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1. Abstract  

Eukaryotic cells are able to continuously adapt to fluctuations in external conditions. 

Furthermore, when metabolites availability varies, cells undergo rapid changes in order to adapt 

their metabolism and protect themselves against potential damages. These rapid changes are 

regulated through different nutrient dependent pathways. The most important proteins, known so 

far, involved in these pathways are AMPK and Sirtuins. These proteins, that have a key role in 

the cells response to caloric stress, are activated when the cells are under nutrient deprivation 

(Dilova et al. 2007).  

Ca2+ is a fundamental second messenger that enters the cytosol upon the opening of a 

variety of plasma membrane and endoplasmic/sarcoplasmic reticulum (ER/SR) channels and 

controls numerous cell functions also at the mitochondrial site (Rizzuto and Pozzan 2006). 

Foskett’group recently identified a new role of constitutive Ca2+ transfer from ER to 

mitochondria. They demonstrated that this represents a crucial intracellular signal for AMPK 

activation and autophagy induction. On the other hand still unknown are the precise 

physiological signals inside the cell that can translate fluctuation of metabolites concentration 

into a specific regulation of mitochondrial Ca2+ content (Cardenas et al. 2010). 

During my PhD, I measured mitochondrial Ca2+ uptake using targeted recombinant 

aequorin (Pinton et al. 2007). I found that in HeLa cells, after 2 hours of glucose deprivation, 

mitochondrial Ca2+ uptake is drastically reduced. This physiological response appears to be 

transient and reversible. Indeed, after glucose deprivation, cells show a reduced mitochondrial 

Ca2+ uptake up to 4 hours, but after this period it returns to the levels measured in normal feeding 

conditions.  I also investigated the possible involvement of a newly identified regulator of 

mitochondria Ca2+ uptake, MICU1, and we found that after 2 hours of glucose deprivation this 

regulator is quickly degraded. Based on its short half-life, we wondered whether during glucose 

deprivation MICU1 could be ubiquitylated and rapidly degraded. I also found that the 
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proteasome inhibitor MG132 inhibits MICU1 degradation during glucose deprivation and it also 

increases MICU1 half-life. High-resolution mass spectrometry data reveal five lysines in MICU1 

protein sequence that are reported to be ubiquitylated. Thus, I decided to substitute each one of 

these lysines with one arginine (K>R) in order to generate a MICU1 ubiquitylation incompetent 

mutant (MICU1K102R, K103R, K104R, K296R, K359R). Importantly, I found that the overexpression of 

MICU1K102R, K103R, K104R, K296R, K359R partially abolishes the effect of glucose deprivation on 

mitochondrial Ca2+ uptake.  Further experiments will allow us to understand how MICU1 

influences the modulation of the activity of mitochondrial Ca2+ transport system. The analysis of 

this mechanism will allow us to understand if mitochondria can be the link that directly connects 

glucose availability with the modulation of physio-pathological processes such as autophagy and 

apoptosis. 
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2. Riassunto 

Le cellule eucariotiche hanno la necessità di adattarsi a cambiamenti nella disponibilità di 

metaboliti. Quando i livelli di nutrienti cambiano, il metabolismo cellulare si adatta rapidamente 

per proteggere la cellula stessa da eventuali danni. Questi rapidi cambiamenti sono regolati 

attraverso proteine che sono sensibili alla disponibilità di metaboliti. Le più importanti proteine 

coinvolte in questa risposta sono AMPK e le sirtuine (Dilova et al. 2007).   

Il Ca2+ è un secondo messaggero fondamentale che controlla numerose funzioni cellulari e 

il mitocondrio è uno degli organelli più importanti nel mantenimento dell’omeostasi del Ca2+ 

intracellulare (Rizzuto and Pozzan 2006). Recentemente, il gruppo di ricerca di Foskett ha 

identificato un nuovo ruolo per il trasferimento di Ca2+ che normalmente avviene dal reticolo 

endoplasmatico/sarcoplasmatico (ER/SR) ai mitocondri. Hanno quindi dimostrato che il Ca2+ 

trasferito è un segnale fondamentale per l'attivazione intracellulare di AMPK e per l’induzione di 

una risposta adattativa alla mancanza di nutrimenti qual è l’autofagia. Rimane ancora 

sconosciuto il segnale fisiologico all'interno della cellula che converte cambiamenti nella 

disponibilità di nutrimenti con variazioni nell’ampiezza dei transienti Ca2+ mitocondriali.  

Durante il mio dottorato di ricerca ho utilizzato l’equorina come sonda per misurare il Ca2+ 

all’interno dei vari comparti intracellulari (Pinton et al. 2007). Le nostre ricerche hanno 

dimostrato che cellule HeLa, private per due ore di un metabolita fondamentale qual è il 

glucosio, presentano transienti Ca2+ mitocondriali drasticamente ridotti. Misurare anche altri 

parametri mitocondriali ci ha fatto capire che questa risposta è fisiologica e reversibile e che 

avviene in molti tipi cellulari diversi.  

Inoltre ho indagato il ruolo di MICU1, un regolatore dei livelli di Ca2+ mitocondriale 

recentemente identificato, quale modulatore dei transienti Ca2+ mitocondriali durante l’assenza di 

glucosio. I nostri esperimenti dimostrano chiaramente come, dopo 2 ore di deprivazione del 

glucosio dal mezzo di coltura, questo fondamentale regolatore risulta essere rapidamente 
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degradato. Mi sono quindi chiesta, vista la sorprendentemente breve semi-vita di MICU1, se 

durante la deprivazione di glucosio MICU1 potesse essere ubiquitinato e rapidamente degradato. 

A supporto di questa ipotesi, ho dimostrato che il trattamento delle cellule con l’inibitore del 

proteasoma MG132 inibisce la degradazione di MICU1 e ne aumenta la semi-vita. Inoltre, dati 

pubblicati di spettrometria di massa hanno rivelato cinque lisine nella sequenza proteica di 

MICU1 che sono predette essere ubiquitinate. Abbiamo quindi deciso di sostituire ognuna di 

queste lisine con arginine (K>R) in modo da generare un mutante incompetente per 

l’ubiquitinizzazione (MICU1K102R, K103R, K104R, K296R, K359R). La sovraespressione di questo mutante 

in cellule HeLa abolisce parzialmente l’effetto della deprivazione del glucosio sull’entrata di 

Ca2+ mitocondriale.  

Esperimenti futuri ci permetteranno di capire come MICU1 influenzi la modulazione 

dell’attività del trasporto di Ca2+ a livello mitocondriale. L’analisi di questo meccanismo ci 

permetterà di comprendere se il mitocondrio rappresenti un anello di congiunzione tra la 

disponibilità di glucosio e la modulazione di processi fisiopatologici quali l’autofagia e 

l’apoptosi.   
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3. Introduction 

3.1 Metabolism and metabolites 

Metabolism is the set of life-sustaining chemical reactions, precisely catalyzed by 

enzymes, present in all living organisms in order to provide energy for growth, reproduction and 

adaptation to the environment. Metabolism is usually a balance between anabolic and catabolic 

processes. Catabolism breaks down organic molecules in order to provide energy whereas 

anabolism uses this energy to build cellular components such as proteins and nucleic acids.  

The equilibrium between anabolism and catabolism is maintained by precise pathways in 

order to maintain intracellular homeostasis. These reactions are organized and linked to each 

others through specific metabolic pathways (Spirin et al. 2006), in which one metabolite is 

transformed through a series of steps into another metabolite by a sequence of enzymes. 

Metabolites are the intermediates and products of metabolism (Schmidt et al. 2003). They 

are low molecular weight organic molecules. They have an important function: indeed, they are 

fuel to provide energy to the organism. Discoveries in biochemistry during the late nineteenth 

and twentieth centuries have provided a complex series of interactions between these metabolites 

(Rennie 1999). It is thus very difficult to assess the contribution of single metabolites to 

intracellular homeostasis. Object of intense investigations were the most known metabolites like 

glucose, amino acids and growth factors.  

Glucose is a simple monosaccharide that it is used as primary source of energy (Lienhard 

et al. 1992), representing the main fuel for cellular energy production. The fate of this simple 

monosaccharide is through three different ways. It can be stored; it can be converted through 

glycolysis into pyruvate in order to provide ATP and metabolic intermediates (Boiteux and Hess 

1981); it can be also oxidized through the pentose phosphate pathway to ribose 5-phosphate, a 

key step for acid nucleic synthesis.  
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Amino acids are made from amine (-NH2) and carboxylic acid (-COOH) functional groups, 

along with side-chains specific to each amino acid. About 500 amino acids are known. 

Approximately half are essential in humans, as we cannot manufacture them ourselves. 22 are 

the most important which are combined into peptide chains to build blocks of a vast array of 

proteins (McNurlan 2012). When taken up into the human body from the diet, the 22 standard 

amino acids are either used to synthesize proteins and other biomolecules or they are oxidized to 

urea and carbon dioxide as a source of energy. Since amino acids are required for protein 

biosynthesis, it is logical that amino acids should control components involved in the regulation 

of protein synthesis (mRNA translation). Glucogenic amino acids can also be converted into 

glucose, through gluconeogenesis. For their biological significance, amino acids are important in 

nutrition and are commonly used as nutritional supplements.  

Growth factors are proteins capable of stimulating cellular growth, proliferation and 

cellular differentiation (Sporn and Roberts 1988, Frazier et al. 1996). They are very important in 

the regulation of a variety of cellular processes. They carry out their function during 

development including regulating tissue morphogenesis, angiogenesis, cell differentiation and 

neurite outgrowth. They also play important roles in the maintenance of tissue homeostasis and 

wound healing in the adult (Klenkler and Sheardown 2004). Their activities are mediated via 

binding transmembrane receptors that often contain cytoplasmic tyrosine kinase domains. When 

unregulated, many growth factors and their receptors have been implicated in tumor formation. 

 

Metabolites as signaling molecules 

The different types of metabolites have a central role in maintaining intracellular balance; 

indeed, the amount of metabolites reflects the feeding status of the cell and determines which 

metabolic reactions can occur (Ebenhoh and Heinrich 2001, Kapahi et al. 2010)).  

During the last years, many researchers have found a new role for metabolites. They are 

not only substrates for metabolic pathways, they also act as signaling molecules that regulate and 
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integrate the metabolic status of the cells with other fundamental cellular events such as cell 

growth, replication and adaptive response to nutrient withdrawal. Cells thus use metabolites not 

only as energy source but also like molecules that are able to connect the feeding status of the 

cells with the ongoing cellular processes. This information is very important, and metabolites 

can create a link between the changes in nutrient availability and the regulation of different 

cellular processes.  

 

Nutrient dependent pathways 

Metabolites control a large variety of cellular pathways that are called “nutrient dependent 

pathways”. These pathways trigger specific actions like cell growth, proliferation, 

differentiation, apoptosis and autophagy that represent all metabolic adaptations. In these 

pathways, sensor proteins play key roles.  

Fundamental sensors of nutrient availability include mTOR, AMPK and Sirtuins. They can 

detect changes in specific metabolites concentration.  

The mammalian Target of Rapamycin (mTOR) is a large polypeptide with several distinct 

functional domains: a kinase domain, several HEAT repeats, which are likely to be involved in 

protein-protein interactions, and a domain for Rapamycin binding. mTOR binds several other 

proteins and forms two major complexes: mTORC1 and mTORC2. The activity of mTORC1 is 

tuned by amino acids and regulates the translational machinery of mammalian cells (Kapahi et 

al. 2010). mTORC1 controls the phosphorylation of several components of the translational 

machinery and also regulates ribosome biogenesis. mTORC2 is an important regulator of the 

cytoskeleton (Oh and Jacinto 2011). These different complexes act as a critical nodal point in a 

signaling network that regulates multiple cellular processes and several other inputs in response 

to nutrient conditions (Proud 2007). The decreased mTOR activity under nutrient-poor 

conditions results in the removal of nutrient transporter from the cell surface. This loss of 

external nutrient supply is compensated by increased production of nutrients from intracellular 
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stores via autophagy. This type of response plays a key role in cell survival under stress 

conditions (Chang et al. 2009). 

Another fundamental sensor of nutrient availability is AMPK that controls a sophisticated 

pathway acting to maintain and monitor the ratio of ATP/AMP/ADP (Hardie 2003). AMPK is a 

heterotrimeric protein kinase. The reaction between ADP and ATP is catalyzed by a very active 

adenylate kinase that converts 2ADP into ATP and AMP. As a consequence, the ratio of 

AMP/ATP varies as the approximate square of the ADP/ATP ratios. This means that it is 

sufficient a small decrease in cellular ATP level to result in a large increase in AMP, making it 

an efficient signaling molecule of the energy status of the cell (Kahn et al. 2005). AMP is an 

allosteric activator of AMPK by enhancing the phosphorylation of its T-loop by its upstream 

protein kinase (Hardie 2003). Under glucose starvation, AMPK promotes autophagy by directly 

activating Ulk1 through phosphorylation of its Ser317 and Ser777. This phosphorylation can be 

prevented by nutrient availability through high mTOR activity. 

Sirtuins are deacetylases involved in metabolic regulation and longevity (Blander and 

Guarente 2004, Michishita et al. 2005, Haigis et al. 2006). The activity of Sirtuins is controlled 

by a tight redox regulation by the [NADH/NAD+] ratio, which is a major sensor for metabolite 

availability conserved from invertebrates to vertebrates. Sirtuins have different levels of NAD+-

dependent deacetylase activity (North and Verdin 2004). SIRT1, SIRT2 and SIRT3 have a 

strong activity, whereas the others are weak in enzymatic activity but highly selective in their 

targets. Reversible protein acetylation occurs at the ε-amino group of lysine residues and it is one 

of the most common post-translational modifications that regulate DNA-protein interaction, 

subcellular localization, protein stability and enzymatic activity during metabolic adaptations. 

Mitochondrial proteins involved in the regulation of energy metabolism are subject to extensive 

lysine acetylation. Indeed three sirtuins, SIRT3, SIRT4 and SIRT5 localize to mitochondria. 

SIRT3 expression is activated during nutrient deprivation (Scher et al. 2007). The increased 
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expression of SIRT3 help the switch toward fasting metabolism, as tissues move away from 

glucose instead of lipids and amino acids as source of energy (Nogueiras et al. 2012). 

 

From metabolites to intracellular signaling: the glucose pathway 

As mentioned above, glucose is one of the most important metabolites. It is also a crucial 

primary messenger molecule (Sheen et al. 1999), signalling optimal growth conditions to the 

cellular machinery. Its intracellular signalling involves specific glucose transporters, the 

activation of protein kinase C (PKC) and the mitogen-activated kinases (MAPK), with the 

consequent stimulation of gene expression of specific genes (i.e. TGFβ) (Haneda et al. 2003). 

Blood glucose levels are maintained constant and independent from food intake, due to the 

critical importance of this metabolite (Triplitt 2012).  

Glucose deregulation is a pathological relevant event. Indeed, diabetes is one of the well-

known pathology caused by imbalance of glucose metabolism (Bouche et al. 2004). It affects 

glucose availability by interfering with signals triggered by two hormones that maintain constant 

blood glucose level, insulin and glucagon (Triplitt 2012). Understanding the cellular responses to 

glucose withdrawal could lead to the discovery of new strategies to overcome the diabetes 

damage. On the other hand, cancer cells base their metabolism on glycolysis in a phenomenon 

termed “Warburg effect” (Vander Heiden et al. 2009). This metabolic adaptation allows cancer 

cells to overcome the growth factor dependence that normally controls nutrients intake. 

Independently from the growth factor stimulation, cancer cells uptake an excess of nutrients, 

particularly glucose, that exceed the bioenergetics demands (DeBerardinis et al. 2008). This 

ability enables cancer cells to proliferate and survive in hypoxic areas. The clarification of the 

link between glucose availability and metabolic adaptation in cancer cells may ultimately lead to 

more efficient treatments for human cancers.  

For many years researchers have focused their studies on trying to uncover the effects of 

glucose withdrawal on intracellular signalling. Many proteins that are involved in energy and 
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nutrient sensing, including AMPK and mTORC1, trigger metabolic adaptations like autophagy. 

The determination of the proteins that control these metabolic adaptations will allow interfering 

with this process and block the protection against glucose withdrawal-mediated cell death.  

