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Abstract 

In Italian 

Lo studio dell’evoluzione tettonica e termica dei Carpazi è stato da sempre un 

argomento di grande interesse sia per la presenza di giacimenti ad olio e gas 

potenzialmente sfruttabili sia per questioni scientifiche. Il quadro geologico e 

geodinamico dell’area è caratterizzato da aspetti ancora enigmatici che potrebbero 

essere spiegati con modelli alternativi a quelli comunemente accettati in letteratura. 

In particolare, questo lavoro è incentrato sullo studio dell’area comprendente la 

Polonia Meridionale, la Slovacchia e l’ Ucraina occidentale e si basa sullo studio di 

sezioni geologiche bilanciate e retrodeformate integrate con dati termocronometrici 

di bassa temperatura. Combinando opportunamente questi dati è possibile definire un 

modello termo-cinematico strettamente connesso con il modello strutturale adottato e 

che, allo stesso tempo, ne consente la validazione. 

In questo lavoro verranno presentate cinque sezioni geologiche che dall’avampaese 

polacco e ucraino si estendono fino alla regione dei Carpazi Interni. Queste sezioni 

sono state bilanciate e rerodeformate grazie all’utilizzo di Move, programma 

dedicato alla modellizzazione strutturale e successivamente integrate con dati di 

tracce di fissione e (U-Th)/He su apatite per vincolarne l’ultima fase esumativa. 

Sebbene l’età di esumazione dei Carpazi Interni ad Esterni sia ben documentata in 

letteratura, non si può dire lo stesso per la Pieniny Klippen Belt compresa fra i 

sopracitati domini tettonici. Sono stati prelevati ad analizzati cinque campioni di 

arenarie silicoclastiche lungo la Pieniny Klippen Belt sui quali sono state fatte analisi 

di tracce di fissione ed (U-Th)/He su apatite. Questi dati, insieme alle sezioni 

retrodeformate, sono stati processati con FETKIN, software sviluppato presso 

l’University of Texas in Austin in collaborazione con Ecopetrol e dedicato al calcolo 

delle età di raffreddamento lungo una sezione bilanciata. In questo modo è stato 

possibile anche definire l’evoluzione del campo termico nel tempo. 

Sulla base della revisione dei lavori sedimentologici e stratigrafici fatti in quest’area, 

i Carpazi Esterni and Interni sono qui interpretati come appartenenti allo stesso 

dominio sedimentario pre-orogenico e la Pieniny Klippen Belt come un’unità 

sedimentaria depositatasi in una zona prossimale dell’avampaese dei Carpazi Interni. 
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Durante l’Eocene Superiore questa unità è sovrascorsa sui depositi dei Carpazi 

Esterni. Gli olistoliti e olistostromi Mesozoici, che rappresentano una delle 

componenti principali del cosiddetto Pieniny wildflysch, sono qui interpretate come 

parte della successione Mesozoica dei Carpazi Interni, erosa durante l’Eocene e 

sedimentatasi nel relativo avampaese. L’età di esumazione di questi depositi risale al 

Miocene Medio-Superiore e risulta essere coeva all’esumazione registrata per i 

Carpazi Interni. Diverse età e processi esumativi sono stati invece riconosciuti nei 

Carpazi Esterni. In Polonia occidentale, nonostante la presenza di faglie normali ad 

alto angolo, l’esumazione è controllata principalmente dal thrusting. Un’ulteriore 

conferma viene dal modello termo-cinematico prodotto con FETKIN. Il settore 

orientale della Polonia, invece, risulta essere interessato da faglie normali a basso 

angolo successive al thrusting che ne controllano l’esumazione del blocco di letto. In 

Ucraina non ci sono evidenze di faglie normali. Qui l’esumazione è controllata da un 

sollevamento isostatico che ha interessato la regione successivamente al thrusting. La 

costruzione di sezioni geologiche bilanciate ha permesso inoltre di calcolare il 

raccorciamento che risulta essere crescente verso est. (dal 60% dei Carpazi Polacchi 

al 64% in quelli Ucraini).  

Va sottolineata inoltre l’applicazione di FETKIN in regime compressivo. Questo 

software è stato testato con successo e ha permesso di valutare l’effetto che le 

variazioni topografiche, la tettonica e la subsidenza hanno sulla modellizzazione 

delle isoterme e quindi sul calcolo delle età di raffreddamento. 
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In English  

The tectonic and thermal evolution of the Carpathian thrust and fold belt-foreland 

system is a topic of great interest both for the occurrence of potential oil and gas 

fields and for the presence of any enigmatic features that needs an alternative 

interpretation to the commonly accepted models proposed so far. This study is 

focussed on the area including the southern Poland, the western Ukraine and the 

crystalline complex and its sedimentary cover cropping out in the Western Slovakia. 

The analysis of such a complex tectonic scenario is carried out by the construction of 

new balanced and sequentially restored cross-sections integrated with low-

Temperature (low-T) thermochronometry. Coupling these data it is possible to 

provide a thermo-kinematic model honouring both the presented structural model 

and the thermochronometric data and, at the same time, validate the proposed 

tectonic scenario.  

Five balanced cross-sections were constructed from the foreland to the Inner 

Carpathian domain. Cross-section building and balancing are performed using Move, 

software dedicated to the kinematic restoration. These sections were then integrated 

with new apatite fission track and apatite (U-Th)/He data to constrain the last cooling 

event. Although the cooling of the Inner and the Outer Carpathians are well 

documented in literature, no low-T thermochronometric data are present from the 

Pieniny Klippen Belt located between them. Apatite fission track and apatite (U-

Th)/He analysis were performed on five samples made of siliciclastic sandstones 

coming from this narrow belt .Both the balanced sections and low-T 

thermochronometric data were processed with FETKIN, software developed at The 

University of Texas in Austin in collaboration with Ecopetrol and dedicated to low-T 

thermochronometric age prediction and forward modelling. This processing allows to 

define the evolution of the thermal field through time.  

Basing on a review of the sedimentological and stratigraphic works, the Outer and 

the Inner Carpathian successions are interpreted as deposited in the same 

sedimentary domain and the Pieniny Klippen Belt as a sedimentary unit deposited in 

the proximal part of the Inner Carpathian foreland basin, overthrusted on the Outer 

Carpathian deposits during the Late Eocene. The Mesozoic olistoliths and 

olistostromes forming the Pieniny wildflysh are here interpreted as coming from the 
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eroded Mesozoic cover of the IC range. New apatite fission track and apatite (U-

Th)/He data coming from the Pieniny Klippen Belt constrained its last cooling event 

to the Middle-Late Miocene, coeval with the cooling of the Inner Carpathian region. 

The balanced cross-sections show a progressive increasing of the Outer Carpathian 

shortening moving to the east (from 60% in the Polish region to 64% in the 

Ukrainian Carpathians). Furthermore, the cross-sections constructed in the central 

part of our study area highlight the relevant role of the post-thrusting low-angle 

normal faults in the exhumation process of this area. On the other side, no evidences 

of post thrusting normal faults occur in the Ukrainian region, where published low-T 

thermochronometric data suggest an exhumation triggered mainly by regional uplift.  

In this work the suggested tectonic scenario is successfully tested with FETKIN, to 

demonstrate that thrusting is the principal mechanism controlling the exhumation 

ages of the Western Polish Carpathians and to evaluate the effects of subsidence, 

topography and tectonics on the thermochronometric age prediction.  
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Introduction 

The Carpathians are an arcuate belt extending for more than 1300 km. It represents 

the Northern prolongation of the Eastern Alps, formed after the movement of the 

ALCAPA and Tisza-Dacia micro-plates, belonging to the Africa domain, towards the 

European Platform. The formation of this belt is related to lateral eastward escape of 

material from Alpine collision zone and slab-pull of the European plate due to 

subduction of oceanic or thinned continental crust [e.g. Krzywiec & Jochym , 

1997; Nemcok, 1993; Ratchbacher, Frisch, Linzer, & Merle,  1991; 

Ratchbacher, Merley, Davy, & Cobbold,  1991; Royden & Burchfiel , 1989; 

Royden & Karner , 1984; Zoetemeijer, Tomek, & Cloetingh , 1999]. The 

Carpathians are made by two tectonic domains (Inner and Outer Carpathians) 

[Książkiewicz, 1977] separated by the Pieniny Klippen belt (PKB). The Inner 

Carpathians (IC) are the oldest range made of a Variscan substratum covered by 

Miocene successions, while the Outer Carpathians (OC) consists in several nappes 

made of Cretaceous to Middle Miocene successions. The PKB is 600 km suture zone 

bordered by a high-angle strike-slip contact [Birkenmajer, 1986] along which the 

movement of the far-traveler ALCAPA and Tisza-Dacia microplates was transferred.  

The PKB together with the Magura Unit (the innermost units of the Western 

Carpathians) has been interpreted as the remnants of oceanic basins opening during 

the Jurassic. There are still some open issues regarding the existence of these oceanic 

embayments. The lack of any in situ ophiolitic rocks and the absence of continuous 

oceanic slab under the Western Carpathians doubt the presence of such a wide 

oceans between the IC and OC. In addition, the northern boundary of the PKB shows 

an overprinting of opposite senses of movement [i.e. Birkenmajer, 1984; 

Ratschbacher et al., 1993] and its sedimentological features are not in line with the 

interpretation made by some authors [e.g. Tomek and Hall, 1993; Froitzheim et al, 

2008] considering it as the fossil plate boundary. In this work an alternative scenario 

is proposed in which the tectonic evolution of the Carpathian thrust and fold belt is 

integrated with thermal parameters. In spite of the occurrence of numerous low-T 

thermochronometric data, they are not yet used to validate a structural model. One of 
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the main problems of this technique is the variation of the thermal field at the surface 

with the tectonic deformation.  

This work is aimed to model the deformation of the thermal field in order to 

reconstruct the tectonic evolution of the Carpathians. This is possible thanks to 

FETKIN, software dedicated to the thermochronometric age prediction and the 

definition of a thermo-kinematic model. 

In this work the reconstruction of the main stages of the evolution of this orogenic 

belt, using forward kinematic modelling, is provided. Particular attention is given to 

the timing and processes of the last exhumation phase. The shortening rate is also 

calculated by comparing the balanced with the restored cross-sections. A new 

interpretation is provided for the Pieniny Klippen Belt for which the timing of 

exhumation is also constrained. 
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1 Chapter I 

Geological setting 

The Carpathians are a curved thrust and fold belt extending from the Vienna Basin to 

the southern Romania for more than 1300 km (Fig. 1.1).  

 

 

Figure 1.1: Geographic map of the Europe showing the main orogenic front. The black box indicates 

the study represented in detail in Fig. 1.3. 

 

This orogenic belt formed after the collision between the ALCAPA and Tisza-Dacia 

Plates and the European Platform and the subsequent subduction of the oceanic 

domains interposed between them. According to the widely accepted lateral 

extrusion model [e.g. Royden, 1988; Ratchbacheret al., 1989, 1990] the N-S 

compression affecting the Eastern Alpine region produced the lateral movement of 

material toward the east (Fig. 1.2), where the foreland buttress was located more to 

the north and the oceanic or thin continental crust was subducted. The Pieniny and 

Magura basins are the main oceanic domains resulting from the Lower Cretaceous 

palinspastic reconstruction [Csontos and Vörös, 2004]. Several other pre-orogenic 

sedimentary basins separated by horsts are recognized [e.g. Golonka et al., 2006; 

Picha et al., 2006; Oszczypko et al., 2006]. Their sediments were detached from their 

own substratum and stacked in the different tectonic units building the Outer 
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Carpathian accretionary wedge (OC). 

The main detachment corresponds to 

the Lower and Upper Cretaceous 

shaly deposits. Every pre-orogenic 

sedimentary basin takes the name 

from the associated tectonic units 

(Magura, Rakhiv, Dukla, Silesian-

Čhorna-Hora, Subsilesian, Skole and 

Borislav-Pokuttya) (Fig. 1.3). The OC 

are bordered to the south by the 

Pieniny Klippen Belt (PKB), a curved 

belt made of Mesozoic olistoliths and olistostromes bounded by Upper Cretaceous-

Paleocene shales and marls.  

 

Figure 1.3: Tectonic map of the study area with the location of the samples (white spots) and the 

location of the section traces. 

 

This belt is interpreted to be the remnant of the Pieniny Ocean although there are not 

in situ ophiolites or evidences of continuous oceanic slab under the OC belt. 

Figure 1.2: Block diagram representing the lateral 

extrusion model [from Ratschbacher et al., 1991] 
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The inner part of this belt, the so-called Inner Carpathians (IC), represents the ancient 

part of this orogen, where the thick-skinned thrusting produced the imbrication and 

uplift of the Variscan basement together with the Palaeozoic deposits and the 

Mesozoic sedimentary cover. These successions are in turn unconformably overlain 

by the Paleogene deposits of the Central Carpathian Paleogene Basin (CCPB) and 

the Miocene deposits belonging to the Pannonian Basin (PB). 

According to the commonly accepted model of the paleogeographic evolution of the 

Western Carpathians, thrusting involved the IC domain during the Upper Cretaceous 

[Golonka et al., 2004; Oszczypko et al., 2006, Picha et al., 2006] (Fig. 1.4). 

 

 

Figure 1.4: Palinspastic evolution of the Western Carpathians [from Oszczypko et al., 2006] 

 

During the Paleocene the subduction of the Pieniny oceanic crust led to the formation 

of its suture zone (PKB). Then thrusting propagated northward, involving the 

oceanic/deep water Magura Basin and the other adjacent basins farther to the north. 

In the Polish region, stratigraphic and sedimentological evidences suggest that 

thrusting ended 18 Ma ago while was still active to the east [Nemčok et al., 2006]. 
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The change in the thrusting direction from N to NE and the subsequent younging of 

the end of trusting eastward (from 18 Ma to 11Ma) [Nemčok et al., 2006] around the 

arc are explained by the eastward migration of the slab detachment below the OC 

belt [Wortel, 2000]. The maximum curvature of the orogenic belt corresponds to the 

area where the slab is still continuous (Vrancea region- Romania). According to this 

model we should expect a slab at intermediate depth below the Eastern Carpathians 

and progressively deeper moving to the Western Carpathians; but seismic 

tomography shows a cold lithosphere at depth ranging between 410 and 660 km 

along the whole Western and Eastern Carpathians except in its southernmost part 

where a narrow slab is still preserved.  

1.3 Overview of the Outer Carpathian tectono-stratigraphic 

units 

The Carpathian thrust and fold belt are formed by several tectono-stratigraphic units. 

Some of them are almost continuous in the study area, some others crop out in 

correspondence of the main tectonic windows. The prevalent tectonic transport is 

north- oriented. The most external unit is thrusted on top of the Miocene molassic 

deposits laying on the North European Platform. They are made of Lower Miocene 

marine pelitic deposits overlain by middle Miocene conglomerates passing upwards 

into sandstones intercalated with tufite and evaporitic layers [Oszczypko et al., 2006]. 

1.3.1 The Polish Outer Carpathians 

The Outer Carpathians are formed by several thrust sheets detached from their 

original substratum. From the foreland to the hinterland five main tectonic units can 

be recognized: Skole, Subsilesian, Silesian, Dukla and Magura units (Fig. 1.5).  

The Skole Unit crops out in the eastern part of the polish region. It is detached in 

correspondence of the Lower Cretaceous anoxic black shales (Spas shales). The 

Upper Cretaceous-Paleocene deposits show very different facies. Here the shales are 

replaced by thick-bedded siliciclastic turbiditic deposits. Another abrupt change of 

sedimentation is recorded during the Eocene and Oligocene, when the sedimentation 

become more shaly and the thin beds of sandstones are intercalated with thick 

bedded shales. During this time interval two important layers for the stratigraphic 

correlations deposited: The Globigerina marls (Late Eocene) and the dark 
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bituminous shales of the Menilite Fm. (Oligocene). The youngest deposits are made 

of calcareous sandstones interbedded with grey marls belonging to the Krosno Fm. 

(early Miocene) [Ślączka et al., 2006]. 

The Subsilesian Unit gets exposed in narrow zones in front of the Silesian Unit and 

in some tectonic windows. This nappe is detached along the Lower Cretaceous dark 

shales. These black shales start to be interbedded with thick layers of sandstones 

during the Upper Cretaceous (Lgota Beds). The sedimentation of conglomerates and 

then green marls marks the beginning of the Paleogene. Also in this nappe the 

Eocene and Oligocene sequences are characterized by the deposition of Globigerina 

marls and Menilite Fm. The succession ends with the medium-bedded calcareous 

sandstone and marly shales of the Miocene Krosno Fm.  

The Silesian Unit is a continuous nappe overthrusting the Subsilesian Unit. The 

oldest deposits are Tithonian mudstones but they rarely crop out. They are 

interbedded with turbiditic deposits during the Upper Jurassic- Lower Cretaceous. 

Thick bedded sandstones intercalated with green shales sedimented during the Upper 

Cretaceous-Paleocene , becaming more shaly in the upper part of the succession. The 

Eocene deposits ae characterized by lenses of conglomerate included in red shale 

beds. The conglomerates are replaced by thick beds of sandstones during the Upper 

Eocene (Hierogliphic Beds) and covered by Globigerina marls, Menilite Beds and 

the younger Krosno Beds whose lithology is the same described for the other units. 

The Upper Miocene deposits are made of olistoliths coming from the unit directly 

above it [Ślączka and Oszczypko, 1987]. 

The Dukla Unit starts with Lower Cretaceous black shales intercalated with cherts 

and siderites. Dark shales intercalated with sandstones also characterized the Upper 

Cretaceous-Paleocene sedimentation. During the Eocene the sedimentation changes, 

passing into red and green shales only locally intercalated with sandstones. This 

sedimentary sequence is closed by the Hierogliphic Fm., the Globigerina Marls, the 

dark bituminous shales of the Menilite Fm. and the uppermost thick-bedded 

calcareous sandstones (Cergowa ss.) [Ślączka and Unrug, 1976]. 

The Magura Unit is the innermost nappe of the OC flysch belt detached along the 

Upper Cretaceous shales. From the Upper Cretaceous to the Oligocene the 

sedimentation is characterized by the deposition of three turbiditic cycles 
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[Oszczypko et al., 1992] starting with pelitic basinal deposits passing into thin to 

thick bedded sandstones and variegate shales. The youngest deposits are 

characterised by the Oligocene Krosno Beds [Ślączka et al., 2006].  

1.3.2 The Ukrainian Outer Carpathians 

In Ukraine the deposits building the OC flysch belt are grouped into several 

formations NW-SE oriented. Some of them can be easily recognized all over the 

study area. For some others the correlation with the Polish units remains uncertain 

because of the lack of homogeneous nomenclature applied to several formations. The 

first attempt to tie the Ukrainian OC stratigraphy has been made by Jankowski et al., 

[2012] recognizing the main stratigraphic units and simplifying their formational 

names. The following description is made analyzing the most external one, at first, 

and then the more internal (e.i. Maramureş Unit) (Fig. 1.6). 

The Borislav-Pokuttya Unit oldest deposits consist in a thick siliciclastic turbidite 

followed by thick-bedded turbidites intercalated with conglomerates of the Yamne 

Beds (Paleocene). Higher up they become more shaly and then covered by gray 

marls, slump deposits and exotic material (Popeli Beds) during the Late Eocene. The 

Oligocene sequence starts with the dark bituminous shales of the Menilite Fm. 

passing upward into more sandy deposits intercalated with lenses of conglomerates. 

The youngest deposits are made of medium to thick-bedded sandstones intercalated 

with shales belonging to the Stebnik and Balychi Fms. 

The Skole Unit detaches in correspondence of the Lower Cretaceous anoxic black 

shales of the Spas Beds [Kotlarczyk, 1985; Kruglov, 2001]. During the Upper 

Cretaceous a thin layer of green radiolaritic shales passed upward to the red shales 

and whitish, siliceous turbiditic marls till the Paleocene. Then they were covered by 

thick-bedded calcareous sandstones intercalated with shales. This sedimentation is 
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Figure 1.5: Correlation chart for the main tectono-stratigraphic units of thePolish Outer 

Carpathians. The successions are not represented with true thickness 
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continuous up to the Eocene, when it is replaced by green shales intercalated with 

thin-bedded sandstones (Bystrytsia Formation) and gray marls (Globigerina Marls) 

Locally slump deposits with exotic material (Popiele beds) interrupts the continuous 

sedimentation. During the Oligocene the sedimentation is characterized by an anoxic 

facies (Menilite Fm.). The Early Miocene Krosno Beds close the stratigraphic 

sequence with an intercalation of marls and thin bedded sandstones (Polanitsia 

Beds). 

The Silesian Unit (Svydovets Unit) starts with the Lower Cretaceous-Turoninan 

dark mudstones. The stratigraphy of these formations is the same as the adjacent 

Dukla Unit. The Upper Cretaceous-Paleocene deposits consist of thick-bedded 

sandstones intercalated with grey shales (Lolyn Beds) higher up increasing the sandy 

component. The Eocene deposits are mainly characterized by thick variegated shales 

passing into dark bituminous shales during the Oligocene. 

The Dukla Unit has its dècollement surface along the Lower Cretaceous black shales 

of the Shypit Fm. Higher up the shaly deposits remain prevailing till the Cenomanian 

with the deposition of the Yalovets shales. From the Upper Cretaceous to the 

Peleocene the sedimentation is characterized by dark shales and medium bedded, 

fine-grained, calcareous sandstones increasing its sandy component in the upper part 

(Luta ss.). The Eocene deposits developed as a complex of medium to thin-bedded 

green shales, passing upwards into the more marly deposits. The thick-bedded 

calcareous Cergova sandstones [Śląckza and Unrug, 1976] and the upper Menilite 

Fm., close the stratigraphic sequence together with the youngest calcareous 

sandstones and shales belonging to the Maly Vysžn Fm. 

The Čorna Hora Unit is located in the southeastern part of the Ukrainian 

Carpathians. According to some authors [e.g. Śląckza 1959] it represents the inner 

part of the Silesian Unit. The Skypit Beds are the oldest sediments (Barremian–

Aptian) of this unit, made by black, calcareous shales with siderites, fucoid marls, 

and thin-bedded sandstones. Thick bedded sandstones intercalated with shales and 

marls characterized the Upper Cretaceous sedimentation (Yalovets beds and Skupiv 

Beds). From the Paleocene to the early Eocene an increase of the sandy component is 

recorded. Higher up this succession gets more shaly with the Batonian-Priabonian 
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Parodsyn Beds. This unit is closed by the Oligocene deposits of the Menilite Fm. and 

the Transitional Beds, composed by dark brown shale.  

The Krasnoshora Unit is detached in correspondence of the Lower Cretaceous 

black shales and marls locally interbedded with thin beds of sandstones. The 

sedimentation gets more sandy in the upper part of the succession. The younger 

deposits are represented by the Upper Cretaceous-Paleocene Krasnoshora Fm., 

consisting of thick- to thin-bedded sandstones and gray shales. 

The Burkut Unit starts with Lower Cretaceous black, calcareous shales with 

siderites, fucoid marls, and thin-bedded sandstones passing into the upper dark, 

quarzitic sandstones with black shales series. These deposits are unconformably 

overlain by the thick to medium-bedded sandstones and conglomerates of the Burkut 

Fm. reaching more than 500m of thickness [Śląckza et al., 2006]. 

The Suhiv Unit are made of Lower Cretaceous gray marly shales and thin- to thick-

bedded laminated sandstones at the bottom, intercalated with lenses of 

conglomerates. This succession passes upwards into the gray shales, marls, and 

sandstones of the Upper Cretaceous Sukhiv Beds. Thick to thin-bedded Paleocene 

sandstones and gray shales [Jankowski et al., 2012] represent the youngest deposits 

of this unit. 

The Rachiv Unit starts with the Upper Jurassic-Hauterivian deposits of the Vovchyi 

Beds and terminates with the 1000 m thick Barremian deposits belonging to the 

Rahiv Beds. The oldest deposits consist of black shales, calcareous thin- and 

medium-bedded turbiditic sandstones, and limestones passing upward into a more 

sandy complex, intercalated with conglomerates. Exotic blocks of Mesozoic 

limestones and diabases are also present. The youngest deposits are represented by 

black shales and thin bedded calcareous sandstones [Śląckza et al., 2006]. 

The Maramureş Unit is located in the innermost part of the OC flysch belt. This 

unit, in particular the more internal Maramureş Klippen Zone, consists in two parts 

differing in the sedimentological characters. The lower part is formed by Mesozoic 

olistoliths and olistostromes (Soimul olistostromes) covered by the flysch deposits of 

the Monastyres subzone. These mega-blocks are made of Paleozoic and Proterozoic 

schists and gneisses, Paleozoic, Triassic, Jurassic, and Barremian–Aptian dolomites 

and limestones, and Permian–Triassic quarzitic sandstones and conglomerates 
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[Słącza et al., 2006]. Blocks of serpentinites, diabases, gabbro-diabases, pebbles and 

boulders of granites, quartz porphyries, and granitoids also occur. Higher up the 

Soimul formation is overlain by the Upper Cretaceous red marls of Pukhiv beds and 

thin-bedded sandstones with green-gray and sparse red shales of the Jarmuta beds 

[Kruglov, 1965, 1969]. The Paleocene succession begins with the Motova 

conglomerates covered by Eocene marls. During the Oligocene the sedimentation is 

characterized by marly deposits intercalated with black shales and sandstones. These 

deposits, better-known as Menilite and Malcov formations, unconformably overlay 

the above-described Eocene deposits. After the Miocene sedimentation gap, the 

Eocene succession is in turn covered by the Upper Miocene deposits belonging to the 

Terebla Beds. 

The sedimentological features of the Maramureş Unit change radically to the SW 

where it is built by metamorphosed Riphean-Vendian rocks and by sedimentary, 

volcanic, and epizonally metamorphosed Carboniferous, Triassic, and Jurassic 

formations. The Cretaceous conglomerates, organogenic limestones, and marls 

discordantly overlie older rocks [see Kropotkin, 1991 for more details]. 
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Figure 1.6: Correlation chart for the main tectono-stratigraphic units of the Ukrainian Outer 

Carpathians. The successions are not represented with true thickness. 
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1.4 Overview of the Inner Carpathian tectono-stratigraphic units 

The Inner Carpathian region represents a retro-wedge extensional basin where the 

Oligo-Miocene deposits lay unconformably on top of a deformed substratum made of 

crystalline rocks with is sedimentary cover. The Paleogene to Neogene deposits are 

the sedimentary infilling of the Central Carpathian Paleogene Basin (CCPB) and the 

Pannonian Basin (PB). Their morphology is characterized by localized depressions 

forming minor basins. The architecture of their substratum consists of several nappes 

emplaced one on top of the others during the early Alpine orogeny.  

1.4.1 The Slovakian and Polish Inner Carpathians 

In the following paragraph the description of the main tectono-stratigraphic units of 

the Slovakian Inner Carpathians is presented starting from the youngest deposits of 

the CCPB to the oldest north verging nappes constituting its substratum (Fig. 1.7) 

The Central Carpathian Paleogene Basin is formed by a sequence of mainly 

marine deposits. They are locally interrupted by isolated relieve made of crystalline 

massifs. The Paleogene flysch deposits sedimented on top of an Eocene erosional 

surface. At the bottom they are made of breccias, conglomerates, polymictic 

sandstones to siltstones [Chmelik, 1957] covered by sandstones interbedded with the 

Menilite-type shales and coars clastic fans constituting the youngest deposits (Upper 

Oligocene).  

The Variscan crystalline nappes and their Mesozoic sedimentary cover represent 

the substratum of the CCPB. The Variscan basement is composed of metamorphic 

and granitoid rocks, overlain by Cambrian to Carboniferous volcano-sedimentary 

deposits [Hovorka et al., 1994]. They are subdivided into three different crustal units: 

Tatricum, Veporicum and Gemericum [e.g., Mahel, 1986; Plasienka, 1997]. The 

Mesozoic cover consists of carbonatic rocks stacked in several north-verging thrust 

sheets. They are detached in correspondence of the Triassic evaporitic layers. These 

latter are overlain by shallow water limestones intercalated with dolomitised layers 

[Jaglarz & Szulc, 2003]. The Triassic succession ends with variegated shales and 

evaporites intercalated with dolomite and sandy beds of the Keuper Fm. [Prokešová 

et al., 2012]. Sandy crinoidal limestone and silicified radiolarian limestone and 

radiolarian cherts characterized the Jurassic sedimentation. Lower Cretaceous marls 
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and cherty limestones overlain by Upper Cretaceous sandstones and claystones close 

the Mesozoic stratigraphy [Janočko et al., 2006]. These allochthonous successions 

differ from the autochthonous cover and represent in general more basinal facies. 

