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«Dubium sapientiae initium» 

(Doubt is the beginning of wisdom) 

René Descartes, Meditationes de prima philosophia 
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RIASSUNTO 

 
Le mutazioni che colpiscono il cotrasportatore per il sodio e cloro (NCC) nel tubulo 
contorto distale del nefrone, sono responsabili della sindrome di Gitelman (GS).  
Quest’ultima è una rara tubulopatia renale autosomica recessiva caratterizzata da 
alterazioni elettrolitiche simili a quelle indotte dal trattamento ad alte dosi con diuretici 
tiazidici.   La co-presenza di ipomagnesemia e ipocalciuria è una delle caratteristiche 
di GS che la distinguono da un’altra tubulopatia renale ipokalemica, la  sindorme di 
Bartter (BS).   Generalmente, i soggetti affetti sono eterozigoti composti con una 
prevalenza stimata di 1 su 40000.  La malattia può essere silente per anni prima di 
presentarsi nell’età adulta.  Riconoscerne la componente genetica è fondamentale per 
lo screening e la diagnosi.  Recenti studi hanno di fatto dimostrato come le mutazioni a 
carico dei regolatori renali dell’omeostasi del sodio siano sottostimate nella popolazione 
generale. 
Nel nostro database universitario di pazienti BS/GS abbiamo riscontrato una nuova 
mutazione puntiforme (c.1204G>A che comporta lo scambio aminoacidico Gly394Asp) 
nel cotrasportatore del sodio e cloro NCC (SLC12A3) in una giovane donna con 
ipokaliemia, ipomagnesemia e ipocalciuria associati a dolori e crampi muscolari.  Il 
presente studio ha lo scopo di investigare tramite un approccio biologico molecolare 
come questa mutazione influenzi la funzionalità di NCC. 
Previo screening con softwares bioinformatici che predicono la possibile patogenicità 
della mutazione, sono stati creati dei vettori di espressione contenenti le sequenze per 
NCC wild type e per NCC con mutazione G394D.  Successivamente, le sequenze sono 
state trasfettate in una linea di cellule fetali umane ricombinate (HEK293) e in ovociti 
derivati da rane Xenopus Laevis.  Nelle cellule trasfettate, l’immunoblotting di NCC 
wild-type ha dimostrato la presenza di due bande approssimativamente a 130 KDa e 
115 KDa che corrispondono rispettivamente alla forma glicosilata e nativa della 
proteina.  Al contrario, G394D-NCC presenta una sola banda a 115 KDa.  Risultati 
simili sono stati ottenuti negli ovociti. In questi ultimi l’immunoistochimica ha inoltre 
mostrato una forte localizzazione di NCC wild-type presso la membrana, mentre NCC 
mutato rimane in compartimenti cellulari interni.  Gli studi funzionali di uptake del 
sodio radioattivo (22Na+) hanno ulteriormente confermato che solo la proteina wild-type 
è in grado di riassorbire il sodio al contrario di G394D-NCC.   
I risultati di questo studio dimostrano come la nuova mutazione puntiforme inibisca la 
funzione di NCC a causa della diminuita capacità della proteina di raggiungere la 
superficie cellulare.  L’assenza di una forma glicosilata matura di G394D-NCC 
suggerisce che la mutazione ne condizioni il folding e ne provochi la ritenzione nel 
reticolo endoplasmico ove vengo attivati processi di degradazione anticipata. 
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SUMMARY 

 
Mutations affecting the sodium-chloride cotransporter (NCC) in the distal convoluted 
tubule of the nephron are causative of Gitelman’s syndrome (GS), a rare autosomal 
recessive disease characterized by electrolytic alterations similar to those induced by 
high dose thiazide treatment.  Notably, the co-existence of hypomagnesemia and 
hypocalciuria is a feature of GS which is a distinguish hallmark from another 
hypokalemic renal tubulopathy, the Bartter’s syndrome (BS).  Commonly GS is 
heterozygous compound with an estimated prevalence of 1:40000 and can be silent for 
years before the revealing in the early adulthood.  Recognizing the genetic background 
is fundamental for the screening and the diagnosis of the disease, as recently studies 
showed that mutation affecting regulators of renal salt handling are underestimated in 
the general population.   
In a registry of BS/GS based at our University we discovered a novel point mutation 
(c.1204G>A which codify for an amino acid exchange G394D) in the sodium-chloride 
cotransporter NCC (SLC12A3) in a young woman with hypokalemia, hypomagnesemia 
and hypocalciuria associated to muscle pain and cramps.  The present study aimed to 
investigate how this mutation affects NCC function by using a molecular biology 
approach and providing functional evidences. 
After a prior screening with bioinformatics tools predicting the possible pathogenicity 
of the mutation, were created different expression vectors with either the wild-type (wt-
NCC) or the mutated G394D-NCC sequences.  DNA and in-vitro transcribed RNA 
were afterwards transfected in a human embryonic kidney cells line (HEK293) and 
injected into oocytes deriving from Xenopus Laevis frog respectively.  In transfected 
HEK 293 cells, wildtype NCC was detected by immunoblotting as two bands at 
approximately 130 kDa and 115 kDa corresponding to fully and core-glycosylated 
NCC, respectively.  In contrast, G394D-NCC was seen as a single band at about 115 
kDa only, suggesting an impaired maturation of the mutated protein. Similar findings 
were made in the oocyte expression system.  Confocal microscopy on the oocytes, did 
also show a strong cell surface localization of wildtype NCC while mutated NCC was 
retained at intracellular compartments.  Consistently, a decent thiazide-sensitive 22Na+ 
uptake into injected oocytes was only found for wildtype but not mutated NCC.   
Taken together all the findings in this study, a novel GS point mutation has been 
characterized to diminish NCC function by impairing trafficking of the protein to the 
cell surface.  The absence of any mature glycosylation form of G394D-NCC suggests 
that the mutation impairs protein folding leading to a retention of NCC in the 
endoplasmic reticulum. 
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INTRODUCTION 

 
Gitelman’s syndrome (GS, OMIM no. 263800) is an inherited autosomal recessive renal 

tubular disorder that affects sodium-chloride cotransporter (NCC) in the distal 

convoluted tubule (DCT) of the nephron.  After its first description in 1966, GS was 

found to be far more uncommon then initially held.  In fact, its estimated prevalence is 

about 1:40000, and the heterozygotes carriers involves about 1% in Caucasian 

populations.  Thus GS is one of the most frequently inherited renal tubular disorders 

(1).  The clinical features of GS usually manifest in adolescence or early adulthood, 

and entail muscle weakness, fatigue, joint pain, cramps and tetany (2).  Its biochemical 

hallmarks comprise hypokalemia, metabolic alkalosis, sodium wasting, co-existence of 

hypomagnesemia and hypocalciuria, and normal or low blood pressure values, the latter 

occurring despite a prominent activation of the renin-angiotensin-aldosterone system  

(RAAS) (3).  The molecular basis of GS was attributed to mutations of the solute 

carrier family 12 member 3 gene SLC12A3 gene, which cause loss-of-function of the 

NCC in the distal convoluted-tubule with renal sodium wasting triggering adaptive 

mechanisms in the kidney, including aldosterone-driven increased excretion of K+ in 

exchange for Na+.  

Of note, the biochemical abnormalities of GS are reproduced pharmacologically by 

administration of thiazide diuretics which inhibit the NCC activity causing sodium and 

potassium wasting, hypovolemia, and RAAS activation.  Thus, patients chronically 

treated with these agents can be regarded as the counterpart of the naturally occurring 

GS.  Owing to their pathophysiologic consequences, GS mutations might blunt the 

hypertension phenotype in essential hypertensive patients, which conceivably led to 

underestimate the prevalence of GS mutations inasmuch the syndrome is usually sought 

for only in patients with hypotension.  Indeed, a screening of 2492 members of the 

Framingham Heart Study (FHS) for variation in three genes causing Bartter’s 

syndromes and variation in SLC12A3 gene, allowed the detection of 138 coding 

sequence variants. Those carrying the mutations had significantly lower age- and sex-

adjusted systolic and diastolic BP compared to the non-carriers (4).  While supporting 

the concept that alleles that alter renal salt handling affect BP variation in the general 

population, these results suggest that genetic testing for these syndromes could become 

part of the assessment of patients with BP disorders in the future. 
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The cloning and characterization of the SLC12A3 gene encoding the NCC unveiled 

several mutations affecting the whole protein gene occur in GS and leading to 

dysfunction of the cotransporter (5,6).  To date, more then 180 mutations in SLC12A3 

are found in the HGMD database (www.hgmd.cf.ac.uk), including missense, nonsense, 

frame-shift and splice site.  Notwithstanding the large number of mutations, the 

molecular mechanisms whereby they impair the function of the NCC still remains 

unclear in most cases as most of the mutations were not functionally characterized.  