Thus, by choosing our model of nutrient deprivation, we decided to focus our studies on 

the dissection of glucose signalling pathways. Indeed, we decided to completely remove all 

metabolites and to add only glucose to control cells. In our experimental system, HeLa cells 

were starved for 2 hours in KRB and control HeLa cells were incubated in KRB with 25mM 

glucose. 

 

Adaptive response to nutrient withdrawal 

For any organism, the most important skill that allows surviving is the ability of sensing 

the extracellular and the intracellular environment. The signals generated by these stimuli are 

coded in order to respond appropriately in terms of intracellular modifications. There is a 

plethora of different types of signaling, but we focused our attention on the metabolic ones that 

give information about the feeding status of the cells. In this regard, metabolites play a central 

role because they act as signaling molecules and they create a connection between nutrient 

availability and key sensors of nutrient dependent pathways that are able to trigger cellular 

adaptations to the availability of nutrients.  Metabolic adaptations are intracellular events that 

allow cells to maintain minimal cellular metabolism even in the absence of normal nutrients by 

tuning ongoing chemical reactions. 

One of the most important responses to the loss of external nutrient supply is the increased 

production of nutrients from intracellular stores via autophagy.  
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3.2 Autophagy 

Autophagy, or cellular self-degradation, is a pathway involved in protein and organelle 

degradation. Christian de Duve firstly described this phenomenon in the late 60’s (Deter and De 

Duve 1967), providing the clear biochemical proof of the involvement of lysosomes in this 

process. However, a clear molecular description of this cellular event remained unresolved until 

the isolation of the first autophagy-deficient yeast mutants (Tsukada and Ohsumi 1993) and the 

consequent genetic dissection of the pool of regulatory genes (the so-called ATG genes), thus 

ascribing autophagy among the tightly regulated and genetically programmed cellular processes. 

There are three primary forms of autophagy: chaperone-mediated autophagy (CMA), 

microautophagy and macroautophagy. CMA is a secondary response to starvation and, unlike the 

other two processes, involves direct translocation of the targeted proteins across the lysosomal 

membrane (Massey et al. 2006). Microautophagy is the least-characterized process but is used to 

sequester cytoplasm by invagination and/or septation of the lysosomal/vacuolar membrane 

(Wang and Klionsky 2003). By contrast, the most prevalent form, macroautophagy, involves the 

formation of cytosolic double-membrane vesicles that sequester portions of the cytoplasm 

(Klionsky and Ohsumi 1999). During macroautophagy, the sequestering vesicles, termed 

autophagosomes, are not derived from the lysosome/vacuole membrane. Fusion of the completed 

autophagosome with the lysosome or vacuole results in the delivery of an inner vesicle 

(autophagic body) into the lumen of the degradative compartment. Subsequent breakdown of the 

vesicle membrane allows the degradation of its cargo and eventually the recycling of the amino 

acids and other nutrients. Although autophagy and autophagy-related processes are highly 

dynamic, they can be divided into several discrete steps for the purpose of discussion: (1) 

induction; (2) cargo selection and packaging; (3) nucleation of vesicle formation; (4) vesicle 

expansion and completion; (5) retrieval; (6) targeting, docking and fusion of the completed 

vesicle to the lysosome and (7) breakdown of the intraluminal vesicle and its cargo and recycling 

of the macromolecular constituents.  
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One of the major regulatory component for sensing the extracellular milieu and 

transducing it in an appropriate signal to sensors that allow the induction of autophagy is mTOR. 

mTORC1 complex is a critical nutrient sensor and it causes the hyper-phosphorylation of the 

Atg13 protein (Funakoshi et al. 1997). This modified form of Atg13 shows a lower affinity for 

its interacting kinase Ulk/Atg1 and this impaired interaction might inhibit autophagy (Kamada et 

al. 2000). mTORC1 sequesters Ulk/Atg1 in a complex with Atg13 and Fip200 in an inactive 

state. Inhibition of mTOR through starvation or treatment with rapamycin results in a partial 

dephosphorylation of Atg13 and allows the induction of autophagy (Noda and Ohsumi 1998). 

DAP1 usually inhibits macroautophagy preventing abnormal activation of this pathway. DAP1 is 

usually phosphorylated and inactivated by mTORC1 (Koren et al. 2010). Reduced mTOR 

activity results also in reduced DAP1 phosphorylation (Singh and Cuervo 2011).  

AMPK is another crucial regulatory component for autophagy induction (Kahn et al. 

2005). As sensor of ATP/AMP/ADP ratio, this protein can translate the energetic state of the cell 

into a metabolic adaptation like autophagy. AMPK interacts with Ulk/Atg1 in a nutrient-

dependent manner. AMPK phosphorylates Ulk/Atg1 and favors its release from mTORC1 

(Singh and Cuervo 2011, Wong et al. 2013).  

Once autophagy is initiated, a portion of cytoplasm is randomly sequestered into the 

autophagosomes, even if some reports show specificity in the cargo selection (Onodera and 

Ohsumi 2004). The subsequent vesicles nucleation process represents probably the least 

understood step in autophagy, but likely it originates from a pre-autophagosomal structure (PAS) 

already present in the cytoplasm. Vesicle expansion and completion require an ubiquitin-like 

system mediating protein lipidation through the Atg8 protein (also known as LC3) (Ichimura et 

al. 2000). Only two proteins are known to remain associated with the completed 

autophagosomes, the specific receptor Atg19 and Atg8; other proteins that are involved in 

vesicle formation presumably recycle from the PAS or the vesicles during formation, thus 

enabling the retrieval of autophagy components. Of course, the timing of vesicle fusion with the 
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lysosome must be tightly regulated. Indeed, if the fusion process begins prior to completion of 

the double-membrane vesicle, the cargo will remain in the cytosol. However the molecular 

machinery mediating this complex process still remains in part obscure, even if several members 

of the SNARE protein family have been demonstrated to be necessary (Darsow et al. 1997). 

Lastly, the whole process must break down the single-membrane subvacuolar vesicles that result 

from the fusion of the autophagosome with the lysosome, a step that mainly depends on the 

acidic pH of the organelle (Nakamura et al. 1997).  

Autophagy covers several physiological functions, ranging from a basal housekeeping role 

to response to metabolic stress and regulation of cell death. Moreover, the relevance of this 

cellular process at whole organism level is underlined by the observation that the genetic 

ablation of many Atg genes leads to organism death due to impaired cell differentiation 

(Sandoval et al. 2008), embryonic lethality or reduction of survival during peri-neonatal 

starvation (Kuma et al. 2004). The repertoire of routine housekeeping functions performed by 

autophagy includes the elimination of defective or damaged proteins and organelles, the 

prevention of abnormal protein aggregate accumulation and the removal of intracellular 

pathogens (Mizushima and Klionsky 2007). Such functions are critical for autophagy-mediated 

protection against aging, cancer, neurodegenerative diseases, and infection. Although some of 

these functions overlap with those of the ubiquitin-proteasome system (the other major cellular 

proteolytic system) the autophagy pathway is uniquely capable of degrading entire organelles 

such as mitochondria (in a process called mitophagy), peroxisomes and ER, as well as intact 

intracellular microorganisms (Kim et al. 2007, Zhang et al. 2007). Furthermore, the relative role 

of the autophagy-lysosome system in protein quality control may be greater than it was 

previously thought. Moreover, autophagy is activated as an adaptive catabolic process in 

response to different forms of metabolic stresses, including nutrient deprivation, growth factor 

depletion and hypoxia. This bulk form of degradation generates free amino and fatty acids that 

can be recycled in a cell-autonomous fashion or delivered systemically to distant sites within the 
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organism. Presumably, the amino acids generated are used for the de novo synthesis of proteins 

that are essential for stress adaptation. It is presumed that the recycling function of autophagy is 

conserved in mammals and other higher organisms, although direct data proving this concept are 

lacking. The amino acids liberated from autophagic degradation can be further processed and, 

together with the fatty acids, used by the tricarboxylic acid cycle (TCA) to maintain cellular ATP 

production. The importance of autophagy in fueling the TCA cycle is supported by studies 

showing that the phenotype of autophagy-deficient cells can be reversed by supplying them with 

a TCA substrate such as pyruvate (or its membrane-permeable derivative methylpyruvate). For 

example, methylpyruvate can maintain ATP production and survival in growth factor-deprived 

autophagy-deficient cells that would otherwise quickly die (Lum et al. 2005). Moreover, it can 

restore ATP production and the generation of engulfment signals in autophagy-deficient cells 

during embryonic development (Qu et al. 2007).  

 

Ca2+ dependent control of autophagy 

The first report on Ca2+-dependent regulation of autophagy dates back to 1993 (Gordon et 

al. 1993), and it suggested a complex role for Ca2+, since chelation of either intra- and 

extracellular Ca2+ as well as elevating cytosolic [Ca2+] ([Ca2+]cyt) suppressed autophagy. Only 

recently this topic returned to be of great interest but the published results are in conflict 

regarding the role of intracellular Ca2+ in autophagy inductions.  

Many reports describe Ca2+ as an inhibitor of autophagy. They are focused on the inositol 

1,4,5-triphosphate (IP3) receptor (IP3R), a ubiquitously expressed intracellular Ca2+-releasing 

channel, located mainly in the endoplasmic reticulum (ER). IP3Rs mediate Ca2+ release from the 

ER into the cytoplasm in response to elevations in cytoplasmic [IP3] produced in cells after 

stimulation for example by hormones, growth factors or antibodies (Berridge 2009). In 2005, 

Sakar et al. reported the use of Li+ for autophagy stimulation (Sarkar et al. 2005). Li+ acts 

through inhibition of inositol monophosphatase (IMPases), thereby reducing the IP3 levels. Also 
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chemical inhibition of IP3Rs with xestospongin (XeB) or suppression of its expression using 

siRNA, also induced autophagy in HeLa cells (Criollo et al. 2007). The IP3R-mediated inhibition 

of autophagy was also verified in IP3R triple knock out (TKO) chicken DT40 B lymphocytes, 

which showed higher autophagy levels (Cardenas et al. 2010, Khan and Joseph 2010). Different 

downstream mechanism and effectors have been proposed for the inhibitory role of IP3Rs and 

Ca2+ in autophagy. In a recent study Cardenas and coworkers showed increased glucose and O2 

consumption, pyruvate dehydrogenase and AMPK activation in TKO cells, suggesting a 

mechanism whereby constitutive Ca2+ release through IP3Rs fuels into the mitochondria, thereby 

increasing mitochondrial bio-energetics and ATP production (Cardenas et al. 2010). When these 

essential Ca2+ signals are abolished there is an increased AMP/ATP ratio with a consequent 

AMPK activation and a subsequent stimulation of autophagy. In this study, the authors can not 

exclude a scaffold function for the IP3R.  

On the other hand, treatments of cells with ER/SR Ca2+ ATPase (SERCA) inhibitors 

resulted in increased autophagy. Of course, prolonged treatment with these agents leads to ER 

Ca2+ depletion and subsequent ER stress, which itself might also be a trigger for autophagy 

(Hoyer-Hansen and Jaattela 2007).  

These models do not necessarily represent conflicting ideas, but may represent different 

Ca2+-signaling modes that depend on the cellular state of the cells. While spontaneous Ca2+ 

signals may suppress basal autophagy in healthy cells through mitochondrial pathways, stress 

conditions may promote Ca2+ signaling and thus elevate Ca2+ in the cytoplasm resulting in 

autophagy stimulation through cytoplasmic effector molecules (Decuypere et al. 2011). This is 

especially true for stressors that already induce a Ca2+ release into the cytoplasm, like the 

SERCA inhibitor thapsigargin. 
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3.3 Ca2+ signaling: the general framework 

Intracellular signaling requires messengers whose concentration rapidly and efficiently 

varies with time. One of the most important messengers is Ca2+ and cells invest much of their 

ATP energy to affect changes in [Ca2+]. This high consumption of ATP is balanced by the fact 

that Ca2+ is one of the most important second messenger in the cell and ATP is the energy source 

to allow modifications in Ca2+ concentration ([Ca2+]) in space and time (Clapham 2007). These 

rapid modifications in intracellular [Ca2+] are required because Ca2+ can not be chemically 

altered and for this reason changes in [Ca2+] require the binding to buffering proteins, the 

compartmentalization into intracellular stores or the extrusion outside the cell (Berridge 2009).  

Ca2+ binding triggers changes in protein shape and charge and consequently activates or 

inhibits protein functions. The best known protein that buffers Ca2+ is calmodulin. This buffering 

protein and others can control the amplitude and the timing of Ca2+ signaling (Hoeflich and Ikura 

2002).  

Ca2+ signaling in cells consists in dynamic variations of the cytosolic [Ca2+]. These 

variations are provoked by fluxes of ions coming from two main sources: the extracellular 

medium and the internal stores. The most important Ca2+ store in the cell is ER/SR, but recent 

works demonstrated that also other organelles (such as Golgi apparatus, endosome and lysosome 

(Pinton et al. 1998), (Calcraft et al. 2009)) are able to participate in Ca2+ signaling. 

The signals that triggers Ca2+ changes generate Ca2+ waves within the cytoplasm where it 

can stimulate numerous Ca2+ sensitive processes (Hajnoczky et al. 1995).  

Most of the cells have a cytosolic [Ca2+] that fluctuates from 0.1 µM of resting condition to 

2-3 µM after release from the stores. Cells use different types of mechanisms to access to the 

different intracellular sources of Ca2+. These pathways are not exclusive and most cells express 

combination of them. The best known pathway involves the release of IP3 after stimulation with 

a hormone, and the consequent release of Ca2+ from the ER through the binding to the IP3R. 
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Once Ca2+ has carried out its signaling functions, it is rapidly extruded from the cytoplasm by 

various pumps and exchangers and intracellular [Ca2+] returns to resting conditions.  

The extrusion from the cells or the compartmentalization of Ca2+ is due to the action of 

ATPase pumps that use ATP like energy sources to maintain intracellular low intracellular [Ca2+] 

by extruding Ca2+ from the cells or into intracellular Ca2+ stores. In the plasma membrane there 

are exchangers that exchange two Na+ with one Ca2+ and pumps (Ca2+-ATPase PMCA) that use 

ATP like an energy source to extrude Ca2+ out of the cells. Other pumps return back Ca2+ into 

intracellular stores, like the endoplasmic reticulum Ca2+-ATPase SERCA. 

Given that the message decoded by Ca2+ is given to the cells like an oscillatory difference 

of [Ca2+], it is simple to understand the high complexity of pumps and channels that, with their 

activity, modulate the Ca2+ message. During the last years, many scientists focused their 

attention on the identification of all the import/out-port mechanisms for Ca2+ signaling, but in 

spite of this large effort, the whole scenario is not yet complete.  

 

Mitochondria: the basics 

ER and mitochondria are the main actors of Ca2+ signaling. Importantly, they are not 

homogenously distributed within the cell. Indeed, they are spatially organized in order to 

optimize intracellular Ca2+ signaling: some mitochondria are located in close proximity of ER-

Ca2+ source, and for this reason a major portion of the Ca2+ released into the cytoplasm is 

absorbed by mitochondria. On the other hand, ER and mitochondria are strategically located near 

the Ca2+ entry sites in the plasma membrane, where micro-domains of high [Ca2+] are generated 

(Rizzuto et al. 1993). 

The capability of mitochondria to buffer Ca2+ was first described by two key experiments 

that took advantage of the possibility to target genetically encoded proteins into specific 

intracellular organelles. By targeting Ca2+ sensitive photoprotein aequorin into mitochondria, 

Rizzuto and coworkers demonstrated that a small increase of Ca2+ into the cytoplasm was 
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paralleled by a high increase of Ca2+ into mitochondrial matrix (Rizzuto et al. 1992). 

Furthermore, labeling mitochondria with two different colored green fluorescent proteins 

(GFPs), allowed demonstrating the existence of small regions (about 20% of mitochondria 

surface) that are in close proximity to both ER and mitochondria (Rizzuto et al. 1998). The very 

fine subcellular organization of these organelles into the cytoplasm is due to the fact that Ca2+ 

waves from ER regulates mitochondrial function, movement and viability and mitochondria 

themselves are able to modulate the cellular response to different stimuli. 

