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1 INTRODUCTION

Embedded real-time systems are increasingly interwoven in the control of critical elements of hu-
man life, including the health, security, and safety concerns of it [42]. The dependence of the latter
on the former rests on the ability of the system software to carry out the assigned critical control
functions effectively, in conformance with the applicable safety regulations. As part of that trend,
software has become the main value-added vector for most embedded real-time products. In con-
sequence of that, the nature of the critical functionalities implemented in software has changed
from rather confined procedures to large, articulate, diverse, and complex algorithms that over-
see multiple information flows between vast arrays of sensors and actuators. In the automotive
domain, for instance, the quantity of software embedded in cars already exceeds 100 million lines
of code [29], with performance requirements predicted to rise by two orders of magnitude by
2024 [17]. Similar trends occur in other application domains (cf., e.g., [43] for space).

At the processor level, the use of more advanced acceleration features is the only practical means
to sustain the ever-increasing demand of guaranteed performance put forward by value-added ap-
plication software. Not surprisingly, this trend has caused a sweeping transition from simple 8- and
16-bit micro-controllers to more complex processors in new-generation systems for the aerospace,
automotive, and rail domains. For example, existing 32-bit processors in current automotive sub-
systems embed accelerator-based multicore units, like in NVIDIA DrivePX [4], RENESAS R-Car
H3 [3], QUALCOMM Snapdragon 820 [2], and Intel Go [61].

Timing is one of the main non-functional concerns in embedded real-time systems. Timing anal-
ysis aims to ascertain whether software programs execute within the bounds assigned to them at
specification, which normally regard duration (aka worst-case execution time, WCET) and comple-
tion (aka response time). The former type of analysis seeks to upper bound the execution duration
of individual software units considered in isolation. The latter assesses whether a feasible (concur-
rent or parallel) compositional schedule of those software units exists that allows them to complete
their work in a timely manner, that is, within assigned deadlines that respond to high-level needs
of the system’s functionality, after factoring in the impact of the interference among them. Ar-
guably, the hardest challenge of WCET analysis is to comprehend the extent of execution-time
variability (i.e., jitter) that software programs may exhibit when run on their target platform.

—For simple platforms, the sources of jitter (i.e., the features that contribute to the variability
of the program’s execution time across runs) are limited to the software program’s structure
and its input data. The former reflects how multiple identical runs of the program may
take different durations depending on the execution path taken by the program. The latter
reflects how the input data affect programs execution; for instance, determining the branch
taken in the program path or the duration of jittery operations, for example, floating point
operations.

—As platform complexity increases, new low-level and hard-to-catch sources of jitter emerge,
which include cache utilization, bus occupancy, and parallel contention for shared resources
in multicores. Those elements may have a dominant impact on the program’s jitter.

The increase in complexity at software and hardware level has resulted in a relentless quest
for novel timing analysis methods capable of mastering it. The hardness of that challenge has
caused a surge of interest in the use of statistical and probabilistic techniques, owing to their abil-
ity to reason on (black-box) observations, which are orders of magnitude easier to obtain than
(white-box) knowledge on the relevant internals of an execution. A wide range of works exist that
extends from tailoring statistical techniques used in other domains to fit the timing analysis prob-
lem, to dressing hardware to better match the premises of probabilistically analysable behaviour.
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Probabilistic techniques have been explored in virtually all aspects and layers of the system over-
all, including application programs, the operating system, the compilation system and its linker,
the processor hardware, and, of course, the very fabric of the timing analysis itself.

While there is growing evidence that probabilistic and statistical techniques may help allevi-
ate some of the limitations that hamper traditional timing analysis solutions, the proliferation of
works that have appeared in the last few years is making it hard for interested individuals to under-
stand the forming landscape of research in that area. Arguably, one pressing need for all observers
of the present state of the art is to appreciate how those novel techniques relate to one another,
to comprehend the assumptions on which they build, and to determine how they contribute to
earning industrial acceptance for probabilistic-based timing analysis.

This is what this article aims to contribute:

(1) A comprehensive critical taxonomy of the existing works on probabilistic timing analysis,
clarifying which specific problems they aim to attack, how probabilistic and statistical
techniques are exploited (thereby exposing the limitations of each proposal), and where
different proposals overlap or complement one another.

(2) A scrutiny of the assumptions that each surveyed technique makes on the underlying
execution platform and the application timing behaviour, in the intent of clearing the
ground for well-founded use of probabilistic analysis.

The remainder of this article is organized as follows: Section 2 presents the motivation and
intuitions behind the application of probabilistic approaches to the timing analysis problem, and
proposes a comprehensive taxonomy of the relevant state of the art. Sections from 3 to 8 survey
the principal lines of work in that taxonomy. Section 9 concludes by discussing the overall status
of probabilistic timing analysis, for theory and technology, and its readiness for industrial use.

2 PROBABILISTIC WCET ANALYSES

2.1 Setting the Scene

Deriving high-quality WCET estimates is universally accepted as a challenging task [112]. When
facing the WCET problem, industrial practitioners screen the state of the art of solution offerings,
to determine which approach best meets their needs and obligations. Ultimately, industrial choice
seeks to balance the cost-effectiveness of the solution and the quality of the evidence that it can
provide to attain the level of confidence required by the domain prescriptions [7].

