rodolfo Coccioni, Jérôme Gattacceca,
Antonio Cascella, Sandro Mariani, and Alessandro Montanari. Comparison
of carbonate content, facies ranking and Terrestrial Laser Scanner intensity as
proxies for the cyclostratigraphic analysis of the Ypresian-Lutetian pelagic sec-
tion of Smirra (Umbria-Marche Basin, Italy). Palaeogeography, Palaeoclimatology,
Palaeoecology, submitted, 2015

4.1 introduction

This chapter is a summary of the paper by Franceschi et al. (2015) recently
submitted. In this paper we made use of the techniques introduced in Chapter 2

40
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and 3 to investigate a continuous and well-bedded section of pelagic limestones.
The outcrop exposes the R4 member of the Scaglia Rossa Fm. and the lower
part of the Scaglia Variegata Fm (Figure 4.1). The section is exposed in a small
abandoned quarry for a total stratigraphic length of ∼ 25 meters. The section
encompasses the Lutetian-Ypresian (Lu-Yp) boundary, which was defined by
Molina et al. (2011) in the Gorrondatxe section in Northern Spain.

Smirrasection
m123

120

115

110

105

100

ScagliaVariegata
ScagliaRossaR4

Figure 4.1: The Smira section for which CaCO
3

and the TLS time series were compared.

The main goal of our investigation was to locate the Lu-Yp boundary in the
specific section. This problem was tackled by means of a detailed multiproxy
investigation which comprised bio- and magneto-stratigraphic studies, litholog-
ical logging, carbonate content analysis and finally an intensity series obtained
from an OPTECH ILRIS 3D TLS. Cyclostratigraphic analysis was then carried
out on the numerical series in the tentative to place the boundary also from an
astrochronological perspective.

The results of this study will not be discussed here in details but the aspects
which are relevant to this thesis will be instead expanded and more carefully
discussed. The application of the TLS technique to the Smirra quarry required
to perform a more in depth investigation of some specific issues related to the
characteristics of the outcrop and to the response of the intensities to the CaCO

3

content.
The intensity series which can be produced by means of TLS is an attractive

way to obtain a lithologic proxy, in a fast and geometrically accurate way. A
good proxy for a cyclostratigraphic analysis must be correlated to some other
system’s variable that is expected to be sensible to the climate.

The intensity measured with the OPTECH TLS is a Digital Number (DN)
that, in the best case, can be transformed into a proxy for the reflectance of the
material (see Chapter 3). Gaining a full understanding of how this remotely-
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sensed variable can be related to the various properties of rocks is a key aspect
for being able to consider the intensity a good cyclostratigraphic proxy.

Mix et al. (1995) demonstrated the use of measured reflectance for providing
fast logging of cores. They were able to estimate some of the main characteristics
of the sediments (CaCO

3
content, biogeneic silica and terrigenous component).

But the spectrometer they were using permitted to measure the reflectance at
511 different wavelengths, covering most of Visible (VIS) (455− 700 nm) and
Near InfraRed (nIR) (700− 945 nm) bands.

The TLSs, instead, work with just one wavelength (1541 nm for the ILRIS 3D
scanner) that cannot be changed in any way, and the intensity is a proxy for the
reflectance at that specific wavelength. It should therefore appear clear that the
intensity value is unlikely to provide enough information to simply convert it
into any kind of more familiar measure, for example a CaCO3 content series or a
biogenic silica series.

It is hence more sensible to understand in which ways the rock properties
affect the intensity values in each specific case, identifying what properties are
essentially captured by the intensity series.

The Smirra quarry gave the opportunity to face with this problem, allowing a
direct comparison between the intensities and other observations (the CaCO

3

series and the lithologic log).
The R4 member of the Scaglia Rossa Formation is mainly composed of

pelagic red limestones containing a variable amount of a clay. It is a well bedded
series with minor interbedded shales, while the prominent bedding has been
interpreted as deriving from pressure-solution stylolitization (Alvarez et al.,
1985) that exagerated an originally . In the lower part also cherts are present.
Toward the stratigraphic high of the Smirra section, the Scaglia Variegata
Formation is richer in marls, which alternates in a rhythmic fashion with
limestone.

4.2 cyclostratigraphic proxies

Two different classical proxies have been considered for the cyclostratigraphic in-
vestigation: a lithological logging, and a CaCO

3
wt.% series. These two datasets

were provided by Sandro Montanari of the Geological Observatory of Coldi-
gioco (Aprito, MC).

The lithological log was measured with a folding rule in the lower part of the
outcrop while for the upper part the log has been measured by repelling with
a rope down from the quarry’s rim. The litholog was constructed considering
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the three lithologies composing the series: carbonate, marlstone, and chert.
Resulting lithologic series is shown in ??.

In the same Figure the CaCO
3

wt. series is presented. The bulk rock samples
(about 30 g each) for producing this series were collected with hammer and
chisel through the lower part of the section at an average spacing of 2.5 cm for
a total of 668 samples. These samples were powdered with mortar and pestle
and ∼ 300 mg aliquots of the < 250µm fraction were analyzed for total calcium
carbonate content (CaCO

3
wt.%) using a Dietrich-Frühling water calcimeter

with a precision of ±2.5 wt.%.
Notice that the rock samples which have undergone the analysis have been

stratigaphically located manually in the field. Moreover, the samples were
all collected in limestone beds, while shales and marly interlayers have been
systematically overlooked. The masured CaCO

3
content is consistently greater

than 85% and most of the samples recorded a value between 90 and 95 CaCO
3

wt.%.

4.2.1 TLS scan and Intensity preprocessing

intensity

highlow

10 m

Intensity

HighLow

Figure 4.2: TLS scan compared to a photograph. Correlation between time series, scan
and photograph highlighted by the arrows.

Single point acquisition accuracy at 50 m is ∼ 0.7 cm, resolution at 50 m is it is not clear what
these measures
means

∼ 1.77 cm (Lichti and Jamtsho, 2006). The Smirra section was scanned from a
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single station at a distance between 31 and 40 meters. At such distance, the
surface is sampled with an average density of ∼ 7000 points per m2, with a
sampling step on the surface of ∼ 1.2 cm.

Before producing the intensity series, intensity values were corrected in func-
tion of the distance of the target from the acquisition position. Correction was
obtained using the Kernel Smoothing approach (1.0 m bandwidth) suggested
by Penasa et al. (2014) and further elaborated in Chapter 3.

For this scan, no incidence angle compensation was applied (see Chapter 3),
because the scan was acquired in frontal position with respect to the outcrop,
hence the > 80 % of the points resulted to be viewed from an incidence angle
< 45◦ (average angle of the scan is 31◦) . At these incidence angles the effect
of the loss of power due to the incidence angle is small (Pesci and Teza, 2008;
Hartzell et al., 2014).

The point cloud needs then to be cleaned from undesired points before
generating the final intensity series, and this was obtained by removing evi-
dent vegetation patches and areas covered by debris, following the procedure
suggested by Franceschi et al. (2009, 2011).

4.2.2 Gaussian detrending

Alteration and moisture on the outcrop result in visible intensity variations
that are not related to lithological changes. When these surface alterations are
uniformly present at small scale (small patches on the outcrop), their effect on
the final time series is mitigated by averaging many points when the intensity
series is generated (cfr. Franceschi et al., 2009, 2011).

Each sample of the final time series is in fact produced by a large number of
independent observations of the intensity made at the same stratigraphic level.
From these observations an unique scalar value is determined averaging them,
thus providing statistical strength to the sample’s value.

At Smirra, some large scale variations in intensity which are visibly inco-
herent with the stratigraphy can be observed. Large-scale variations do not
display lateral persistence, hence they can be considered linked to superficial
alteration and/or moisture on the rock. In the intensity series, the effect of these
variations may results in low frequency trends that are not related to variations
in the lithology, and thus have to be removed before time-series analysis. If not
removed, it would produce low-frequency fluctuations in the final time series,
impairing the signal-to-noise ratio.
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These low frequency fluctuations in the intensity values can mitigated by
either:

1. using a subset of the original cloud for computing the time series, as has
been suggest by Franceschi et al. (2009) that is chosen to be more represen-
tative of good outcropping conditions (no patinas or strong weathering),
and

2. by trying to suppress the portion the intensity field that are caused by
external factors via further processing of the point cloud.