Further studies performed by my laboratory clarified the complexity of mitochondria 

morphology that reflects the multiplicity of roles in the control of the intracellular response to 

different stimuli. Mitochondria are composed by two membranes, the external one, that is named 

outer mitochondrial membrane (OMM) that is a highly permeable membrane to ions and small 

molecules, and the internal one, the inner mitochondrial membrane (IMM) that is ion 

impermeable. More representative channels in the OMM are VDACs. They cluster at 

ER/mitochondrial contact sites and they appear limiting for the Ca2+ uptake capacity of the 

organelle (Rapizzi et al. 2002, Tan and Colombini 2007). On the other hand, IMM is an ion 

impermeable membrane and it was shown that Ca2+ uptake machinery presents low affinity for 

the ion. This low affinity would allow only small increase in mitochondrial [Ca2+], which could 

not explain the observed rapid and huge increase of Ca2+ into mitochondrial matrix after cellular 

stimulation. This apparent discrepancy was solved by the demonstration that, as mentioned 

above, mitochondria are strategically located in close proximity of Ca2+ release source; this 

generates micro-domains of high [Ca2+] near the mitochondrial Ca2+ uptake channels (Rizzuto et 

al. 1998, Csordas et al. 1999). On the other hand, mitochondria extrude protons to create the 

electrochemical gradient that allows ATP synthesis, thus generating a steep driving force for the 

accumulation of the ion into the organelle.  

The chemiosmotic theory of energy transfer was first demonstrated by Mitchell (Mitchell 

1967) that showed that the electrochemical gradient across the IMM is utilized by the F1/F0 
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ATPase to convert the energy of NADH and FADH2, generated by the breaking down of energy 

rich molecules, such as glucose, into ATP. This gradient is characterized, for the most part, by 

electrical charge across the membrane (∆ψ) and, in minor part it is a H+ concentration difference 

between the two compartments (∆pH). This difference of membrane potential generates a huge 

driving force that allows the passage of cations through the low sensitive Ca2+ channels into the 

matrix. This gradient is normally maintained in the range of -120/-200 mV. 

 

Role of mitochondria  

Mitochondria are very important components of intracellular Ca2+ signalling. Importantly 

Ca2+ regulates key enzymes of the TCA cycle (McCormack et al. 1990), thus determining the 

rate of ATP production and in addition it can regulate cellular metabolic adaptation to nutrient 

levels and it could initiate the apoptosis process (Rasola and Bernardi 2011).  

Different [Ca2+] in the mitochondrial matrix regulate aerobic metabolism, tuning 

mitochondrial ATP production in the needs of a stimulated cell by the control of metabolic 

enzymes. There are two Kreb cycle’s dehydrogenases (isocitrate deidrogenase and 

αketoglutarato deidrogenase) that are Ca2+ sensitive since they directly bind Ca2+ and pyruvate 

dehydrogenase that undergoes a dephosphorylation step that in a Ca2+ dependent manner 

(Melendez-Hevia et al. 1996). Thus, the increase in Ca2+ level into the matrix modulates the 

activity of Kreb cycle’s enzymes and therefore the passage of electrons through the respiratory 

chain with the subsequent generation of the gradient across the IMM that is needed for ATP 

production.  

When Ca2+ has carried out its functions in the mitochondria, it is necessary to rapidly 

extrude it in order to renew the resting balance into mitochondria. Ca2+ extrusion is finely 

regulated by different exchangers. There are two major mechanisms for Ca2+ extrusion from 

mitochondria; they match the exit of Ca2+ with the entrance of Na+ or H+. Recently, Sekler and 
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coworkers identified an essential component of Na+/Ca2+ exchanger, inhibited by CGP37157 

(Palty et al. 2010). 

If this mechanism for the regulation of mitochondria [Ca2+] fails and high levels of Ca2+ are 

reached in the mitochondria, apoptosis is initiated. These observations started from the 

observation that Bcl-2 has a role in the modulation of Ca2+ ions fluxes (Pinton and Rizzuto 

2006). 

This protein, like other anti-apoptotic proteins, reduces mitochondrial Ca2+ response to 

extracellular stimuli by reducing the ER Ca2+ levels. On the other hand, pro-apoptotic proteins 

exert their effect by increasing mitochondrial sensitivity. Massive Ca2+ entry into mitochondria 

causes PTP opening that leads to modifications in mitochondrial morphology and the release of 

pro-apoptotic factors, such as cytochrome c, that initiate the complex cascade of apoptosis.  

As written above, Ca2+ was shown to play a more extended role in cellular bioenergetics, 

by controlling autophagy, the adaptive response to nutrient deprivation. Constitutive Ca2+ 

transfer from ER to mitochondria is required for autophagy suppression (Cardenas et al. 2010) 

and its absence induces prosurvival mTOR independent macroautophagy, mediated by the 

activation of AMPK. It is not yet clear if this effect on autophagy is dependent from the release 

from IP3R or on the amount of Ca2+ into mitochondria. Indeed, the overexpression and the 

silencing of the recently identified mitochondrial calcium uniporter (MCU) exert an effect in the 

AMPK activation and autophagy induction. Furthermore, it is not clear if the activation of 

AMPK is simply through a metabolic effect on ATP/ADP/AMP ratio or directly on Ca2+ levels. 

This could be a nice example of the activation of AMPK, sensor of nutrient availability, and the 

consequent induction of a metabolic adaptation like autophagy. But still unknown are the 

physiological signals that can translate fluctuations in metabolite concentration with a specific 

regulation of mitochondrial Ca2+ content. I focused my PhD research on this aspect of control of 

metabolism. 
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The study of the cellular processes mediated by mitochondrial calcium was severely 

limited by the lack of the molecular identity of the channel responsible of Ca2+ entry into the 

organelle. The electrophysiological properties of this channel, named mitochondrial calcium 

uniporter (MCU) have been described in details about thirty years ago (Bernardi et al. 1984). 

Indeed, it was shown its dependence on mitochondrial membrane potential, its sensitivity to 

ruthenium red and its activity when extra-mitochondrial [Ca2+] are in the µM range. In this 

seminal study, Clapham and coworkers in 2004 were the first to define that Ca2+ uptake was 

carried out through a channel and not through a carrier. He showed that the current through this 

channel is inwardly rectifying and gradually increases with the increase of free [Ca2+]. It defined 

also that there is not a Ca2+ dependent inactivation because the amplitude of the current is not 

altered with different [Ca2+]. Ca2+ is the primary charge carrier; indeed the channel binds Ca2+ 

with high affinity (Kd<2 nM) despite the low amount of cytoplasmic [Ca2+] and the abundant 

cytoplasmic Mg2+ and K+ ions (Kirichok et al. 2004).  

After this seminal work, many groups tried to describe this channel from the molecular 

point of view. Graier and coworkers proposed in 2007 that uncoupling proteins 2 and 3 (UCP2 

and UCP3) mediate mitochondrial calcium uptake (Trenker et al. 2007). This study was 

controversial because the overexpression of these proteins increased the capacity of 

mitochondrial Ca2+ uptake but they are non ubiquitously expressed in all tissues, as expected 

from this channel, and UCP2 and UCP3 knockout mice still retain mitochondrial Ca2+ uptake. 

Two years later, Clapham group’s identified by genome-wide RNAi screen in Drosophila, 

Letm1 as a Ca2+/H+ antiporter (Jiang et al. 2009). This identification triggered a long discussion 

because Letm1 knockdown cells demonstrate a Letm1 independent mitochondrial Ca2+ uptake 

and also Letm1 containing liposomes rapidly accumulate Ca2+ in a ruthenium red dependent 

mode. This antiporter is also sensitive to CGP37157, a non-selective inhibitor of Na+/Ca2+ 

(NCX) and H+/Ca2+ (HCX) exchangers. Moreover, these data are in contrast with previous 

results on K+/H+ exchanger (Nowikovsky et al. 2004) (Dimmer et al. 2008).  
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Identification of the mitochondrial Ca2+ uniporter (MCU) and of its crucial regulator 

Micu1 

In the past years, the investigation of the molecular identity of the MCU benefited from the 

genome-wide approach. In this respect, in a seminal piece of work, Mootha and co-workers 

reported in 2008 the generation of a mitochondrial “genoteque” (MitoCarta) by performing mass 

spectrometry analyses on both highly purified and crude mitochondrial preparations from 14 

different mouse tissues to discover genuine mitochondrial proteins, validated by GFP tagging 

(Pagliarini et al. 2008). By considering only the proteins localized into inner mitochondrial 

membrane, expressed in the majority of mammalian tissue and with homologues in vertebrates 

and kinetoplastids but not in the yeast, he identified a protein with unknown function, named 

“mitochondrial calcium uptake 1” (MICU1). This is a mitochondrial EF hand protein required 

for mitochondrial Ca2+ uptake (Perocchi et al. 2010). Its silencing abolishes mitochondrial Ca2+ 

uptake but it was clear that this protein was not the long searched MCU as it presents only one 

transmembrane domain in the protein sequence. The two canonical EF hands are essential for its 

activity in Ca2+ sensing and gating the activity of MCU. In our laboratory we demonstrated that 

the overexpression of MICU1 increases mitochondrial Ca2+ uptake. Furthermore, we also found 

that in the presence of µM [Ca2+], MICU1 is able to increase the open probability of the 

uniporter and thus an increase in overall Ca2+ uptake into mitochondria. 

Recently, Mallilankaraman K. and coworkers demonstrated that MICU1 is required to 

preserve normal mitochondrial [Ca2+] under basal conditions. In its absence mitochondria 

become constitutively loaded with Ca2+, triggering excessive reactive oxygen species generation 

(Mallilankaraman et al. 2012). 

The MitoCarta database and the identification of MICU1 laid the foundation stone for the 

identification of the MCU. Indeed, our group and Mootha’s identified in 2011 a protein 

CCDC109A, that fulfills all the requirements to be the mitochondrial calcium uniporter 

(Baughman et al. 2011, De Stefani et al. 2011). This identification has been supported by two 
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different approaches based both on MitoCarta database. Mootha group compared MICU1 

phylogenetic profile with unknown proteins profiles in order to find the channel. We used a 

strategy based on the well-known properties of MCU. Among 529 candidates with ubiquitous 

expression in mammalian tissues, we have selected proteins with a structure compatible with a 

gated ion channel activity (i.e. two transmembrane domains), absent in Saccaromyces Cervisiae 

and significantly conserved also in lower eukaryotes, such as kineetoplastids.  

Mootha’s laboratory and ours demonstrated that MCU overexpression in HeLa cells 

strongly increases mitochondrial Ca2+ uptake while its silencing by siRNA drastically reduces it. 

The effects of overexpression are also correlated with MCU physiological role; indeed MCU-

expressing cells are more efficiently killed after apoptotic stimuli. Importantly, Mootha’s group 

performs MCU silencing of MCU in vivo. They knockdown MCU in mice livers and they found 

a complete loss of Ca2+ uptake in response to extramitochondrial pulses of Ca2+. Our laboratory 

was able to show that MCU is necessary and sufficient to mediate Ca2+ uptake. Indeed, purified 

MCU was able to form a RuR dependent channel in planar lipid bilayers.  

Very recently, Mallilankaraman and coworkers identified also a new component of this 

complex.  Indeed, it showed that the mitochondrial Ca2+ uniporter regulator 1 (MCUR1) is an 

IMM integral membrane protein that is required for MCU-dependent mitochondrial Ca2+ uptake. 

Furthermore, they demonstrated that this protein is involved in the regulation of oxidative 

phosphorylation and in the activation of AMPK dependent pro-survival autophagy 

(Mallilankaraman et al. 2012). 

 

3.4 Fine regulation of mitochondrial proteins 

Mitochondrial proteins, once they have carried out their purpose or in response to damage, 

have to be efficiently removed. Mitochondria have in place multiple quality control mechanisms.  
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Usually damaged mitochondria are removed by mitophagy, a process where damaged and 

non functional mitochondria are removed via a selective process involving the autophagosome 

(Pattingre et al. 2005, Narendra et al. 2008, Geisler et al. 2010, Suen et al. 2010). In this case, the 

entire content of mitochondria including its proteins is subjected to lysosomal degradation.  

Usually the quality control of mitochondrial proteins is ensured by ATP dependent 

oligomeric proteases that survey protein quality control within the organelle and aid in the 

removal of non assembled and misfolded proteins (Koppen and Langer 2007). These proteases 

are found in the mitochondrial matrix (PIM1/Lon and ClpXP proteases), the inner membrane 

facing the matrix (m-AAA protease) and the inner membrane facing the intermembrane space (i-

AAA protease) (Varabyova et al. 2013).  

Protein degradation through the ubiquitin-proteasome system is the major pathway of non-

lysosomal proteolysis of intracellular proteins. It plays important roles in a variety of 

fundamental cellular processes and the central element of this system is the covalent linkage of 

ubiquitin to targeted proteins, which are then recognized by the proteasome (Livnat-Levanon and 

Glickman 2011). Ubiquitynilation involves the covalent attachment of an ubiquitin molecule or a 

chain of ubiquitin molecules to a lysine residues of a target protein. Like phosphorylation, 

ubiquitinylation is a reversible process due to the activity of deubiquitinylation enzymes (Millard 

and Wood 2006). The attached molecule or chain can affect the localization, activity, structure or 

interaction partners of the target protein. One of the main functions of ubiquitinylation is to 

target a protein for degradation by the 26S proteasome (Hershko and Ciechanover 1998). Until 

recently it was not known whether mitochondrial inner membrane proteins were subjected to 

ubiquinylation. However, recent reports suggest that ubiquitinylation may play an important role 

in mitochondria protein quality control (Margineantu et al. 2007)((Radke et al. 2008). Indeed, 

many proteins critical to mitochondrial function such as cytochrome oxidase subunits I, III and 

IV accumulate upon proteasome inhibitor treatment (Margineantu et al. 2007) and moreover, the 

cytosolic 26S proteasome has been implicated in the turnover of the uncoupling proteins 2 and 3 



 

 25 

(UCP2 and UCP3) (Azzu et al. 2010, Azzu et al. 2010) and recently also the uncoupling protein 

1 (UCP1) has been shown to be targeted to the proteasome (Clarke et al. 2012). 
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4. Aim 

Mitochondria are unique organelles within the complex system of subcellular 

compartments. They are involved in the regulation of a plethora of physiological and 

pathological conditions. The numbers of cellular processes that are controlled by mitochondria 

are object of deep investigation by several groups.   

The variation of the metabolic availability induces intracellular adaptations in order to 

maintain the energy status for the different cellular functions. The contribution of mitochondria 

in the regulation of intracellular metabolism is well known. Due to the ATP production, 

mitochondria provide energy for the cell and connect two important intracellular signals: ATP 

and Ca2+. It is still unknown, which are the specific mitochondrial proteins that function as 

sensors of nutrient availability and how they can translate the variation of nutrient concentrations 

into modulation of Ca2+ uptake, which in turn induces intracellular adaptive processes like 

autophagy. 

The focus of my PhD research was to investigate the nutrient dependent control of 

mitochondrial Ca2+ uptake. In particular, we took advantage from the long-standing experience 

of our group in the analysis of cellular Ca2+ signals in order to precisely investigate 

mitochondrial Ca2+ homeostasis during glucose deprivation. By using the most modern 

technologies based on both fluorescent and bioluminescent Ca2+-probes, we also correlated the 

effect of nutrient deprivation on Ca2+ signals to their consequences on induction of autophagy. 

Moreover we also analyzed the possible involvement of MICU1 in this process. 
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5. Materials and Methods 

5.1 Cell culture, transfection and proteomic analysis 

All the experiments were performed in HeLa cells cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) (Lifetechnologies), supplemented with 10% Fetal bovine serum (FBS) 

(Lifetechnologies). For minor experiment we used also MEF (mouse embryonic fibroblast), 

Hek293A cultured in DMEM 10% FBS or C2C12 coltured in DMEM 10% FBS and differenciate 

in DMEM 2% Horse serum (HS) (Lifetechnologies) for 5 days, MDA cultured in DMEM/F12 

(1:1) (Lifetechologies, supplemented with 10% FBS. 

Cells were transfected with a standard Ca2+-phosphate procedure. For Ca2+-phosphate 

transfection procedure the following stock solution need to be prepeared and conserved at -20°C 

until used. 

- CaCl2 2.5 M. 

- HEPES Buffered Solution (HBS): 280 mM NaCl, 50 mM Hepes, 1.5 mM Na2HPO4, pH 7.12. 

