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Summary 

The objective of this study was to investigate a multifunctional system under high- to hyper-

velocity impact loading. This multifunctional system is a plate structure that, in addition to its load 

bearing function, has the ability of self-repairing holes generated by impacts. In order to achieve 

multiple functionality the panel consists of several different layers, each having a specific task, and 

thus primary contributing to a specific function of the entire multifunctional structure system. From 

a structural point of view this multifunctional system can be considered as a multilayer plate.  From 

a functional perspective the panel layers can be divided in two groups: structural layer and self-

healing layer. Each layer can occur once or more in a panel configuration. The performance of the 

multifunctional structure depends on the number of layers, the mechanical and physical properties 

of the individual layers, layer thickness and on the arrangement of the various layers in a 

multifunctional structure. 

The multifunctional system investigated in this work consists of one self-healing layer and one or 

two structural layers. To provide the structural system with the ability to seal holes generated by 

perforating impacts a layer of ethylene-co-methacrylic acid ionomer was used in a multifunctional 

system. These ionomers have been observed to self-heal following ballistic puncture and such a 

response is an inherent behaviour of those materials, therefore no external intervention is necessary 

in the self-healing process. For the structural layers, plates made of composite materials were used.  

Two slightly different structural layers were investigated. One is a laminate made entirely of carbon 

fibre reinforced plastics, while the other is a carbon fibre laminate with aramid fabric/epoxy resin 

composite layers attached to its front and back face. These two structural layers and the ionomer 

layer were combined to form several configurations of multifunctional panels. The different 

configurations, including also the individual layers alone, were tested under impact loading.  

Tests on the ionomer alone were performed to study its protection capability for bumper 

applications. For this purpose tests on aluminium plates were also performed and the results were 

compared to those of the ionomer. The protection capability was evaluated by studying the damage 

on witness plates and the momentum transferred to them.  

The composite structural layers for the multifunctional structure were tested individually and their 

behaviour was compared with that of the ionomer self-healing layer. Multifunctional panel 

configurations consisting of two and three layers were also tested. The impact behaviour and the 

comparison of the various configurations were characterized through the  momentum transfer to the 

witness plate, the fragments velocities in the debris cloud, the damage in the layers, in certain cases 

the damage on the witness plate was also used. Several instruments were used to measure the 
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relevant quantities. A ballistic pendulum was used to estimate the momentum of the debris cloud. A 

high-speed video camera was employed to film the impact tests, which enabled the measurement of 

fragments velocities by a dedicated software. An ultrasound flaw detector was applied for 

delamination damage detection in the composite material. Superficial damage was inspected 

visually. Learning how to use the ultrasound flaw detector and the high-speed video camera was an 

integral part of the PhD work that required a considerable amount of time. 

The self-healing of the ionomer was checked for all tests by visually examining the ionomer 

samples. 

The experiments were conducted at the CISAS impact facility, using a two stage light gas gun. The 

impact velocities in the experimental tests ranged from ~1.0 to ~4.0 km/s. Aluminium spherical 

projectiles were used, and ranged in diameter from 1.5 to 5.6 mm.  

Numerical simulations of the experimental tests on the individual layers were performed and the 

results were compared. The numerical simulations were performed with the commercially available 

‘hydrocode’ Ansys Autodyn. 
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Sommario 

L'obiettivo di questa tesi era di studiare un sistema multifunzionale soggetto a impatti ad alta- e 

iper-velocità. Questo sistema multifunzionale è un pannello che, oltre alla sua funzione portante, ha 

la capacità di autoripararsi cioè di chiudere i fori causati da impatti. Al fine di ottenere la 

multifunzionalità il pannello è costituito da diversi strati, ciascuno avente un compito specifico, 

contribuendo così ad una funzione specifica dell'intero sistema struttura multifunzionale. Dal punto 

di vista strutturale questo sistema multifunzionale può essere considerato come una piastra 

multistrato. Dal punto di vista funzionale gli strati del pannello possono essere suddivisi in due 

gruppi: strato strutturale e strato auto-riparante. Ogni strato può essere presente una o più volte nella 

configurazione del pannello. Le prestazioni della struttura multifunzionale dipendono dal numero di 

strati, dalle proprietà meccaniche e fisiche degli strati individuali, dallo spessore degli strati e della 

disposizione dei vari strati nella struttura multifunzionale.  

Il sistema multifunzionale studiato in questo lavoro è costituito da un strato auto-riparante e uno o 

due strati strutturali. Per fornire al sistema strutturale la capacità di richiudere i fori generati da 

impatti perforanti, uno strato di ionomero con capacità auto-riparanti è stato applicato nel sistema 

multifunzionale. Si è osservato che questi ionomeri sono in grado di richiudere i fori causati da 

impatti balistici. Inoltre questa proprietà è un comportamento intrinseco di questi materiali, quindi 

non è necessario un intervento esterno nel processo di auto-riparazione. Per gli strati strutturali, 

sono state usate lastre in materiale composito. Due strati strutturali leggermente diversi sono stati 

studiati. Uno è un laminato realizzato interamente in fibra di carbonio e resina, mentre l'altro è un 

laminato misto con due strati di fibra aramidica in resina epossidica sulle superfici estreme e una 

parte centrale in laminato di fibre di carbonio. Questi due strati strutturali e lo strato di ionomero 

sono stati combinati tra di loro per formare diverse configurazioni di pannelli multifunzionali. Le 

diverse configurazioni, tra cui gli strati singoli, sono stati testati in casi di impatto.  

Prove sul solo ionomero sono state eseguite per studiare la sua capacità di protezione nei confronti 

di impatti. Per questo scopo anche dei test d’impatto su lastre di alluminio sono stati effetuati e i 

risultati sono stati confrontati con quelli dello ionomero. La capacità di protezione è stata valutata 

attraverso lo studio del danno su witness plates e la quantità di moto ad esse trasferita.  

Gli strati strutturali in materiale composito per la struttura multifunzionale sono stati testati 

singolarmente e i relativi risultati sono stati confrontati tra loro e con quelli dello strato auto-

riparante in ionomero. Inoltre si sono testate e valutate configurazioni di pannelli multifunzionali 

composte anche da due o tre strati. Il comportamento sotto impatto e il confronto delle 

configurazioni è stato caratterizzato attraverso: 
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- la valutazione del trasferimento della quantità di moto alla witness plate,  

- la velocità dei frammenti nella nuvola di detriti,  

- il danno negli strati e, in certi casi, il danno sulla witness plate.  

Diversi strumenti sono stati utilizzati per misurare tali quantità:  

- un pendolo balistico per stimare la quantità di moto della nube di detriti;  

- una videocamera ad alta velocità per filmare le prove d'impatto, il che ha consentito la 

misurazione della velocità dei frammenti;  

- un rilevatore di difetti ad ultrasuoni per il rilevamento della delaminazione nel materiale 

composito.  

Il danno superficiale è stato ispezionato visivamente così come l'auto-riparazione dello ionomero 

che è stata valutata per tutti i test esaminando visivamente i campioni di ionomero.  

L’apprendimento dell’utilizzo di strumenti sofisticati quali il rivelatore ad ultrasuoni e la 

videocamera ad alta velocità è stata parte integrante del lavoro di dottorato che ha richiesto una 

considerevole quantità di tempo.  

Gli esperimenti sono stati condotti presso il laboratorio di impatti del CISAS, utilizzando il cannone 

a doppio stadio e a gas leggero. Le velocità d'impatto nelle prove sperimentali variavano fra ~ 1.0 e 

~ 4.0 km/s. Sono state utilizzate come proiettili delle sfere in alluminio, il cui diametro variava fra 

1.5 mm e 5.6 mm.  

Infine sono state effettuate delle simulazioni numeriche delle prove sperimentali sui singoli strati ed 

i risultati sono stati confrontati con quelli sperimentali. Le simulazioni numeriche sono state 

effettuate utilizzando l'hydrocode commerciale Ansys AUTODYN. 
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1. Introduction 

1.1. Introduction and motivation 

This thesis was part of a research project called IMBEMUS (IMpact BEhaviour of MUltifunctional 

materialS). IMBEMUS was started by a group of researchers at the University of Padua in Italy. 

The aim of IMBEMUS was to develop a multifunctional panel that is able to perform the following 

tasks: a) act as a load bearing structure, b) repair holes generated by impacts, and c) detect 

perforation of the panel and its location. This would lead to a structural element with the addition of 

two more functions: sealing of holes caused by impacts and monitoring the occurrence of impact 

perforation. Such a panel falls in the category of multifunctional systems. Namely, multifunctional 

materials systems can perform more than one function simultaneously or sequentially in time and 

seek to achieve overall system performance enhancement. The objective of this thesis was to study 

the impact behaviour of a multifunctional system having a structural and self-healing function. 

Therefore, the sensor layer was not the object of the present study. Several multifunctional panels 

configurations were tested experimentally under high- and hyper-velocity impacts in order to 

characterize their impact behaviour. Numerical simulations of several tests were also carried out.  

In aerospace and military engineering one of the most critical issues is represented by high and 

hyper velocity impacts, due to meteoroids or space debris in the first case and to projectiles or ejecta 

in the second case. Impacts of micrometeoroids and space debris on vehicles moving in space are a 

recognized threat to space missions. The consequences of  meteoroid and debris impacts on a 

spacecraft can vary widely, from small surface indentation to clear hole perforations that can lead to 

the penetration of the impacting object in a spacecraft. Close to the earth surface, where much man-

made debris is present, the probability of impacts with debris is particularly high. Even if the 

structural integrity is not fully compromised clear hole penetrations could be extremely damaging if 

they affect tanks containing gases which are necessary to complete long lasting missions, even more 

so when human beings are on board. Therefore there is the clear need of self-healing materials 

capable of immediately closing holes generated by impacts. In general, systems capable to close 

holes generated by impacts could find large applications for anti-leakage purposes in environments 

where leakage could occur due to an impact event that would perforate the structural element. Since the 

aerospace and military field are two examples of environments where perforating impacts represent a 

possible loading condition, a structural element with the ability to close holes generated by an impact 

could be applied in those two fields primary to fuel storage tanks of airplanes and ground vehicles, 

where even a small perforation can have catastrophic consequences due to leakage of the fuel. 
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1.2. Organization of the thesis 

This thesis is organized in six chapters. After the present first chapter which gives a brief 

introduction and motivation for this research, in chapter two the basic theory of stress waves 

propagation in solids is presented. In chapter three the multifunctional panel structure is described 

in detail. Both the structural and self-healing layers are described. The configurations consisting of 

a self-healing and/or structural layers which were experimentally tested are given.  The 

experimental investigation and results are described in chapter four. The chapter begins with an 

overview of the used instrumentation and then details about the experimental set-up are provided. 

This is followed by a presentation and discussion of the experimental results. In chapter five the 

numerical approach and models are described. Further, the obtained results are compared with the 

experimental ones. In chapter six the conclusions derived from this work are summarized. 
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2. Wave propagation in solids 

In high- to hyper-velocity impacts (0.5 – 3 km/s) a high intensity load is generated in the impact 

area during a short time interval (on the order of microseconds). In such situation the response 

becomes highly localized and affected by the material behaviour in the vicinity of load application. 

A description of the phenomena in terms of wave propagation is appropriate. The influence of 

velocity, geometry, material constitution, strain rate, localized plastic flow, and failure are manifest 

at various stages of the impact process [1].  

The theory of waves is treated  in [[1]-[6]]. In this chapter a basic presentation of elastic and shock 

waves in solids is given. 

2.1. Elastic waves 

Let’s consider a situation depicted in Figure 2.1, in which a bar impacting a long cylindrical bar is 

shown.  

 

Figure 2.1 Wave propagation in a bar, (a) prior to impact and (b) after impact [5]. 

Upon impact a compressive stress wave is generated that propagates in the impacting bars. If we 

limit the analysis to one-dimensional wave propagation (therefore neglecting the strains and inertia 

along the direction transverse to the bar) and by applying Newton’s second law to AA’B’B we 

obtain: 
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 F ma  (2.1) 

 2

2

u
A A x A x

x t

   
        

     
(2.2) 

 
2

2

u

x t

 
 

   
(2.3) 

Where σ is the stress in the impacted bar, and ρ is the density of the bar’s material. Replacing the 

stresses with the strains (ε) through the application of Hooke’s law: 

 E    (2.4) 

Where E is Young’s modulus, and the strain ε is defined as: 

 
u

x


 

  
(2.5) 

We obtain the differential equation describing the wave (wave equation) for a one-dimensional case  

 
2 2

2 2

u E u

t x

 

   

(2.6) 

The velocity of this wave is given as 

 0

E
C 

  
(2.7) 

A general form of the equation of wave motion is given as: 

 
2 2

2

2
i i

c
x xt

   


   
(2.8) 

In the above equation the indicial notation has been used, therefore when a subscript is repeated in 

the same term it denotes that summation with respect to this subscript occurs. In equation (2.8) 

ψ(xi,t) is the dependent variable and is a measure of some property of the disturbance such as 

displacement or velocity and c is a physical constant.  

For example, the wave equation for a dilatation Δ (Δ=ε11+ ε22+ ε33) propagating in an elastic 

isotropic unbounded medium is: 
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  
2 2

2
2

i ix xt

   
    

   
(2.9) 

Where λ and μ are the Lame constants, and i takes on the value 1, 2  and 3. Equation (2.9) is known 

as the longitudinal wave equation. The velocity of propagation of the dilatation is: 

 

1 2
2

V
   

  
   

(2.10) 

This velocity is also called ‘‘bulk sound speed’’. 

The general solution of the one-dimensional wave equation (2.6) is [[5],[7]]: 

      0 0,u x t F x C t G x C t   
 (2.11) 

Where F and G are arbitrary functions of the arguments (x-C0t) and (x+C0t) respectively. In (2.11) 

F represents a wave moving in the positive direction along the x axis, while function G represents a 

wave propagating in the negative direction of the x axis, as shown in Figure 2.2. The shapes of these 

waves are unchanged with time and propagate at a constant velocity C0. Therefore, the physical 

meaning of equation (2.11) is that we have two waves propagating at constant velocity along the x 

axis, and one of the two waves is travelling in the positive direction, while the other is moving in 

the negative direction. 

 

Figure 2.2 General solution for wave equation in uniaxial stress [5]. 

When a disturbance propagates in a material it causes motion of the material points as it passes 

across them. The velocity with which a point in the material moves as the wave moves across it is 

called the particle velocity (Up). 

Depending on the boundary conditions  and on the relation of particles motion to the wave direction 

of propagation, various wave types can propagate in solids. The most common types of elastic 

waves in solids are [5]: 
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1. Longitudinal (or irrotational) waves; in infinite and semi-infinite media they are known as 

‘‘dilatational’’ waves. In these waves the particles are moving along the direction normal to the 

wave front (i.e. parallel to the direction of propagation of the wave). For a compressive wave, 

the particle and wave motion have the same sense, and for a tensile wave, they  have opposite 

senses. 

2. Distortional (shear, transverse, equivoluminal) waves. In distortional waves the material 

particles are moving in the direction perpendicular to the direction of propagation of the wave. 

The density of the material remains unchanged, and all longitudinal strains (ε11, ε22, ε33) are zero. 

3. Surface (Rayleigh) waves. In these waves the particles move along elliptical trajectories. This 

type of waves is restricted to the region adjacent to the surface, and they decay exponentially 

with depth from the surface to the medium interior. 

4. Interfacial (Stoneley) waves. When two semi-infinite media with different properties are in 

contact, special waves form at their interface [5]. 

5. Waves in layered media (Love waves). This is another type of surface wave confined to a 

relatively shallow surface zone. Love waves can emerge in a situation where layers of materials 

with different properties lay on each other. 

6. Bending (flexural) waves (in bars and plates). The propagation of flexure in a one dimensional 

(bar) or two dimensional configuration is referred to as a bending wave. 

2.1.2. Intensity of the propagated stress 

The relationship between the longitudinal stress (σ) in a body and the longitudinal particle velocity 

can be obtained from Newton’s second law: 

  pFdt d mU  (2.12) 

where F is the longitudinal force acting on a given cross section, dt is the time the force acts, m is 

the mass it acts against, and Up is the velocity imparted to m by F. The stress and mass can be 

expressed as: 

 F

A
   (2.13) 

 m Adx  (2.14) 

Where A is the cross section on which the force F acts, ρ is the material density, and dx is the 

distance the pulse has moved in time dt. Inserting these equations in (2.12) we obtain: 
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pAdt AdxdU   (2.15) 

 
p

dx
dU

dt
    (2.16) 

Since dx dt  is the propagation velocity of the pulse C, we obtain the following equation for the 

longitudinal stress: 

  pC U    (2.17) 

where ΔUP is the change in particle velocity. 

2.1.3. Wave reflection and transmission at a boundary 

When a wave encounters a boundary between two media with different sonic impedance, it will 

reflect and refract (transmit), see Figure 2.3. The sonic impedance of a medium is defined as the 

product of the medium density by its sound wave velocity.  

 

Figure 2.3 Longitudinal elastic wave encounter with a boundary between media A and B [5]. 

In Figure 2.3 a longitudinal wave hitting a boundary between media A and B is shown. As can be 

seen, it reflects and refracts as a longitudinal wave, and also two transverse waves are generated at 

the interface. The reflection and refraction angles shown in Figure 2.3 are given by the following 

relationship: 

 
3 51 2 4

1 2 1 1 2

sin sinsin sin sin

C C C C C 

   
     (2.18) 
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where 1C  and 2C  are the longitudinal and shear wave velocity in medium A, '
1C  and '

2C  are the 

longitudinal and shear velocity in medium B. 

2.1.3.1. Bar with a continuous cross section 

In Figure 2.4 a longitudinal wave is propagating from left to right in a bar, and strikes normally on a 

boundary A-B between medium A and medium B. Before it encounters the boundary the wave is 

moving in bar A at velocity CA. The particle velocity is Up and the stress is σ. Since the incidence is 

normal to the boundary, the incident longitudinal wave will transmit (refract) and reflect 

longitudinal waves (Figure 2.4 (b) and (c)). The forces caused by the incident, reflected and 

transmitted wave are plotted in Figure 2.4 (b), while the particle velocities for the incident, reflected 

and transmitted wave are shown in Figure 2.4 (c).  

 

Figure 2.4 Longitudinal wave in a bar striking normally on boundary between media A and B: (a) prior to encounter 

with boundary, (b) forces exerted on boundary (equilibrium condition), (c) particle velocities (continuity) [5]. 

The signs of the stress and particle correspond to a situation where medium A has a higher 

impedance than medium B. At the interface (boundary A-B) two conditions must be fulfilled: 

1) The forces in both bars at the interface must be equal (equilibrium) 

2) Particle velocities at the interface must be continuous  

From condition 1 we have: 

 I R T    (2.19) 

Condition 2 gives: 
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 pI pR pTU U U   (2.20) 

From (2.17) we can express the particle velocities as: 

 I
pI

A A

U
C





 (2.21) 

 T
pT

B B

U
C





 (2.22) 

 R
pR

A A

U
C





 (2.23) 

Substituting these velocities into (2.20) we have: 

 
I R T

A A A A B BC C C

  
 

  
 (2.24) 

From equations (2.19) and (2.24) we obtain the following expressions: 

 
2T B B

I B B A A

C

C C

 


  
 (2.25) 

 R B B A A

I B B A A

C C

C C

  


  
 (2.26) 

It can be seen from the above equations that the amplitude of the transmitted and reflected waves 

depends on the sonic impedance of the materials. We can also see from (2.25) that the ratio T I   

cannot be negative, therefore tension will be transmitted as tension and compression as 

compression. From the ratio R I   in (2.26) we can see that if A A B BC C   an incident 

compressional stress will be reflected as a tensile stress and vice versa, while if A A B BC C   a 

compressive stress will be reflected as a compressive stress. 

Using equations (2.19), (2.21), (2.22), and (2.23) we can arrive at the expressions for the 

transmitted and reflected particle velocities: 

 pR A A B B

pI A A B B

U C C

U C C

 

 

 (2.27) 
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 2pT A A

pI A A B B

U C

U C C



 

 (2.28) 

The following expressions are obtained for T I   and R I   for the limiting cases when a stress 

wave encounters a free surface or a rigid boundary: 

- for a free surface we have that 0B BC  , therefore: 

0T

I





  

1R

I


 


 

- for a rigid boundary ( E C  ), by rearranging equations (2.25) and (2.26), we obtain: 

2
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A AI
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For the particle velocities the following relations are valid: 

- free surface: 

2
pT
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U

U
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1
pR

pI

U
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  

- rigid boundary: 
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2.1.3.2. Bar with a discontinuous cross section 

A bar with discontinuous cross section made of different materials is shown in Figure 2.5.  