The described mutations are in the literature as affecting the cotransporter activity (by 

impairing synthesis of the protein), the trafficking of the cotransporter to the cell 

surface, the function of the protein itself at the cell surface, and finally by enhancing the 

degradation of the protein.  According to some studies the central domain of NCC 

would determine ion translocation and confer thiazide-binding specificity, which could 

account for the pathogenic role of these missense mutations (7).  

The syndrome was first described in 1966 when Gitelman reported the clinical case of 

two sisters who presented muscle weakness and had suffered for many years from a 

chronic dermatitis characterized by thickening with a purple-red hue that could have 

been related to magnesium deficiency (2,8,9).  Successively Spencer and Voyce 

reported four siblings of another family: two of them had hypokalemia, 

hypomagnesaemia and decreased urinary calcium output with episodes of tetany, while 

other members were normal (10).  The concept of “familial hypokalemia and 

hypomagnesemia disorder” due to nonspecific illness had more reports after its first 

description with a growing of symptoms.  In 1992 Zagarra et al described a 33-year-

old woman who presented with hypokalemia-hypomagnesemia associated with renal 

potassium and magnesium wasting (11).  She had normal plasma calcium and normal 

serum calcitriol and parathyroid hormone.  Moreover, a test with intravenous 

furosemide (a loop diuretic) evidenced abolition of hypocalciuria, but exaggerated 

natriuresis and magnesium excretion.  The dissociation of renal calcium transport from 

magnesium transport, together with sodium wasting, suggested the presence of a defect 

in the distal tubule rather than in the loop of Henle.  Furthermore, the patient had 

episodes of tetany and muscle cramps consistently with the syndrome of renotubular 

hypomagnesemia-hypokalemia with hypocalciuria, at that time already known as 

Gitelman's syndrome (GS) (11).  For many years it remained challenging to 

discriminate Gitelman’s from Bartter’s syndrome (BS), which was previously described 

by Bartter et al in 1962 as hypokalemic alkalosis, aldosteronism, hyper/normocalciuria 
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disorder (12-14).  Considering the phenotype, the two syndromes share similar 

features, except for the co-existence in GS of hypokalemia, hypomagnesemia and 

hypocalciuria.  Moreover, subjects affected by GS have a prolongation of the QT 

interval on electrocardiogram and episodes of calcium pyrophosphate crystal deposition 

or chondrocalcinosis (13,15,16).  

The onset time for the symptoms come in adulthood, or adolescence in some cases, 

while BS has a neonatal form, or classically appears in childhood (14,17).  Clinically, 

GS has electrolyte abnormalities similar to those induced by treatment with Thiazide 

diuretics or other drugs that inhibit the Na-Cl cotransporter in the distal convoluted 

tubule (DCT) of the kidney.  In 1996 Simon et al. were describing and characterizing 

some cotransporters and channels involved in the reabsorption of electrolytes to better 

gain insight in hypertension etiology (17-19).  Assembling together the findings that in 

GS the reabsorption of the sodium and chloride occurred in the distal convoluted tubule 

in spite of the loop of Henle, and the concurrent hypomagnesemia and electrolytic 

impairment caused by thiazide treatment, Simon et al. could demonstrate a linkage 

between GS and the sodium-chloride cotransporter (NCC) (20).  They identified a 

great amount of variants in the SLC12A3 gene, encoding for the NCC, which were of 

loss-of-function alleles.  The genetic component in this syndrome is intriguing.  It is 

known to be a rare autosomal recessive disease with a prevalence of 1:40000 with 

heterozygous compound, resulting in the most common frequent inherited renal tubular 

disorder.  It is listed in the Mendelian Inheritance in Men (OMIM) with the number 

268300 (http://omim.org/entry/263800) (1,18).  

In heterozygous condition one of the two alleles present a mutation and the subject is a 

carrier non symptomatic.  In homozygous both alleles are presenting the same 

mutation in the same loci and the subject is presenting the disease. In the heterozygous 

compound both alleles are affected by two different mutations in distinct loci (21).  As 

clinical outcome, it can arise a milder form of the disease [Figure1].  

A	
   B	
   	
   C	
   	
  

FIGURE1: Schematic representation of autosomes. Boxes indicate alleles, black rectangles 
indicate mutations. A Heterozygous genotype B Homozygous genotype C Homozygous 
compound genotype 
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Additionally, GS differs from BS for the genetic trait.  While GS is identified as a 

monogenic disease due to mutations affecting NCC, BS is usually classified in 5 types 

regarding the protein affected with an earlier onset timing.  The electrolyte 

abnormalities of BS are similar to those induced by treatment with furosemide or other 

loop diuretics that inhibit the Na-K-2Cl (NKCC2) cotransporter of the thick ascending 

limb of Henle’s loop (TAL).  Typically, NKCC2 mutations classify BS type I.  Other 

mutations are found in genes involved in the regulation of NKCC2 activity, in 

particular, alterations in the apical ATP-sensitive K channel (renal outer medullary 

channel, ROMK) arise BS type II; mutations in the chloride channel Kb (ClCNKb) 

identify BS type III and furthermore, its regulatory protein Barttin can also be affected 

causing BS type IV.  Type V BS is induced by mutations in the Ca2+ sensing receptor 

(CaSR) (14,17-19). [Figure2]  

	
   	
   	
   	
   	
   	
   	
   	
   	
   A	
   	
   B	
  

FIGURE 2: A Distal convoluted cells in Gitelman’s syndrome. Mutations affect the Na-Cl 
cotransporters. B Thick ascending limb cells in Bartter’s syndrome. Mutations affect different 
cotransporters or channels identifying different types. 

 

Recently, a novel form of Bartter syndrome has also been described by Laghmani et al. 

as a transient antenatal form with polyhydramnios and mutations in the MAGED2 

which encodes melanoma- associated antigen D2 (22). 

Both GS and BS syndromes are characterized by marked RAAS stimulation featuring 

high plasma renin, angiotensin II (Ang II) and aldosterone. Notwithstanding this 

activation, patients show reduced peripheral resistance and normal to low blood 

pressure, along with resistance to the pressor effect of vasoconstrictors as Ang II and 
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norepinephrine (23).  Hence it has been speculated, that heterozygous carriers of NCC 

mutation are partially protected from hypertension (4,24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 12	
  

ANGIOTENSIN II SIGNALING IN GITELMAN’S SYNDROME 

Studies in GS and BS may provide useful insights on understanding the mechanisms 

involved in the control and regulation of vascular tone and blood pressure in humans.  

In physiological conditions, Ang II is directly involved in activating microvascular 

signaling leading to increased peripheral resistance and hypertension.  Of note, Calò et 

al. demonstrated that GS and BS patients have a blunted signaling of Ang II despite 

higher levels of the hormone and normal Ang II receptors number and affinity (23).  

This suggests that the Ang II signaling is interrupted at the post receptor level or very 

close to the central switch controlling Ang II signals.  Due to their characteristic 

activation of RAAS	
  with concomitant low blood pressure, the two syndromes can be 

viewed as ‘‘mirror image’’ of hypertension and as human model of endogenous 

antagonism of Ang II signaling via AT1R [Table 1]. 