 

 

Figure 1.7: Geological section across the Polish and Slovackian Carpathians showing the structural 

position of the Inner Carpathian tectonic units [from Lexa et al.,, 2000] 

 

1.4.2 The Ukrainian Inner Carpathians 

The Pannonian Basin is a Neogene extensional basin formed while thrusting was 

still active at the Carpathian front. It comprises many minor basins bordered by 

strike-slip fault (e.i. the Transcarpathian Depression). The basin fill starts with the 

Eocene and Oligocene flysch deposits. Synrift sediments, although dominantly 

terrigenous, included marls, algal limestones, evaporites, nonmarine clastics, and 

coals. Tuffs and pyroclastics are also present. The post-rift sequence is marked by a 

suite of undeformed nonmarine, lacustrine, deltaic, and fluvial clastic facies [Royden 

and Horváth, 1988; Kázmér, 1990; Müller and others,1999] and represents the 

youngest deposits (Fig. 1.8).  

The pre-Neogene substratum is made by structural units differing in origin and age 

[e.g. Tözsér and Rudinec, 1975; Sviridenko, 1976; Soták et al., 1993]. The 

northernmost Mesozoic successions are interpreted as belonging to the Krížna Nappe 

[Mahel, 1986]. The orientation of the tectonic units buried under the Neogene 

deposits is NW-SE and consists of thick-skinned nappes involving deposits from the 

Precambrian anchimetamorphic basement to the Eocene. The inner units are known 

as Inatchevo-Kritchevo nappe, made of Permian to Eocene deposits overthusted by 

the Tatric and Veporic crystalline basement [Tomek, 1993]. Their characteristics are 

the same as the one building the IC range buried under the CCPB.  
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Figure 1.8: Geological section across the Pannonian Basin[from Kaličiak et al., 2008] 

 

1.5 The Pieniny Klippen Belt 

The Pieniny “Klippen Belt” (PKB) is a 600 km belt separating the OC and the IC 

tectonic domains (Fig. 1.9). It represents one of the enigmatic features characterizing 

the Carpathian orogeny. Several description has been provided: first described as a 

tectonic mélange [e.g. Roca et al., 1995] and then as a “wildflysch” [Plašienka and 

Mikuš, 2010], the PKB includes rocks from the Triassic to the Lower Eocene. 

Triassic deposits, although not very common within the PKB, have been found as 

mega-blocks in northern and western part of Slovakian PKB [Andrusov, 1950]. They 

consist mainly of dolomites and dolomitic limestones. Jurassic sediments include 

clastic (partly conglomeratic) deposits, passing upward to a more deep-water facies. 

Crinodal limestones followed by red radiolarian cherts and nodular limestones 

characterized the depositional environment from the Middle to the Upper Jurassic 

[Birkenmajer, 1960]. Triassic and Jurassic deposits together with Lower Cretaceous 

marls, flyschoid sediments and, locally, cherty limestones, occur in the PKB as 

mega-blocks [Plašienka and Mikuš, 2010]. These Mesozoic successions are found as 

olistoliths surrounded by an intensely deformed matrix consisting of Upper 

Cretaceous-Paleogene shales, sandstones and marls (also known as Klippen mantle 

[Birkenmajer, 1960]). The occurrence of different tectonic units within the PKB has 

been correlated with distinct pre-shortening palaeogeographic domains. Simplifying, 

the shallow-water deposits have been associated to two distinct ridges: the Czorsztyn 

Ridge, originally separating the Magura basin from the Pieniny basin, and the 

Andrusov Ridge, originally located between the Pieniny basin and the innermost 

Manín basin [Birkenmajer, 1986].  
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Figure 1.9: Geological cross-section showing the structural position of the PKB [modified after Roca 

et al., 2005] 

  



24 
 

  



25 
 

2 Chapter II 

Methods 

This work is the result of the combination of two different methods: the kinematic 

modelling and low-T thermochronometry. Their integration allows the definition of a 

thermo-kinematic model that simulates the evolution of the thermal field through 

time and validates the chosen structural model. Five balanced and sequentially 

restored cross-sections were constructed across our study area from the Carpathian 

foreland to the IC domain. For one of them the thermo-kinematic model was 

performed. In the following paragraphs the principles of cross-section balancing and 

low-T thermochronometry are summarized. 

2.1 Balanced cross-sections and 2D kinematic model 

2.1.1 Principles of section balancing 

Cross-section balancing is a technique present in literature from the early 1900s. 

Chamberlain [1910, 1919] was the first introducing the concept of area conservation 

during deformation to calculate the depth of the décollement. This technique was 

then developed by geologists of oil companies that understand the importance of 

timing and deformation of the rocks on the fluid migration. Section balancing 

consists in deforming a geological cross-section back in time to provide the 

undeformed (or less deformed) depositional setting. 

This methods was then applied to calculate the shortening assuming that if the area 

of cross-section remains constant, the bed lengths measured along the section must 

remain constant [Dahlstrom 1969a]. The most important point in section balancing is 

that the end of the section must be fixed at points where no interbed slip occurs (pin 

line) and the section plane must be normal to the main tectonic transport direction in 

order to avoid “out of plane” movement that cannot be restored.  

At first, cross section balancing was used to restore simple tectonic structures as the 

whole process was made by hand. Now, several software have been developed 

allowing also the restoration of complex tectonic settings. In this work, the 

restoration is performed using Move, software developed by Midland Valley 

Exploration Ltd. It allows the construction of horizon automatically using the dip 
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domains and to apply different algorithms in order to restore folds and the 

displacement along the faults.  

Flexural slip, simple shear and fault parallel 

flow are the main algorithms applied in this 

work. 

The flexural slip algorithm assumes that 

deformation occurs by slip along bedding 

planes. It allows the preservation of the area, 

length and thickness in a vertical plane. If the 

thickness is not constant along the section the 

application of this method implies changes of 

areas (Fig. 2.1).  

With the simple shear the distance in the 

shear direction is preserved. This technique 

were first used in extensional regime by 

Verral [1981] and Gibbs [1983] who 

assume that hanging-wall moves laterally 

by a constant amount and slides vertically. 

In this case the variation of thickness and 

bed length can be introduced and area is not 

preserved (Fig. 2.2). 

The fault parallel flow, which rules were 

first applied by Sanderson, [1982] and 

Keetley and Hill, [2000] are suitable for 

reverse restoration. All points in the hanging-

wall move parallel to the fault surface. In this 

case bed area is conserved (Fig. 2.3).  

Restoration generates the undeformed or 

less deformed state that can be validated 

applying the inverse approach, called 

forward kinematic model [Suppe, 1983; Endignaux and Mugnier, 1990]. Starting 

Figure 2.1: Schematic representation of 

the flexural slip deformation mechanism 

in a multi-layer. 

Figure 2.2: Schematic representation of the 

simple shear mechanism deforming the 

hangingwall of a listric normal fault [from 

Moretti, 2008] 

Figure 2.3: Schematic representation of the 

fault parallel flow mechanism deforming the 

hangingwall of an inverse fault[from Savage 

and Cooke, 2003] 
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from the initial state the deformed cross-section is generated. The forward modelling 

does not take into account the reology of the material, thus it is formally admissible 

but physically impossible. Anyway if a geological solution honouring all data can be 

restored it can be considered a valid model [Elliot, 1983]. In this way, the obtained 

solution is not the unique possible scenario but the one better representing our field 

data.  

2.1.2 Workflow 

During the construction of a geological cross-section, all the lithostratigraphic units 

deposited during the same time interval were grouped together in the same horizon. 

Equal area calculation [Chamberlin, 1910, 1919] is applied to calculate the depth of 

the décollement surface where not constrained (Fig. 2.4) and the upper 

 

 

Figure 2.4:Equal area balancing principle 

 

Cretaceous-Paleocene horizon as regional datum for the restoration. Flexural slip 

restoration has been first performed. This is based on the minimum shortening and 

area conservation assumptions. Each thrust sheet has been unfolded individually 

tracing a pin line parallel to the axial plane of the folds. Once unfolded all the thrust 

sheets and minimized the gaps and/or the overlaps between them, they have been re-

folded back to their original position using the Upper Cretaceous-Paleocene horizon 

as a template to fix any geometric problems in the balanced cross-sections. The 

structures have been restored taking into account the timing of deformation provided 

by stratigraphic studies of syn-tectonic deposits and the relationships among the 

tectonic structures. Vertical simple shear algorithm was applied for listric normal 
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faults, fault parallel flow algorithm for reverse restoration and the flexural slip 

algorithm to simulate the flexure of the downgoing plate. The undeformed section 

resulting from the sequential restoration has then been deformed forward in time in 

order to validate our structural interpretation and define the geometry of the eroded 

successions.  

2.2 Low-T thermochronometry 

Low-T thermochronometry has been here used to validate the kinematic restoration. 

Several low-T thermochronometric data are available for the study area and we 

integrated them with five new samples coming from the Pieniny wildflysch. Apatite 

fission track (AFT) and apatite (U-Th)/He (AHe) analysis were performed on these 

samples made of siliciclastic sandstones and siltstones belonging to Upper 

Cretaceous-Eocene successions.  

2.2.1 Apatite Fission Track thermochronometry 

This technique is based on the characterization of the damage tracks produced in the 

crystal lattice after the emission of a neutrons and gamma radiations subsequent to 

the fission of heavy nucleus into two daughter isotopes. This fission could be 

spontaneous or inducted by a neutron irradiation from an external source. In apatites 

these damages are produced by the breakdown of 
238

U [Wagner, 1968] and appear in 

the crystal as linear trails (Fig. 2.5). 

 

 

Figure 2.5: Schematic cartoon showing the formation of the fission tracks in a mineral. a)dark spots 

are the radioactive 238U; b) Spontaneous fission of 238U producing two highly charged daughter 

isotopes; c) damage trail left in the crystalline lattice. 

 

These linear tracks start to be preserved in the crystal lattice below 110°C. This 

temperature is known as the closure temperature, it means that below it the system 

can be considered close [Dodson, 1973]. Above this temperature all tracks disappear 
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(anneal) whereas at temperature between 80°C and 110°C, known as Partial 

Annealing Zone (PAZ) [Gleadow and Fitzgerald, 1987] the fission tracks are 

partially preserved and their length decreases (annealing) [Green et al.,1986; Laslett 

et al., 1987; Duddy et al., 1988; Green et al., 1989; Gallagher, 1995]. All the formed 

tracks are preserved at temperature lower than 80°C with their original length. 

Length and width of these tracks depend on the temperature and time of permanence 

at certain temperatures. They commonly are ca. 10-20 µm long and 10 nm wide. 

AFT ages is calculated by counting the spontaneous and the induced fission tracks. 

The former are produced by the spontaneous decay of the 
238

U, the latter after the 

nuclear irradiation of the grain mount and the muscovite mica sheet attached on it 

(Fig. 2.6). The mica records the fission tracks produced by the 
235

U decay, thus 

knowing the 
238

U/
235

U that has the constant value of 137.88 [Steiger and Jäger, 

1977], is possible to establish with good precision the concentration of the former 

even for small crystal [Donelick, 2004]. This method is known as “External Detector 

Method” [Gleadow, 1981; Hurford and Green, 1982; 1983; Green, 1985; Gleadow et 

al., 1986; Hurford, 1990a].  

The AFT age is calculated applying the following formula: 

 

AFT age = 1/ λD* ln [1+ λD*ζ*(ρs/ρi)*ρd 

where 

λD = total decay constant; 

ζ = calibration factor different for each person [Hurford and Green, 1982; 1983]; 

ρs = spontaneous track density in the sample; 

ρi = induced track density in the sample; 

ρd = induced track density in the 
235

U doped glass. 

 

The calculated ages is approximately the ages of the last cooling event through the 

PAZ, and in order to be used as constrain for thermal histories additional information 

must be considered (e.g. the tracks lengths and the age as function of the 

populations). 
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Figure 2.6: Representation of the procedures applied in the external detector method. By counting the 

tracks in the mineral, the concentration of U can be estimated: By counting the tracks on the mica 

sheet the concentration of daughter isotopes can be inferred.  
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2.2.2 Apatite (U-Th)/He thermochronometry 

Among the low-T thermochronometers the apatite (U-Th)/He is the one sensitive to 

the lowest temperature (Fig. 2.7). 

 

 

Figure 2.7:Closure temperatures of geochronometers and thermochronometers [from Gwilym, 2005]. 

The red box highlight the (U-Th)/He system sensitive to the lowest temperature. 

 

It is based on the production of 
4
He by the radioactive decay of the 

238
U, 

235
U and 

232
Th [Farley, 2002] in the stable 

206
Pb, 

207
Pb and 

208
Pb. By measuring the 

concentration of uranium and helium within a crystal, the cooling age of the sample 

can be calculated [e.g. Rutherford, 1905; Strutt, 1905]. This is possible when no 

parent or daughter isotopes are gained or lost, that is when the system is closed. The 

(U-Th)/He dating system, passes from an open to a closed system gradually, in a 

temperature interval ranging between 45°C and 65°C (so-called Partial Retention 

Zone (PRZ) [Wolf et al., 1998; Farley, 2000] 

The amount of 
4
He can be obtained by the following equation:  

 

4
He= 8

238
U(𝑒𝜆238𝑡-1) + 7

235
U(𝑒𝜆235𝑡-1) + 

232
Th(𝑒𝜆232𝑡-1) + 

147
Sm(𝑒𝜆147𝑡-1) 

 

where  

He, U, Th, Sm = present-day amounts; 
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λ = decay constant (λ
238

 = 1.551 × 10
–10 

yr
-1

; λ
235

 = 9.849 × 10
–10

 yr
-1

; λ
232

 =4.948 × 

10
–11

 yr
-1

; λ
147

=0.654× 10
–11

 yr
-1

). 

 

The 
4
He concentration can be calculated as a function of U, Th and Sm taking into 

account the 
238

U/
235

U constant ratio. This equation also assumes the total absence of 

initial 
4
He in the sample. It means that no apatite hosting fluid or mineral inclusions 

must be picked for this analysis. 

In this study, five apatites for each sample were handpicked using an optical 

microscope at magnification up to ca. 150 x. The crystals are selected on the base of 

good morphology and the absence of inclusion and coating. The minimum dimension 

must be > 60 μm. Every crystal has to be measured to apply the α-ejection correction 

using the method applied by Farley [2002]. These crystals are then photographed and 

loaded into a 0.8 Nb tubes before sending to the laboratory to be analysed (Fig. 2.8). 

 

 

Figure 2.8: Procedure to prepare samples for (U-Th)/He analysis. a)crystal picking was made under 

optical microscope then b) measured and c) inserted in the Nb tube.  

 

In calculating and correcting the cooling ages several factors must be considered: 

the α-ejection, that takes into account the distance travelled by the α particles in the 

solid crystal before stopping; 

the zonation, the distribution of U and Th within the crystal [Meesters and Dunai, 

2002b]; 

the inclusions, that can make the age older increasing the concentration of parent 

isotopes.  

This paragraph wants to be a summary of the main principles at the base of these two 

low-T thermochronometers. For more details on the methods, application and factors 

affecting the age calculation see [Reiners 2005; Reiners and Brandon 2006]. 
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2.3 Application of thermochronology in validating a tectonic 

scenario: the thermo-kinematic model 

Interpretation of thermochronologic data coming from multiple dating, especially in 

obtaining the exhumation rate, is often made ignoring the role of topography, 

tectonics and heat advection on the isotherm deformation. One of the assumption is 

on the paleogeothermal gradient that is thought to be constant during the cooling 

phase [Mancktelow and Grasemann, 1997; Safran, 2003], neglecting the role of heat 

advection. Another assumption is on the closure temperature of a 

thermochronometric system, considered flat respect to the topography [Parrish, 

1983; Stüwe et al., 1994; Brown and Summerfield, 1997]. The last important 

assumption is made on the topography often considered not changed by tectonics 

through time. 

2.3.1 Topography 

Focussing on the role of topography on the deformation of the isotherms, shallower 

are the isotherm more influence has the topography on it. At depth higher than 20 

km, isotherms are considered almost flat, whereas at shallow depth they follow 

approximately the topography. Between these two end members some intermediate 

deformation must exists and it depends on the wavelength of the relief, exhumation 

rate and heat advection. The larger is the wavelength the deeper is the perturbation 

[Stüwe et al., 1994]. Furthermore the higher is the exhumation rate the more 

accentuated is the curvature of the isotherms [Mancktelow and Grasemann, 1997]. A 

relevant effect is recorded after increasing or decreasing the relief. In the first case 

the erosion is localized in correspondence of the valley where the isotherms are 

advected closer to the surface than the high. Thus in the valley the youngest ages are 

observed [Braun, 2002]. 

In case of decreasing relief, the erosion is localized in correspondence of the 

morphologic high. Closure temperature isotherms are advected to the surface more 

rapidly than in the valley, causing the younging of the cooling ages. On the contrary, 
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in the valley, where the isotherm become deeper, the cooling ages become older 

compared to a constant topography scenario [Safran, 2003]. 

2.3.2 Tectonics 

Tectonics plays an important role in controlling the cooling ages across the faults. 

The lateral heat flow produced by the relative movement of the blocks has relevant 

effect on the deformation of the closure temperature isotherms.  

In normal fault setting the uplift of the isotherms at the footwall are produced by 

many factors such as the uplift and erosion of the footwall, the sedimentation and 

tilting at the hanging-wall and the topography [Ehlers and Farley, 2003].  

 

Figure 2.9: Thermal processes in a normal fault setting. Red arrows represent the advection of heat 

and mass influencing the isotherm deformation [from Ehlers and Farley, 2003].. 

 

The lateral variation in exhumation rate and thermal gradient affect the cooling age 

path across the fault. A 2D numerical model was carried out by Ehlers and Farley 

[2003], showing the youngest cooling ages close to the fault zone at the footwall. 
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Figure 2.10: a) Thermal field at the footwall of a normal fault; b) predicted apatite (U-Th)/He age 

profile along the footwall. 

 

More detailed studies [e.g. Brewer, 1981; Rahn and Grasemann, 1999; Lock and 

Willet, 2008] were carried out on the thermal processes in thrust belt setting. The 

factors affecting the thermal field in a contractional regime are approximately the 

same as the extensional one. The movement of the warm hanging wall on the cool 

footwall causes later heat flow. Furthermore the uplift and erosion of the hanging 

wall, the sedimentation at the footwall, the thickening of radiogenic deposits, 

topography and frictional heating along the fault plane are additional factors 

influencing the thermal field and subsequently the cooling ages across an inverse 

tectonic structure. In this case, the cooling of the hanging wall is due to the heat 

advection from the warmer hanging wall to the cooler footwall. 
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Figure 2.11: Thermal processes in an inverse fault setting. Red arrows represent the advection of heat 

and mass influencing the isotherm deformation [from Ehlers and Farley, 2003] 

 

Here the exhumation is controlled by the erosion of the uplifted rocks. Physical 

erosion model and thermo-kinematic model has been elaborated in order to consider 

the erosion but also the structural cooling due to the emplacement of several thrust 

sheets over a short distance in a thin-skinned tectonic system. This allows also to 

predict the cooling ages along inverse structures. The younger ages are recorded in 

correspondence of the ramp (so-called Ramp Reset Zone) [Lock and Willet, 2008] 

whereas moving out of this zone the ages become older, preserving the inherited 

cooling regime. 

 

Figure 2.12: Thermal field in compressional setting; a) isotherms bending in correspondence of the 

thrust ramp; b) layer cake deformed by fault bend fold mechanism; c) predicted AFT (dashed line) 

and AHe (solid line) age profile across the fault. The ramp reset zone correpond to the area where the 

ages are reset, corresponding to the ramp. 
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These are the main factor taken into account for the elaboration of the thermo-

kinematic model presented in the Chapter 4. FETKIN [Almendral et al., 2014] was 

used to model the isotherms and the low-T thermochronometric ages in the complex 

compressional regime of the Carpathian thrust and fault belt. FETKIN solves 

numerically in time and space the transient advection-diffusion heat flow equation in 

two dimension [Carslaw and Jaeger, 1986]: 

 

ρc (δT/δt –νx * (δT/δx)- νy * (δT/δy))= (δ/δx)* k1 * (δT/δx) + (δ/δy)* k2 * (δT/δy) + ρH 

 

where 

T(x,y,T) = temperature at location (x,y) and time t; 

Ρ(x,y) = (space-dependent) rock density; 

k1 and k2 = rock thermal conductivity tensor; 

c(x,y) = specific heat 

ν(x,y) = velocity of the moving grid; 

H = radioactive heat production. 

 

All these parameters can be inserted in FETKIN using an .xml file whereas the 

velocity field was generated directly from the kinematic restoration. All the 

geological sections must be exported as ASCII files and then processed with 

FETKIN that provides the modelling of the isotherms through time and the 

prediction of the cooling ages along the present-day topographic profile. In order to 

validate a geological scenario, the predicted ages have to equal the measured 

themrochronometric data. 

In addition, FETKIN calculates the t-T path for each point of the present-day 

topography. These paths can be compared with thermal histories obtained from the 

Hefty inverse modelling [Ketcham et al., 2005] to further verify the validity of the 

predicted ages. 
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3 Chapter III 

This work is a paper in preparation for the submission to Tectonics. It is mainly 

focused on the western part of the study area and deals with the analysis of three 

balanced sections across the Polish and Slovakian Carpathians integrated with some 

low-T thermochronometric data (AFT and AHe ages) located in the PKB. 
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3.1 Abstract 

Extensive subduction of various oceanic domains is generally invoked to explain the 

development of the Western Carpathian thrust belt. However, this belt is 

characterized by the lack of in situ ophiolite, and of any geophysical evidence 

indicating the occurrence of an oceanic slab at depth. In this paper, a new 

interpretation for the tectonic evolution of the Western Carpathians is provided based 

on: (i) an analysis of the stratigraphy of the Mesozoic-Tertiary successions across the 

thrust belt domains; (ii) a reappraisal of the stratigraphy and sedimentology of the 

envisaged subduction mélange (i.e. the so-called Pieniny “Klippen Belt”) marking 

the ‘suture’ between the Inner and Outer Carpathians; and (iii) the construction of a 

series of balanced and restored cross-sections then validated by 2D forward 

modeling. Our analysis provides a robust correlation of the stratigraphy from the 

Outer to the Inner Carpathians, independently of the occurrence of oceanic 

lithosphere in the area, and allows for the reinterpretation of the Pieniny “Klippen 

Belt” as a sedimentary unit (wildflysch) characterized by a block-in-matrix texture 

and representing the deformed infill of a foredeep developed in front of the Inner 

Carpathian orogen. To constrain the evolution during the last 20 Ma, our model also 

integrates previously published and new apatite fission track and apatite (U-Th-

Sm)/He data. These latter indicate a Middle-Late Miocene exhumation of the Pieniny 

“Klippen Belt”. In this study, the recent regional uplift of the Pieniny wildflysch is 

described for the first time using the forward model for the tectonic evolution of the 

Western Carpathians.  

Keywords: fold and thrust belts; foreland basins; subduction; extension, Pieniny 

Klippen Belt. 

 

Key points: 

 Inner and Outer Carpathian domains have been balanced and restored; 

 Interplay between thick and thin-skinned thrusting; 

 The Pieniny wildflysch was deposited in the Inner Carpathian foredeep 

basin. 
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3.2 Introduction 

The development of arcuate mountain belts and associated back-arc basins in the 

Mediterranean-Carpathian area is generally associated with the process of rollback of 

subducting oceanic lithosphere and trench retreat [e.g. Malinverno and Ryan, 1986; 

Faccenna et al., 2004]. This process has led to seafloor spreading in (e.g.) the 

Tyrrhenian back-arc basin, which developed since the Late Miocene in the hinterland 

of the coevally forming Apennines-Calabria-Sicily orogen [Kastens et al., 1988; 

Sartori, 2003], and resulted in significant arching of a formerly rectilinear belt [e.g. 

Faccenna et al., 2001, 2004; Johnston and Mazzoli, 2009]. Ophiolite suites - 

including blueschist facies metabasites and metasediments - are well exposed along 

the Apennine belt and Calabria, thus providing a clear record of the subduction of 

oceanic lithosphere predating continent-continent collision [e.g. Rossetti et al., 2004; 

Ciarcia et al., 2009, 2012; Vitale et al., 2011, 2013]. Similar features characterize the 

Alboran domain in the Western Mediterranean, where back-arc extension occurred in 

the hinterland of the ophiolite-bearing Betic Cordillera and Rif chains [e.g. Faccenna 

et al., 1997; Mazzoli and Algarra, 2011 and references therein]. However, the 

rollback of subducting oceanic lithosphere has also been invoked in areas where 

high-pressure metamorphic rocks and ophiolitic nappes are completely lacking as 

any geophysical evidence for a continuous oceanic slab. For instance, the widely 

accepted interpretation for the geodynamic evolution of the Western Carpathians is 

based on the subduction of oceanic lithosphere, representing the eastern continuation 

of the Piemont-Liguria Ocean, during the Late Jurassic-Early Cretaceous [e.g. 

Birkenmajer, 1986; Oszczypko, 2006; Picha et al., 2006] and the later imbrication of 

the passive margin deposits belonging to the European Platform. The remnants of the 

former ocean are generally interpreted as being preserved in the so-called Pieniny 

“Klippen Belt” (PKB), a narrow, arcuate zone consisting of intensely sheared 

Mesozoic to Paleogene rocks. Traditionally, this belt is interpreted as a suture 

between the so-called Inner and Outer Carpathians, marking the original locus of the 

completely subducted eastern segment of the Piemont-Liguria Ocean (also known as 

the Vahic Ocean in the Western Carpathian region [Mahel’, 1981; Plašienka, 1995 a, 

2003]). Several stratigraphic [e.g. Birkenmajer, 1960; 1986] and tectonic studies 
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[Plašienka, 2012 and references therein] have been carried out supporting this 

hypothesis, leading to the definition of a “Pieniny Ocean”. However, this 

interpretation is in contrast with the absence of detritus coming from oceanic 

basement [e.g. Săndulescu, 1988] and the lack of evidence for oceanic lithosphere 

beneath the overriding Inner Carpathian Plate [Malinowski et al., 2013]. The lack of 

geophysical evidence for a subducting slab beneath the Western Carpathians has 

been interpreted as a result of partial break off of a previously continuous slab 

extending to the Eastern Carpathians of Romania [Sperner et al., 2002]. Jurewicz 

[2005] first put into doubt the original presence of oceanic lithosphere beneath the 

Pieniny Basin, suggesting instead the occurrence of thinned continental crust 

between the Outer and the Inner Carpathian domains. Such a scenario would imply 

that the Piemonte-Liguria Ocean originally closed west of our study area, which in 

this case would have represented a wide rifted area floored by thinned continental 

crust during the Mesozoic, giving way to a further oceanic segment to the south (i.e. 

in the Eastern Carpathian area). On the other hand, an ‘Alpine’ perspective, 

emphasizing the eastward continuity of the Austroalpine Nappes into the Inner 

Carpathian Nappes [Schmid et al., 2008], would imply continuity of the Piemonte-

Liguria into the Vahic Ocean and therefore the occurrence of a cryptic oceanic suture 

between the Outer and the Inner Carpathian domains. 

Independent of the undeterminable original occurrence and extent of oceanic 

lithosphere in the study area, a reappraisal of the stratigraphy and sedimentology of 

the PKB is integrated in this paper with the analysis of the tectonic and stratigraphic 

relationships between the Inner and Outer Carpathian successions using a series of 

balanced and restored cross-sections. The proposed tectonic evolution, validated by 

applying suitable algorithms to a 2D forward kinematic model, reproduces thick- and 

thin-skinned thrusting in the Western Carpathians from the Early Cretaceous to the 

present-day. The restoration is carried out independently for the Inner and the Outer 

Carpathian domains, thereby taking into account the possibility of the original 

occurrence and later subduction of oceanic lithosphere between the two domains. To 

constrain the tectonic and thermal evolution during the last 20 Ma, our model also 

integrates new and previously published apatite fission track and apatite (U-Th-

Sm)/He ages. In this way, the progressive evolution of topography as a result of 
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erosion and crustal deformation is effectively taken into account in the sequential 

restoration of balanced cross-sections and related forward modeling, thus providing 

for the first time a comprehensive picture of the tectonic evolution of the area 

extending from the Inner Carpathians of Slovakia to the Outer Carpathian front in 

Poland. 