The first implies by meticulous cleaning of the cloud, followed by a careful
selection of the points that are involved in the process of creating the time series.
The points used for the creation of the Smirra time series are highlighted in
Figure 4.4.

The second point be faced by either detrending the final time series or by
some kind of processing of the point cloud. As described in Chapter 2, the
application to point clouds of fairly basic algorithms which are commonly
used, e. g., in image processing is not straightforward and requires to take into
account various optimization issues.

At Smirra, we used a low-pass gaussian filtering (σ = 1.0 m) to enhance the
intensity field. The result of this operation can be seen in Figure 4.3. This scalar
field has been subtracted from the original intensity field, thus acting as an
high-pass filter on the final scalar field.

The removal of long-wavelength trends has to be carried out carefully to
avoid the loss of lithological variations that should be preserved. After this
preprocessing only a subset of the original point cloud was used for producing
the final intensity-series.

Considering that the final goal is to produce time series that will undergo
spectral analysis, it is important to consider what effect this operation can have
on the final time series.

The low-pass effect of gaussian filtering depends on its standard deviation
σ. Although the implementation for point clouds its basically different by its
image processing counterpart we can get an idea of the possible effects from
standard signal processing theory. The cut-off frequency of the filter is:

fc =
1

2πσ
(4.1)

Thus in this case this filtering dampens all the low frequencies in the scalar
field, slightly dampening periodicities of ∼ 6 meter, and reaching higher attenu-
ation towards lower frequencies.
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In a cyclostratigraphic context, whether or not this filtering can be accepted
will definitively depend upon the studied frequencies. The lower frequency that
is expected to be detectable is the 400 kyr period Long Eccentricity (LE) that,
with the expected sedimentation rate at Smirra of about < 10 m/Myr should be
recorded as a < 4 m period cycle.

It is important to underline that such operation must be evaluated case by
case, on the basis of the characteristics of the specific outcrop, because long-
wavelength trends could be also due to lithological variations, and in that
event they should be preserved. Further confirmation that low-frequency trends
should be removed can be obtained from the CaCO

3
content time-series, that

does not present any evident drift other than a possible linear trend.

4.2.3 Time series generation

To construct an intensity series, raw intensities were exported using the OPTECH
ILRIS 3D proprietary parser as a 16 bit Digital Number (DN). The stratigraphic
position of the points was defined by generating a plane in the 3D space having
the average attitude of the layering and defining the distance from that plane as
the stratigraphic position of each point.

Hence, a running weighted average was computed with the desired sampling
step to generate a log (i. e., the intensity series) that represents the variation
of intensities along the considered stratigraphic section. The intensity series
was produced with a sampling step of 1.0 cm, employing a moving average
with a gaussian kernel with a bandwidth of 1.0 cm. Each value of intensity
series associates to each stratigraphic height an intensity that derives from the
averaging of the intensities of all the points of the point cloud located at a
specific stratigraphic height in the section.

As pointed out by Franceschi et al. (2011), this approach can be used effectively
if the layering in the area considered for the intensity series generation displays
a uniform attitude. Another assumption is that the characteristics of each layer
are homogeneous at the scale of the outcrop. This is necessary to obtain a log in
which a certain stratigraphic height is associated with a representative intensity
value. This can be considered a reasonable assumption for most geological
cases.

The final intensity series of the Smirra section is shown in Figure 4.7, where
intensity values are rescaled for being comparable with the CaCO

3
amplitudes.
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Figure 4.3: The average intensity for the point-cloud, obtained by gaussian convolution
of the intensity values. These large-scale intensity variations are due to
superficial alteration of the rock rather than from lithological-controlled
intensity variations. Furthermore they are inconsistent with the stratification.
The smoothed intensity has been subtracted from the original intensity for
accounting for variations of intensities unrelated to lithology.
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Figure 4.4: Intensity field displayed as colors. The portion used for computing the final
time series is highlighted by the dashed polygon.
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4.3 proxy comparison in the spatial domain

Comparing the proxies in the spatial domain requires, in the first place, to
define a common stratigraphic frame. This can be promptly done considering
the stratigraphic positions reported in Figure 4.1. The same levels for which
the position is known, can be recognized in the scan data, as in Figure 4.2. In
this way the intensity series can be shifted in stratigraphic position to match
the CaCO

3
series.

This allows for a registration of the different time series but it does have some
limits when considering the time series in the spatial domain. The TLS series
comes from a method which ensures a high level of geometric accuracy, while
the other time series have been built by manual measuring the section with a
ruler. We can expect this last technique may introduce uncertainties in terms of
positioning of the samples for CaCO

3
measurements, which may affect also the

overall length of the measured series.
The intensity series can be directly compared with the lithological log. As

previously discussed, the TLS intensity shows sensitivity to both clay content
and chert. Both chert and clayey layers produce local minima in the intensity
series. Chert effect on the series may be of variable prominence, depending on
the thickness and lateral persistence of chert layer: thinly layered or nodular
chert are likely to produce shoulders on the positive peaks of limestone rather
than deep local minima. Figure 4.7 shows a possible correlation of the minima
recorded by the TLS intensity compared to the lithologic log.

On the other hand, samples for CaCO
3

analysis were collected on limestone
only (85 to 91 CaCO

3
wt.%), thus the CaCO

3
wt. curve does not contain any

direct information on shales or chert presence. Although this obvious limit the
two series still present strong similarities.

Higher CaCO
3

contents appear to be linked with positive intensity values,
while a negative peak of CaCO

3
is positioned near shale interlayers, which are

well recorded by the intensity series. This fact suggests that within a single
carbonate stratum (or pack of strata) the CaCO

3
is not constant and the wt.% of

carbonates is lower near the shales and is higher in the middle of the stratum.
Whether or not these oscillations are symmetric with respect of a stratum center
may be matter of further investigations.

Interlayers that are present in the litholog but that are not clear in the inten-
sity series and/or into the CaCO

3
series are probably due to psudobedding,

especially abundant at the base of the section, which have been sometimes
wrongly logged as shale layers. The intensity series, and the CaCO

3
series, are

immune to this kind of disturbing elements.
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Figure 4.5: Enlargement of Figure 4.7 which shows some patterns clearly identified
in both the time series. These packs of strata are of ∼ 1 m in average in
thickness.

These observations are summarized in the simple model of Figure 4.6, which
can be used for interpreting the TLS-derived time series in the specific context
of Smirra.

The observed similarities between the two proxies suggest the possibility to
employ semi-automated matching for better constraining the two datasets. We
give an example of this procedure performed with the software Match (Lisiecki
and Lisiecki, 2002).

Match computes an optimal mapping between the two time series. The result
of the matching is shown in Figure 4.8. Red arrows correspond to the two ties
which were defined by hand before the optimization. Figure 4.9 shows the scat-
terplot of the intensity vs. CaCO

3
. For producing this plot, the matched CaCO

3

time series was used. For each CaCO
3

sample the corresponding intensity has
been sampled from the TLS series.

Pearson’s r correlation coefficient (Pearson and Filon, 1898) can be computed
as a simple measure of the existent correlation. The pearson coefficient is a
value between +1 and −1, 1 means a positive correlation, 0 no correlation at
all, and −1 corresponds to a negative correlation. In this case the coefficient
for the dataset of Figure 4.9 is +0.72, with a statistically significant p-value (p
< 0.05). Notice that the rescaling of the intensities for visual comparison, as e. g.
in Figure 4.8, does not have any effect on the Pearson’s r coefficient.
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Figure 4.6: Simplified model which explains the intensity vs. CaCO
3

behavior at Smirra.
CaCO

3
was collected on limestones only, while intensity is sensitive to shales

and cherts. The CaCO
3

content of a stratum is not constant, but instead
appears to be higher at the middle of the stratum while it decreases in
proximity of the interlayers.

It is clear that this high level of correlation can be obtained only when the
two time series have been matched. For the original time series, the Pearson’s
r coefficient is rather low, of +0.11, but it still shows statistically significant
p-value, confirming a strong correlation between the two time series.