Two dominant flavors of timing analysis exist:

—Static methods (STA, in the sequel) seek absolute theoretical rigor, at the cost of complexity
in use and pessimism in the results that may inordinately increase as system design becomes
more complex. The quality of their results strictly depends on the availability of accurate
and sufficient information on the hardware and software internals (and in particular on their
timing behaviour) of the system to analyse. For this reason, [50] notes that mathematical
rigor per se, while obviously beneficial, is insufficient to assure that the provided estimate
always upper-bounds actual execution times.

—Measurement-based methods (MBTA, in the sequel) follow less rigorous approaches (a vul-
nerability that must be addressed with utmost care), for much lower cost of use. Those
methods seek to provide empirical evidence that the worst-case conditions of interest have
been exercised or closely approximated in the measurement observations.

MBTA is the most commonly used technique in industry, owing to its low cost-benefit ratio.
Evidence exists that measurements can be also used for functions with the highest criticality level,
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for example, DAL-A in avionics [75]. Yet, STA is the preferred solution for the software functions at
the highest criticality levels. To contain the costs of qualification (or certification, where required),
those functions typically execute on simple processors and represent a modest fraction of the
value-added software in the system overall [47].

The advent of high-performance hardware presents STA and MBTA with hard challenges. STA
is especially affected in its quest for accurate timing models to compute the cost of individual
processor instructions and the basic blocks of software programs. The presence of intellectual
property restrictions and the vastness of hardware documentation increases the risk of consider-
ing inaccurate or incomplete timing information [7], ultimately causing STA users to depend on
measurements and reverse engineering for filling the consequent information gaps [93]. MBTA
suffers too, as further sources of jitter appear in hardware resources (e.g., bus occupancy, cache
placement) that are difficult to study or observe in isolation, for the lack of sufficient hardware
monitors or specification information.

Another problem with high-performance computing systems is that, no matter how determin-
istic the individual hardware components may be, the fabric of their interaction tends to grow
exceedingly complex, causing an explosion in the state space on which the program’s timing be-
haviour depends together with a potentially large increase in the overall jitter. The former conse-
quence makes it difficult to determine the worst-case scenario; the latter increases pessimism.

The application of probabilistic reasoning to timing analysis aims at mitigating some of the
limitations of the existing techniques.

—The probabilistic variant of MBTA, aka measurement-based probabilistic timing analysis
(MBPTA), aims at easing the construction of qualification-worthy arguments that the worst-
case scenarios of interest have been captured in observation runs, in a manner that lives up
to the increase in hardware complexity.

—The probabilistic variant of STA (SPTA) aims at reducing the pessimism incurred by tradi-
tional WCET analysis, while also reducing the information need. SPTA builds on the notion
of an execution-time profile (ETP) that describes the probabilistic execution-time distribu-
tion of individual instructions. ETPs are an attribute of static instructions at binary level
as they are assumed to upper-bound all of their (dynamic) instances (i.e., the executions of
that instruction during program runs).

The application of either variant of PTA requires changes to the system for it to conform with
the analysis assumptions. The state of the art includes PTA works that address (i) systems where
no hardware or software changes had been applied (COTS), (ii) systems that employed COTS hard-
ware but used software modifications transparent to the application (SWRand), and (iii) systems
whose processors had been modified in selected components (HWRand).

2.2 The Wisdom of Probabilistic Reasoning on WCET

PTA requires one to cease seeking single-valued WCET estimates, as unique definitive upper-
bounds to all instances of execution-time duration, to concentrate instead on a distribution func-
tion, aka probabilistic WCET (pWCET), thus modelling the maximum probability with which a
WCET bound can be exceeded. PTA is a broad paradigm, which encompasses all timing analysis
methods that yield pWCET estimates regardless of the specific prerequisites that each such method
may impose on the characteristics of the execution platform and its modelling, the measurement
collection protocol, the existence and the modelling of dependencies, and the degree of knowl-
edge or control required from the user. To put the PTA paradigm shift in prospective, one should
appreciate that the assurance attached to the single-valued product of STA rests on the quality of
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Table 1. Terms and Acronyms Used Throughout This Article

Term Definition Term Definition

MBPTA Measurement-Based Timing Analysis SPTA Static Probabilistic Timing Analysis

PTA MBPTA and SPTA ETP Execution-Time Profile

EVT Extreme Value Theory i.i.d. Independent and Identical Distribution

PoT Peak Over Thresholds BM Block Maxima

GEV Generalized Extreme Value Theory GPD Generalized Pareto Distribution

COTS Commercial Off the Shelf HWRand Time-Randomized Hardware

SWRand COTS HW w/ Software Randomization pWCET Probabilistic WCET

ATD/ATS Analysis Time Distribution/Sample OTD Operation Time Distribution

the information passed to it (e.g., processor model, instruction timing, flow facts), which, however,
cannot be quantified in the general case [50].

In acknowledgment of the lack of absolute certainty, no critical real-time embedded system is
conceivably designed assuming absence of timing failures (i.e., task overruns). Instead, systems
are designed so that no such event should ever cause the system to enter an unsafe state: If it
did, that would be a single point of failure, consequent to inadequate safety-case design. Domain-
specific standards require system engineering to encompass a safety process that sanctions the
strategy required to mitigate the system-level risk of hardware or software malfunctions. Various
mechanisms (e.g., replication, online monitoring, watchdog) are then deployed to detect and react
to undesired situations, in accord with the criticality of the system part of interest.

Interestingly, probabilistic reasoning is habitually used in the design of electronic compo-
nents [13], to model the appearance of certain types of hardware faults such as, for instance, ran-
dom hardware faults due to particle strikes from the outer Space or other forms of electromagnetic
interference. Probabilistic reasoning on WCET bounds matches that reality quite naturally.