3.3 Geological setting 

The Central-Western Carpathians are part of a curved orogenic system extending 

from the Danube Valley in Austria to southern Romania (Fig. 3.1). The origin of this 

chain is related to the collision between the European Platform and the Alps-

Carpathians-Pannonia (ALCAPA) and Tisza-Dacia Mega-Units belonging to the 

Adriatic palaeogeographic domain. The northeastward and eastward movement of 

these microplates is generally interpreted as being triggered by the interplay between 

lateral extrusion [Ratschbacher et al., 1991 a, b] and rollback of the subducting slab 

[Sperner et al., 2002]. The closure of the southern branch of the Alpine Tethys 

[sensu Schmid et al., 2008] started in the Jurassic-Early Cretaceous. It involved the 

Dacia Mega-Unit, whereas the Tisza Plate started being affected by shortening 

during the Late Cretaceous [Schmid et al., 2008]. The movement of the ALCAPA 

unit, which shape the Western Carpathians, started during the Late Cretaceous and 

lasted until the Neogene [Sandulescu, 1988; Földvary, 1988]. It led to the 

emplacement of the Western Carpathian accretionary wedge on top of the southern 

margin of the European Platform. The tectonic transport direction changed 

progressively from NW to NE [Csontos and Vörös, 2004 and references therein]. 

This was associated with a diachronous end of thrusting, from ca. 15.5 Ma in the 

Western Polish sector, to 11.5 Ma in the Ukrainian region [Nemčok et al., 2006]. 

Basing on structural and stratigraphic evidences, the Carpathians are subdivided into 

two different tectonic domains [Książkiewicz, 1977]: the Inner Carpathians (IC) and 

the Outer Carpathians (OC). The former are made up of Variscan crystalline 

basement,  
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Figure 3.1:General tectonic map of the Carpathian-Pannonian region. Major tectonic domains 

include: Foredeep, Outer Carpathians, Pieniny Klippen Belt, Inner Carpathians, Dinarides, Eastern 

Alps and areas of volcanic rocks. The Mid-Hungarian fault zone (MHF) separates the ALCAPA and 

Tiza-Dacia Mega Units of the Inner Carpathian domain. 

 

including Paleozoic metamorphic rocks, and its Mesozoic sedimentary cover, that 

was incorporated into a series of thick-skinned thrust sheets (in this paper, the so-

called Western Central Carpathian domain [e.g. Froitzheim et al., 2008] is included 

in the Inner Carpathians for the sake of simplicity). These thrust sheets are 

unconformably overlain by clastic deposits belonging to the Central Carpathian 

Paleogene Basin (CCPB). Early Alpine shortening involved the Inner Carpathian 

zone during the Late Cretaceous [Maluski et al., 1993]. Thrusting caused the uplift of 

the Variscan crystalline basement and the imbrication and subsequent erosion of its 

Mesozoic cover [e.g. Anczkiewicz et al., 2013 and references therein; Janočko et al., 

2006; Roca et al., 1995]. The movement of the Inner Carpathian range toward the N 

and NE produced a flexure of the European Platform and the progressive migration 

of thrusting towards the north, thereby involving the successions deposited in the 

Outer Carpathian sedimentary basin. The Outer Carpathians consist of a fold and 
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thrust belt formed mainly in siliciclastic turbiditic deposits of Upper Jurassic to 

Lower Miocene age [Książkiewicz, 1962, 1977; Bieda et al., 1963; Mahel’ et al., 

1968; Koszarski and Ślączka, 1976], which were deformed since Oligocene times. 

Stratigraphic investigations suggest a diachronous end of thrusting, which is 

younging to the east, although generally ceasing within the Middle Miocene 

[Nemčok et al., 2006]. The Outer and Inner Carpathian realms are separated by a few 

hundreds of meters to twenty kilometres wide zone called the Pieniny “Klippen Belt” 

[Andrusov, 1931, 1938, 1950, 1974; Birkenmajer, 1956 b, 1957c, 1958d, 1960; 1986; 

Birkenmajer and Dudziak, 1988; Plašienka 1995a, b; Plašienka and Mikuš, 2010; 

Roca et al., 1995; Uhlig, 1890]. This belt runs from the Vienna Basin to northern 

Romania and consists of Mesozoic blocks of shallow to deep-water facies embedded 

in a less competent Upper Cretaceous to Paleocene matrix. Some papers suggest the 

occurrence of even younger deposits, such as the Oligocene Myjawa succession 

[Oszczypko et al., 2005]. 

3.4 Main tectono-stratigraphic units of the Western Carpathians 

3.4.1 Outer Carpathians 

The Outer Carpathian accretionary wedge is built by a series of thrust sheets whose 

stratigraphy is well described in term of thickness, lithology, sedimentary features 

and provenance analysis. The thrust sheets are traditionally grouped, based on their 

stratigraphy (see below), into larger tectonic units. These groups of thrust sheets - 

loosely defined as “nappes” in the older literature – include from the innermost to the 

outermost: (i) the Magura, (ii) the Dukla, (iii) the Silesian, (iv) the Subsilesian and 

(v) the Skole units (Fig. 3.2). The usage of these traditional names, essentially 

referring to tectonostratigraphic units, is maintained in this study as they are well 

established in the regional geological literature. In the following, the thrust ramps 

separating these tectonostratigraphic units are indicated with the name of the 

hanging-wall unit (e.g. the Magura Unit thrust is the fault carrying the Magura on top 

of the Dukla and further units, etc.). 

The Outer Carpathian thrust sheets are completely detached from their original 

substratum and involved in Oligocene-Early Miocene thin-skinned thrusting. The 
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Skole Unit, together with the laterally equivalent narrow belt of the Borislav-Pokuttia 

Unit cropping out in the eastern region (Ukraine), is the outermost unit that thrusts on 

top of the Middle Miocene foredeep deposits. These latter deposits are made of 

shallow to deep-water siliciclastic sediments coming from Carpathian chain erosion, 

intercalated with Lower to Middle Miocene evaporitic layers. A general thickening 

(up to 2500 m) of the basin succession towards the south and southwest is recorded, 

mainly due to the flexure of the European Platform during the emplacement of the 

Carpathian accretionary wedge [Krzywiec, 2001 and references therein]. 

Skole Unit 

The Skole Unit extends from the Eastern Polish Carpathians along the whole western 

Ukraine. This succession starts with the Spas Shales, a Lower Cretaceous anoxic 

black shale formation interbedded with thin, laminated siltstones [Kotlarczyk, 1985; 

Kruglov, 2001] that represents the main decollement level for this unit. These 

deposits are followed by a thin layer of red radiolaritic shales, that pass upward to a 

more competent formation (Inoceramian beds) [Kotlarczyk, 1978]. The overlying 

unit is a 1500 m thick siliciclastic turbiditic formation, characterized by abundant 

marly layers in the lower part (Siliceous marls-Biancone type facies), which become 

more calcareous in the central and upper parts of the succession. The oldest deposits 

of this formation are Upper Cretaceous-Paleocene in age and are overlain by green 

clayey shales intercalated with the thin-bedded sandstones of the Hieroglyphic beds 

(Late Paleocene-Middle Eocene). The Eocene sequence terminates with the 

Globigerina marls and is foverlain by the ca. 250 m thick Oligocene bituminous 

shales belonging to the Menilite Fm. The youngest formation of the Skole Unit is the 

Krosno Fm., which consists of thick-bedded calcareous sandstones that become more 

marly and very thin-bedded in the upper part. Its youngest deposits, the so-called 

Upper Krosno beds, are Lower Miocene in age and, together with the Lower Krosno 

deposits, reach 2400 m in thickness [Ślączka et al., 2006]. 

Subsilesian Unit 

The Subsilesian Unit is not continuous across the region, being exposed only in a 

series of tectonic windows. In the western sector of the Polish Carpathians, its 

external part is formed by a sort of mélange, in which Miocene rocks are mixed 
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together with other units (such as the Subsilesian Unit). In the eastern sector this unit 

is known as Węglówka unit, which is placed between the Silesian and Skole Units. 

The oldest deposits consist of Lower Cretaceous euxinic shales intercalated, in the 

upper part, with turbiditic limestones and marls (Cieszyn beds). The Upper 

Cretaceous-Paleocene succession starts with a thin layer of green radiolarian shales 

and radiolarites and become more marly and sandy in the upper part. The occurrence 

of about 700 m of green marls and variegate shales characterizes the Eocene 

succession. The uppermost deposits, as for the adjacent unit, consist of the Oligocene 

bituminous shales of the Menillite Fm. passing upward to the more calcareous 

sandstones and marly shales of the Krosno Fm. 

Silesian Unit 

The oldest deposits belonging to this unit are the Cieszyn Limestones (Tithonian-

Berriasian) [Matyszkiewicz and Słomka, 1994], which only crop out in a few small 

areas of the Western Carpathians. This 250 m thick calcareous flysch [Książkiewicz, 

1960; Peszat, 1967] passes upwards to Lower Cretaceous sandy deposits 

(Grodziszcze ss.) and, higher up, to more shaly ones (Verovice shales, followed by 

Lgota beds). During the Upper Cretaceous to Paleocene, the deposition of up to 2000 

m thick flysch deposits of Godula beds in the inner part of the Silesian Unit is 

intercalated with the deposition of variegate shales. The youngest deposits of the 

Paleocene succession consist in thick-bedded sandstones (Istebna beds) alternated 

with layers of grey shales. The Eocene sediments are very heterogeneous and are 

characterized by several facies variations: thick variegate shale sequence is 

intercalated with sandstones belonging to the Ciężkowice Fm. Eocene sedimentation 

ends with the calcareous sandstones and shales constituting the so-called 

Hieroglyphic beds. The whole sequence is closed by the Globigerina marls and the 

Oligocene Menilite Fm., as it occurs in the neighbor unit. For this reason, both 

formations represent a useful marker for lithostratigraphic correlations. Younger 

deposits also occur in the Silesian unit and belong to the Oligocene-Lower Miocene 

Krosno beds, whose lithology is quite similar to the outer units (calcareous 

sandstones intercalated with shales, increasing its marly content in the upper part 

[Ślączka et al., 2006]). 
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Dukla Unit 

In the Polish region, the base of the succession consists of Upper Cretaceous deposits 

(although older deposits can be found in the Ukrainian region) known as Lupków 

beds [Leško and Samuel, 1968; Ślączka, 1971; Korab and Durkovic, 1978]. These 

beds are made up of dark shales intercalated with thin to thick-bedded calcareous 

sandstones. The Upper Cretaceous sequence is followed by calcareous and/or 

micaceous sandstones belonging to the Cisna beds deposited during the Paleocene. A 

1000 m sequence of thick-bedded sandstones (Hieroglyphic beds), locally 

intercalated with variegate shales, characterizes the Eocene sedimentation. As for the 

previously described units, the Globigerina marls are the uppermost deposits of the 

Eocene sequence, followed by dark bituminous shales belonging to the Menilite Fm. 

and the Cergowa sandstones. This succession passes gradually upward to Lower 

Oligocene calcareous shales intercalated with calcareous sandstones of the Krosno 

Fm., whose maximum thickness reaches ca. 1000 m [Ślączka et al., 2006]. 

Magura Unit 

The Magura Unit is the uppermost thrust sheet of the OC, being bounded by a 

continuous thrust running from the Western to the Eastern Carpathians, across the 

Czech Republic, Slovakia, Poland, Ukraine and Romania. The Magura Unit is 

detached along Aptian-Cenomanian black and green radiolarian shales, which are the 

oldest deposits of the unit. Higher up, Upper Cretaceous variegate shales pass to the 

Inoceramian beds, a thin to massive sandstones and turbiditic succession, that is 

interbedded with dark shales containing submarine slumping and intensely deformed 

layers [Cieszkowski et al., 1987]. The sandy component of this turbiditic succession 

increases laterally in the so-called Szczawnica Fm. [Oszczypko et al., 1990]. These 

deposits become rich of exotic carbonate blocks in their upper part (Jarmuta Fm.; 

Paleocene) [Burtan et al., 1984]. Sedimentation during Middle and Upper Eocene 

changes gradually to shale-rich deposits (Łabowa Fm.). That are interpreted by some 

authors [e. g. Oszczypko 1991] as deposited below the calcite compensation depth. 

These deposits are overlain by sandy units of the Beloveža beds, marly deposits 

belonging to the Łącko Fm. [Jankowski et al., 2012] and, higher up, by the 

Maszkovice Fm. These deposits are partially covered by the Globigerina marls 

(Oligocene) and then by the Menilite and Malcov Fm., consisting of black 
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bituminous shales and thick calcareous sandstone and shales, respectively 

[Jankowski et al., 2012]. 

3.4.2 Pieniny “Klippen Belt” 

The Pieniny “Klippen Belt” (PKB) is a fanlike structure separating the OC and the 

IC tectonic domains. Several publications on the geology of the PKB come out in the 

past fifty years, which described the belt as either a tectonic mélange [e.g. Roca et 

al., 1995] or as a “wildflysch” [Plašienka and Mikuš, 2010]. The PKB includes rocks 

from the Triassic to the Lower Eocene. Triassic deposits, although not very common 

within the PKB, have been found as mega-blocks in the Pieniny Mts. (Haligowce 

Series) and in the western part of Slovakian PKB [Andrusov, 1950]. They consist 

mainly of dolomites and dolomitic limestones. Jurassic sediments include clastic 

(partly conglomeratic) deposits, passing upward to a more deep-water facies. 

Crinodal limestones followed by red radiolarian cherts and nodular limestones 

characterized the depositional environment from the Middle to the Upper Jurassic 

[Birkenmajer, 1960]. Triassic and Jurassic deposits together with Lower Cretaceous 

marls, flyschoid sediments and, locally, cherty limestones, occur in the PKB as 

mega-blocks (Milpoš Breccia) [Plašienka and Mikuš, 2010]. Birkenmajer, [1956 b] 

documented for the first time the southern provenance of these blocks, later 

confirmed by Roca et al. [1995]. This latter study also point out their similarity with 

the facies outcropping in the Inner Carpathian domain (although the uncommon 

occurrence of Triassic rocks within the PKB must be emphasized). The above-

described Mesozoic olistoliths are surrounded by an intensely deformed matrix 

consisting of Upper Cretaceous-Paleogene shales, sandstones and marls (also known 

as Klippen mantle [Birkenmajer, 1960]). Basalt olistoliths and metamorphic pebbles 

of Jurassic blueschists have also been found in the PKB successions [Dal Piaz et al., 

1995] and are interpreted to come from the Meliata-Maliac oceanic suture located 

south of the Inner Western Carpathians [Schmid et al., 2008]. This interpretation is in 

contrast with the hypothesis of an oceanic domain originally interposed between the 

Inner and the Outer Carpathians (i.e. an eastern prolongation of the Piemonte-Liguria 

Ocean). Sedimentological investigations highlight the occurrence of syn-tectonic 

submarine slumping in the less competent matrix, which is intercalated with 
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fragment of Jurassic and Lower Cretaceous deposits [Birkenmajer, 1960; Plašienka, 

2012]. The occurrence of different tectonic units within the PKB has been postulated 

and correlated with distinct pre-shortening palaeogeographic domains. Simplifying, 

the shallow-water deposits have been associated to two distinct ridges: the Czorsztyn 

Ridge, originally separating the Magura basin from the Pieniny basin, and the 

Andrusov Ridge, originally located between the Pieniny basin and the innermost 

Manín basin [Birkenmajer, 1986]. A progressive change of facies occurs from the 

shallow-water to the Middle-Upper Jurassic deep-water deposits belonging to the 

basins originally interposed between the above-mentioned ridges. The Jurassic 

sequence is conformably overlain by Lower Cretaceous marls and Upper Cretaceous 

flysch deposits [see Birkenmajer, 1986 for details]. The youngest deposits are 

represented by the clastic sediments of the Jarmuta Fm. 

3.4.3 Inner Carpathians 

South of the PKB, the IC (here including the Central Western Carpathians) represent 

the inner part of the study area. Shortening in this IC started during the Early 

Cretaceous [Voigt and Wagreich et al., 2008], involving the IC s. s. (Tatra Mts and 

Podhale regions) during the Late Cretaceous [Sandulescu, 1988; Rakús et al., 1990]. 

This early-alpine phase led to the imbrication of several nappes made up of Variscan 

basement rocks and Permian to Turonian deposits [Roca et al., 1995]. These nappes 

are unconformably overlain by the Paleogene deposits of the Central Carpathian 

Paleogene Basin (CCPB), later affected by the Late Miocene extensional tectonics. 

Central Carpathian Paleogene Basin 

This basin extends throughout the Inner Western Carpathians realm, being filled by 

Paleogene flysch-like deposits. It is composed of several minor basins, such as the 

Orava Basin, Podhale and Liptov Basins, and the Poprad Depression, all of them 

characterized by a similar sedimentary infill. The regional unconformity defining the 

bottom of this basin is overlain by Eocene to Oligocene [Gross et al., 1993; Samuel 

& Fusan, 1992] or even Early Miocene deposits [Olszewska & Wieczorek, 1998; 

Sotak, 1998a,b; Spisiak et al., 1996]. The lowermost succession consists in 

conglomerates, poorly sorted sandstones and boulder-bearing breccias [Filo & 

Siranova, 1998] that are overlain by the Szaflary beds (representing the equivalent to 
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the “Nummulite Eocene” transgression). The hemipelagic Globigerina marls lie on 

top of this transgressive sequence which is covered by the lower member of the 

Zakopane beds (Huty Formation sensu Gross et al., [1984]). These beds are 

predominantly characterized by thin-bedded claystones and mudstones intercalated 

with thin-bedded sandstones and “Menilite-type” shales. The sandy component 

increases upward into the Lower Oligocene Chochołow beds and becomes relevant 

in the upper part of this formation, where it is also intercalated with thin tuff layers. 

The Upper Oligocene-Lower Miocene Ostrysz beds are the youngest deposits of the 

CCPB and are made up of thick-bedded sandstones intercalated with mudstones and 

claystones. 

The Variscan basement and its cover 

Pre-Paleogene successions crop out in the northern Inner Carpathian domain as 

isolated mountain massifs within the widespread Paleogene succession belonging to 

the CCPB. Several boreholes and seismic lines reveal the occurrence of both 

sedimentary cover and basement-cored nappes below the CCPB deposits. The 

Variscan basement is composed of metamorphic and granitoid rocks, overlain by 

Cambrian to Carboniferous volcano-sedimentary deposits [Hovorka et al., 1994]. In 

the Tatra region, the Mesozoic cover consists of Lower Triassic clastic continental 

deposits [Roniewicz, 1959; Dżułyński & Gradziński, 1960] followed by Middle 

Triassic sabkha and shallow water limestones intercalated with dolomitised layers 

[Jaglarz & Szulc, 2003]. The Triassic succession ends with variegated shales and 

evaporites intercalated with dolomite and sandstone beds of the Keuper Fm. 

[Prokešová et al., 2012], which has similar facies to those outcropping as mega-

blocks in the PKB [Andrusov, 1931, 1938]. Higher up, the Jurassic sequence starts 

with sandy crinoidal limestone that passes upward into silicified radiolarian 

limestone and radiolarian cherts of Middle Jurassic age. A thin layer of limestone 

and gray marls closes the Upper Jurassic sequence, which is overlain by Lower 

Cretaceous marls and cherty limestones. The clastic supply increases during the 

Upper Cretaceous, where formations are characterized by sandstones and claystones 

[Janočko et al., 2006]. The above-described (so-called “High-Tatric”) Mesozoic 

autochthonous sedimentary cover of the Tatra basement is tectonically overlain by   
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Figure3.2:Chrono-stratigraphic chart of the main tectonic units of the Polish-Slovakian 

Carpathians. All statigraphic columns are aligned to the same isochronous horizon, the Menilite 

Fm. (‘M’). Lithological description and average thickness of each formation are based on 

published data (see text for details). The Tatra stratigraphic column represents a simplification of 

the autochthonous succession [Uchman, 2004]. The Pieniny column is made accordingly to the 

Czorsztyn Unit description by Voigt and Wagreich et al., [2008]. All formations are grouped into 

horizons of similar age. This subdivision has been used in the construction of the geological cross-

sections. 
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the Sub-Tatric nappes (Križna and Choč nappes) [Kotański, 1963a]. The sedimentary 

succession of the Sub-Tatric nappes, which were thrusted northward during the 

LateCretaceous orogenic event, differs from the autochtonous cover and represents in 

general more basinal facies. 

3.5 Structural modeling 

Several balanced and restored cross-sections have been constructed across the 

Western Carpathians [Behrmann et al., 2000; Gągała et al., 2012; Morley, 1996; 

Nemčok et al., 1999, 2000, 2001, 2006a; Roca et al., 1995; Roure et al, 1993] in 

order to provide a geometrically valid interpretation for the structures building the 

mountain belt. Most of them [Behrmann et al., 2000; Gągała et al., 2012; Morley, 

1996; Nemčok et al., 1999, 2000, 2001, 2006a] only include the Outer Carpathians in 

the restoration and, except for Gągała et al. [2012], do not include a 2D kinematic 

model validating the balanced cross-sections and explaining their structural 

evolution. 

In this study, three balanced and sequentially restored geological sections are 

constructed across the Western Carpathians (Fig. 3.3) using Move, a software 

developed by Midland Valley Exploration Ltd. and dedicated to cross-section 

building and restoration.  
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Figure 3.3: Schematic map of the Polish-Slovakian Carpathians showing the main tectonic units and 

the location of the section traces. Profile III has been offset into two segments following the borehole 

data. Tectonic windows (in grey) are exposures of the Dukla Units (cropping out extensively more to 

the southwest). 

Our own field data integrated with published datasets and geological maps allowed 

us to constrain the surface geology and the geometry of deep structures. Flexural slip 

restoration coupled with 2D forward kinematic modeling is performed in order to 

check the geometries of the tectonic structures and then validate the cross-sections 

and the tectonic scenario. Syn and post-tectonic erosion has been simulated, taking 

into account published low-temperature thermochronometric data including apatite 

fission track and apatite and zircon (U-Th-Sm)/He ages integrated with new cooling 

ages from the PKB. 

The balanced sections have been constructed across the Polish and Slovakian 

Carpathians from the foreland basin across the Outer Carpathian accretionary wedge 

and the PKB, to the Inner Carpathian range. Surface data come from 1:200000 scale 

geological maps [Nemčok and Poprawa, 1988, 1989; Jankowski et al., 2004; Polák, 

2008], 1:50000 scale geological maps [Nemčok et al., 1994], and our own fieldwork, 

which allowed us to increase the number of dip data and reinterpret some tectonic 

contacts [see also Mazzoli et al., 2010]. The thickness of the successions are well 

constrained by geological maps, where both stratigraphic contacts and dip data are 

shown, boreholes (Bańska PIG-1, Borzęta IG-1 [Marciniec and Zimnal, 2006], 
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Chabówka-1, Obidowa IG-1, Tokarnia IG-1 [Wójcik et al., 2006], Nowy Targ PGI-1 

[Paul and Poprawa, 1992], Zakopane IG-1 [Sokołowski, 1973] and 2 for profile I; 

Przybyszówka-1 and 2; Rzeszow-1, 2 and 3; Mogielnice-1; Babica-1, Czarnorzeki-1, 

Zboiska 3 interpreted by Nemčok et al. [2006], Zborov-1 interpreted by Nemčok et 

al. [2000], Lipany-2 from Soták et al. [2001] and Smilno-1 [Behrmann et al., 2000] 

for profile II; and Jaksmanice-10 and 26, Leszczyny-1, Bykowce-1; Strachocina-52, 

Mokre-102 [from Gągała et al., 2012 and references therein], Hanušovce-1 

[Behrmann et al., 2000] Kuźmina-1 [Malata and Żytko, 2006], Paszowa-1 [Semyrka, 

2009] and Prešov-1 [Čverčko, 1975] for profile III) and published information 

[Ludwiniak, 2010; Janočko et al., 2006; Nemčok et al., 2000; Oszczypko et al., 2006; 

Ślączka et al., 2006]. The geometries of the main tectonic structures have been 

constrained using seismic lines already interpreted in previous works [e.g. Dziadzio 

et al. 2006; Gagała et al., 2012 and referces therein; Oszczypko et al., 2006]. These 

data will be described later for each cross-section. The deep architecture of the 

basement has been traced taking into account the magnetotelluric survey carried out 

by Stefaniuk, [2006]. Basement morphology is generally controlled by ENE-WSW 

trending normal faults downthrowing to the south in the western part of the study 

area, and NW-SE trending normal faults generally lowering the basement to the 

southwest. Strike-slip faults offset the main basement structures forming a 

framework in which isolated horsts are surrounded by structural depressions. 

Magnetotelluric studies, such as that by Ernst et al. [1997] suggest also that the Tatra 

crystalline basement is detached and underlain by a layer of low resistivity 

sedimentary rocks. Evidence of reverse-slip reactivation of inherited basement 

normal faults has been documented in some geologic cross-sections and seismic lines 

[Oszczypko et al., 2006], where Jurassic deposits lay on top of Cretaceous sediments. 

The occurrence of inversion anticlines [Hayward and Graham, 1989] in Miocene 

deposits overlying these normal faults suggest a late inversion affecting the 

basement, which postdates the emplacement of the Carpathian thrust and fold belt. 

The depth and geometry of the sole thrust is constrained by available seismic lines 

and already interpreted geological sections. We applied equal area calculation 

[Chamberlin, 1910, 1919] in order to calculate the depth of the décollement surface 

where it is not constrained. Although several lithostratighraphic units were 
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recognized in different pre-shortening sedimentary basins, they are characterized by 

the similar lithologies with variable sandstone/shale ratio. For the purpose of this 

work, we group in the same horizon all those lithostratigraphic units deposited during 

the same time interval. The Upper Cretaceous-Paleocene horizon has been used as 

regional datum for the restoration. 

Once the cross-sections are constructed, flexural slip restoration was performed. This 

restoration is based on minimum shortening and area conservation assumptions. Each 

thrust sheet has been unfolded individually using the flexural slip algorithm. The pin 

line has been traced parallel to the axial plane of the folds. Once unfolded all the 

thrust sheets and minimized the gaps and/or the overlaps between them, they have 

been re-folded back to their original position in the cross-section using the Upper 

Cretaceous-Paleocene horizon as a template. The re-folding allow to fix the 

geometric inconsistencies in the cross-sections and prepare the section for the 

sequential restoration. 

3.5.1  Sequential restoration and 2D forward modeling. 

Flexural-slip restoration has been performed in order to prepare the sections for 

sequential restoration. The structures have been restored taking into account the 

timing of deformation provided by stratigraphic studies of syn-tectonic deposits and 

the relationships among the tectonic structures. We applied a vertical simple shear 

algorithm for listric normal fault restoration in order to deform back the hanging wall 

along faults with a well-constrained geometry. On the other hand, the fault parallel 

flow algorithm is best suitable for reverse restoration in shortening settings. Both 

these algorithms preserve bed area and length. The flexural slip algorithm was also 

applied to simulate the flexure of the downgoing plate. The undeformed section 

resulting from the sequential restoration has then been deformed forward in time 

(from the Ealy Cretaceous to the present-day) in order to validate our structural 

interpretation and define the structure of the eroded successions. Constraints on the 

maximum burial and exhumation history have been obtained by thermal modeling 

based on low-temperature thermochronometric data (apatite fission track and apatite 

and zircon (U-Th-Sm)/He ages) including both new (Table 1) and published data 
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[Anczkiewicz et al., 2013, Andreucci et al., 2013; Zattin et al., 2011 and reference 

therein]. 

Table 1: Overview of the AFT and AHe age 

  Sample Latitude Longitude Elevation 

(m) 

Depositional age  AHe w.m.a. 