4.3.1 Spectral analysis

Cyclotratigraphic analysis are carried out by means of investigations in the
frequency domain of the various proxies (see e. g. Ghil et al., 2001). In this
section we will give some insights on the relationship that occur between the
CaCO

3
and the intensity values. We can consider the portion of time series

with overlap for comparing the CaCO
3

to the intensity time series. A well
known method for spectrogram estimation is the Multi Taper Method (MTM)
introduced by Thomson (1982) and that method will be used for investigating
periodicities. An interesting way to explore what spectral features are present
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Figure 4.7: Correlating the TLS time series to the litholog and the CaCO
3

series re-
quires to take account of the errors that may have been introduced by the
manual logging of the lithologic log and the consequent inaccuracy in the
stratigraphic positioning of the samples collected for CaCO

3
analysis.
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Ties

Intensity
CaCO3

Figure 4.8: Result of the automated matching between the two time series. Ordinate
scale is the CaCO

3
wt.%. The intensities have been rescaled both in the mean

and in standard deviation to be comparable with the CaCO
3

time series.

Figure 4.9: Scatterplot of the matched CaCO
3

series and the corresponding intensity
values. A strong linear correlation can be observed. See text details.
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Thomson MTM
5 tapers, pi=3.5

Coherency before matching

Coherency after matching

Figure 4.10: Spectral coherency between the CaCO
3

and intensity, before and after the
matching. The matching process (which works in the spatial domain) uses
the local maxima and minima to create a mapping between the two time
series. This process leads to an increase of coherency of some frequency
bands. In the original time series, the various components are slightly
out-of-tune and do not show up as strong coherency values. After the
matching, some specific bands are powered and their coherency increase.
These bands represent cyclicities which are present in both time series.

in both the time series is the Coherency between the two. Figure 4.10 shows the
coherency spectra of the two series before and after the automated matching.

The frequencies at which a strong increase of coherency can be observed
correspond to the main spectral components of the time series which have
been used by Match in the spatial domain to perform its matching, and should
be regarded as interesting spectral bands that may carry most of the common
information embedded in the time series.

The CaCO
3

time series underwent changes in the spectral domain after the
matching. Figure 4.11 shows the two spectra computed by means of the MTM
of Thomson.

The matched time series shows a general increase of the frequencies of the
main peaks, while the spectral content is mostly preserved. The compression
of the time series is of ∼ 0.5m, corresponding to the 4− 5% of its overall length
(only the part which overlaps with the intensity was used for the matching). If
the intensity series is considered the best estimate of the real length of the section,
we can argue that a ∼ 5% error was introduced by the manual measurement
of the section, assuming the intensity series better represents the total length.
These errors exert an effect also on the spectra and can potentially influence the
cyclostratigraphic interpretation if not taken into account.
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Before matching (green)

After matching (blue)

Figure 4.11: Spectra of CaCO
3

time series before and after matching. The main peaks
are mostly preserved by the matching process, but the frequencies of these
peaks have been generally shifted toward higher frequencies, compatible
with a compressions of the CaCO

3
time series introduced by the matching.

MTM with p = 4
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Figure 4.12: Spectrum of the intensity time series obtained from MTM, with p = 3.
Overlayed the expected Milankovitch frequencies, as predicted by the
Laskar10a solution for the eccentricity component and the Laskar04 for the
obliquity and precession.

4.3.2 Spectral analysis of the entire time series

The time series collected have undergone time series analysis in their whole
length, for this investigation the unmatched CaCO

3
time series was used.

Spectral analysis was conducted on the TLS intensity and the CaCO
3

wt.%.
Thomson MTM was used for spectrum estimation (Thomson, 1982). The sta-
tistical significance of spectral peaks was evaluated against a red noise null
hypothesis, estimated by means of the robust noise modeling proposed by Mann
and Lees (1996). Results of spectral analysis are shown in Figure 4.12 where the
expected frequency pattern provided by the recent numerical simulations of the
solar system are also highlighted (Laskar et al., 2011, 2004). Computations were
performed by the SSA-MTM Toolkit (Vautard et al., 1992).

CaCO
3

wt.% series yields a spectrum which is dominated by a prominent
peak emerging well above the 95% confidence level (confidence interval (c.i.))
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Figure 4.13: Spectrum of the CaCO
3

time series obtained from MTM, with p = 3. The
original dataset of CaCO

3
has been resampled to produce an evenly spaced

time series (Fs = 50 cycles/m). Overlayed the expected Milankovitch
frequencies, as predicted by the Laskar10a solution for the eccentricity
component and the Laskar04 for the obliquity and precession.
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with a period of ∼ 85 cm. The power spectrum of the TLS intensity series is also
dominated by a powerful frequency signal with a period of 87 cm

An average sedimentation rate of 9± 1 m/Myr for the Ypresian-Luthetian
interval was estimated by Coccioni et al. (2012) from the integrated biomag-
netostratigraphy of the classic Contessa section at Gubbio, located a few tens
of kilometers from Smirra. Hence, on the basis of this estimate, and assuming
a mean sedimentation rate of ∼ 9 m/Myr for the coeval Smirra section, the
dominant frequency peaks with a period of 87 cm emerging in both CaCO

3

wt.% and TLS intensity series, would correspond to a frequency period of
about 95 kyr, thus very close to the period of 95.1 kyr for the dominant short
eccentricity frequency calculated by Laskar et al. (2011).

4.3.3 TLS vs other proxies

The application of a multi-proxy approach to the cyclostratigraphic study of the
Smirra section allowed direct comparison of the results obtained by analyzing
TLS intensity and the CaCO

3
wt.% series. This reveals that TLS imaging pro-

vided better results in terms of accuracy in the stratigraphic collocation of the
measurements, and in terms of spectral resolution.

When calcareous homogenites are considered, as this succession of Smirra,
outcome of hand logging can be biased by the fact that pressure solution
stylolites can be easily misinterpreted as true beds or thin marly interlayers.

Correlation of TLS intensity series with the CaCO
3

wt.% series is high. This
implies that in this calcareous homogenite, TLS intensity can be used as a
reliable proxy for detecting variations in the carbonate content relative to the
siliciclastic terrigenous component. Of course, TLS data cannot be used as they
are, but they need to be pre-processed following the methodological pipeline
described.

It is worth noticing that sampling for CaCO
3

wt.% analysis was conducted
in limestone layers only. Shales were not sampled, hence the curve represents
variations in carbonate content within carbonate layers. This can be related to
cyclic increase and decrease in terrigenous content relative to primary biogenic
carbonate (i.e. planktonic foraminifera and calcareous nannofossils). On the con-
trary, minima in the TLS series correspond to interlayers. The good correlation
between intensity series and CaCO

3
wt.% curve, suggests that a decrease in

calcium carbonate content within layers evolves in a shale interlayer.
The successful application of TLS to calcareous homogenites widens the

possibilities of application of this technique, which was tested so far only in
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distinct limestone-marl alternations (Franceschi et al., 2011). Moreover, TLS
allowed to analyze the entire Smirra section whereas it was possible to carry
out other investigations only in the limited accessible portion of the outcrop.
This permitted to undertake a complete cyclostratigraphic characterization of
the section.
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abstract

An investigation of the potential of Terrestrial Laser Scanner imaging (TLS) as a
tool to map chert, an amorphous variety of silica widely diffused in sedimen-
tary rocks, is shown here together with an original method for its automatic
recognition, normally difficult to achieve in natural outcrop conditions. The
presented methodology may have important consequences for geologic applica-
tions like stratigraphic studies or rock-quality assessment. Results of reflectance
measurements of chert and its host rock, performed in the 400-2500 nm spectral
band using a high performance UV-VIS-NIR spectrophotometer, show that chert
displays low reflectance in the IR wavelengths typically operated by several
commercial TLS. An infrared-light (1541 nm) TLS was used to scan a target
outcrop of limestone with chert nodules and beds with the goal of mapping
chert. The information deriving from distance-corrected intensity is coupled
with local geometric descriptors and SPIN images, to the end of exploiting the
geometrical characteristic of TLS data and improve the classification results.
These features, together with the intensity values, were used to train two Sup-
port Vector Machine classifiers with the purpose of separating vegetation from
rock and then limestone from chert. Principal components decomposition of the
SPIN features shows that grass, limestone and chert are distinguishable with
the first three principal components. The results of classification are then cross
inspected in the field and with reference pictures. Results demonstrate that
TLS data can be efficiently exploited to map chert when the monochromatic
information of the intensity is integrated with feature descriptors and a support
vector machine predictive model.