All solutions were sterilized by filtration using 0.22 µm filters. Just before the transfection 

procedure, cells are washed with fresh medium. For one 13 mm coverslip, 5 µl of  2.5 M CaCl2 

were added to the DNA disolved in 45 µl of H2O. Routinely, 4 µg of DNA were used to transfect 

1 coverslip. The solution was then mixed under vortex with 50 µl of HBS and incubated for 20 

to 30 minutes at room temperature. For one 24 mm coverslip the amount of solution and DNA 

were duplicated while for 10 cm dishes was used 50 µl of 2.5 M CaCl2, 20 µg of DNA in 450 µl 

of H20 and 500 µl of HBS. The solution was then added directly to the cell monolayer. Sixteen 

hours after addition or the DNA, cells were washed with PBS (two or three times until the excess 

precipitate is completely removed). Experiments were carried out 24-36 hours after transfection. 

MICU1 was silenced using specific siRNAs: 

siMICU1 #1 TCTGAAGGGAAAGCTGACAAT 
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siMICU1 #2 GACTTCGCTTTACCCAAACAG 

 

For glucose deprivation experiments culture medium were washed four times and then 

cells were incubated for 2 hours in Krebs–Ringer modified buffer (KRB: 135 mM NaCl, 5 mM 

KCl, 1 mM MgSO4, 0.4 mM K2HPO4, 20 mM HEPES, pH=7.4) with or without 25 mM glucose.  

Most experiments were performed adding 1 mM CaCl2.  

Cells were lisated in lysis buffer (150 mM NaCl, 50 mM Tris,  1 mM EGTA, 1% Triton  

X-100) and after a brief sonication 20-40 µg of total proteins were separated by SDS-PAGE gel 

electrophoresis in 4-12% SDS-bis,tris,acrylamide gels (Lifetechnologies), transferred to 

Nitrocellulose membrane (Lifetechnologies), stained with Ponceau S solution and 

immunoblotted against MICU1 (1:1000), Actin (1:7500), HA (1:1000; IF; 1:100), FLAG 

(1:1000). These antibodies were purchased from Sigma-Aldrich. TOM20 (1:5000), (WB, 

1:10000) were purchased from Santa Cruz Biotechnologies. P-AMPK (1:500), AMPK (1:1000), 

Acetyl-lysine (1:1000) were purchased from Cell Signaling. VDAC2 (1:1000) was purchased 

from Abcam. Secondary, HRP-conjugated antibodies (1:10000) were purchased from BioRad.  

All chemicals were purchased from Sigma-Aldrich, unless specified.  

 

5.2 MICU1 expression constructs 

The pcDNA3.1MICU1-HA, pcDNA3.1MCU-HA and pcDNA3.1MCUD260N, E263Q-HA 

expression constructs were provided by De Stefani et al. 2011 (De Stefani et al. 2011). 

- The generation of the pcDNA3.1MICUK102R-HA was performed by mutagenesis  PCR using 

the wild type pcDNA3.1-MICU-HA as template and the mutagenesis primer: 

GCCTTATCCTGAGGACAAGAGGAAGAAGCGCTCTGGATTCA 

-The generation of the pcDNA3.1MICUK103R-HA was performed by mutagenesis PCR using the 

wild type pcDNA3.1-MICU-HA as template and the mutagenesis primer: 
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CTTATCCTGAGGACAAGAAGAGGAAGCGCTCTGGATTCAGAG 

- The generation of the pcDNA3.1MICUK104R-HA was performed by mutagenesis PCR using the 

wild type pcDNA3.1-MICU-HA as template and the mutagenesis primer: 

ATCCTGAGGACAAGAAGAAGAGGCGCTCTGGATTCAGAGAC 

- The generation of the pcDNA3.1MICUK296R-HA was performed by mutagenesis PCR using the 

wild type pcDNA3.1MICU-HA as template and the mutagenesis primer: 

CTCAAAGGGAAACTGACCATCAGAAACTTCCTGGAATTTCAGCGC 

- The generation of the pcDNA3.1MICUK359R-HA was performed by mutagenesis PCR using the 

wild type pcDNA3.1-MICU-HA as template and the mutagenesis primer: 

AGAAGCACTTCAAAGATGGGAGGGGCCTGACTTTCCAGGAG 

- The generation of the pcDNA3.1MICUD233A, E244K-HA was performed by mutagenesis PCR 

using the wild type pcDNA3.1MICU-HA as template and the mutagenesis primer: 

TGAAATTGCTTTCAAGATGTTTGCCTTGAATGGAGACGGAGAGGTAGACATGGAGA

AGTTTGAGCAGGTTCAGAGC 

- The generation of the pcDNA3.1MICUD233A, E244K, D423A, E434K-HA was performed by 

mutagenesis PCR using the wild type pcDNA3.1MICUD233A, E244K-HA as template and the 

mutagenesis primer: 

GTGGTGTTCGCGCTCTTTGCCTGTGATGGCAATGGGGAGCTGAGCAACAAGAAGTT

CGTTTCCATCATGAAGC 

The protocol for one step direct mutagenesis were described in Marianne Ratcliffe & 

Sergei Sokol, (Ratcliffe et al. 2000), and adapted from Makarova et al.,(Makarova et al. 2000); 

and Chen et al, (Chen et al. 2000). 

For the cloning of MICU1K296R-HA in pEGFP-N1 the cDNA was subloned from 

pcDNA3.1MICU1K296R-HA to pEGFP-N1. 
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5.3 Aequorin as a Ca2+ indicator 

Aequorin is a 22 KDa photoprotein isolated from jellyfish Aequorea Victoria which emits 

blue light in the presence of Ca2+. The aequorin originally purified from the jellyfish is a mixture 

of different isoforms called “heterogeneous aequorin” (Shimomura 1995). In its active form the 

photoprotein includes an apoprotein and a covalently bound prosthetic group, coelenterazine. 

The apoprotein contains four helix-loop-helix “EF hand” domains, three of which are Ca2+-

binding domains (Inouye and Tsuji 1993). These domains confer to the protein a particular 

globular structure forming the hydrophobic core cavity that accommodates the ligand 

coelenterazine. The binding cavity for coelenterazine is situated in the centre of the protein; this 

cavity is closed to a spherical probe, indicating that the outside molecules have no access to the 

coelenterazine moiety. When Ca2+ ions bind to the three high affinity EF hand sites, 

coelenterazine is oxidized to coelenteramide, with a concomitant release of CO2 and emission of 

light (Head et al. 2000). Although this reaction is irreversible, an active aequorin can be obtained 

in vitro by incubating the apoprotein with coelenterazine in the presence of oxygen and 2-

mercaptoethanol. Reconstitution of an active aequorin (expressed recombinantly) can be 

obtained also in living cells by simple addition of coelenterazine into the medium. 

Coelenterazine is highly hydrophobic and has been shown to permeate cell membranes of 

various cell types. Different coelenterazine analogues have been synthetized and are now 

commercially available from Molecular Probes.  

The possibility of using aequorin as Ca2+ indicator is based on the existence of a well-

characterized relationship between the rate of photon emission and the [Ca2+].  

The first method used to correlate the amount of photons emitted to the [Ca2+], was that 

described by Allen and Blinks (Allen and Blinks 1978). In the following years, this system was 

improved to achieve a simple algorithm for converting aequorin luminescence into [Ca2+] values. 

This mathematical approach reposes on an accurately relationship between [Ca2+] and the 

logarithm of L/Lmax, where L is the instant rate of light emission and Lmax is the maximal 
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values of light emission measured in saturated conditions. For the native jellyfish photoprotein, 

in this logarithmic scale the response are linear in the physiological range of cytosolic [Ca2+], i.e. 

between 107 and 105, thus allowing careful calibration of the luminescence signal into absolute 

[Ca2+] values.  

The rate of aequorin luminescence is independent of [Ca2+] at very high (>10-4 M) and 

very low (<10-7 M) [Ca2+]. However, as described below in more details, it is possible to expand 

the range of [Ca2+] that can be monitored with aequorin.  

Ion concentration affects the luminescence of aequorin because ions are competitive 

inhibitors of Ca2+. pH was also shown to affect aequorin and for this reason experiments with 

aequorin need to be done in well-controlled conditions of pH and ionic concentration.  

 

Recombinant aequorins 

Aequorin began to be widely used when the cDNA encoding the photoprotein was cloned, 

thus circumventing the need for purification of the native polypeptide and microinjection and 

also open the possibility of molecular engineering the protein sequence; introducing specific 

targeting sequences and thus directing the Ca2+ probe to a defined subcellular compartment. 

Indeed, the analysis of a large number of amino acids sequences has highlighted short 

presequences shared by proteins with the same subcellular location. Deletion analysis 

experiments have shown that these amino acids presequences are sufficient and necessary for a 

correct intracellular sorting of the protein (Hartl et al. 1989, Nothwehr and Gordon 1990, Garcia-

Bustos et al. 1991).  

By introducing minimal sequences (as for mitochondrial targeting) or larger targeting 

information (such as the entire hormone-binding domain of the glucocorticoid receptor, thus 

retaining the property of shuttling from the cytosol to the nucleus in a hormone-dependent 

manner), a large panel of aequorin chimeras with defined subcellular distribution was 



 

 34 

constructed. The selective localization allowed monitoring for the first time Ca2+ dynamic in 

specific subcellular compartment.  

Below we briefly describe the constructs used in our experiments (Brini 2008): 

- Cytoplasmic (cytAEQ): an unmodified aequorin cDNA encodes a protein that, in mammalian 

cells is located in the cytoplasm and, given its small size, also diffuses into the nucleus. 

- Mitochondria (mtAEQ): mtAEQ was generated to measure the [Ca2+] of the mitochondrial 

matrix of various cell types. This construct includes the targeting presequence of subunit VIII of 

human cytochrome c oxidase fused to the aequorin cDNA. To expand the range of Ca2+ 

sensitivity that can be monitored the photoprotein was also mutated (Asp119>Ala). This point 

mutation affects specifically the second EF hand motive of wild type aequorin. The affinity for 

Ca2+ of this mutated aequorin (mtAEQmut) is about 20 fold lower than that of the wild type 

photoprotein.  

 

Luminescence detection 

The aequorin detection system is derived from that described by Cobbold and Lee 

(Cobbold and Bourne 1984) and is based on the use of a low noise photomultiplier placed in 

close proximity (2-3 mm) of aequorin expressing cells. The cell chamber, which is on the top of 

a hollow cylinder, is adapted to fit 13-mm diameter coverslip. The volume of the perfusing 

chamber is kept to a minimum (about 200 µl). The chamber is sealed on the top with a coverslip, 

held in place with a thin layer of silicon. Cells are continuously perfused via peristaltic pump 

with medium thermostated via a water bath at 37°C. The photomultiplier (Hamamatsu H7301) is 

kept in a dark box. The output of the amplifier-discriminator is captured by C8855-01 photon-

counting board in an IBM compatible microcomputer and stored for further analysis. 
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Experimental procedures 

 Cytoplasmic [Ca2+] and mitochondrial [Ca2+] were measured in cells using appropriate 

cytosolic (cytAEQ) and mitochondrial (mtAEQmut) chimeras (Pinton et al. 2007). Cells were 

seeded 24 hours before transfection onto 13 mm glass coverslips and allowed to grow to 50% 

confluence before transfection. Cells were transfected with CytAEQ or mtAEQmut probe (as 

previously described (Pinton et al. 2007)) together with the indicated siRNA or plasmid. 

pcDNA3.1 was used as control for transfection. The coverslip with the cells was incubated with 

5 µM coelenterazine for 2 hours in KRB with or without 25 mM glucose, supplemented with 

1mM CaCl2, and then transferred to the perfusion chamber. All aequorin measurements were 

carried out in KRB. Agonists and other drugs were added to the same medium. The most 

common stimuli used for maximal stimulation are: 100 µM histamine, 100 µM ATP, 0.5 mM 

carbachol, 100 µM norepinephrine, 100 nM bradikynin. The experiments were terminated by 

lysing the cells with 100 µM digitonin in a hypotonic Ca2+-rich solution (10 mM CaCl2 in H2O), 

thus discharging the remaining aequorin pool. The light signal was collected and calibrated into 

[Ca2+] values by an algorithm based on the Ca2+ response curve of aequorin at physiological 

conditions of pH, [Mg2+] and ionic strength, as previously described (Pinton et al. 2007). 

Representative traces are shown in the figures whereas column graphs are the results of the full 

dataset.  

Statistical data are presented as mean ± S.E.M. unless specified, significance was 

calculated by Student’s t test, *p<0.05, **p<0.001. 

In the experiments with permeabilized cells, a buffer mimicking the cytosolic ionic 

composition, (intracellular buffer [IB]) was employed: 130 mM KCl, 10 mM NaCl, 2 mM 

K2HPO4, 5 mM succinid acid, 5 mM malic acid, 1 mM MgCl2, 20mM HEPES, 1 mM pyruvate, 

0.5 mM ATP and 0.1 mM ADP (pH 7 at 37°C). IB was supplemented with either 100 µM EGTA 
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(IB/EGTA) or a 2 mM EGTA and 2 mM HEEDTA-buffered [Ca] of 1 or 2 µM (IB/Ca2+), 

calculated with Chelator software (Schoenmakers et al. 1992). 

HeLa cells were permeabilized by a 1 min perfusion with 50 µM digitonin (added to 

IB/EGTA) during luminescence measurements. Mitochondrial Ca2+ uptake speed was calculated 

as the 1st derivative by using the SLOPE excel function and smoothed for 3 time points. The 

higher value reached during Ca2+ addition represents the maximal Ca2+ uptake speed. 

 Also for capacitative Ca2+ influx experiment cells were reconstituted and starved for 2 

hours before the experiment. This procedure allows evaluating Ca2+ influx through store operated 

channels if we were measuring cytoplasmic Ca2+ level with CytAEQ or mitochondrial Ca2+ 

uptake independently to ER Ca2+ release if we were measuring mitochondrial [Ca2+] with 

mtAEQmut. ER was emptied by treatment with cyclopiazonic acid (CPA), a highly selective 

reversible inhibitor of Ca2+-ATPase in the intracellular Ca2+ storage sites. Cells were perfused 

with KRB without Ca2+ and with 100 µM EGTA and then for 3 minutes with KRB without Ca2+ 

and with 100 µM EGTA and 20 µM CPA. During this period ER was emptied and a little and 

slow increase in cytoplasmic Ca2+ was observed. This cytoplasmic [Ca2+] is directly correlated 

with the amount of ER Ca2+ released. 

After that, cells were perfused with KRB with 2 mM Ca2+ and 20 µM CPA. During this 

perfusion the Ca2+ influx through the plasma membrane (CytAEQ) and into mitochondria 

(mtAEQmut) could be evaluated. 

 

5.4 Imaging techniques 

All imaging experiments were carried out on three digital imaging systems. FRET 

measurements were carried out on an inverted Zeiss Axiovert 100 TV equipped with a 

63x/1.4N.A. objective. The probe was excited by a LED-based illumination device (OptoLED, 

Cairn Research) with a 436/20 nm bandpass filter. Donor and acceptor wavelength were 
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separated by a beamsplitter device (Optosplit, Cairn Research) using a 480/40 nm filter for the 

CFP, a D505 dichroic mirror and a 535/30 nm filter for the cpVenus. Images were collected with 

a front-illuminated CCD camera (Photometrics CoolSnap ES2). TMRM and SypHer imaging 

were performed on an inverted Zeiss Axiovert 200 equipped with a 40x 1.3N.A. objective. 

SypHer was excited by a 75W Xenon lamp equipped with a prism-based monochromator (PTI) 

at 430nm and 485 nm. Probe emission was collected through a 525/30 nm bandpass filter. 

Images were collected with a back-illuminated EMCCD camera (Photometrics Cascade 512B) at 

200-300 ms exposure time. TMRM was imaged on the same microscope but using a spinning 

disk confocal head (BD CarvII). Probe was excited by a 300W Xenon arc lamp (Sutter Lambda 

LS) with a 543/22 nm filter and collected through a 593/40 nm emission filter. ER/mitochondria 

contact sites were imaged on a Leica TCS-SP5-II confocal system equipped with a PlanApo 

100x/1.4 N.A. objective. For all images, pinhole was set to 1 airy unit, pixel size was about 100 

nm and a Z-stack was acquired for the whole depth of the cell by sampling at 130 nm in the Z 

plane. 488 nm Ar-laser line was used to excite GFP and its signal collected in the 492-537 nm 

range, while RFP fluorescence was excited by the 543 nm HeNe laser and its emission was 

collected in the 555-700 nm range. For each image, PMT gain was slightly adjusted in order to 

maximize signal and avoid saturation. 