± 1σ                                  

(Ma) 

AFT central 

age ±1σ                      

(Ma) 

Mean 

confined 

track 

length ± SD 

(μm) 

  

  PL 72 49.32298 19.53182 586 Late Cretaceous - Paleocene 7.95 ± 0.14 45.80 ± 7.70 10.21 ± 2.58   

  PL 75 49.31235 19.48207 570 Late Cretaceous - Paleocene 8.11 ± 0.09 8.80 ± 1.70     

  PL 82 49.30322 20.79382 608 Late Cretaceous 11.63 ± 0.11 49.80 ± 7.10 10.15 ± 1.85   

  PL 86 49.42570 20.44130 423 Eocene 10.50 ± 0.12 10.50 ± 2.90     

  PL 87 49.40512 20.53657 569 Late Cretaceous - Eocene 8.62 ± 0.15 13.30 ± 1.80     
                            

 

3.6 Low-temperature thermochronometric data 

Several low-T themochronometric datasets are available for this study area 

[Anczkiewicz 2005; Anczkiewicz et al., 2005, 2013; Andreucci et al., 2013; Burchart, 

1972; Danišík et al., 2010, Král’, 1977; Králiková et al., 2014a, b; Struzik et al., 

2002; Śmigielski et al., 2012; and data herein]. For the IC s. s., apatite fission track 

(AFT) and apatite (U-Th)/He (AHe) data suggest that the last cooling event is not 

older than 15 Ma for both the crystalline massifs and the Paleogene deposits of the 

CCPB [Anczkiewicz 2005; Anczkiewicz et al., 2005, 2013; Danišík et al., 2010 and 

references therein; Śmigielski et al., 2012]. In some particular cases, such as the Tatra 

Mts., the Middle/early Late Miocene exhumation is locally controlled by the Sub-

Tatric normal fault [Králiková et al., 2014a]. On the other hand, the OC experienced 

an older cooling history (20-15Myr) in their western side, associated with 

emplacement of the OC accretionary wedge; whereas in the eastern region the 

tectonic unroofing triggered by low-angle normal faults is the main cause of the 

younger exhumation (less than 10 Myr) [Andreucci et al., 2013]. To complete frame 

of the cooling ages, we provide new low-temperature thermochronometric data 

belonging to the PKB to constrain the timing of cooling of these deposits. 

The AFT and AHe datasets available for the study area integrated with our new data 

from the PKB are represented in Fig. 3.4.  
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Figure 3.4: Schematic map of the Polish-Slovakian Carpathians showing the spatial distribution and 

of our new and published samples. AFT central ages and AHe weighted mean ages are indicated for 

each sample. 

  



59 
 

3.6.1 New thermochronometric data from the PKB 

New AHe and AFT analyses were applied to five samples collected from siliciclastic 

sandstones and siltstones of the PKB (Fig. 3.5).  

 

 

Figure 3.5: Schematic geologic map of the Podhale-Tatra region showing the location of the sampling 

area along the Pieniny Klippen Belt. 

 

AHe analysis was performed at the Radiogenic Helium Dating Laboratory of the 

University of Arizona (Tucson), using the procedures described in Reiners et al. 

[2004]. Intact, euhedral, inclusions and coating free apatite crystals, with the smallest 

dimension ≥ 60 µm, were preferably selected, handpicked and measured for alpha-

ejection correction using the methods described in Farley [2002]. In several cases no 

apatite crystal meeting the criteria listed above was found and slightly abraded, 

slightly coated or small-inclusion bearing crystals had to be picked. However, no 

major effect on AHe dates is expected from small inclusions [Vermeesch et al., 

2007], and it is in general possible to detect and limit the contingent effect of 

abrasion and coating [Spiegel et al., 2009; Andreucci et al, 2013]. Therefore, slightly 

flawed crystals were analyzed relying on their minor and/or detectable and 

interpretable impact on dates. 
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Single crystals were loaded into 0.8 mm Nb tubes, and degassed under vacuum by 

heating with a Nd-YAG laser. The concentration of 
4
He was determined by 

3
He 

isotope dilution and measurement of the 
4
He/

3
He ratio through a quadrupole mass 

spectrometer. U, Th and Sm concentrations were obtained by isotope dilution using 

an inductively coupled plasma mass spectrometer. 

AFT analysis was performed at the FT laboratory of the University of Padua. A CN5 

glass was used to monitor neutron fluence during irradiation at the Oregon State 

University Triga Reactor (Corvallis, USA). Central age calculation [Galbraith and 

Laslett, 1993] was performed with the Radial Plotter software [Vermeesch, 2009]. 

Chi-square (χ
2
) testing assessed the homogeneity of age populations: a population is 

considered homogeneous for P(χ
2
) higher than 5%. Mean Dpar of single crystals was 

measured and used as a kinetic parameter. For each sample track densities and length 

were measured from 20 grains (where possible). 

AHe and AFT dates and AFT length data were used to model, for each sample, 

envelopes of admissible time-temperature paths, using the HeFTy software 

[Ketcham, 2005]. Timing and rates of cooling obtained by thermal modeling were 

used, in turn, to constrain the structural model in the last 20 Myr. 

3.6.1.1 AHe results 

Five replicates were dated for each sample, as shown in Table 2. 

Corrected ages range between 6.0 and 49.6 Ma, most of them clustering around 12 

and 6 Ma, being younger than depositional ages. The data dispersion among single 

crystal dates of the same sample is comprised between 20 and 91%. Each sample has 

minimum ages of 6-9 Ma (1-3 over 5 grains per sample), well-matching the AFT 

central ages, being 2-4 Myr older. This dataset indicates a very high degree of reset, 

although incomplete, as shown by the old outlier ages recorded by some crystals . 
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Table 2: Apatite (U-Th-Sm)/He analytical data. Crossed fields indicate crystals that were considered not reliable and therefore discarded. See the text for details on the reasons for discarding crystals. W.m.a. stands for weighted mean dates: this was 

calculated using only the youngest crystals (<12 Ma), the corrected dates that were not involved in the calculation of this parameter are indicate by *. 

Sample  Replicate Th/U 
Raw date 

(Ma) 

1s ± date 

(Ma) 
Ft (238U) Ft (235U) Ft (232Th) Ft (147Sm) Rs (um) 

corr date 

(Ma) 

1s ± date 

(Ma) 

1s ± date 

% 

w.m.a. 

(Ma) 

w.m.a. err. 

(Ma) 
eU  (ppm) 

eU w/ Sm 

(ppm)  
 U  (ppm) 

dU  

(ppm) 

Th  

(ppm) 

dTh  

(ppm) 

Sm  

(ppm) 

dSm 

(ppm) 

4He/g 

(nmol) 

d4He/g  

(ppm) 

  13A156_AC_PL72_Ap1 4.19 6.63 0.35 0.66 0.62 0.62 0.89 41.40 10.32 0.54 5.22     44.83 45.65 22.87 0.34 93.42 1.35 195.52 2.84 1.62 0.08 

  13A157_AC_PL72_Ap2 8.02 4.98 0.10 0.67 0.63 0.63 0.89 42.38 7.74 0.16 2.07 7.95 0.14 27.32 27.62 9.62 0.15 75.29 1.07 81.16 1.23 0.74 0.01 

PL 72 13A158_AC_PL72_Ap3 2.73 10.58 0.24 0.73 0.69 0.69 0.91 52.66 14.78* 0.34* 2.28     0.10 0.10 0.06 0.00 0.16 0.00 0.41 0.01 0.01 0.00 

  13A159_AC_PL72_Ap4 1.49 40.16 0.63 0.61 0.56 0.56 0.87 35.27 66.76* 1.06* 1.59     127.83 130.98 95.35 1.37 138.21 2.01 698.47 10.22 27.99 0.32 

  13A160_AC_PL72_Ap5 1.04 17.23 0.33 0.65 0.61 0.61 0.89 40.01 26.71* 0.51* 1.91     109.20 111.19 88.20 1.26 89.39 1.29 441.43 6.37 10.22 0.16 

  13A161_AC_PL75_Ap1 2.63 8.18 0.19 0.90 0.89 0.89 0.97 153.40 9.12 0.22 2.36     1.61 1.64 1.00 0.01 2.58 0.04 7.36 0.11 0.07 0.00 

  13A162_AC_PL75_Ap2 6.82 7.88 0.14 0.72 0.69 0.69 0.91 51.38 11.24 0.20 1.79     67.95 69.09 26.51 0.38 176.33 2.51 280.91 4.06 2.92 0.04 

PL 75 13A163_AC_PL75_Ap3 7.53 4.59 0.11 0.66 0.61 0.61 0.89 40.48 7.27 0.17 2.32 8.11 0.09 50.64 53.00 18.59 0.27 136.40 1.94 530.84 7.63 1.28 0.03 

  13A164_AC_PL75_Ap4 14.36 4.92 0.22 0.68 0.63 0.63 0.89 43.07 7.65 0.33 4.38     52.98 53.58 12.35 0.18 172.90 2.48 165.29 2.48 1.42 0.06 

  12A165_AC_PL75_Ap5 11.44 4.47 0.10 0.66 0.62 0.62 0.89 40.99 7.08 0.15 2.16     46.54 48.20 12.86 0.18 143.33 2.05 383.06 5.51 1.14 0.02 

  13A166_AC_PL82_Ap1 16.00 8.30 0.15 0.75 0.72 0.72 0.92 58.38 11.36 0.21 1.83     29.46 31.33 6.31 0.09 98.50 1.41 418.65 6.08 1.35 0.02 

  13A167_AC_PL82_Ap2 2.80 6.82 0.30 0.60 0.55 0.55 0.87 33.65 11.76 0.52 4.40     42.21 44.60 25.71 0.37 70.24 1.02 523.69 8.02 1.58 0.07 

PL 82 13A168_AC_PL82_Ap3 5.82 5.18 0.12 0.58 0.53 0.53 0.86 32.53 9.31 0.21 2.24 11.63 0.11 45.67 47.30 19.57 0.29 111.08 1.60 370.20 5.40 1.30 0.03 

  13A169_AC_PL82_Ap4 2.01 36.57 0.63 0.75 0.71 0.71 0.92 56.40 49.60* 0.85* 1.72     13.82 14.49 9.46 0.14 18.53 0.26 147.49 2.18 2.77 0.04 

  13A170_AC_PL82_Ap5 1.40 8.38 0.13 0.71 0.67 0.67 0.91 49.39 11.86 0.19 1.58     64.32 68.40 48.70 0.69 66.49 0.95 880.74 12.80 2.96 0.03 

  13A176_AC_PL86_Ap1 2.88 7.20 0.42 0.66 0.62 0.62 0.89 41.52 11.12 0.65 5.86     56.58 58.16 34.10 0.49 95.65 1.37 356.40 5.13 2.22 0.13 

  13A177_AC_PL86_Ap2 14.52 8.05 0.23 0.70 0.66 0.66 0.90 47.49 11.97 0.34 2.80     59.34 60.08 13.72 0.20 194.15 2.79 199.16 2.88 2.61 0.07 

PL 86 13A178_AC_PL86_Ap3 41.56 6.82 0.11 0.70 0.66 0.66 0.90 46.77 10.29 0.17 1.62 10.50 0.12 92.04 92.75 8.75 0.13 354.44 5.04 225.99 3.33 3.42 0.04 

  13A179_AC_PL86_Ap4 27.64 4.97 0.17 0.67 0.63 0.63 0.89 42.20 7.85 0.27 3.38     39.94 40.54 5.45 0.10 146.78 2.09 158.06 2.28 1.08 0.03 

 13A180_AC_PL86_Ap5 4.01 10.00 0.27 0.60 0.54 0.54 0.87 33.55 17.52* 0.48* 2.74   125.88 126.92 65.62 0.95 256.43 3.67 274.70 4.12 6.84 0.17 

  13A181_AC_PL87_Ap1 5.14 5.98 0.17 0.71 0.67 0.67 0.91 48.54 8.67 0.24 2.79     19.24 19.90 8.83 0.13 44.27 0.64 151.16 2.20 0.63 0.02 

  13A182_AC_PL87_Ap2 6.16 12.26 0.44 0.69 0.65 0.65 0.90 45.31 18.36* 0.66* 3.61     29.23 30.44 12.12 0.17 72.83 1.06 272.48 4.04 1.97 0.07 

PL 87 13A183_AC_PL87_Ap3 7.60 4.39 0.27 0.75 0.72 0.72 0.92 58.07 6.00 0.36 6.04 8.62 0.15 6.19 6.32 2.26 0.04 16.74 0.24 29.14 0.49 0.15 0.01 

  13A184_AC_PL87_Ap4 2.10 5.84 0.18 0.74 0.71 0.71 0.92 55.83 7.97 0.25 3.10     23.94 24.50 16.16 0.23 33.12 0.48 126.13 1.88 0.76 0.02 

  13A185_AC_PL87_Ap5 7.84 8.28 0.44 0.75 0.71 0.71 0.92 56.64 11.42 0.61 5.35     16.35 16.63 5.84 0.08 44.68 0.64 69.90 1.04 0.74 0.04 
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Analytical data are in general acceptable. However, four grains with suspiciously old 

dates (with respect to both the overall minimum ages and weighted mean sample 

ages) and critically high or low analytical values (He < 1 mole/g and U < 5 ppm) 

were not accounted for in the discussion, and are shown in Tab.2 as crossed fields 

(PL 72_3; PL 72_4; PL 72_5; PL86_5). 

One crystal belonging to sample PL 75, with exceptionally low He content (< 0.1 

nmol), was also discarded, in spite of the acceptable crystal features and the age 

falling within the range of minimum and mean ages (PL 75_1). 

3.6.1.2 AFT results 

The results of AFT dating are presented in Table 3 and in the radial plots of Fig. 3.6.  

Table3: Apatite fission track analytical data*. 

  Sample 
No. of 

crystals 
Spontaneous            Induced 

P(χ)2       

(%) 
Dosimeter 

Age ± SE 

(Ma) 

Mean 

Dpar ± SD 

(μm) 

Minimum 

age ± SE 

(Ma) 

No. of 

confined 

tracks 

Mean 

confined 

track 

length ± SD 

(μm) 

      rs Ns   ri Ni   rd Nd           

                                

  
 

PL 72 

 

20 2.28 167 
  

12.36 906 0.2 11.15 4798 

 

45.8 ± 7.7 

 

1.19 ± 0.10 

 

38.1 ± 4.7 

 

16 

 

10.21 ± 2.58 

  

 

PL 75 7 1.18 32   31.09 839 64.4 11.69 4798 8.8 ± 1.7 

 

1.25 ± 0.19       

  

 

PL 82 20 5.76 432   25.42 1906 0.0 11.73 4798 49.8 ± 7.1 

 

1.34 ± 0.18 16.6 ± 6.9 31 10.15 ± 1.85 

  

 

PL 86 8 0.59 15   12.15 311 51.0 11.07 4798 10.5 ± 2.9 

 

1.25 ± 0.47       

  

 

PL 87 20 1.65 160   30.02 2917 11.4 11.86 4798 13.3 ± 1.8 

 

1.49 ± 0.18       

  
  

                            

 

*Central ages calculated using dosimeter glass CN5 and z-CN5=396.08±2.9 and the sofwtare TrackKey vers. 4.2 [Dunkl, 

2002]. rs: spontaneous track densities (x 105 cm-2) measured in internal mineral surfaces; Ns: total number of spontaneous 

tracks; ri  and rd: induced and dosimeter track densities (x 106 cm-2) on external mica detectors (g=0.5); Ni and Nd: total 

numbers of tracks; P(χ2): probability of obtaining χ2-value for n degrees of freedom (where n=number of crystals-1); a 

probability >5% is indicative of an homogenous population. Minimum age is the peak age of the youngest age population 

obtained for partially reset samples using the BINOMFIT software (Brandon 1992). Sample preparation: Apatite grains were 

separated using heavy liquids and magnetic separation techniques. Mounts of apatite in epoxy were polished and then etched 

with 5M HNO3 at 20°C for 20 s to reveal spontaneous fission tracks. Samples were then irradiated with a CN5 dosimeter in the 

reactor at the Radiation Center of Oregon State Univ. with a nominal neutron fluence of 9x1015 n cm-2. After irradiation 

induced fission tracks in the low-U muscovite detector were revealed by etching with 40% HF at 20°C for 45 min. Samples 

were analyzed with a Zeiss Axioskop microscope equipped with a digitizing tablet and drawing tube and controlled by the 

program FTStage 3.11 (Dumitru, 1993). FT ages were calculated using the external-detector and the zeta-calibration methods 

with IUGS age standards and a value of 0.5 for geometry correction factor. χ2 test was used to detect whether the data sets 

contained any extra-Poissonian error. 

 

Up to twenty grains per sample could be analyzed; the chi-square test indicates a 

variable spread (dispersion of 0 to 40%) of single grain ages, ranging between 245 
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and 3 Ma. The average Dpar (diameter of etch figures parallel to the crystallographic 

c-axis, [Ketcham et al., 1999]) of the samples ranged between 1.19 and 1.49 μm. 

Measurement of track lengths was possible on samples PL 72 and PL 82 (16 and 31 

tracks per sample, respectively). Of the five analyzed samples, PL 72 and PL 82 

show a partial reset of the AFT system after sedimentation (part of the single grain 

ages older or as old as sedimentary age, high age dispersion); PL 87 show an almost 

complete reset (all the dates are younger than the sedimentary age but the age-

dispersion is elevated (20%); PL 75 and PL 86 show a complete reset (very 

reproducible single grain dates, all younger than the sedimentary age). However, we 

point out that in these last samples very few grains could be used for track-counting 

due to the low spontaneous track density. The central ages of reset samples (included 

PL 87) range between ca. 9 and 13 Ma. 

3.6.2 Thermal Modeling 

Using the AFT and AHe single grain ages and AFT track lengths, where available, 

thermal modeling was performed by means of the HeFTy software [Ketcham, 2005] 

(Fig. 3.7).Due to AHe age dispersion, only the youngest AHe dates were used for 

modeling (1-3 crystals per sample). For the AFT partially reset samples (PL 72 and 

PL 82), the maximum post-depositional burial temperature was constrained at 70-

85°C; for sample PL 87 (high but incomplete degree of AFT reset), a maximum 

burial of 90-100°C was imposed; whereas for samples PL 75 and PL 86, a burial 

temperature range of 85-120°C was imposed (almost complete AFT reset). All Tt 

paths in Fig. 3.7 show thermal histories characterized by a last cooling event starting 

at 10 Ma. No maximum values for cooling rates were imposed. Thermal models 

point out a prolonged (tens of Myr) stay in the AFT and AHe Partial Retention 

Zones, cooling down at an average rate of 25 °C/Myr between ca. 10 Ma and the 

present-day. Details on the parameters used for modeling can be found in the caption 

of Fig. 3.7. 
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Figure 3.6: Radial plots for AFT samples whose depositional age is indicated by grey area. 

Standard deviation in single grain age and standard error are indicated in horizontal and 

vertical axis, respectively. The RadialPlotter software [Vermeesch, 2009] has been used to 

determine the central age. 
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Figure 3.7:Thermal modeling showing the evolution of the Pieniny foreland basin deposits. The black 

line is the best-fitting path, the light and dark gray area indicate the good path envelope and the 

acceptable path envelope. Modeling has been performed with the HeFTy software [Ketcham, 2005]. 

Temperatures between 0 and 20°C were applied during the period corresponding to the stratigraphic 

age interval. 
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3.1 Balanced cross sections 

The section traces have been chosen to be roughly parallel to the tectonic transport 

direction, established by the orientation of the major faults. This choise is aimed to 

avoid major out-of-plane movement that cannot be restored in 2D. The main issue 

with this assumption (no out-of plane movement) is represented by the evidence for a 

strike-slip component of displacement along the northern boundary of the PKB [e.g 

Birkenmajer, 1983]. This strike-slip motion, roughly normal to the main thrust 

transport direction, implies the occurrence, along the PKB, of a lateral discontinuity 

in our balanced and restored profiles. However, the amount of strike-slip 

displacement is probably minor at the scale of our cross-sections, as the PKB forms 

an arcuate structure (Fig. 3.1) that is unlikely to represent a major wrench fault with 

consistent strike-slip kinematics all along its roughly semicircular trace. It is worth 

noting that the arcuate shape of the PKB follows that of the whole Western Outer 

Carpathian belt, which has been documented by paleomagnetic studies as having 

suffered only minor or no tectonic rotations around a vertical axis (therefore it did 

not result by bending of a formerly rectilinear belt [Szaniawski et al., 2012]). 

However, contrasting lateral shear senses have been documented along the PKB, 

which was first described as sinistral by Birkenmajer [1986] and later as dextral by 

Jurewicz [2000 a, b]. The occurrence of contrasting kinematic indicators is consistent 

with heterogeneous strain produced by shortening and general northward thrusting of 

the block-in-matrix assemblage constituting the arcuate PKB, rather than large-scale 

rotation of the Inner Carpathian plate which is implied by a major, consistent strike-

slip motion along the belt. 

The balanced cross-sectionlines are located in Fig. 3.3, and shown in Fig. 3.8, 3.9 

and 3.10. 

3.1.1 Profile I 

The profile I (Fig. 3.8a) runs across the Western Polish Carpathians to Slovakia, 

from Krakow to the Liptov Basin, south of the Sub-Tatra fault. It is almost N-S 

oriented and normal to the main tectonic structures. The deep architecture of the 

basement is characterized by several semi-grabens bounded by south-dipping 
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Mesozoic normal faults in the area beneath the foredeep deposits and the outer part 

of the Magura Unit. The uncertainties in the interpretation of these structures 

increase with depth, where the position and the orientation of the tectonic structures 

involving the basement derive from the restoration of the younger successions in 

their original pre-shortening position. In the outer sector, the Jurassic deposits 

covering the basement are unconformably overlain by the Miocene molasse 

sediments. This unconformity is the result of the Austroalpine phase (so-called 

“Laramian” inversion in the Carpathian literature [Roure et al., 1993]), which led to 

the erosion of the Cretaceous cover of the basement and the exposure of the 

underlying Jurassic deposits. The Neogene molasse has been penetrated by several 

wells (i.e. Tokarnia IG-1 [Wójcik et al., 2006]) more than 20 km south of the 

Carpathian thrust front, confirming the large displacement along the leading thrust of 

the Carpathian chain during the Early Miocene. In its innermost sector, a 26 km thick 

basement involved thrust sheet occurs (thickness measured without considering syn-

thrusting erosion) (Fig. 3.8b). The Outer Carpathians are a thrust and fold belt 

characterized by a thin-skinned style of shortening, with the sole thrust located along 

shaly layers intercalated within the Cretaceous succession. The present-day geometry 

is the result of in-sequence stacking of thrust sheets, which become wider 

southwards. Starting from the foreland, the Silesian Unit consists of a hinterland 

dipping duplex, with displacement of individual thrust faults ranging between 200 m 

and more than 3000 m. The Silesian Unit is also exposed in the Mszana Dolna 

tectonic window, in the footwall of the surrounding Magura Unit. The Magura Unit 

is a roof sequence that moved on top of the Silesian duplexes for more than 36 km. 

This displacement value is obtained from the structural model we used for the 

reconstruction of the eroded strata, since the location of the present-day Magura front 

is controlled by erosion. As already suggested by Roca et al. [1995], the deformation 

of the underlying Silesian Unit occurred after the emplacement of the Magura nappes 

on top of it, producing the deformation of the Magura sole thrust. Both Magura and 

Silesian Units are affected by normal faults that offset the previously formed thrust 

and fold structures. These faults mainly reactivate or detach along older thrusts at 

depth, such as that activating the Magura front or south of the Mszana Dolna tectonic 

window [Mazzoli et al., 2010]. The Magura - Pieniny tectonic contact is dominantly 
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steeply dipping, as suggested by several boreholes drilled across it. Nevertheless, its 

deep structure and kinematics are still a matter of debate, since subsurface data are 

lacking. In this work we consider this contact a reverse fault that thrusts the Pieniny 

wildflysch over the Magura Unit [as in Roca et al., 1995], that was later steepened by 

strike-slip deformation. However, alternative interpretations exist, that invoke left-

lateral strike-slip faulting and backthrusting along the northern boundary of the PKB 

[Birkenmajer 1983, 1985a; Picha et al., 2006; Zuchiewicz & Oszczypko, 2008]. The 

strike-slip reworking of the PKB is evident at the outcrop scale, although likely 

minor in terms of absolute displacements. The backthrusting along a N dipping fault 

is inconsistent with both the map pattern of the tectonic contact and borehole 

observations, both indicating clearly a S-dipping fault zone. For these reasons we 

reject the backthrusting hypothesis. Different interpretations have been provided 

even for the contact bordering the PKB to the south. Our own field mapping 

indicates the occurrence of a high-angle normal fault putting into contact the 

Paleogene deposits of the Podhale basin with the Pieniny wildflysch at this location. 

The Podhale substratum is characterized by four tectonic units produced by the thick-

skinned reactivation of basement normal faults as reverse faults. The structural high 

produced by the imbrication of these basement units is offset by the major Sub-Tatric 

fault in its southern sector. This structure has been interpreted as a reverse fault by 

several authors, including Kotański [1961], Birkenmajer [1986, 2003], Sperner 

[1996], and Sperner et al. [2002]. However, this interpretation has been questioned 

by many authors [Mahel’, 1986; Bac-Moszaszwili, 1993; Kohút and Sherlock, 2003; 

Petrík et al., 2003], who point out a normal dip-slip component of the Sub-Tatric 

Fault based on the interpretation of a clear reflector visible in the seismic profile 

753/92 [Hrušecký et al., 2002], and kinematic indicators provided by mineral fibres 

(quartz, epidote, and carbonates) and striae on shear surfaces [Jurewicz and Bagiński, 

2005]. This extensional dip-slip component of displacement come with previously 

proposed interpretation for this structure [e.g. Lexa et al., 2000] and is adopted in this 

study. 
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Figure3.8: (a) Balanced geological section (Profile I) across the Western Polish Carpathians (located 

in Fig. 3.3). The horizontal scale equals the vertical scale. (b) Thickness of the eroded strata 

reconstructed above the present-day topographic line represents the minimum value estimated from 

low-temperature thermochronometric data [Andreucci et al., 2013]. The geometry of the eroded 

successions is obtained from the forward modeling shown in Fig. 3.12. 
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Restoration of the pre-orogenic tectonic setting (Early Cretaceous) 

In order to restore Profile I to its pre-shortening tectonic setting, the Upper 

Cretaceous- Paleocene layer is considered the regional datum since it is the best 

constrained in the Outer Carpathian domain. In addition, this layer can be easily 

correlated with the Upper Cretaceous horizon representing the youngest deposit of 

the Inner Carpathian domain. Although the structure of the allochtonous accretionary 

wedge is well constrained by surface and subsurface data, there are some 

uncertainties about the extent of the Miocene molasse in the footwall to the Outer 

Carpathian sole thrust. Some authors suggest a scenario in which Miocene deposits 

occur beneath the whole Outer Carpathian wedge, although there are no constraints 

for such an interpretation [i.e., Nemčok et al., 2000; Oszczypko, 2006; Ślączka et al., 

2006]. We apply a more conservative criterion, based on the data from the Tokarnia 

IG-1 well [Wójcika et al., 2006]. We extend the molasse deposits 8 km south of the 

above-mentioned well, in order to be consistent with the sequential restoration based 

on minimum shortening. According to this assumption, the Carpathian front records 

a displacement of about 19 km, considerably less than the ca. 60 km obtained 

applying the alternative models proposed by Nemčok et al. [2000], Oszczypko 

[2006], and Ślączka et al. [2006]. By comparing the present-day geometry of this 

regional section and the undeformed Early Cretaceous sedimentary basin (Fig. 11a), 

the amount of shortening can be obtained. It reaches the value of ca. 57 km (46%) for 

the IC and 73 km (54%) for the OC, without taking into account the Middle Miocene 

reactivation of the deep basement normal faults causing mild shortening of the 

foreland basin substratum. The amount of shortening obtained in this study is less 

than that calculated by Nemčok et al., [2000] for almost the same transect across the 

Outer Carpathians . Our shortening value, although conjectural, is based on a 

conservative model that allows us to explain the geometric relationships between the 

IC, the PKB and the neighboring Magura Unit, which are areas which have no 

available subsurface data. The sequential restoration provides a 125 km wide IC 

basin and a 135 km wide OC basin, in which the thickness of the post-rift deposits is 

mainly controlled by the deep basement architecture. 
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3.1.2 Profile II 

This NE-SW oriented section crosses the eastern sector of the Polish-Slovakian 

Carpathians, from the foreland basin to the Levoca Basin, one of the minor 

depressions belonging to the CCPB (Fig. 3.9a). The European Platform underlying 

the Carpathian belt/foreland system is affected by SW-dipping normal faults. Here, 

we represent only the major faults that are recognized from magnetotelluric sounding 

[Stefaniuk, 2006], interpreted seismic lines, and boreholes [see Nemčok et al, 2006]. 