http://linkinghub.elsevier.com/retrieve/pii/S0924271614000902
http://linkinghub.elsevier.com/retrieve/pii/S0924271614000902
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5.1 introduction

Chert is a widespread sedimentary rock made of cryptocrystalline varieties
of silica. Its origin is mainly biogenic, deriving from the settling of siliceous
skeletal parts of microorganisms through the water column on the seafloor
and its subsequent transformation into a stable form during early sediment
burial. Chert usually occurs in the form of nodules of various size and shape,
or in layers ( Figure 5.1), embedded and often scattered within carbonate rocks.
Silica occurs in chert in various mineralogical forms, including chalcedony,
microcrystalline quartz, amorphous silica (opal-A), disordered cristobalite and
tridymite (opal-CT) (Boggs, 2009; DeMaster, 2005). Chert constitutes a research
topic for geologists, because its presence, absence and abundance can be related
to sedimentary processes, past climatic changes and may help reconstructing
the events in the environmental evolution of Earth (e.g., Ikeda et al., 2010).

cm0 10

Figure 5.1: Hand-sized chert samples and host rocks. Chert aspect varies from highly
scattered (center) to a more hybrid banded and scattered geometry (left) to
single, wide bands. Colors vary from black to yellow and brown, sometimes
it is hardly distinguishable from its host rock due to similarity of colors
(right).

Chert is commonly embedded in limestone. Limestone rocks are routinely
used as component for concrete aggregates and the presence of chert can affect
concrete quality and durability because of Alkali-Silica Reactions (ASR) (Bektas
et al., 2008) or thermo-mechanical weathering (Xing et al., 2011) that may occur
after concrete hardening. The amount of chert must then be monitored. This can
be done directly on the aggregates (for example via image analysis, see Castro
and Wigum (2012) or via petrographic methods, see Sims and Nixon (2003) but
also a pre-evaluation on the quarry wall could provide useful information on
the expected properties of the final product. The evaluation of chert abundance
in outcrops can be, however, difficult and time consuming because chert is often
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scattered and can be very similar to the host-rock in color. In this paper we
illustrate a method aimed at quickly quantify and accurately map chert directly
on the outcrop using terrestrial laser scanning (TLS).

The application of remote sensing techniques to discriminate various types
of rocks in outcrops has been explored in several works in the last few years.
Satisfactory results have been achieved using passive hyperspectral imaging
sensors coupled, when necessary, with terrestrial laser scanning or photogram-
metry to provide the 3D framework for the hyperspectral information (Kurz
et al., 2012b, 2013; Murphy and Monteiro, 2013). Hyperspectral imaging op-
erates in the short wave infrared (SWIR) range (1000-2000 nm), with ∼ 5 nm
typical frequency resolution, and therefore provides good results because the
main spectral features of geological materials fall in this range. Nevertheless,
the currently achievable spatial resolution is not better that some cm for a 50

m acquisition distance, limitations related to the use of passive sensors exist
(e.g., necessity of radiometric calibration and dependence on conditions of
illumination) and accurate registration on 3D models is necessary to facilitate
quantification of material distribution and spatial relationships. This imaging
technique is expected to gain increasing importance in the future because of
technological and methodological developments.

TLS is an active sensor that produces an accurate, high-resolution 3D repre-
sentation of an object in the form of a point cloud. Besides spatial information,
each point carries an intensity value of the backscattered laser signal, that is
function of the reflectance properties of the target. When chert is scanned with a
TLS operating in the IR band, it displays low intensity values with respect to its
host rock (typically limestone). In this paper we demonstrate that this feature,
in association with the geometrical information carried by TLS data, can be
exploited in order to map chert. Several papers investigated the potential of
TLS for discrimination of rocks (Bellian et al., 2005; Pesci and Teza, 2008; Burton
et al., 2011; Hodgetts, 2013). Franceschi et al. (2009, 2011) discuss the potential
use of intensity as a proxy of rock properties. Outside the fields of geology the
study of TLS intensity has been undertaken to detect damaged areas on histori-
cal buildings (Armesto-González et al., 2010), to quantify moisture content in
aeolian sand deposits (Nield et al., 2011) and to identify biological crusts on
structures (González-Jorge et al., 2012). The fact that commercial TLS usually
work with a single-wavelength laser results in a minimal spectral information
carried by the intensity signal, Hartzell et al. (2014) recently proposed to com-
bine multiple TLS working at different wavelengths in the intent of overcoming
this limitation.
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Also the problem of segmenting point clouds on the base of geometric prop-
erties was faced by many authors, especially for airborne laser scanning data
(Maas and Vosselman, 1999; Verma et al., 2006) and for mobile applications
(Yang et al., 2013; Pu et al., 2011), for automating vehicle navigation (Lalonde
et al., 2006) and for forestry applications (e.g., Koch et al., 2009; Ferraz et al.,
2012; Brandtberg, 2007). Hybrid methods using geometry and colors or in-
tensities were demonstrated to be useful in various scenarios improving the
effectiveness of the classification algorithm (Höfle et al., 2009; Schoenberg et al.,
2010). Although highly automated methods (both supervised and unsupervised)
have reached high levels of complexity and effectiveness, they are still sparsely
used to solve automated data collection tasks in geology (Brodu and Lague,
2012; Abellán et al., 2014; Ferrero et al., 2009; García-Sellés et al., 2011) where
point clouds are often used for visual inspection and interpretation, due to the
difficulty in extracting meaningful and coherent information from that huge
amount of data.

In this work we show that the spatial characteristic of a point cloud (e.g.,
local geometric arrangement of points) as well as the spatial distribution of the
intensity values can be used to enhance the potential of TLS as a tool for the
discrimination of rocks. The proposed TLS-based approach contributes to the
emerging studies on the application of active sensors as remote sensing tools
through supervised classification, using both geometry and intensity descriptors
in a combined way. It might as well have important practical implications,
ranging from stratigraphy and cyclostratigraphy to rock quality evaluation.
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~4.5 m

Figure 5.2: Photograph of the outcrop of Maiolica Fm nearby Gubbio taken with a
standard camera. Note the noise present in the color domain. Rock color
goes from pale pink to dark gray, chert is not evident.
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Figure 5.3: The scan, colored by intensity, and histogram of intensity distribution (right).
Chert, vegetation and debris are highlighted by their low intensity values.
CloudCompare software (Girardeau-Montaut, 2014) used for visualization.

5.2 methods

5.2.1 Spectral and mineralogical characterization of chert

To assess the spectral behavior of chert a set of 6 chert samples together with
their corresponding host rocks (limestone) were analyzed with a spectropho-
tometer. All samples are made of micro-crystalline quartz, by far the most
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common variety of chert. Reflectance spectra were investigated in the 400 to
2500 nm wavelength range with a spectral sampling step of 1 nm using a
Cary5000 spectrophotometer. The device is manufactured by Varian and per-
forms reflectance measurements from 200 to 2500 nm via a deuterium/halogen
double light source, using an internal integrating sphere for diffuse reflectance
measurements.

The samples for reflectance spectra measurement were prepared as ∼ 2 x 4

cm slabs, cut with water-cooled circular saw, with no further preparations. The
slabs were kept for several days at environmental humidity conditions before
measurements.

5.2.2 TLS acquisitions

As target for testing the method an outcrop cut in cherty limestone (Figure 5.2)
was selected in Central Italy, nearby Gubbio1. The scanned rocks (Maiolica
Formation) are white micritic limestone in which chert is commonly found as
centimeter to decimeter-sized nodules or layers of variable continuity. Chert
color varies a lot (from white to black, red, yellow, etc. . . ) and often resembles
that of the host limestone. This in many cases makes chert indistinguishable, in
the visible band of the electromagnetic spectrum, from the rocks in which it is
contained.