2.3 A Taxonomy of PTA Works

The initial works on PTA, which date back to the early 2000s, reason theoretically on the problem
of probabilistically modelling the timing behaviour, without discussing the mathematical means
to derive pWCET estimates and the computing platforms on which PTA could be safely applied.
About a decade later, that research area boomed, under the spin of a series of EU-funded projects
and a constellation of industrial collaborations born around them. In the last few years, the number
of works that address PTA in various guises has risen dramatically, making it difficult to discern
the relation that they have with one another. In that vastness, several claims are made that seem
to discord. Overall, the current landscape of research in that field has developed into a haphazard
territory, ungainly for scientific investigators or industrial practitioners.

This section attempts to categorize all the PTA works known to date. Works with similar goals
fall in the same category, although some works span multiple categories as they address several
problems at once. Before drawing the taxonomy, we note that probabilistic and statistical reason-
ing take different roles in the application of PTA: probabilistic analysis reasons a priori on the
timing behaviour that the program will exhibit during operation; statistical analysis is performed
a posteriori on a set of execution-time measurements to check whether the hypothesis made on
the program’s probabilistic timing behaviour cannot be rejected. The union of those techniques
(applied either to SPTA or MBPTA) is collectively referred to as PTA. Table 1 lists the main terms
and acronyms used in this article.

In this article, we first classify the surveyed works according to whether they pertain to MBPTA
or SPTA, and then to each of the related sub-problems. Subsequently, we single out further works
of transversal interest. Figure 1 provides a pictorial representation of the proposed taxonomy.
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Fig. 1. The principal categories in our proposed taxonomy.

The MBPTA category, which we survey in Section 3, further breaks down as follows.

—Probabilistic Modelling (Section 3.2) seeks a priori guarantees that the time-randomized re-
sources used in the execution platform are apt to yield a timing behaviour that allows prob-
abilistic reasoning.

—Statistical Modelling (Section 3.3) discusses how to ascertain the statistical properties of the
execution-time distribution of programs obtained from its runs on the target platform. This
represents the a posteriori counterpart of probabilistic modelling.

—Application Procedure (Section 3.4). The works in this category present MBPTA as an orderly
set of actions, and illustrate how to apply them.

—Representativeness (Section 4) aims at providing evidence that the execution-time observa-
tions captured for a given software unit during analysis are representative of the distribution
of the program’s execution times during operation. To reflect their importance, we survey
works in this category in Section 4, outside of Section 3’s internal hierarchy.

The SPTA category, which we survey in Section 5, further breaks down as follows (as proba-
bilistic modelling is intrinsic to SPTA, it is not covered as a separate subcategory).

—Application Procedure (Section 5.2). The works in this category present the SPTA application
process in general and discuss software-related challenges with it, such as path coverage.
This ambit includes the SPTA correspondent of Probabilistic Modelling assurance, to confirm
that the execution platform offers sufficient randomization to allow probabilistic reasoning.
To date, SPTA research has been shown able to meet this requirement only for processor
architectures considerably simpler than those amenable to MBPTA.

—ETP Sampling Techniques (Section 5.3). SPTA applies the convolution operator on the ETPs
of individual instructions to derive their combined ETP. The number of elements in ETPs
increases exponentially with the convolutions performed. Works in this category limit the
number of points per ETP while ensuring that the resulting estimates do upper-bound the
original non-sampled ETPs.

—Convolution Speed-up (Section 5.3). The works in this category propose techniques to reduce
the computation overhead entailed by the use of convolution operators.

Works of transverse concern to MBPTA and SPTA fall in the following categories.

—Computing Platforms (Section 6). The works in this group discuss the main requirements on
the design of the platform’s hardware and software to which PTA can best apply.

—Timing Analysis in the Presence of (Hardware) Faults (Section 7). These works address the
impact of faulty hardware on the program’s execution time, including its WCET.

Table 2 relates the categories in our PTA taxonomy and the HWRand, SWRAnd, and COTS
platform types (cf. Section 2.1) to the coverage of the corresponding topic in the state of the art.
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Table 2. Coverage of the Related Work for Each PTA Taxonomy Category and Platform Type

Platform

MBPTA SPTA Analysis in the
Presence of

FaultsApplication
Procedure

Probabilistic
Modelling

Statistic
Modelling

Represen-
tativeness

Application
Procedure

Probabilistic
Modelling

ETP
Sampling

Convolution
Speed-up

HWRand � � � � � � � � �
SWRand � � � � ✗ ✗ ✗ ✗ -

COTS � - � ✗ ✗ ✗ ✗ ✗ �

Legend: �: covered; ✗: not studied; (−): not relevant.

2.4 Probabilistic Analysis Beyond WCET Estimation

The notion of pWCET has been also explored at higher levels of abstraction, particularly for sched-
uling and response time analysis: the work by Burns et al. [24] is the main reference in this field.
However, since our survey focuses on the use of PTA for pWCET estimation rather than on the use
of the obtained pWCET estimates, for example, for schedulability analysis, we only briefly touch
upon the latter in this work.

The works on probabilistic scheduling consider tasks whose execution time follows a probabilis-
tic distribution that can be characterized, without discussing how such a distribution is derived,
which instead is of essence to PTA. Other works (e.g., [36], [72]) study system-level effects of sched-
uling, which have bearing on execution time and therefore on pWCET estimates, specifically the
cache evictions that a task may suffer because of preemption. No other system-level effects have
been studied so far in the context of PTA research.