The overall architecture of the cross-section is similar to that shown in the previous 

profile: the Jurassic deposits, representing the youngest part of the succession of the 

preserved basement cover, are sealed by the Neogene foredeep deposits. The 

uncertainties in the interpretation increase at depth, beneath the Magura Unit. The 

deep basement architecture suggested in this section comes from the sequential 

restoration that allows us to put back all the detached deposits that built the 

accretionary wedge to their original position, and construct the basement beneath 

them. The Neogene molasse forms a wedge-shaped body with southwestward 

increasing thickness due to the flexure of the lower plate. Directly thrusted on top of 

it, the Skole Unit is made up of upright, horizontal open folds [Fleuty, 1964] 

produced by detachment folding [Homza and Wallace, 1994]. While the Oligocene 

and Eocene sequences almost preserve their thickness along the section, the Upper 

Cretaceous-Paleocene succession becomes thicker towards southwest. This is the 

only profile that intersects the Subsilesian Unit, which crops out as a narrow belt 

between the Skole and the Silesian Units. The Subsilesian Unit is deformed by thrust 

splays showing relatively limited displacement (each displaying ca. 400 m of dip-slip 

offset) and involving Lower Cretaceous sediments in the inner sector and younger 

deposits in the external part. The Silesian Unit is characterized by regional open 

folds, mainly associated with thrusting involving Lower Cretaceous to Oligocene 

deposits. This unit consists of a hinterland dipping duplex in which individual thrust 

splays show dip-slip displacements ranging between a few hundreds of meters and 

11 km. Also for the Silesian Unit, the Upper Cretaceous and the Oligocene deposits 

become thicker southwestward. The structure of the inner part of the Outer 

Carpathians is characterized by the thrust of the Magura Unit on top of the Dukla 

Unit, which is exposed in the Smilno tectonic window. The number of horses 
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deforming the Dukla Unit has been inferred from the deformation they produced in 

the hanging-wall rocks of the Magura Unit, since no seismic profiles clearly show 

the subsurface structures. The displacement ranges between ca. 1.6 km for the 

trailing thrust of the Dukla Unit and 18 km for the duplex cropping out in the Smilno 

area. A noteworthy thickening of the Eocene succession is recorded from the Silesian 

Unit (ca. 270 m), to the Dukla Unit (ca. 470 m), to the innermost sector where it 

locally exceeds 3 km. These deposits are affected by low-angle normal faults 

unraveled by the reinterpretation of some tectonic contacts portrayed in published 

1:200000 geological maps [Jankowski et al., 2004]. The trailing edge of the Magura 

Unit is characterized by the high-angle thrust of the Pieniny wildflysch. Although 

Hrušecký et al. [2006] interpreted the PKB as flower structure, its southern contact is 

best interpreted as a high angle SW-dipping normal fault, dowhthrowing the 

Paleogene and Miocene deposits of the CCPB southward. In this section, the 

maximum thickness of the accretionary wedge is recorded in the Pieniny wildflysch 

area where it reaches almost 20 km (Fig. 3.9b). This value is consistent with 

paleothermal and thermochronological constraints described in section 3.4. 
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Figure3.9: (a) Balanced geological section (Profile II) across the Eastern Polish-Slovakian 

Carpathians (located in Fig. 3). The horizontal scale equals the vertical scale. (b) 

Thickness of the eroded strata reconstructed above present-day topography represents the 

minimum value estimated from low-temperature thermochronometric data [Andreucci et 

al., 2013]. The geometry of the eroded successions comes from the forward modeling we 

performed in order to validate this section. 
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Restoration of the pre-orogenic tectonic setting (Late Cretaceous) 

The sequential restoration of Profile II has been performed by applying the same 

assumptions as for Profile I. We used the Upper Cretaceous-Paleocene horizon as a 

regional datum and, in addition, the available constraints on the position of footwall 

cut-offs beneath the Skole Unit thrust. Boreholes located along this profile 

[Myśliwiec et al., 2006] indicate a lack of Upper Cretaceous sediments in the 

footwall of the sole thrust ca. 5 km southwest of the Carpathian front. Further wells, 

located southeast of the section trace, indicate the presence of the Skole Unit thrust at 

a maximum depth of ca. 3 km, gently dipping to the south, and the autochthonous 

Paleozoic deposits of the European platform directly in its footwall ca. 25 km 

southwest of the emerging Skole Unit thrust [Nemčok et al., 2006]. Although these 

constraints did not allow us to infer the position of the Upper Cretaceous footwall 

cut-off without uncertainties, a conservative solution has been adopted that is 

consistent with the available subsurface information. Such a solution involved 

placing the cut-off of the Upper Cretaceous strata ca. 30 km SW of the Carpathian 

thrust front, in order to avoid huge displacements along the leading thrust. Each 

thrust sheet building up the Carpathian accretionary wedge has been sequentially 

restored from the foreland to the hinterland. Some thrusts, such as the trailing thrust 

of the Magura Unit, seem to not follow the general rule of the up-section propagating 

ramp, as it cuts down-section into the Upper Cretaceous succession. This apparent 

down-section propagation is mainly due to the local deformation of the basement 

after the Inner Carpathian emplacement on top of the lower plate. This tectonic load 

caused the lowering of the lower plate and the propagation of the subsequent thrust 

apparently down section. The initial width of the restored Outer and Inner Carpathian 

basins is of 270 km and 38 km respectively (Fig. 11b), therefore considerably less 

than the 389 km wide basin proposed by Nemčok et al. [2006] for almost the same 

section. The value of the shortening is about 169 km (63%) for the OC and 10 km 

(26%) for the IC successions. 

3.1.3 Profile III 

Profile III (Fig. 3.10a) crosses the easternmost part of the Polish-Slovakian 

Carpathians. We chose the same transect of Gągała et al. [2012] and reinterpreted by 
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Andreucci et al. [2013] for the OC, extending it further to the southwest in order to 

include the Pieniny wildflysch and the IC domain. Although data constraining the 

subsurface geometry of the major thrusts and the thickness of the successions are 

available, there are uncertainties about the interpretation of the deep structures, as 

well as about the geometric relationships between the Magura Unit and the Pieniny 

wildflysch, and the internal structure of the Inner Carpathian Mesozoic nappes 

beneath the Miocene deposits of the Prešov Basin. While the Stebnik, Skole and 

Silesian Units are well constrained by seismic profiles and well data [see Gągała et 

al., 2012 for further details], there are uncertainties about the number of horses 

deforming the internal part of the Dukla Unit in the footwall of the Magura Unit 

thrust. We suggest an interpretation that allowed us to construct a balanced section 

consistent with Profiles I and II in term of structural architecture and amount of 

shortening. The Middle to Upper Miocene fill of the foredeep basin is characterized 

by a remarkable thickening southwestwards due to the flexure of the lower plate. The 

maximum thickness, around 5 km, can be recorded in correspondence of the 

outermost graben controlled by normal faults in the basement. In this section, the 

Neogene deposits lay directly on top of the basement, although Jurassic and Upper 

Cretaceous deposits are known to occur more to the north [Oszczypko, 2006]. 

Magnetotelluric [Stefaniuk, 2006] and non commercial seismic profiles show a 

basement structural high buried by the Silesian thrust sheets, 15 km south of the 

Paszowa well-1. This morphology influences the geometry of the overlying Silesian 

Unit thrust, producing its apparent bending as shown in the seismic profiles 

interpreted by Gągała et al. [2012]. No constraints on the architecture of the 

basement underlying the Dukla and innermost parts of the Silesian Unit are available. 

The suggested geometry comes from the sequential restoration, as described for the 

previous two sections. Also in this instance, the OC wedge is characterized by in-

sequence thrust propagation. In the outer part, thrusting involves Miocene foredeep 

deposits of the so-called Stebnik Unit, being detached along the bituminous shales of 

the Menilite Fm. The inner and tectonically higher Skole Unit forms a leading 

imbricate fan, whose thrust splays are characterized by variable spacing (from ca. 

1000 to 6000 m). A SW-dipping low-angle normal fault offset the inner part of this 

unit, terminating against a major NE-dipping extensional fault at a depth of ca. 6 km. 
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The main low-angle normal fault, bordering the Silesian Unit to the south, is 

responsible for the bending of the Silesian sole thrust and the basement high below it, 

as well as for significant Late Miocene tectonic exhumation in this area [Andreucci et 

al., 2013]. The neighboring Dukla Unit consists of several thrust sheets. Thrust 

spacing within this unit increases to the southwest, while dip-slip displacement of 

individual splays ranges between ca. 1.5 km and 8 km. The Dukla Unit is partially 

overridden by the high-displacement Magura Unit. The internal structure of the latter 

is characterized by the occurrence of several thrust splays whose dip angle increases 

towards the southwest. The dip-slip displacement along each individual splay ranges 

from less than 4 km (for the outer thrust ramps) to ca. 19 km for the innermost one. 

The contact between the Pieniny wildflysch and the Magura Unit is a steep thrust 

producing the tectonic superposition of the former on top of the latter, as verified by 

the Hanušovce-1 borehole. The southern boundary of the Pieniny wildflysch is a 

normal fault dipping to the southwest and following the general trend of the minor 

normal faults offsetting the Miocene fill of the IC basin. Constraints on the depth of 

the Oligocene horizon are provided by the Prešov-1 borehole and from available 

geological cross-sections [Milička et al., 2011]. According to the adopted geological 

model and the results obtained from forward modeling integrated with paleothermal 

and low-temperature thermochronologic data, the thickness of the eroded strata has 

been estimated (see below). The maximum reconstructed thickness occurs in the 

central part of the OC, where the accretionary wedge reaches 19 km (measured 

without considering syn-orogenic erosion) (Fig. 3.10b). 
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Figure 3.10: (a) Balanced geological section (Profile III) across the Eastern Polish-Slovakian 

Carpathians [modified after Andreucci et al., 2013]. For location see Fig. 3. The horizontal 

scale equals the vertical scale. (b) Thickness of the eroded strata reconstructed above present-

day topography represents the minimum value estimated from low-temperature 

thermochronometric data [Andreucci et al., 2013]. The geometry of the eroded successions 

comes from the forward modeling we performed in order to validate this section. 
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Restoration of the pre-orogenic tectonic setting (Late Cretaceous) 

The sequential restoration has been performed taking into account the same 

assumptions as for the previously described cross-sections. Considering the 

uncertainties in the interpretation of basement geometry below the inner part of the 

allochthonous wedge, the footwall cut-off relative to foreland basin strata 

correlatable with coeval Stebnik Unit deposits has been placed 61 km south of the 

Carpathian thrust front, as already proposed by Gągała et al. [2012]. The resulting 

displacement estimated along the Carpathian frontal thrust is of ca. 29 km. 

Additional displacement has been transferred to the Carpathian leading thrust by the 

reverse-slip reactivation of preexisting basement normal faults during the Neogene. 

Unfortunately, the correlation between the neighboring thrust sheets cannot be 

carried out without uncertainties, since the present-day position of all the emerging 

leading thrusts is controlled by erosion. We suggest a conservative scenario in order 

to minimize the shortening and be consistent with the estimate of burial given by the 

paleothermal and low-temperature thermochronometric indicators. Once restored to 

their initial configuration, the OC basin reaches a width of 343 km (Fig. 3.11c). This 

value is considerably less than the ca. 600 km wide basin proposed by Gągała et al., 

[2012]. This discrepancy results essentially from a different interpretation of the deep 

structures. The shortening value calculated for the OC successions is around 221 km 

(64 %). On the other hand, the length of the IC undeformed Late Cretaceous basin 

equals 116 km, experiencing a shortening around 49 km (42%). 
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Figure 3.11: Restored cross-sections (a) Profile I at Early Cretaceous time and (b) Profile II 

and (c) Profile III at Late Cretaceous time. The sections have been sequentially restored based 

on the minimum shortening assumption. Black dashed lines show trajectories of future thrusts. 

In the southernmost part of the Profile III the geometry of the eroded Variscan deposits 

corresponds partially to the outcropping successions, but it is in line with the general geological 

setting of the specific area. 
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3.2 Forward modeling 

Forward modeling is used in this study to validate the cross-sections that were 

previously balanced and sequentially restored. The method requires as input 

parameters the displacement values obtained from the sequential restoration, the 

thickness of the undeformed successions, as well as the timing of the deformation. 

The aim of the forward modeling is to produce a final deformed section that is as 

much as possible, similar to the present-day tectonic setting. We present the 2D 

kinematic modeling performed on Profile I (Fig. 3.12) in order to show the 

geological scenario for all the presented profiles. We model the evolution of the 

Carpathian basin from 145 Ma to the present-day. The Early Cretaceous geological 

setting is the result of Permo-Triassic rifting and subsequent post-rift Mesozoic 

sedimentation controlled by the faulted basement architecture (Fig. 3.12a). This pre-

shortening geometry comes from the sequential restoration. Shortening started during 

the Neocomian and involved the inner part of the CWC realm. Deformation then 

propagated northwards, in the IC realm, producing the reverse-slip reactivation of 

preexisting normal faults (Fig. 3.12b). The onset of thrusting in the IC is constrained 

by stratigraphic evidence, the youngest sediments preserved in the IC domain being 

Turonian in age [Sandulescu, 1988]. The inherited Mesozoic normal faults occurring 

in the crystalline basement were characterized by variable angles of dip. Their 

reactivation, during the Austroalpine inversion, caused their propagation into the 

overlying Mesozoic succession, starting from the Triassic evaporites. The upward 

propagation into the Mesozoic succession involved a staircase trajectory of the 

thrusts, which propagated as flat segments along the Triassic evaporites. Thick-

skinned deformation produced the imbrication of basement-involved thrust sheets. 

Subaerial exposure of the IC and associated erosion provided the sediment supply 

filling the Pieniny foredeep basin, north of the IC front (Fig. 3.12c). Provenance and 

sedimentological studies [Birkenmajer, 1956b; Roca et al., [1995] document the 

southern provenance of the olistolithes and olistotromes included in the Pieniny 

wildflysch, as well as their sedimentological similarity with the IC successions. The 

erosional event affecting the IC domain is marked by a regional unconformity; the 

Eocene nummulitic succession lies directly on top of the Mesozoic IC nappes. 
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During the Late Cretaceous, the emplacement of the IC thrust sheets caused the 

flexure of the lower plate and the southward deepening of the OC basin, as recorded 

by the thickening of the Upper Cretaceous-Paleocene succession [Nemčok et al., 

2000]. A change in tectonic style occurred during the Paleocene, switching from 

thick-skinned to thin-skinned thrusting. This change can be likely due the deposition 

of a shaly formation during the Upper Cretaceous in the OC behaving as décollement 

surface for all the future thrusts. The deformation front reached the southern margin 

of the Magura paleogeographic realm during the middle Eocene [Bromowicz, 1999]. 

Shortening rates increased during the Oligocene, when thrusting propagated further 

north into the OC paleogeographic realm (Fig. 3.12d-e). The southward thickening of 

the Eocene and Oligocene strata [Nemčok et al., 2000] suggests an increasing flexure 

of the lower plate due to the tectonic load provided by the advancing chain. This 

remarkable change in thickness of the OC Paleogene successions is also confirmed 

by low-T thermochronometric data [Andreucci et al., 2013]. In-sequence, thin-

skinned thrust propagation in the OC domain continued up to the Early Miocene, 

when shortening migrated at depth into the basement. The reactivation of preexisting 

basement normal faults in a reverse sense passed further displacement to the sole 

thrust of the accretionary wedge. During this stage, erosion started to involve the 

uppermost successions of the inner part of the OC thrust and fold belt. The 

gravitational instability of the wedge and its subsequent extensional collapse led to 

the development of normal faults [Mazzoli et al., 2010], some of them reactivating 

preexisting tectonic contacts. This tectonic event was coeval with rapid erosion 

during the Late Miocene and was followed by a regional uplift localized in the CWC 

region (Fig. 3.12f). Comparing the cooling ages obtained for the western sector of 

the OC [Andreucci et al., 2013] with the new thermochronometric data from the PKB 

presented in this paper (Fig. 3.5), a remarkable difference in the timing of 

exhumation can be recognized. Cooling ages ranging between 20 and 15 Myr 

characterize the western Polish OC successions, whereas a more recent exhumation 

event (8-15 Myr) involves the PKB deposits. Cooling ages for the PKB are 

consistent with the published exhumation ages for the IC domain [Burchart, 1972; 

Baumgart-Kotarba and Král, 2002; Danišik et al., 2008, 2010, 2011], thus 

suggesting a common cooling event for these two different tectonic domains, as 
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shown in our structural model. Forward modeling allowed us to not only validate the 

geological cross-sections and contextualize the thermochronometric datasets, but also 

to calculate the shortening rate for each step of the reconstructed tectonic evolution. 

According to our model, the shortening rate for the first convergent tectonic stage 

(Cretaceous thick-skinned inversion) was of 0.8 mm/yr. A lower rate, 0.5 mm/yr 

dominated the Paleocene to Early Oligocene time interval. This is in agreement with 

the Eocene period of relative tectonic quiescence suggested by Książkiewicz [1957, 

1960] and Świdziński [1948]. A remarkable increase of the shortening rate, reaching 

a value of 6.5 mm/yr, characterized the Late Oligocene-Early Miocene time interval. 

This was associated with a major change in the style of thrusting, from thick-skinned 

to thin-skinned. Thrusting was then followed by Middle Miocene normal faulting 

characterized by an extension rate of ca. 0.6 mm/yr. 
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Figure 3.12: Forward modeling showing the evolution of the Carpathian region, from the Central 

Western Carpathians (CWC) to the foreland. (a) Initial stage at the beginning of the Early 

Cretaceous, before the deformation of the inner succession of the CWC (that will later produce the 

Veporic Unit). (b) Basement-involved thrusting in the CWC domain. (c) Thrusting and erosion of the 

Mesozoic sedimentary cover on top of the Tatricum crystalline basement and subsequent 

sedimentation in the Outer Carpathian foreland basin. Deposition of the Pieniny wildflysch in the 

frontal part of the Inner Carpathians. (d) Thrusting of the Pieniny wildflysch on top of the Outer 

Carpathian successions. (e) In-sequence thrust propagation in the Outer Carpathian domain. (f) 

Reverse-slip reactivation of Mesozoic normal faults in the basement, and later normal faulting within 

the accretionary wedge. Erosion of the uppermost successions during the Middle-Upper Miocene. 

VU: Veporic Unit; CN: Choč Nappe; KN: Križna nappe ;TFB:Tatra-Fatra Belt; MU: Magura Unit; 

SU: Silesian Unit; FB: foreland basin. 
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3.3 Discussion 

Unlike most of the works dealing with the tectonic evolution, time of deformation, 

and amount of shortening of the OC thrust and fold belt, the aim of this paper is to 

provide a comprehensive picture of the whole Carpathian orogen-foreland basin 

system, focusing on the relationships among the IC, PKB and OC. Based on the 

reappraisal of stratigraphic and structural studies integrated with our own 

observations, a new scenario is proposed for the tectonic significance of the Pieniny 

“Klippen Belt” in the Carpathian orogen. Our model involves an Early Cretaceous 

pre-shortening tectonic setting consisting of a sedimentary basin made of thinned 

continental crust, on which all the preserved successions of the Inner and the Outer 

Carpathian domains were deposited, and an unknown – but probably limited if not 

null – amount of oceanic lithosphere. This paleogeographic setting is consistent with 

sedimentological evidences: all the successions, from the Upper Cretaceous to the 

Oligo-Miocene, consist of siliciclastic deposits characterized by almost the same 

lithology with variable sand/shale ratio. In addition, some marker levels (such as the 

Globigerina Marls, the Menilite bituminous shales, the Upper Cretaceous Puchov-

type marls, the Inoceramian-type beds and the Sojmul conglomerates) are continuous 

throughout the whole Carpathian depositional basin, thus indicating a similar 

sedimentary environment for both the IC and OC successions [Jankowski et al., 

2012]. The lithostratography of the Pieniny and the IC successions (e.g. Krížna 

Nappe) are also very similar, consisting of ca. 50 m thick Jurassic radiolarites 

overlying carbonates (Sokolica and Czajakowa Radiolarite on the Podzamcze 

Limestone [Birkenmajer, 1977]. They do not suggest the presence of oceanic crust 

flooring the Pieniny Basin, but rather subsidence and deepening in Jurassic times, as 

already suggested by Kotański [1963a]. Our model is clearly at variance with various 

palaeogeographic reconstructions proposed in the literature [e.g. Nemčok et al., 2000; 

Nemčok et al., 2006; Oszczypko, 2006; Picha et al., 2006] implying low shortening 

values and no relevant differences of the IC and OC original position in terms of 

latitude. The most obvious difference concerns the number of sedimentary basins 

originally present in the Carpathian region. All previously proposed 

palaeogeographic settings involve several deep-water basins, roughly NW-SE 
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oriented, separated by ridges with almost the same orientation (form north to south: 

Skole and Silesian Basins, Silesian Ridge, Magura Basin, Czorsztyn Ridge and 

Pieniny Basin). This subdivision derives mainly from stratigraphic observations and 

provenance analysis performed on pebbles and olistoliths found in the OC deposits 

[Książkiewicz, 1965; Unrug, 1968; Golonka et al., 2000, 2005; Picha et al., 2006; 

Oszczypko, 2006]. According to these studies, the main source of sediments were: (i) 

a northern massif located along the European margin for the Skole Basin; (ii) the 

Silesian Ridge for the inner part of the Silesian Basin and the outer Magura Basin; 

and (iii) the PKB for the inner part of the Magura Basin [Książkiewicz, 1977; 

Oszczypko et al., 2005 c]. However, the stratigraphic successions, described in detail 

in several works [i.e. Ślączka et al., 2006], suggest the same depositional setting for 

all of the tectonic units. Accordingly, there is no need to infer the presence of a 

system of deep-water basins separated by ridges. The observed distribution of 

turbiditic fans and the provenance of the pebbly deposits could be simply controlled 

by the Cretaceous reactivation of basement normal faults, either as a result of 

foreland extension associated with the flexure of the foreland lithosphere, or of early 

tectonic inversion preceding the imbrication and stacking of the IC units on top of 

the thinned European Platform and the subsequent flexure of this latter. Uplift of 

some localized areas within the OC basin probably led to the mobilization of 

unconsolidated sediments. Following the Austroalpine phase, and the consumption of 

any oceanic lithosphere possibly interposed between the IC and the OC continental 

margin, a foredeep basin developed on top of the subsiding European Platform in 

front of the IC. The related accommodation space was filled by the Pieniny 

wildflysch, including olistostromes and olistoliths coming from the erosion of the IC 

Mesozoic nappes. Subsequent thrust propagation into the foreland basin led to the 

partial tectonic superposition of Pieniny wildflysch units on top of the Magura 

successions during the Eocene-Early Oligocene. This scenario is in contrast with the 

interpretation of the PKB as an oceanic basin suture characterized by abrupt lateral 

changes of facies reflecting different paleobathymetry, from the shallow-water 

marine deposits belonging to the Czorsztyn Ridge to the distal Czertezik and 

Niedzica successions and the basinal Branisko and Pieniny successions [e.g. 

Birkenmajer, 1960, 1986; Birkenmajer et al., 2008]. According to the latter 
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interpretation, the subduction of the Pieniny Ocean during the Cenomanian, the 

subsequent Savian shortening event [Andrusov, 1938] and Post-Savian erosion 

[Birkenmajer, 1960] would have led to the exhumation of the PKB during the Early 

Miocene. However, our new thermochronometric data indicate that exhumation of 

the PKB occurred later, in Middle-Late Miocene times. The cooling ages from the 

PKB are consistent with those of the surrounding thrust belt units, thus confirming 

that the PKB formed part of the thrust belt and did not undergo a different tectonic 

evolution marking the existence of a suture zone. The oceanic suture interpretation 

for the PKB has been questioned also by Roca et al. [1995], who suggested a 

sedimentary origin for this unit and its structural position in the hanging wall of the 

OC, being in turn partially overthrusted by the Tatric nappes to the south. Our 

reappraisal of the PKB is consistent with the interpretation by Roca et al. [1995], and 

allows reconciling the sedimentologic features of the wildflysch described by 

Plašienka [2012] with the lateral change of facies observed by Birkenmajer [1960]. 

Marked lateral lithofacies variations are typically recorded in successions deposited 

on rifted continental margins, as it has been widely documented for (e.g.) the 

Umbria-Marche successions in the northern Apennines [Marchegiani et al., 1999]. 

There, Lower Jurassic peritidal carbonate platform facies (Calcari Massiccio Fm.) 

and overlying condensed deposits pass laterally to basin successions consisting of the 

complete Corniola, Rosso Ammonitico, Calcari e Marne a Posidonia, Calcari 

Diasprigni and Maiolica fms. [Santantonio 1993, 1994]. These facies are 

straightforwardly comparable with the PKB successions, in which shallow water 

deposits (ascribed to the “Czorsztyn Ridge”) pass laterally to the pelagic sediments 

deposits of the Branisko Succession [Birkenmajer, 1986]. Therefore, it may be 

envisaged that similar successions, uplifted by thrusting and eroded in the IC, 

sourced the blocks included in the PKB. It is well known that block-in-matrix units 

containing a wide range of blocks of various age and provenance, such as the PKB, 

are very unlikely to be of purely tectonic origin, being commonly the result of 

tectonic reworking of pre-existing sedimentary mélanges [Festa et al., 2012]. 

The deposition of the Pieniny wildflysch on the flexured foreland lithosphere and its 

subsequent thrusting on top of the OC successions mark the end of the IC thick-

skinned deformation and the closure of any oceanic domain originally present in the 
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area. The switch in tectonic style from thick-skinned to thin-skinned due to the 

change in the reology of the dècollement layer, was followed by in-sequence 

propagation of thrusting in the OC (note that our model is at variance with the 

interpretation of the Magura Unit as an out-of sequence thrust sheet [e.g. Gągała et 

al., 2012; Nemčok et al., 2006], for which no convincing structural evidence has ever 

been provided). This stage was characterized by a dramatic increase in the shortening 

rate, which passed from a value of 0.8 mm/yr during the Cretaceous, through a 

tectonically unconstrained period (oceanic subduction?) during the Paleogene (70-28 

Ma), to a value of ca. 6.5 mm/yr during Early Oligocene-Early Miocene times. The 

Oligo-Miocene acceleration of shortening could have been triggered by internal 

orogen dynamics (presence of an efficient detachment level), by external causes 

related to the movement of the converging plates, or by a combination of both. 

Lower shortening rates characterized the latest thrusting stages, when active 

shortening migrated at depth into to the basement. Post-thrusting normal faulting 

affected the accretionary wedge, probably due to the extensional collapse associated 

with the deactivation of the sole thrust. Crustal normal faults also occur; these could 

be related to a regional extensional regime, affecting not only the deformed wedge 

but also the underlying basement. This is the case for the eastern part of the Polish 

Carpathians, where low-angle normal faults offset the basement of the foreland. 

These faults are interpreted to have played a primary role in the rapid unroofing of 

localized portions of the OC [Andreucci et al., 2013]. 

The original occurrence and extent of oceanic lithosphere between the IC and OC 

domains cannot be either supported or ruled out unambiguously. No geophysical 

evidence exists for a continuous oceanic slab beneath the Western Carpathians, and 

no in situ ophiolites/high pressure rocks occur in the PKB, which is clearly a 

sedimentary unit rather than subduction mélange. High-pressure (blueschist facies) 

rocks have been found only as pebbles and have been interpreted as having been 

sourced by the oceanic suture cropping out farther south of the IC [Schmid et al., 

2008]. The lack of volcanic activity [Ziegler and Cloetingh, 2004] is an additional 

issue suggesting that the Piemonte-Liguria Ocean was originally wider to the west, 

where the occurrence of basaltic rocks has been documented by Soták et al. [1993], 

substantially narrowing within our study area. Thus, we interpret the region as a wide 



88 
 

rifted continental area during the Early Mesozoic, possibly with a narrow oceanic 

domain between the IC and OC margins, and the true ocean (i.e. the Meliata-Maliac 

domain) being located farther south. During the Neogene, the presence of subducting 

oceanic lithosphere SE of our study area controlled the eastward migration of the 

strongly arcuate Southern Carpathian belt. 