 

TABLE 1: Opposite effects of Angiotensin II signaling in BS/GS and in Hypertension. In 
hypertensive conditions, AngII signaling through AT1R promotes oxidative stress-related 
pathways, whereas in BS/GS the binding of AngII with AT2R induces favorable anti-
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remodeling and anti-proliferative effects. Adapted from Ravarotto et al. High Blood Press 
Cardiovasc Prev (2015) 22:215 

 

The multiple effects of Ang II function involve short or long-term signaling. The short-

term signaling pathways are mediated by monomeric and heterotrimeric G proteins and 

phospholipase Cb (PLCβ). The bind of Ang II to its receptor AT1 promote the release 

of intracellular messengers inositol triphosphate (IP3) and Ca2+, generation of 

superoxide and activation of protein kinase C (PKC) with ensuing vascular smooth 

muscle contraction (8).  A counterbalancing system is represented by the nitric oxide 

(NO) system, which has vasodilatory and antiproliferative activity.  NO is released by 

endothelial NO synthase (eNOS) and is negatively regulated by PKC.  Therefore, the 

effect of Ang II on vascular function and structure is the result of the net balance of 

signaling molecules, oxidative stress and gasomessengers as nitric oxide (25,26). 

The long-term effects of Ang II promote proliferation and cardiovascular-renal 

remodeling mostly through the induction of oxidative stress (27,28).  The complex of 

Ang II with the AT1 G-protein-coupled receptors promotes alongside the increase of 

free intracellular Ca2+, the activation of the RhoA/ Rho kinase pathway with subsequent 

vasoconstriction and insulin resistance (5). [Figure 3] 

In hypertension Gq and Gi proteins mediate the activation of the PLC.  The Ang II-

AT1R complex couples with PLCb and promotes activation of PKC and 

phosphorylation of the regulatory chain of myosin II.  In addition, the activation of the 

monomeric G-protein RhoA and its effector Rho kinase modulates the phosphorylation 

state of the regulatory chain of myosin II, mainly through inhibition of the myosin 

phosphatase target protein-1 (MYPT-1).  These pathways induce vasoconstriction and 

increased peripheral resistance, while at the same time NO pathway is reduced (23). 
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FIGURE 3: Schematic representation of Ang II signaling pathways involved in 
hypertension and complications (changes of cardiovascular structure: remodeling and 
atherogenesis; hypertension-inflammation relationship; hypertension-glucose transport 
and insulin resistance and sensitivity interrelationships). Ang II, angiotensin II; AT1-R, 
angiotensin II type 1 receptor; [beta] and [gamma] subunit of Gq protein; DAG, 
diacylglycerol; eNOS, endothelial subunit of nitric oxide synthase; PIP2, inositol 
triphosphate; PKC, protein kinase C; PLC[beta], phospholipase C [beta]; RhoGEF, Rho 
guanine nucleotide exchange factor; ROCK, Rho Kinase; MYPT, myosin light chain 
target subunit-1. Adapted from Calò et al. J. Hypertens 32(11):2109-2119, November 
2014 (23) 

 

Ang II signaling in GS and BS is reversed: subjects affected have decreased gene and 

protein expression of the α subunit of Gq protein and blunted downstream intracellular 

events that promote Ca2+ release and PKC activation in the short-term pathway of Ang 

II (29,30) In addition, in these patients the evaluation of the NO system via the 

endothelial nitric oxide synthase (eNOS) mRNA levels, urinary excretion of NO 

metabolites and NO mediated vasodilation showed a significant increase of eNOS 

expression, and an increased NO mediated vasodilation compared with hypertensive 

patients (31-33).  
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The long-term network for GS and BS is characterized by underexpression of pro-

oxidant elements, in favor of an antioxidant potential which is demonstrated by the 

augmented expression of heme oxygenase 1 (HO-1) and NOX4 and reduced p22phox 

(34,35) [Figure 4] 

	
  

FIGURE 4: Ang II signaling and its relationships with nitric oxide, RhoA and Rho kinase and 
oxidative stress systems in GS and BS. In green highlighted the antioxidant and antiremodeling 
potential. Ang II, angiotensin II; AT1-R, angiotensin II type 1 receptor; [beta] and [gamma] 
subunit of Gq protein; CO, carbon monoxide; DAG, diacylglycerol; eNOS, endothelial subunit 
of nitric oxide synthase; ET-1, endothelin-1; G[alpha]q, [alpha] subunit of Gq protein; HO-1, 
heme oxygenase-1; IP3, inositol triphosphate; MAPK-ERK 1/2, mitogen-activated protein 
kinases; NE, norepinephrine; PI3K-Akt, phosphatidyl inositol 3-kinase-Akt (protein kinase B); 
PKC, protein kinase C; PLC[beta], phospholipase C [beta]; P-MLC, phosphorylated myosin 
light chain; RGS-2, regulatory of the G protein signaling-2; RhoGEF, Rho guanine nucleotide 
exchange factor; Continuous lines represent stimulation. Dashed lines represent inhibition 
Adapted from Calò et al. J. Hypertens 32(11):2109-2119, November 2014.  (23)  

	
  

The sodium-chloride cotransporter is a member of the big class of solute carrier proteins 

(SLC) which include 43 families and 298 transporter genes. [Table 2]  In particular, it 

belongs to the SLC12 of the electroneutral cation-chloride cotransporters and it is 

encoded by the gene SLC12A3 (36).  The SLC12A3 gene transcript variant 1 encodes 

for human sodium-chloride cotransporter and contains 26 exons with 5582 bp 
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(NM_000339.2).  In situ hybridization experiments showed the presence of the 

encoding sequence for NCC on the long arm of chromosome 16 region 13 (16q13) (37).  

SLC12A3 shares a highly conserved aminoacid sequence with other members of the 

family, which features twelve transmembrane portions harboring a central hydrophobic 

domain and two cytosolic terminal ends (NH2 and COOH) (38). [Figure5] 	
  

The central region seems to be highly specific for ion translocation and for thiazide-

binding, particularly the 7th and 8th domains, which entail the external loops 

fundamental for glycosylation sites (38,39). 

 

 

 

FIGURE 5: Schematic representation of the Na-Cl cotransporter. The N-terminus and C-
terminus are in the cytosolic compartment, while the extracellular loop comprised between the 
7th and the 8th transmembrane helical traits contains two glycosylation sites (Asparagine 404 and 
424). 
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TABLE 2: List of the Solute Carrier Families 
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Approximately 400 mutations are described to affect the cotransporter and cause GS. 

Most of them (~250) are missense [human gene mutation database hgmd.cf.ac.uk] and 

are spread all along the whole protein.  More than 50 mutations have been reported 

only in Asian populations (38).    

Although there are some functional evidences of the impaired activity of NCC mutated, 

the mechanistic bases of them are still not elucidated yet.  
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THE ROLE OF NCC IN BLOOD PRESSURE CONTROL 

NCC is expressed in the apical membrane of the distal convoluted tubule (DCT) in the 

kidney where it allows Na+ and Cl- reabsorption across the luminal plasma membrane 

(40-42).  

According to an extended structural analysis of the tubules segments, the DCT is the 

nephron segment that lies immediately downstream of the macula densa and plays a 

critical role in a variety of homeostatic processes, including sodium chloride 

reabsorption, potassium secretion, and calcium and magnesium handling.  Moreover, it 

has the capacity to adapt to changes in both hormonal stimuli and the tubular lumen 

content, thus being fundamental in the control of blood pressure as in the fine tuning of 

ions excretion (43,44).  

Based on expression of the different transporters, DCT can be distinguished in two 

portions: the early DCT (or DCT1) and the late (or DCT2) (43).  NCC is distributed in 

the DCT1 along with the magnesium channels (TRPM6) and in little part in the DCT2. 