 

Cameleon as Ca2+ probe 

Cameleons are FRET-based ratiometric Ca2+ probe. The molecular structure is based on 

two variant of GFP (having differing excitation and emission characteristics), calmodulin (CaM), 

and the calmodulin-binding domain of myosin light chain kinase (M13). It was created by Roger 

T. Tsien and coworkers (Palmer and Tsien 2006). The excitation energy of one fluorophore (the 

donor) is transferred to another (the acceptor) by dipolar interactions, without fluorescence 

emission (FRET). The donor emission and acceptor absorption spectra must overlap for FRET to 

occur. Calmodulin is able of bind Ca2+ ions and the M13 chain can bind with calmodulin after it 
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has bound the Ca2+ ions. The bindind of Ca2+ by the calmodulin moiety of cameleon produces a 

conformational change of the entire molecule and the consequent positions of the two 

fluorescent proteins into close spatial proximity. In this conformation, dipolar energy transfer by 

the excited donor protein stimulates the acceptor to produce secondary fluorescence. Intracellular 

[Ca2+] can be determined by fluorescence ratio imaging. Also cameleon based probe can be 

targeted into different intracellular compartment. The first cameleon developed had high pH-

sensitivity but during the years cameleon were engineered in order to overcome this problem. 

There are several cameleon probes available that differ for the Ca2+-binding affinity and for the 

GFP variants used. 

In our experiments we used two mitochondrially-targeted cameleons with two different 

affinities for Ca2+-binding. The GFP variants used are CFP (the donor) and cpVenus (the 

acceptor). 

HeLa cells were grown on 24 mm coverslips and transfected with 4mtD1cpv and 

4mtD3cpv (Palmer et al. 2004, Palmer et al. 2006). 24-48 hours after transfection HeLa cells 

were mounted into an open-topped chamber and maintained in KRB. Cells were stimulated by 

applying 10 µM histamine as stimulus; thereafter, Ca2+ ionophore ionomycin (5 µM) with a 

CaCl2 saturating concentration (5 mM) were applied to completely discharge the stores and to 

verify the dynamic range of each probe. Image analysis was performed by the public domain 

ImageJ program (developed at the U.S. National Institutes of Health by Wayne Rasband and 

available on the Internet at http://rsb.info.nih.gov/ij/). Regions of interest (ROIs) were selected 

covering essentially mitochondria (identified based on their morphology). Subsequently, a ratio 

between cpVenus and CFP emission was calculated. Data are presented as normalized ratio for 

4mtD1cpv or for the ratio difference between the starting point (Rmin) and the point reach after 

agonist stimulation (R) for 4mtD3cpv.  

 

http://rsb.info.nih.gov/ij/
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5.5 Measurement of Mitochondrial Membrane Potential 

The measurement of mitochondrial membrane potential is based on the distribution of 

lipofilic cations. They are fluorescent and membrane permeable and their distribution into 

intracellular compartment is due only to electrochemical gradients (Scaduto and Grotyohann 

2000). The mitochondrion-selective tetramethylrhodamine dye (TMRM) was used to measure 

mitochondrial membrane potential in HeLa cells. The accumulation of TMRM in mitochondria 

at low concentrations was shown to be driven by their membrane potential (-150/-180mV). In 

order to promote the correct distribution of the probe, cells are loaded with very low 

concentration (10-40 nM). Changes in mitochondrial membrane potential will cause a 

redistribution of the dye between mitochondria and cytoplasm. Data are expressed as percentage 

difference between the TMRM fluorescence before and after FCCP (10µM) depolarization. 

Confocal laser microscope (Zeiss Axiovert 200, objective PlanFluar 40X/1.3) was used in 

TMRM experiment.  

Cells were starved in KRB for 1 hour and 30’ and then were loaded with TMRM stock 

solution for 30’ at 37°C. The probe was excited at 560 nm and the emission light was recorded in 

the 590-650 nm ranges. 

 

5.6 SypHer 

The measurement of mitochondrial pH gradient is the sole driving force for the 

electroneutral transport of many ions and metabolites in and out of the mitochondrial matrix. In 

order to determine the mitochondrial matrix pH, a ratiometric circularly permuted YFP was 

used. This probe allow us to real time measure the mitochondrial matrix pH in intact cells 

(Poburko et al. 2011). HeLa cells were grown onto 24 wells until 50% and then transfected with 

4 µg of mtSypher with a standard Ca2+-phosphate procedure. 24 hours after transfection SyPher 

expressing cells were starved for 2 hours and then mounted into an open-topped chamber and 



 

 40 

maintained in KRB with or without 25 mM glucose. After KRB whashout, pH was stepped 

between 5.5 and 10 by turnover the bath solution. The solutions added were a Ca2+-free 

intracellular buffer: 130 mM KCl, 10 mM NaCl, 2 mM K2HPO4, 1mM MgCl2 supplemented 

with 20 mM MES (adjusted to pH 5.5 and 6.5 with KOH) or 20 mM HEPES (adjusted to pH 7.0 

and 7.5 with KOH) or TRIS (adjusted to pH 8.0 and 9.0 with HCl) or Acid Boric (adjusted to pH 

9.5 and 10 with KOH). For each experiment monensin (ionophore 5 µM) and nigericin (N+/H+ 

antiporter 1 µM) were also added to these Ca2+-free intracellular buffers in order to increase the 

velocity to reach equilibrium between the external medium and the pH into the intermembrane 

space.  

Fluorescence ratio (F480/430) was calculated in MetaFluor 6.3 (Universal Imaging) and 

analysed in Excel (Microsoft). For each cell, a 8-point calibration curve was fitted to a variable 

slope sigmoid equation 

 

5.7 Morphological analysis 

ER-mitochondria colocalization 

ER-mitochondria interactions are studied by confocal images of HeLa cells coexpressing a 

mitochondria-targeted RFP (mit-RFP) and an ER-targeted GFP (ERD1cpv). Cells were excited 

separately at 488 nm or at 543 nm, and the single images were recorded. Single channel images 

were then merged. Statistical quantification of the overlapping signal area (OSA) was performed 

from single confocal images by the public domain ImageJ program with Jacop plugin (Bolte and 

Cordelieres 2006). Pearson’s correlation index, an overlap coefficient that is commonly used to 

measure the amount of overlap between two image pairs, was obtained to determine the amount 

of localization between ER and mitochondria (Manders et al. 1992).  
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Immunofluorescence 

HeLa cells were grown on 24 mm coverslips and transfected with MICU-HA and/or mit-

RFP encoding plasmid. After 24 hours, cells were washed with PBS, fixed in 4% formaldehyde 

for 10 minutes and quenched with 50 mM NH4Cl in PBS. Cells were permeabilized for 10 

minutes with 0.1% Triton X-100 in PBS and blocked in PBS containing 2% BSA for 1 hour. 

Cells were then incubated with primary antibodies (anti-HA) for 3 hours at room temperature 

and washed 3 times with 0.1% Triton X-100 in PBS. The appropriate isotype matched 

AlexaFluor conjugated secondary antibodies (Lifetechnologies) were used and coverslips were 

mounted with ProLong Gold Antifade reagent (Lifetechnologies).  

Confocal images were recorder and quantification of the number and the volume of the 

mitochondria were performed from ImageJ program. 

 

5.8 Luciferin-Luciferase system 

There are different methods to measure intracellular ATP production and the major 

difference is if they can discriminate ATP production from different subcellular site or not. We 

used an approach based on specific targeting luciferase into different subcellular compartments.  

Luciferase as an ATP probe: The direct measurement of mitochondrial and cytosolic ATP 

levels is based on specifically targeted chimeras of the ATP-dependent photoprotein luciferase.  

The cDNA of luciferase was cloned into different plasmid in order to have different intracellular 

localization (Jouaville et al. 1999). Cells were seeded for transfection onto 13-mm coverslip and 

grown to 50% confluence. Transfection with cytLUC cDNA was carried out according to a 

standard Ca2+-phosphate procedure. The day after, cells were tripsinized and transferred onto 

96wells (one 24well divided onto eight 96wells). 48 hours after transfection cell luminescence 

was measured in a multimode plate reader (Perkin Elmer Envision). During the experiment cells 

are maintained in KRB with or without 25 mM glucose, 1 mM CaCl2 and 20 µM lucifern. As 

control were used the inhibitor of ATP synthase oligomycin (10 µM), and the glycoslisis blocker 
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2-deoxiglucose (10 mM). 

 

5.9 ROS production measurement  

ROS production was measured using a 2’,7’-dichlorfluorescein diacetate (DCFDA). This 

dye is fluorogenic and after diffusion into the cell, DCFDA is deacetylated by cellular esterases 

to a non-fluorescent compound, which is later oxidized by ROS into 2’,7’-dichlorofluorescin 

(DCF). DCF is highly fluorescent compound, which can be detected by fluorescence 

spectroscopy with maximum excitation and emission spectra of 495 nm and 529 nm 

respectively. HeLa cells were growth in 96 wells until 80% confluence. Just before the 

experiment the dye was reconstituted in DMSO (stock solution 5 mM) and then HeLa cells were 

loaded with 5 µM DCFDA for 30 minutes at 37°C. HeLa cells were washed four times and then 

treated with KRB with or without 25 mM glucose. H2O2 dilution scale was used as positive 

control. Fluorescence emission was measured at Envision plate reader. 
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6. Results 

6.1 Role of mitochondria as sensors of nutrient availability 

Intracellular signals can be translated through mitochondria into specific actions in order to 

maintain intracellular homeostasis. A good example of this important function mediated by 

mitochondria is the identification of the role of constitutive Ca2+ transfer from ER to this 

organelle. Indeed, constitutive Ca2+ release from ER was shown to suppress a prosurvival mTOR 

independent macroautophagy; in its absence cells activates this adaptive response mediated by 

the activation of AMPK (Cardenas et al. 2010). Until now it is still unknown if this effect on 

macroautophagy is dependent on Ca2+ release from IP3R per se or if the amount of Ca2+ into 

mitochondria is the real determinant of this function. In support of the latter mechanism, the 

overexpression and the silencing of the recently discovered mitochondrial calcium uniporter 

(MCU) (De Stefani et al. 2011) exerts an effect in the AMPK activation and autophagy 

induction. Furthermore, it is not clear if the activation of AMPK is a metabolic consequence of 

the effect on ATP/ADP/AMP ratio or if it is directly mediated by Ca2+ levels. What is clear is 

that AMPK is a key protein sensor of nutrient availability and its activation involves also 

mitochondrial Ca2+ signalling. It is unknown if metabolic availability can also be translated into 

specific metabolic adaptations through mitochondria. During my PhD project we analyzed the 

changes of mitochondrial [Ca2+] after nutrient deprivation.  

Mammalian cells need different metabolites to support their growth. The most important 

are amino acids, growth factors and glucose. Glucose and its metabolites are also important as 

primary messenger molecules, signalling optimal growth conditions to the cellular machinery. Its 

intracellular signalling involves specific glucose transporter, the activation of protein kinase C 

(PKC) and the mitogen-activated kinases (MAPK) with the consequent stimulation of gene 

expression (i.e. TGFβ) (Haneda et al. 2003).  
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We decided to focus our attention on the study of the contribution of glucose to cellular 

signalling pathways. Indeed, we decided to completely remove all metabolites and to add to 

control cells only glucose. The model of glucose deprivation is thus HeLa cells starved for 2 

hours in KRB compared to HeLa cells in KRB with 25 mM glucose. Two hours of glucose 

deprivation induce a constant decrease in total protein deacetylation as consequence of Sirtuins 

activation and a strong phosphorylation of AMPK (Figure 1A). This result further underlines that 

these proteins are key sensors of nutrient availability. We wondered whether there is a common 

converging signalling pathway that links changes of nutrient availability with the activation of 

these proteins. We therefore asked whether mitochondrial Ca2+ content plays a key role in this 

process.  

Our main working hypothesis is that there is a feedback loop: on one hand some protein 

sensors of nutrient availability can sense mitochondrial Ca2+ content; on the other hand, they can 

sense nutrient levels and in turn control the amplitude of mitochondrial Ca2+ response.  

My research was focused on the regulation of Ca2+ content by post-translational 

modifications occurring in mitochondria after nutrient deprivation and the intracellular processes 

that are activated by this modification. 

 

The amount of mitochondrial Ca2+ determines the activation of AMPK  

We first verified if changes in the amplitude of the mitochondrial Ca2+ transient could tune 

the activation of AMPK. 80% confluent HeLa cells were treated with and AMP mimetic 

(AICAR 0.5 mM) that is an AMPK activator. In order to change the amplitude of the 

mitochondrial Ca2+ transient, HeLa cells were treated with CGP37157 (20 µM). CGP37157 is a 

selective inhibitor of the mitochondrial Na+/Ca2+ exchanger, the major mechanism of Ca2+ 

extrusion from mitochondria to cytoplasm. After sixteen hours of treatment, HeLa cells were 

lysed and 20 µg were separated by SDS-PAGE. As expected, an AMP mimetic (AICAR) 

treatment induces a strong phosphorylation and thus activation of AMPK. Interestingly, AMPK 
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activation by AICAR can be blocked by an increase of mitochondrial Ca2+ transient, by blocking 

the mitochondrial Ca2+ extrusion (Figure 1B). Thus, it is clear that the amount of Ca2+ into 

mitochondria determines the AMPK activation.  

This effect on AMPK could be direct or a consequence of the known modulation of 

mitochondrial ATP production.  

 

SIRT1 and SIRT3 overexpression controls mitochondrial Ca2+ uptake 

Sirtuin proteins are a family of NAD+-dependent protein deacetylases that are important 

regulators of cellular metabolism (Blander and Guarente 2004). Indeed protein acetylation is a 

post-translational modification that has a key role in the control of important metabolic 

pathways. As discussed in the introduction, three sirtuins, SIRT3, SIRT4 and SIRT5 localize to 

mitochondria and SIRT3 expression is activated during nutrient deprivation (Nogueiras et al. 

2012). This increase in SIRT3 expression helps the switch to fasting metabolism, as tissues move 

away from glucose instead of lipids and amino acids as a source of energy. 

We started to study the role of Sirtuins as sensors of nutrient availability and we first asked 

if they play a role in the control of mitochondrial Ca2+ uptake. To assess a direct role of Sirtuins 

on mitochondrial Ca2+ uptake we co-expressed in HeLa cells different Sirtuin proteins and 

mitochondrial targeted aequorin-based Ca2+ probe (mtAEQmut), and we evaluated organelle 

Ca2+ responses to agonist stimulation. After reconstitution with the aequorin co-factor 

coelenterazine for 2 hours, cells were challenged with histamine and luminescence was 

measured and converted to [Ca2+]. We found that SIRT1 and SIRT3 have a role in the control of 

the magnitude of Ca2+ transients inside mitochondria. Indeed the mitochondrial Ca2+ rise in 

SIRT3 and SIRT1 overexpressing HeLa cells was reduced (Figure 1C).  
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Figure 1A, B, C. Effect of AMPK and Sirtuins activations. (A) Immunoblot analysis of phosphorylation of 
AMPK prepared from HeLa cells. HeLa cells were starved for 2 hours in KRB with or without 25mM glucose. (B) 
Immunoblot analysis of phosphorylation of AMPK prepared from HeLa cells treated for 16 hours with AICAR 0.5 
mM and/or 20 µM CGP1375. (C) HeLa cells were transfected with mitochondrial targeted aequorin and [Ca2+] was 
measured as described in the Materials and Methods section. During Ca2+ experiment cells were maintained in KRB 
+ 1 mM Ca2+ + 5 mM glucose. Control trace is shown in grey; traces from cells co-transfected with Sirtuins are 
shown in pink scale. Mean ± S.E.M. of values are shown.  

 

6.2 Glucose deprivation decreases mitochondrial Ca2+ uptake 

Glucose (C6H12O6) is a simple monosaccharide that it is used as the primary source of 

energy, representing the main fuel for cellular energy production, as discussed in the 

introduction section. The fate of this simple monosaccharide is through three different ways. It 

can be stored; it can be converted through glycolysis into pyruvate in order to provide few ATP 

molecules; finally, the product of glycolysis, pyruvate, can then enter mitochondria where it is 

further processed by TCA cycle. Reducing equivalents derived by TCA cycle fuel the oxidative 

phosphorylation and lead to efficient ATP production.  