 

Figure 2.5 Wave reflection and transmission at changes in cross section [1]. 

Following the same procedure as in section 2.1.3.1., i.e. satisfying the conditions of forces equality 

in both bars at the interface and continuity of particle velocity at the interface, the following 

expressions are obtained: 

 1 2 2

1 1 1 2 2 2

2
T I

A C

A C A C


  

  
 (2.29) 

 2 2 2 1 1 1

1 1 1 2 2 2

R I

A C A C

A C A C

  
  

  
 (2.30) 

When both bars are made of the same material, then 1 2    and 1 2C C , and we have: 

 1

1 2

2
T I

A

A A
  


 (2.31) 

 2 1

1 2

R I

A A

A A


  


 (2.32) 

Therefore, when the two materials are equal, if 2 1A A  then T  and R  will be of the same type. If 

2 1A A , then T  and R  will be of opposite sign. 

2.2. Shock waves 

2.2.1. Uniaxial strain 

When the material does not have the time to deform laterally in a high-rate phenomena, a condition 

of uniaxial strain occurs. As time goes on stresses decrease and a state of uniaxial stress may take 

place, as release waves arrive from the lateral surfaces and lateral deformation and lateral 
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deformation occurs. In plate impact situations a state of uniaxial strain but 3D stress is produced, 

thus work on shock waves has been done on plate geometries. For plate geometries it is possible to 

study the material behaviour at shorter times and higher load, while at the same time benefiting of a 

1D analysis for uniaxial strain. In plate impact theories, effects of thermomechanical coupling are 

neglected. These effects can be notable at strains exceeding 30%.  

In Figure 2.6 the uniaxial stress – strain curve is shown. If we consider a situation of one 

dimensional deformation, as is the case of plane waves propagating through a material where 

dimensions and constraints are such that the lateral strains are zero (Figure 2.7), the stress uniaxial 

stress – strain curve assumes the form shown in Figure 2.8. This leads to the conclusion that the 

elastic modulus, yield strength, ultimate strength and elongation related to the uniaxial stress – 

strain curve cannot adequately describe the behaviour of a material subjected under shock loading.  

 

Figure 2.6 Test specimen and typical stress – strain curves for uniaxial stress states [8]. 

The stresses and strains that occur in one dimension deformation for an isotropic material will be 

considered in order to comprehend the change from Figure 2.6 to Figure 2.8. Strains must be less 

than 30% in the following analysis, otherwise a more complex analysis would be needed due to 

thermomechanical coupling. 
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Figure 2.7 Detail of plane shock wave propagating in a solid [8]. 

 

Figure 2.8 Stress-strain curve for uniaxial strain states [1]. 

Dividing the three principal strains into elastic and plastic components yields: 

 
1 1 1

e p      (2.33) 

 
2 2 2

e p      (2.34) 

 
3 3 3

e p      (2.35) 

The subscripts (1, 2, and 3) indicate the three principal directions, while the superscript e refers to 

elastic and p to plastic. 

For 1D deformation 

 2 3 0     (2.36) 

It follows that: 
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 2 2
p e    (2.37) 

 
3 3
p e    (2.38) 

The plastic portion of the strain is taken to be incompressible, so that 

 1 2 3 0p p p       (2.39) 

Due to symmetry ( 2 3
p p   ) we get 

 1 2 3 22p p p p        (2.40) 

Therefore 

 1 22p e    (2.41) 

 
1 1 1 1 22e p e e          (2.42) 

The elastic strain may be written in the terms of the stresses and elastic constants as 

  1 1
1 2 3 2

2e

E E E E

  
         (2.43) 

  2
2 1 3 2 1

1e

E E E E

   
          (2.44) 

  3
3 1 2 3 1

1e

E E E E

   
          (2.45) 

Combining equation (2.42) and the above equations, the following expression for ε1 is obtained 

 
   1 2

1

1 2 2 1 2

E E

     
    (2.46) 

The plasticity condition for either the Tresca or von Mises conditions for this case is 

 1 2 0Y    (2.47) 

Expressing σ2 from (2.47) and inserting it into (2.46) gives 



29 

 

 
 1 1 0 1 0

2 2

3 1 2 3 3

E
Y K Y      

 
 (2.48) 

Where  3 1 2K E    is the bulk modulus. 

Solving the above equations for stress in terms of pressure (P), we obtain 

 1 0

2

3
P Y    (2.49) 

Equation (2.49) is the stress – strain relation for the case of uniaxial strain. Recalling the expression 

for uniaxial stress E   , we can see that the bulk compressibility represents the most significant 

difference between uniaxial stress and uniaxial strain. For the state of uniaxial strain the stress 

continues to increase regardless of the yield stress or strain hardening.  

For the special case of elastic 1D strain 

 1 1
e    (2.50) 

 
2 2 3 3 0e e         (2.51) 

 
1 2 3 0p p p       (2.52) 

Therefore, 

 

2 2 1

1
0e

E E

 
       (2.53) 

 
2 1

1

 
   

  
 (2.54) 

Which leads to 

 
 

21 1
1 2

1E E

 
   


 (2.55) 

or 

 
 

  1 1

1

1 2 1
E


  

   
 (2.56) 
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Figure 2.8 shows the stress-strain curve for the case of uniaxial strain. We can see from Figure 2.8 

that the modulus for the uniaxial strain curve increases by a factor of     1 1 2 1        with 

respect to the uniaxial stress – strain case. The yield point for uniaxial strain is referred to as the 

Hugoniot Elastic Limit (σHEL) and it corresponds to the maximum stress for 1D elastic wave 

propagation in plate geometries. The curve labeled “hydrostat” in Figure 2.8 is also known as the 

Hugoniot curve. This is the curve that a material would follow if it were strengthless. There is a 

constant deviation from the Hugoniot curve of the stress σ by 2Y0/3 where Y0 is the static yield 

strength. If the yield strength changes in a strain-hardening material, so will the difference between 

the σ and P curves.  

Figure 2.9 shows a typical loading cycle in uniaxial strain for an elastic – perfectly plastic material. 

Observe that at point C reverse yielding occurs. By assuming that tensile and compressive yield 

strengths are equal, then when reverse loading occurs (e.g. stress wave reflections from a free 

surface) the line segment CD extends to the negative (tension) region, but still different by 2Y0/3 

from the hydrostat. 

 

Figure 2.9 Loading-unloading cycle in uniaxial strain [1]. 

2.2.2. Wave propagation 

The uniaxial strain stress-strain curve taken to much higher load levels is depicted in Figure 2.10.  

A single elastic wave will propagate in the material when the stress is less or equal to the Hugoniot 

elastic limit. For a situation when the applied stress exceeds σHEL, an elastic wave followed by a 

plastic wave will propagate through the material. The propagation velocity of the elastic wave is  
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 (2.57) 

For a plastic wave the propagation velocity is a function of the slope of the stress – strain curve at a 

given value of strain. It is given by the following expression 

 
0

1
p

d
c

d




 
 (2.58) 

Multiple plastic waves can propagate through the material, and each one is a function of a particular 

value of plastic strain.  

 

Figure 2.10 Regions of elastic, elasto-plastic and shock wave propagation [1]. 

For stresses above σc (Figure 2.10) the material will behave plastically and shows characteristics 

similar to a fluid. In Figure 2.10 a domain of strong shock waves is present above the value of σc. A 

single steepfronted shock wave propagates in this region. The propagating velocity of a shock wave 

is determined through an equation of state (EOS), and is usually labelled as U. 

Next, the formation of a shock wave is briefly presented. In general, sound velocity is proportional 

to the ratio of the change in pressure with a change in density  

 
dP

c
d




 (2.59) 
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Since the relation of pressure and density is linear in the elastic region, the sound velocity in this 

region is constant. Beyond the elastic region the relation P/ρ is not anymore linear and the wave 

velocity increases with pressure or  density. Therefore, as the stress pressure increases, the same  

occurs with the wave speed.  

A portion of a pressure wave moving to the right is shown in Figure 2.11. In this wave the pressure 

magnitude is low at point A, as a consequence also the particle velocity is quite low. This in turn 

results in low velocity if the pressure wave. If we move to point B, where stress is above the elastic 

limit, the wave velocity will increase with increasing pressure. Therefore, the wave velocity at point 

B is than at point A. In the same way at point C the wave velocity gets still higher than at point B. 

Hence, this leads to the increase of the wave steepness until it becomes a straight vertical line, as 

shown in Figure 2.12. When the wave assumes this vertical front it is called a shock wave. Now 

there is a discontinuity between the shocked material behind the wave and the unshocked material 

in front of the wave, i.e. there is no smooth transition of matter in front of the wave to matter behind 

the wave.  

 

Figure 2.11 Propagating high-pressure wave [9]. 

 

Figure 2.12 Buildup of a pressure wave to a shock wave [9]. 
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For the applied load of finite duration an elastic unloading wave is generated upon the removal of 

the load (Figure 2.13). The unloading wave moves faster than the compressive wave. For a pulse of 

short duration the compressive amplitude may be attenuated by unloading from the rear. The catch 

– up distance is the point at which the unloading occurs. 

 

Figure 2.13 Decay of a shock wave due to rarefaction wave catching up from the rear [8]. 

2.2.3. Conservation equations for a shock wave 

As seen in the previous section, a shock wave has a steep front and requires a state of uniaxial strain 

in which the hydrostatic component of stress increases to high levels. When a shock wave is 

created, the pressure in a solid can exceed material strength by factors of 10 – 100, hence the solid 

can be considered as behaving like a compressible fluid. 

The following basic assumptions are made [5]: 

- A shock is a discontinuous surface and has no apparent thickness. 

- The shear modulus of the material is assumed to be zero, such that it responds to the wave as 

a fluid; hence the theory is restricted to higher pressures. 

- Body forces (such as gravitational) and heat conduction at the shock front are negligible. 

- There is no elastoplastic behaviour 

- Material does not undergo phase transformations. 
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Let’s consider Figure 2.14, in which is depicted a cylinder of unit-cross sectional area onto which a 

piston penetrates. Initially, the piston is at rest, and the material is at pressure P0 and has a density 

ρ0. Then the piston is pushed with the velocity Up into the compressible material. The pressure pulse 

propagates ahead of the piston with velocity Us. After a time t1, the highly compressed region ahead 

of the piston has moved forward by a distance equal to Ust1, while the piston has moved by a 

distance equal to Upt1. At this point the material in the compressed region has a pressure P and 

density ρ. A shock front can be thought of as a plane separating ‘‘moving’’ from ‘‘stationary’’ fluid 

in a cylinder with a moving piston. The velocity of the front is Us, while the particles (or atoms) at 

the shock front and behind it are moving at a velocity Up. The pressure buildup is caused by this 

particle displacement. Ahead of the front the particles are stationary. The shock wave moves at a 

velocity higher than the piston velocity. The distance that the piston and the shock wave have 

travelled in time t1 is Upt1 and Ust1, respectively. 

 

Figure 2.14 Successive positions of an idealized piston moving into a cylinder with compressible fluid [5]. 
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Conservation of mass. The mass moving toward the front can be expressed as  0 0sA U U dt  , 

while the mass moving away from the front equals  s pA U U dt  . By equating the mass that 

comes in with the mass that goes out per unit area, we obtain: 

    0 0s s pA U U dt A U U dt      (2.60) 

or, if 0 0U   we have, 

  0 s s pU U U     (2.61) 

Equation (2.61) is the equation for the conservation of mass. 

Conservation of momentum. The conservation of momentum can be expressed by equating the 

change in momentum with the impulse per unit cross-sectional area 

      0 0 0 0s p p sA U U U dt A U U U dt P P Adt        (2.62) 

   0 0 0 0s pU U U U P P      (2.63) 

For 0 0U   

  0 0 s pP P U U   (2.64) 

This is the equation for the conservation of momentum. The quantity ρ0Us is often called the shock 

impedance. 

Conservation of energy. The conservation of energy is obtained by equating the difference of the 

work done by P and P0 to the change in total energy (kinetic plus internal) between the two sides of 

the front: 
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 (2.65) 

For U0=0 

    2
0 0

1

2
p s p p s s pPU U U U E U E U U         (2.66) 
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And by substituting (2.61) in the above equation, we obtain 

  2
0 0 0

1

2
p s p sPU U U U E E     (2.67) 

Here E0 and E are the specific internal energy in front and behind the shock front, respectively. 

Eliminating Us and Up from (2.67) gives the Rankine-Hugoniot relation (also called the ''Hugoniot'') 

     0 0 0 0

0

1 1 1 1

2 2
E E P P P P V V

 
       

  
 (2.68) 

Where V0=1/ρ0 and V=1/ρ are the specific volumes.  

Equations (2.61), (2.64), and (2.67) (or (2.68)) are called the Rankine-Hugoniot jump conditions. 

In the above conservation equations, there are five variables: pressure (P), particle velocity (Up), 

shock velocity (Us), specific volume (V) (or density (ρ)), and energy (E). One more equation is 

needed to express all parameters as a function of one of them. Usually this additional equation is the 

experimentally determined relationship between shock and particle velocity. An empirical 

relationship between Us and Up is given by the following polynomial equation with parameters C0, 

S1, S2, S3,…:  

 
2

0 1 2s p pU C S U S U     (2.69) 

Equation (2.69) is called the equation of state (EOS) of a material and is a fundamental equation for 

modelling the material behaviour in impact simulations in chapter 5. In this equation C0 is the sound 

velocity in the material at zero pressure and S1 and S2 are empirical parameters. 

The Rankine-Hugoniot equation gives a relation between P and ρ immediately behind the shock. A 

Hugoniot is plotted in Figure 2.15 as a P-V curve. Each point on the Hugoniot corresponds all 

shocked states in a material, therefore, the Hugoniot identifies all shocked states in a material and 

describes the material properties. The straight line joining (P0, V0) and (P1, V1) is known as the 

Rayleigh line and refers to the shock state at P1. If there is a shock pulse of amplitude P1, it does not 

reach this point by following the Hugoniot line. Rather, it changes discontinuously from its initial 

value P0 to its value P1. This discontinuity is explained by the slope of the Rayleigh line (Figure 

2.15) that is proportional to the square of the shock wave velocity Us, and is equal to: 

 
2 20
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s

P P
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V V
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
 (2.70) 
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From the above equation can be observed that when pressure increases, the magnitude of the slope 

and velocity of the wave also increases. 

 

Figure 2.15 Characteristic Hugoniot (P-V) curve showing Rayleigh line [5]. 
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3. Multifunctional panels structure 

3.1. Introduction 

Multifunctional structural materials or systems possess the basic strength and stiffness dictated by 

loads acting on them and have additional functions beyond the structural one. The objectives and 

motivation for the development of materials/systems of this kind is to improve efficiency, safety, 

versatility and reduce size, weight, cost, power consumption, and so on, of the multifunctional 

systems with respect to the traditional approach where different functions are performed by 

different and independent (non-integrated) units. The functionalities of multifunctional material 

systems can include integrated structural, electromagnetic, self-healing, energy storage, energy 

harvesting, thermal, sensing and actuation, and other capabilities [[10],[11]]. Since almost every 

object around us has a structure, whether to support forces acting on it or to support its sub-

components, most of the multifunctional concepts have been developed by exploiting the structure, 

thereby combining it with some additional function into a multifunctional structure, as the name 

itself says. A large number of multifunctional material systems has been proposed so far, where in a 

material that is capable of bearing mechanical loads and serves as structural element, one or more 

structural or non-structural functions have been integrated [[10]-[15]]. Aerospace and military fields 

are currently the main application areas of multifunctional materials and structures. 

In this work a multifunctional structure that, besides being a structural element with the function of 

supporting loads acting on the structure, is able to seal holes following an impact event is presented.  

This multifunctional structure is investigated under hyper velocity impacts. In the multifunctional 

structure presented herein the multiple functionality is achieved by combining different materials 

for different functions in one multilayer configuration, where each layer performs a specific 

function. In this way a plate element with the structural and self-healing functions is obtained. The 

self-healing in this panel refers to the sealing of the hole caused by a perforating impact,  and not to 

the restoration of mechanical strength in the hole zone.  

3.2. Self-healing materials 

In [16] self-healing is defined as ‘‘the ability of a material to heal (recover/repair) damages 

automatically and autonomously, that is, without any external intervention’’. Despite of this 

definition, often an external trigger is needed to generate the self-healing process in manmade 

materials. This leads to the following two types of self-healing mechanisms:  

- autonomic (without any intervention) 
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- nonautonomic (needs human intervention/external triggering)  

Another classification of self-healing materials according to the healing agent is appropriate. When 

the repairing agent is different from the structural material and is incorporated into the main matrix 

as a discrete entity, the self-healing is classified as extrinsic. On the contrary, when the repairing 

capability is contained in the structural material itself (no additional healing substance), this is 

classified as intrinsic self-healing. In extrinsic self-healing systems the healing agent is stored in 

microcapsules [17], hollow fibres [[18],[19]], or microvascular systems [[20],[21]], which are 

embedded in the system during the manufacturing process. When a crack forms and propagates it 

breaks the reservoir and the healing agent leaks into the crack due to capillary forces, thus filling the 

crack. This process is also autonomic as there is no need for external or manual intervention. In 

intrinsic healing systems the polymer matrix gains temporary mobility when an external or internal 

trigger is applied, such as thermal, photo, or chemical activation. Since a trigger is needed to 

activate the reparation process those systems are considered as nonautonomic. Some examples of 

intrinsic self-healing are reversible covalent bonds [[22],[23]], supramolecular interactions [24], 

shape memory polymers [25], and polymer blends [26]. An advantage of intrinsic healing systems 

is the capability of performing multiple healing events at single damage site. A review of recent 

developments in self-healing polymeric materials is presented in [27]. 

3.3. Multifunctional panel concept 

As part of a project named IMBEMUS (Impact Behaviour of Multifunctional Materials), a group of 

researchers at the University of Padua have started working on the development of a multifunctional 

structure system. The idea of this multifunctional system is a panel that can perform the following 

three functions:  

1) act as a structural element 

2) close holes caused by a perforating impact 

3) detect the occurrence and location of a perforating impact on the panel 

All three of the above functions would be incorporated in one panel, which would result in a 

multifunctional panel.  To achieve the multiple functions listed above, the panel is conceived as a 

multilayer plate consisting of several different layers, where each layer in the assembly has a 

specific task. So, according to the functions of the multifunctional panel, there are three different 

types of layers: 

a) structural layer 

b) self-healing layer 

c) sensor layer 
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The structural layer provides to the panel the ability to support loads acting on it, the self-healing 

layer is used to provide the self-repairing of the hole caused by a perforating impact event, and the 

sensor layer provides a mean to detect where and if a perforating impact happened. A sketch of a 

possible multifunctional panel cross section configuration is depicted in Figure 3.1, where the 

different layers are combined in one panel assembly (Figure 3.1 (a)). After a perforating impact, all 

the layers, except for the self-healing one, remain perforated. The self-healing layer on the other 

hand should be able to close the hole (Figure 3.1 (b)) automatically and immediately after the 

impact, without the need of external intervention. Each layer can occur once or more in the 

multifunctional panel configuration. The occurrence frequency of each type of layer and their 

relative positions in the panel configuration affect directly the multifunctional panel performance 

under impact. The configuration, dimensions and materials of the structural layers can be selected 

according to the forces expected to act on the panel. Therefore, this concept presents an adaptable 

solution from the structural perspective.  

 

Figure 3.1 Multifunctional panel structure concept: (a) before impact and (b) after impact. 

In this thesis the impact behaviour of several multifunctional panel configurations is investigated. 

To this end, two slightly different structural layers and a self-healing layer were studied under 

hyper-velocity impact loading, which is presented in the next chapter. Since the sensor layer 

thickness should be a fraction of a millimetre, its structural (mechanical) contribution to the impact 

response of the panel assembly can be considered as negligible. Therefore, the sensor layer has not 
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been considered in this work. While there is plenty of choice for the materials to be applied in the 

structural layers, this is certainly not the case for the self-healing layer. An ionomeric polymer with 

the trade name Surlyn
® 

8940 has been chosen for the self-healing layer. This ionomer is known for 

its characteristic to self-repair a hole following an impact caused perforation [[28],[29],[30]]. For 

the structural layers composite materials were used. Therefore, in order to obtain a multifunctional 

panel with the aforementioned capabilities, a composite and ionomer panel/layer are joined together 

in a multilayer plate assembly. An example of such panel is shown in Figure 3.2, it consists of one 

structural (composite material) and one self-healing (ionomer) layer. Although the ionomer layer 

principal function is to give self-healing property to the panel, its presence and location could affect 

the panel response to impact. Similarly the composite structural layer could affect the self-healing 

function of the panel, since it is not the same if the ionomer is alone or it is incorporated in a 

multilayer assembly when impacted. Therefore, the structural and self-healing layers were 

investigated under impact loading for several different configurations and also each part has been 

investigated independently.  