The outcrop was scanned with an OPTECH ILRIS 3D TLS whose laser unit
emits in the infrared band at 1541 nm wavelength (Larsson et al., 2007). The
average distance between TLS and target ranged from 20 to 23 m. The acquisition
produced a 1318 x 3277 grid of points with an average point spacing of 6.7 mm.
The range image was converted from the binary format to unstructured point
cloud using the OPTECH proprietary parser that removed dropout readings
and outliers, slightly reducing the total number of points to 4,318,440. Intensities
were exported using the option “RAW 16-bit”of the parser, as xyz ASCII format.
The OPTECH ILRIS 3D works with two different gain domains and intensity
exported as 16-bit results in values from 0 to 255 for the high gain while for the
low gain the values are restricted to the set {300, 400, 500, . . . , 25500} (Larsson
et al., 2007). We did not modify this arrangement given that cross calibrating
low-gain to high-gain readings is not straightforward and the high-gain points
are just ∼ 1.0% of the total, and mainly exhibit very low intensity responses (i.e.,
vegetation).

1 43.360457 N, 12.579775 E
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5.2.3 Intensity preprocessing

TLS intensities calibration is needed to use them for discrimination purposes.
Although the topic has been faced by several authors (e.g., Pesci and Teza,
2008; Franceschi et al., 2009; Kaasalainen et al., 2011) a standard method for
all TLS does not exist yet. Proposed calibration models try to estimate how
intensities vary with distances and scattering angles, although other variables
may be considered. Methods often make use of tarps with known lambertian
reflectance to estimate the correction functions for a certain device (Kaasalainen
et al., 2011). These calibration schemes are in fact rather complex and they
cannot account for unpredictable fluctuations of the intensity values often
observed for the specific instrument (Wang and Lu, 2009).

In this work we did not perform a correction of the values in function of vari-
ables other than distance (e.g., incidence angle, atmospheric corrections, etc. . . ).
Pesci and Teza (2008) and Hartzell et al. (2014) showed that the scattering angle
effect can be considered negligible when the surface roughness is comparable
with the size of the laser spot. Other studies (Krooks et al., 2013; Kaasalainen
et al., 2009b) showed that the incidence angle becomes a significant variable
only when it exceeds 20

◦for most materials. Since the outcrop was scanned
from a frontal position we considered the effect of the angle of incidence as
not relevant, however in the general case a more comprehensive and robust
calibration is desirable (e.g., derived from Kaasalainen et al., 2011; Höfle and
Pfeifer, 2007).

Our simplified calibration scheme is adaptive to the data, free of a physical
model (i.e., no radar equation involved) and is based on estimating a correcting
intensity-distance function Îh(d) on an appropriate reference point cloud (a
subset of the original scan or an additional scan), via a Nadaraya-Watson
regression estimator (Hastie et al., 2009). The estimator computes a smooth
function describing intensities as function of distances via a weighted moving
average, using a Gaussian kernel as weighting function:

Îh(d) =

∑n
i=1 K(

|d−di|
h )Ii∑n

i=1 K(
|d−di|
h )

, with K(t) =
1√
2π
e−

1
2 t
2

(5.1)

where n is the total number of points, di and Ii are respectively the distance
and the intensity for the ith point. The parameter h (the bandwidth) controls the
smoothness of the estimator. The corrected intensity İi is then computed as İi =
Ii/̂Ih(di) for each point of the cloud. Figure 5.4a illustrates the intensity-distance
relationship in a typical scan of a stratigraphic sequence and the intensities after
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correction. This correction helps stabilizing the variance and normalizes the
mean to 1.0 (Figure 5.4b). The plot also illustrates some characteristics of the
OPTECH TLS. Intensity levels are discretized (∼ 20 levels at 35 meters) although
the possible range is {0, . . . , 25500}. At longer distances the discretization is
heavier with only 4-5 levels resolved at 50 m.
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Figure 5.4: Distance-intensity scatter-plot of a typical OPTECH ILRIS 3D scan. a)
Dashed line represents the trend estimated with Nadaraya-Watson esti-
mator (bandwidth h = 1.0 m). b) Intensities after distance-correction. The
corrected intensity is computed normalizing the “RAW 16-bit”intensities
with the estimated trend.

5.2.4 Feature descriptors: texture descriptors and local geometric dispersion indices

The main obstacle to intensity-based classification derives from the monochro-
matic nature of the TLS signal. Since lots of factors influence intensity, many
parts of the target that are not chert (clayey interbeds, vegetation, etc. . . ) can
display a lower reflectance than limestone. This means that classifying the
point-cloud only on the basis of intensity can bring unsatisfying results. To
overcome this issue, we took advantage of the differences in morphology that
the various elements of an outcrop can display to add further variables useful
for classification. Chert normally occurs in predictable shapes like nodules
or bands (Figure 5.1). Moreover, due to its hardness, chert tends to resist to
erosion and generate locally flat and smooth surfaces on the outcrop. Vegetation,
being present in patches with scattered distribution of points, displays pecu-
liar geometrical characteristics. In contrast, limestone is more easily fractured,
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appearing angular and irregular, while clayey interlayers generate recesses.
Texture and geometrical descriptors can be used to quantify these features and
train a Support Vector Machine (SVM) classificator (see Section 5.2.5 of this
paper and Mountrakis et al. (2011) for a review of SVM and its applications).
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Figure 5.5: Intuitive representation of SPIN images feature description computation a)
A synthetic 2D dataset representing typical shapes and aspects of chert in
the intensity domain. Intensity ranges from 0 to 1 and a 0.2 sigma white
noise was added. b) For each point of the cloud a set of equally spaced
rings, centered on the point, are considered. Maximum radius is comparable
to chert layers size. c) For each distance-ring the intensity histogram is
computed and then stacked to form a matrix, 5x5 in this example, or SPIN
image, in d). See Lazebnik et al. (2003) for details.
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B

C D

A

Points Count
Figure 5.6: Four SPIN images for the points A, B, C and D highlighted in Figure 5.5).

The SPIN images are here represented as smoothed contour lines.

In addition to raw intensity, we computed two different features for each
point of the point-cloud: SPIN images feature descriptors and local geometric
dispersion indices. SPIN images feature descriptors were originally developed
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as affine-invariant texture representations for similar images retrieval and
classification tasks (Lazebnik et al., 2003). In order to show that SPIN images
can help in the task of recognizing chert we created a 2D synthetic dataset
that resembles what can be typically obtained when cherty rocks are scanned
(Figure 5.5a). Figure 5.5b,c and d illustrate in an intuitive way the computation
of a SPIN image for a point and how in this case it is able to capture the local
chert-limestone intensity/spatial relationships when the neighborhood radius
has size comparable to the chert layers. Figure 5.6 shows the results of SPIN
images computation for four points of the synthetic dataset of Figure 5.5. The
SPIN images for the whole cloud were computed using the class pcl::Inten-

sitySpinEstimation provided by the Point Cloud Library (PCL) (Rusu and
Cousins, 2011).

Local geometric dispersion indices based on Principal Component Analysis
are used to express how much the points are locally scattered and to capture
the local dimensionality (Tang C. and Medioni, 2002; Demantké et al., 2011;
Yang and Dong, 2013). For each point of the cloud, given a set of neighboring
points within a fixed search radius, a local covariance matrix is estimated. The
three eigenvalues of the covariance matrix λ0, λ1 and λ2 can then be employed
to compute two dispersion indices:

ci =
λi

λ0 + λ1 + λ2
i ∈ {0, 1} (5.2)

Where ci is a local dispersion index, i.e., a normalized measure of the variance
of the points in the direction of the ith eigenvector. (see Brodu and Lague, 2012,
for an extended discussion).

Computation was performed with a modified version of the class pcl::Nor-

malEstimation provided by PCL (Rusu and Cousins, 2011) that estimates local
normals via eigendecomposition of the local covariance matrix (Klasing et al.,
2009). In fact the eigenvector associated with the lowest eigenvalue provides the
unit normal vector, while eigenvalues themselves can be used to capture how
much the points are locally dispersed along the directions of the eigenvectors.