Glucose deprivation is a pathologically relevant event. Diabetes is one of the well-known 

pathology of deregulation of glucose metabolism. It affects body’s ability to use glucose because 



 

 47 

it interferes with two hormones that maintains constant blood glucose level. Understanding 

cellular response to glucose withdrawal could bring out new strategies to overcome the diabetes 

damage. On the other hand, cancer cells base their metabolism on glycolysis in a phenomenon 

termed “Warburg effect”. This metabolic adaptation allows cancer cells to overcome the growth 

factor dependence that normally controls the nutrients intake. Independently of the growth factor 

stimulation, cancer cells uptake an excess of nutrients, particularly glucose, that exceeds the 

bioenergetics demands. This ability enables cancer cells to proliferate and survive in hypoxic 

areas. Better understanding the link between glucose availability and metabolic adaptation in 

cancer cells, may ultimately lead to better treatments for human cancer.  

For many years researchers have focused their studies on the understanding of the effects 

of glucose withdrawal on intracellular signalling. There are proteins that are involved in energy 

and nutrient sensing, including AMPK and mTORC1, that trigger metabolic adaptation like 

autophagy.  

In cancer cells modification in cellular microenvironment (i.e., nutrient availability) can 

alter the cellular redox balance, provoking a positive feedback loop that amplifies ROS levels 

above a toxicity threshold resulting in cell death (Graham et al. 2012). Furthermore, 

understanding which proteins are involved in these systems offers a scaffold for synergistic 

combination of therapeutics targeting signalling, metabolism and redox homeostasis.  

Given the central role of mitochondria in the maintenance of intracellular homeostasis, we 

focused our attention on the identification of the proteins that in different feeding conditions can 

modulate mitochondrial Ca2+ levels and which intracellular response to different feeding 

conditions are triggered by this modification. It is known that ROS production by mitochondria 

triggers the response of glucose availability (Li et al. 2011), but we hypothesize the existence of 

a more precise response that involves sensor proteins and triggers autophagy as survival 

mechanism instead of cell death caused by apoptosis for excessive ROS production.  
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To assess a direct role of glucose deprivation on mitochondrial Ca2+ uptake, we expressed 

in HeLa cells mitochondrial targeted aequorin-based Ca2+ probe (mtAEQmut), and evaluated 

organelle Ca2+ responses to agonist stimulation. After reconstitution with the aequorin co-factor 

coelenterazine and the simultaneous glucose deprivation for 2 hours, cells were challenged with 

histamine and luminescence was measured and converted to [Ca2+]. We found that, after 2 hours 

of glucose deprivation, mitochondrial Ca2+ uptake drastically decreases (60% reduction in 

mitochondrial [Ca2+], Figure 2A). We performed the same experiment also in other cell type 

such C2C12 myoblasts (data not shown), myotubes (Figure 2B) or MEFs (mouse embryonic 

fibroblasts) (data not shown) with the same results. These data suggest that the inhibition of 

mitochondrial Ca2+ transient is a common signalling event that correlates with glucose 

deprivation. 

 

Figure 2A, B. Effect of glucose withdrawal on mitochondrial Ca2+ uptake. (A) HeLa cells were transfected with 
mitochondrially targeted aequorin and [Ca2+] was measured as described in the Materials and Methods section. 
HeLa cells were starved for 2 hours. (B) C2C12 were grown until 80% and then infected with Ad-mtAEQmut and 
differentiated in DMEM 2% Horse serum for five days. Myotubes were starved for 2 hours in KRB with or without 
25 mM glucose and then were challenged with 500 µM carbachol or 50 mM caffeine. Control trace is shown in 
grey; the trace from starved cells is shown in orange. Mean ± S.E.M. of values are shown. 
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We confirmed this data also with a FRET-based Ca2+ probe Cameleon (54% reduction in 

mitochondrial [Ca2+] Figure 2C) (Palmer and Tsien 2006). We used two mitochondrially targeted 

Cameleons (4mtD1cpv or 4mtD3cpv), that differ for their Ca2+ binding affinity (Palmer et al. 

2004, Palmer et al. 2006). These probes belong to a new class of indicators for Ca2+ ion 

concentration in living cells which operate through a conformational change that results in 

fluorescence resonance energy transfer (FRET) in presence of Ca2+ ions.  

We used 4mtD1cpv to measure the mitochondrial Ca2+ increase after cell stimulation with 

an agonist. The starting level for sensor in each experiment was considered like Rmin: the 

subsequent addition of 10 µM histamine caused an increase in the FRET ratio as Ca2+ released 

form ER is uptaken by the mitochondria. Once the FRET ratio returned to baseline, cells were 

washed and calibration of the sensor was performed. Cells were treated with 5 µM ionomycin in 

5 mM CaCl2 to obtain the Rmax, the ratio at saturating Ca2+ levels. We tried two different 

experimental approaches, first, we starved HeLa cells for 2 hours and then we performed the 

Ca2+ measurement (Figure 2C); second, we starved HeLa cells and we acquired the Cameleon 

probe emission under the microscope at the same time (data not shown). We used as positive 

control a dominant negative form of mitochondrial Ca2+ uniporter (MCUD260N, E263Q) that causes 

a reduction in mitochondrial Ca2+ uptake (De Stefani et al. 2011).  

We used 4mtD3cpv to measure mitochondrial Ca2+ resting level. We starved HeLa cells 

for 2 hours and then we acquired the baseline ratio of different cells for 30 sec (Figure 3A). We 

used MICU1 silencing as positive control of basal mitochondrial [Ca2+] accumulation because it 

has been demonstrated that HeLa cells mitochondria become constitutively loaded with Ca2+ 

after MICU1 silencing (Mallilankaraman et al. 2012). 

These data confirm the aequorin-probe based experiment (Figure 2A). After 2 hours of 

glucose deprivation, mitochondrial Ca2+ uptake drastically decreases with no difference in the 

resting conditions.  
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These data also strongly indicate that this is a physiological response because it happens in 

a short period of time and it is reversible. To further investigate this aspect, HeLa cells 

transfected with mtAEQmut were starved for 2, 4, 6, 8 and 10 hours. During the last 2 hours of 

starvation cells are also reconstitute with the aequorin co-factor coelenterazine.  

Importantly, this response to glucose withdrawal is reversible: indeed, cells have a reduced 

mitochondrial Ca2+ uptake up to 4 hours and then mitochondrial Ca2+ uptake level returns to  

normal feeding condition (2 hours 32%, 4 hours 32%, 6 hours 14%, 8 hours 18% and 10 hours 

2% reduction in mitochondrial [Ca2+], Figure 3C).  

 

Figure 3A, B, C. Effect of glucose withdrawal on mitochondrial Ca2+ uptake. HeLa cells were transfected with 
4mtD1cpv (A) and 4mtD3cpv (B). After 48 hours cells were starved for 2 hours in KRB with or without 25 mM 
glucose. Mitochondrial Ca2+ uptake was measured as described in the Materials and Methods section. (C) HeLa cells 
were transfected with mtAEQmut and 48 hours after transfection starved for 2, 4, 6, 8 and 10 hours in KRB with or 
without 25 mM glucose. During the last two hours cells were also reconstituted with coelenterazine. 
Mean ± S.E.M. of values are shown. 
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We next investigated the specificity of this effect. Indeed, the observed decrease in Ca2+ 

uptake levels could also be due to modification of mitochondrial physiological parameters. This 

organelle is able to uptake Ca2+ because it is in close proximity to the ER Ca2+ source. IP3R 

opening generates micro domains of high [Ca2+] in the contact sites near to the Ca2+ uptake 

machinery. Reduced ER Ca2+ content or ER-mitochondria contact sites induce a decrease in 

mitochondrial Ca2+ transient. This is not the only mechanism that allows mitochondria to uptake 

Ca2+. Indeed, the driving force due to the difference in pH and ion concentration inside and 

outside the mitochondrial inner membrane drives the entry of ions from the cytoplasm.   

We thus investigated if one of these mechanisms is involved in the observed reduction of 

mitochondrial Ca2+ uptake during glucose deprivations.   

This reduction in mitochondrial Ca2+ uptake is not a secondary effect to modification in 

ER Ca2+ content or positioning. HeLa cells transfected with aequorin (cytAEQ) (after 2 hours of 

starvation and at the same time reconstituted with the prostetic group coelenterazine) were 

challenged with an agonist (100 µM histamine) in order to evaluate cytoplasmic Ca2+ level. In 

starved cells cytoplasmic Ca2+ level does not change (Figure 4A), ruling out the involvement of 

the ER in this response to glucose deprivation. To further prove ER exclusion, cells were 

transfected with cytAEQ in order to perform “capacitative Ca2+ influx experiment”. This 

procedure allows evaluating in the same experiment, ER Ca2+ content and Ca2+ influx through 

store operated channels. In this experiment, ER is emptied with a highly selective reversible 

inhibitor of Ca2+-ATPase in the intracellular Ca2+ storage sites, Cyclopiazonic acid (CPA). 20 

µM CPA (in KRB supplemented with 100 µM EGTA) is given by perfusion and aequorin light 

emission is measured. During this period ER compartment is emptied and a consequent little and 

slow increase in cytoplasmic Ca2+ is observed. This cytoplasmic [Ca2+] is directly correlated 

with the amount of ER Ca2+ released (Figure 4B). Cells are then perfused with KRB with 2 mM 

Ca2+ and 20 µM CPA. During this perfusion Ca2+ influx through the plasma membrane can be 

evaluated (Figure 4Bbis). These data suggest that the reduction in mitochondrial Ca2+ uptake is 
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not due to a decrease in ER Ca2+ content or to a reduction in Ca2+ import from the external space 

inside the cell.  

It is well known that the ER membrane interacts closely with mitochondria. This highly 

regulated interaction is endowed with key players of the Ca2+-handing machinery. Many 

evidences indicate that the rapid Ca2+ uptake into mitochondria upon Ca2+ release relays on these 

close interactions. Thus, we investigated the ER-mitochondria interactions in starved HeLa cells 

coexpressing mitochondria-targeted RFP (mit-RFP) and an ER-targeted GFP (ERD1cpv). Cells 

were excited separately at 488 nm or at 543 nm and single images were recorded. Statistical 

quantification of the overlapping signal area (OSA) was performed from a Z-confocal stack 

covering the whole cell volume by the ImageJ program. Pearson’s correlation index, a 

coefficient that is commonly used to measure the amount of overlap between two image pairs, 

was obtained to determine the ratio of localization between ER and mitochondria. Despite 

confocal microscopy can not resolve such contact sites, it has been reported that this method for 

quantifying areas of tethering is able to discriminate between known ER-mitochondria contact 

sites alterations (Manders et al. 1992). Glucose deprivation had no effect on the distribution and 

morphology of the mitochondrial/ER network. No significant differences were found when the 

regions of tethering were assessed quantitatively. As shown in Figure 4C, the area of co-

localization is the same in control or starved cells. As negative control we used Mitofusin2 

(MNF2) whose silencing was shown to increase the distance between two organelles. Pearson’ 

co-localization coefficient (Manders et al. 1992) was calculated from z-axis confocal stacks and 

revealed no significant decrease in the ER-mitochondria juxtaposition (de Brito and Scorrano 

2008). With this set of experiment we confirmed that the decreased in mitochondrial Ca2+ 

content is not due to decrease of contact sites between ER and mitochondria. 
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Figure 4A, B, C. Effect of glucose withdrawal on ER Ca2+ level and localization. (A, B, C) HeLa cells were 
transfected with cytAEQ and 48 hours after transfection starved for 2 hours in KRB with or without 25 mM glucose. 
Experiments for valuate cytoplasmic Ca2+ level and ER Ca2+ content were performed as described in Materials and 
Methods section. (A) Cytoplasmic Ca2+ levels. (B) ER Ca2+ content. (B bis) Ca2+ influx through the plasma 
membrane. (C) HeLa cells were transfected with mit-RFP and ER-D1cpv. Confocal images were acquired and 
Pearson’s coefficient calculated with ImageJ. MFN2 silencing cells were used as positive control. Mean ± S.E.M. of 
values are shown. 

 

We then focused our attention to the proper functioning of the mitochondrial Ca2+ uptake 

machinery. In order to measure the mitochondria Ca2+ influx independently to the ER Ca2+ 

source, we used two different strategies. First, after 2 hour of glucose deprivation in KRB 

supplemented with 1 mM Ca2+ and reconstitution with coelenterazine, cells were perfused with 

different solutions. ER was emptied with CPA (20 µM CPA in 100 µM EGTA) in perfusion for 

240 seconds and then Ca2+ was given to cells (KRB with 1 mM Ca2+ and 20 µM CPA). During 

the perfusion with Ca2+
, we can evaluate the efficiency of mitochondria to uptake Ca2+ 

independently of the ER Ca2+ source. The second strategy involved cells starvation and 

reconstitution in KRB with 500 µM EGTA in order to induce the emptying of ER Ca2+ by 
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passive leak. After that, cells were maintained in KRB with 10 µM EGTA and subsequent 

addition of Ca2+. After the first addition, Ca2+ was around 8.33 µM. In both experiments 

mitochondrial Ca2+ influx was slightly increased in starved cells compared to control but in a 

non-significative way (Figure 5A and 5B).  

In order to investigate only the mitochondrial Ca2+ machinery contribution, we measured 

mitochondrial Ca2+ uptake in digitonin permeabilized cells. This experiment allows evaluating 

the properties of the mitochondrial Ca2+ uptake machinery independently of the ER Ca2+ release 

and the formation of microdomains of high [Ca2+] in close proximity to mitochondrial Ca2+ 

channel. Measurements in digitonin-permeabilized cells are performed perfusing cells in IB for 

60 seconds. Cells are then perfused with the same buffer with 20 µM digitonin for 60 second and 

washed with IB/EGTA buffer for other 60 second. The mitochondrial [Ca2+] rise is then 

triggered by perfusing digitonin-permeabilized cells with a solution containing between 0.4 µM 

to 2 µM. A slow increase of Ca2+ into mitochondria is observed. As shown in Figure 5C, the 

reduction in mitochondrial Ca2+ uptake during starvation is not due to modification of the Ca2+ 

uptake machinery. 

It is well known that the electrochemical potential (∆ψ) is formed in energized 

mitochondria and it is composed by an ionic potential (∆µ) and a proton concentration gradient 

(∆pH). We investigated the possible role of a modification in mitochondrial membrane potential 

or in changes in mitochondrial matrix pH in this reduction of mitochondrial Ca2+ uptake. The 

mitochondrion-selective tetramethylrhodamine dye (TMRM) was used to measure the 

mitochondrial membrane potential in HeLa cells after 2 hours of glucose deprivation. The 

accumulation of TMRM in mitochondria at low concentration has shown to be driven by their 

membrane potential (-150/-180mV). In order avoid the self-quenching of the probe, cells are 

loaded with very low TMRM concentration (20 nM). Changes in mitochondrial membrane 

potential will result in differences in absolute fluorescence intensity. The specificity of the signal 
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is verified by collapsing the ∆ψm through the treatment with the protonophore FCCP (10µM). 

Also after 2 hours of glucose deprivation, mitochondrial membrane potential is at the same level 

of control cells (Figure 5D).  

 

 

Figure 5A, B, C, D. Effect of glucose withdrawal on mitochondrial Ca2+ uptake machinery and mitochondrial 
membrane potential (A, B, C) HeLa cells were transfected with mitAEQmut and 48 hours after transfection 
starved for 2 hours in KRB with or without 25 mM glucose. Experiments for valuate mitochondrial influx and 
mitochondrial Ca2+ uptake in permeabilized cells were performed as described in Materials and Methods section. 
(A) Mitochondrial Ca2+ influx in HeLa cells by perfusing 1 mM Ca2+. (B) Mitochondrial Ca2+ influx in HeLa cells 
by adding 8.33 µM Ca2+. Mean ± S.E.M. of values are shown. (C) Mitochondrial Ca2+ uptake in permeabilized cells. 
(D) Measures of mitochondrial membrane potential were performed as described in Materials and Methods sections. 
Representative traces are shown. 