 

Figure 3.2 Multifunctional panel consisting of a CFRP laminate layer and an ionomer layer. 

When a structural element is perforated, and if the hole isn’t too big with respect to the structure, it 

can still sustain most of the loads acting on it. If the structure at the same time is also a barrier 

between two media and its preventing their mixing, then a hole would make the structure useless 

once perforated, because leakage through the structure in the hole area would start. For this reason 

the idea for the panel presented herein is to apply the self-healing ionomer layer as a prevention for 
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leaking, and therefore making the multifunctional system ‘‘less’’ vulnerable to impacts then the 

structural system alone. In this way the structural layers could be less concerned with the local 

effect of the impact loads, and their dimensions could be tailored according to other loads present in 

the environment.  A natural and obvious application for this multifunctional panel would be for 

anti-leakage purposes of fluid-containing structures that can be exposed to perforating impacts (e.g. 

fuel or chemical storage).  

3.4. Structural layers 

Two structural layers have been used in the largest part of the experimental campaign. Both 

structural layers for the multifunctional panel investigated in this work are made of fibre reinforced 

polymers. The choice of a composite material for the structural part of the panel is motivated by its 

high strength to weight and stiffness to weight ratios. Because the panel’s multiple functionality is 

obtained at the cost of mass increase, since different layers had to be incorporated in one assembly, 

the application of composite materials for the structural parts somewhat alleviates the mass 

increment caused by the addition of various layers in one panel with respect to more traditional 

materials (e.g. metal alloys). In applications where weight reduction is an important issue (e. g. 

aerospace field) composite materials represent an attractive choice.  

One of the layers is made of carbon fibre reinforced plastics (CFRP). This layer has a thickness of 

3.6 millimetres. It consists of 12 unidirectional laminas, each thick 0.3 millimetres. The stacking 

sequence of the laminas in the  laminate is [0/90/0/90/0/90]2. The fibres in the CFRP laminate are 

T600 24K, and the matrix is REM epoxy matrix. The fibre volume ratio is 60%. 

The other structural layer is a CFRP laminate with woven aramid fibre / epoxy composite layers 

attached on its top and bottom face, as shown in Figure 3.3. The CFRP layer is made up of 8 

laminas which are equal to those in the CFRP structural layer, and the stacking sequence is 

[0/90/0/90]2. The surface layers consist of an aramid fibres fabric Twaron
®
 in an epoxy matrix 

IMP503Z. The Twaron
®
/epoxy composite laminate is 0.47 millimetres thick. The resulting 

thickness of the  Twaron
®
-CFRP-Twaron

®
 (TCT) structural layer is 3.34 millimetres. 

Six tests of the experimental campaign were also done with a woven CFRP structure. This structure 

is composed of carbon-fabric/epoxy composite laminas. Three samples are 1.1 millimetres thick 

with a stacking sequence [0/45/-45/0], and three samples are 2.2 millimetres thick with a stacking 

sequence [0/45/-45/0]2. 
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Figure 3.3 Structural layer made of Twaron
®
 and CFRP. 

3.5. Self-healing layer 

The self-healing layer is made of an ionomeric polymer known commercially as Surlyn
®
. Surlyn

®
 is 

a ionomer thermoplastic resin.  Surlyn
®
 is the DuPont trade name for the ethylene-co-methacrylic 

acid (EMAA) copolymer.  

The EMAA ionomers have been observed to self-heal after an impact event [[28]-[31]]. This ability is an 

inherent material response and occurs automatically and instantaneously without the need for 

manual intervention. Due to this self-healing ability, the Surlyn
®
 EMAA ionomer is chosen to 

comprise the self-healing layer of the multifunctional panel. The ionomer samples were produced 

by the Aerospace Science and Technology Department at the Politecnico di Milano, Milan, Italy. 

3.5.1. Ionomers  

In [32] ionomers were defined as a class of ion-containing copolymers in which the maximum ion 

group content is ~15 mol%. This definition was further refined, in order to distinct ionomers from 

polyelectrolytes. In [33] ionomers were defined as polymers whose bulk properties are governed by 

ionic interactions within the discrete regions within the polymer structure. Ionomers are produced 

by a process known as copolymer neutralization. In this process precursor copolymers containing 

both ionic (anionic) and non-ionic repeat groups are used to derive ionomers. The anionic acid 

component is neutralized forming an ionic pair with a metallic cation. This produces the ionomer 

with ionic groups attached along the polymer chain. The number of acid groups that is neutralized 

in the initial copolymer influences the amount of ionic content present in the ionomer.  
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The ionic pairs present in these materials group into discrete regions known as multiplets. A 

multiplet is an aggregate consisting of several ion pairs (inner dashed circle in Figure 3.4). 

According to the Eisenberg-Hird-Moore (EHM) model (Figure 3.4) [34] these ion pairs anchor their 

attached polymer chains to the multiplet. This causes a reduced mobility of the attached polymer 

chains near the multiplet. Due to this significantly reduced mobility, with respect to that of the bulk 

polymer, the surrounding area of the multiplet is known as the restricted mobility region (outer 

dashed circle in Figure 3.4). Beyond the limits of the restricted  mobility region the polymer chains 

return to their typical bulk mobility. 

 

Figure 3.4 Schematic diagram of the region of restricted mobility surrounding a multiplet in a poly(styrene-co-sodium 

mathacrylate) ionomer [34]. 

An increase in ionic content is followed by a creation of numerous multiplets within the ionomer 

structure. The increase in number of multiplets to a certain level, causes overlapping of the 

restricted mobility regions of the neighbouring multiplets. This, in turn, causes the formation of a 

more continuous restricted region in the polymer structure (Figure 3.5), defined as the ionic cluster. 

The ionic cluster region has its own Tg, different from the one of the bulk properties. Figure 3.5 

shows an increase in ionic content from ‘‘a’’ to ‘‘c’’, causing the formation of ionic cluster. The 

multiplets are shown as small circles, while the restricted  mobility region is represented as a grey 

area. 
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Figure 3.5 Schematic diagram showing the growth of multiplets and the formation of clusters with increases in ionic 

content [34]. 

The ionomer mechanical properties are highly affected by the amount of ionic content. An increase 

in ionic content is observed to cause an increase in tensile strength, modulus and toughness of the 

ionomer [[35],[36]]. The formation of ionic aggregates affects also the thermal characteristics of 

ionomers. During heating, the ionic groups transit from an ordered state to an disordered state [37], 

as shown in Figure 3.6 (red circles). 

 

Figure 3.6 Model representing the effects of the heating/cooling cycle on ionomer order-disorder and crystallization 

[37]. 

This transition was identified as an order-disorder transition, and occurs when heating above a 

certain temperature Ti. This temperature Ti is lower than the melting temperature (Tm) of the 

crystalline regions of the polymer chain. With further heating above Ti, the polymer crystallites melt 
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at temperature Tm (Figure 3.6). During cooling (Tc), the polymer crystallites form rapidly, while the 

ionic regions remain disordered even when the room temperature is reached and they reorder 

through the long-time relaxation process. 

3.5.2. Surlyn
®
  

Surlyn
®
 is an ionomer synthesized by DuPont. Surlyn

®
 is a random copolymer consisting of 

poly(ethylene-co-methacrylic acid). It contains 5.4 mol% methacrylic acid (MA) groups distributed 

along the polymer chain, and has been neutralized with a cation (Figure 3.7). There are various 

types of Surlyn
®
 produced by DuPont. In this study Surlyn

®
 8940 was used. Surlyn

®
 8940 has 30% 

of its MA groups neutralized with sodium cations.  

 

Figure 3.7 Surlyn® chemical structure [29].  

3.5.3. Self-healing of the ionomer 

The EMAA based ionomers have been observed to exhibit self-healing behaviour following a 

ballistic impact [[28]-[31]]. For a material that doesn’t have the self-healing capability, the resulting 

damage after a perforating impact is a hole through the material, with the size of the hole being 

dependant on the impactor velocity, and impactor-target dimensions and materials. EMAA based 

ionomers self-healing capability is able to seal the hole, leaving only a ‘‘scar’’ in the impact area 

(Figure 3.8). This hole repair (healing) process occurs instantaneously and automatically, without 

any manual intervention, but it is limited to specific conditions of temperature, bullet shape and 

speed. As this self-healing response is an inherent EMAA ionomer property, it can be classified as 

intrinsic self-healing. Furthermore, the self-healing can be accomplished multiple times at the same 

damage site. In [28], temperature measurement by thermal IR camera evidenced a temperature 

increase up to the melting temperature (~98°C) during a 9 millimetres bullet impact, and a rapid 

decrease to room temperature with distance from the hole was observed.  
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Figure 3.8 Scanning electron micrograph of healed EMAA ionomer following puncture with 4.5 mm diameter 

projectile [38]. 

In [[29],[31]] a ballistic self-healing two stage mechanism for the ionomer was proposed (Figure 

3.9). As seen in Figure 3.9, in the first stage the cooler material in the impact area elastically snaps 

back after the projectile passage, thus closing the hole and bringing the molten material in contact. 

Then in stage two the molten surfaces bond together through interdiffusion, thus sealing the hole.  

 

Figure 3.9 Two stage model for ballistic self-healing in EMAA based ionomer panel [38]. 

The study of EMAA based ionomers with different ionic and with no ionic content done in 

[[29],[31]], showed that ionic interaction is not the reason of the self-healing behaviour.  

In [[29],[39]] tests for a range of temperatures from below to above room temperature were 

performed the limitations imposed on the self-healing performance of EMAA ionomers by the 

environment temperature. Samples tested at temperature above 60°C presented no healing, while 

for tests at temperatures down to -30°C most samples maintained the self-healing behaviour.  
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3.6. Multifunctional panels configurations 

The assembly of the structural and self-healing layers can vary in the number of each layer type and 

their location with respect to each other. The impact behaviour of several configurations was 

studied. In order to facilitate the identification of various configurations, capital letters are assigned 

to each specific layer. Thereby, the structural layer made of CFRP is named as panel (layer) A, the 

structural layer made of Twaron
®
 and CFRP is labelled as panel C, and the self-healing ionomer 

layer is labelled with the letter B. Furthermore the first letter in the configuration name indicates the 

impact side. For example, to indicate a configuration consisting of a CFRP structural layer and a 

ionomer self-healing layer, impacted on the ionomer side, we would use BA (B = ionomer, A = 

CFRP, first letter = impact side = B). The tested panels configurations were: B, A, C, AB, BA, CB, 

BC, ABA, ABC, CBA, and CBC. Configurations AB and CBA are shown in Figure 3.10.  

                     

Figure 3.10 Examples of configurations AB (left) and CBA (right). 

As it can be seen from the listed configurations, also the single parts were tested independently. 

Anyway, the ionomer itself is a multifunctional structure, because it can be used as a structural 

element and it possesses also the self-healing ability. But, as its mechanical properties are low for 

common engineering structures, coupling with a structural composite material improves that aspect. 

After testing the individual parts alone, the number of parts in a configuration was increased and 

with each increase in the number of parts all reasonable layouts of the parts (i.e. configurations) 

were investigated.  
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Almost all of the tested configurations were assembled by placing the layers in direct contact and 

holding them together by a frame structure (see chapter 4). This way of holding the parts together in 

one assembly does not resemble a real application panel, but it gave more flexibility when 

conducting the tests, because it was not known in advance, due to available number of individual 

parts and time limitations, how many tests per configuration would be executed, and therefore how 

many specific configurations would be needed. Few tests were also carried out on assemblies where 

the individual parts were glued to each other by means of adhesive. 
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4. Experimental investigations and results 

4.1. Introduction 

The panels presented in chapter 3 were investigated experimentally under high- and hyper-velocity 

impacts. In this chapter the experiments are described and the obtained results are given and 

discussed. The experimental campaign was executed at the Centre of Studies and Activities for 

Space (CISAS) impact laboratory.  

In order to assess the panels impact behaviour under experimental testing, several measurements 

were performed. These include, momentum transfer from the debris cloud (which propagates from 

the target’s back face) to structures located behind the target, debris cloud fragments velocity, and 

damage extension of the targets. Furthermore, the self-healing of the ionomer layers was checked, 

and video capturing of the tests was performed. All this provides characterization of the 

multifunctional panel’s behaviour and properties under high velocity impact. 

At the beginning of the chapter, in section 4.2, the instruments used in the experiments are 

presented and briefly described. Then, in the following section details about the experimental set-up 

together with the performed measurements are given. Finally, obtained experimental results are 

presented and discussed.  In the experimental results a comparison of protection capability between 

the  ionomer and aluminium plates is given in section 4.4.1. Then few preliminary tests by which 

the self-healing of the ionomer in a multifunctional structure is assessed are presented. In section 

4.4.3. the momentum transfer and debris cloud velocity is analysed for each configuration from 

section 3.6., and comparison among configurations is done. Damage measurements are described 

and provided in section 4.4.4. Finally, in section 4.4.5., remarks on the self-healing of the impacted 

samples are given. 

 

 

 

 

 

 

 



52 

 

4.2. Instrumentation 

Different instruments/systems were used to carry out experimental tests and investigate the samples 

behaviour. In this section the instrumentation or systems used for experimental investigation are 

presented. This includes: two-stage light-gas gun, ballistic pendulum, ultrasound flaw detector, and 

high-speed video camera. 

4.2.1. Light-gas gun 

The impact experiments were performed at the Centre of Studies and Activities for Space (CISAS) 

impact facility, by means of a two-stage light-gas gun (LGG) [[40], [41], [42]], shown in Figure 4.1.  

 

Figure 4.1 Two-stage light-gas gun at the CISAS impact facility. 

With the CISAS light-gas gun projectiles up to 100 mg can be accelerated to the velocity of 6 km/s. 

An advantageous capability of this gun is also its high shot frequency. Namely, taking into account 

also the time needed for replacing the target set-up and for pumping down the vacuum chamber 

housing the target it can perform more than ten shots per day. This is possible through the use of a 

complex system, in which high pressure gas is used as a piston driver, and custom fast valves 
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separate the first stage from the pump tube and the pump tube from the barrel. Figure 4.2 shows the 

scheme of the CISAS two-stage light-gas gun.  

 

Figure 4.2 CISAS light-gas gun schematic [41]. 

The volume of the first stage reservoir is 3 dm
3
. The second stage has a length of 3 m and its 

internal diameter is 35 mm. The launch tube is long 1.5 m. Launch tubes with different internal 

diameters can be used. In this study launch tubes with a x mm and x mm diameter were employed.  

A typical shot procedure begins with high-pressure gas (200 bar) stored in a first stage reservoir of 

the gun. The gas from the first stage is then discharged onto the back of the piston in the second 

stage. This is done by the opening of a fast pneumatic valve (shot valve) between the first and 

second stage of the gun. Through the action of the gas from the first stage the piston is pushed along 

the pump tube, and it compresses the gas in the second stage. The pressure of the gas in the second 

stage raises from 0.3-0.4 bar to 5-6000 bar, while the temperature reaches approximately 10000 K. 

The hot, high-pressure gas is then canalised in the launch tube on the back of the projectile through 

an automatic spring valve (check valve). The piston stops few millimetres from the gun head and 

starts moving back toward the first stage, thus compressing the gas from the first stage. Since this 

compressed gas makes the piston bounce back toward the gun head and most of the gas in front of 

the piston is exhausted into the barrel, it becomes possible that the piston impacts the gun head. In 

order to avoid this from happening, an active damping process is provided by an external fast 

electronic device.  

The damping process consists of three procedures [41]:  

1) Refilling the pump tube in front of the piston with high pressure helium 

2) Closing the shot valve to reduce the gas amount that pushes the piston toward the gun head  

3) Evacuation of the pump tube behind the piston 

This damping process prevents the piston from striking the gun head on the second coming (i.e. 

after the second bounce), and allows the piston to achieve its initial position at the base of the pump 

tube.  



54 

 

The shot valve is a fast depression valve, and its properties are: opening time 2 ms, gas pressure 200 

bar, and flow area 35 mm
2
. The check valve is an automatic spring valve, designed to open at 

adjustable pressure values (100-1000 bar) and to survive very high pressure (5000-6000 bar) and 

temperature (10000 K) [40]. 

The target set-up is placed in the vacuum chamber. Two optical barriers, placed in front of the 

vacuum chamber, detect the projectile pass before it enters the chamber and send signals to the 

computer, which makes possible to calculate the impact velocity. Furthermore, the vacuum chamber 

contains several appropriate apertures made of transparent glass to enable the use of lamps and high 

speed video camera.  

The gun is entirely controlled by means of a PC and a dedicated electronic unit, which receives 

signals from four pressure transducers and controls an oscilloscope and nine electron valves [40]. A 

management system of the gun is completely automatic, and it is shown in Figure 4.3. 

 

Figure 4.3 Gun management system (VE-electronic valves, VM-manual valves, VC-check valves, TP-pressure 

transducer, TV-vacuum transducer) [40]. 

4.2.2. Ballistic pendulum 

In this work the ballistic pendulum was used to assess the protection capability of the impacted 

targets by measuring its displacement. Researchers used the ballistic pendulum to measure the 

momentum of the fragments and target in a ballistic or hypervelocity impact [[43]-[46]]. 

The ballistic pendulum is a single degree of freedom oscillating mass. It is composed of an 

oscillating mass suspended on flexural springs and of a ‘‘Witness plate’’ (WP) mounted on the 

oscillating mass (see Figure 4.4).  
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Figure 4.4 Ballistic pendulum with the witness plate. 

The pendulum was placed behind the target sample at a fixed distance. When the impacting 

projectile has enough energy to perforate the target, a debris cloud that travels in the projectile 

direction is generated from the target’s back face upon impact. This debris cloud then impacts on 

the witness plate causing the pendulum displacement in the x direction, according to Figure 4.5. 

This displacement gives indirect information on the damage potential of the fragments in the debris 

cloud ejected from the target’s back face upon impact, which in turn provides information on the 

target protection capability.  

 

Figure 4.5 Target, witness plate and pendulum relative positions. 

The pendulum used in this work was developed in [46]. The system is suspended in such a way that 

the first natural mode is the translation motion in the direction of the projectile path and all the other 

modes occur at much higher frequencies. This is achieved by hanging the oscillating mass by four 

Flexural springs 

Witness plate 

Oscillating mass 
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flexural (torsionless) supports (e.g. thin steel plates) in parallel connection. The displacement of the 

pendulum is measured by means of an optoelectronic displacement sensor. 

The impact of the debris cloud on the WP causes the pendulum to gain an initial velocity in the x 

direction (Figure 4.5), and consequently, the pendulum starts moving the velocity vector direction. 

When the pendulum velocity is reduced to zero, due to the deformation resistance of the flexural 

springs, its initial kinetic energy is converted into elastic energy of the flexural springs. This can be 

expressed through the following energy conservation equation: 

 2 21 1

2 2
pend pend pend pendm v k x  (4.1) 

where mpend is the pendulum mass, vpend the pendulum initial velocity (acquired when the debris 

cloud impacts on the pendulum WP), kpend the flexural stiffness of the suspension system, and xpend 

the pendulum maximum horizontal displacement. From equation (4.1) vpend can be expressed as: 

 2
pend

pend pend pend pend

pend

k
v x x f

m
     (4.2) 

where fpend is the pendulum main oscillation frequency. Using the above equation, the momentum 

transferred to the pendulum (Qpend) is: 

 2pend pend pend pend pend pendQ m v m x f    (4.3) 

We see from equation (4.3) that the momentum transferred to the pendulum is proportional to its 

displacement in the x direction. Hence, it can be calculated from the measurement of the pendulum 

maximum displacement. Due to real effects occurring during hypervelocity impact testing, the 

pendulum behaviour can differ from the ideal one in equation (4.3). Among these effects the most 

interfering are the propellant gas blast and the vibration of the light-gas gun structure (recoil). These 

two effects were experimentally evaluated by running few light-gas gun tests in which empty sabots 

were launched. Since no projectile reaches the target, the resulting pendulum displacement is 

related only to the combined effects of gun blast and recoil. The average value of these 

measurements was used as light-gas gun background noise with respect to pendulum displacement 

measurements.  

The pendulum displacement was read from the acquired signals by means of a MATLAB script file 

provided by [53]. The pendulum mass was equal to 3.6 kg and its frequency was 7.6 Hz. Those 

values were used for the calculation of the pendulum momentum, which is used for comparison 

purposes between different targets. 
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4.2.3. Ultrasound flaw detector 

Phased array (PA) ultrasonic technology was used to detect delamination in the impacted samples 

[[47], [48], [49]]. Delamination is a damage mode characteristic to composite materials [50]. It 

manifests as detachment (crack) between layers in a composite laminate. Even if there is no visible 

damage on the external faces of the composite, delamination may be present inside the laminate, as 

a consequence of an load action. Because this crack cannot be seen by visual observation, phased 

array ultrasonic technology is used to inspect the presence and extent of delamination in impacted 

samples.  