5.2.5 Support Vector Machine predictive model

Support Vector Machines (SVMs) are binary classifier that are widely used for
data mining (e.g., Inglada, 2007; Melgani and Bruzzone, 2004). SVMs try to
find a separating hyperplane between two classes forming the training dataset
of labeled vectors. For non-linearly separable classes, the input data can be
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mapped to an higher space using the “kernel trick”(Schölkopf and Smola, 2001),
seeking the separability in that space. We used a gaussian radial basis kernel:

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0 (5.3)

where xi and xj are vectors in the feature space and K(xi, xj) is the kernel
value. The γ parameter controls the amount of influence of the single training
vector on the classifier. The C parameter of the SVM classifier is a penalization
term applied to misclassified observations (low C creates a smooth decision
surface). A wrong selection of these parameters may easily lead to over-fitting
thus we adopted the gridded inspection of the parameters space (with 5-fold
cross-validation) provided by the LIBSVM software (Chang and Lin, 2011).

5.3 results

5.3.1 Spectral characteristics of chert and its host rock

Figure 5.7 Illustrates the reflectance curve of chert and its typical host rock
(limestone), over the wavelength range 400-2500 nm, as measured with the
spectrophotometer. The reflectance values were obtained from total scattered
plus reflected light from different samples (chert and matching limestone),
compared to the same well-known reference sample. Limestone resulted to be
characterized by two water absorbance peaks at ∼ 1400 and 1900 nm (Rossel and
McBratney, 1998) summed with the typical CO2−3 molecule spectrum (Crowley,
1986), with absorptions at 2000 nm (partially masked by the 1900 nm water
absorption peak), 2300 nm, and 2500 nm. Chert by contrast does not show
carbonate-related spectral features but exhibit well developed water absorbance
peaks, particularly evident at the wavelength of ca. 1800 nm. For the considered
samples differentiability between chert and limestone may be completely absent
in the visible domain, while it is highest near 2000 nm. At the wavelength of
1541 nm of the OPTECH ILRIS 3D TLS, the separability is well within the 95%
confidence interval for these samples.

5.3.2 Classification Results

Since SVMs in their basic formulation are binary classifiers we adopted a 2-
step classification procedure. This formulation is intended to correctly extract
chert vs. host-rock, excluding vegetation, enabling to compute the chert to host-
rock ratio. Three different sets were prepared to train the models: Chert (CT),



5.3 results 73

Wavelength [nm]

Re
fle

ct
an

ce
 (d

iff
us

iv
e 

+ 
re

fle
ct

ed
)

Optech3D
Laser Emitter Wavelength

Visible

Maximum separability

Figure 5.7: Summary of the data collected with the Cary-5000 spectrophotometer on
several samples both of chert nodules and the corresponding host limestone.
Three different rock formations comprising cherty limestone were sampled
for this analysis. Dashed curves are the spectra of the single samples, while
solid curves represent the average spectrum of chert (red) and limestone
(blue). A spectral interval within the IR band shows the maximum separabil-
ity for these samples. Shaded areas represent the 95% confidence intervals,
estimated for each wavelength considering it as an independent measure
and assuming normal distributions.

Host-Rock (HR) and Vegetation (V) while debris was not considered. Table 5.1
summarizes the number of training vectors for each labeled category. CT was
carefully chosen to be representative of the most typical shapes of chert (Fig-
ure 5.5a, points A, B, and C). The training datasets were created by segmenting
the original cloud by hand, using the open-source software CloudCompare
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4.5 mRock Vegetation

a)

b)

Figure 5.8: Results of the first SVM classification. Although the training data were
representative of grass and rock only the classifier permitted to separate
also the rock protection net in the cases in which the net was far enough
from the rock surface, classifying it as vegetation. Gravel on ground has
been classified as rock. Enlargements of insets a) and b) in Figure 5.10.

4.5 mChert Limestone

a)

b)

Figure 5.9: Results of the second classification step performed on the parts of the cloud
that were classified as rock during the first step. Chert in blue and limestone
in red. Debris (e.g., gravel) has been classified as limestone being similar in
the feature domain. Note that the SVM classifier has been able to correctly
classify also points laying behind the rock-protection net. Enlargements of
insets a) and b) in Figure 5.11.

(Girardeau-Montaut, 2014). HR refers to the host rock. For both CT and HR, some
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a) b)

Figure 5.10: Details showing areas highlighted in Figure 5.8 a) Grass patches have
been correctly segmented while the rock protection net has been partially
attributed to the vegetation class due to its low intensity and the high
geometrical dispersion of points that do not form a smooth surface. b)
Although not specifically trained for, the SVM classifier attributed the
debris to the V class.

patches covered by the iron protection-net were included to take into account
its effect.

In the first classification step CT and HR were merged together to form a
training set representative of all rock types (R). Parameters for the kernel were
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Table 5.1: Number of training vectors for each labeled category

Label N

Chert 5418

Host-rock 60224

Vegetation 77761

chosen via gridded inspection of the parameters space, looking for the higher
5-fold cross-validation score. The trained model was then used to classify the
whole dataset, separating V from R (Figure 5.8). Results were used as input for
the second classification step (Figure 5.9). Cross-validation scores, parameters
of the kernel and number of points are summarized in Table 5.2.

Results have been carefully cross-inspected with the ground-truth, comparing
the classification results with pictures of the outcrop in which chert was carefully
individuated.

Table 5.2: Results of the two-steps classification

Step C γ X-Validation Input Class A Class B

I 2000 0.125 98.9% 4’318’440 3’322’520 (R) 995’920 (V)

II 32 2 98.8% 3’322’520 204’374 (CT) 3’118’146 (HR)
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Figure 5.11: Enlargement of insets of Figure 5.9. (top) a picture of the outcrop, (middle)
the results of the classification and (bottom) chert highlighted by manual
segmentation of the RGB pictures. a) On the rock surface, the classifier
correctly recognized chert. b) The classification is not completely satisfying
at the limestone-debris contact due to similarity in the feature space of the
two materials. Notice that chert (in this specific case) is difficult to identify
in pictures due to color similarity with limestone.
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5.4 discussion and conclusions

In this paper we demonstrated that TLS data can be exploited to map chert in
natural outcrops. Experiments showed that chert displays low reflectance in the
IR band. This absorption appears to be related to a non-selective absorption
in the IR domain. Since intensity information alone does not provide enough
separability for a satisfactory classification we improved the quality of the
automatic mapping of chert using Computer Vision (CV) methods that does
not require a radiometric calibration of the intensity data and take advantage
of the morphological features of chert (SPIN descriptors and local geometric
dispersion indices). Trained SVM classifiers demonstrated high cross-validation
scores ( > 98 % for both the classification steps) implying good separability of
the classes. In the SPIN domain the first three principal components were able
to capture this differentiability (Figure 5.12). Considering the whole dataset,
Principal Components Analysis (PCA) showed that the the 99% of the variance
is achieved within the first 7 Principal Components (PCs), and the first three
PCs explain only the 92% of the total variance reflecting the independence of
the computed features. These observations suggests that the dataset might be
eventually reduced to a minor number of components when dealing with large
point clouds (i.e., for faster classifications).

The trained model applied to the whole dataset correctly resolved chert
although false positive were detected (Figure 5.11). These wrongly recognized
patches are mainly soil at the edges of carbonate rock, which resemble the
elongated, low-intensity chert layers in the considered feature domain. These
issues could however be easily overcome by excluding irrelevant points of the
point-cloud from the analysis or adding ad-hoc SVM classification steps.

The obtained results do not depend on a specific instrument, under the
condition that the laser wavelength falls within the separability band. The fact
that some TLS instruments operate at 1064 nm or also in visible band should be
noted. These instruments cannot be used for chert mapping purposes and, in
general, suitability of the device chosen for discrimination purposes should be
evaluated depending on materials.

Besides the specific success in chert classification, results of our study show
that TLS point clouds contain complex implicit information in the form of spatial
characteristics and intensity that can be exploited using feature descriptors
together with a supervised non-linear classifier, following a CV-derived pipeline.
A-priori knowledge on the nature of a certain object can be thus used to propose
an appropriate classification model.
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Figure 5.12: a) A subset of the point-cloud, colored by intensity. 6x6 SPIN feature
descriptors have been computed using a search radius of 0.1 m. Markers
are points of interest subdivided in three categories: chert ( ), grass ( )
and limestone ( ). b) To illustrate separability of various materials in the
SPIN domain the descriptors have been normalized and reduced to the
first 3 principal components via PCA, explaining 91% of the total variance.
Bounding boxes help illustrating separability in 3D.