The DCT2 shows also other proteins, as the target of Aldosterone epithelial sodium 

channel (ENaC), epithelial calcium channels (TRPV5), the sodium-calcium exchanger 

(NCX), plasma membrane calcium-ATPase (PMCA), cytoplasmic calcium-binding 

protein calbindin D28k and intercalated cells (45-48). [Figure 6]  

 

 

FIGURE 6: schematic representation of DCT1 and DCT2 cells expressing different proteins. 
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Only 5-10% of the Na+ load is reabsorbed in the distal convolution and in the 

connecting tubule (CNT) and micropunture experiments showed that, while the early 

DCT is sensitive to thiazides, the late DCT is an amiloride-sensitive segment due to the 

presence of ENaC (49).  The Na+ transport in the DCT1 is electroneutral considering 

the co-transport of Na+ and Cl- trough NCC, while in DCT2 ENaC arise to a negative 

charge in the tubular lumen for its electrogenic transport of Na+.  The functional 

significance of a double Na+ reabsorption is testified by the observation that in low salt 

experimental condition, ENaC is increased to maintain Na+ balance (49).  As 

counterpart, to restore a neutral charge in the lumen, potassium secretion is enhanced 

trough ROMK channels or intercalated cells (43).  The interplay between Na+ 

reabsorption and K+ secretion is fundamental to understand pathological conditions, in 

which there is a gain-of-function or a loss-of-function of certain proteins.  NCC loss-

of-function mutations lead to Na+ dissipation, which in turns stimulate a gradient for 

water to exit, whereas ENaC overactivates to restore the Na+ intake. Finally, to replace 

the ionic imbalance in the tubular lumen, ROMK drives K+ out leading to hypokalemia.  

On the contrary, in gain-of-function conditions, overstimulation of NCC prompt to 

hypertension and hyperkalemia can be observed in patients with 

pseudohyperaldosteronism type II (Gordon’s syndrome) (50).  

Cotransporters and channels coordination is the driving force that permit the fine tuning 

of ions in the DCT.  Magnesium absorption through TRPM6 is potentiated by apical K 

channel Kv1.1 which generates the lumen negative potential.	
   Basolateral K channel 

Kir4.1 and the of Na,K-ATPase also increase magnesium reabsorption by creating a 

sodium gradient, enabling NCC to transport sodium from the apical lumen to the 

cytosol (Blaine).  

As the over-activation of RAAS is a feature of Gitelman’s syndrome, the presence of 

high plasma aldosterone levels burden on the DCT, but the effect may differs along the 

axis of the distal convolution (42).  Studies in rat demonstrated that MR is present in 

the DCT and in the CNT, albeit the enzyme 11β-hydroxysteroid dehydrogenase type 2 

(11β-HSD2 which in turns, inactivates glucocorticoids that would otherwise occupy 

aldosterone receptors), seems to be detectable only in the late DCT (50,51).   

Studies in rat showed that whereas MR seems to be present throughout the DCT and 

CNT, 11β-HSD2 is not detectable in the early DCT1 but is well detectable in the late 

DCT (DCT2), in the CNT, and CD(47,52).  These investigations suggest that 

aldosterone may stimulate sodium-transport mainly in the DCT2 where ENaC, NCC, 
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MR and 11β-HSD2 are expressed, while in the early DCT, NCC activity could be 

stimulated by mineralcorticoids and glucocorticoids in combination (53).   
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FUNCTIONAL STUDIES 

Transfection experiments can be regarded as a powerful strategy to understand gene 

function and have been widely used to highlight many biological issues. By transfection 

technique is possible to introduce exogenous genetic information in a host cell in order 

to induce the production of certain protein and more generally to study biochemical 

pathways.  The methods in which the DNAs or RNAs are delivered varies according to 

the purpose and the host chosen. Ideally, procedures should have high transfection 

efficiency, low cell toxicity, minimal effects on normal physiology, and be easy to use 

and reproduced (54). 

Three typical transfection methods exists: the biological, the chemical and the physical, 

each of them presenting advantages and disadvantages.  Biological methods are 

performed by inserting viral vectors in the host.  The viral DNA integrates randomly in 

the host genome and permits a high efficiency in terms of transfection, nevertheless, 

during the process some mutations not predicted can arise, leading therefore to a final 

abnormal cell (55).  Chemical methods are the most commonly used for their easiness 

of procedure and no contamination of genetic information, but still the efficiency can 

vary for a considerable number of factors.  The ratio between chemicals and DNA, the 

cells growth rate, pH of the solutions and the timing of the experiments influence the 

response.  Among chemical transfections can be considered cationic polymer (one of 

the oldest chemicals used), calcium phosphate, cationic lipid (the most popular method), 

and cationic amino acid (56). Micro injection, biolistic particle delivery, 

electroporation, and laser-based transfection are physical procedures to deliver 

exogenous DNA but can be expensive and need a arrangement of the protocols (57).  

 

Ø HUMAN EMBRYONIC KIDNEY CELL LINE  

HEK293 is a cell line derived from human embryonic kidney cells grown in tissue 

culture. They have been originally transfected with the calcium phosphate medium 

exposure for 3 days and later on with low calcium ion medium, to and Adenovirus type 

5 purified DNA (Ad5 DNA) of approximately 4.5 kilobases.  After the viral 

transfection, the HEK293 cell line showed significantly disrupted cell morphology with 

a tendency to growth in clumps and to replicate fast (58). 
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One of the most well established method of transfection is lipofection. [Figure 7]. The 

underlying principle is that positively charged chemicals complexes with negatively 

charged nucleic acids. These positively charged complexes are attracted to the 

negatively charged cell membrane. To date, no experimental evidences clarified how 

the complexes pass through the cell membrane; however, supposedly this occurs via 

endocytosis.  

	
  

FIGURE 7: Schematic process of lipofection. The negative charged DNA binds the positively 
charged liposomes. The complex is thus attracted by the cell membrane. Once in the cytosolic 
compartment, the complex releases the DNA which in turns enters into the nucleus of the host 
and codify for the specific information introduced. 
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Ø XENOPUS LAEVIS OOCYTES IN BIOLOGY 

	
  

	
  
	
  

	
  

Xenopus is a genus of African frogs that are commonly known as the African clawed 

frogs.  Originally frogs were used as a test for pregnancy by revealing the presence of 

chorionic gonadotropin released in women urines (59).  After stimulation by the 

hormone, frogs produce a huge number, often thousands, of eggs (also defined oocytes) 

and this indicated the presence of gestation.  X.L. oocytes are therefore, a useful tool 

for biochemical investigation, especially of membrane transporters and channels (60).  

The oocytes have a diameter of 1.2 mm which permits to manipulate them easily.  

During the first stages of development they are rich in RNA and proteins and they lack 

of a transcriptional activity until the mid-late blastula stage.  Visually they appear 

divided in two hemispheres, the vegetal pole and the animal one. The vegetal pole is 

white colored and is characterized by the presence of yolk cells organized in a blastula 

with slow division.  The animal pole, the darker and opaque hemisphere, consists of 

small cells that divide rapidly (61).  

The elevated number of eggs produced can be easily conserved in a saline solution and 

manipulated by injecting exogenous material as DNA codifying for one or more 

proteins of interest (59).  The step by which the procedure undergoes start from a 

sorting of the “visually healthier” eggs from the batch, followed by a defolliculation 

phase by either enzymatic or manual treatment (62). [Figure 8] 
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FIGURE 8: Process of defolliculation of Xenopus Laevis oocytes. The dark and the white 
hemispheres indicate the animal pole and the pole respectively. 
 