Phased array systems are applied for weld inspection and crack detection in a number of industries, 

such as aerospace, power generation, petrochemical, pipeline construction and maintenance, 

structural metals, and general manufacturing [47]. 

The main feature of phased array ultrasonic technology is the computer controlled excitation 

(amplitude and delay) of individual elements in a  multielement probe [49]. The individual wave 

fronts can be delayed in time and synchronized in phase and amplitude,in such a way as to create a 

beam. Controllable excitation of individual elements enables beam steering and focusing, and it also 

improves the effective sensitivity. 

Phased array probes for industrial non-destructive testing (NDT) are usually constructed around 

piezocomposite materials, which consist of many very small and thin rods of piezoelectric ceramic 

embedded in a polymer matrix. The composite strip is divided into a number of electronically 

separate elements by a segmented metal plating. Each separate element can be pulsed individually. 

The segmented element is incorporated in a probe assembly that includes a protective matching 

layer, a backing, cable connections and a housing, as shown in Figure 4.6 [47]. 

 

Figure 4.6 Phased array probe cross-section [47]. 
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Figure 4.7 illustrates the working principles of the piezoelectric transducer element. The application 

of a voltage on the piezoelectric transducer element causes its compression in the direction 

perpendicular to its face. Upon voltage removal (usually less than a microsecond later) the element 

springs back, thus producing an ultrasonic wave. This process can go also in the opposite direction, 

i.e. if the element is compressed by the pressure of an arriving ultrasonic wave, voltage is produced 

across its face. Therefore such an element can both transmit and receive ultrasonic pulses. 

 

Figure 4.7 Principle of the piezoelectric transducer element [47]. 

The basic functional properties of phased array probes are its type, frequency, number of elements 

and size of elements. According to the probe type they differ in the way they are used, and can be 

used with a plastic wedge, in direct contact or in immersion. The transducer frequencies are usually 

in the range from 2 MHz to 10 MHz. Penetration increases with lower frequencies, while with 

higher frequencies there is an increase in resolution and sharpness. The number of elements 

composing a phased array probe can vary from 16 to 256. They can be arranged in various shapes, 

as linear array, 2D matrix, annular array, circular array, or some other shape.  

As mentioned previously, the impacted targets were also inspected with the PA flaw detector for 

delamination detection and assessment. In order to achieve optimal conditions for sample 

inspection, due to the amount of damage suffered by the targets and the relatively high sound 

attenuation of the composite, several considerations on the inspection set-up have been made.  

The tested samples exhibited detachment of the superficial layers, especially the CFRP targets, and 

had fibres sticking outward from the sample’s hole area, which was more prominent for the 
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Twaron/CFRP/Twaron samples. This prevented direct contact between the probe and the samples, 

since adequate contact was not attainable due to damage caused irregularities on the sample’s 

surface. For the same reasons, usage of the wedge with the probe was also discarded. Finally it was 

decided that the inspections would be performed in immersion, where the target and probe were 

immersed in water, and the probe was held at a fixed distance above the target surface.  

Probes with frequency of 2.5 MHz, 5.0 MHz and 10.0 MHz were tried and compared. In practice, 

resolution and focal sharpness increase with higher frequency, while penetration in any test material 

(due to material attenuation) decreases with increase in frequency. Relatively high attenuation of the 

sound wave was observed for the inspected composite samples, as shown in Figure 4.8 (a), in which 

the target bottom is barely visible and also the delamination is difficult to detect in deeper regions. 

Anyway, no significant difference between the three probes due to wave attenuation was observed, 

while better resolution was obtained with higher frequency. Therefore, the probe of 10.0 MHz was 

selected for all the inspections. Even if sound attenuation in the inspected composite material is 

high, the similar attenuation observed between the three frequencies is probably due to the small 

thickness of the samples. 

In order to alleviate the effects of ultrasound wave attenuation and scattering through the thickness 

of the samples, caused by the composite structure and material, a Time-Corrected-Gain (TCG) 

option available within the PA flaw detector system was used. The TCG option increases the gain 

linearly with increasing distance from the probe, therefore this permits improved ‘‘visibility’’ in the 

deeper regions from the ultrasound wave entrance surface in the target (Figure 4.8 (b)). 

 

Figure 4.8 Cross-sectional view of panel C after impact: a) no TCG was not applied, and b) TCG was used. 

 

Delamination 
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4.2.4. High speed video camera 

The Phantom high-speed video camera was used to capture the impact phenomenon in the 

performed tests. With the high-speed camera and the accompanying software, the velocity of the 

fragments in the debris cloud was measured [51]. Two velocities were measured: that of the fastest 

fragment moving in the horizontal direction and that of the biggest fragment (if such fragment was 

present) moving also in the horizontal direction, as shown in Figure 4.9. For the biggest fragment it 

was tried to select the remnant of the projectile if it was visible and somewhat bigger than the other 

fragments in the debris cloud.  

The following settings for the high-speed video camera acquisition were used: 

- Resolution:         256 x 152 

- Sample rate (fps=frames per second):  66037 fps (Period: 15.14 μs) 

- Exposure (μs):        4.0 

 

Figure 4.9 The fastest and biggest fragment in the debris  cloud. The bigger arrow indicates the biggest fragment, while 

the smaller one indicates the fastest fragment. 

4.3. Experimental set-up and measurements 

All the experimental tests were carried-out at the CISAS impact facility. The impact tests were done 

by means of a two-stage light-gas gun. Spheres made of Aluminium 1100 were used as projectiles. 

Impacts with varying projectile size and velocity were performed. The impact velocity ranged from 

approximately 1 km/s to 4 km/s, with a majority of the tests being from 2 km/s to 2.5 km/s. The 
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projectile diameter was in the range from 1.5 mm to 5.6 mm. Anyway, in each section, where a 

specific study is presented, details about projectile speed and diameter are given. The targets were 

suspended by means of elastic springs which were attached to a stationary frame, as shown in 

Figure 4.10. The target parts were held together by aluminium support plates, see Figure 4.10. 

Through bolts action the supporting plates press on the target front and back face on to the upper 

and lower boundary, thus keeping the assembly together. Behind the target a copper witness plate 

mounted on the ballistic pendulum was located (Figure 4.10). A high-speed camera was also 

employed to capture the impact tests and to provide more insight in the tests. The high-speed 

camera was not available for all tests, and therefore it was not used in all of them.  

 

Figure 4.10 Target support, and the witness plate (WP) on a ballistic pendulum. 

The following data sets related to the impact tests were collected and are presented in various 

sections: 

- momentum transferred to the witness plate   

- velocities of the fastest and biggest fragments in the debris cloud 

- damage on the target samples 

- damage distribution on the witness plate 
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- self-repair of the hole in the ionomer layer 

The momentum transferred to the witness plate was determined by the displacement of the ballistic 

pendulum. The velocities of the biggest and fastest fragment are estimated from the videos of the 

high-speed camera. The damage on the targets was assessed after the impact by visual inspection 

and an ultrasound flaw detector. Visual inspection was concerned with the visible damage on the 

surface of the samples and in the hole region. The visible damage was measured with a caliper. A 

phased array ultrasound detector was used for the inspection of delamination in the interior of the 

samples. Damage on the witness plate provides indirect information on the size distribution of the 

fragments in the debris cloud. The self-healing of the impact caused hole in the ionomer layer was 

checked by visual inspection.  

All of the above data characterize the sample’s behaviour under impact loading. In the post impact 

analysis all data relative to each shot was tabulated and are presented in the following sections. 

4.4. Experimental results and discussion 

A vast campaign of experimental tests was performed. First the self-healing ionomer properties as a 

bumper were investigated and compared to that of aluminium. Then the ionomer was coupled to a 

structural panel to investigate its self-healing capability when applied in a multilayer assembly, and 

to investigate the possibility of applying it in a multifunctional system as presented in chapter 3. 

Thereafter, configurations of panels A, B and C (see section 3.3) were subjected to testing and the 

results are reported in the present section. Firstly, the single layers were tested and evaluated 

individually; then, two layer multifunctional configurations were tested and evaluated; and finally, 

several tests on three layers configurations were performed, and the results are compared to all 

previous configurations. The resulting damage of the panels is also discussed and quantified. Lastly, 

the self-healing results of the multifunctional panels are discussed. 

4.4.1. Self-healing ionomer versus aluminium bumpers  

The protection capability of the ionomer samples is compared to that of aluminium alloy bumpers 

with similar areal density. The aluminium used is Al7075-T6. The protection capability was 

assessed by looking at two complementary data sets regarding the witness plate, namely, the extent 

on the witness plate of craters produced by the impact of the debris cloud and the amount of 

momentum transferred to the witness plate by the debris cloud. Both aspects provide indirect 

information on the debris cloud potential to damage structures on its flight path. Moreover, they 

should decrease when the target protection capability increases.  
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The witness plate craters area was measured from high-resolution (600dpi) images of the witness 

plates by means of an image analysis code developed in MATLAB
®
 [52], while the momentum 

transfer was assessed by using the ballistic pendulum.  

The test matrix is reported in Table 4-1. As reported in the table, incomplete self-healing occurred 

only in one sample. Figure 4.11 shows test’s 8813 target sample and witness plate. The crater on the 

witness plate indicates that the bumper was perforated, but no hole was present on the ionomer.  

 

Table 4-1 Test summary for hypervelocity impacts on ionomer and aluminium targets. 

Shot No. 

Target Projectile 
Perforation 

(Yes/No) 

Hole 

closure 

(Yes/No) 
Material 

Thickness 

(mm) 

Diameter 

(mm) 

Velocity 

(km/s) 

8813 Surlyn® 2.0 1.5 1.93 Yes Yes 

8829 Surlyn® 3.0 1.5 1.80 Yes Yes 

8833 Surlyn® 5.0 1.5 1.64 No Yes 

8836 Surlyn® 5.0 1.5 4.10 Yes Yes 

8838 Surlyn® 3.0 1.5 4.00 Yes Yes 

8839 Surlyn® 2.0 1.5 3.90 Yes No 

8841 Al7075-T6/3 1.5 1.5 1.34 No No 

8842 Al7075-T6/3 0.8 1.5 2.64 Yes No 

8843 Al7075-T6/3 0.8 1.5 1.37 Yes No 

8844 Al7075-T6/3 1.0 1.5 1.28 Yes No 

8845 Al7075-T6/3 1.5 1.5 3.70 Yes No 

8846 Al7075-T6/3 1.0 1.5 4.05 Yes No 

8847 Al7075-T6/3 0.8 1.5 4.05 Yes No 

8848 Al7075-T6/3 1.0 1.5 2.64 Yes No 

 

 

In Figure 4.12 and Figure 4.13 scanning electron microscope (SEM) micrographs of the front and 

rear side of shots 8813 and 8839 are shown, respectively. From Figure 4.12 it can be observed that a 

molten circular zone with a diameter approximately equal to that of the projectile is present in the 

impact zone. In the damaged area around the visible hole in Figure 4.13 spallation occurred, thus 

damaging the material, and removing a bigger amount of material from the impact area, which 

presumably hindered the self-reparation of the hole. 

In Figure 4.14 the ratio of the total crater area (Atot) and specific area (Asp) is plotted. The specific 

area is the bumper surface corresponding to a mass of 1 kg.  The damage area Atot is in fact 

proportional to Asp, since the specific area is the inverse of the surface density and the lower the 

surface density the higher the amount and speed of ejecta reaching the witness plate. In Figure 4.14 
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the total crater area increases more than linearly with the impact speed for the aluminium and the 

ionomer, but the increasing slope is steeper for the aluminium. It can be also observed that at 

highest impact velocities the ionomer bumper seems to produce less debris. This is probably due to 

the fact that with increasing speed increases also the amount of the target material that goes in the 

debris cloud, but such material is less dangerous if it has a low density, as it is with ionomer 

compared to aluminium.  

 

Figure 4.11 Test no. 8813: perforated and rehealed ionomer bumper (left) and witness plate craters (right). 

In Figure 4.15 the momentum transferred to the pendulum (Qpend) is plotted against the projectile 

momentum (Qp). A tentative trend for the aluminium samples is also plotted, showing large data 

scattering due to the limited number of tests. The uncertainty in the momentum estimation is 

reported by error bars, while the horizontal line refers to the light-gas gun noise. It can be seen from 

the figure that, for both the ionomer and aluminium, the momentum transferred to the ballistic 

pendulum by the debris cloud increases more than linearly with the impact speed. The increasing 

trend is again steeper for aluminium than for the ionomer.  

 

Figure 4.12 Test no. 8813: SEM micrographs of the impact zone on the target front (left) and rear (right) face [Courtesy 

of Politecnico di Milano]. 
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Figure 4.13 Test no.8839: SEM micrographs of the impact zone on the target front (left) and rear (right) face [Courtesy 

of Politecnico di Milano]. 

 

Figure 4.14 Witness plate total crater area divided by the bumper specific area [54]. 

Even if Figure 4.14 and Figure 4.15 indicate higher protection capability of the ionomer, it has to be 

considered that the damaging potential of the debris cloud is highly dependent from the size and 

speed of its biggest fragment. This means that a debris cloud made of one big fragment is much 

more dangerous than a cloud with the same total mass consisting of many tiny dispersed particles. 

Therefore, the area of the largest crater on the witness plate (Amax) divided by the specific area of 

the bumper is plotted in Figure 4.16. We can see that Amax/Asp for the ionomer is increasing more 

than for the aluminium, with speed increase. Furthermore, for aluminium bumpers the protection 

capability begins to increases after approximately 3 km/s. For ionomer bumpers values of Amax/Asp 

exceed those of aluminium bumpers even when the total crater area (Atot/Asp) is lower. This means 

that fragments in the debris cloud are better fragmented for aluminium bumper than for ionomer 

bumpers. In fact, by observing the witness plates after the tests (see Figure 4.17), it is clearly visible 
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that the debris in the cloud are better fragmented and dispersed after impacts on aluminium targets 

compared to ionomer bumpers, as indicated previously also by Figure 4.16. 

 

Figure 4.15 Momentum transfer to the witness plate mounted on the ballistic pendulum and located behind the target 

[54]. 

 

Figure 4.16 Area of the largest witness plate crater divided by the target specific area [54]. 
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Figure 4.17 Witness plate damage comparison after tests on ionomer (3 samples on the left) and tests on aluminium (3 

samples on the right). Each row of figures corresponds to similar impact conditions. 
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4.4.2. Preliminary multifunctional panel tests 

In this part six preliminary tests, in which the self-healing of the ionomer is tested, are presented. 

The six samples consist of one woven CFRP structural layer attached to a self-healing ionomer 

layer. In three samples the CFRP layer is 1.1 mm thick, and in the other three it is 2.2 mm thick (see 

section 3.4.). The ionomer thickness is 2 mm in all samples. Impacts on CFRP and ionomer side 

were investigated. Moreover, three projectile diameters were used, namely, 2.3 mm, 3.5 mm and 5.6 

mm. Impact velocities ranged from 940 m/s to 1200 m/s and are representative of ballistic impact. 

The test matrix is presented in Table 4-2.  

 

Table 4-2 Test matrix.  IDt is the target ID, tCFRP is the thickness of CFRP layer; tIonomer is the thickness of the Ionomer 

layer, vp is the projectile velocity and dp is the projectile diameter. P means complete perforation, and NP means no 

perforation. 

Shot No. IDt 

Target 

thickness vp 

(km/s) 

dp 

(mm) 
tt/dp 

Impact 

side 
P/NP 

Hole 

closure tCFRP 

(mm) 

tIonomer 

(mm) 

8905 PP1 2.2 2.0 1.20 5.6 0.75 cfrp P No 

8906 PP2 2.2 2.0 1.20 5.6 0.75 ionomer P No 

8908 PP3 2.2 2.0 1.20 3.5 1.20 cfrp P Yes 

8922 PP4 1.1 2.0 1.00 3.5 0.89 cfrp P No 

8923 PP5 1.1 2.0 1.07 3.5 0.89 ionomer P No 

8925 PP6 1.1 2.0 0.94 2.3 1.35 cfrp NP - 

 

 

In Table 4-2 hole closure results are summarized, where it is reported if the impact resulted in a  

perforation of the panel and if complete hole closure occurred. Perforation of the target was labeled 

with “P”, while if no perforation occurred it was indicated with “NP”. 

As reported in the table, in all impact tests except one the target was perforated by the projectile, but 

only in one case complete self-healing of the hole in the ionomer layer occurred. This clearly 

indicates that the ionomer self-healing ability is significantly reduced when used in a multilayer 

assembly as herein. Anyway, partial self-healing was observed in all samples. In Figure 4.18 the 

damage on the witness plate for shot 8908 clearly indicates that the target was perforated, but no 

hole was present. A scanning electron microscope image of the sealed hole is shown in Figure 4.19. 

A partially repaired hole for shot 8905 is shown in Figure 4.20.  



69 

 

 

Figure 4.18 Witness plate after test 8908. A black crater  is visible on the WP. 

 

Figure 4.19 SEM micrograph of the successful self-healing of the hole in the ionomer layer after test 8908. 
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Figure 4.20 SEM micrograph of the un-repaired hole in the ionomer layer after test 8905. 

Self-healing capability of the ionomer was further analysed by comparing the internal vs. external 

hole diameters on the ionomer. The external hole for the ionomer refers to the not damaged/re-

solidified area limit, while the internal hole refers to the actual visible hole (see Figure 4.21). The 

ratio of those two diameters as a function of total target thickness and projectile diameter ratio 

(tt/dp) is plotted in Figure 4.22. The value of the ionomer internal and external hole ratio in a 

perforating shot can vary from 0 to 1.0, where 1 indicates no self-healing at all and 0 indicates 

complete hole closure. Even if sealing of the hole did not occur in most of the samples, it can be 

seen from Figure 4.22 that in all tests the internal hole diameter was less than 50% of the external 

hole diameter. 

 

Figure 4.21 Example of ionomer internal (solid line) and external (dotted line) hole. 
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Figure 4.22 Self-healing ionomer capability investigated as a ratio between internal and external hole as a function of 

the target thickness to projectile diameter. 

From shots 8905, 8906, 8922, and 8923 in Figure 4.22 it can be observed that the ratio of the hole 

diameters is slightly smaller for impacts on the ionomer side, which indicates lightly better healing 

ability of the ionomer when it is directly exposed to the impacting projectile. The ratio of the 

internal and external hole also decreased for higher tt/dp ratios, which is the difference between 

shots 8905 and 8922, and between shots 8906 and 8923. This difference is probably due to the 

larger percentage of ionomer in the total target thickness for the thinner target. Since the ionomer 

thickness is constant in all samples, it makes 50% of the thickness in the thicker sample and 

approximately 65% of the thickness of the thinner panel sample. This means that for higher tt/dp the 

ionomer thickness increases with respect to the projectile diameter.  

It could seem contradictory to the above observations that among shots 8908, 8922 and 8923 the 

hole was sealed only in shot 8908. But since the impact velocity was not equal in those shots, it is 

believed that the increased projectile impact velocity favoured the self-healing in shot 8908, which 

results in 25% increase in projectile kinetic energy from shot 8923 to shot 8908.  

Figure 4.22 indicates that two important parameters influencing the ionomer healing performance in 

the assembly are its location with respect to the impacted side and its thickness.  
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4.4.3. Momentum transfer and debris cloud velocity 

In this section the test results regarding the momentum transfer to the witness plate, and the velocity 

of the fastest and biggest fragment in the debris cloud for single layers, two layers multifunctional 

panels, and three layers multifunctional panels are presented. First the single layer configurations 

were analysed, then a structural layer and the self-healing ionomer were joined together in a 

multifunctional assembly and impacted, and finally panels consisting of two structural and one 

ionomer layer were tested. Comparison among the various configurations is performed. For this 

purpose the measured quantities (momentum transfer, biggest fragment velocity and fastest 

fragment velocity) are divided with the specific area (Asp) of the corresponding panel, since they are 

proportional to it. As mentioned previously, the specific area corresponds to the target surface with 

a mass of 1 kg (which is the inverse of surface density). The impact velocities in all the tests ranged 

approximately from 2000 m/s to 2500 m/s. Three diameters for aluminium spherical projectiles 

were used: 2.3 mm, 3.5 mm and 4.5 mm. All impacts were normal to the target, i.e. at 0° impact 

angle. 

4.4.3.1. Single layers of the panel assembly 

In this part results for panels A, B and C are given. Those three panels were tested individually. In 

Table 4-3 the performed tests are listed and the initial conditions regarding the projectile velocity 

and diameter are provided. The resulting momentum transfer to the pendulum and the velocity of 

the fastest and the biggest fragment in the debris cloud for each shot are also given in the table. 