To address the scheduling problem from the PTA perspective, it is not strictly necessary to create
a probabilistic version of it. In fact, instead of exposing the whole pWCET distribution function to
the scheduling or response time analysis algorithm, one can simply select a single-valued WCET
estimate for each task, at a cut-off probability that meets the safety-case requirements of the system
(e.g., 10−15 per execution), and use standard scheduling approaches with them.

3 MBPTA

3.1 Introduction

Like any other measurement-based timing analysis method, MBPTA requires collecting execution-
time measurements as soon as possible in the system development lifecycle, thereby avoiding the
hazard of costly, late-stage regression determined by unsatisfactory analysis outcomes. Measure-
ments are normally taken at the level of individual program units of variable granularity points in
the system hierarchy, as soon as coded, after stubbing their externals. The challenge is to create
analysis scenarios that, by virtue of configuration and execution procedure, expose the software
program to the maximum extent of variability that may arise during operation, as a result of input
received, unit state, and execution conditions (the latter including the contention incurred from
co-runners on access to shared hardware resources).

The elements to consider to that effect are referred to as sources of jitter (SoJ). The distinguish-
ing trait of MBPTA is to use analysis-time observations to derive a probabilistic bound on the
program’s execution time that applies to its behaviour during operation. This ability requires at-
taining statistical control on the sources of jitter. Figure 2(a) illustrates this notion by contrasting
the analysis-time distribution (ATD) of the program’s execution time, as determined from very
many observations, commensurate with the degree of assurance sought, with the operation-time
distribution (OTD) that will begin to emerge after final system integration, too late to serve for
WCET analysis. MBPTA aims at ensuring that an ATD, with the upper-bounding characteristics
shown in Figure 2(a), can be constructed off a small number of selected observation samples (ATS),
and then used to derive a pWCET distribution function that upper-bounds the ATD.
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Fig. 2. The basics of MBPTA.

The MBPTA problem overall can thus be decomposed into two parts:

(1) To ensure that the ATD upper-bounds the OTD. This requires assuring that the analysis-
time conditions are no better (for the emergence of the WCET) than those that can arise
during operation. This problem is usually referred to as representativeness, to signify the
preoccupation that the execution conditions incurred at analysis are representative of
those that may occur at operation.

(2) To soundly apply statistical methods so that an affordably small sample of the ATD (a
proper choice of ATS) can be drawn to derive a pWCET estimate that does upper-bound
the ATD (and thus the OTD).

In the literature, the MBPTA denomination has often been used indistinctly to address any
application of statistical and probabilistic approaches to measurement-based timing analysis.
This misclassification matches the statistical part of the MBPTA work flow as understood in this
article, but fails to capture the relevance of having a well-formed MBPTA process to guarantee
a sound application of it. The latter is a crucial concern to the correct interpretation of MBPTA.
Figure 2(b) provides a pictorial representation of the MBPTA proper process. Accordingly, this
survey classifies current MBPTA works into three areas of concern:

(1) Probabilistic and statistical modelling (Section 3.2 and Section 3.3, respectively), where we
discuss the works that address the probabilistic and statistical perspective of the MBPTA
process at the high level, without entering its concrete steps of execution.

(2) MBPTA application procedure (Section 3.4), where we review the works that concentrate
on procedural issues, focusing on particular stages of the MBPTA process.

(3) Representativeness (Section 4), which considers the works that study how to ensure that
the platform, for its hardware or software components and the execution conditions that
they allow exploring, guarantees that the ATD upper-bounds the OTD. The works in this
category either address the program structure (e.g., the coverage of the program’s control-
flow graph) or concentrate on the execution conditions determined by the processor
hardware.

3.2 Probabilistic Modelling

To apply probabilistic reasoning to the timing of a software system soundly, the program execution
time must have a probabilistically characterizable behaviour. The prime means used by MBPTA
research to that end, is to inject randomization into the program’s timing behaviour. Different
means to do so, however, fare very differently with respect to representativeness: we return to this
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issue specifically in Section 4. Probabilistic modelling therefore aims to assure that the approach
followed to inject randomization adequately yields probabilistic timing behaviour.

MBPTA notably differs from SPTA in the way it addresses probabilistic modelling. As we shall
see in Section 5, the latter requires deriving exact or upper-bounding probabilities for each time
event that is randomized (e.g., a cache miss). The former may instead follow the design and imple-
mentation prescriptions in [71] to assure that the timing events that affect the program’s execution-
time behaviour have a random nature (and therefore allow probabilistic reasoning on them), so
that it does not need to know or compute their actual probabilities, for they are bound to emerge
through statistically significant observations.

Overall, MBPTA’s probabilistic modelling requires that randomization means are deployed to
ensure that each execution time resulting from a program run has a probability of occurrence.
MBPTA research has attempted to achieve this goal by randomizing the timing of individual com-
ponents [71], by randomly sorting or picking from measurements [51, 81], and by adding random
padding to observed measurement values [78]. Not all randomization means, however, are equally
capable of providing sufficient representativeness guarantees: the user shall therefore thoroughly
understand the implications of randomization means on representativeness.

3.3 Statistical Modelling

Broadly speaking, when statistical reasoning enters timing analysis approaches, execution-time
observations are sampled according to given criteria, and then used to fit some probability distri-
bution, which yields the pWCET estimation.