Paleo-barometers and paleo-thermal indicators have been used in previous studies to 

calibrate the burial and maximum temperature experienced by the PKB successions. 

X-ray diffraction studies of illite-smectite mixed layers in shales, carried out by 

Świerczewska [2005], suggest maximum temperatures ranging between 110°C and 

135°C for the eastern part of the PKB (Grajcarek Unit). A wider range of 

temperatures has been obtained by Jurewicz [1994] from fluid inclusion data on 

calcite veins. Minimum paleotemperatures are in the range of 40-60 °C, while 

maximum temperatures are mostly in the range of 160-180 °C. Paleotemperatures 

that locally exceed 200°C have been inferred by Wójcik-Tabol [2003] based on illite 

“crystallinity” and vitrinite reflectance, indicating anchimetamorphic conditions. Our 

low-T thermochronometric results are in line with the above-mentioned studies and 

are in agreement with the few low-T thermochronological data published by 

Anczkiewicz and Świerczewska, [2008], indicating exhumation during the Oligocene-

Early Miocene. The burial and exhumation history constrained by AFT and AHe 

ages suggest that the Pieniny wildflysch underwent heterogeneous burial. The 

estimated maximum temperatures range between 80 and 120 °C, and the average 

cooling rate, calculated for the last 10 Ma, is of ca. 25 °C/Myr. Thermochronometry 

allowed us to constrain our structural model, particularly for the last 15 Ma. AFT and 

AHe data indicate that the PKB and the IC experienced the same exhumation event 

due to the Middle-Late Miocene regional uplift. 

3.4 Conclusions 

In this paper we suggest a new interpretation for the tectonic evolution of the 

Central-Western Carpathian thrust and fold belt. In particular, a new scenario has 

been proposed for the Cretaceous paleogeography and for the origin of the so-called 

Pieniny “Klippen Belt” which, independently of the occurrence and extent of oceanic 

lithosphere between the IC and OC domains, represents an intensely deformed 
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sedimentary unit (wildflysch) deposited in the foredeep of the IC rather than a 

subdction mélange. According to our sequential restoration, the pre-orogenic tectonic 

setting consisted of a horst and graben system whose architecture controlled the 

thickness of syn- and post-rift deposits. The extent of this rifted continental area was 

variable. Profile I has been restored to a 135 km wide OC basin and 125 km wide IC 

basin, later experiencing a shortening of 54% and 57%, respectively. The shortening 

calculated for Profile II amounts to 63% for the OC and 26% for the IC, starting from 

a 270 km wide OC basin and 38 km wide IC basin. Shortening remains almost 

constant (64%) in the eastern sector of the OC thrust and fold belt, increasing in the 

IC region. In Profile III, the OC have been restored to a 343 km wide original basin, 

whereas the restored IC basin has an original length of 116 km. The Austroalpine 

tectonic phase affected the southern portion of the study area, causing reverse-slip 

reactivation of the Mesozoic normal faults and subsequent imbrication and uplift of 

the basement in the IC region. Following the complete consumption of any oceanic 

lithosphere originally present in the system, the flexure of the East European 

Platform produced by the tectonic load and the associated development of the 

foreland basin in the Outer Carpathians domain created the accommodation space 

that was filled by the Pieniny wildflysch north of the Inner Carpathian front. The 

olistoliths and olistostromes included in this wildflysch come from the erosion of the 

structurally higher Mesozoic successions belonging to the IC domain. Thick-skinned 

deformation proceeded with a shortening rate of ca. 0.8 mm/yr. Tectonic 

emplacement of the Pieniny wildflysch on top of Outer Carpathian successions 

marks the onset of the thin-skinned thrusting. In-sequence propagation in the Outer 

Carpathian domain started with the high-displacement Magura Unit thrust. The 

subsequent development of the hinterland-dipping duplexes forming the 

progressively outer Dukla, Silesian, Subsilesian and Skole units led to the present-

day tectonic configuration of the OC accretionary wedge. Further displacement has 

been partially transferred to the OC frontal thrust by Miocene reverse-slip 

reactivation of preexisting basement normal faults. Crustal shortening was followed 

by extension, in some cases unroofing wide portions of the accretionary wedge. 

Structural observations integrated with low-T thermochronometric data suggest that 

post-thrusting low-angle normal faults controlled the rapid exhumation of footwall 
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units in the eastern part of the Polish Carpathians. On the other hand, the western 

Polish Carpathians were affected by erosion-controlled exhumation coeval with 

thrusting, apparently without a significant contribution by normal faulting. A 

Middle-Late Miocene exhumation of the so-called Pieniny “Klippen Belt” has also 

been unraveled based on low-T thermochronometric data. The new cooling ages 

provided in this paper, indicate exhumation almost coeval with that recorded in the 

Inner Carpathian domain, and generally younger than that characterizing the Outer 

Carpathians This pattern points to a regional uplift of the former domain in recent 

times. 
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4 Chapter IV 

This chapter is focused on the methodology applied to the sequential restoration that 

allows us provide the prediction of the low-T thermochronometric ages along the 

present-day geological cross-section and the evolution of the isotherms through time. 

This method is also a way to validate the proposed tectonic scenario by comparing 

the predicted ages resulting from the sequential restoration and the measured ones. 

This thermo-kinematic model is performed for the Profile I (see Chapter 2 for the 

location of the section trace). In the following chapter the final version of the paper 

submitted to Lithosphere is presented. 
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4.1 Abstract 

In this paper, a new approach is applied to validate a proposed scenario for the 

tectonic evolution of the Western Carpathian thrust and fold belt-foreland system. A 

balanced section was constructed across the thrust and fold belt, from the Polish 

foreland to the Slovakia hinterland domain to the south. Its sequential restoration 

allows us not only to delineate the tectonic evolution, but also to predict the cooling 

history along the section. In addition, the response of low-Temperature 

thermochronometers (apatite fission track and apatite (U-Th)/He) to the changes in 

the thrust and fold belt geometry produced by fault activity and topography 

evolution are tested. The effective integration of structural and thermochronometric 

methods provides, for the first time, a high-resolution thermo-kinematic model of 

the Western Carpathians from the Early Cretaceous onset of shortening to the 

present-day. The interplay between thick- and thin-skinned thrusting exerts a 

discernible effect on the distribution of the cooling ages along the profile. Our 

analysis unravels cooling of the Outer Carpathians since ca. 22 Ma. The 

combination of thrust-related hanging-wall uplift and erosion comprised the 

dominant exhumation mechanism for this outer portion of the orogen. Younger 

cooling ages (13 to 4 Ma) obtained for the Inner Carpathian domain are mainly 

associated with a later, localized uplift, partly controlled by extensional faulting. Our 

results, effectively unravelling the response of low-temperature thermochronometers 

to the sequence of tectonic events and changes in the topographic profile, allow us to 

constrain the best scenario honouring all available data. 

4.2 Introduction 

The sequential restoration of balanced cross-sections is a powerful tool for 

calculating the amount of shortening, the slip rate and the depth of the décollement 

surface in contractional/extensional regimes. it represents also the only way to 

describe the evolution of the tectonic structures backward and forward in time. 

Nevertheless, the timing of deformation cannot be inferred without uncertainties by 

means of the kinematic model alone, particularly in cases where syn-tectonic 

deposits are not preserved and the thrust fronts are all erosional. One possible 
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solution is to constrain deformation events integrating 2D kinematic modelling with 

low-temperature (low-T) thermochronometers. The extrapolation of the beginning of 

deformation events is valid when the cooling ages are strictly associated with the 

onset of deformation [e.g. Stockli et al., 2000; Ehlers and Farley, 2003; Stockli 

2005]. In addition, sequential restoration can provide an estimate of the maximum 

burial experienced by different successions cropping out along the section. However, 

it needs to be constrained by paleothermal indicators, such as vitrinite reflectance. 

This latter indicator, together with apatite fission-track (AFT) and apatite U-Th/He 

(AHe) data, are the main constraints for tracing burial and exhumation histories. The 

thermal evolution associated with thrusting has been modelled for simple tectonic 

structures (such as fault bend fold and hinterland dipping duplexes) by evaluating the 

role of topography, inclination of the thrust ramp, and amount of displacement on the 

predicted cooling age profile along a geological transect [Huerta and Rodgers, 2006; 

Lock and Willet, 2008]. Here we want to contextualise low-T thermochronometric 

data (AFT and AHe) in the complex kinematic restoration of the Western Carpathian 

thrust and fold belt, in which Early Cretaceous thick-skinned thrusting was followed 

by thin-skinned deformation of the most external part from the Eocene to the Middle 

Miocene. In this paper we are not addressing in detail the issues concerning tectonic 

styles and deformation processes controlling the Carpathian orogeny; rather, the 

main aim here is to discuss the methodology applied to a case study and, in 

particular, how low-T thermochronometry can be a successful tool to validate a 

selected geological scenario. This approach allows us to convert the temperatures 

obtained with the thermal modelling already performed for several samples along the 

chosen transect to the depths reached during the tectonic evolution and refine and 

validate the proposed geological scenario. We use FETKIN [Almendral et al., 2014], 

a software dedicated to the forward modelling of thermochronometric ages. For a 

given kinematic restoration, conveniently integrated with thermal parameters (such 

as paleo-geothermal gradient, thermal conductivity and specific heat capacity), 

FETKIN calculates low-temperature thermochronometric ages for different 

thermochronometers along the present-day topographic profile of a geological cross-

section. The sequential restoration can be tested by comparing the predicted 

thermochronometric ages with those measured on samples collected along the 
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topographic profile. FETKIN provides also the evolution of the isotherms through 

time, allowing one to estimate the maximum temperatures experienced by the 

outcropping successions. This study follows the workflow already applied by Mora 

et al., [2014] on the Eastern Cordillera of Colombia. In particular, we want to 

evaluate the influence of fault geometry and activity, and of topography evolution, 

on expected thermochronometric age patterns, and also reach the best result in terms 

of correspondence between thermo-kinematic model and real data. 

4.3 Geological setting 

The Western Carpathians are the eastern continuation of the Alpine orogenic system 

(Fig. 4.1a), which originated from the collision between the Adriatic and Euro-

Asiatic plates during the Late Cretaceous to the Miocene. The subduction and 

subsequent closure of the southern branch of the Alpine Tethys [sensu Schmid et al., 

2008] caused the deformation of the innermost successions and, during the 

Paleogene, the imbrication of the outer successions and their relative emplacement 

on top of the European Platform. The complex architecture of the Carpathians can be 

simplified by dividing them into two tectonic domains: the Outer Carpathians (OC) 

and the Inner Carpathians (IC) [Książkiewicz, 1977] (see legend in Fig. 4.1b). The 

OC consist of a fold and thrust belt made of Upper Jurassic to Lower Miocene 

deposits [Książkiewicz, 1962, 1977; Bieda et al., 1963; Mahel’ and Buday, 1968; 

Koszarski and Ślączka, 1976]. It is formed by several thrust sheets (Magura, Dukla 

Silesian, Subsilesian, Skole units) made of siliciclastic deposits with variable 

sandy/shale ratio (Fig.4.2). The IC are formed by Variscan basement with its 

Mesozoic cover piled up as a result of the Austroalpine orogeny.  
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Figure 4.1:(a) Geographic map showing the location of the study area. (b) Tectonic map of the Polish 

and Slovakian Carpathians, showing location of the modelled profile and of samples used for the 

validation of the themo-kinematic model. 

 

The Mesozoic nappes are partially buried under the Paleogene deposits of the Central 

Carpathian Paleogene Basin (CCPB, Fig. 4.1b). The IC and OC are separated by the 

Pieniny Klippen Belt (PKB) a narrow belt of shared Mesozoic to Eocene rocks, 

assumed to be the suture of the Vahicum ocean [Mahel’, 1981]. A heated debate 

exists about the evolution of the Carpathians and the origin of the above-mentioned 

suture. Many authors [e.g. Birkenmajer, 1960, 1986; Picha et al., 2006; Birkenmajer 

et al., 2008] suggest the original occurrence of oceanic crust between these two 

domains, in spite of the lack of any evidence at the surface. More recent papers 

[Jurewicz, 2005; Malinowski et al., 2013, Roca et al., 1995] cast doubt about the 

presence of oceanic crust between the IC and OC, rather suggesting that thinned 

continental crust floored the PKB domain. 
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Figura 4.2:(a) Geological map of the area surrounding the cross-section trace. (b) Balanced section 

across the Western Carpathians with samples projected in their own structural position [Burchart 

1972; Aczkiewicz et al., 2013; Andreucci et al., 2013; Králiková et al., 2014]. The constraints for 

section construction are from our own mapping integrating 1:200000 scale geological maps [Nemčok 

and Poprawa, 1988-89; Polák, 2008], the 1:50000 scale geological map by Nemčok et al. [1994], dip 

data, boreholes (Bańska PIG-1, Borzęta IG-1 [Marciniec and Zimnal, 2006], Chabówka-1, Obidowa 

IG-1, Tokarnia IG-1 [Wójcik et al., 2006], Nowy Targ PGI-1 [Paul and Poprawa, 1992], Zakopane 

IG-1 [Sokołowski, 1973]), seismic and magnetotelluric profiles [Stefaniuk, 2006]. 

 

The stratigraphy of the OC, IC and PKB is summarized in Fig. 4.3, in which an 

attempt to correlate the deposits belonging to different formations has been made. 

Deformation history 

For the purpose of this work, we propose a conservative scenario in which the Outer 

and the Inner Carpathian successions were deposited in sedimentary domains floored 

by thinned continental crust (Fig. 4.4a). As we cannot quantify the width of the 

postulated oceanic basin, which could be very narrow or even inexistent, our 

undeformed stage includes an undefined original separation between the IC to the 

OC paleogeographic realms. Early Cretaceous shortening involved the southern part 

of the sedimentary basin [Voigt and Wagreich et al., 2008], producing the 

reactivation of Mesozoic normal faults as reverse faults (Fig. 4.4b). Thick-skinned 

thrusting propagated northward during the Late Cretaceous [Maluski et al., 1993] up 

to the Paleocene. This Early Alpine orogenesis affecting the IC domain is marked by 

a regional unconformity separating the Paleogene deposits of the CCPB (Eocene 

Nummulitic Fm.) from the underlying Mesozoic nappes [e.g. Janočko et al., 2006; 

Soták et al., 2001]. 



98 
 

 

Figure 4.3: Correlation chart for the main tectono-stratigraphic units of the Western Carpathians. 

The successions are not represented with true thickness. 

 

Imbrication within the IC belt proceeded with a shortening rate of 0.8 mm/yr, 

decreasing during the Late Cretaceous-Paleocene. The flexural subsidence affecting 

the European Platform as a result of the IC emplacement produced the development 

of a large foreland basin. This was filled in its proximal part with olistoliths and 

olistostromes produced by reworking of Mesozoic successions. These blocks, whose 
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southern provenance has been demonstrated by Roca et al. [1995], originated from 

the subaerial exposure and subsequent erosion of the IC successions (Fig. 4.4c). The 

above-mentioned Mesozoic mega-blocks, contained in an Upper Cretaceous-

Paleocene matrix, are the main components of the so-called Pieniny wildflysch 

[Plašineka and Mikuš, 2010]. Although this is said to be associated with the tectonic 

emplacement of oceanic slivers by (e.g.) Picha et al. [2006], the model presented by 

the latter authors actually implies the occurrence of continental crust beneath the 

Pieniny wildflysch (as was already suggested by Jurewicz [2005]) and a sedimentary 

rather than tectonic origin of the mélange forming the PKB. The Pieniny wildflysch 

overthrusted the northern OC successions during the middle Eocene [Bromowicz, 

1999] (Fig. 4.4d). This tectonic episode marks the end of thick-skinned shortening 

and the onset of the thin-skinned thrusting involving the OC domain. During the 

Oligocene, thrusting propagated northward, detaching the OC successions along the 

Upper Cretaceous shaly deposits, with a shortening rate of 6.5 mm/yr (Fig. 4.3e). 

The increasing shortening rate could be due to the enhanced quality of detachment, 

or to regional changes in plate convergence rates, or both. During the Oligocene-

Middle Miocene, thrusting and subsequent erosion of the OC successions occurred 

coevally with sedimentation of the Podhale wedge-top basin deposits south of the 

PKB. During the Middle-Late Miocene, shortening affected the basement, inverting 

the inherited Mesozoic normal faults cutting through the lower plate [Oszczypko et 

al., 2006]. The stacking of thrust sheets increased the gravitational instability of the 

Carpathian accretionary wedge, leading to the nucleation of normal faults, some of 

them reactivating reverse structures (Fig. 4.4f). Although some normal faults (such 

as the Sub-Tatra fault bordering the Liptov Basin to the north) show large 

displacements, they are not the main mechanism triggering the exhumation in this 

sector of the Carpathian belt [Andreucci et al., 2013]. Thrust-related uplift and 

erosion were dominant in the OC, whereas exhumation of the IC was mainly 

associated with a Middle-Late Miocene regional uplift, locally controlled by normal 

faulting, and related enhanced erosion [e.g. Králiková et al., 2014]. 



100 
 

 

Figure 4.4: 2D forward modelling of the balanced cross-section from the Early Cretaceous to the 

present-day, performed using Move package, developed by Midland Valley Ldt. Displacement values 

used as input data come from the sequential restoration. Vertical simple shear and fault parallel flow 

algorithms were used to restore/forward model the normal faults and the reverse faults, respectively. 

The flexural slip algorithm was applied to simulate the flexure of the lower plate. 

 

4.4 Methods 

The balanced cross-section has been integrated with paleothermal and low-

temperature thermochronometric data (Fig. 4.2). AFT, AHe and ZHe ages 

[Andreucci et al., 2013; Anczkiewicz et al., 2013; Králiková et al., 2014b and 
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references therein] data are the main constraints for tracing the thermal history of 

each sample projected into our cross-section. Thermal models have been performed 

by HeFTy [Ketcham 2005] and together with the illite-smectite [Środoń et al., 2006] 

and vitrinite reflectance (R0) [Andreucci, 2013; Wagner, 2011] data allowed us to 

infer the amount of maximum burial for each sample. Temperature values were 

converted into burial depths using a constant geothermal gradient of 18°C/km 

[Andreucci et al., 2013; Hurai et al., 2006; Swierczewska, 2005] (Fig. 4.5). 

 

 

Figure 4.5: Balanced cross-section, showing sample location and maximum burial obtained by 

thermal modeling of AFT and AHe data [Andreucci et al., 2013; Králiková et al., 2014] integrated 

with illite/smectite values and vitrinite reflectance data [Andreucci, 2013; Środoń et al., 2006; 

Wagner, 2011]. 

 

Once we constructed and sequentially restored the balanced cross-section, we chose 

ten steps of the restoration to be exported as ASCII files into FETKIN. The following 

main steps were considered: (i) 145 Ma as the initial undeformed stage before the 

Early Alpine orogeny; (ii) 70 Ma as the end of the imbrication of the IC Mesozoic 

cover (iii) 28 Ma as the time of PKB thrusting on top of the OC Oligocene deposits; 

(iv) 15 Ma as the end of thrusting; and (v) 0 Ma as the final setting. Further 

intermediate steps were chosen at 56, 38, 23, 22, and 20 Ma, and the relative setting 

at each stage were calibrated by means of stratigraphic observations. The sequential 

restoration was further calibrated by processing each reconstructed step with 

FETKIN [Almendral et al., 2014]. This software solves the transient advection-

diffusion equation in two dimensions [Carslaw and Jaeger, 1986]. Starting from the 

velocity field generated from the kinematic restoration, FETKIN calculates the 

temperature distribution honoring the structural setting at each time step. Applying 

an iterative workflow we changed erosion rate, paleotopography and fault geometry 

in order to achieve the best fit between modeled and measured data. No changes of 
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the thermal parameters and timing of the deformation were applied, as these 

parameters are reasonably well constrained in the literature [Andreucci et al., 2013, 

and references therein]. Once assigned the topographic profiles, geothermal gradient 

(18°/km), thermal conductivity (2.2 W/m*°C), density (2.7 g/cm
3
) and specific heat 

(1000 kcal/(kg* °C) to the horizons, we defined the bottom boundary conditions. The 

depth of the lower boundary is set at 44 km b.s.l and the assigned temperature is 774 

°C. The final result is the modeling of the isotherms at each time step of the 

kinematic restoration.  

For each point on the present-day topographic profile, forward modeling of the 

thermochronometric ages was carried out by FETKIN for different low-temperature 

thermochronometers (in our case AFT and AHe) based on the annealing kinetics for 

AFT [Ketcham et al., 1999] and for AHe [Farley, 2000]. The predicted ages were 

then compared with the measured data. In addition, FETKIN calculates the t-T path 

for each point of the present-day topography. These paths can be compared with 

thermal histories obtained from the HeFTy inverse modeling to further verify the 

validity of the predicted ages (Fig. 4.5). 

 

Figure 4.5: Comparison between the T-t path resulting from HeFTy inverse modeling best-fit path 

(black line) with the thermal path modeled with FETKIN (blue line) for the same location. The red 

boxes represent the depositional constraints and the red bars correspond to the end of thrusting.The 

good match between the two paths highlights the validity of the methods. 
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4.5 Modelling topography evolution: constraints and 

assumptions 

An iterative procedure was used to test the structural model, which was repeatedly 

processed by means of FETKIN. Each iteration involved modification of 

paleotopography and fault geometry to evaluate their influence on the cooling age 

prediction and thus to obtain the best fit of the predicted age profiles with the 

measured data. This allowed us also to calibrate the evolution of the paleotopography 

in the last 20 Myr. During its early stage (Early Cretaceous-Paleocene) the 

Carpathian thrust and fold belt-foreland system was mainly submerged. Since the 

Eocene, when it emerged, it started undergoing subaerial erosion. This event and its 

associated erosional surface are well-constrained by a regional unconformity 

recognized in several wells drilled in the CCPB (e.g. Bránska PIG-1 [Marciniec and 

Zimnal, 2006], Zakopane IG-1 [Sokołowski, 1973] and further boreholes described 

by Sotak et al., [2001]), whereas the evolution of the topography during the 

Oligocene to recent time is poorly constrained. Starting from the comparison 

between the present-day topography and the corresponding geological structures, we 

made an attempt at defining the topographic evolution through time by taking into 

account the structures progressively developing at each stage. A similar approach 

was applied by Huerta and Rogers [2006], who simulated the evolution of 

topography corresponding to the frontal part of a thrust system. A topographic high 

develops with the onset of thrusting directly above the ramp. During thrusting, the 

relief becomes steeper as the backlimb and forelimb of the ramp anticline are 

laterally eroded. Following the end of thrusting, erosion keeps acting, minimizing the 

topographic relief. We apply the same assumptions to our cross-section. Analysis of 

the present-day topography along the studied cross-section shows that a very smooth 

relief characterizes the OC region. The main relief of the OC (in any case less than 

1000 m a.s.l.) occurs in the frontal part of the Magura Unit, in the hanging wall of the 

Magura Thrust (MT). Substantial relief also developed above the ramp of the high-

displacement Magura Thrust 2 (MT2) occurring within the Magura Unit. The highest 

peak (ca. 3000 m a.s.l.) of the Western Carpathians is located in the Tatra Mt. region 

of the IC, consisting of crystalline rocks more resistant to erosion. This present-day 
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pattern is extrapolated to the past, modelling the topographic profile in order to 

maintain the main relief of the OC in correspondence of the MT and MT2 faults (Fig. 

4.6). 
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Figure 4.6: Sequential restoration for Case A, represented forward in time (from 20 Ma to the 

present-day). (b) Sequential restoration for Case B, represented forward in time (from 20 Ma to the 

present-day). (c) Comparison between AFT thermochronometric ages predicted according to Case A 

(red squares) and Case B (blue dots). (d) Comparison between AHe thermochronometric ages 

predicted according to Case A (red squares) and Case B (blue dots). Abbreviations stand for: PB = 

Podhale Basin; MT2 = Magura Thrust 2 (i.e. high-displacement thrust within the Magura 

succession); MT = Magura Thrust. 

 

The inferred Early Miocene topography (at 20 Ma) is characterized by a more 

pronounced structural relief, with respect to the present day, as a result of active 

thrusting at the time. At 15 Ma, thrusting combined with erosion results in a reduced 

width of the topographic highs, producing steeper slopes and narrower reliefs. For 

the two cases shown in Fig. 4.6 a, b, we applied minor changes to the topographic 

profiles (width and elevation of the relief) in order to achieve the best fit between the 

predicted AFT and AHe ages and the measured ones. 

4.6 Testing two different case histories 

We compare two different scenarios (Case A and Case B; Fig. 4.6a, b) differing in 

the paleotopographic evolution for the last 20 Myr and the geometry of the Sub-Tatra 

normal fault, which represents the most relevant extensional structure in terms of 

displacement. The implications of the two different cases are discussed in terms of 
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topography development, subsidence, and fault geometry. The final result is a 

thermo-kinematic model in which the selected geological scenario has been 

consistently integrated with an admissible thermal history. 

Case A 

In Case A (Fig. 4.6a), we simulated syn-thrusting erosion affecting the innermost 

part of the OC during Early Oligocene to Early Miocene times. The eroded deposits 

were carried downslope to the outer zones, accumulating on top of the MT hanging 

wall block, during the Early Miocene. The resulting inferred mean erosion rate is 

1.10 mm/yr.  The northward propagation of thrusting and the related flexure of the 

lower plate, caused by the tectonic load of the accretionary wedge, produced the 

accommodation space later filled by Middle Miocene deposits, while the highest part 

of the chain was still affected by erosion. After the end of thrusting at ca. 15 Ma 

[Nemčok et al., 2006], several normal faults developed as a response to the internal 

gravitational instability of the orogen. In this first case the Sub-Tatra fault, 

controlling the northern boundary of the Liptov Basin, has been interpreted as a 

listric normal fault detaching along the sole thrust of the orogenic system (at ca. 7 km 

b.s.l. in the area). 

Case B 

In Case B (Fig. 4.6b) syn-thrusting erosion is assumed to have affected both MT2 

and MT hanging-wall blocks earlier than the previous case. The deposition of the 

Lower Miocene syn-thrusting deposits occurred only in the outermost part of the 

wedge, in front of the high-displacement MT. In this scenario, Early Oligocene-Early 

Miocene erosion affecting the MT2 hanging-wall block would have occurred at a 

lower mean erosion rate (0.64 mm/yr) with respect to Case A. Subsidence of the 

European Platform is inferred to have slowed down during the Early-Middle 

Miocene, causing the erosion of the Oligocene deposits of the MT hanging-wall 

block and the deposition of Miocene successions in the frontal part of the section and 

in the Podhale Basin (PB) located in the inner part. 

The Late Oligocene-Early Miocene mean erosion rate calculated for the MT is 

almost the same as for the previous case (0.42 mm/yr compared to 0.48 mm/yr of 

Case A). Middle Miocene deepening of the Magura front and its exhumation in more 
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recent time (8 Ma) resulted in overall lower erosion rates. The inferred Langhian to 

present-day mean erosion rates range from 0.12 mm/a (Case A) to 0.07 mm/a (Case 

B). Furthermore, in Case B the Sub-Tatra Fault has been interpreted as a deep 

basement structure cutting through the lower plate and detaching at a depth of ca. 17 

km b.s.l. 

4.7 Discussion 

Comparing the AFT age profiles resulting from the two previously described 

scenarios, some important differences can be highlighted (Fig. 4.6c). The change in 

topography in the hanging wall of the MT, combined with subsidence - more 

pronounced for Case A - reduces the cooling ages in this specific area. Partially reset 

AFT ages predicted for Case A are considerably younger than those predicted for 

Case B, in some case more than 80 Myr. No major changes in the predicted AFT 

ages occur in the hanging wall of the MT2, although topography evolution is slightly 

different for the two cases. In the hanging wall of the Sub-Tatra Fault the variation in 

the predicted AFT ages is mainly due to the change of the depth to detachment. The 

shallower is the detachment (Case A), the older are the AFT ages predicted along the 

hanging wall. The change in the geometry of the fault appears to have a more 

pronounced influence on the AHe cooling ages (Fig. 4.6d). For a deeper detachment, 

the AHe ages are considerably younger. No major changes are recorded along the 

AHe profile for the OC, except for the MT hanging wall where the more gentle 

modelled topography combined with the higher tectonic subsidence for Case A 

produced a younging of the cooling ages in this sector. 