 

Table 4-3 Tests performed on single layer panel assemblies. 

Shot 
number 

Target Part  
Projectile 
diameter - 

dp (mm) 

Projectile 
velocity - 
vp (m/s) 

Target 
areal 

density 
(kg/m

2
) 

Fastest 
fragment 
velocity 

(m/s) 

Biggest 
fragment 
velocity 

(m/s) 

Transferred 
momentum 

(kg*m/s) 

8980 KCK-02 C 3.5 2055 4.95 1172 1172 0.08840 

8981 CFRP-01 A 3.5 2093 5.59 963 963 0.08150 

8982 KCK-03 C 2.3 2151 4.95 728 668 0.02919 

8983 CFRP-02 A 2.3 2102 5.59 540 442 0.02278 

8984 KCK-04 C 3.5 2508 4.95 1437 1437 0.11643 

8985 CFRP-03 A 3.5 2574 5.59 1293 1293 0.12616 

8992 I-02 B 2.3 2109 1.90 - - 0.02422 

9044 CFRP-25 A 4.5 2254 5.59 1322 1322 0.21454 

9045 KCK-22 C 4.5 2304 4.95 1526 1526 0.24033 

9046 I-28 B 3.5 2382 1.90 1994 1994 0.10488 

9047 I-29 B 4.5 2336 1.90 1964 1964 0.15020 
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In Figure 4.23 the momentum transferred to the witness plate divided by the specific area (Qpend/Asp) 

is plotted on the vertical axis for the single layers (A, B and C). On the horizontal axis values of 

projectile momentum (Qp) is given. For the ionomer the momentum transferred in shot 9047 was 

not considered, because the projectile perforated the witness plate, thus not all the momentum is 

transferred to the witness plate. It can be observed that a straight line fits well the data, indicating a 

linear relation between the projectile momentum and the transferred momentum for the investigated 

range of projectile momentums. From Figure 4.23 it is also observed that for panels A and C 

Qpendulum/Asp is similar. A small difference is noted between the two and it seems that with 

increasing projectile momentum the difference is slowly increasing. Anyway, the ionomer appears 

to transfer the least amount of momentum to the witness plate among the single layers. 

 

Figure 4.23 Momentum transfer to the ballistic pendulum divided by the target specific area for layers A, B and C. 

In Figure 4.24 the velocity of the fastest fragment in the debris cloud (vff) divided with Asp is plotted 

against the kinetic energy of the projectile, while the ratio of the velocity of the biggest fragment 

(vbf) in the debris cloud and Asp, as a function of projectile kinetic energy is plotted in Figure 4.25. 

Beside for the shots with the projectile diameter of 2 mm, the velocity of the biggest fragment is 

equal to the velocity of the fastest fragment (see also Table 4-3). This is because in those shots the 

biggest fragment is at the same time also the fastest. Therefore, there is a minor difference between 
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Figure 4.24 and Figure 4.25. A tentative fit to the data is plotted in the figures. From the figures a 

non-linear increase of the fastest and biggest fragment velocity with projectile kinetic energy is 

observed for panels A and C. The trend is steeper for lower energy impacts, and with increase in 

impact energy the steepness decreases. While for lower energies there is a little difference in vff/Asp 

and vbf/Asp between panels A and C, they seem to become equal at higher impact energies. From the 

available data it is difficult to predict whether the velocities will remain equal or the velocities for 

panel C will become lower with respect to that for panel A. Only two velocities are available for the 

ionomer tests. For each of those tests the biggest fragment is also the fastest, and its velocity is 

almost equal in both tests. For the available data either vff/Asp and vbf/Asp are much slower for panel 

B than for panels A and C. 

 

Figure 4.24 Fastest fragment velocity in the debris cloud divided by the target specific area as a function of projectile 

kinetic energy for layers A, B and C. 
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Figure 4.25 Biggest fragment velocity in the debris cloud divided by the target specific area as a function of projectile 

kinetic energy for layers A, B and C. 

Images of the witness plates for the panels A, C and B for shots 8980, 8981 and 8992 are given in 

Figure 4.26. While the ionomer capability to fragment the projectile was already observed to be 

weak in section 4.4.1. and is confirmed again in Figure 4.26, the composite materials (panels A and 

C) show similar behaviour to the ionomer regarding projectile fragmentation. By looking at the 

witness plates it can be observed that almost no fragmentation of the projectile (or very little) 

occurred for impacts on panels A and C, as well as for impacts on the ionomer. While damage on 

the witness plate for panels A and C is more widely distributed than for panel B, it has to be noticed 

that it is composed of one big crater in the centre and small craters distributed around the central 

one. The central crater belongs to the remain of the projectile, while the smaller craters distributed 

all over the witness plate are caused by the material coming from the target and not by projectile 

fragmentation. Few smaller craters caused by projectile fragments can be found close to the big one, 

but they are anyway much smaller than the biggest crater. This points out that very little 

fragmentation of the projectile occurred also during impact on the composite panels. This is also 

confirmed by the high-speed video camera images shown in Figure 4.27, where a big fragment is 

clearly visible for all three panels.  
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Figure 4.26 Witness plates of the following shots/panels: a) 8980/panel C, b) 8981/panel A, and c) 8992/panel B. 

From the data presented above, very similar behaviour of panels A and C is found for the tests 

presented in Table 4-3, leading to the conclusion that the addition of aramid fibre composite fabric 

on the faces of the CFRP panel does not improve significantly the sample performance in terms of 

momentum transfer, debris cloud fragments velocity and even projectile fragmentation, under the 

impacts performed in this study. For the panel B it results that the momentum transfer and the 

velocity of the fragments in the debris cloud is less than for panels A and C. This evidences once 

more the CFRP weak resistance to out of plane impact loading.  
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Figure 4.27 High-speed video camera images for shots on a) panel C (shot 8980), b) panel A (shot 8981) and c) panel B 

(shot 9046). 

4.4.3.2. Two layers configurations of the multifunctional panel  

In this part the experimental results for the configurations consisting of one structural layer and one 

self-healing layer are presented. The tested configurations are AB, BA, CB, and BC. In Table 4-4 

the impact conditions and measured values are reported.  

An unexpectedly low value of the transferred momentum is measured for the shot 9041. It is 

believed that the measure is not accurate, since high ratio of signal to noise was present in the signal 
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and some problems with the laser functioning occurred as well. Therefore the registered momentum 

of the ballistic pendulum is not taken into consideration for shot 9041.  

 

Table 4-4 Initial impact conditions and  measures of momentum transfer, biggest and fastest fragment velocities for 

panels AB, BA, CB and BC. 

Shot 
number 

Target Parts  

Projectile 

diameter - 
dp (mm) 

Projectile 

velocity - 
vp (m/s) 

Target 
areal 

density 
(kg/m

2
) 

Fastest 
fragment 
velocity 

(m/s) 

Biggest 
fragment 
velocity 

(m/s) 

Transferred 
momentum 

(kg*m/s) 

8989 CFRP-05/I-01 AB 3.5 1878 7.49 447 395 0.02104 

8994 I-03/CFRP-06 BA 3.5 2049 7.49 749 680 0.05113 

8995 I-04/CFRP-07 BA 2.3 2085 7.49 0 0 0 

8996 CFRP-08/I-05-01 AB 2.3 2170 7.49 0 0 0 

8997 KCK-05/I-05-02 CB 3.5 2096 6.85 714 714 0.0437 

8999 KCK-06/I-06 CB 2.3 2102 6.85 0 0 0 

9000 I-08-01/KCK-07 BC 3.5 2055 6.85 753 594 0.05462 

9001 I-08-02/KCK-08 BC 2.3 2096 6.85 0 0 0 

9004 CFRP-09/I-09 AB 3.5 2543 7.49 760 760 0.04157 

9005 I-10-01/CFRP-10 BA 3.5 2615 7.49 940 850 0.08810 

9006 I-10-02/KCK-10  BC 3.5 2615 6.85 1085 907 0.09574 

9007 KCK-11/I-11 CB 3.5 2615 6.85 905 905 0.06227 

9040 CFRP-24/I-24 AB 4.5 2533 7.49 1102 1073 0.09422 

9041 I-25/KCK-21 BC 4.5 2518 6.85 1294 1265 0.12305 

9042 I-27/CFRP-26 BA 4.5 2495 7.49 1140 1140 0.2403 

9043 KCK-20/I-26 CB 4.5 2304 6.85 1169 1169 0.18257 

. 

 

In Figure 4.28 the momentum transferred to the witness plate behind the target (Qpendulum) is divided 

by Asp and is plotted with respect to the projectile momentum. Interpolation curves are plotted to 

highlight the data trend and the differences between the data. Since the momentum transfer for 

projectile momentum of  ~0.3 kg*m/s is missing for panel BC, data regarding this panel is not 

interpolated, instead just the data points are shown. If comparing configuration AB versus BA, and 

CB versus BC we see that when the ionomer is on the back of the assembly a smaller value of 

Qpendulum/Asp is obtained than in a configuration with the ionomer as the front layer. This difference 

is more pronounced for the AB and BA configurations. Also the slope of the trends is smaller when 

the ionomer is on the back which suggests that the observed difference is increasing with projectile 

momentum increase. This underlines that the contribution of the ionomer to the two-layers panel 

behaviour depends on the ionomer position in the assembly. Furthermore, among all panels AB 

provides least momentum transfer. Except for panel AB, the slope of the curves is slightly 
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increasing. Above the value of approximately 0.1 kg*m/s, the data points appear to lay on a straight 

line, indicating a linear behaviour for higher impacting momentum. 

In Figure 4.28 panels BA and BC behave similarly, while this is not true for panels AB and CB. 

 

Figure 4.28 Momentum transfer to the ballistic pendulum divided by the target specific area for panels AB, BA, CB 

and BC. 

Both the fastest fragment and the biggest fragment velocity divided by Asp, shown respectively in 

Figure 4.29 and Figure 4.30, is very similar for all the configurations. For the range of projectile 

kinetic energy shown in Figure 4.29, the fastest fragment velocity if the ionomer is put on the  front 

or on the back side varies no more than ~10% for the AB and BA comparison, or even less if 

considering CB and BC. Anyway, the velocity is smaller when the ionomer is on the back. The 

same observations are valid for the biggest fragment velocity, shown in Figure 4.30, where again a 

minor difference with respect to the ionomer position and between the configurations is present. 
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Figure 4.29 Fastest fragment velocity divided by Asp for configurations AB, BA, CB and BC. 

 

Figure 4.30 Biggest fragment velocity divided by Asp for configurations AB, BA, CB and BC. 
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4.4.3.3. Comparison between single, double and triple layer configurations 

Few tests were carried out for three-layers configurations. The tested three layer configurations 

consist of two structural layers and one self-healing layer. Details about the targets and projectiles, 

as well as the results of the tests are reported in Table 4-5.  

 

Table 4-5 Initial impact conditions and  measures of momentum transfer, biggest and fastest fragment velocities for 

three-layers configurations. dp is the projectile diameter, and vp is the projectile velocity. Glued panels are indicated 

with *. 

Shot 
number 

Target Parts  
dp 

(mm) 
vp 

(m/s) 

Target 
areal 

density 
(kg/m

2
) 

Fastest 
fragment 
velocity 

(m/s) 

Biggest 
fragment 
velocity 

(m/s) 

Transferred 
momentum 

(kg*m/s) 

9008 CFRP-12/I-12/CFRP-11 ABA 3.5 2229 13.09 0 0 0 

9009 CFRP-13/I-14/CFRP-14 ABA 3.5 2534 13.09 0 0 0 

9010 KCK-12/I-15/CFRP-15 CBA 3.5 2569 12.44 0 0 0 

9011 KCK-13/I-16/CFRP-16 CBA 3.5 1984 12.44 0 0 0 

9016 KCK-16/I-19/CFRP-19 CBA 4.5 2467 12.44 519 169 0.04389 

9017 CFRP-20/I-20/CFRP-21 ABA 4.5 2508 13.09 541 167 0.03969 

9018 CFRP-22/I-21/KCK-17 ABC 4.5 2327 12.44 510 266 0.02694 

9019 KCK-18/I-22/KCK-19 CBC 4.5 2403 11.79 551 352 0.09905 

9021 KCK-I-C-01 CBA* 4.5 2446 12.44 457 252 0.03784 

9032 KCK-I-C-02 ABC* 4.5 2442 12.44 423 188 0.02771 

9034 KCK-I-01 CB* 3.5 2022 6,85 772 717 0.04265 

 

 

It can be seen from the table that in all the samples the ionomer layer was placed in the middle, i.e. 

between the structural layers which were placed on the front and back sides. A test on one double 

layer panel is reported. The dissimilarity of this panel with the previously presented panels is only 

that in this panel the layers were glued together. Also in two three-layers panels the parts were 

glued together, as indicated in Table 4-5. 

Here, the one-layer, two-layers and three-layers configurations are compared. The values of 

Qpendulum/Asp, vbf/Asp, and vff/Asp for all configurations are plotted in Figure 4.31, Figure 4.32 and 

Figure 4.33, respectively. 

In Figure 4.31 configurations BC and BA have a bigger slope than the single layers A and C. 

Furthermore, up to the projectile momentum of ~0.15 kg·m/s the layers A and C transfer more 

momentum, while over that value panels BA and BC are the ones transferring more momentum. 

The increase in momentum transfer with increasing projectile momentum seems to be faster also for 

the sample CB than for panels A and C. Nevertheless, up to the value of approximately 0.3 kg·m/s 
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less momentum is transferred for the configuration BC, and at this point the pendulum momentum 

is almost the same for A, C and BC. The trend suggests that above this value single layers should 

transfer less momentum. For configuration AB the pendulum momentum is less than for the 

samples A and C over the entire data range, and from the interpolation it seems that the difference is 

slowly increasing.  

 

Figure 4.31 Momentum transferred to the pendulum divided by the target areal density, for all the configurations tested. 

For all three-layers configurations, except for the configuration CBC, the momentum transferred to 

the witness plate is less than for the one-layer and two-layers configurations, at least for the impact 

conditions considered in this study.  

Configurations CB* and ABC* are assembled by gluing the layers together. The momentum 

transfer is somewhat higher for ABC with respect to its glued counterpart ABC*, while CB* and 

CB are almost equal.  

Both in Figure 4.32 and Figure 4.33 the respective velocities of the fastest and biggest fragments are 

little slower for configurations AB, BA, CB and BC with respect to A and C at lower impact 

energies, but at higher projectile kinetic energies they become very similar. From the available data 

it is difficult to predict the behaviour for energies above 400 J, but the trend seems to indicate 

perhaps slower velocities for the layers A and C.  
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Figure 4.32 Fastest fragment velocity divided by Asp for all the configurations. 

 

Figure 4.33 Biggest fragment velocity divided by Asp, for all configurations. 
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The velocities of the fragments for the three-layers configurations are slower than those for the 

other assemblies, except for the ionomer alone (panel B). The difference is more notable for the 

biggest fragment velocity. Similarly as in Figure 4.31, no particular difference in the glued 

configurations behaviour with respect to the corresponding not glued configurations is observable.  

The ionomer, compared to the other configurations, shows relatively low momentum transfer and 

debris cloud velocities, as it can be seen in the above figures. Even if the ionomer exhibited a good 

performance compared to the composite panels, its main disadvantage are its mechanical properties 

for structural applications, which are not to the level of commonly applied materials, hence the 

ionomer is  coupled to the composite material to obtain a multifunctional structure. 

It can be concluded that the three-layer sandwich configuration among the multifunctional panel 

structures appear to be the optimal one in terms of fragment velocities in the debris cloud and 

momentum transfer of the debris cloud to the pendulum, while at the same time incorporating the 

structural and self-healing layers. 

4.4.4. Damage of the panels 

In this section the damage measures taken on the panels are defined and some comparisons based 

on the damage evaluation are performed. 

In Figure 4.34 a sample of panel A after impact is shown. The measures taken to evaluate the 

damage are indicated, together with their respective labels.  

 

Figure 4.34 Visible damage on impact face for panel A and definition of damage measures. 
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Panel A exhibited most damage on the top and bottom surfaces, where stripes of fibres detach from 

the surface layer. Their width is similar to the hole diameter, but they extend far from the hole in the 

fibre direction. For almost all impacted samples this detachment was observed to extend over the 

entire panel width. If a layer of ionomer was placed on the surface of panel A, this prevented such a 

wide extension of fibre detachment. Similar damage pattern is observed on both the front and back 

side of the panel. Due to the structure of the CFRP it was difficult to determine the hole diameter. 

Anyway, labels ah and bh in the figure indicate the region of total material failure, in which the 

failed material is just holding to the less damaged surrounding material, and this region is referred 

to as  the ‘external hole’. This hole size is taken as the average of ah and bh and is denoted as dh. 

The visible extension of cracks in the vertical direction is denoted as bL. Measures of the quantities 

indicated in Figure 4.34 are taken on both the front and back of the target. 

The quantities measure from panels C to quantify its damage are shown in Figure 4.35.  

 

Figure 4.35 Visible damage on impact (a) and rear (b) for panel C and definition of damage measures. 

The extension of cracks visible on the surface was measured for the vertical (bL) and horizontal (aL) 

directions. For panels C it was very difficult to distinguish anything around the impact point, since 

the panel is very damaged in that area and a lot of fibres are present even if completely damaged, as 
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seen in Figure 4.35. This region is denoted with ah for its horizontal direction extension and with bh 

for its vertical direction extension, and the average of the two is denoted as dh, as it was done for 

panel A.  

Few samples of panel A and panel C were inspected with the ultrasound flaw detector in order to 

check if delamination had occurred in the panels and to measure its extent. In Figure 4.36 an image 

of the delaminated area of a composite panel detected with the ultrasound system is shown. The 

extent of delamination is labelled as bd. Those measurements were used to compare the numerical 

simulations with the experiments, and thus are given in the next chapter.  

 

Figure 4.36 Ultrasound system damage detection (panel C example) and definition of the measure taken. 

The damage on panel B is highly localized in the impact area and it was observed that the damaged 

area is circular and its diameter is almost equal to the projectile diameter (see for example Figure 

4.12, Figure 4.13, and Figure 4.21). The diameter of the area that has undergone severe changes due 

to deformation or phase change (which is also referred to as the damaged area) was measured from 

the samples and is denoted with dh (this is the same as the ‘external hole diameter’ in section 4.4.2). 

In the following figures some considerations about damage are given. The measured damage values 

plotted in the figures are normalized with respect to the projectile diameter (dp) and the target areal 

density (ρA).   

Figure 4.37 shows the normalized value for dh on the back of panels A. It can be seen that there is a 

similar distribution of the damage values between the configurations at various impact energies. 

The small value for shot 8995 is due to the fact that the panel was not perforated, but only some 
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damage caused from spallation was found. The least damage for dh,back is found for configuration 

AB, which is due to the ionomer that is slightly hindering the damage of CFRP on their interface. 

Panel A gets mostly damaged on the back in configuration BA, while the damage on A used alone 

is between the two-layer configurations. 

 

Figure 4.37 Comparison of dh,front/(dpρA) for panel A for one-layer and two-layer configurations. 

  

Figure 4.38 Comparison of dh,back/(dpρA) for panel A for one-layer and two-layer configurations. 
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In Figure 4.38 the value of dh on the front of the panel A is plotted for three configuration cases. 

Most of the damage seems relatively similar between configurations, but no straightforward 

conclusions can be made. 

The comparison for the value of dh,front divided with dp and ρA for the panels A, B and C is given in 

Figure 4.39.  For all shots least damage is observed for panel A, then comes panel C and lastly 

panel B. All panels exhibit a similar trend for increasing impact velocity. 

Figure 4.40 shows crack extension bL in the vertical ‘b’ direction on the front of the panels A and C, 

in several configurations. This figure indicates that the superficial crack propagation is highly 

dependent on the fibre direction in the superficial layer. Since panel C has fibres in both direction 

(vertical and horizontal, i.e. ‘a’ and ‘b’) the crack propagates more than for panel A, that has no 

fibres oriented in the ‘b’ direction in the superficial layer. But the crack propagation in the vertical 

direction is soon arrested by fibres oriented normally to the crack propagation direction. This results 

in a more equilibrated damage in both direction for panels C (Figure 4.35) than for panels A, in 

which we see from Figure 4.34 that the crack propagates from the hole up to the panel border side. 

The crack is prone to propagation in the fibre direction because this process in the fibre direction is 

happening mainly through matrix intralaminar and interlaminar failure. For a crack to propagate 

orthogonally to the fibres direction, fibres should fail, but they are much more resistant than the 

matrix.  