The accurate mapping of chert is of potential interest in many geological ap-
plications, from the production of accurate and long records of chert abundance
for stratigraphic and paleoclimate studies to the assessment of rock quality
when limestones are used for concrete production.

It has been already pointed out that most TLS work with a single wavelength,
limiting the possibility of collecting spectral information about the scanned
targets. A solution to this issue has been prospected by (Hartzell et al., 2014)
with the combined use of multiple TLS working at different wavelengths. Recent
advances in TLS construction tend to the design of multi spectral instruments
able to provide intensity information from multiple wavelengths (Hakala et al.,
2012). Coupling spectral and geometrical information as proposed in this paper
may allow a progressively much wider and successful application of active
sensors in the automated discrimination of materials in the near future.
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6.1 introduction

The Vispi quarry is located in Central Italy near the city of Gubbio, on the east
slope of the Contessa Valley. It is an active quarry which extensively exposes
part of the Cretaceous Umbria-Marche basinal series, that is, in stratigraphic
order: the upper part of the Maiolica Formation (Late Tithonian-Early Aptian),
the Marne a Fucoidi and the Scaglia Bianca (Late Albian-Early Turonian). Only
the lowermost part of Scaglia Rossa is exposed in the section.

The Maiolica Fm. is composed of white to gray pelagic limestones which
contains dark gray chert in its uppermost portion. The Marne a Fucoidi Fm. is
more rich in shales (including black shales), interlayered by marly limestones,
marls and calcareous mudstones. The Scaglia Bianca Fm., which overlays the
Marne a Fucoidi, is composed of yellowish to grayish limestones, intercalated
with black marlstones and shales (Hu et al., 2006).

Although this section constitutes a continuous and almost undisturbed sedi-
mentary record which may provide in high-quality dataset for investigating the
orbital forcing during sedimentation, its high-resolution sampling and logging
is difficult due to the extension of the outcrop. The outcrop, being located in an

81
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Figure 6.1: Location o the Vispi quarry. Geographic data courtesy of OpenStreetMap
contributors.

active quarry, can only be accessed pending the permission from the quarry’s
manager, which is always for a limited and short time span.

In 2011, Franceschi et al. approached the cyclostratigraphic study of part of
this quarry using a Terrestrial Laser Scanner (TLS). They were able to reconstruct
∼ 50m of the Marne a Fucoidi Fm. by means of intensity series. The spectral
analysis thus revealed a strong coherence of their time series compared to the
Piobbico core photolog by Grippo (2004), confirming also that orbital forcing
drove the depositional system.

That investigation was probably the first real application of the TLS intensity.
In fact at the time the intensities were raising the interest of many researchers
but, basically, their usage as a primary data source for some specific investigation
was more speculative than applicative. Still today, the many issues that must be
faced contribute in making this kind of data an highly experimental data source.
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The Vispi quarry has been at the center of other investigations (Hu et al.,
2006), but in general, the nearby Bottaccione Gorge and the Contessa Highway
have been regarded as easier to be accessed.

On the other hand, this outcrop is instead the ideal situation for using remote
sensing methods. Apart from the access issues, it is a well exposed, vegetation-
free and extended outcrop that would be difficult to be studied otherwise. At
the same time, a favorable average attitude of the strata, together with the right
amount of space in front of the outcrop highly suggests that, applying the same
techniques introduced by Franceschi et al. (2011), it should be possible to obtain
extremely long time series, possibly covering the whole quarry.

Simplifying, the series is built by limestones which sometimes tend to become
marly, together with frequent shales and nodular and layered cherts. These are
the main lithotypes composing the section. The possibility to clearly observe
marls-to-limestone alternations had been proven in the past (Franceschi et al.,
2009), while gaining a better understanding of the effects of CaCO

3
content,

shales and cherts which have been demonstrated in this thesis was fundamental
to create a sound basis for the study of the Vispi quarry outcrop as a whole.

As illustrated in Chapter 2, the processing of big data requested to improve the
original techniques and better establishing the methods employed. This chapter
demonstrates those methods in a practical case study. We will give insights on
the processing of a big dataset of scans, together with some considerations on
the issues we encountered during the elaboration, which may be useful for
replicating our results. At the end of this chapter a long time series, generated
from > 20 scans, which represents the stratigraphic series from the Bonarelli
level down to the upper part of the Maiolica Fm., will be presented.

6.2 data acquisition

The Vispi quarry has been surveyed with an OPTECH TLS, model ILRIS 3D,
the same device used by Franceschi et al. (2011) and Penasa et al. (2014) in their
investigations.

The technical characteristics of this device are reported in Table 6.1.
As highlighted in Chapter 5 (see Figure 5.4), the intensities come from the

device as an integer Digital Number (DN). The intensity recorded for a given
point can thus take a restricted number of values. How much this dynamic range
is wide will depends also on the target’s distance. In particular, to obtain good
results in terms of resolution of intensities the distance should be less than 50
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Parameter Value

Wavelength 1535 nm

Laser Class eyesafe, class 1

Range (20 % target reflectivity) 800 m

Minimum acquisition distance 3 m

Beam divergence angle 0.17 mrad

Beam divergence at 50 m 21 mm

Resolution at 50 m 17.7 mm

Single point acquisition accuracy at 50 m 7 mm

Modeling accuracy at 50 m 3 mm

Minimum spot spacing at 50 m 1.3 mm

Scan velocity 2000 pts/s

Table 6.1: Technical specifications for the OPTECH ILRIS 3D laser scanner, from
Franceschi et al. (2009). Notice that a slightly different wavelength of 1541 nm
has been reported by Larsson et al. (2007). This difference is totally negligible
for our purposes.

meters, as suggested by Franceschi et al. (2009). In practice, smaller the distance,
higher the resolution that can be expected in terms of intensities.

A similar reasoning can be applied to the geometric resolution, the number
of points that will be used to represents a m2 of outcrop will vary as a function
of the distance from the device. Similarly, the laser footprint on the outcrop itself
increases with the distance due to the divergence of the laser beam.

The Vispi outcrop has an horizontal extension of > 500 m with a vertical
exposure of > 200 m. Obtaining a full-size TLS scan of this such extended object
is not possible considering the limits of intensity resolution we wanted to meet
(distances < 50 m). Besides, being impractical, obtaining a complete coverage
of the whole quarry it is also not needed: our goal was to provide a complete
coverage in terms of stratigraphic exposure.

The steep attitude of the strata, which deeps toward North, completely
exposes the stratigraphic series at the base of the quarry. From a frontal position,
at the outcrop toe, a set of 29 TLS scans were made from different stations. The
TLS was powered using a portable generator which was moved together with
the TLS in consecutive stations, which allowed to cover the whole stratigraphy.
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The survey started from the Northern sector of the quarry, from the Bonarelli
level which is well exposed in the Northern edge of the quarry. Each new scan
has been taken so to account for at least a ∼ 10% overlap with the next one. A
minor number of scans in the southern part of the survey were instead taken
without any geometric overlap, but still granting stratigraphic overlap between
consecutive scans.

Average distance from the outcrop was ∼ 25 meters, in a range from 10 to 40
meters from the quarry’s walls, each scan covering an horizontal distance of
∼ 10 meters.

Contextually with the scan operations, a series of pictures taken from the Con-
tessa roadway were collected with a standard camera (Nikon D3100 equipped
with fixed 35 mm lens). About 15 photographic stations were set along the road
to cover the whole quarry from the highest possible points of view. At each
station, a variable number of pictures (5 to 10) were shot to cover the whole
outcrop. Those pictures were then used to produce a photogrammetric model.

The entire surveying operation required 2 days of work with just 2 operators
(Marco Franceschi & Luca Penasa). This time limit was also imposed by the
querry’s manager which granted us access permission only during a weekend,
while the mining activity was suspended.