 

Mitochondrial pH gradient (∆pHm) is the sole driving force for the electro neutral transport 

of many ions and metabolites in and out of the mitochondrial matrix. We started to study the role 

of ∆pHm using a mitochondrially targeted, pH-sensitive YFP (SypHer). This is a ratiometric 

circularly permuted YFP. This probe allowed us to determine the real time measurement of pH 
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into the mitochondrial matrix in intact cells (Poburko et al. 2011). HeLa cells were grown onto 

24 wells until 50% and then transfected with 4 µg of mtSypHer with a standard Ca2+-phosphate 

procedure. 24 hours after transfection SypHer expressing cells were starved for 2 hours and then 

mounted into an open-topped chamber and maintained in KRB with or without 25 mM glucose. 

After KRB washout, pH was stopped between 5.5 and 10 by turnover of the bath solution. The 

added solutions were a Ca2+-free intracellular buffer: 130 mM KCl, 10 mM NaCl, 2 mM 

K2HPO4, 1mM MgCl2 supplemented with 20 mM MES or 20 mM HEPES or TRIS or Boric 

Acid (adjusted to pH 9.5 and 10 with KOH). For each experiment monensin (ionophore 5 µM) 

and nigericin (K+/H+ exchanger 1 µM) were also added to these Ca2+-free intracellular buffers in 

order to increase the velocity to reach equilibrium between the external medium and the pH into 

the intermembrane space. For pH imaging, mtSypHer was alternately excited for 200-300 ms at 

430 and 480 nm through a dicroic filter and fluorescence ratio (F480/430). For each cell, an 8-

point calibration curve was fitted to a variable slope sigmoid equation. The resting matrix pH of 

HeLa cells remains stable also in starved HeLa cells (Figure 6A). 

We investigated also the regulation of mitochondria morphology during glucose 

deprivation. Mitochondria typically form a reticular network radiating from the nucleus, creating 

an interconnected system that supplies the cell with essential energy and metabolites. These 

mitochondrial networks are regulated through the complex coordination of fission, fusion and 

distribution events (Ferree and Shirihai 2012). We assessed whether mitochondrial morphology 

is modified during glucose deprivation. It is known that autophagy induction by nutrient 

deprivation causes mitochondria elongation because the high level of cAMP induces the 

activation of protein kinase A (PKA) and the consequent reduction of the pro-fission dynamin 

related protein 1 (DRP1) (Gomes et al. 2011). In order to evaluate whether the strong reduction 

in mitochondrial Ca2+ uptake was due to the modification in mitochondrial morphology, HeLa 

cells were transfected with mit-RFP, a probe that allows the visualisation of mitochondria. 

Confocal images were recorder and quantification of the number and the volume of the 
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mitochondria were performed with ImageJ. 

The observed reduction in mitochondrial Ca2+ uptake is not due to mitochondrial 

morphological changes; indeed, mitochondria number and size were unchanged after glucose 

withdrawal (Figure 6B). No evidence in the activation of proteins involved in the fission fusion 

process like Mitofusin2 and Drp1 were noticed (data not shown). Indeed HeLa cells 

overexpressed fission-fusion machinery proteins maintained this decrease in mitochondrial Ca2+ 

uptake during starvation.  

Elongation is not the only morphological modification in mitochondria that is triggered 

during nutrient deprivation. Indeed, during starvation mitochondria turnover can be accelerated 

by an autophagic process, called mitophagy (Lee et al. 2012). Usually mitochondria are 

depolarized and co-localize with autophagosomes and the total amount of mitochondria 

drastically decreases. In the absence of extracellular nutrients cells degrade their intracellular 

damaged organelles in order to provide energy to cells and to overcome the low level of nutrient 

availability. We previously analyzed with TMRM the mitochondrial membrane potential (Figure 

5D). We also investigated the amount of mitochondrial proteins. Starved HeLa cells maintained 

unchanged the levels of mitochondrial proteins (Figura 6C). Low mitochondrial Ca2+ uptake 

during starvation is maintained also in autophagy incompetent cells, demonstrating that the 

reduction in mitochondrial Ca2+ uptake is upstream to the induction of autophagy. The 

conversion from LC3I to LC3II and the phosphorylation of AMPK demonstrated that in glucose 

deprived HeLa cells autophagy is induced (data not shown).  



 

 58 

 

Figure 6A, B, C. Effect of glucose withdrawal on intermembrane pH (A), amount of mitochondrial proteins 
(C) and mitochondrial morphology (B). 
 (H) HeLa cells were transfected with mit-SyPher and 48 hours after transfection starved for 2 hours in KRB with or 
without 25 mM glucose. Experiments were performed as described in Materials and Methods section. (L) 
Immunoblot analysis of mitochondrial proteins prepared from HeLa cells. HeLa cells were starved for 2 hours in 
KRB with or without glucose. (I) HeLa cells were transfected with mit-RFP and after 48 hours confocal images of 
control (KRB + 25 mM glucose) and starved (KRB) cells were acquired. Evaluation of mitochondrial morphology 
was performed as described in Materials and Methods section.  
Mean ± S.E.M. of values are shown. 
 

In resting conditions, cellular ATP production is sustained mainly by glycolysis and 

mitochondrial respiratory chain through glucose catabolism. In mitochondria, Ca2+ accumulation 

has a role in ATP production, indeed it triggers the activation of the metabolism machinery, 

which increases ATP synthesis in the mitochondria and, hence, in the cytoplasm (McCormack et 

al. 1990, Hansford 1994). It is still controversial whether glucose withdrawal blocks ATP 

production due to the dependence of Krebs cycle enzymes to the amplitude of mitochondrial 

Ca2+ transient. In order to investigate the functional significance of the regulation of 

mitochondrial Ca2+ uptake by glucose deprivation, we measured intracellular changes in ATP 

levels after 2h of starvation in living cells through the firefly luciferase assay.  
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We found that cytoplasmic ATP levels decrease in starved cells compared to control cells, 

but in a non-significative way (Figure 7A). 

Mitochondria are also the main source of reactive oxygen species (ROS) production. 

Excessive ROS production contributes to organelle damage and triggers redox signalling from 

mitochondria to the cell (Mailloux and Harper 2012). It is well known that mitochondrial ROS 

production is a key signal for autophagy induction (Li et al. 2011). We investigated whether the 

observed reduction in mitochondrial Ca2+ uptake during glucose deprivation can be translated 

into an increase of ROS production and the consequent induction of autophagy. We used 

DCFDA as cell-permeant indicator for reactive oxygen species. Oxidation of this probe can be 

detected by monitoring the increase in fluorescence. The amount of fluorescence is correlated 

with the amount of ROS production. Figure 7B shows that no difference in the ROS production 

was detected in starved HeLa cells. 

 

Figure 7A, B. (A) Effect of glucose withdrawal on cytoplasmic ATP levels and (B) ROS production after 2 
hours of glucose deprivation. 
(A) HeLa cells were transfected with cyt-LUC and 48 hours after transfection starved for 2 hours in KRB with or 
without 25 mM glucose. Experiments were performed as described in Materials and Methods section. (B) DCFDA 
is cell-permeant indicators for ROS production. Oxidation of this probe can be detected by monitoring the increase 
in fluorescence. Experiments were performed as described in Materials and Methods section. H2O2 concentration 
scale was used as positive control. 
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Mean ± S.E.M. of values are shown. 
 

6.3 MICU1 controls mitochondrial Ca2+ uptake in response to glucose 

availability 

Given that none of the physiological parameters of mitochondria was affected by 

starvation, we considered that during glucose deprivation a specific protein could control the 

amplitude of mitochondrial [Ca2+]. We investigated the possible involvement of numerous 

proteins in the contact sites between mitochondria and ER (MAM) and the possible role of 

proteins involved in the Ca2+ uptake machinery. No one of the analyzed mitochondrial proteins 

showed modifications during glucose deprivation with one exception (Figure 6C). Indeed, we 

found that in our experimental condition MICU1 was rapidly degraded (Figure 8A). MICU1 is a 

regulator of the mitochondrial Ca2+ uniporter (MCU). It has been shown that it localizes to 

mitochondria and its loss was initially reported to abolish mitochondrial Ca2+ entry (Perocchi et 

al. 2010). This protein has two canonical EF hands that are essential for its activity in Ca2+ 

sensing and gating the activity of MCU channel. However, we found that MICU1 

overexpression increases mitochondrial Ca2+ uptake and it has a synergistic effect with the MCU 

overexpression (unpublished data). Electrophysiological data revealed that in presence of µM 

[Ca2+], MICU1 is able to increase the open probability of MCU with an increased Ca2+ uptake 

into mitochondria (unpublished data). MICU1 is also required to preserve normal mitochondrial 

[Ca2+] under basal conditions. In its absence mitochondria become constitutively loaded with 

Ca2+, triggering excessive ROS generation (Mallilankaraman et al. 2012). 

Proteins are continually synthetized and degraded in all cells in a process called protein 

turnover. Every protein shows a characteristic turnover rate, due to its localization, post-

translational modifications and functions. The half-life can vary from few minutes to several 

weeks but the half-life of a given protein in different organs and species is generally similar. The 

half-life of a protein is used as a quantitative measurement of this “dynamic equilibrium”. 
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Usually it is measured by blocking the protein synthesis by a protein synthesis inhibitor 

(cycloheximide) and by collecting cells at different time points in order to evaluate the relative 

amount of the investigated protein into the collected samples. 

Based on MICU1 short half-life of around 3 hours (Figure 8B), we wondered whether 

during glucose deprivation it could be post-translationally modified and consequently rapidly 

degraded.     

There are many mechanisms to degrade mitochondrial proteins. Usually damaged 

mitochondria are removed by mitophagy but this process, besides being slow, is not selective for 

the removal of a single specific protein.  

Protein degradation through the ubiquitin-proteasome system is the major pathway of non-

lysosomal proteolysis of intracellular proteins. It plays important roles in a variety of 

fundamental cellular processes and the central element of this system is the covalent linkage of 

ubiquitin to targeted proteins, which are then recognized by the proteasome. However, usually 

the quality control of mitochondrial proteins is ensured by two ATP dependent proteases, AAA 

proteases, which are an integral part of the inner mitochondrial membrane (Arnold and Langer 

2002), although recent reports suggest that ubiquitinylation may play an important role in 

mitochondria protein quality control (Margineantu et al. 2007, Radke et al. 2008). Still unknown 

is the mechanism of the rapid degradation of MICU1. 

During glucose deprivation we tried to block the MICU1 degradation by inhibiting the 

ubiquitin proteasome system, the autophagy induction and the mAAA activity. As shown in the 

Figure 8C only the treatment with MG132, a specific cell permeant proteasome inhibitor, 

partially blocks the reduction of agonist-evoked mitochondrial [Ca2+] rises after glucose 

deprivation.  
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Figure 8A, B, C. Effect of glucose withdrawal on MICU1. (A) Immunoblot analysis of MICU1. Proteins were 
prepared from HeLa cells treated with DMEM (DMEM supplemented with 10% FBS for 2 hours), 25 mM glucose 
(KRB + 25 mM glucose for 2 hours) or no glucose (KRB for 2 hours). (B) Immunoblot analysis using HA and 
FLAG antibodies. HeLa were transfected with MCU-FLAG or with MICU1-HA. Proteins were prepared from MCU 
and MICU1 overexpressing HeLa cells treated with 100 µg/ml cycloheximide in DMEM supplemented with 10% 
FBS and collected at different time points (0, 2, 4, 6, 12, 24, 32, 36 and 48 hours). (I) HeLa cells were transfected 
with mtAEQmut and after 48 hours treated for 2 hours with different inhibitors of protein degradation of ubiquitin-
proteasome system (MG132, Z=Z Leu Leu Phe CHO and L=Lactacistil), inhibitors of autophagy (C=cloroquine) or 
an inhibitor of mAAA degradation system (P=1-10-phenanthroline monohydrate). HeLa cells were also treated as 
control (KRB + 25 mM glucose) and starved (KRB). Mean ± S.E.M. of values are shown. 

 

MICU1 degradation during nutrient deprivation is abolished by MG132, suggesting that 

MICU1 could be eliminated via ubiquitin proteasome system (Figure 9A).  MICU1 half-life is 

increased when cells are treated with the proteasome inhibitor, thus confirming that the stability 

of this protein is dependent on the ubiquitin proteasome system (Figure 9B).  

High-resolution mass spectrometry data reveal that five lysines in MICU1 are 

ubiquitylated (Hornbeck et al. 2012) and thus we decided to substitute this lysine with arginine 

in order to generate a MICU1 protein mutant that is not able to bind ubiquitin in this site. We 

generated 5 different mutant forms of MICU1 for each lysine (MICU1K102R-HA, MICU1K103R-
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HA, MICU1K104R-HA, MICU1K296R-HA, MICU1K359R-HA) and one mutant form of MICU1, 

which all the lysine mutated (MICU1K102R, K103R, K104R, K296R, K359R-HA). 

We compared the expression levels of MICU1-HA and MICU1K296R-HA expression 

plasmids and we found that all of these ubiquitylation incompetent mutants reach a higher level 

of protein expression (Figure 9C), thus suggesting that these mutants are more stable per se. 

At first, we investigated the intracellular distribution of these MICU1 mutated forms by 

performing immunofluorescence of HeLa cells overexpressing these constructs that show perfect 

mitochondrial localization (data not shown). We also performed a sub fractionation experiment 

in order to purify mitochondria from HEK293A transiently transfected with MICU1K102R, K103R, 

K104R, K296R, K359R-HA (data not shown). In all these experiments, we found that the different 

MICU1 mutants correctly localized into mitochondria.  

We focused our attention in particular to MICU1K296R-HA for the higher score of mass 

spectrometry results and MICU1K102R, K103R, K104R, K296R, K359R-HA. Probably also due to its low 

transfection efficiency, MICU1 overexpression on HeLa cells challenged with maximal agonist 

stimulation increase mitochondrial Ca2+ uptake by nearly 10%. On the contrast MICU1K296R-HA 

overexpression increase agonist-evoked mitochondrial [Ca2+] rises by nearly 100% (Figure 9D).  
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Figure 9A, B, C, D. Effect on MICU1 during the inhibition of the proteasome system and analysis of MICU1 
mutants. (A) Immunoblot analysis of MICU1. Proteins were prepared from HeLa cells incubated in KRB for 2 
hours with or without 25 mM glucose and 100 µM MG132 (proteasome inhibitor). (B) Immunoblot analysis of HA 
tag (MICU1-HA). HeLa cells were transfected with MICU1-HA. After 24 hours proteins were prepared from 
MICU1-HA overexpressing cells were treated with 100 µg/ml cycloheximide and 100 µM MG132 in DMEM 
supplemented with 10% FBS and then they were collected at different time points (0, 2, 4, 6 and 8 hours). (C) 
Immunoblot analysis of MICU1. HeLa cells were transfected with MICU1-HA and MICU1K296R-HA and lysed after 
48 hours. (D) mtAEQmut was coexpressed with MICU1-HA and MICU1K296R-HA in HeLa cells. Experiments were 
performed as described in Materials and Methods sections. 
 

We assumed that in glucose deprivation MICU1 degradation causes a decrease in 

mitochondrial Ca2+ uptake. To assess this hypothesis we overexpressed MICU1K296R-HA and 

MICU1K102R, K103R, K104R, K296R, K359R-HA in our starvation experiments in order to block the 

degradation of MICU1 and to prevent the uptake reduction. In order to overcome the aequorin 

probe saturation problems, we challenged HeLa cells with two different concentrations of 

agonist. We observed that the strong effect of starvation between control and starved cells is 

partially abolished with the overexpression of this ubiquitylation incompetent mutant (Figure 

10A). 
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In order to understand if MICU1 has a specific role in the control of mitochondrial Ca2+ 

uptake during glucose deprivation, we generated a new mutant form of this protein. MICU1 has 

two canonical EF hands that are essential for its Ca2+ sensing activity (Perocchi et al. 2010). The 

EF hand is a helix loop helix structural domain found in a large family of Ca2+ binding proteins. 

It consists of two alpha helices positioned perpendicularly to one another and linked by a short 

loop region (usually about 12 AA) that binds Ca2+ ions suggesting that this motif may undergo 

conformational changes that enable Ca2+ regulated functions.  