Observations similar to those made for Figure 4.40 are possible also for Figure 4.41, i.e. for the 

crack extension on the back of the target.  

The observations made in Figure 4.40 and Figure 4.41 only highlight the fibre orientation influence 

on the superficial damage and crack propagation. It does not mean that the CFRP exhibits better 

performance. Instead, for that matter the entire damaged area should be regarded, for which it is 

quite obvious from Figure 4.34 and Figure 4.35 that it is larger for the CFRP panels (similar 

behaviour was observed in all the other tests). 
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Figure 4.39 Comparison of dh,front/(dpρA) between panels A, B and C. 

 

 

Figure 4.40 Values of db,front/(dpρA) for panels A and C in one-layer and two-layer configurations. 
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Figure 4.41 Values of db,back/(dpρA) for panels A and C in one-layer and two-layer configurations. 

 

 

4.4.5. Self-healing results  

Herein the results of the ionomer self-healing in the performed impact tests are reported. For each 

test, the ionomer layer was checked visually to see if a hole was present. The results are reported in 

Table 4-6. The configurations in which it was not possible to assess the self-healing visually are 

omitted from the table. Initially a more rigorous self-healing assessment, based the application of a 

pressure gradient between the sample top and bottom faces, was planned but time restrictions made 

it impossible. 
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Table 4-6 Impact conditions and self-healing results. 

Shot 
number 

Target Parts  
Projectile 
diameter - 

dp (mm) 

Projectile 
velocity - 
vp (m/s) 

Target 
areal 

density 
(kg/m

2
) 

Perforation 

(Yes/No) 

Hole 
sealing 

(Yes/No) 

8989 CFRP-05/I-01 AB 3.5 1878 7.49 Yes Yes 

8992 I-02 B 2.3 2102 1.90 Yes No 

8994 I-03/CFRP-06 BA 3.5 2049 7.49 Yes Yes 

8995 I-04/CFRP-07 BA 2.3 2085 7.49 No Yes 

8996 CFRP-08/I-05-01 AB 2.3 2170 7.49 No - 

8997 KCK-05/I-05-02 CB 3.5 2096 6.85 Yes No 

8999 KCK-06/I-06 CB 2.3 2102 6.85 No - 

9000 I-08-01/KCK-07 BC 3.5 2055 6.85 Yes No 

9001 I-08-02/KCK-08 BC 2.3 2096 6.85 No Yes 

9004 CFRP-09/I-09 AB 3.5 2543 7.49 Yes Yes 

9005 I-10-01/CFRP-10 BA 3.5 2615 7.49 Yes Yes 

9006 I-10-02/KCK-10  BC 3.5 2615 6.85 Yes Yes 

9007 KCK-11/I-11 CB 3.5 2615 6.85 Yes No 

9009 CFRP-13/I-14/CFRP-14 ABA 3.5 2534 13.09 No Yes 

9010 KCK-12/I-15/CFRP-15 CBA 3.5 2569 12.44 No Yes 

9011 KCK-13/I-16/CFRP-16 CBA 3.5 1984 12.44 No Yes 

9016 KCK-16/I-19/CFRP-19 CBA 4.5 2467 12.44 Yes No 

9017 CFRP-20/I-20/CFRP-21 ABA 4.5 2508 13.09 Yes No 

9018 CFRP-22/I-21/KCK-17 ABC 4.5 2327 12.44 Yes No 

9019 KCK-18/I-22/KCK-19 CBC 4.5 2403 11.79 Yes No 

9034 KCK-I-01 CB* 3.5 2022 6.85 Yes Yes 

9040 CFRP-24/I-24 AB 4.5 2533 7.49 Yes No 

9041 I-25/KCK-21 BC 4.5 2518 6.85 Yes No 

9042 I-27/CFRP-26 BA 4.5 2495 7.49 Yes No 

9043 KCK-20/I-26 CB 4.5 2304 6.85 Yes No 

9044 CFRP-25 A 4.5 2254 5.59 Yes No 

9045 KCK-22 C 4.5 2304 4.95 Yes No 

9046 I-28 B 3.5 2382 1.90 Yes No 

9047 I-29 B 4.5 2336 1.90 Yes No 

 

In order to get a better overview, the results for the two-layers configurations are also summarized 

in Figure 4.42. In the figure ‘x’ refers to the case when the ionomer layer was not perforated, while 

empty markers indicate no sealing of the hole and full markers indicate a sealed hole. For the 

configurations AB and BA self-repair of the hole was successful for projectiles with diameter of 2.3 

mm and 3.5 mm, and both for ~2.0 km/s and ~2.5 km/s impact velocities. When a projectile of 4.5 

mm was used, no self-healing occurred. Since sealing of the hole depends on the ratio of projectile 

diameter to ionomer target thickness, this ratio was probably too high in shots 9040 and 9042 for 

self-healing of the hole to occur.   
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Figure 4.42 Two-layers configurations self-healing results overview. Empty markers refer to unsuccessful self-healing, 

full marker refer to successful self-healing, and ‘x’ indicates no perforation of the ionomer layer. 

A worse performance of the ionomer was found when it was used with panel C. For the panel CB, a 

hole was present through the ionomer layer for all tests, except for 8999. In panels C, when tested 

alone, fibres were often sticking out in the impact area, see Figure 4.43. Even if in configurations 

CB and BC fibres were not found to stick out through the ionomer hole, this response could have 

obstructed the self-healing process. The results for configurations AB and BA in Figure 4.42 and 

Table 4-6 indicate that the ionomer can be used in combination with a structural layer. At the same 

time, the different results obtained in the two-layers configurations between the cases when panel A 

and panel C were used as structural layer, indicate that not only the presence of the structural layer 

influences the self-healing capability, but so does also its behaviour under impact loading.  

The three-layers configurations were impacted with either a projectile with diameter of 3.5 mm and 

4.5 mm. In the case of 4.5 mm projectile diameter, the samples were completely perforated by the 

projectile and the hole was not sealed. For the smaller diameter (3.5 mm) the impacted samples 

were not perforated, instead the projectile perforated the ionomer and stopped at the last layer. In 

those cases the ionomer successfully sealed the hole. Such situations where the projectile didn’t 

pass through the entire target should not be underestimated, since spallation caused by stress wave 
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reflections from the back face and cracks propagating in the material could cause an opening 

through the structure, and therefore the healing of the hole is indeed necessary. Anyway, further 

tests of the three-layers configurations with different projectile diameters, ionomer thickness and 

impact velocity are necessary, in order to test the self-healing in such configurations more 

thoroughly.  

 

Figure 4.43 Aramid fibres sticking out normally from the panel C surface after impact. 

In Table 4-6 several tests performed on the ionomer alone are presented. In all those tests the hole 

was not sealed, but only partial self-repair of the hole did occur. A photo of the ionomer sample 

after shot 9047 is given in Figure 4.44.  

 

Figure 4.44 Photo of the impact area on the ionomer after shot 9047. 
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In shot 8992 the high speed camera was zoomed in the impact area on the back side of the target. 

Images of the impact at various time instants are shown in Figure 4.45. It can be seen that the 

material undergoes phase transition from solid to liquid. Material gets removed from the impact 

zone, which consequently causes a negative effect on the self-healing response, as the material itself 

is the healing agent. The material removal is more clearly visible for shot 9047, shown Figure 4.46. 

Therefore it is concluded that the material removal in hypervelocity impacts hinders the self-healing 

capability of the ionomer targets, leading to the need of applying much thicker samples with respect 

to the projectile diameter in order to achieve successful hole sealing.  

 

Figure 4.45 High-speed video camera time frames of shot 8992. 
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Figure 4.46 High-speed video camera image of shot 9047. 
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5. Numerical modelling 

5.1. Introduction 

Due to the high cost of experimental tests on one side, and improvement of numerical codes 

capabilities for non-linear dynamics simulations on the other side, there is a tendency to use 

simulations whenever possible. The main advantage of the numerical codes is the possibility to 

investigate a large number of impact conditions, like various velocities, geometries of the target and 

projectile, materials, and so on, which is often not possible or available in experimental tests. 

Therefore, numerical simulations are becoming an important and attractive approach for the 

solution of complex practical problems in science and engineering.  

In this chapter numerical models for the single panels are presented and the simulations of the tests 

on single layer panels were performed. In order to validate the models, the numerical results were 

compared to the experiments. Damage on the targets and velocity of the projectile remnant after 

perforation were used for the comparison. 

The numerical simulations were performed using ANSYS AUTDYN. The AUTODYN program is 

a general-purpose engineering software package for solving a wide variety of non-linear problems 

in solid, fluid and gas dynamics [55]. Such numerical codes are also known as ‘‘hydrocodes’’ [56]. 

The Smoothed Particle Hydrodynamics (SPH) method available in AUTODYN was used for the 

simulations. The SPH is a mesh free particle method used for solving problems of continuum solid 

and fluid mechanics [[57]-[61]]. The SPH method does not suffer from mesh tangling problems, 

since it is a meshless method, and it does not require unphysical erosion algorithm to obtain 

efficient solutions when extremely large deformations occur, such as in impact dynamics.  

5.2. Governing equations 

In high- and hyper-velocity problems shockwaves (see chapter 2)  propagate through the colliding 

bodies, which often behave like fluids. Material strength becomes significant only at later stages. 

The governing equations for hydrodynamics with material strength are the conservation equations 

of continuum mechanics [62]: 

 D v
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where ρ is the scalar density, e the internal energy, v
α
 the velocity component, σ

αβ
 the total stress 

tensor, x
α
 the spatial coordinates and t the time. In equations (5.1)-(5.3) the Greek superscripts α and 

β denote the coordinate directions and summation is taken over repeated indices, while the total 

time derivatives are taken in the moving Lagrangian frame. Equations (5.1), (5.2) and (5.3) are the 

continuity equation, momentum equation and energy equation, respectively. These, together with a 

material model and a set of initial and boundary conditions, define the complete solution of the 

problem. The derivation of equations (5.1)-(5.3) can be found in [62]. 

5.3. Smoothed particle hydrodynamics 

A brief description of the SPH method is given in the following, more details can be found in [[57]-

[59],[62]]. The basis of the SPH method is an interpolation method which allows any function to be 

expressed in terms of its values at a set of disordered points, called the particles [59].  

The integral interpolant of any function f(x) is defined by 

 ( ) ( ') ( ', ) 'f x f x W x x h dx



   (5.4) 

where f is a function of the three-dimensional position vector x, W is the smoothing kernel function 

(or simply kernel), Ω is the volume of the integral that contains x, and h is the smoothing length 

defining the influence area of the smoothing function W.  

The kernel function has the following two properties: 

 ( ', ) ' 1W x x h dx



   (5.5) 

 0
lim ( ', ) ( ')
h

W x x h x x


     
(5.6) 

where δ(x-x’) is the Dirac delta function: 
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The gradient of equation (5.4) can be obtained as  

 ( ) ( ') ( ', ) 'f x f x W x x h dx



     (5.8) 

The continuous integral representations concerning the SPH kernel approximation (equations (5.4) 

and (5.8)) can be expressed in discretized forms of summation over all the particles in the support 

domain shown in Figure 5.1.  

 

Figure 5.1 Particle approximations using particles within the support domain of the smoothing function W for particle i. 

The support domain is circular radius  κh [62]. 

For a given particle i, the value of a function and its derivative for particle i are approximated as 
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where rij is the distance between particle  i and j.  

The SPH formulation for hydrodynamics with material strength can be written as: 
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where Πij is the artificial viscosity and Hi is the artificial heating [[56],[62],[63]]. 

In Figure 5.2, the basic steps used in each computation cycle in the AUTODYN SPH solver are 

shown [64]. 

 

Figure 5.2 Computational cycle for the SPH in AUTODYN [64]. 
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5.4. Material modelling 

In this section the models used for the volumetric response (equation of state, see chapter 2) and the 

resistance to distortion (constitutive equation)  in the numerical simulations are briefly described.  

The composite material was modelled using the AMMHIS (advanced material model for 

hypervelocity impact simulation) material model available in ANSYS AUTODYN [[65],[66]]. 

Composite materials used in this work are orthotropic materials, and thus have three orthogonal 

planes of symmetry. Directions normal to the planes of symmetry correspond to the three principal 

directions of an orthotropic material. For homogenous materials the volumetric response and the 

ability to carry shear loads are dealt separately by separating the strain into volumetric and 

deviatoric components. But, for anisotropic materials this is not appropriate, because for hydrostatic 

pressure strain is not uniform in all three directions and the deviatoric strain produces volumetric 

dilatation. In [67] an equation of state that couples deviatoric and volumetric response was derived. 

The stress-strain relation for a linearly elastic orthotropic material is given as [50]: 
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 (5.16) 

where σij are the stress components, εij are the strain components, and Cij are the stiffness matrix 

components. Components of the stiffness matrix can be calculated from the elastic material 

constants, Ei, νij and Gij. 

In order to include non-linear shock effects in the above linear relations, it is desirable to separate 

the volumetric (thermodynamic) response of the material from its ability to carry shear loads 

(strength). To this purpose it is necessary to split the total strain into volumetric (εv) and deviatoric 

(   
 ) components. The volumetric strain is defined as: 

 11 22 33vol        (5.17) 

Using equations (5.16) and (5.17), the linear elastic stress-strain relation for an orthotropic material 

can be expressed as 
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 (5.18) 

Using the definition of the pressure as the average of the direct stresses: 
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and substituting the direct stresses from (5.18) into equation (5.19) the following expression for the 

pressure is obtained 
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 (5.20) 

From equation (5.20) the contribution to the pressure of volumetric and deviatoric components of 

strain can be clearly identified. The first term on the right hand side of (5.20) can be used to define 

the volumetric (thermodynamic) response of an orthotropic material in which the effective bulk 

modulus  of the material K’ is given as: 

  11 22 33 12 23 31

1
' 2

9
K C C C C C C         (5.21) 

The first term on the right hand side of (5.20) represents the linear relationship between the pressure 

and the volumetric strain. In order to account for the non-linear relationship between pressure and 

volumetric strain, the first term on the right hand side of (5.20) is replaced by a non-linear relation 

between the pressure and volumetric strain. To this end the following polynomial equation of state 

is used instead of the first term on the right hand side of equation (5.20): 

      
2 3

2 3 0 1 0' vol vol vol volP K A A B B e           (5.22) 
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where A2, A3, B0 and B1 are material constants obtainable from inverse flyer plate tests, ρ0 is the 

initial density and e is the specific internal energy. 

Both for the Surlyn® 8940 ionomer and for the aluminium the volumetric response was described 

by a ‘‘Shock’’ equation of state of the following form [55]: 

  H Hp p e e    (5.23) 

In equation (5.23) is assumed that                  and  

 
 

 

2
0 0

2

1

1 1
H

C
p

s

 

    

 (5.24) 

 

0

1

2 1

H
H

p
e

 
  

  
 (5.25) 

In (5.23), (5.24) and (5.25) Γ is the Gruneisen Gamma, ρ is the current density, C0 is the bulk sound 

speed, μ is the compression (  (   ⁄ )   ) and s is the slope of the up – Us curve (up – particle 

velocity, Us – shock velocity).  

The strength response of aluminium is modelled using the Johnson-Cook strength model [68]. In 

this model the yield stress is defined as: 

 
*1 log 1n m

p p HY A B C T               
 (5.26) 

where A, B, C, n and m are material constants, εp is the effective plastic strain, εp* is the normalized 

effective plastic strain rate, and TH is the homologous temperature [TH=(T-Troom)/(Tmelt-Troom)]. The 

Johnson-Cook model is suitable for materials subjected to large strains, high strain rates and high 

temperatures.  

The ionomer strength response of the ionomer is modelled through the isotropic hardening plasticity 

model. 

5.5. Description of the numerical models 

Numerical simulations of tests on single panels were performed. Therefore, four simulations for 

panel A and panel C were done, while two simulations were performed for panel B. For panel C 

shots 8980, 8982, 8984 and 9045 were reproduced. For panel A the simulated tests were 8981, 

8983, 8985 and 9044. The ionomer tests modelled were 8992, 9046 and 9047.  
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The simulations were carried out in AUTODYN-2D, and an axisymmetric approximation was used 

for all simulations. The radius for the target in the numerical model was chosen to obtain a target 

with the area that corresponds to the experimental target (the area of the target between the support 

plates). This resulted in a radius of 61 mm for all targets in the numerical models. All other 

parameters correspond to the experiment conditions defined in the previous chapters.  

The projectile was given an initial velocity corresponding to that of the test that was simulated, and 

can be found for each test in Table 4-3.  

For models involving panel A 0.15 mm diameter SPH particles were used. When panels C were 

modelled the SPH particle size used was 0.12 mm to accommodate the Twaron® layers, and Figure 

5.3 shows a detail of the numerical model for panel C. Panels B were discretized with a particle size 

of 0.1 mm.  

 

Figure 5.3 Numerical model of panel C in AUTODYN ANSYS. 

In AUTODYN the laminas in the composite laminate are not modelled individually, instead they 

are smeared out in through-the-thickness direction, which results in a homogenous orthotropic 

material.  

For the composite materials used in this study (CFRP and Twaron®) there were almost no material 

properties available, or just a few of them. Therefore, for Twaron® the material data set for 

Kevlar® [69], which is also an aramid fibre composite material, available in the AUTODYN 

material library was used.  

For CFRP the elastic properties of the laminate and the unidirectional lamina strengths were 

predicted from the constituent material properties following the guidelines and procedures given in 

[[70]-[73]]. But, since few data for the fibres and matrix were available from the manufacturer, 
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most of the unknown properties were assumed from similar materials found in the literature, and are 

given in Table 5-1.  

Table 5-1 CFRP laminate constituent properties. 

Property Value 

Fiber  

Fiber type: T600  

Density (g/cm
3
) 1.79 

Longitudinal tensile modulus (GPa) 230 

Transverse tensile modulus (GPa) 15 

Poisson’s ratio 0.2 

Transverse Poisson’s ratio 0.0714 

Shear modulus (GPa) 15 

Transverse shear modulus (GPa) 7 

Longitudinal tensile strength (MPa) 4136.4 

Longitudinal compressive strength (MPa) 3000 

  

Resin  

Resin type: REM epoxy resin  

Density (g/cm
3
) 1.20 

Tensile modulus (GPa) 3.36 

Poisson’s ratio 0.35 

Shear modulus (GPa) 1.244 

Tensile strength (MPa) 60 

Compression strength (MPa) 150 

Shear strength (MPa) 55 

Fracture energy (J/m
2
) 240 

 

From the data in Table 5-1 the elastic properties of the composite material were derived by a 

micromechanics theory. The bridging micromechanics model described in [[71],[72]] was used for 

this purpose. Then, classical laminate theory (CLT) and Hooke’s law for an orthotropic composite 

[[50],[74]] were used to derive the CFRP laminate stiffness properties form the lamina elastic 

properties.   

After determining the laminate stiffness properties, the data for the equation of state had to be 

derived. This was done following the procedure in [70], where a generalised Us-Up relationship for 

CFRP laminates is given. For this relationship a p-wave sound of speed of the laminate was needed, 

and it was measured with the ultrasound system as 3050 m/s for the laminate used in this study.  

Finally, the strengths of the laminate were estimated from the strengths of the CFRP unidirectional 

lamina, which were predicted using the data in Table 5-1 and the strength of materials equations, 

see [73]. The failure stress in the thickness direction of the laminate was calculated as the stress at 

2% deformation in the thickness direction. 
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The above procedure was coded in a MATLAB script file in order to predict the CFRP laminate 

stiffness properties and the single lamina strengths. The script file is given in Appendix 1 together 

with the input file. The predicted data used in the simulations is given in Table 5-2.  

 

Table 5-2 Material properties for the CFRP laminates used in the numerical models. 