After the defolliculation step, which removes the follicle layer anchored to the vitelline 

one, RNA can be injected.  X.L. oocytes are being successfully used to investigate ions 

channels and cotransporters activity, because of their low level of endogenously 

expressed channels and receptors, which yields a relatively electrophysiologically silent 

background.  Moreover, they also carry the cellular apparatus to produce functionally 

post-translational modifications (63).  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

 

 

 

 

 



 

 26	
  

AIM OF THE STUDY 

 

This study aims to characterize the molecular and functional effects of a novel point 

mutation (c.1204G>A) that was found in a GS case, never described before.  The 

mutation causes the aminoacid exchange Gly394Asp in the 7th transmembrane domain 

of the cotransporter, which is an important site close to the two glycosylation residues 

of the protein.  In order to assess the impact of this exchange on the activity of the 

protein, the study has been conducted following the study design: 
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MATHERIALS AND METHODS 
 

Investigation strategy 
 

 

 
 

After the genetic screening the patient has been afterwards diagnosed for GS.  In order 

to predict the possible impact of the novel mutation in the activity of the cotransporter 

has been conducted a research by using bioinformatics tools.  Taking into account all 

the results, construct expression vectors enclosing the genetic information for either 

NCC wild-type and NCC mutated (G394D-NCC) have been created.  After 

optimization of the protocols, constructs have been transfected in HEK293 cells in 

which the grade of protein expression has been evaluated by immunofluorescence and 

western blot.  Beside the in vitro experiments, oocytes coming from Xenopus Laevis 

frog have been injected with the constructs and have been used for 

immunohistochemistry analysis, western blot and for 22Na+ uptake experiments. 
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Molecular Investigation 
After a clinical diagnosis of Gitelman’s syndrome, was made a genetic test was done to 

confirm the diagnosis and identify possible mutations on the SLC12A3 gene.  This 

was done at the Laboratory of Medical Genetics (Ospedale Maggiore Policlinico, 

Fondazione IRCCS Ca’ Granda, Milano), certified by the European Molecular Genetics 

Quality Networ (www.emqn.org) 

DNA was extracted from a peripheral blood sample and all 26 exons were analyzed. 

 

Prediction of mutation influence   
Phenotypic effects of amino acid substitution on protein function were predicted by 

online bioinformatics tools.  At least two of them should give an indication of potential 

impairment.  

I-Mutant2.0, (http://folding.biofold.org/i-mutant/i-mutant2.0.html) to predict the 

stability; Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/) to predict the 

pathogenicity and Sorting intolerant from tolerant SIFT (http://sift.jcvi.org) to predict 

the activity of the protein mutated ) (64-66).  To confirm the results of SIFT, an 

additional tool was used: the Protein Variation Effect Analyzer (PROVEAN, 

http://provean.jcvi.org/index.php).  The latter, accepts a protein sequence and amino 

acid variations as input, performing a BLAST search to identify homologous sequences 

(supporting sequences), and generating PROVEAN and SIFT scores. 

 

Synthesis of wt-NCC and G394D-NCC cRNA  
cDNA (GeneCopoeia, Rockville, USA) of human wild-type (wt-NCC) and mutated 

NCC (G394D-NCC) were cloned in pSDeasy vector.  After linearization of the 

plasmid with PciI (New England Biolabs) cRNA synthesis was performed using the 

MEGAScript SP6 kit (ambion; USA) following the manufactures instructions. cRNA 

was purified (Nucleospin RNA; MacheryNagel, CH) and the integrity of the 

transcription product was confirmed by agarose gel electrophoresis.  
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cRNA injection in X. laevis Oocytes  

X. laevis oocytes of stage IV-V were injected with 0.05µl cRNA (44µg/µl) of wt-NCC 

and G3964D-NCC respectively or, as a control, with 0.05µl H2O.  Oocytes were 

incubated at 16°C for 72 h in modified Barth’s Solution (NaCl 88mM, KCl 1mM, CaCl2 

0.41mM, MgCl2 0.82mM, Ca(NO3)2 0.33mM, NaHCO3 2.4 mM, HEPES/Tris 10 mM, 

pH 7.4) with gentamycin (5mg/l) and Doxy for translation of the protein. Solutions 

were changed daily.  After 72 h oocytes were processed to analyze NCC expression, 

trafficking and activity by western blot, immunohistochemistry and 22Na+-uptake 

experiments respectively. 

 

Western blot  

For Western blot experiments, 3 to 10 oocytes per group were pooled and lysed in 30 to 

100 µl lysis buffer (10µl lysis buffer/oocyte; 250mM Sucrose; 0.5 mM EDTA, pH8; 5 

mM Tris-HCl, pH 6.9; Protease Inhibitor (Roche Diagnostic; Mannheim, D) and 

Phosphatase Inhibitor (Roche Diagnostic; Mannheim, D)).  Proteins (an equivalent of 

one oocyte per lane) were separated in a SDS-PAGE gel and transferred on 

nitrocellulose membrane. Membrane was blocked by odyssey blocking buffer and NCC 

was detected with an antibody against the N-terminal tail of NCC (1:4000; Millipore) 

followed by a goat anti rabbit IRD800 (1:20’000; LI-COR, Bad Homburg, Germany) 

and subsequent imaging with the LI-COR system (LI-COR, Bad Homburg, Germany).  

Equal protein loading was controlled by immunodetection of GAPDH with a mouse 

monoclonal antibody (1:4000; Ambion, Carlsbad USA) 

 

Immunofluorescence  
For immunofluorescent studies, oocytes were fixed with 3%PFA in 0.1M phosphate 

buffer (pH7.3; 300 mosm) for 4 hours at 4°C and rinsed in phosphate buffer for an 

additional 2 hours.  Afterwards, oocytes were frozen in liquid propane, stored at -

80°C, and then processed for immunofluorescence similar to previously described 

procedures (67).  In brief, frozen oocytes were cut in a cryostat in 5 µm thick sections. 

Unspecific binding sites were blocked with 10% normal goat serum and 1% bovine 

serum albumin in PBS.  Cryosections were incubated overnight at 4°C with an 

antibody against the N-terminal tail of NCC (1:2000; Millipore).  Binding sites of the 

first antibody were detected using a CY3 labelled goat-anti-rabbit antibody (1:1000; 
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Jackson Immuno Research, West Grove, PA, USA.  The cell surface of the oocytes 

was labeled by detecting the microvillar actin cytoskeleton with Fluorescein Phalloidine 

(1:50; Biotium, Hayward, USA).  After repeated washings, sections were cover 

slipped and studied with a fluorescence microscope (Leica DM6000 B).  Images were 

acquired with a CCD camera and processed by Adobe Photoshop and Microsoft Power 

Point software. 

 
22Na+-uptake experiments 

For 22Na+ uptake experiments was followed the protocol from Monroy et. al. (2001) 

(68).  72h after infection, oocytes were washed and incubated for 30 minutes at 30°C 

in isotonic K+- and Cl--free medium (Na+-gluconate, 96mM; Ca2+-gluconate, 6mM; 

Mg2+-gluconate, 1mM; HEPES/Tris (pH 7.4), 5mM; ouabain, 1mM, bumetanide, 100 

µM; amiloride 100 µM).  Uptake was performed at 30°C for 60 minutes in an isotonic 

K+-free medium (NaCl, 96mM; CaCl2, 1.8mM; Mg Cl2, 1mM; HEPES (pH 7.4), 5mM; 

ouabain, 1mM, bumetanide, 100 µM; amiloride 100 µM) supplemented with 2 µCi/ml 
22Na+ (Perking Elmer, Waltham, MA, USA).  To determine thiazide dependent 

sodium-uptake, uptake was performed in presence or absence of a thiazide-like diuretic 

(100µM Metolazone in DMSO; Sigma-Aldrich).  22Na+ uptake was terminated by 

washing the oocytes 6 times in ice-cold K+-free medium to remove extracellular 22Na+.  

Oocytes were individually lysed in 10% SDS.  Radioactive tracer was detected in a 

liquid scintillation analyzer (Packard TRI-CARB 2000/2200CA; PerkinElmer, USA). 

Results of three individual experiments were pooled (wt-NCC (Nno Thiazide=44; 

NThiazide=46), G394D-NCC (Nno Thiazide=44; NThiazide=42), H2O (Nno 

Thiazide=43; NThiazide=44)). 

 

In vitro experiments 
The human embryonic kidney cell line HEK-293 (American Type Cell Culture, ATCC, 

Manassas, VA), which was originally transformed by exposing cells to sheared 

fragments of adenovirus type 5 DNA (58), was used as a model of kidney cells for the 

ease of growth and transfection efficiency.   Cells were cultured in Eagle's Minimum 

Essential Medium added with 10% fetal bovine serum (FBS) (Sigma Aldrich) in 

Corning® T-75 flasks at 37°C and 5% CO2.  After replication of expression vectors 

ORF cDNA clones (GeneCopoeia, Maryland, USA) by bacteria, wt-NCC, G394D-NCC 
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and green fluorescent protein (GFP) DNAs were transfected into the cells by lipofection 

technique using Metafectene® (Biontex Laboratories GmbH, München, D).  