A dominant negative form of a protein is a mutated protein that can interact with the same 

elements as the wild-type product, but blocks its function. We generated a dominant negative 

form of this protein by the mutation of four residues in these EF hands (MICU1D231A, E242K, D421A, 

E432K-HA) and we overexpressed this protein during glucose deprivation. We confirmed that this 

mutated protein plays a dominant negative function: indeed, MICU1 capacity of increasing 

mitochondrial Ca2+ uptake is blocked by the overexpression of these mutant proteins. The 

overexpression of MICU1D231A, E242K, D421A, E432K-HA abolished the effect of glucose deprivation 

on mitochondrial Ca2+ uptake (Figure 10B).  
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Figure 10A, B. Effect of MICU1K102R, K103R, K104R, K296R, K359R-HA and MICU1D231A, E242K, D421A, E432K-HA 
overexpression on glucose withdrawal (A, B) HeLa cells were transfected with mitAEQmut and 48 hours after 
transfection starved for 2 hours in KRB with or without 25 mM glucose. Experiments for valuate mitochondrial Ca2+ 
uptake were performed as described in Materials and Methods section. Mean ± S.E.M. of values are shown. 
 

In order to mimic the effects of glucose deprivation on mitochondrial Ca2+ uptake 

machinery we silenced MICU1. We silenced MICU1 with high efficiency but the effect on 

mitochondrial [Ca2+] is controversial, since agonist evoked mitochondrial [Ca2+] rises is 

increased of around 40%. Furthermore, after MICU1 silencing, glucose deprivation evokes a 

decrease of mitochondrial Ca2+ uptake (Figure 11A). It is published that MICU1 silencing 

increases the mitochondria Ca2+ basal levels (as confirmed by our data: figure 5A) but the 

correlation between this and the increase also in agonist evoke mitochondrial [Ca2+] rise is still 

unknown (Mallilankaraman et al. 2012). 
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Figure 11A. Effect of glucose withdrawal on MICU1 silencing cells (A) HeLa cells were co-transfected with 
mitAEQmut and two different siRNA against MICU1. 48 hours after transfection starved for 2 hours in KRB with 
or without 25 mM glucose. Experiments to evaluate mitochondrial Ca2+ uptake were performed as described in 
Materials and Methods section. Mean ± S.E.M. of values are shown. 

 

During my PhD, I focused my attention on the role of MICU1 protein during nutrient 

deprivation. We assumed that during glucose withdrawal there is a specific mechanism that 

connects sensing of glucose levels with the amount of the MICU1 protein. This protein appears 

to be unstable and its function is adjusted by its amount. In our model, we assume that blocking 

the degradation system of MICU1 prevents the effect of glucose deprivation in HeLa cells.  
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7. Discussion 

The variation of the metabolic availability induces intracellular adaptations to provide 

energy for cellular functions. These adaptations are traduced in intracellular changes in 

metabolic reactions in order to overcome the decrease in feeding intake. Many data are available 

on the contribution of mitochondria in the regulation of intracellular metabolism (McCormack et 

al. 1990, Rasola and Bernardi 2011). Thanks to ATP production, mitochondria provide energy 

for cells and connect two important intracellular signals: ATP and Ca2+. Still unknown are the 

specific mitochondrial proteins that sense nutrient availability and how they can translate the 

variation of nutrients concentration into modulation of Ca2+ uptake which in turn induces 

intracellular adaptive processes like autophagy (Deter and De Duve 1967). When triggered, 

autophagy provides nutrients from intracellular stores (Lum et al. 2005).  

The contribution of Ca2+ in the activation or inhibition of autophagy is still matter of 

debate (Decuypere et al. 2011), but, more importantly, what is still completely unknown is the 

possibility of a direct link between nutrient availability and the modulation of Ca2+ signaling in 

the regulation of the autophagy process.  

The goal of my PhD research was to investigate whether the adaptive response to glucose 

withdrawal was through the modulation of mitochondrial Ca2+ uptake. In particular, we focused 

our attention in the possible involvement of mitochondrial proteins as connection point between 

glucose levels and changes in mitochondrial Ca2+ content.  

The first report on Ca2+-dependent regulation of autophagy dates back to 1993 (Gordon et 

al. 1993), and it suggests a complex role for Ca2+, since chelation of either intra- and 

extracellular Ca2+ as well as elevating cytosolic [Ca2+] suppresses autophagy. Only recently this 

topic returned to be of great interest but the published results are again in conflict regarding the 

role of intracellular Ca2+ in autophagy induction. Another critical point is that the lack of 

information on the sensors of nutrient availability and their direct effects on Ca2+ signaling.  
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Many reports described Ca2+ as an inhibitor of autophagy (Sarkar et al. 2005, Criollo et al. 

2007, Berridge 2009). These studies are focused on the inositol 1,4,5-triphosphate (IP3) receptor 

(IP3R), an ubiquitously expressed intracellular Ca2+-release channel, located mainly in the 

endoplasmic reticulum (ER). IP3Rs mediate Ca2+ release from the ER into the cytoplasm in 

response to elevations in cytoplasmic [IP3] produced in cells after stimulation by hormones, 

growth factors or antibodies (Berridge 2009). In 2005, Sarkar et al. reported the use of Li+ for 

autophagy stimulation (Sarkar et al. 2005). Li+ acts through inhibition of inositol 

monophosphatase (IMPases), thereby reducing the IP3 levels. Also chemical inhibition of IP3Rs 

with xestospongin (XeB) or suppression of its expression using siRNA induce autophagy in 

HeLa cells (Criollo et al. 2007). The IP3R-mediated inhibition of autophagy was also verified in 

IP3R triple knock out (TKO) chicken DT40 B lymphocytes, which showed higher autophagy 

levels (Cardenas et al. 2010, Khan and Joseph 2010). Different downstream mechanisms and 

effectors have been proposed for the inhibitory role of IP3Rs and Ca2+ in autophagy. In a recent 

study, Cardenas and coworkers showed decreased glucose and O2 consumption, and AMPK 

activation in TKO cells, suggesting a mechanism whereby constitutive Ca2+ release through 

IP3Rs fuels into the mitochondria, therefore augmenting mitochondrial bio-energetics and ATP 

production (Cardenas et al. 2010). When these essential Ca2+ signals are abolished, an increased 

of AMP/ATP ratio is observed with a consequent AMPK activation and subsequent stimulation 

of autophagy. In this study, the authors can not exclude a scaffold function for the IP3R.  

During my PhD I could benefit from the long-standing experience of our group in the 

analysis of cellular Ca2+ signals in order to precisely investigate mitochondrial Ca2+ homeostasis 

during glucose deprivation. By using the most modern technologies based on both fluorescent 

and bioluminescent Ca2+-probes (Rizzuto et al. 1998, Pinton et al. 2007), we could also correlate 

the effects of nutrient deprivation on Ca2+ signals to their consequences on the induction of 

autophagy. Moreover, we also looked at the possible involvement in this process of an important 
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regulator of the mitochondrial Ca2+ uptake machinery, MICU1 (Perocchi et al. 2010, 

Mallilankaraman et al. 2012). 

We decided to completely remove all nutrients from the cell culture medium and to add to 

control cells only 25 mM glucose. We noticed that 2 hours of glucose deprivation induce in 

HeLa cells a constant decrease in total protein deacetylation as consequence of Sirtuins 

activation and a phosphorylation of AMPK (Figure 1A). In order to analyze if this effect on 

AMPK was through modulation of mitochondrial Ca2+ transients, we activated AMPK by an 

AMP mimic and in parallel we changed the amplitude of mitochondrial Ca2+ transient. AMPK 

activation can be blocked by an increase of mitochondrial Ca2+ transient, by blocking the 

mitochondrial Ca2+ release. It is clear that the amount of Ca2+ into mitochondria determines the 

activation of AMPK (Figure 1B). This effect on AMPK can be direct or a consequence of the 

known modulation of mitochondrial ATP production (Hardie 2003). In the future, we will 

investigate if the regulation of this protein is simply through the regulation of the mitochondrial 

Ca2+ content or through the effect of Ca2+ on mitochondrial ATP production. We also found that 

SIRT1 and SIRT3 have a role in the control of the magnitude of Ca2+ transient inside 

mitochondria. Indeed, mitochondrial Ca2+ uptake in SIRT3 and SIRT1 overexpressing HeLa 

cells was drastically reduced (Figure 1C). The role of SIRT1 in the control of mitochondrial Ca2+ 

uptake is still controversial because it is a nuclear and cytoplasmic protein (Nogueiras et al. 

2012) (Tanno et al. 2007). We hypothesize that the control is through the induction of 

mitochondrial biogenesis, as previously reported (Zhong and Mostoslavsky 2011). Future 

experiments will be focused on the analysis of the acetylation state of some members of the Ca2+ 

uptake machinery (Newman et al. 2012). 

We then assessed the direct role of glucose deprivation on mitochondrial Ca2+ uptake and 

we found that after 2 hours of glucose deprivation mitochondrial Ca2+ uptake drastically 

decreases (Figure 2). We confirmed this data also with a FRET-based Ca2+ probe Cameleon 

(Palmer and Tsien 2006). Furthermore, we found no difference in resting conditions (Figure 3A 
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and 3B). This adaptive response to glucose deprivation is physiological because it happens in 

short period of time and it is reversible; indeed if starved for a long period of time (10 hours) 

cells have a reduced mitochondrial Ca2+ uptake for 4 hours and than mitochondrial Ca2+ uptake 

levels return to the one of normal feeding conditions (Figure 3C). 

We next investigated the specificity of this effect. Indeed, decrease in Ca2+ uptake levels 

could be due to modifications in mitochondrial physiological parameters. This organelle is able 

to uptake Ca2+ because it is in close proximity to ER Ca2+ source. IP3R opening generates micro 

domains of high [Ca2+] in the contact sites near to the Ca2+ uptake machinery (Rizzuto et al. 

1993). Reduced ER Ca2+ content or ER-mitochondria contact sites induce a decreased 

mitochondrial Ca2+ transient. We investigated the role of ER Ca2+ content in our model of 

glucose deprivation and we found that the reduction in mitochondrial Ca2+ uptake was not a 

secondary effect due to modification in ER Ca2+ content (Figure 4). Glucose deprivation had also 

no effect on the distribution and morphology of the mitochondrial/ER network. Indeed, no 

significant differences were found when the regions of tethering were assessed quantitatively 

(Figure 4C).  

This is not the only mechanism that allows mitochondria to uptake Ca2+. It is well known 

that the electrochemical potential (∆ψ) is formed in energized mitochondria and it is composed 

of an ionic potential (∆µ) and a proton concentration gradient (∆pH) (Mitchell 1967). We 

investigated the possible role of a modification in mitochondrial membrane potential or in 

changes in mitochondrial matrix pH in this reduction of mitochondrial Ca2+ uptake. With the 

TMRM dye we demonstrated also that there were no changes in mitochondrial membrane 

potential. Also the mitochondrial pH gradient (∆pHm) was maintained (Figure 5D). 

Moreover, we investigated the regulation of mitochondria morphology during glucose 

deprivation. Mitochondria typically form a reticular network radiating from the nucleus, creating 

an interconnected system that supplies the cell with essential energy and metabolites. This 

mitochondrial network is regulated through the complex coordination of fission, fusion and 
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distribution events (Ferree and Shirihai 2012). We observed that the reduction in mitochondrial 

Ca2+ uptake is not paralleled by mitochondrial morphological changes (Figure 6B).  

Glucose deprivation triggers autophagy without the involvement of ROS production and 

changes in ATP levels (Figure 7). Since none of the physiological parameters of mitochondria 

was modified, we considered that during glucose deprivation a specific protein could control the 

amplitude of mitochondrial [Ca2+]. We investigated the possible involvement of a large number 

of proteins in the contact site between mitochondria and ER (MAM) and the possible role of 

proteins involved in the Ca2+ uptake machinery. Our evidences suggest that, in our experimental 

condition, only MICU1 is rapidly degraded (Figure 8A). MICU1 has a half-lives around three 

hours (Figure 8B). This experiment suggests that this protein has a highly dynamic equilibrium 

compared to the uniporter channel that appears to be highly stable. With this information, we can 

assume that changes in mitochondrial calcium uptake are regulated by the degradation of the 

regulator (MICU1) rather than of the channel (MCU).  

We wondered whether during glucose deprivation MICU1 could be modified with a post-

translational modification and rapidly degraded. During glucose deprivation we tried to block the 

MICU1 degradation by inhibiting the ubiquitin proteasome system, the autophagy induction and 

the mAAA activity, and we found that only the treatment with a specific cell permeant 

proteasome inhibitor, partially blocks the reduction of agonist-evoked mitochondrial [Ca2+] rises 

after glucose deprivation (Figure 8C). The degradation of MICU1 during nutrient deprivation is 

abolished by MG132, suggesting that MICU1 could be eliminated via ubiquitin proteasome 

system (Figure 9A). Indeed, MICU1 half-life increased when cells were treated with the 

proteasome inhibitor (Figure 9B).  

Based on high-resolution mass spectrometry data we generated MICU1 mutants defective 

for ubiquitination (Hornbeck et al. 2012). These mutant forms of MICU1 appear to be more 

stable and the effect on Ca2+ is parallel with this stability (Figure 9C).  
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We assumed that in glucose deprivation MICU1 degradation causes a decrease in 

mitochondrial Ca2+ uptake. To assess this hypothesis we overexpress MICU1K296R-HA and 

MICU1K102R, K103R, K104R, K296R, K359R-HA in our starvation experiments in order to block the 

degradation of MICU1 protein and to prevent the reduction of mitochondrial Ca2+ uptake. Our 

hypothesis was confirmed by the fact that the effect of starvation is partially abolished by 

overexpressing MICU1K296R-HA and MICU1K102R, K103R, K104R, K296R, K359R-HA (Figure 10A). 

In order to understand the role of MICU1 in the control of mitochondrial Ca2+ uptake 

during glucose deprivation, we also overexpressed a dominant negative form of MICU1 

(MICU1D231A, E242K, D421A, E432K-HA) during glucose deprivation. The overexpression of this 

mutant abolishes the effect of glucose deprivation on mitochondrial Ca2+ uptake, further 

supporting the idea that MICU1 finely and dynamically regulates mitochondria Ca2+ uptake in 

different conditions (Figure 10B). This result is difficult to interpret since, as already known 

(Perocchi et al. 2010, Mallilankaraman et al. 2012), MICU1 plays a fundamental role in the Ca2+ 

uptake machinery. Therefore, our results using the dominant negative do not allow us to 

distinguish between the generic role of MICU1 on the uptake machinery per se and the specific 

role of this protein on the regulation of mitochondrial Ca2+ during glucose deprivation.  

In order to mimic the effect of glucose deprivation on mitochondrial Ca2+ uptake 

machinery, we silenced MICU1 and we analysed mitochondrial Ca2+ homeostasis. MICU1 

overexpression increased mitochondrial Ca2+ uptake (unpublished data) and Perocchi and 

coworkers (Perocchi et al. 2010) have also shown that absence of MICU1 abolishes 

mitochondrial Ca2+ entry. In contrast with these data, we found that MICU1 silencing increases 

mitochondrial Ca2+ transients of around 40% compared to control cells (Figure 11A). This result 

is in agreement with a recent study that demonstrated that, in absence of MICU1, mitochondria 

become constitutively loaded with Ca2+ (Mallilankaraman et al. 2012). These models suggest that 

the right role of MICU1 on mitochondrial Ca2+ uptake machinery is still far to be uncovered. 

Moreover, after MICU1 silencing, glucose deprivation still evokes a decrease of mitochondrial 
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Ca2+ uptake, strongly indicating that the picture of the adaptation to nutrient availability is more 

complex and in the future we will elucidate the precise pathway that controls this phenomena.   

My PhD research was focused on the physiological relevance of MICU1 during nutrient 

deprivation. We demonstrated that during glucose withdrawal there is a specific mechanism that 

connects sensing glucose levels with the amount of MICU1 protein. The turnover of this protein 

appears to be highly dynamic and its function is adjusted by its amount.  

Our data suggest that blocking the degradation of MICU1 prevents the effects of glucose 

deprivation in HeLa cells. In conclusion, this work presents some novel and unexpected findings 

on the cellular adaptations to glucose deprivation mediated by the control of mitochondrial Ca2+ 

homeostasis.  To overcome the glucose dependence is a metabolic adaptation that enables cancer 

cells to proliferate and survive in hypoxic areas (Vander Heiden et al. 2009). The clarification of 

the link between the decrease in glucose availability and autophagy induction via modulation of 

mitochondrial Ca2+ content may lead to understand if MICU1 plays a central role in this process. 

This information may provide more efficient pharmacological intervention to treat human 

disorders in which mitochondria have been proposed to play a central role in the pathogenesis, 

for example, of metabolic disorders and cancer.  
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