Parameter Value 

Equation of state: Orthotropic 

Reference density (g/cm
3
) 1.554 

Young modulus 11 (kPa) 9.531E+006 

Young modulus 22 (kPa) 7.425E+007 

Young modulus 33 (kPa) 7.425E+007 

Poisson ratio 12 0.042500 

Poisson ratio 23 0.030000 

Poisson ratio 31 0.331000 

Shear modulus 12 (kPa) 3.878E+006 

Shear modulus 23 (kPa) 4.791E+006 

Shear modulus 31 (kPa) 3.878E+006 

Volumetric response: Polynomial 

Bulk modulus A1 (kPa) 2.010E+007 

Parameter A2 (kPa) 1.769E+007 

Parameter A3 (kPa) 2.769E+007 

Parameter B0  2.808 

Parameter B1  2.808 

Parameter T1 (kPa) 2.010E+007 

Parameter T2 (kPa) 1.769E+007 

Reference temperature (K) 293.0 

Strength: Elastic  

Shear modulus (kPa) 4.791E+006 

Failure: Material Stress 

Tensile failure stress 11 (kPa) 1.900E+005 

Tensile failure stress 22 (kPa) 1.120E+006 

Tensile failure stress 33 (kPa) 1.120E+006 

Maximum shear stress 12 (kPa) 4.280E+004 

Maximum shear stress 23 (kPa) 4.600E+004 

Maximum shear stress 31 (kPa) 4.280E+004 

Post Failure Option: Orthotropic  

Residual shear stiffness fraction 0.2 

Maximum Residual Shear Stress (kPa) 4.000E+004 

Failed in 11, failure mode 11 only 

Failed in 22, failure mode 22 only 

Failed in 33, failure mode 33 only 

Failed in 12, failure mode 12 & 22 only 

Failed in 23, failure mode Bulk 

Failed in 31, failure mode 31 & 33 only 
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The data set for the ionomer used in the simulations is given in Table 5-3. As could be seen in 

chapter 4 the ionomer undergoes phase transition when used alone in the impact tests in this study 

(e.g. test no. 8992, 9046, and 9047). This makes the Mie-Gruneisen (‘‘Shock’’) equation of state 

inappropriate, since this equation is only valid for solids. But, as only data for the ‘‘Shock’’ 

equation of state could be obtained, whether calculated, measured, or taken from similar materials, 

it was decided to use the ‘‘Shock’’ equation of state, as the only possibility. The material properties 

for the equation of state were obtained as follows. The Gruneisen constant (Γ) was computed 

through the following equation [8]: 
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v

KV

C


   (5.27) 

where K is the bulk modulus computed from the Young’s modulus (E) and the Poisson’s ratio (ν) 

(K=E/(3·(1-2ν)), V=1/ρ is the specific volume, α is thermal expansion coefficient, and Cv the 

specific heat. The values of E, ρ and α were taken from manufacturer data sheet as 350 MPa, 950 

kg/m
3
 and 0.0001 μm/m°C, respectively. The values of Cv and ν were taken from the representative 

values for polymers, and equal 1600 J/kgK and 0.4, respectively. 

 

Table 5-3 Material properties for Surlyn8940 used in the numerical models. 

Parameter Value 

Equation of state: Shock 

Reference density (g/cm
3
) 0.950 

Gruneisen coefficient 0.613 

Parameter C1 (m/s) 2.050e+003 

Parameter S1  1.5394 

Reference temperature (K) 293.0 

Specific heat (J/kgK) 1.600E+03 

Strength: Multilinear Hardening 

Shear modulus (kPa) 1.250E+05 

Eff. plastic strain #1 0.000000 

Eff. plastic strain #2 0.0303 

Eff. plastic strain #3 0.1026 

Eff. plastic strain #4 0.1234 

Eff. plastic strain #5 0.1716 

Eff. plastic strain #6 0.3302 

Eff. plastic strain #7 0.5302 

Eff. plastic strain #8 0.6968 

Eff. plastic strain #9 0.8072 

Eff. plastic strain #10 0.8678 

Stress #1 (kPa) 2.7000E+04 

Stress #2 (kPa) 2.9885E+04 
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Stress #3 (kPa) 2.9885E+04 

Stress #4 (kPa) 3.1034E+04 

Stress #5 (kPa) 3.1034E+04 

Stress #6 (kPa) 3.7931E+04 

Stress #7 (kPa) 5.0575E+04 

Stress #8 (kPa) 5.8046E+04 

Stress #9 (kPa) 6.4942E+04 

Stress #10 (kPa) 7.2414E+04 

Failure: Plastic Strain 

Plastic strain 0.8678 

 

 

In Table 5-3 the bulk sound speed C0 was measured with the ultrasound system, while the slope S1 

is set equal to the values regarding polymers in [75], more specifically Polyethylene. 

The plastic strain vs. stress data for strength modelling was taken from [76], where Surlyn 8940 

stress strain curves up to the strain rate of 500 mm/s were obtained through mechanical testing. 

Anyway, it has to be noted that this strain rate is not representative for hypervelocity impacts, but 

the data was used because no other data was available.
 

The material data used for the aluminium projectile is given in Table 5-4 and is provided in 

[[77],[78]].  

 

Table 5-4 Material properties for Aluminium 1100 used in the numerical models. 

Parameter Value 

Equation of state: Shock 

Reference density (g/cm
3
) 2.710 

Gruneisen coefficient 1.970 

Parameter C1 (m/s) 5.386E+03 

Parameter S1 1.339 

Reference temperature (K) 293.0 

Specific heat (J/kgK) 920.0 

Strength: Johnson Cook  

Shear modulus (kPa) 2.52930E+07 

Yield stress, A (kPa) 1.48361E+05 

Hardening constant, B (kPa) 3.45513E+05 

Hardening exponent, n 0.183 

Strain rate constant, C 0.001 

Thermal softening exponent, m (K) 0.859 

Melting temperature 893.0 

Ref. strain rate (s
-1

) 1.000 

Failure: Johnson Cook 

Damage constant, D1 0.0710 

Damage constant, D2 1.2480 
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Damage constant, D3 -1.1420 

Damage constant, D4 0.0097 

Damage constant, D5 0.0000 

Melting temperature (K) 893.00 

Ref. strain rate (s
-1

) 1.0000 

 

5.6. Numerical results  

In order to validate the numerical models, results obtained numerically are compared to the 

experimental values. The comparison is based on the damage of the samples and the velocity of the 

projectile residue after the perforation of the target.  

The quantities used for the comparison between the numerical models and the experiments are the 

following:  

- The diameter of the hole through the thickness of the sample shown in Figure 5.4 is 

compared to the external hole measured on the tested sample (see section 4.4.4.) for the 

composite materials (panels A and C) 

- The numerically obtained maximal damage extension in the material (see Figure 5.4 and 

Figure 5.5) is compared to the damage detected with the ultrasound system for the 

composite panels, and to the external hole diameter for the ionomer 

- The velocity of the projectile residue after the perforation of the target obtained with the 

simulation is compared to the velocity of the biggest fragment measured from the high speed 

camera video footage 

It has to be noted that the extended damage in the fibre direction observed in the top and bottom 

surfaces of panels A cannot be reproduced with the numerical models presented here. This is 

because such damage is strictly related to the unidirectional superficial lamina and to its orientation, 

and it is propagating in the direction of the fibres of that lamina, while in AUTODYN the laminas 

in the composite laminate are not modelled individually (they are smeared out in through-the-

thickness direction which results in a homogenous orthotropic material), which makes it impossible 

to represent such damage.  

The scope of numerically modelling the ionomer was not to reproduce the self-healing process, 

since no model is available to do so, but rather to simulate only the initial deformation preceding the 

self-healing response.  From the micrograph of shot 8813 (see Figure 4.12) it is visible that around 

the sealed hole there are no signs of any damage or plastic deformation. So from the micrograph the 

damaged region (any region that has undergone significant changes, whether through melting and 

re-solidification or plastic deformation) is clearly distinguished from the undamaged region. 
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Therefore it is concluded that the external hole for the ionomer defined in chapter 4 can be 

considered as the maximum damage extension, and the aim of simulating the impacts on the 

ionomer was to see if this damage could be predicted. The value of the external hole taken from the 

simulations is shown in Figure 5.5. Furthermore, the velocity of the projectile remnant measured 

experimentally was compared to the value obtained numerically. 

 

Figure 5.4 Numerical simulation of impact on panel A and definition of numerical damage measures bd and dh in the 

numerical models for the structural layers. 

 

Figure 5.5 Numerical simulation of impact on ionomer and definition of the numerically measured external hole. 

In Figure 5.6 the residual velocity of the projectile obtained numerically and experimentally for 

shots on the panels A is shown. Good results are obtained from the simulations for more energetic 

impacts, where the difference is within 10%, while for shot 8983 a larger disagreement of the 
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numerical value with respect to the experimental is obtained. Anyway it seems that the numerical 

data trend follows the experimental data trend. 

 

Figure 5.6 Projectile residual velocity: experiments vs. simulations for panels A. 

In Figure 5.7 the projectile residual velocity for shots on panels C is shown. Only for shot 8982 

very similar results to the experiments are obtained, while for the other cases almost a constant 

difference is of ~200m/s is observed. Also for panels C the experimental trend seems to be 

reproduced relatively well, especially considering the uncertainties in the material properties.  

For tests on panel B, only for two shots the velocity of the projectile fragment was available. In both 

of those shots the velocity obtained numerically is very similar to the experimentally measured 

velocity (see Figure 5.8). 

The maximal damage extension detected and measured with the ultrasound system is compared to 

the maximal damage  obtained numerically in Figure 5.9 for panel A and in Figure 5.10 for panel C. 

The hole diameters defined in Figure 4.34, Figure 4.35 and Figure 5.4 are compared in Figure 5.11 

and Figure 5.12 for panels A and C, respectively. The damage comparison for panel A shows 

somewhat more discrepancy than the velocity results. In Figure 5.9 the difference goes up to ~30% 

for shot 8981, and for shot 8985 the results vary only 10%. While the damage extension is 

underestimated by the numerical simulations, values for dh are overestimated (see Figure 5.11). 

Beside the discrepancies between the numerical and experimental results, the trend reproduced with 

the numerical models appears to follow fairly well the experimental trend. As far as the damage in 

Figure 5.10 and Figure 5.12 for the panels C is concerned, similar observations can be made as for 
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the panel A with regard to comparison of simulations and experiments. It is noted that good 

agreement between numerical and experimental values for dh in Figure 5.12 are found. 

 

 

Figure 5.7 Projectile residual velocity: experiments vs. simulations for panels C. 

 

 

Figure 5.8 Projectile residual velocity: experiments vs. simulations for panels B. 
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The external hole for the ionomer (which is equal to the maximal damage extension) plotted in 

Figure 5.13 is largely overestimated. Values three times bigger than those found in experimental 

tests were predicted by the simulations. This is probably caused by the limitations of the material 

models used, as well by the material properties applied. Mechanical properties from high strain-rate 

tests, and also a more appropriate equation of state (e.g. Tillotson EOS) with the accompanying 

material data, could be used to provide better results. 

With very limited material data obtained through mechanical testing, fairly good results are 

obtained for the composite materials, which can be used for preliminary studies, for example as an 

aid to test matrix definition, before going on to experiment execution. For the ionomer, the velocity 

comparisons were very similar between experiments and simulations, but the damage was grossly 

overestimated. 

 

 

 

Figure 5.9 Comparison of damage extension (bd) measured with the ultrasound system with the numerically obtained 

values for panels A. 
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Figure 5.10 Comparison of damage extension (bd) measured with the ultrasound system with the numerically obtained 

values for panels C. 

 

 

 

Figure 5.11 External hole diameter (dh,front) comparison for panels A: experiments vs. simulations. 
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Figure 5.12 External hole diameter (dh,front) comparison for panels C: experiments vs. simulations. 

 

 

Figure 5.13 External hole diameter (dext,front) comparison for panels B: experiments vs. simulations. 
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6. Conclusions  

In this work the impact behaviour of a multifunctional panel, when impacted by aluminium spheres 

at velocities ranging from 1 km/s to 4 km/s, has been studied. Anyway, throughout the study most 

impacts were in the range of 2 km/s to 2.5 km/s. The studied multifunctional panels consisted of 

one or two structural layers made of composite materials and a self-healing layer made of ethylene-

co-methacrylic acid ionomer (panel B). One structural layer was a CFRP laminate (panel A), while 

the other was a CFRP laminate covered on front and back faces with aramid fibre fabric / epoxy 

composite (panel C). The structural and self-healing layers were tested alone, and then they were 

coupled together in various two-layers and three-layers configurations. In this way a variety of 

samples was tested and compared. The impact behaviour was characterized by evaluating the 

momentum transfer to the witness plate mounted on a ballistic pendulum placed behind the target, 

the velocity of the biggest and fastest fragment in the debris cloud, the damage distribution on the 

witness plate, the damage size, and the self-healing performance.  

The ionomer was compared to the aluminium for bumper applications. It was concluded that it may 

be unsuitable for such application due to low projectile fragmentation capability.  

Both the ionomer and composite panels protection capabilities were observed to be very low in 

terms of projectile fragmentation. Very similar behaviour of panels A and C for momentum transfer 

and fragments velocity was found.  

For two-layers configurations, it was observed that less momentum is transferred if the ionomer is 

on the back side of the assembly (with respect to the projectile path). It was further noted that this 

response varies for different structural layers used in front of the ionomer.  

Among all tested configurations it was found that the three-layers sandwich configurations (with the 

ionomer layer between two structural layers) transfer the least amount of momentum to the backing 

witness plate, and also the fragments velocities are lower than in the other configurations per unit 

areal density. Similar behaviour of the two structural elements analysed for momentum transfer and 

fragments velocity was found. 

Regarding the damage of the panels, it was observed that only a small area slightly bigger than the 

projectile was damaged by the impact (considering also the self-healed region as damaged, due to 

the changes it undergoes). A high tendency of damage propagation in the fibres direction, mainly 

through matrix fracture, is observed for the composite panels. This suggests that for impact 

applications a woven composite is much better with respect to unidirectional laminas if superficial 

damage is to be kept as small as possible. 
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The self-healing effectiveness varied a lot, and inconclusive results were obtained. Panels AB and 

BA both sealed the hole successfully for impact of spheres with a diametr of 3.5 mm and for impact 

velocity in the range from 2 km/s to 2.5 km/s. Instead for larger diameters the self-healing was 

ineffective. The effect of structural layer is evidenced as panels CB and BC performance was poorer 

than for panels AB and BA, for the configurations used herein. More experiments should be 

performed to further test the self-healing with different ionomer layer thicknesses in the unrepaired 

samples.  

Numerical models of the tests on single layers were set up in ANSYS AUTODYN and numerical 

simulations were performed. Furthermore, the numerical results were compared to the experimental 

results, in order to validate the numerical models. No self-healing was modelled, since such 

material models were not available. The mechanical properties of the target materials were mainly 

assumed from similar materials in the literature. Fairly good results were obtained for the projectile 

fragment velocity when compared to the experiments. For the  damage comparison between 

simulations and experiments more discrepancy was present, which varied from 30% to smaller 

values for the composite materials. For the ionomer the numerical simulations grossly 

overestimated the damage, due to inadequate material models.  
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Appendix 1: MATLAB script file for the prediction of 

CFRP laminate stiffness properties and the 

corresponding input file  

A script file written in MATLAB for the prediction of CFRP laminate stiffness properties and 

unidirectional lamina strength properties is given below. 

clear all 
disp(' ') 
disp('-------------------------------------------------------------------') 
disp(' This program calculates laminate properties') 
disp(' from the properties of the constituent materials.') 
disp(' ') 
disp(' The x and y co-ordinates are in the plane of the composite') 
disp(' and z is through the thickness.') 
disp('-------------------------------------------------------------------') 
disp(' ') 
disp(' Select in which units the material properties will be displayed:') 
disp(' 1=Pa ') 
disp(' 2=kPa ') 
disp(' 3=MPa ') 
disp(' 4=GPa ') 
disp(' ') 
units_choice=input(' '); 
disp(' ') 
disp('-------------------------------------------------------------------') 
disp(' ') 
disp(' Enter the name of the text file containing the constituent '); 
disp(' properties and data for the laminate (e.g. FileName.txt): '); 
disp(' ') 
file_name=input(' ','s'); 
diary_filename=['diary_',file_name]; 
if(exist(diary_filename)>0) 
    delete(diary_filename) 
end 
diary(diary_filename) 
disp(' ') 
disp([' Loading file: ',file_name]) 
disp(' ') 
disp('-------------------------------------------------------------------') 
fid1=fopen(file_name,'r'); 
all_data_cell=textscan(fid1,'%f','CommentStyle','*'); 
all_data=[all_data_cell{1}]; 

  
% Fiber density 
Rf=all_data(1); 
% Fiber longitudinal tensile modulus (Ef1) 
Ef11=all_data(2); 
% Fiber transverse tensile modulus (Ef2) 
Ef22=all_data(3); 
% Fiber Poisson's ratio (v12) 
vf12=all_data(4); 
% Fiber transverse Poisson's ratio (v23) 
vf23=all_data(5); 
% Fiber shear modulus (Gf12) 
Gf12=all_data(6); 
% Fiber transverse shear modulus (Gf23) 



126 

 

Gf23=all_data(7); 
% Fiber longitudinal tensile strength 
Xft=all_data(8); 
% Fiber longitudinal compression strength 
Xfc=all_data(9); 

  
% Resin density 
Rm=all_data(10); 
% Resin tensile modulus (Em) 
Em=all_data(11); 
% Resin Poisson's ratio (vm) 
vm=all_data(12); 
% Resin shear modulus (Gm) 
Gm=all_data(13); 
% Resin tensile strength 
Xmt=all_data(14); 
% Resin compression strength 
Xmc=all_data(15); 
% Resin shear strength 
Smxy=all_data(16); 
% Resin fracture energy 
Gfm=all_data(17); 

  
% LAMINATE DATA 
% Fiber volume content 
Vf=all_data(18); 
% Resin volume content 
Vm=1-Vf; 
% Total number of laminas in the laminate 
N=all_data(19); 
% Total thickness of the laminate in meters 
h=all_data(20); 

  
% Vector containing the thickness of each lamina. The i-th vector element 
% corresponds to the thickness of the i-th lamina. 
for i=1:N; 
    t(i)=all_data(20+i); 
end 

  
% Vector containing the angle of each lamina material directions with 
% regards to the laminate principal material axes. The i-th vector element 
% corresponds to the angle of the i-th lamina. 
for i=1:N; 
    theta(i)=all_data(20+N+i); 
end 

  
% Beta coefficient used for the calculation of the bridging matrix elements 
% (0<=beta<=1, usually from 0.35 to 0.5) 
beta=all_data(20+2*N+1); 

  
% Alfa coefficient used for the calculation of the bridging matrix elements 
% (0<=alfa<=1, usually from 0.35 to 0.5) 
alfa=all_data(20+2*N+2); 

  
% Assumed volume content of voids in the matrix of the laminate 
Vv=all_data(20+2*N+3); 
 

% p-wave sound speed of the laminate used for the calculation of the 
% equation of state properties 
cp=all_data(20+2*N+4); 
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% Elastic compliance matrix for the fiber material (valid only if the fiber 
% is transversely isotropic) 
Sf=[1/Ef11 -vf12/Ef11 -vf12/Ef11 0 0 0;... 
    -vf12/Ef11 1/Ef22 -vf23/Ef22 0 0 0;...  
    -vf12/Ef11 -vf23/Ef22 1/Ef22 0 0 0;... 
    0 0 0 1/Gf23 0 0 ; 0 0 0 0 1/Gf12 0; 0 0 0 0 0 1/Gf12]; 
 

% Elastic compliance matrix of the resin material 
Sm=[1/Em -vm/Em -vm/Em 0 0 0;... 
    -vm/Em 1/Em -vm/Em 0 0 0;... 
    -vm/Em -vm/Em 1/Em 0 0 0;... 
    0 0 0 1/Gm 0 0; 0 0 0 0 1/Gm 0; 0 0 0 0 0 1/Gm]; 

 
% Calculating the bridging matrix elements 
a11=Em/Ef11; 
a22=beta+(1-beta)*Em/Ef22; 
a33=a22; 
a44=a22; 
a55=alfa+(1-alfa)*Gm/Gf12; 
a66=a55; 
a32=0; 

  
a13=((Sf(1,2)-Sm(1,2))*(a11-a22))/(Sf(1,1)-Sm(1,1)); 
a12=a13; 

  
% Calculating the elastic properties of a lamina 
E11=Vf*Ef11+Vm*Em; 
v12=Vf*vf12+Vm*vm; 
E22=((Vf+Vm*a11)*(Vf+Vm*a22))/((Vf+Vm*a11)*(Vf*Sf(2,2)+a22*Vm*Sm(2,2))+Vf*Vm*(Sm

(2,1)-Sf(2,1))*a12); 
G12=(Vf+Vm*a66)/(Vf/Gf12+Vm*a66/Gm); 
G12_2=((Vf+Vm*a66)*Gf12*Gm)/(Vf*Gm+Vm*a66*Gf12); 
G13=G12; 
G23=(0.5*(Vf+Vm*a44))/(Vf*(Sf(2,2)-Sf(2,3))+Vm*a44*(Sm(2,2)-Sm(2,3))); 
v13=v12; 
v23=((E22/(2*G23))-1); 

  
% Lamina and laminate density 
R0=Vf*Rf+Vm*Rm; 

  
% Lamina properties 
Ex=E11; 
Ey=E22; 
Ez=E22; 
Vxy=v12; 
Vyz=v23; 
Vxz=v13; 
Gxy=G12; 
Gxz=G13; 
Gyz=G23; 