To the best of our knowledge, the vast majority of works in this area have used Extreme Value
Theory (EVT), paralleling the worst-case execution-time behaviour of a program to an extreme-
value probability distribution. A residual fraction of works have explored other theories such as
Copulas [22] or Markov models [39, 110]. Owing to this dominance, this section concentrates
on EVT and its use for the pWCET estimation problem. It is worth noting that, while MBPTA
is not intrinsically restricted to yielding continuous distributions, the use of EVT naturally implies
delivering them. Conversely, SPTA, albeit not necessarily limited to discrete distributions, often
builds on discrete representations of the execution times and their individual probabilities.

3.3.1 Basics on EVT. EVT is a well-established branch of statistics that models the probability of
occurrence of extreme events (whether maxima or minima) in a given distribution. EVT has been
traditionally applied to meteorological, hydrological, insurance, and financial problems [5, 37, 45],
to predict extreme behaviour or expectations, such as exceedance probability or return periods.

EVT builds on the Fisher-Tippett-Gnedenko [49] and Pickands-Balkema-deHaan [97] theorems,
which stipulate that the asymptotic tail distribution of a sample of independent and identically
distributed (i.i.d.) random variables converges to specific families of distributions, known as Gen-
eralised Extreme Value (GEV) and Generalized Pareto Distribution (GPD).

To model the tail (hence, the extreme) probability distribution, EVT singles out the tail values
in the input sample of observations. To select those elements from the sample population and fit
them to a (parametric) extreme distribution, EVT uses one of two methods, namely, Block Maxima
(BM) or Peak over Threshold (PoT), briefly reviewed below. Goodness-of-fit tests or other statistical
diagnostic tools eventually determine how well the obtained distribution models the population.

Block Maxima (BM). BM filters out non-tail values by splitting the sample into smaller blocks
of a given size, and then retaining only the maximum value in each block. EVT then attempts to fit
the resulting set of values within the GEV family of distributions, whose parametric form is shown

in Equation (1) [32, 73] (where 1 + ξ (
x−μ

σ
) > 0 must hold), which resolves into a Gumbel, Reversed

Weibull, or Fréchet distribution. The parameters μ, σ , and ξ are known as the location, scale, and
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Fig. 3. Complementary cumulative distribution function for light, exponential, and heavy-tail GEV distribu-

tions, with ξ = −0.2, ξ = 0, and ξ = 0.2, respectively, and (μ = 0, σ = 100) for all of them.

shape, respectively. The shape ξ determines whether the resulting distribution is a Weibull (aka
light or short-tailed), when ξ < 0, or Gumbel (aka exponential or light-tailed), when ξ = 0, or
Fréchet (aka heavy-tailed), when ξ > 0.

G (x ; μ,σ , ξ ) =
⎧⎪⎪⎨⎪⎪⎩
exp

[
−

(
1 + ξ

x−μ

σ

)−1/ξ
]
ξ � 0

exp
[
−exp

(
− x−μ

σ

)]
ξ = 0.

(1)

Figure 3 illustrates example tail shapes: a Weibull distribution with ξ = −0.2, which has a steep
slope and converges to a maximum value (500 in the example, not shown in the plot); a Gumbel dis-
tribution with ξ = 0, which yields a relatively short-tailed slope that, however, remains asymptotic
(outside of the plot); and a Fréchet distribution with ξ = 0.2, which decreases polynomially.

Peak-over-Threshold (PoT). PoT filters out non-tail values by retaining only the observations
that exceed a given threshold. EVT then attempts to fit the resulting set of values within the GPD
family of distributions, Gumbel, Reversed Weibull, or Pareto, whose parametric form is shown in
Equation (2), where the parameters μ, σ , and ξ have a similar meaning as in the GEV formulation
(in fact, ξ is identical), and x > μ. The GPD distribution admits also a two-parameter formulation.

H (x ; μ,σ , ξ ) =
⎧⎪⎪⎨⎪⎪⎩

1 −
[
1 + ξ

(
x−μ

σ

)]−1/ξ
ξ � 0

1 − exp
(
− x−μ

σ

)
ξ = 0.

(2)

[32] notes that a strong correlation exists between GEV and GPD: for the same ξ and similar
values for μ and σ , GPD and GEV result in the same distribution.

3.3.2 Modelling Extreme Timing Behaviour with EVT. In spite of the remoteness of its original
domains of application to the timing analysis problem, EVT has emerged as an apt tool to de-
rive trustworthy pWCET estimates. Numerous studies and considerable effort have contributed
to yielding a sound adaptation of it. From the statistical modelling perspective, among the steps
that precede the application of EVT, the state-of-the-art literature distinguishes (1) the approach
used for the derivation of GEV/GPD parameters, (2) the filtering of tail values from the sample,
and (3) the evaluation of the quality of fit.

Edgar and Burns first proposed using EVT—the Gumbel distribution in particular—for pWCET
estimation [44]. Their work uses a notion of threshold, referred to as “confidence level,” to deter-
mine which distribution to use. With that, they fit the full sample of measurement observations to
the given Gumbel distribution (without using BM or PoT) to ascertain that the accumulated execu-
tion time of individual tasks (assumed to be independent) does not exceed its pWCET distribution
at that confidence level. The authors of [55] apply BM instead, and fit a Gumbel distribution to the
resulting selection, using Chi-squared tests [96] to assess its goodness. The soundness of the result-
ing pWCET estimate is then assessed against a very large sample of measurement observations.

ACM Computing Surveys, Vol. 52, No. 1, Article 14. Publication date: February 2019.



Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey 14:11

[103] compares the use of BM and PoT, also studying their sensitivity to the input parameters.
Griffin and Burns [51] explain that modelling discrete processes (execution times measured in
clock cycles) with continuous distributions such as Gumbel’s may lead to pessimistic pWCET es-
timates. The cited authors also illustrate the difficulties of preserving the i.i.d. properties required
for the application of EVT,1 and propose guidelines to mitigate the corresponding risks and derive
reliable pWCET estimates. Lima and Bate [78] elaborate further on the problem posed by the use
of discrete data, which may impede a proper use of EVT, and suggest adding random padding to
the execution-time measurements to circumvent that problem and apply EVT soundly. Yue et al.
[81] address the lack of independence in the dataset, by proposing an alternative data collection
method. They propose retaining only the highest values from potentially dependent execution-
time measurements, repeating this process until a sufficient number of maxima are obtained that
can be shown independent, so that EVT can be reliably applied to them. The same authors also sug-
gest computing multiple pWCET estimates (with repeated applications of the proposed method)
and the corresponding confidence interval, so that a given pWCET estimate at the chosen con-
fidence level can be selected. Lima et al. [79] analyse scenarios where the whole GEV family of
distributions can be applied: those where the input data come from multiple distributions (i.e.,
from input values that may cause execution to traverse different program paths), as well as com-
puting platforms with or without time randomization. In order to create a source of randomness
and thus obtain sufficient variability in the measurements, the authors apply random sampling
across observations. This particular work does not discuss the representativeness of the studied
scenarios with respect to the execution conditions expected at operation.

Abella et al. [8] employ the Coefficient of Variation method (CV) [38] to determine all GPD
parameters except the shape, and compute the best (presumed) exponential distribution that fits
the data, after confirming that the exponentiality assumption cannot be statistically rejected. The
CV method differs from that in [34], which selects the parameters that best fit the data regard-
less of the distribution family, before choosing a shape parameter that matches an exponential
distribution.

Statistical Requirements for Data Samples. A fundamental statistical requirement in the
original formulation of EVT is that the observations need to be i.i.d. [49, 51, 55]. For the purposes
of pWCET estimation, satisfying the independence requirement may be impaired by data collec-
tion practices or even inherent effects of the execution platform: [22] studies the effect of depen-
dencies across execution-time measurements of program components. In fact, it has been shown
that EVT can be used to analyse stationary processes, where dependence exists across variables,
but only as long as the dependencies are managed conveniently to warrant the reliability of the
resulting distribution [32, 73]. Santinelli et al. [103] analyse the impact of stationary processes
in pWCET estimation, and conclude that dependencies across execution-time measurements may
cause pWCET underestimation. Along the same line, Melani et al. [85] single out the individual fac-
tors that may lead to dependencies, such as cache state modifications across runs and scheduling
policies. That work concludes that, while those factors cause significant dependencies across mea-
surement observations, they can be accounted for in the use of EVT via appropriate independence
and correlation tests. The cited authors also suggest that when those factors combine with some
random phenomena (such as, e.g., random choice of program input), the dependencies become less
important. As noted earlier, [78] shows that adding a random padding to the measured values also
decreases dependencies across them. Whilst this may allow preserving the base EVT assumption
of i.i.d. random variables, it remains to be proven constructively whether using data padding to
model a dependent process as an i.i.d. process does always lead to reliable pWCET estimates.

1This work does not consider stationary processes where some degree of dependence can be tolerated.
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3.3.3 Other Statistical Approaches. Although preponderant, EVT is not the only statistical and
probabilistic technique that has been used with MBTA. Bernat et al. in [22] propose a hybrid MBTA
method where empirical execution-time profiles are gathered from observations taken at the level
of the program’s basic blocks, and then combined together to determine an end-to-end pWCET
distribution. While this work predicates on the notion of pWCET distribution, it applies no pre-
dictive model to determine it: the pWCET distribution is derived by conservatively combining the
execution-time profiles associated to the program’s basic blocks over its control-flow graph. In this
respect, this work is much closer in concept to SPTA than to MBPTA.

In a similar vein, [110] addresses the problem of determining the execution time of soft real-time
systems, where probabilistic deadlines are defined, which can be missed with a given probability.
The cited work focuses on application scenarios common to the robotics/image-recognition field,
where the computation time depends on the complexity of the current real-world situation. In
this case, the i.i.d. property does not hold. To overcome this shortcoming, the authors propose to
model the timing behaviour using a hidden Markov model to represent different execution modes
(associated to states in the Markov model) and valid transitions across them. In that manner, the
authors infer states and transitions directly from sequences of execution-time observations, thus
modelling residual dependencies accurately. At that point, the execution-time distribution for each
state can be described with an independent random variable.

3.4 MBPTA Application Procedure

The EVT-based element of MBPTA requires its application procedure to proceed across four dis-
tinct steps, possibly iterated multiple times, while always paying attention to representativeness
(which we discuss separately in Section 4).

(1) Statistical verification: where the set of collected observations are checked against the
prerequisites for the application of EVT (i.e., i.i.d. and stationarity).

(2) Data filtering: the dataset is filtered (with either BM or PoT) to retain only the values that
belong to the tail of the execution-time distribution of the program of interest.

(3) Parameter selection: where a specific distribution family is selected, along with the set of
parameters that correspond to either the GEV or GPD equations.

(4) Distribution fitting: where the pWCET curve that arises from the above parameter choice
is fitted against the data sample.

The MBPTA approaches in the state of the art differ in the specific assumptions that they make
and the technique that they use to perform those steps.