Case B represents the scenario best approximating the measured thermochronometric 

data. The resulting thermo-kinematic model provides a complete framework of AFT 

(Fig. 4.7) and AHe (Fig. 4.8) cooling ages along the studied transect. The predicted 

AFT age profile (Fig. 4.7) highlights two areas that experienced temperatures not 

higher than ~120°C. These are: (i) the foreland basin together with the outermost 

successions of the OC thrust and fold belt (at a distance from 0 to 24 km along the 

section), and (ii) the Oligocene deposits of the Liptov Basin (from 100 to 108 km). A 

partial reset of the AFT cooling ages is predicted for the central part of the Podhale 

Basin (from 70 to 80 km), whilst totally reset AFT ages from the limbs of the 
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Podhale syncline indicate cooling through the PAZ during the Middle-Late Miocene. 

Cooling ages predicted by FETKIN match well the AFT ages obtained by 

Anczkiewicz et al. [2013]. 

 

 

Figure 4.7: Comparison between forward modeled AFT ages obtained by of FETKIN and measured 

data. 

 

Furthermore, this thermo-kinematic model is consistent with the general trend of 

increasing temperature towards the backlimb of the Podhale syncline suggested by 

Środoń et al. [2006] and Wagner [2011]. The partial mismatch between observed and 

predicted AFT ages in the central part of this basin is probably due to an 

underestimation of the thickness of the eroded Oligo-Miocene successions, as the 

data projected onto the section are from partially reset samples located farther to the 

west [Anczkiewicz et al., 2013; Botor et al., 2006, 2011]. 

AFT cooling ages ranging between 14 and 22 Ma are predicted for the OC sector 

between 36 and 68 km, in line with the cooling ages observed by Andreucci et al. 

[2013]. Here, the general trend of the predicted age profile is controlled by thrust-

related uplift and erosion, the oldest ages being located in the hanging wall of the 

MT2 fault. The youngest ages are from the footwall of the normal fault bounding the 

Mszana Dolna tectonic window to south, whereas cooling ages become older moving 



109 
 

to the MT front. Younger exhumation ages are predicted for the crystalline basement 

of the IC, this being consistent with the Middle-Late Miocene cooling documented 

by Burchart [1972], Král [1977] and Králiková et al. [2014 b]. In the IC, the cooling 

age profile is locally controlled by normal faulting. The youngest ages are located at 

the footwall of the Sub-Tatra Fault [Gross, 1973; Gross et al., 1980] and are mainly 

associated with the coeval Middle-Late Miocene regional uplift controlling the 

cooling of the whole IC domain. 

The AHe cooling age profile (Fig. 4.8) shows an overall pattern consistent with the 

AFT profile. The foreland and the outer part of the Carpathian thrust and fold belt 

(from 0 to 24 km) and the northern part of the Liptov Basin (from 100 to 106 km) are 

not reset. As with the AFT profile, a narrow zone in the frontal part of the MT is also 

not reset (from 32 to 35 km), whereas in its hanging wall the AHe ages are all reset. 

This means that this entire zone experienced temperatures higher than ~60°C. A 

thermochronometer sensitive to very low temperatures, such as the AHe, is 

particularly effective at unraveling the influence of thrusting on cooling ages. 

Therefore, for the OC, the relationship between the age profile and the development 

of the structures forming the thrust and fold belt is clearer than in the AFT profile. 

  

 

Figure 4.8: Comparison between forward modeled AHe ages obtained by of FETKIN and measured 

data. 
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The age gaps recorded along the thermochronometric age profile are indicative of the 

high-displacement structures. Meaningful examples can be found: (i) at a distance of 

26 km along the cross-section, where the younger age (22 Ma) indicates that the 

hanging wall of the MT moved, at least, up to that point; (ii) at 51 km, where the 

younger ages mark the location of the MT2 footwall ramp, with the oldest ages 

located in its hanging wall; and (iii) at 100 km, where a significant age gap is 

associated with the Sub-Tatra Fault, with its 10 km of dip-slip displacement. 

According to our model best fitting all available thermochronometric data, totally 

reset AHe cooling ages range between 8 and 20 km, the youngest ages being located 

in the Tatra Mts. Region (Fig. 4.8). 

The validity of this model is additionally confirmed by comparing the t-T paths 

resulting from HeFTy and the ones obtained from FETKIN for selected sample on 

the topographic line. The first differences consists in the detail of the thermal 

histories. The FETKIN t-T paths are more detailed because they are strictly 

connected with the sequential restoration. Although well matching the general 

pattern modeled by HeFTy, in some case the maximum burial is underestimated (i.e. 

PL 37, PL 27, PL 25). The exhumation of PL 25 and PL 24 starts before the end of 

thrusting and it is younger than the one computed by HeFTy. These differences 

influence the age of the first stage of cooling that are generally younger but good 

matching with the measured data.  

4.8 Conclusions 

This work represents a successful integration of thermal modelling and kinematic 

restoration applied to the case study of the Carpathian thrust and fold belt-foreland 

system. FETKIN has been a key tool in predicting thermochronometric ages and 

calculating t-T paths along a sequentially restored balanced cross-section. It allowed 

us to select, validate and refine the most suitable structural model, for which 

predicted thermochronometric ages match quite well the real data. The obtained 

thermo-kinematic model points out that exhumation in the Outer Western 

Carpathians is coeval with the abrupt increase of shortening rate during Early 

Oligocene to Early Miocene times. This correspondence confirms that thrusting is 

the driving mechanism in the OC exhumation, as already suggested by Andreucci et 
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al. [2013]. This model is also in agreement with the in-sequence thrust propagation 

across the OC sedimentary basin suggested by Roca et al., [1995]. Furthermore, the 

more representative t-T paths traced for some samples along the section (Fig. 6) 

indicate that the OC did not experience temperatures higher than ~120°C during their 

thermal history. Slightly higher temperatures are recorded in the crystalline basement 

cropping out in the IC region, in which cooling during the Middle-Late Miocene is 

locally controlled by the dip-slip extensional offset associated with the Sub-Tatra 

Fault. 

The comparison between two possible tectonic scenarios points out that the major 

effects on the thermochronometric age prediction are caused by changes in the 

geometry of the tectonic structures rather than variations of topographic relief 

through time. The case of the Sub-Tatra Fault, which is interpreted in this study as a 

deeply rooted basement structure rather than a shallow-detaching listric fault, reveals 

that thermochronometry can be a useful tool in constraining the geometry of 

structures at depth. Our results suggest that integrating AFT analyses with a 

thermochronometer sensitive to very low temperatures - such as the AHe system - is 

particularly effective in enhancing structural interpretation and restoration in thrust 

and fold belts. 
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5 Chapter V 

In this chapter two balanced sections crossing the Ukrainian Carpathians have been 

analized.The applied structural model is the same as the one explained in Chapter 3 

for the Polish and Slovak Carpathians. Here we do not describe in detail this model 

but the interaction between this thrust and fold belt and its foreland and the effect of 

this interaction on the burial history recorded along these geologic transects. 

Balanced and sequentially restored sections across the 

Ukrainian Carpathian thrust and fold belt. 
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5.1 Abstract 

New regional balanced cross-sections have been constructed across the Ukrainian 

Carpathians based on field study and available subsurface data. The presented 

transects cross the foreland basin and the entire thrust and fold belt, including the 

Transcarpathian Depression. They are not intended to represent a mere picture of the 

subsurface architecture of this thrust and fold belt, rather they also provide a detailed 

geological background to the burial and exhumation histories already traced for 

some specific samples located in this area. The principals of cross-section balancing 

and sequential restoration, coupled with published transects of low-T 

thermochronometric data and paleothermal indicators, allow the definition of a 

tectonic model explaining the kinematic evolution of this belt. The presented cross-

sections are the result of the 2D forward kinematic model already applied for the 

Polish Carpathians, in which the Outer and Inner Carpathian successions can be 

correlated and ascribed to the same original sedimentary domain and the Pieniny 

“Klippen Belt” is interpreted as a sedimentary unit (wildflysch) characterized by a 

block-in-matrix texture rather than a tectonic mélange. Although poorly constrained 

at depth, due to the scarcity of seismic data and further geophysical information on 

the crustal structure, the presented cross-sections, based on the integration of surface 

geology with numerous well logs, portray a geometrically valid model and provide a 

geological framework explaining the variation of burial depth along the belt. An 

estimate of the width of the pre-orogenic sedimentary basin has been also obtained 

and then compared with the values already available for the western part of the 

thrust and fold belt.  

 

Keywords: sequential restoration, fold and thrust belt, Late Miocene exhumation, 

pre-orogenic basin. 

 

Key points 

 Balanced cross-section across the Ukrainian Carpathians; 

 Fold and thrust belt/foreland system evolution; 

 Late Miocene regional uplift. 
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5.2 Introduction 

The evolution of a thrust and fold belt/foreland system can be delineated by means of 

cross-section balancing and sequential restoration/forward modelling. This technique 

allows one to define the different stages of the evolution of the chain [Suppe, 1993; 

Mount et al., 1990; Endignoux and Mugnier, 1990; Zoetemeijer and Sassi, 1992] and 

provide relevant information to constrain the tectonic subsidence affecting the 

foreland basin as well as the amount of shortening. In addition, the kinematic 

restoration allows one to provide a geometrically valid model of the subsurface, 

where subsurface data are lacking or not available. This work is focussed on the 

Eastern Carpathians (Fig. 5.1), in particular on the Ukrainian region, that is still 

poorly known. 

 

 

Figure 5.1: General tectonic map of the Carpathian-Pannonian region subdivided into the main 

tectonic domains: foreland, foredeep, Outer Carpathians, Pieniny Klippen Belt, Inner Carpathians. 

The Pannonian region is in turn subdivided into two regions representing the units belonging to the 

ALCAPA terrain (dashed region) and Tisza-Dacia terrain (black stripped region). 
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Most of works focused on the more external part of the chain, dealing with the 

stratigraphic evolution of the foredeep successions [Joja et al., 1968; Bancila, 1958; 

Ionesi, 1971; Sandulescu, 1984; Sandulescu et al., 1981a,b and references therein]. 

Previous structural studies [e.g. Artyushkov et al., 1996; Roure et al., 1993; 

Oszczypko et al., 2006] proposed several schematic geological sections across the 

Ukrainian Carpathians; however most of them are located in the foreland area 

because of the great interest of oil companies. Roure et al., [1993] are some of the 

few authors publishing a geological transect across the Outer Carpathian flysch belt, 

furthermore validated by forward kinematic modelling. In such a poorly explored 

area, we collected new structural data and integrated them with literature data in 

order to construct balanced and sequentially restored cross-sections and suggest a 

structural model representing the structures at depth. This is the first attempt across 

this area to propose regional geometrically valid sections in which the relationships 

between Inner, Outer Carpathians and Pieniny “Klippen Belt” are shown. We will 

thus provide a possible scenario for the Ukrainian Carpathian evolution and evaluate 

the syn-orogenic sedimentation in order to estimate the maximum burial along the 

section. This latter has been compared with published low-T thermochronometric 

data (such as Apatite Fission Track (AFT) and apatite and zircon (U-Th-Sm)/He data 

(AHe and ZHe) and vitrinite reflectance (Ro) [Andreucci et al., 2014] in order to 

verify the consistency of our tectonic interpretation. 

5.3 Geological setting 

The Ukrainian Carpathians are a NW-SE oriented thrust and fold belt, representing 

the north-eastern portion of this curved orogenic belt (Fig.5.2). They formed in 

response to the collisional event between the European and ALCAPA and Tisza-

Dacia microplates during the Alpine orogeny [Sandulescu 1984; Royden 1988; 

Csontos 1995] from the Middle Cretaceous to the Pliocene [e.g. Sandulescu 1984]. 

Three main tectonic domains represent the framework of our study area: the Inner 

Carpathians (IC), the Outer Carpathians (OC) and the Pieniny Klippen Belt (PKB). 
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Figure5.2: Schematic map of the Ukrainian Carpathians showing the main tectonic units and the 

location of the section traces. 

 

The IC are built up of thick-skinned thrust sheets made of Variscan basement and the 

overlaying Mesozoic deposits, unconformably covered by Paleogene up to Miocene 

sediments of the Transcarpathian Depression (TD). These successions are involved 

in the Neogene calc-alkaline volcanisms flowing up along faults oriented parallel to 

the Outer Carpathian flysch belt [Kaličak and Pospisil, 1990]. 

The OC are a thin-skinned thrust and fold belt formed by Lower Cretaceous-Lower 

Miocene turbiditic deposits. These successions are affected by Early Oligocene to the 

Late Miocene shortening and then emplaced on top of the adjacent margin of the 

European Platform. This belt is built up of several tectonic units, stacked one on top 

of the others by the in-sequence propagation of thrusting (Maramuresh, Rakhiv, 

Suhiv, Burkut, Krasnošora, Čorna Hora, Dukla, Silesian, Skole and Borislav-Pokuttia 

Units [Jankowski et al., 2007]). Stratigraphic investigations on the marginal foredeep 

deposits pointed out that the NE-SW convergence ended at 11.5 Ma ago [Nemčok et 

al., 2006]. 

The OC are bordered to the south by the PKB, a 600 km long belt, whose 

paleogeographic setting is still enigmatic. The main component of the PKB are 

Lower Jurassic-Lower Cretaceous olistoliths and olistotromes embedded in the 

Upper Cretaceous-Paleocene matrix. Triassic blocks also are present, but they can be 

find sporadically in the Western Slovakia. Some authors suggests an autochthonous 

development of these deposits [e.g., Stampfli and Borel, 2002] and some others 
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[Birkenmajer, 1986; Golonka et al., 2000] point out an allochthonous origin in which 

the PKB is the expression of the subducting Piemont-Ligurian- Vahic ocean at the 

surface. 

5.3.1 The main tectono-stratigraphic units  

In the following paragraphs we are going to describe the successions belonging to the 

IC, OC and PKB. Several regional names are assigned to them sometimes to the 

same formation. For the sake of simplicity we apply the subdivision adopted by 

Jankowski et al. [2012] in order to describe the composition of these deposits and 

their relative nomenclature. This allows us to compare the lithologies described for 

adjacent units (associated with adjacent basins) and highlight the similarities among 

them. In Fig. 5.3 a more detailed representation of the formation and relative 

nomenclature is made. 

The Outer Carpathians 

The OC are built up by several nappes made of siliciclastic deposits thrusted on top 

of the Middle Miocene molasse [Oszczypko et al., 2006]. These deposits are grouped 

into several formations. Some of them can be easily recognized all over the study 

area. For some others the correlation remains uncertain because of the lack of 

homogeneous nomenclature. The first attempt to tie the Ukrainian OC stratigraphy 

has been made by Jankowski et al., [2012] achieving the same depositional system 

for the OC deposits. The Borilav-Pokuttia Unit is the most external units of the OC 

thrust and fold belt. It is detached in correspondence of Lower Cretaceous shaly beds 

intercalated in the siliciclastic deposits of the Stryi Beds. The sedimentation gets 

more calcareous during the Eocene, later covered by the Oligocene bituminous 

shales belonging to the Menilite Fm. This deposit represents an anoxic event 

occurring both in the Polish, Slovak and Ukraine regions and can be used as marker 

for stratigraphic correlation. During the Miocene the sedimentation changes abruptly 

passing into evaporitic layers with lenses of conglomerates. 
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Figure 5.3: Chrono-stratigraphic chart of the main tectonic units constituting the Ukrainian 

Carpathians. The used nomenclature is the one already applied by Jankowski et al., [2012]. The 

formations are not represented with their own real thickness. 
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The structurally upper Skole Units has approximately the same stratigraphic record: 

Lower Cretaceous black shales behaving as décollement surface, passing upward into 

the thick-bedded siliceous and then calcareous turbiditic deposits. In this case, the 

Menilite Fm. starts with lenses of sandstones and chert and is covered by 2400 m of 

Miocene marly shale and thick-bedded sandstones (Krosno Beds). Moving toward 

the hinterland, the Silesian and the upper Dukla units show the same lithology, more 

shaly in correspondence of the detachment level (Shypit Fm.-Lower Cretaceous) and 

passing gradually upward into thick bedded sandstones, in some case intercalated 

with marls. The Menilite Fm. closes the Silesian succession and is covered by 

younger thin-bedded calcareous sandstones and shales in the Dukla Unit. This latter 

is overthrusted by the Čorna Hora Unit, that is not continuous in the whole Ukrainian 

region. It is located in the southeastern part of the Ukrainian Carpathians. According 

to some authors [e.g. Śląckza 1959], this unit represents the inner part of the Silesian 

Unit. Also in this case, the Skypit shales represent the oldest sediments (Barremian–

Aptian). The sandy component increases during the Albian getting thin-bedded till 

the Eocene, when it is intercalated with thin layer of shales. This unit is closed by the 

Oligocene deposits of the Menilite Fm. and the Transitional Beds, composed by dark 

brown shales. Krasnoshora, Burkut and Sukhiv are the most internal units together 

with the Rachiv Unit. The formers are detached along the Shypit shales and pass 

upward into Paleocene thick- to thin-bedded sandstones and gray shales, locally 

intercalated with conglomerates. The Rachiv Unit is formed by Upper Jurassic black 

shales, calcareous thin- and medium-bedded turbiditic sandstones, and limestones 

passing upward into a more sandy Lower Cretaceous complex intercalated with 

conglomerates. Exotic blocks of Mesozoic limestones and diabases are also present. 

The youngest deposits are represented by black shales and thin bedded calcareous 

sandstones [Śląckza et al., 2006]. The trailing edge of the OC flysch belt is bordered 

by the Maramureş Unit. Its lower part is characterized by Mesozoic olistoliths and 

olistostromes covered by flysch deposits. These mega-block are made of Paleozoic 

and Proterozoic schists and gneisses, Paleozoic, Triassic, Jurassic, and Barremian–

Aptian dolomites and limestones, and Permian–Triassic quarzitic sandstones and 

conglomerates [Słącza et al., 2006]. The Upper Cretaceous-Eocene successions are 

formed by marls, thin-bedded sandstone and shales, locally interrupted by 
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conglomeratic lenses. Menilite and Malcov formations, unconformably overlay the 

above-described Eocene deposits. The sedimentological features of the Maramureş 

Unit change radically to the SW where it is built by metamorphosed Riphean-

Vendian rocks and by sedimentary, volcanic, and epizonally metamorphosed 

Carboniferous, Triassic, and Jurassic formations. The Cretaceous conglomerates, 

organogenic limestones, and marls discordantly overlie older rocks [see Kropotkin, 

1991 for details].  

The Pieniny wildflysh 

The Pieniny wildflysch (known in literature as Pieniny Klippen Belt, PKB) is a few 

km wide belt located between the IC and the OC (Fig. 5.2). It is formed by 

condensed successions for years described as the sedimentary infilling of the 

northern branch of the Meliata ocean [e.g. Andrusov 1945; Birkemajer, 1986, 

Plasienska 2012]. Its peculiar block-in-matrix structure, together with the 

stratigraphic observations, [Birkenmajer, 1956b; Plašienka and Mikuš, 2010] 

indicates the sedimentary [Festa et al., 2012] rather than the tectonic origin of this 

unit. The main components of the Pieniny wildflysch consists of Mesozoic olistoliths 

and olistostromes surrounded by a matrix made by shales, sandstones and marls 

whase age is Upper Cretaceous-Paleocene (even known as Klippen mantle from 

Birkenmajer, [1960]). These mega-bocks are more frequently made of Middle-Upper 

Jurassic up to Lower Cretaceous deposits [Andrusov, 1945; Slavin 1963, 1966 and 

Rakús, 1990]. The Jurassic succession starts with Aalenian marly shales covered by 

Bajocian to Berriasian crinoidal limestones. Several lithofacies can be recognized 

within these deposits: from the crinoidal limestones to the ammonitico rosso nodular 

limestones separated by radiolarites and covered by micritic limestones. These 

successions are closed by the Berriasian Calpionella Alpina limestones. These 

variable facies characterizing the mega-blocks are interpreted as rapid lateral change 

of facies in the Pieniny basin. This characteristic is peculiar of the Pieniny deposits 

along all the Carpathian chain but in the case of the Ukrainian sector, the correlation 

with the Polish Pieniny successions are difficult for some formations. While the 

nodular limestones can be easily correlated to the successions belonging to the so-

called Czorsztyn Ridge, the red siliceous intercalations within it are not a common 
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facies. These are interpreted as the transitional slope facies of a hypothetical 

Kamenets Ridge [Lewandowski et al., 2005]. These deposits are overlain by 

andesitic/basaltic and pyroclastic deposits dated Lower Cretaceous [Matĕjka, 1929; 

Andrusov, 1945; Slavin, 1963, 1966; Lomize, 1968]. 

The Inner Carpathians: the Transcarpathian Depression and its substratum. 

The Transcarpathian Depression (TD) is a NW-SE basin, bordering the Pannonian 

domain to the north-east. It is delimited by the Pieniny wildflysch along its northern 

flank. It is located in a retro-wedge position and formed during the Miocene 

extension, while thrusting was still active at the Carpathian front. The basin fill starts 

with the Oligocene turbiditic deposits. Conglomerates, sandstones and clay passes 

upwards into siltstones and claystones. The Oligocene/Miocene boundary is marked 

by the beginning of another turbiditic event depositing 1000 m-thick sequence of 

clastic deposits [Rudinec, 1978]. The Lower Miocene succession is overlain by 

Middle Miocene shallow-water to deltaic deposits. It starts with the marine pelites of 

the Mirkovce Fm. [Zlínska, 1992] intercalated with volcano-sedimentary deposits 

passing upwards in a more sandy complex with calcareous clay and salt 

intercalations. The Middle Miocene succession is closed by clay deposits interbedded 

with sandy lenses and conglomerates. The Upper Miocene is characterized by 

lacustrine facies. 1000 m-thick alternation of clay, sands, gravel, tuff and coal 

deposited up to the Lower Pliocene [Vass and Čverčko, 1985]. 

The pre-Neogene substratum is made by structural units differing in origin and age 

[e.g. Tözsér and Rudinec, 1975; Sviridenko, 1976; Soták et al., 1993]. The 

northernmost Mesozoic successions are interpreted as belonging to the Krížna Nappe 

[Mahel, 1986]. The orientation of the tectonic units buried under the Neogene 

deposits is NW-SE. They consist of thick-skinned nappes involving deposits from 

the Precambrian anchimetamorphic basement to the Eocene. The inner units are the 

Inatchevo-Kritchevo made of Permian to Eocene deposits overthrusted by the Tatric 

and Veporic crystalline basement [Tomek, 1993]. These successions are then affected 

by folding during the Eocene [Soták et al., 1993]. 
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5.4 Methods 

Two balanced sections have been constructed across the Eastern Ukrainian 

Carpathians (see Fig. 5.2), whose traces have been chosen to be parallel to the main 

tectonic transport direction. We integrated our own field data with published datasets 

and geological maps in order to constrain the surface and subsurface geometry.  

The cross-sections have been then compared with published thermal models resulting 

from AFT, AHe, ZHe and Ro [Andreucci et al., 2014] to constrain the maximum 

burial experienced by some specific horizons along the sections. Once constrained 

the burial along the sections, we try to figure out a possible geometric configuration 

for the eroded strata. We use Move package, developed by Midland Valley 

Exploration Ltd., to build up and validate our cross-sections. The first check of the 

geometrical consistency of our geological transect has been made performing 

flexural slip restoration. Each horse has been unfolded using a pin line parallel to the 

axial plane of individual folds. Once compared with the neighbour thrust sheet and 

minimized the gaps or overlaps and fixed the geometric problems among them, they 

have to be folded back to the original position. The horizon used as regional 

datum/template is the Upper Cretaceous-Paleocene. The section is thus prepared for 

the sequential restoration. Vertical simple shear algorithm has been applied to restore 

the displacement along listric normal faults and the fault parallel flow algorithm for 

the reverse fault restoration. Both these algorithms preserve bed area and length of 

the horizons. Then we performed 2D forward kinematic modeling to the obtained 

undeformed section inserting as input the displacement values obtained with the 

sequential restoration. 

The 2D forward kinematic modelling allows us to define the tectonic structures at 

depth and to infer the geometric configuration of the strata above the present-day 

topography, also evaluating the relationships between the thrust and fold belt and its 

foreland basin. 

5.5 Balanced cross-sections 

Two profiles have been selected across the Ukrainian Carpathians. Although 

deformation was essentially produced by thrusting and associated folding for both of 



123 
 

them, normal faulting locally affected the accretionary wedge during the Middle-Late 

Miocene in the area crossed by Profile I (Fig.5.4). On the other hand, no evidences of 

significant post-thrusting normal faulting was found in the area crossed by Profile II 

(Fig.5.5), more to the SE. 

Data constraints for cross section building. 

1:200000 scale geological maps [Jankowski et al., 2004, 2007; Kaličiak et al., 2008] 

represented the starting point for constructing our balanced cross-sections. These 

maps have been integrated with our own field data in order to constrain the geometry 

of the structures. In some cases, the structural survey turns out to be very helpful in 

the reinterpretation of some tectonic contacts (such as the one bordering to the 

southwest the Silesian Unit [Mazzoli et al., 2010]. The above-described surface data 

have been combined with well data, very abundant in the outermost part of this thrust 

and fold belt. The geometry of the foreland basin and the outer Borislav-Pokuttia unit 

has been constrained according to the interpretation made by Oscszypko et al., [2006] 

for the Werbiz, Derziw, Bilcze-Wolycia, Uhersko, Laniwka and Opary wells. The 

geological interpretation of the deepest structures of the OC thrust and fold belt is in 

line with that made by Oscszypko et al.,[2006] and Matenco and Bertotti, [2000] for 

the Romanian Carpathians, highlighting the occurrence of three tectonic repetitions 

of the successions in the inner part of the OC. The detailed cross-sections constructed 

across the whole Ukrainian foreland [Oscszypko et al., 2006] provide a 

comprehensive picture of the relation between the foreland deposits and the 

underlying European Platform. Unfortunately, poor seismic constrains are available 

in the inner part of Ukrainian belt. The geometry of the sole thrust and the top of the 

basement comes from the interpretation of some magnetotelluric profiles published 

for the neighbour area, in proximity of the Polish border [Stefaniuk et al., 2006]. 

Geophysical data interpreted by Oszczypko et al., [2006] shows the occurrence of 

SW-dipping blind normal faults lowering the top of the basement from 6 down to 20 

km b.s.l. 

5.5.1 Profile I  

Profile I (Fig. 5.4a) crosses the Ukrainian Carpathians from the foreland region to the 

TD. In the frontal part, the Miocene molassic deposits lay on top of the Upper 
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Cretaceous and Jurassic cover of the North European Platform. Its thickness 

increases to the SW reaching 3 km in correspondence of the Carpathian front. The 

Platform directly below them is cut by SW-dipping Mesozoic normal faults 

obliterated by the Carpathian sole thrust. After the Mesozoic rifting, these normal 

faults experienced two reactivation phases: the Laramian inversion [Roca et al., 

1995] and the Miocene inversion [Oszczypko et al., 2006 and references therein]. The 

well-constrained geometry of the basement under the foreland basin has been 

replaced by a more uncertain reconstruction below the inner part of the OC and PKB. 