  
% Units 

  
if (units_choice==1) 
    units='Pa'; 
    units_tr=1; 
end 

  
if (units_choice==2) 
    units='kPa'; 
    units_tr=0.001; 
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end 

  
if (units_choice==3) 
    units='MPa'; 
    units_tr=0.000001; 
end 

  
if (units_choice==4) 
    units='GPa'; 
    units_tr=0.000000001; 
end 

  
% Calculating Poisson's coefficients 
Vyx=(Ey/Ex)*Vxy; 
Vzy=(Ez/Ey)*Vyz; 
Vzx=(Ez/Ex)*Vxz; 

  
% Calculating the volume fraction of each lamina in the laminate 
for k=1:N; 
    v(k)=(t(k))/h; 
end 

  
% Calculating the stiffness matrix coefficients of the lamina 

  
delta=(1-Vxy*Vyx-Vyz*Vzy-Vzx*Vxz-2*Vyx*Vzy*Vxz)/(Ex*Ey*Ez); 

  
c(1,1)=(1-Vyz*Vzy)/(Ey*Ez*delta); 
c(1,2)=(Vyx+Vzx*Vyz)/(Ey*Ez*delta); 
c(1,3)=(Vzx+Vyx*Vzy)/(Ey*Ez*delta); 
c(1,4)=0; 
c(1,5)=0; 
c(1,6)=0; 
c(2,1)=(Vyx+Vzx*Vyz)/(Ey*Ez*delta); 
c(2,2)=(1-Vxz*Vzx)/(Ex*Ez*delta); 
c(2,3)=(Vzy+Vxy*Vzx)/(Ex*Ez*delta); 
c(2,4)=0; 
c(2,5)=0; 
c(2,6)=0; 
c(3,1)=(Vzx+Vyx*Vzy)/(Ey*Ez*delta); 
c(3,2)=(Vzy+Vxy*Vzx)/(Ex*Ez*delta); 
c(3,3)=(1-Vxy*Vyx)/(Ex*Ey*delta); 
c(3,4)=0; 
c(3,5)=0; 
c(3,6)=0; 
c(4,1)=0; 
c(4,2)=0; 
c(4,3)=0; 
c(4,4)=Gyz; 
c(4,5)=0; 
c(4,6)=0; 
c(5,1)=0; 
c(5,2)=0; 
c(5,3)=0; 
c(5,4)=0; 
c(5,5)=Gxz; 
c(5,6)=0; 
c(6,1)=0; 
c(6,2)=0; 
c(6,3)=0; 
c(6,4)=0; 
c(6,5)=0; 
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c(6,6)=Gxy; 

  
% Calculating the transformation matrix T for each lamina 
for k=1:N; 
    T(1,1,k)=(cosd(theta(k)))^2; 
    T(1,2,k)=(sind(theta(k)))^2; 
    T(1,3,k)=0; 
    T(1,4,k)=0; 
    T(1,5,k)=0; 
    T(1,6,k)=sind(2*(theta(k))); 
    T(2,1,k)=(sind(theta(k)))^2; 
    T(2,2,k)=(cosd(theta(k)))^2; 
    T(2,3,k)=0; 
    T(2,4,k)=0; 
    T(2,5,k)=0; 
    T(2,6,k)=-(sind(2*(theta(k)))); 
    T(3,1,k)=0; 
    T(3,2,k)=0; 
    T(3,3,k)=1; 
    T(3,4,k)=0; 
    T(3,5,k)=0; 
    T(3,6,k)=0; 
    T(4,1,k)=0; 
    T(4,2,k)=0; 
    T(4,3,k)=0; 
    T(4,4,k)=cosd(theta(k)); 
    T(4,5,k)=-(sind(theta(k))); 
    T(4,6,k)=0; 
    T(5,1,k)=0; 
    T(5,2,k)=0; 
    T(5,3,k)=0; 
    T(5,4,k)=sind(theta(k)); 
    T(5,5,k)=cosd(theta(k)); 
    T(5,6,k)=0; 
    T(6,1,k)=-(sind(2*(theta(k))))/2; 
    T(6,2,k)=sind(2*(theta(k)))/2; 
    T(6,3,k)=0; 
    T(6,4,k)=0; 
    T(6,5,k)=0; 
    T(6,6,k)=cosd(2*(theta(k))); 
end 

  
% Transforming each lamina stiffness matrix in the laminate material axes 
for k=1:N; 
    ct(:,:,k)=(inv(T(:,:,k)))*c(:,:)*((inv(T(:,:,k)))'); 
end 
  

% CALCULATING LAMINATE PROPERTIES FROM UNI-DIRECTIONAL DATA 

  
% - calculating a(k) 
for k=1:N; 
    a(k)=ct(4,4,k)*ct(5,5,k)-((ct(4,5,k))^2); 
end 

  
% - calculating A 
for k=1:N; 
    A1(k)=(v(k)*ct(4,4,k))/(a(k)); 
    A2(k)=(v(k)*ct(5,5,k))/(a(k)); 
    A3(k)=(v(k)*ct(4,5,k))/(a(k)); 
end 

  
A1s=sum(A1); 
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A2s=sum(A2); 
A3s=sum(A3); 

  
A=A1s*A2s-(A3s*A3s); 

  
% - calculating the stiffness matrix coefficients of the laminate 

 
% - calculating C33 
for k=1:N; 
    C33_1(k)=v(k)/ct(3,3,k); 
end 

  
C33_1s=sum(C33_1); 

  
C(3,3)=1/(C33_1s); 

  
% - calculating C23 
for k=1:N; 
    C23_1(k)=v(k)*ct(2,3,k); 
    C23_2(k)=((ct(3,3,k)-C(3,3))*v(k)*(ct(2,3,1)-ct(2,3,k)))/(ct(3,3,k)); 
end 

  
C23_1s=sum(C23_1); 
C23_2s=sum(C23_2); 

  
C(2,3)=C23_1s+C23_2s; 

  
% - calculating C22 
for k=1:N; 
    C22_1(k)=v(k)*ct(2,2,k); 
    C22_2(k)=((ct(2,3,k)-C(2,3))*v(k)*(ct(2,3,1)-ct(2,3,k)))/(ct(3,3,k)); 
end 

  
C22_1s=sum(C22_1); 
C22_2s=sum(C22_2); 

  
C(2,2)=C22_1s+C22_2s; 

  
% - calculating C13 
for k=1:N; 
    C13_1(k)=v(k)*ct(1,3,k); 
    C13_2(k)=((ct(3,3,k)-C(3,3))*v(k)*(ct(1,3,1)-ct(1,3,k)))/(ct(3,3,k)); 
end 

  
C13_1s=sum(C13_1); 
C13_2s=sum(C13_2); 

  
C(1,3)=C13_1s+C13_2s; 

  
% - calculating C12 
for k=1:N; 
    C12_1(k)=v(k)*ct(1,2,k); 
    C12_2(k)=((ct(1,3,k)-C(1,3))*v(k)*(ct(2,3,1)-ct(2,3,k)))/(ct(3,3,k)); 
end 

  
C12_1s=sum(C12_1); 
C12_2s=sum(C12_2); 

  
C(1,2)=C12_1s+C12_2s; 



131 

 

  
% - calculating C11 
for k=1:N; 
    C11_1(k)=v(k)*ct(1,1,k); 
    C11_2(k)=((ct(1,3,k)-C(1,3))*v(k)*(ct(1,3,1)-ct(1,3,k)))/(ct(3,3,k)); 
end 

  
C11_1s=sum(C11_1); 
C11_2s=sum(C11_2); 

  
C(1,1)=C11_1s+C11_2s; 

  
% - calculating C16 
for k=1:N; 
    C16_1(k)=v(k)*ct(1,6,k); 
    C16_2(k)=((ct(1,3,k)-C(1,3))*v(k)*(ct(3,6,1)-ct(3,6,k)))/(ct(3,3,k)); 
end 

  
C16_1s=sum(C16_1); 
C16_2s=sum(C16_2); 

  
C(1,6)=C16_1s+C16_2s; 

  
% - calculating C26 
for k=1:N; 
    C26_1(k)=v(k)*ct(2,6,k); 
    C26_2(k)=((ct(2,3,k)-C(2,3))*v(k)*(ct(3,6,1)-ct(3,6,k)))/(ct(3,3,k)); 
end 

  
C26_1s=sum(C26_1); 
C26_2s=sum(C26_2); 

  
C(2,6)=C26_1s+C26_2s; 

  
% - calculating C36 
for k=1:N; 
    C36_1(k)=v(k)*ct(3,6,k); 
    C36_2(k)=((ct(3,3,k)-C(3,3))*v(k)*(ct(3,6,1)-ct(3,6,k)))/(ct(3,3,k)); 
end 

  
C36_1s=sum(C36_1); 
C36_2s=sum(C36_2); 

  
C(3,6)=C36_1s+C36_2s; 

  
% - calculating C66 
for k=1:N; 
    C66_1(k)=v(k)*ct(6,6,k); 
    C66_2(k)=((ct(3,6,k)-C(3,6))*v(k)*(ct(3,6,1)-ct(3,6,k)))/(ct(3,3,k)); 
end 

  
C66_1s=sum(C66_1); 
C66_2s=sum(C66_2); 

  
C(6,6)=C66_1s+C66_2s; 

  
% - calculating C44 
for k=1:N; 
    C44_1(k)=(v(k)*ct(4,4,k))/(a(k)); 
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end 

  
C44_1s=sum(C44_1); 

  
C(4,4)=C44_1s/A; 

  
% - calculating C45 
for k=1:N; 
    C45_1(k)=(v(k)*ct(4,5,k))/(a(k)); 
end 

  
C45_1s=sum(C45_1); 

  
C(4,5)=C45_1s/A; 

  
% - calculating C55 
for k=1:N; 
    C55_1(k)=(v(k)*ct(5,5,k))/(a(k)); 
end 

  
C55_1s=sum(C55_1); 

  
C(5,5)=C55_1s/A; 

  
% - calculating C21 
C(2,1)=C(1,2); 

  
% - calculating C31 
C(3,1)=C(1,3); 

  
% - calculating C32 
C(3,2)=C(2,3); 

  
% - calculating C54 
C(5,4)=C(4,5); 

  
% - calculating C61 
C(6,1)=C(1,6); 

  
% - calculating C62 
C(6,2)=C(2,6); 

  
% - calculating C63 
C(6,3)=C(3,6); 
 

 
% Laminate stiffness matrix 
CL=C; 

  
% Calculating the effective compliance matrix of the laminate 
SL=inv(CL); 

  
% Claculating the effective elastic properties of the laminate 
ELxx=1/(SL(1,1)); 
ELyy=1/(SL(2,2)); 
ELzz=1/(SL(3,3)); 
VLyz=-((SL(2,3))/(SL(2,2))); 
VLxz=-((SL(3,1))/(SL(1,1))); 
VLxy=-((SL(2,1))/(SL(1,1))); 
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GLyz=1/(SL(4,4)); 
GLxz=1/(SL(5,5)); 
GLxy=1/(SL(6,6)); 

  
VLzx=VLxz*(ELzz/ELxx); 

  
% Writing the stiffness properties data to the command window 

 
str1=sprintf('  Exx (%s) = %f ', units, ELxx*units_tr); 
str2=sprintf('  Eyy (%s) = %f ', units, ELyy*units_tr); 
str3=sprintf('  Ezz (%s) = %f ', units, ELzz*units_tr); 
str4=sprintf('  Vyz       = %f ', VLyz); 
str5=sprintf('  Vxz       = %f ', VLxz); 
str6=sprintf('  Vxy       = %f ', VLxy); 
str7=sprintf('  Gyz (%s) = %f ', units, GLyz*units_tr); 
str8=sprintf('  Gxz (%s) = %f ', units, GLxz*units_tr); 
str9=sprintf('  Gxy (%s) = %f ', units, GLxy*units_tr); 
str51=sprintf('  Vzx       = %f ', VLzx); 

  
str11=sprintf('  E11 (%s) = %f ', units, Ex*units_tr); 
str22=sprintf('  E22 (%s) = %f ', units, Ey*units_tr); 
str33=sprintf('  E33 (%s) = %f ', units, Ez*units_tr); 
str44=sprintf('  V23       = %f ', Vyz); 
str55=sprintf('  V13       = %f ', Vxz); 
str66=sprintf('  V12       = %f ', Vxy); 
str77=sprintf('  G23 (%s) = %f ', units, Gyz*units_tr); 
str88=sprintf('  G13 (%s) = %f ', units, Gxz*units_tr); 
str99=sprintf('  G12 (%s) = %f ', units, Gxy*units_tr); 

  
str_density=sprintf(' Laminate reference density (kg/m^3): %f ', R0); 

  
disp(' ') 
disp(' Uni-directional lamina stiffness properties') 
disp(' ') 
disp(str11) 
disp(str22) 
disp(str33) 
disp(str44) 
disp(str55) 
disp(str66) 
disp(str77) 
disp(str88) 
disp(str99) 
disp(' ') 
disp('-------------------------------------------------------------------') 
disp(' ') 
disp(' Laminate stiffness properties') 
disp(' ') 
disp(str1) 
disp(str2) 
disp(str3) 
disp(str4) 
disp(str5) 
disp(str6) 
disp(str7) 
disp(str8) 
disp(str9) 
disp(' ') 
disp(str51) 
disp(' ') 
disp('-------------------------------------------------------------------') 
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disp(' ') 
disp(str_density) 
disp(' ') 
disp('-------------------------------------------------------------------') 

  
% EQUATION OF STATE PROPERTIES OF THE LAMINATE 

  
%delta=(1-nu12*nu21-nu23*nu32-nu31*nu13-2*nu21*nu32*nu13)/(E1*E2*E3); 

  
VLyx=(ELyy/ELxx)*VLxy; 
VLzy=(ELzz/ELyy)*VLyz; 

  
delta_laminate=(1-VLxy*VLyx-VLyz*VLzy-VLzx*VLxz-

2*VLyx*VLzy*VLxz)/(ELxx*ELyy*ELzz); 

  
C11=(1-VLyz*VLzy)/(ELyy*ELzz*delta_laminate); 
stiff_matrix_laminate=CL(1,1); 

  
A1=(1/9)*(CL(1,1)+CL(2,2)+CL(3,3)+2*(CL(1,2)+CL(2,3)+CL(1,3))); 

 
C0=0.6707*cp; 

 

S=0.0006242*cp; 

  
K1_1=R0*C0*C0; 
A2=R0*C0*C0*(1+S*(S-1)); 
A3=R0*C0*C0*(2*(S-1)+3*(S-1)*(S-1)); 

  
B0=2*S-1; 
B1=B0; 

  
T1=A1; 
T2=A2; 

  
str_A1=sprintf('  A1 (%s) = %f ', units, A1*units_tr); 
str_A2=sprintf('  A2 (%s) = %f ', units, A2*units_tr); 
str_A3=sprintf('  A3 (%s) = %f ', units, A3*units_tr); 
str_B0=sprintf('  B0       = %f ', B0); 
str_B1=sprintf('  B1       = %f ', B1); 
str_T1=sprintf('  T1 (%s) = %f ', units, T1*units_tr); 
str_T2=sprintf('  T2 (%s) = %f ', units, T2*units_tr); 

  
disp(' ') 
disp(' Estimated equation of state properties for the laminate') 
disp(' ') 
disp(str_A1) 
disp(str_A2) 
disp(str_A3) 
disp(str_B0) 
disp(str_B1) 
disp(str_T1) 
disp(str_T2) 
disp(' ') 
disp('-------------------------------------------------------------------') 
  

% Calculating the in-plane strength properties of a single unidirectional lamina 

  
% Longitudinal tension strength 
Xt=Vf*Xft; 
% Lamina transverse tension strength 
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S22t=(1-(sqrt(Vf)-Vf)*(1-Em/Ef22))*Xmt; 
% Lamina transverse compression strength 
S22c=(1-(sqrt(Vf)-Vf)*(1-Em/Ef22))*Xmc; 
% Intralaminar shear strength 
S12s=(1-(sqrt(Vf)-Vf)*(1-Gm/Gf12))*Smxy; 
% Longitudinal compression strength 
Xc_1=Vf*Xfc;  % Fiber compression 
Xc_2=10*S12s+2.5*Xmt;  % Delamination/shear 
Xc_3=Gm/(1-Vf*(1-Gm/Gf12));  % Microbuckling 

  
Xc_all=[Xc_1 Xc_2 Xc_3]; 

  
Xc=min(Xc_all); % Longitudinal compression strength 

  
% Matrix properties if voids presence is assumed 
% Matrix transverse tensile strength if voids presence is assumed 
Xmt_voids=(1-sqrt(4*Vv/((1-Vf)*pi)))*Xmt; 
% Matrix transverse compressive strength if voids presence is assumed 
Xmc_voids=(1-sqrt(4*Vv/((1-Vf)*pi)))*Xmc; 
% Matrix shear strength if voids presence is assumed 
Smxy_voids=(1-sqrt(4*Vv/((1-Vf)*pi)))*Smxy; 

  
% Calculating certain strength properties of a single lamina if voids 
% presence is assumed 
S22t_voids=(1-(sqrt(Vf)-Vf)*(1-Em/Ef22))*Xmt_voids; 
S22c_voids=(1-(sqrt(Vf)-Vf)*(1-Em/Ef22))*Xmc_voids; 
S12s_voids=(1-(sqrt(Vf)-Vf)*(1-Gm/Gf12))*Smxy_voids; 
% Longitudinal compression strength (delamination/shear) if voids are 
% present 
Xc_2_voids=10*S12s_voids+2.5*Xmt_voids;   

 

  
% Calculating through-the-thickness strengths of a lamina 

  
% Interlaminar shear strengths of unidirectional laminate 
S13s=(1-(sqrt(Vf)-Vf)*(1-Gm/Gf12))*Smxy;  % Longitudinal 
S23s=((1-(sqrt(Vf))*(1-Gm/Gf23))/(1-Vf*(1-Gm/Gf23)))*Smxy;  % Transverse 

  
% Interlaminar shear strengths of unidirectional laminate if void presence 
% is assumed 
S13s_voids=(1-(sqrt(Vf)-Vf)*(1-Gm/Gf12))*Smxy_voids;  % Longitudinal 
S23s_voids=((1-(sqrt(Vf))*(1-Gm/Gf23))/(1-Vf*(1-Gm/Gf23)))*Smxy_voids; %Transverse 

  
diary off 

 

The input file for the above script file is given next. 

*-------------------------------------------------------------------------- 
*All data shoud be in koligrams (kg), meters (m) and seconds (s) 
*-------------------------------------------------------------------------- 

  
*CONSTITUENT PROPERTIES AND DATA FOR THE LAMINATE  

  
*Constituent properties 

  
*Fiber properties 
*Fibre type: T600 
*Density (kg/m^3): 
1790 
*Longitudinal tensile modulus (Ef11): 



136 

 

230000000000 
*Transverse tensile modulus (Ef22): 
15000000000 
*Poisson's ratio (vf12): 
0.2 
*Transverse Poisson's ratio (vf23): 
0.0714 
*Shear modulus (Gf12): 
15000000000 
*Transverse shear modulus (Gf23): 
7000000000 
*Longitudinal tensile strength (Xft): 
4136400000 
*Longitudinal compression strength (Xfc): 
3000000000 

  
*Resin 
*Matrix name: REM 
*Density (kg/m^3): 
1200 
*Tensile modulus (Em): 
3360000000 
*Poisson's ratio (vm): 
0.35 
*Shear modulus (Gm): 
1244000000 
*Tensile strength (Xmt): 
60000000 
*Compression strength (Xmc): 
150000000 
*Shear strength (Smxy): 
55000000 
*Fracture energy - Gfm (J/m^2): 
240 

  
*Laminate data 
*Fibre volume content: 
0.6 
*Number of laminas in the laminate: 
12 
*Thickness of the laminate in meters: 
0.0036 
*Thickness of each lamina individually in milimeters, e.g.: 
*t(1)  
*t(2)  
*...  
*t(n)  
*where t(i) is the thickness of the i-th lamina: 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
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*Angle of each lamina material directions with regards to the laminate principal 

*material axes (e.g. theta(1) theta(2) ... theta(n), where theta(i) is the angle 

*of the i-th lamina in degrees): 
0 
90 
0 
90 
0 
90 
90 
0 
90 
0 
90 
0 
*Value of the beta coefficient that is used for the calculation of the bridging 

matrix elements (usually from 0.35 to 0.5): 
0.35 
*Value of the alfa coefficient that is used for the calculation of the bridging 

matrix elements (usually from 0.35 to 0.5): 
0.3 
*Assumed volume content of voids in the matrix of the composite laminate (if no 

voids are present write zero (0)) 
0.00 
*p-wave sound speed of the laminate 
3050 

 