A first attempt to establishing a solid and repeatable EVT-based MBPTA application procedure
for multi-path programs appeared in [26, 34]. The former work [26] provides a high-level dis-
cussion of those requirements; the latter [34] presents a procedural description of the proposed
application procedure. Those works build on the HWRand platform with explicit enforcement
of the worst-case initial state before each measurement to meet the i.i.d. statistical requirements
of EVT, while also assuring representativeness; BM is used to sample the collected observations
and then the best-fit location, scale, and shape GEV parameters are estimated. At that point, the
shape parameter is tested against the exponential hypothesis with the Exponential Test (ET) [41].
If passed (when ξ ≈ 0), ξ is forced to 0, to match a Gumbel distribution. The cited authors pos-
tulate that a minimum number of observations [34] can be incrementally determined by checking
that the pWCET curve becomes stable (i.e., it does not change significantly when feeding further
observations to the procedure). The Continuous Ranked Probability Score (CRPS) [46] is used to
determine the closeness of the distributions obtained at each round of application. The proposed
method is then applied to multi-path programs assuming the user is responsible for providing the
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input data that cause the traversal of all the program paths of interest to the pWCET computation.
All those paths are then jointly and indistinctly assumed to contribute to the sought distribution.

For both HWRand and SWRand platforms, the authors of [8] present an MBPTA approach that
uses the Coefficient of Variation (MBPTA-CV), already outlined in Section 3.3.2. The authors pos-
tulate that the exponential tail can be always used to model the pWCET, backing their claim with
the time-bounded nature of real-time programs of interest to WCET analysis, the characteristics
of the execution platform, and the granularity level (per path) at which EVT is applied. In contrast
with [34], MBPTA-CV uses PoT instead of BM, thus achieving reproducibility (i.e., yielding the
same output when applied to the same data). As a further point of difference, MBPTA-CV fits the
best exponential tail to the data, instead of fitting the best GEV distribution and then forcing ξ = 0,
which may not be the best exponential fit for the data.

[53] defines a framework for the application of EVT, to ascertain the applicability of EVT to
execution COTS platforms that do not employ randomization. [102] follows suit, using PoT (hence,
GPD) and proposing that an array of statistical tests should be passed with a given confidence level
to guarantee a statistically reliable application of EVT. The same confidence levels are subsequently
used to sustain the reliability of the results, in contrast with [8, 34], which assess the quality of the
pWCET distribution indirectly, as part of the parameter selection step.

[21] uses EVT to analyse the timing behaviour of highly parallel applications running on
GPGPU. The MBPTA application procedure in the cited work broadly aligns with [26, 34] except
that the authors’ interest is more centered on the assessment of the EVT statistical requirements,
owing to the looser independence conditions of their problem.

Lesage et al. [77] present an evaluation framework to assess the reliability of MBTA. The pro-
posed approach combines timing data with compiler-generated structural information, to guide
the construction of synthetic path traversals (random walks) that can be used to test the robust-
ness of the analysis approach, especially when different coverage conditions are met. The authors’
framework is then instantiated to the MBPTA context, using a maximum envelope2 to compute a
single pWCET distribution out of observations from multiple program paths. Experimental results
confirm that the quality of the results is highly dependent on the attained path coverage.

3.5 Summary

Existing MBPTA approaches prevalently base on EVT and all share similar procedural steps. In-
dividual approaches differ in the assumptions that they rest on and in the statistical tools that
they use. At the outermost level, the research proposals are divided between those that prescribe
the use of randomization in the execution platforms [8, 34] and those that assume unmodified
(time-deterministic) platforms [21, 53]. Experimental evidence shows that randomized execution
platforms facilitate meeting the statistical prerequisites of EVT. When the alternative approach is
pursued, the method used to collect the measurements must be studied with care (cf. Section 4).

The use of BM or PoT appears to be equally valid, when used within sound methods.
Predefined governing assumptions on the timing distribution of the target program generally

guide the (GEV or GPD) parameter selection, with the Gumbel (GEV) or Exponential (GPD) distri-
bution being normally regarded as the most appropriate choice for the problem domain [8, 34, 44].

No universal consensus exists to date on how to assess the quality of the pWCET distribu-
tion derived with EVT. Some works [53, 102] use the confidence levels obtained from the assess-
ment of statistical prerequisites, to indirectly evaluate the quality of the EVT results, which, how-
ever, postulates a strong correlation between prerequisites and results. The quality of the model is

2A maximum envelope of a set of distributions stands for the distribution that, for each exceedance probability in a set of

input distributions, takes the maximum pWCET value across them.
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Fig. 4. An exemplary Probability Distribution Function of the execution time of a program.

typically ascribed to the goodness of the parameter selection [8, 34], where a more accurate se-
lection is bound to yield better results. Other approaches [79] suggest the adoption of standard
statistical diagnostic tools, such as the Quantile-to-Quantile [28] or the Mean-Excess plots [20].
Both solutions are complementary and not really alternative. And yet, any claim on the soundness
of the MBPTA results (over and above the use of EVT) must address the representativeness concern.

4 REPRESENTATIVENESS

4.1 Introduction

For all measurement-based analysis techniques, the concern of representativeness regards the abil-
ity to assure that the execution conditions encountered when collecting the observations correlate
significantly with those that can occur during operation. The umbrella term “execution conditions”
refers to all the factors that may affect the timing behaviour of a program when run on a given
processor platform, including, for example, its memory layout (which determines cache mapping
and may thus have a large impact on the cache behaviour) and the parallel contention load on
shared hardware resources in multicores.