Here it results from the restoration of the OC deposits back to their original position 

that allows a hypothetical reconstruction of the basement below them. The structural 

setting represented in the frontal part of the flysch belt is constrained by several 

exploration wells since this area is of great interest in oil and gas exploration 

[Popadyuk et al., 2006]. Here, the Skole Unit is detached in correspondence of the 

shaly layers within the Upper Cretaceous succession and, together with the inner 

deposits of the Borislav-Pokuttia Unit, are overthrusted on top of the anticlines and 

duplexes deforming the Borislav-Pokuttia successions. Such a high displacement 

thrust (ca. 50 km) can be activated thanks to the presence of the Miocene Polanitsia 

Fm. that represents an efficient décollement layer. The inner Dukla and Silesian units 

are deformed by in-sequence propagation of thrusting. The maximum displacement 

recorded along some of these splays is around 13 km getting lower in 

correspondence of the thrust within the Dukla Unit. The main décollement layer is 

represented by the Lower Cretaceous Spas Shale in the Dukla units; then thrusting 

propagates north-eastwards in the younger succession in correspondence of the 

Upper Cretaceous black shales and the Oligocene-Menilite Fm. The depth of the sole 

thrust reaches ca. 6 km below sea level in the more internal part and remains almost 

flat, slightly SW-dipping. The OC flysch belt are bordered to the south by the 

Pieniny faults. This is a high-angle fault inclined ca. 70° south-westward 

[Lewadowski et al., 2005] thrusting the Pieniny wildflysch on top of the Eocene 

deposits belonging to the Dukla Unit. Here the Pieniny wildflysch is interpreted as a 

sedimentary unit deposited in the proximal part of the IC foreland basin where the 

olistoliths and olistotromes together with the slumping affecting the Upper 

Cretaceous-Paleocene sandy-shaly matrix are thought to be the effect of the subaerial 
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erosion of the IC range. The Upper Miocene volcanism [Pécskay et al., 2000] located 

in correspondence of the WNW–ESE fault system [Kaličak and Pospisil, 1990] 

makes the interpretation of the deep structures of the IC very difficult. Our 

interpretation is based on the detailed geological section compiled by Elečko et al., 

2008 in addition to the 1:200000 geological map [Kaličiak et al., 2008]. This transect 

shows the presence of the Paleogene-Neogene deposits (from the Eocene to the 

Upper Miocene) within the TD unconformably overlaying the Mesozoic cover of the 

IC basement. If any imbrications of the Mesozoic cover occurred, this cannot be 

detected just from the well data as they reach only the upper part of this cover. The 

youngest deposits of the TD are affected by Late Miocene high angle normal faults 

characterized by relatively low displacement ranging between 200 and 500 m. 

Moving to the NE, a high-displacement low-angle normal fault borders the Silesian 

Unit to the SW, increasing its dip angle at depth, in correspondence of the more 

competent lithology of the crystalline basement. In the construction of our balanced 

section we adopted a more conservative and simple solution to complete the 

subsurface information gap occurring in the area of the PKB where there are not 

seismic profiles showing clearly the geometrical relationship between the IC, PKB 

and OC and where the setting is furthermore complicated by the calc-alkaline 

intrusion in the IC arc. 

The eroded strata reconstructed above the present-day topography (Fig.5.4b) are 

consistent with the burial depth estimated by the Andreucci et al., 2014. The frontal 

part of the Skole Unit is buried under less than 3 km thick sediments. Burial 

increases to the SW where the syn-thrusting Miocene sediments get thicker. The 

maximum burial is produced by the stacking of several thrust sheets developed 

within the Dukla Unit where the tectonic burial is ca. 6 km and the thickness of the 

wedge reaches the maximum values of ca. 11 km.  

Restoration of the Late Cretaceous pre-orogenic basin. 

The sequential restoration allows us to reconstruct the geometry of the sedimentary 

system back to the Late Cretaceous (Fig.5.6a). The Upper Cretaceous-Paleocene 

horizon is considered as regional datum for the restoration, as it is well constrained at 

the surface and common to both the IC and OC. We restore, at first, the 8 km 

displacement along the NE-dipping normal fault and the normal faults involving the 
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IC deposits. Then we proceed with the restoration of all the thrust sheets back in their 

original position. In order to restore the frontal thrust leading the Borislav-Pokuttia 

Units on top of the Miocene molasse, we assume that, 15 km southwest of the frontal 

thrust, the Miocene deposits floor the Carpathian belt (as suggested by the Biskiw-1 

well [Oscszypko et al., 2006]. Then the first footwall cut-off is put in correspondence 

of the basement low directly to the south of the last recorded Miocene deposits. The 

displacement recorded for the leading thrust is ca. 26 km, considerably less than the 

50 km estimated by Oscszypko et al., [2006]. Once restored all the structures we 

calculated the amount of shortening separately for the IC and OC domains. 

Independently from the occurrence of any oceanic crust between these two domains, 

the IC experienced a shortening around 37% and their original sedimentary basin 

extends for 37 km. The Pieniny wilflysch deposited on the thinned continental crust 

of the European Platform and its shortening is included in the one calculated for the 

OC. These latter has been restored to a 245 km width basin and the relative 

computed shortening is ca. 156 km (63%). These values are not comparable with 

other works [e.g. Artyushkov et al.,1996; Roure et al., 1993] since they restored only 

the outer part of the Ukrainian Carpathians or provide a merely schematic regional 

profiles.  
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Figure 5.4: Balanced geological section (Profile I) across the Ukrainian Carpathians (located in Fig. 

5.3). The horizontal scale equals the vertical scale. (b) Thickness of the eroded strata reconstructed 

above the present-day topographic line represents the minimum value estimated from vitrinite 

reflectance and low-temperature thermochronometric data [Andreucci et al., 2014]. The geometry of 

the eroded successions is obtained from 2D forward modeling. 
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5.5.2 Profile II 

The profile II (Fig.5.5a) crosses the Ukrainian Carpathians from the foredeep basin 

to the Miocene deposits of the TD without crossing any volcanic complex. The 

Miocene sediments of the Carpathian foredeep deposited directly on top of the 

Mesozoic cover of the East European Platform. The thickness of the molasse 

increases to the south and is controlled by the flexure of the European plate produced 

by the advancing Carpathian belt. These Miocene deposits are folded and thrusted in 

proximity of the Carpathian front forming the so-called Miocene folded foredeep. 

The frontal part of this belt is well constrained from several exploration wells drilled 

in correspondence of the Borislav and Bytkiv–Babche oil-gas fields. These wells 

show the repetition of the whole succession from the Upper Cretaceous Stryj Fm to 

the Polianycia shaly deposits [Popadyuk et al., 2006]. The hinterland-dipping 

duplexes deforming the Borislav-Pokuttia Unit are overridden by the Skole Unit. 

This latter is deformed by several splays propagating northwards. Their displacement 

ranges between a few hundred meters to 2 km. The maximum values is recorded by 

the Skole leading thrust, moving on top of the Borislav-Pokuttia duplexes for ca. 35 

km. Every thrust sheets is affected by internal fault propagation folds. The 

décollement level is represented by the Lower Cretaceous Spas Shales and in the 

more external part by the Upper Cretaceous red radiolaritic shales. The Skole Unit is 

bordered to the south by an oblique-slip fault with 1.5 km of normal displacement. 

The Silesian Unit overthrusts the Skole succession for ca. 35 km. It is internally 

deformed by fault propagation folds with thrusts developing in the hinge zone of the 

so-formed anticlines. The Silesian Unit is at turn overthrusted by a leading 

imbricated fan composed by the adjacent Krasnoshora, Burkut and Maramureş units 

detached in correspondence of the Lower Cretaceous shales. The internal structure of 

the OC accretionary wedge is characterized by the stacking of three major high-

displacement nappes producing a thickening of the accretionary wedge in its central 

part. This is in agreement with the maximum burial estimated by Andreucci et al., 

[2014]. According to these authors, the Skole Unit in its central sector is buried by 

about 7 km (Fig.5.5b). This value decreases going toward the foreland and the 

Maramureş zone where it reaches 3 km. The trailing edge of the  
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Figure 5.5:Balanced geological section (Profile II) across the Ukrainian Carpathians (located in Fig. 

5.3). The horizontal scale equals the vertical scale. (b) Thickness of the eroded strata reconstructed 

above the present-day topographic line represents the minimum value estimated from vitrinite 

reflectance and low-temperature thermochronometric data [Andreucci et al., 2014]. The geometry of 

the eroded successions is obtained from 2D forward modeling. 
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OC accretionary wedge is bordered by the Pieniny wildflysch thrusted on top of the 

Maramureş Unit. Some detailed but superficial geological transect [Słączka et al., 

2006] show in both of the above-mentioned units Mesozoic olistoliths and 

olistostromes including the Triassic Keuper sandstones, the Upper Jurassic red 

crinoidal limestone and the Upper Jurassic-Neocomian white organic limestones 

bounded by Upper Cretaceous-Paleocene flysch deposits. The general trend recorded 

in the Pieniny area is given by SW high-angle dipping strata reflecting the geometry 

of the thrust. The Pieniny wildflysch is partially covered by the Badenian deposits of 

the TD. The structure below the TD is constrained by only a few wells located in the 

Eastern Slovakia [Milička et al., 2011]. They shows the occurrence of SW-dipping 

Eocene deposits below the TD directly on top of the Mesozoic and Paleozoic 

basement rocks. Our reconstruction is the result of the forward modelling that allows 

one to define the thickness and geometry of the strata buried under the Paleogene 

deposits. 

Restoration of the Late Cretaceous pre-compressive basin. 

The restoration of the Profile II (Fig. 5.6b) follows similar assumptions as those 

made for profile I: use of the Upper-Cretaceous-Paleocene horizon as regional datum 

and minimum shortening. Starting from the more recent structures we restore the 

normal component of the displacement along the oblique-slip fault between the Skole 

and Silesian unit. Then we proceed to the restoration of the more external thrusts 

from the folded foredeep units toward the hinterland. No constrains exist on the 

location of the footwall cut-off of the frontal thrust. We suppose it located 30 km 

south of the Borislav-Pokuttia leading thrust. Therefore, its displacement is of ca. 23 

km. Comparing the present-day geological section with the initial undeformed flysch 

basin resulting from the sequential restoration, an estimate of the amount of 

shortening can be done for the Inner and Outer Carpathians, separately. The Pieniny 

wildflysch has been considered as deposited on the continental crust of the European 

Platform and included in the computation of the shortening affecting the OC basin. It 

amounts to 140 km (64%) without taking into account the Upper Miocene 

reactivation of the Mesozoic deep basement normal faults. In the southern part, the 

width of the IC undeformed basin is around 11 km, experiencing a shortening of ca. 

54%. 
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Figure 5.6: Restored cross-sections (a) Profile I and (b) Profile II at Late Cretaceous time. The 

sections have been sequentially restored based on the minimum shortening assumption. Black dashed 

lines show trajectories of future thrust. 
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5.6 Discussion 

The Ukrainian Carpathians remained an unexplored area for years. Most of the 

previous works [Artyuchkov et al., 1996; Kotarba and Koltun, 2006; Oszczypko et 

al., 2006; Popadyuk et al., 2006] focussed on the foreland basin recently drilled by 

exploration wells. They provide useful constraints on the thickness of the foredeep 

deposits, depth of the basement, geometry of the frontal trust and occurrence of any 

tectonic repetition due to high-displacement thrust faults. The representation of the 

subsurface geology is in most of the cases schematic and not supported by a suitable 

geometric validation except in the case of Roure et al., [1993]. They carried out a 

geological section across the Romanian Carpathians where more subsurface data are 

available and they calculated a shortening value of 133 km for the Skole (Skiba) and 

the foreland deposits. Our starting point is represented by a scenario that is 

completely different from what commonly accepted in literature. In fact, we exclude 

the occurrence of any oceanic crust below the Pieniny wildflysch. According to our 

reconstruction this latter is floored by continental crust representing the southern 

margin of the Eastern European Platform. In addition, stratigraphic evidences 

[Birkenmajer, 1956 b; Śląckza et al., 2006] suggest the occurrence of Mesozoic 

olistoliths and olistostromes, whose lithology is comparable with the Mesozoic cover 

of the IC. They can be likely interpreted as belonging to the proximal part of the 

foreland basin formed in the frontal part of the IC range. These mega-blocks are 

embedded in Upper Cretaceous flysch deposits deformed by large slumps. The 

northern continuation of these deposits is represented by the Maramureş Unit. This 

latter preserves the same characteristics as the Pieniny wildflysch: olistoliths and 

olistostromes at the bottom, covered by Eocene marls and sandstones. All of these 

deposits have been already interpreted to be the southern continuation of the Magura 

flysch [Sandulescu et al. 1981], in line with our geological reconstruction. A good 

correlation has been made among the OC successions so far interpreted as belonging 

to different tectonic and paleogeoghraphic units, that is corresponding to adjacent 

basins separated by grabens. Jankonski et al. [2012], first suggested a common 

sedimentary system, unifying even the nomenclature of the various formations. The 

changes in thickness of these formations recorded along our cross-sections are the 
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results of the interplay between the emplacement of this thrust and fold belt and the 

flexure of the foreland. The first deepening of this basin can be recorded during the 

Eocene when the thrust front reached the OC domain. In some localized area, such as 

the innermost OC, the Oligocene sedimentation does not occur as it represented the 

Carpathian front at that time. The Oligocene deposits start to be thicker in 

correspondence of the Silesian deposits where the deepening of the foreland basin 

allowed the accumulation of more than 3 km thick deposits. In the southern Ukraine 

even the Skole successions record such a thickening of the Oligocene deposits. Here 

fault propagation folds and the subsequent thrusting produced the stacking of ca. 7 

km of folded flysch deposits. This burial, even recorded by Ro and ZHe data 

[Andreucci et al., 2014], slightly decreases in correspondence of the Skole front. 

According with the geometric reconstruction of the eroded strata, the Miocene 

deposits increases their thickness in correspondence of the frontal part of the Skole 

Unit. The stratigraphic thickness of the Miocene deposits gets lower in the frontal 

part of the belt, from the Borislav-Pokuttia Unit to the present-day foreland. The 

building of the OC thrust and fold belt could be occurred in the submarine 

environment till the Late Miocene when the last cooling event has been recorded by 

the AFT, ZHe and AHe.[Andreucci eal., 2014]. These data have cooling ages almost 

homogeneous all over the area. When totally reset these ages range between 6 and 10 

Ma suggesting a regional uplift as the main mechanism triggering this Upper 

Miocene cooling. Even if the north-western part of this thrust and fold belt is affected 

by a remarkable NE-dipping normal fault, in this area it seems to not influence the 

cooling ages of this sector that have the same values both at its footwall and hanging-

wall. The nucleation of fault has to predate or be at least coeval with the Late 

Miocene regional uplift affecting this area. 

 

 

5.7 Conclusions 

The tectonic evolution of the Ukrainian Carpathians and the burial depth recorded 

along this thrust and fold belt have been constrained integrating our field data with 

published structural and paleothermal datasets. After the first Mesozoic rifting phase, 
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controlling the thickness of the formations till the Late Cretaceous, the sedimentation 

and the thickening/thinning of the younger successions are controlled by the 

emplacement of the IC range on top of the southern margin of the Eastern European 

Platform and the Oligo-Miocene imbrications of the OC successions. This is partially 

the reason of the variation of the burial depth recorded along the balanced cross 

sections. These latter show two different scenario for the northern and southern part 

of the Ukrainian Carpathians. The northern part, near the Polish border, is locally 

affected by post-thrusting normal faulting. The NE-dipping normal fault bordering 

the Silesian Unit to the SW, seems not influence the cooling ages of the horizons 

located both in its footwall and hanging wall. The cooling ages are almost coeval 

(Late Miocene), suggesting that the normal faulting has to be younger or coeval with 

the regional erosion affecting this area. Moving to the south-east, near the Romanian 

border, there are no evidences of post thrusting normal faulting. The most recent 

structures are represented by oblique-slip faults oriented parallel to the main 

transport direction. The discontinuous burial characterizing the Profile I is here 

replaced by a regular increase of the burial in the central part of the OC accretionary 

wedge, mainly controlled by thrusting. A different scenario in terms of burial can be 

delineated for the TD where the burial depends mainly by the sedimentation. In 

addition, the sequential restoration provides also the width of the pre-orogenic 

undeformed basin. The Profiles I and II have been restored to a 245 km and 218 km-

wide OC basin, respectively, whereas the IC undeformed basin are considerably less 

wide, ca. 35 km and 11km respectively for Profile I and II.  
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6 Discussion 

In this work a thermo-kinematic model of the Carpathian thrust and fold belt-

foreland system is presented. This model is the result of an integrated method that 

combines fieldwork and kinematic modelling with the low-T thermochronometry and 

the 2D thermal modelling. New AFT and AHe data from the Pieniny wildflysch are 

also presented to complete the wide dataset already available for this area. This work 

has a dual aim: on one hand it wants to be a first attempt to represent the tectonic and 

thermal evolution of both the IC and OC domains at regional scale; on the other hand 

it tests the validity of a new approach consisting in the combination of the kinematic 

model and thermochronometry with FETKIN. 

The here proposed thermo-kinematic model highlights the occurrence of four main 

phases in the Carpathian evolution from the Permo-Triassic rifting to the Early 

Cretaceous-Middle Miocene shortening and the post-compressional orogenic 

collapse. 

Mesozioc rifting (from the Permo-Triassic to the Late Jurassic). 

The rifting phase occurring in the Carpathian-Pannonian region during the Permian-

Early Triassic (Fugure 6.1) coincided with the closure of the Paleo-Tethys to the 

south. The subsequent opening of the Vardar Ocean produced the separation of the 

Adria plate into two main plates. According to the most accepted interpretation, this 

rifting phase lasted till the Early Cretaceous giving rise to the development of some 

branches of this ocean (e.g. Meliata, Penninic-Vahic, Magura oceans) fragmenting 

the Adriatic plate in several continental terrains [see Csontos et al., 2004 for more 

details]. In particular, the Magura Ocean and the southern Pieniny Basin opening 

between the stable European Plate and the ALCAPA and Tisza-Dacia microplates 

reached the maximum width during the Tithonian when it became the westward 

prolongation of the Vahic-Pienninic Ocean. Since no oceanic remnants are preserved 

in the Western Carpathian region (as discussed in the Chapter 3), such a big 

extension can be thought as affecting the continental crust, making it thinner but 

without developing any oceanic crust between the European and Adriatic plates. If 

oceanic domain had developed it should have been very narrow. This could explain 

the lack of its remnants at surface Independently from the occurrence of an oceanic 
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basin, our model shows an Early Cretaceous palaeogeographic setting (Fig.3.12) in 

which the sedimentation of the IC (ALCAPA and Tisza-Dacia terrain units [Wessely 

1988]) and OC (belonging to the European domain) Mesozoic successions occurred 

on thinned continental crust. The analysis of the stratigraphy described in detail in 

Chapter 3.4 shows the occurrence of deeper facies in the IC realm, suggesting a 

deepening of the Early Cretaceous basin to the south. Furthermore the correlation 

charts represented in Chapter 3.4) show that the OC and IC deposited in the same 

sedimentary domain. 

 

Figure 6.1 Schematic paleogeographic setting showing the position of the unit during the Carnian and 

Tithonian [modified after Csontos and Vörös, 2004] 

 

Thick-skinned tectonic inversion (Early-Late Cretaceous). 

After the Mesozoic rifting the so-formed normal faults were inverted during the 

Early and Late Cretaceous in correspondence of the northern margin of the Adria 

Plate. This resulted from the relative movement of the Africa Plate respect to the 

European Platform, oriented W-E. This period is thought to be the moment of the 

Western Carpathian oroclinal bend [Plašienka, 1998], even if more recent 

paleomagnetic data [Szaniawski et al., 2013] suggest an original curved shape of the 

belt without invoking the occurrence of any major rotation of the inner domains. The 

Eo-Alpine tectonics caused the formation of the IC thick-skinned tectonic system, in 

which thrusting propagated northward, toward the present-day Western Carpathian 

domain [Plašienka, 1998]. In the eastern sector the Tisza-Dacia microplate collided 
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with the southern margin of the European Platform during the Aptian [Vörös, 2001]. 

In this case the imbrication of the IC successions starts later and recorded a NE 

vergence. The inverted faults preserves a high inclination in the basement, and then 

they got flat in correspondence of the less competent Triassic evaporates. These 

faults produced the imbrication of the basement and the stacking of nappes made of 

its Mesozoic sedimentary cover. The so-formed IC range got exposed to the subaerial 

erosion only during the Eocene when a regional unconformity, described in several 

wells listed in the Chapter 3.5, developed all over the IC region. 

Sedimentation and imbrication of the Pieniny wildflysch (Late Cretaceous-

Paleocene) 

The general eastwards movement of the Africa Plate respect to the European 

Platform produced the rotation of the ALCAPA and Tisza-Dacia blocks and the 

subsequent migration of these latter to the north and northeast. This movement 

caused the closure of the supposed Pieniny oceanic basin [e.g. Dewey et al., 1989] 

and the emplacement of the IC nappes on top of the European Platform [Fig. 6.2]. As 

discussed in Chapter 3.4, an open debate exists on the origin and geodynamic 

meaning of the Pieniny Basin. For years interpreted as an oceanic basin [e.g. 

Birkenmajer et al., 1960; Golonka et al., 2000; Oszczypko, 2004; Picha et al., 2006], 

this idea is later replaced by the hypothesis of a basin floored by thinned continental 

crust [Roca et al., 1995; Jurewicz, 2005]. In our model this latter hypothesis has been 

supported. The sedimentological features of the Pieniny wildflysch has been already 

described by Plašienka and Mikuš, 2010 where the block in matrix texture has been 

highlighted. These olistoliths and olistostrome consists mainly of Mesozoic rocks. 

Triassic blocks, even if not abundant, have been described in the Pieniny Mts., in 

Western Slovakia and Ukraine. They are made of dolomites, dolomitic limestones, 

sandstones and gravel [Ślączka et al., 2006]. The Jurassic blocks are made of 

crinodal limestones and red radiolarian cherts and nodular limestones [Birkenmajer, 

1960] whereas the lithologies of the Lower Cretaceous unit are characterized by 

white organic limestones. Upper Cretaceous variegate marls and thin bedded 

flyschoid deposits are the main component of the Pieniny matrix deformed by 

slumping and shearing internal to the basin. The sedimentation in the Pieniny basin 



139 
 

ends during the Middle Eocene with the sedimentation of sandstones, conglomerates 

and flysch deposits. Comparing these lithologies with the ones building up the 

Mesozoic nappes of the IC domains there is a good correlation suggesting the 

southern provenance of these mega-blocks. [Birkenmajer 1956 b and Roca et al., 

1995]. The same sedimentological characteristics can be recognized in the 

Maramureş Units (Ukrainian Carpathians) that in our reconstruction represent the 

northward continuation of the Pieniny foredeep basin. Thus, the Pieniny wildflysch 

represents the deposits of the IC foredeep basin in its proximal part. The IC belt was 

the only source of sediments at that time, feeding the foredeep basin with the 

Mesozoic deposits eroded from its structurally uppermost units. The Pieniny 

wildflysch overthrusted the OC successions during the Early Oligocene. This high 

angle thrust represents the northern boundary of the Pieniny wildflysch along all the 

Carpathian belt. 

 

Figure 6.2: Schematic paleogeographic setting showing the position of the unit during the Santonian 

and Eocene [modified after Csontos and Vörös, 2004] 

 

Thin-skinned thrusting: OC building and deep-basement fault inversion (Early 

Oligocene-Middle Miocene) 

Starting from the Late Eocene [Fodor et al., 1992] until the Oligocene, a continental 

escape of the ALCAPA terrain from the Alpine sector took place [Csontos et al., 

1992; Fodor et al., 1992, 1998; Kázmér and Kovács, 1985]. The major movement is 

transferred to the boundary between the Dinarides and Alpine terrains. This is 

followed by the Early Miocene opposite rotation of the ALCAPA and Tisza-Dacia 
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plates [Márton et al., 1992; Márton and Fodor, 1995; Márton and Márton, 1999; 

Panaiotu, 1998], which is supposed to be the mechanism triggering the thrusting in 

the OC sedimentary basin. Here thrusting involves the Meso-Cenozoic successions 

of the OC basin, detaching in correspondence of the Lower Cretaceous shale. High 

displacement thrusts, as the one flooring the Magura succession are followed by 

lower displacement thrusts producing hinterland dipping duplexes at the Magura 

footwall. In Ukraine fault propagation folds replaced the development of horses in 

the hinterland of the accretionary wedge. In the earliest stage the shortening involved 

also the deep basement normal faults forming anticlines in the Middle Late-Miocene 

molassic deposits [Oszczypko et al., 2006]. In some cases the displacement was 

transferred to the Carpathian sole thrust. 

Exhumation: timing and proceses (Early-Late Miocene) 

Thrusting in the OC propagated northward till the Middle Miocene and then the 

tectonic transport direction shifted toward northeast ceasing in the western part. 

[Nemčok et al., 2006]. In the eastern part the end of thrusting is dated by stratigraphic 

observations at the beginning of the Late Miocene. After the emplacement of the 

Carpathian thrust and fold belt on top of the southern margin of the European 

Platform, its internal gravitational instability lead to the formation of normal faults, 

some of them reactivating older tectonic contacts. High angle normal faults cut 

through the Carpathian flysch belt in the Polish region, in particular the western 

region. In the central sector of our study area, in proximity of the Polish and 

Ukrainian border, the normal faults become less steep, controlling the exhumation of 

the accretionary wedge. This is also confirmed by low-temperature 

thermochronometry [Andreucci et al., 2013] that provides cooling ages younger then 

the end of thrusting. In this region the young cooling ages are furthermore associated 

with Upper Miocene rapid cooling rates interpreted as due to a tectonic unroofing. In 

the Western Polish Carpathians erosion is controlled by thrust-related uplift. In this 

region new data have been carried out from the Pieniny wildflysch, dating its last 

cooling at the Late Miocene. This age is coeval with the cooling recorded by the IC 

succession suggesting a common thermal history for both the domains due to a later 

localized uplift. The thermo-kinematic model performed by FETKIN highlights that 
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the erosion in this sector is consistent with the in-sequence propagation of thrusting 

in the OC region and that the Pieniny wildflysch and the IC region recorded the 

youngest cooling ages partially controlled by the Sub-Tatra fault. The Eastern 

Carpathians, in particular the Ukrainian region, experienced an Upper Miocene 

cooling event due to isostatic uplift. Here there are no evidences of post-thrusting 

normal faulting and the most recent event involve the formation of oblique-slip 

faults, trending almost parallel to the main tectonic transport direction. 

7 Conclusions 

 The IC and OC successions, and the Pieniny wildflysch weredeposited in 

continental passive margin basins. These could have been separated by an 

hypothetical oceanic domain (Meliata ocean) of which there is no present-day 

direct record (in the form of ophiolites). In this work, a conservative 

hypothesis has been proposed, suggesting the inexistence or the reduced 

extent of this oceanic embayment;  

 The Pieniny wildflysch is here interpreted as a sedimentary unit constituting 

the proximal part of the IC foredeep basin. In the Ukrainian region the 

Maramureş Unit represent it continuation towards northeast; 

 AFT and AHe ages from the Pieniny wildflysch record a no homogeneous 

burial along this belt, as some AFT ages are not reset. Middle-Upper Miocene 

exhumation is interpreted to be triggered by a regional uplift involving the 

Pieniny wildflysch together with the IC domain. 

 The OC flysch belt can be subdivided into three different tectono-thermal 

domains: the Western, the Eastern Polish Carpathian and the Ukrainian 

Carpathians. The first domain is characterised by syn-thrusting erosion. The 

high-angle normal faults developed after the end of thrusting, are not the 

main mechanism triggering the exhumation of the accretionary wedge. On the 

other hand, the tectonic unroofing controlled by post-thrusting normal fault 

affect a wider area of the Eastern Carpathian region. The Ukrainian 

Carpathians, especially the south-eastern part, are not involved in the post-

thrusting normal faulting. The exhumation here is due to a regional isostatic 

uplift. 
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 The estimated burial along the belt generally increases toward the hinterland 

in the western sector of the study area. In the easternmost side of the Polish 

Carpathians and the Ukrainian region the central part of the OC record the 

maximum thickness. 

 The calculated shortening of the OC basin is 54% for the western part of the 

study area getting higher (ca. 63-64%) moving to the east. The width of the 

undeformed basin is ca. 135 km in correspondence of the Profile I, reach its 

maximum extent in the central part (ca. 343 km) and become narrower in the 

Ukrainian sector where it reached the 220 km. The shortening calculated for 

the IC is lower, ranging from 38% to 54% the maximum value recorded by 

Profile II in Ukraine; 

 The here tested FETKIN demonstrated to be a successful tool in validating 

the selected structural model and predicting thermochronometric ages even 

starting from structurally complex scenarios. 
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