Lipofection technique was chosen for its high efficiency, low toxicity and high 

reproducibility established in our laboratory. After protocol optimization cells were 

stimulated cells at 24 and 48 hours of transfection.  

 

Immunoblotting 
To evaluate NCC protein expression proteins were extracted from the cells transfected 

by using a lysis buffer (150mM NaCl, 50mM Tris-HCl pH 8.00, 1% Triton-X-100, 

Protease and Phosphatase Inhibitors, Roche, BS, Switzerland).  To quantify proteins, a 

Bradford assay with standard protocol was performed (CooAssay Protein Dosage 

Reagent, Uptima, France).  Protein samples were separated in an 8% polyacrylamide 

gel.  After electrophoretic separation, proteins were transferred to nitrocellulose 

membranes which were then blocked for 30 minutes in blocking buffer (Odyssey 

blocking buffer, Li-Cor Biosciences, USA) and incubated with primary antibodies 

against NCC (Millipore) diluted 1:4000 at 4°C overnight.  Membranes were further 

incubated for 2 h with goat anti rabbit IRD800 (1:20’000; LI-COR, Bad Homburg, 

Germany) diluted 1:10000 and finally visualized by Odissey imager (Li-Cor, Nebraska, 

USA).  A monoclonal antibody against α-tubulin diluted 1:10000 was used for 

normalization.  Images were processed and analyzed using a densitometric 

semiquantitative analysis with NIH image analyzer software (NIH ImageJ; Fiji open-

source). 

 

Immunofluorescence 
To detect whether the cells acquired the plasmids, cells were let growing on glass 

coverslips and after transfection with wt-NCC, G394D-NCC and GFP DNAs, were 

fixed at 4°C with the fixation solution (PFA 3%, PBS pH 7.3).  After over night 

fixation and 3 times washing steps with PBS, cells were pre-incubated with 

PBS/BSA2% 10 minutes, followed by incubation with 0. 5% Triton-100 and washing 

steps, finally incubated with an anti-N-terminal tail of NCC antibody diluted 1:2000 

over night at 4°C. The following day coverslips were rinsed and incubated 2 h at dark 

with a secondary CY3 labelled goat-anti-rabbit antibody diluted 1:1000 (Jackson 

Immuno Research, West Grove, PA, USA), and DAPI diluted 1:1000 and PBS/BSA2% 
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for nuclei staining and after washing steps, the glycerol mounting medium with 

DABCO was added and left 2h at 4°C.  Images were revealed with a confocal Leica 

microscope. Images were acquired with a CCD camera and processed by Adobe 

Photoshop and Microsoft Power Point software. 

 

Power calculation and statistical analysis  
Sample size were preliminarily calculated by ImageJ software, then analyzed with 

GraphPad Prism 5.  A two-way analysis of variance (ANOVA) was used to assess 

both the differences between wt-NCC and G394D-NCC glycosylation and the 22Na+ 

Uptake in the oocytes experiments. 
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RESULTS 

 

Prediction of mutation influence   
The novel mutation found in the index case, is a single nucleotide c.1204G>A (ref. 

NM_000339.2), which induces the exchange of a Glycine with an Aspartic Acid in 

position 394.  The meaning of the mutation can be predicted by using software that 

forecast the possible impact of an amino acid substitution on the structure and function 

of a human protein matching with bioinformatics tools the physical and comparative 

considerations.  I-Mutant2.0, Polyphen-2 and SIFT are three online programs useful to 

predict the stability, pathogenicity and the activity respectively of a mutation 

(http://folding.biofold.org/i-mutant/i-mutant2.0.html, 

http://genetics.bwh.harvard.edu/pph2/, http://sift.jcvi.org).  The relevance of these 

tools, even if there might be some inaccuracy in the results, occurs when it is necessary 

to screen many variants to characterize them.  When the linear amino acids sequence is 

translated into a three dimensional protein structure, it delineates alpha-helices and β-

sheets strands, which tends to arrange in a specific thermodynamically most stable 

conformation (69).  If there is some perturbation of the system, the protein can not be 

folded in the proper shape leading to production of an erroneous peptide. The cell 

machinery deputed to dismantle it is therefore activated.  Alignment of the human 

sequence with other orthologous species, reveals a high degree of conservation, 

especially for the region between the 7th and the 8th transmembrane portions among 

them (37).  

Ø Prediction of NCC mut activity with SIFT and PROVEAN programs:  

SIFT prediction is based on the degree of conservation of amino acid residues in 

sequence alignments derived from closely related sequences.  Those with SIFT score 

≤0.05 were classified as deleterious and those >0.05 were classified as tolerated (doi: 

10.1038/nprot.2009.86).  The mutation in 394 of a Glycine (G) with an Aspartic Acid 

(D) has a SIFT score ≤0.05 thus is classified as not tolerated in a highly conserved 

region. [Figure 9] 
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FIGURE 9: the yellow row highlights the position of the aminoacid exchange. The d in blue is 
the aspartic acid in the right lane, which means that is not accepted as exchange, because if 
would influence in the activity of the protein. 

 

To confirm the result, a PROVEAN job was also submitted using the following input 

format: <protein ID> <position> <reference aa> <variant aa>  

The score of -5.71 (reference value = -2.5) predict a deleterious phenotype, and 

confirmed the SIFT score below the threshold of ≤0.05. [Figure 10]: 

	
  

Figure 10: PROVEAN score for the prediction of the impact of a mutation on biological 
function of the protein.  
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Ø Prediction of NCC mut stability with I-Mutant2.0 

I-Mutant software predicts that the mutation destabilizes the free-energy energy leading 

to a protein structure not fixed. [Figure 11] 

	
  

Figure 11: The software gives the prediction of decreased stability based on a high reliability 
index (9) at a temperature of 25 °C and pH 7.0. (WT) aminoacid in Wild-Type Protein, (NEW) 
New Aminoacid after Mutation, (RI) reliability Index, (T) temperature in Celsius degrees, (pH) 
–log[H+] 
 

Ø Prediction of NCC mut pathogenicity with PolyPhen-2 
PolyPhen-2 gave a high score, indicating a possible impact as damaging. [Figure 12] 

	
  

Figure 12: Image of PolyPhen-2 analysis for the Gly394Asp. The high score of 1.00 indicate 
the amino acid exchange probably damaging. 
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HEK293 Transfection 
Cells were transfected by using liposome technique with three exogenous DNAs 

containing the information of the while type protein, of the mutant respectively and the 

information for the green fluorescent protein (GFP).  Plasmids were produced 

introducing the mutation found in the index case: the nucleotide exchange in position 

1204 of a guanine with an adenine produced therefore an Aspartic Acid in spite of the 

Glycine in position 394.  The folding structure of the cotransporter reveals the 

mutation to be sited near the extracellular loop containing the two glycosylation sites of 

the aa in 404 and 424 [Figure 13].  

A 	
  

B 	
  

C 	
  

FIGURE 13: A. Alignment of the wild-type and the mutant nucleotide sequences. B. 
Alignment of the wild-type and the mutant amino acid sequences. C. Three-dimensional image 
of the sodium-chloride cotransporter NCC. Highlighted in yellow is the point mutation in the 
seventh transmembrane portion, near the extracellular loop. 
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Transfection efficiency was assessed by immunofluorescence in Hek293 cell line using 

cells transfected with genetic information for the green fluorescent protein as control.  

We observed the rate of growth of the cells and, by according to protocol, transfected 

when they were at 70% of visual confluence.  GFP transfected cells were green under 

fluorescence microscope, while those transfected with G394D-NCC or wt-NCC were 

not.  This result indicates that there was no error in the replication and isolation of the 

plasmids.  Moreover, to assess if the genetic information was correctly transmitted to 

the host, immunostaining using an antibody for NCC was performed.  The GFP cells 

did not show any staining for NCC antibody when assessed at the confocal microscope, 

as proof of good quality transfection [Figure 14].  