6.3 point clouds preprocessing

The scans were processed using the proprietary parser provided by OPTECH.
Each scan was exported as a text file composed by the [x, y, z] coordinates and
the corresponding intensity as a 16 bit DN, described in the parser’s option as
RAW intensity.

The point clouds were then converted to the PCD format for being loadable
by the SPC toolkit. Before any processing, the distance from the sensor of each
point was added to each cloud, considering the device as centered in the origin
([0, 0, 0]). This scalar field is needed by the SPC toolkit (see Chapter 2) to perform
the normalization of intensities.

The photogrammetric reconstruction was performed using the open source
MicMac toolkit1 (Pierrot-Deseilligny, 2013; Rosu et al., 2015).

A set of 111 photographs were internally and externally oriented, after ho-
mologous points matching, using the tools provided by MicMac. For each
homologous point, a 3D point was computed providing a sparse representation

1 Multi Images Correspondances par Méthodes Automatiques de Corrélation Available at http://

logiciels.ign.fr/?Telechargement,20. See also http://logiciels.ign.fr/?Micmac

http://logiciels.ign.fr/?Telechargement,20
http://logiciels.ign.fr/?Telechargement,20
http://logiciels.ign.fr/?Micmac
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of the whole quarry. A smaller subset of pictures was chosen to perform a dense
reconstruction. ∼ 10 photographs permitted to obtain dense point clouds for
great part of the quarry’s extension.

The photogrammetric reconstruction, although being dense, does not have
any scale information. The unit of measure of the point clouds obtained from
photogrammetry does not represent the dimension of the quarry. For solving
this problem the TLS point clouds were used in the following way.

The partial overlap of the first 20 TLS scans was exploited to obtain a rough
registration of the clouds. Each cloud was co-registered with the next one
manually defining a set of > 4 homologous points, using the open source Cloud-
Compare software (Girardeau-Montaut, 2014). The registration have been then
refined with the Iterative Closes Point (ICP) algorithm (Besl and McKay, 1992;
Chen and Medioni, 1992) provided by the software. Although this registration
being not optimal, due to the small overlap between nearby clouds, it permitted
to compute a scaling factor for the photogrammetric point cloud. Notice that,
as we will discuss later, there is no need to perfectly register all clouds, and in
fact we have a subset of clouds for which co-registration is not possible, due to
lack of overlap.

The photogrammetric model was registered with the TLS clouds using a
version of the ICP algorithm which embeds the scale estimation (Zinßer et al.,
2005), implemented directly in CloudCompare. The remaining TLS point clouds,
which were still not registered, were registered against the photogrammetric
model.

This process resulted in all the point clouds, either coming from TLS or from
the photogrammetry, being registered in the same reference frame. This process,
that is obviously fairly tedious, could be improved by using dedicated targets
for granting a semi-automatic registration. Due to the limitations in time for
accessing the quarry, the faster in-field method that could be adopted was
chosen, and no targets were employed. Furthermore, in many cases, positioning
registration targets was also not possible, especially when scanning vertical
areas of the quarry.

6.4 time series extraction

The whole time series extraction process was conducted from within Cloud-
Compare, using the Vombat plugin, as described in Chapter 2. In this section,
some concepts introduced there will be used.
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All the point clouds to be processed were loaded in CloudCompare as a
Reference On Disk (ROD). This allows to load the point when needed for
visualization, and unloading it from the memory when not needed, while still
preserving a reference of where the point cloud is stored on disk.

For each point cloud, a single Region Of Interest (ROI) was identified, each
comprising the portion of the cloud which was intended to be used to generate
the time series. The ROI was chosen so to be free of vegetation and any other
disturbing element, as humidity and faults presence. In general, the Franceschi
et al. (2011) recommendations on point cloud cleaning were adopted.

For each of these ROIs, a time series was generated, but fo being able to do so,
the algorithm requires to know the attitude of the bedding into the specific ROI.
For each ROI, a single attitude was thus estimated, which was then converted
into a local Stratigraphic Reference Frame (SRF).

Summarizing, for each cloud a ROI was defined by the user, subsequently
each of them was equipped with a SRF which defines a direction in the 3D space
which is expected to be related with the time (as depicted in Section 6.1) and
will serve as a local ruler for measuring the section and for producing a time
series, representative of the changes of intensities along this direction.

At this point, the time series were computable, but the setup was still not
complete. Each SRF at this stage was still unaware of the other SRFs, hence each
of them was defining its own stratigraphic zero. A set of constraints were thus
defined to link each SRF to the next one.

A first Sample (crf. Chapter 2 for the specific interpretation of the term) was
placed at the base of the Bonarelli level and assigned to the first SRF. This
sample was set to work as sample with fixed stratigraphic position, which have
been assigned to 0 m.

A second Sample was positioned on an easily recognizable stratigraphic
feature, present also in the next point cloud. On this cloud a third Sample was
positioned on the same stratigraphic level. These last two Samples together were
set up to form a Stratigraphic Tie Constrain (STC) between the two clouds.
These constraints are used by the SPC library to create a composite stratigraphic
reference frame between different ROIs and clouds. The same procedure was
used to create stratigraphical ties between the SRFs.

The time series were then extracted as described in Chapter 2 using a sampling
step of 1cm, with a bandwidth (if the Kernel Smoother) of 1 cm. The resulting
time series are shown in a Figure 6.2 and Figure 6.3.
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Figure 6.2: First part of the time series, from 0 (Bonarelli level) to 80 meters. Higher stratigraphic positions correspond to older strata.
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7
C O N C L U S I O N S

The aim of this work was to study the applicability of the method proposed
by Franceschi et al. (2009) as a data source able to provide long time series for
cyclostratigraphic investigations.

Previous investigations proved the feasibility of converting the intensity
values from TLSs into a proxy for the reflectance of the materials under inves-
tigation. Transforming an intensity measure into a real reflectance is a problem
that has been faced in many different contexts and unfortunately it still does
not have an unique and simple solution.

Most of intensity calibration methods which have been proposed in literature
require fairly complex experimental setup to collect a dataset of observations
that can be used to estimate the parametrs of the correction model.

We demonstrated that these observations can be potentially extracted directly
from the point clouds themselves, exploiting overlapping clouds. Thanks to
some extra information provided by the user about the materials in the scene
these observation can be used to calibrate corrections models for the intensity.
We used a simple normalization model intended to remove the effects of distance
from the sensor and the incidence angle from intensity to demonstrate the
feasibility of this approach.

The use of intensities as proxy for lithological properties was investigated
with the final goal of gaining a better understanding of the meaning of the
intensity in the specific context of typical basinal lithotypes. We followed a
mixed-type investigation based both on experimental observations, obtained
from laboratory measures, and on in-field data collection on real stratigraphic
cases. This dual approach was intended to provide also real dataset that could
potentially undergo cyclostratigraphical analysis.

We proposed a model for interpreting stratigraphic series made of limestone,
clay and chert, some of the most common lithotypes in the Umbria-Marche
basin. This stratigraphic sequence was explicitly chosen because of its potential

90
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importance in the cyclostratigraphic context. It is a well known series, with
many ideal conditions for testing remote sensing methods.

The TLS method was applied on a calcareous homogenites. The comparison
of the intensity with calimetric analysis showed how the time series generated
with TLS can be compared to more classical time series, as a CaCO

3
wt.% curve,

demonstrating that the intensity can be used as a proxy for CaCO
3

also in
highly homogeneous sequences.

Chert, on the other hand, demonstrated to be characterized by low reflectances
which produces low intensity values when observed with a TLS. This fact, to-
gether with their common shape was exploited to build an original classification
method, that is able to automatically extract chert from a point clouds.

Creating time series from point clouds require a fairly large amount of data
processing. For this an original solution was implemented. Although it is mainly
targeted to TLS point clouds, the main concept can be easily translated to any
other 3D data source, and easily integrated with data coming from other devices
(e. g. passive hyperspectral cameras).

Our investigations proved that long time series, potentially long-enough to
observe long-period Milankovitch-like cycles, can be provided by remote sens-
ing methods, when a multi disciplinar approach is pursued. 3D data sources
intrinsically have a great potential as data source for stratigraphic investiga-
tions but require the development of specific methods, which allows for the
transformation of such a complex dataset into something meaningful for the
stratigrapher.
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