	
  

FIGURE 14: Immunofluorescence on HEK293 with 20X zoom. A: Cells transfected with wt-
NCC. B: Cells transfected with G394D-NCC. C: Cells transfected with EGFP. In blue DAPI 
staining, in red staining for NCC. Cells transfected with EGFP do not show staining for NCC. 
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Ø NCC Glycosylation in HEK293 cells line  
To investigate whether if the novel mutation affects protein glycosylation, both the 

samples treated with wt-NCC and with G394D-NCC were blotted and a difference in 

the proteins glycosylation was observed. Wt-NCC showed a higher band (around 

130KDa), while the mutant did not.  When the two bands were quantified, we found a 

significant difference of the higher band expression at 24 hours (p<0.003 NCC wt mean 

+ SEM 0,233±0.046; NCC mut mean + SEM 0.0268±0.008) in the wild type compared 

to the mutants and an even more prominent difference was at 48 hours of transfection 

(p<0.0003 wt-NCC 0,524±0.084; G394D-NCC 0.059±0.012). [Figure 15] 

	
  

	
  

	
  

	
  

FIGURE 15: A Immunoblots representative of cells transfected with wt-NCC gene and 
G394D-NCC gene. Full and dotted arrows point out the mature glycosylated and the non-
mature glycosylated band respectively. α-tubulin was used as housekeeping gene.   B Mature 
glycosylated protein expression calculated in density units normalized for α-tubulin after 24 and 
48 hours of transfection 
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Xenopus laevis oocytes experiments 

 

Expression vectors were created by ligation of the psDeasy BS backbone with an insert 

of hNCC wt, G394D-NCC and EGFP.  A first experiment was performed to assess the 

efficiency of the injection, by using only the EGFP construct.  Oocytes, after 24 hours 

of injection expressed the green fluorescent proteins visualized at the florescent 

microscope. [Figure 16] 

 

 

 
FIGURE 16: X.L. oocyte expressing green fluorescent protein. The animal pole is in the upper 
hemisphere, while the vegetal pole is the white hemisphere. 
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Ø X.L. oocytes western blot  
 

The X.L. oocytes lysate was used to western blot experiments for the detection of the 

NCC protein expression.  Wild-type NCC injected oocytes showed after 24 hours and 

after 48 hours a band around 130KDa while G394D-NCC did not. The band was even 

more predominant at 48hours of injection. [Figure 17] 

	
  
FIGURE 17: western blot image of oocytes lysate blotted with an antibody against NCC. 
Around 130KDa wt NCC expresses a higher band of fully glycosylated protein, while mutant 
does not. Antibody against GADPDH was used as loading control. 
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Ø X.L. oocytes immunohistochemistry  
 

In X.L. oocytes injected with either human NCC wild-type RNA or mutated 

(c.1204G>A) RNA, immunohistochemistry experiments showed a difference between 

the phenotypes. Using antibodies against NCC, in oocytes expressing wt-NCC a 

staining for the protein was observed at the membrane surface of the oocytes.  By 

contrast, in those injected with G394D-NCC RNA, antibody against NCC was 

detectable under the membrane surface.  The cell surface of the oocytes was labeled by 

detecting the microvillar actin cytoskeleton with Fluorescein Phalloidine as 

housekeeping marker.  Merged images showed an overlay between actin and NCC in 

wt-NCC expressing oocytes.  No overlay of G394D-NCC oocytes with actin staining 

was found. [Figure 18] 

	
  

	
  

	
  

FIGURE 18: Immunohistochemistry analyses of oocytes injected with 0.05µl H2O as vehicle, 
wt-NCC, G394D-NCC cRNA respectively. Co-labelling with both the antibodies for NCC and 
actin. Actin cytoskeleton is used as housekeeping marker and shows the staining at the 
membrane. wt-NCC stains at the membrane as the overlay with actin is clear, while G394D-
NCC stains under the membrane.  
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Ø X.L. oocytes 22Na+ uptake 
Functional studies were performed by using 22Na+ uptake to confirm the phenotypes.  

Three independent experiments were done in different conditions: controls were oocytes 

injected with water, mutated were oocytes injected with G394D-NCC, and wild-type 

were injected with wt-NCC. Each group was either treated or not with thiazides.  

In physiological conditions, controls group absorbed a low quantity of 22Na+ set as 

100% and when challenged with thiazide treatment showed less, but not significant, 

uptake (without thiazide 100 vs. with thiazide 65.01 p>0.05). wt-NCC oocytes could 

absorb 22Na+ more than 3 folds compared to controls (342.3), meaning that the insertion 

of the protein was effective in terms of reaching the membranes and explicating its 

activity.  When thiazides were added to wt-NCC, the cotransporter activity was 

significantly inhibited resulting in a drop of uptake (without thiazide 342.3 vs. with 

thiazide 63.3 p<0.0001).  By contrast, G394D-NCC resulted in no 22Na+ uptake in both 

conditions, regardless of the presence or absence of thiazides (without thiazide 77.3 vs. 

with thiazide 75 p>0.05) [Figure 19].  

 

	
  

FIGURE 19: 22Na+ Uptake in oocytes injected and treated or not treated with thiazides. Control 
group H20: without thiazide 100 vs. with thiazide 65.01 p>0.05; WT NCC: without thiazide 
342.3 vs. with thiazide 63.3 p<0.0001; Mut NCC (G394D-NCC): without thiazide 77.3 vs. with 
thiazide 75 p>0.05  
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This result confirms the relevance of NCC function for Gitelman phenotype: the point 

mutation characterized leads to lack of intrinsic activity of the protein resembling the 

impaired 22Na+ uptake induced by thiazide treatment. 

 

	
  

	
  
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



 

 44	
  

DISCUSSION AND CONCLUSIONS 
 

This study aimed at characterizing a novel mutation found in the sodium chloride 

cotransporter in a heterozygous patient affected by Gitelman’s syndrome.  NCC is a 

member of the solute carrier family 12 (SLC12) of electroneutral cation coupled 

cotransporter family (70-72).  This cotransporter shares a highly conserved aminoacid 

sequence with other members of the family. It features twelve transmembrane portions 

harboring a central hydrophobic domain and two cytosolic terminal ends (NH2 and 

COOH) (38).  

Standing from the clinical identification of a patient with a complete biochemical 

characterization pointing to a diagnosis of GS, we performed a genetic analysis for the 

26 exons of SLC12A3 gene. This led to identify two mutations: c.1925G>A 

(Arg642His) and c.1181G>A (Gly394Asp).  The former is one of the most common 

variant described in the syndrome, but the latter has never been described before.  

Since not all the variants are causative of the pathology, this prompted us to investigate 

which was the relevance of the novel mutation (Gly394Asp) for the phenotype and the 

clinical outcome. 

By using bioinformatics tools for the prediction of the mutation impact in the protein 

activity, the novel mutation seems to have a stronger impact compared to the other 

present, in fact the PROVEAN score was -5.71 for G394D vs -4.83 for R642H.  The 

PROVEAN score is a value obtained from a computation analysis which inquires every 

amino acid position of all protein sequences in human and mouse and discriminate and 

predicts the impact of an amino acid substitution in the protein activity.  Hence we 

were prompted to address the novel mutation as a very strong impact for the final 

folding and activity of NCC. 

GS subjects are often heterozygous compound, specifically, to the onset of the disease 

they should carry two different mutations affecting two alleles of an autosome (1,18).  

A question that needs to be answered is what is the specific impact of each mutation in 

the final activity of the protein and the phenotype.   

A mutation can affect the activity of a protein since the very beginning of its 

production.   Nucleotide mutations in DNA can alter amino acids sequence with 

consequences in protein expression or function.  Alterations can be missense and 

nonsense, insertion, deletion, duplication, frameshift mutations or repeat expansion.  
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The single amino acid replacement of glycine with aspartic acid at the position 394 was 

found to have a strong impact in terms of loss of function of the cotransporter.  

Monogenic mutations are responsible for many kidney diseases and usually exhibit a 

genotype-phenotype correlation in single-gene disease of almost 100%.  This means 

that a genetic investigation can predict the diagnosis of an inherited syndrome (73). 

Moreover, amino acid mutations can not only lead to mutated proteins, but also to its 

impaired trafficking, its endocytosis and its degradation (74).  In fact the linear amino 

acids sequence is known to be translated into a three dimensional protein structure 

delineated by alpha-helices and β-sheets strands, which tends to arrange in a specific 

thermodynamically most stable conformation (69).  An alternative amino acid 

sequence confers different properties of the residues, because of its altered electrical 

charge (e.g. positive or negative) or altered size.  Glycine (G) is the smallest neutral 

non polar molecule while at physiological pH Aspartic (D) has acid characteristics with 

a negative charge in the lateral substituent.  Therefore, the aforementioned mutation 

produces a substitution in the amino acid chain, with ensuing possible physical and 

chemical consequences on trafficking from the endoplasmic reticulum to the Golgi 

apparatus.   

To prevent the expression of toxic peptides, the cell organizes complexes mechanisms 

as the recruiting of chaperones molecules that are able to denaturate misfolded proteins 

(75).  In the kidney the enhanced endoplasmic reticulum-associated degradation 

(ERAD) acts triggering complexes of heat shock proteins Hsp70 and other components 

as ubiquitin-ligase, which are still unknown.  By using a yeast model, Needham et al. 

showed that in Gitelman’s syndrome there was a reduction of ER export due to NCC 

misfolding and that ERAD degradation influenced NCC turnover (76).	
    

We found that in transfected HEK293 the G394D-NCC induces the production of a 

protein detectable at the western blot but with different characteristics form the NCC 

wild-type.  Similar results were produce by De Jong et al., were they showed through 

de-glycosylation experiments, that the higher band resembled the fully glycosylated 

NCC (PMID 12039972). The absence of the fully glycosylated band in G394D-NCC 

suggests improper folding of the protein, albeit through mechanisms to be defined.  

The incorrect folding could led to lack of exposure of the extracellular loop with the 

two glycosylation sites across the 7th and the 8th domains.  Moreover, the lack of 

glycosylation likely led to impaired trafficking of the protein to the membrane as shown 

by our immunohistochemistry experiments.  
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The Gly394Asp exchange is responsible for the correct folding of the protein by 

embedding a negative charge, which causes a disorder in the energy and in the physical 

properties of the structure.  The resulted peptide is in turns recognized by the ERAD 

system, which therefore induces its early degradation. 

Based on the data described in the study of De Jong, the ER-retained mutated NCC does 

not lack glycosylation, but is core-glycosylated and hence not fully glycosylated (77). 

Consistently, Hoover et al. showed that rat NCC has 404 and 424 asparagines N-linked 

sites critical for the glycosylation of the cotransporter (77-­‐79).  The central region, and 

particularly the 7th and 8th domains, seems to be highly specific for ion translocation and 

for thiazide–binding.  Their external loop containing glycosylation sites are thus 

fundamental for the maturation of the protein and for the selectivity filter efficacy.  A 

mutation in this position is therefore predicted to influence the activity of the protein 

(39,80).  We used X. L. oocytes to better gain insights on the causes leading to an 

aberrant behavior of the protein.  Since they do not express many proteins and thus do 

not develop a huge background, but their apparatus is ready to induce post-translational 

modifications, they are a well established tool to explore biochemical processes as 

protein signaling, transduction, phosphorylation and channels function (63,81).   

Effect of gene mutation on glycosylation 

By comparing in vitro the experiments in HEK293 cells and those in X.L. oocytes, we 

could confirm that wild-type proteins show at the western blot two bands: the core at 

110 KDa and the glycosylated at 130 KDa, whereas the mutant cotransporter lack of the 

higher weight complex in accordance to the previous evidences (77,80).  This finding 

could therefore explain the strong pathogenic impact of the novel mutation that is 

located in the 7th transmembrane fragment.  

Effect of loss of glycosylation on protein 

The immunohistochemical analysis provided evidence supporting the conclusion that 

the mutant protein triggers early ERAD in accordance with previous investigations 

(82,83).  These experiments show that in wild-type injected oocytes, NCC reaches the 

plasma membrane, while, conversely, the mutants showed staining only in the 

intracellular area.  The impaired folding results in an erroneous peptide, which is 

captured by the cytosolic control system, thus enhancing the retrieval for the 

degradation.   
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Effect of mutation on protein function 
22Na+ uptake experiments endorsed the evidence that this mutation is causative of the 

pathology.  When oocytes were incubated in the K+ free medium, these mutants were 

able to uptake only a small quantity of 22Na+ compared to the wild-type (22,58% of total 

wild-type absorption).  The addition of Metolazone, a thiazide-like drug, induced 

blockade of wild-type NCC, which resembled the quantity absorbed to the H2O as 

vehicle injected.  In G394D-NCC Metolazone did not reduced the basal absorption of 

indicating that G394D-NCC was not functional.  The failure of the mutated 

cotransporter to uptake 22Na+ as efficiently as the wild-type indicates the functional 

consequences of the mutation and establishes the inefficiency of G394D-NCC in terms 

proper folding, on trafficking leading to early protein degradation in ERAD.  

Previously functional and expression analysis on oocytes described 3 different classes 

of NCC mutants in Gitelman’s syndrome	
  (7,77,84,85).  Accordingly to those categories, 

Class I mutants are partially glycosylated but unable to uptake sodium.  Class II 

mutants have uptake activity and are fully glycosylated but are only partially able to 

reach the surface.  Class III mutants are glycosylated, expressed on the membranes, 

but unable to uptake sodium.  This study show that the novel mutation entails an 

impaired glycosylation of the protein compared to the wild-type moreover, impaired 

trafficking at the membrane, with ensuing impaired the uptake.  Hence, the novel 

mutation identified in this study reasonably could belong to a novel class of impaired 

proteins that are not glycosylated, can not reach the surface and do not function 

properly.   

A recent review by Wang et al. elucidated that mutations have been identified spread all 

over the 26 exons but notwithstanding many attempts, most of them are too rare to 

allow identification of a correlation between genotype and phenotype (38).  As it has 

been speculated that the position of the mutations and their outcome in terms of protein 

expression, glycosylation and phosphorylation could impact the severity of the 

syndrome our study add novel knowledge on the functional role of the 7th -8th 

transmembrane domains (86). 

Occasionally GS phenotype is not correlated with a clear genotype, indeed some deep 

intronic mutations sometimes are not detectable but are translated in inclusion of cryptic 

exons in mRNA which arise in aberrant proteins (87,88).  Moreover, the severity of 

the phenotype has been described to vary widely.  According to Riveira-Munoz et al. 

observed one allele splicing mutation would lead to retained nonfunctional protein, and 
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would be prevalently present in the subgroup of patients screened harboring the most 

severe phenotype and in male subjects (80).  The same observation was done by Lin et 

al., who described the heterogeneity of clinical phenotype in members of a family with 

identical mutations (89).  The gender seems therefore to have a great influence, as 

studies with ovariectomized rats show that NCC plasma abundance is decreases and 

conversely, the treatment with estradiol restores its presence (90,91).  This could be an 

explanation of the milder symptoms observed in GS female patients.   

Notwithstanding an overactivation of the RAAS, GS patients have low blood pressure 

(92).  Cruz et al. hypothesized that inherited mutations in genes involved in the control 

of the sodium reabsorption lower blood pressure (93).  Given that salt wasting is the 

hallmark Gitelman's and Bartter's (BS) syndromes, Ji et al. investigated the presence of 

some genes causative of GS and BS, in the Framingham Heart Study (FHS) offspring 

cohort (4).  They screened the Na-K-2Cl cotransporter gene (SLC12A1), the inward 

rectifier K+ channel gene (KCNJ1) and the SLC12A3, observing the presence of 

functional mutations in one of the three genes with an incidence of 1/64 FHS members.  

They found that FHS individuals carrying those mutations had reduced blood pressure 

(4).  These findings suggest the relevance of genetic mutations that are inherited 

among population with high blood pressure and that can even hide secondary 

hypertension. 

Conclusion 

This study shows that characterization of a novel mutation on NCC can lead not only to 

a better understanding of the molecular mechanisms causing GS but also to 

identification of functional role of the different molecular domains of the NCC.   
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