The representativeness concern is external to EVT, as EVT treats the system of interest as a black
box, without considering the system’s internals when the observations are taken. Thus, the EVT
projections only hold for the “world” as seen during the analysis. Whereas the events observed at
different moments of the same analysis (i.e., in different runs of the same program) may contribute
to one combined probability distribution, EVT has nothing to say on unobserved events.

This notion is better understood with Figure 4, which portrays for illustration purposes the real

(hence, conceptual) probability distribution function (PDF) of the execution time that a program
can take. An artifact of this kind cannot be obtained in the general case as only a (small) sample
of the corresponding observations can really be taken with finite effort, so that an empirical PDF
is obtained instead. The PDF presents three peaks with decreasing densities, at 150k, 250k, and
355k cycles, respectively. Each such peak is caused by a particular set of (not necessarily disjoint)
execution conditions. Assume that the execution conditions that trigger the right-most peak would
not occur in the analysis sample. In that event, EVT is unable to capture the right-most peak in
the tail (which, without seeing sufficient elements of it, could be located arbitrarily far to the right
of the abscissa). Applied to this example, the representativeness concern reduces to the need to
assure that the analysis observations capture all the execution conditions of interest to pWCET
analysis, so that EVT can factor all due peaks in its predictions.

While representativeness is acknowledged as a critical issue for EVT predictions [32], a number
of works either assume it to be given or outside of scope, or conjecture the execution conditions
incurred in the input sample collection do suffice for pWCET estimation [44, 51, 55, 78, 79, 81, 103].
[25] notes, however, that the user may often be unable to control the low-level hardware features
that have bearing on representativeness.
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Arguably, representativeness plays a key role in the pWCET estimation process. Platform char-
acteristics and means to account for different program paths may lead to obtaining either a single
execution-time sample (hence, a single execution-time distribution) or multiple ones. In the latter
case, different approaches have been followed to obtain a single pWCET estimate (i.e., a single
execution-time distribution) from the multiple distributions sampled.

4.2 Program-Structure Representativeness or Path Analysis

The variable set of program paths that observation runs may traverse is one of the main sources of
jitter in the program’s execution-time behaviour, which impends on the representativeness con-
cern. Several probabilistic approaches have been proposed to address that challenge.

4.2.1 Applying EVT or Other Statistical Means to Multiple Program Paths. To use MBPTA for
multi-path programs, one needs to determine how (i) to apply EVT to those program paths; and
(ii) to guarantee that the obtained pWCET results are valid for all the possible path traversals that
may occur during the nominal operation of the analysed program.

As we noted in Section 3.3.3, [22] collects execution-time measurements for small program units
(basic blocks or functions) that correspond to different execution paths, and uses their frequency
of observation to construct an ETP for each such structural unit. At that point, the cited work
uses appropriate mathematical operators to combine the individual ETPs into a pWCET for the
whole program, in a manner that upper-bounds the execution time of any single end-to-end path
traversal. The authors use convolutions to combine the ETPs of independent program units and
define an extended form of joint convolution for units that are known to have dependencies or,
conservatively, where dependencies cannot be excluded.

Other authors [34, 79] propose merging the execution-time measurements taken across multi-
ple program paths into a single bucket, which is then passed in input to EVT. [102] shows that
proceeding in that way does not work in all cases. Milutinovic et al. [92] discuss the risk of the
single-bucket approach, which causes the pWCET to reflect the path traversal frequency as oc-
curred during analysis, which the user may have great difficulty at correlating with the operational
behaviour of the program. Authors further show that, when using Gumbel distributions, the single-
bucket approach may lead to pWCET estimates that either are optimistic (i.e., not upper-bounding)
for some, possibly all, individual program paths or exceed all of them, thus incurring unwanted
pessimism. [92] recommends the multiple-bucket approach, instead, where each execution path is
analysed separately, and a joint pWCET estimate (known as the maximum envelope) is obtained as
the pWCET profile that upper-bounds the distributions computed for all individual traversed paths,
and for each exceedance probability of interest. The multiple-bucket method can be adopted by all
approaches in the state of the art that originally apply the single-bucket method ([34, 79, 102]).

[8] follows the multiple-bucket approach and pays special attention to the curve fitting step of
the MBPTA application procedure. The authors maintain that the Exponential distribution (GPD)
or Gumbel distribution (GEV) are always a safe choice for modelling the worst-case execution-
time behaviour of a real-time software program, and propose an analysis procedure to be applied
on a per-path basis. The authors’ method seeks representativeness with a combination of upper-
bounding precautions and time randomization in the execution platform.

4.2.2 Assuring MBPTA Results for All Program Paths. This problem is inherent to all
measurement-based analysis approaches, which can only speculate on the observations made dur-
ing the analysis and therefore produce results that are only valid as long as those observations are
representative of the worst-case execution conditions (including worst-case path traversal). Curing
this problem by requiring the user to achieve full path coverage in the analysis observations is not
a tenable option in the general case. This problem, generally referred to as path-representativeness,
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is bypassed in [34] by predicating on the user’s ability to discern the relevant paths in a program.
This assumption, however, can hardly be generalized. Other works [79, 82] suggest making random
picks across all possible input data to the program, to select a random subset of program paths and
associated execution conditions. This method, however, offers no absolute guarantees of coverage.

A number of methods propose to synthetically extend the degree of path-representativeness
that the user-provided input data can attain in the general case [67, 114], so that the pWCET
distribution obtained with MBPTA is trustworthy, even when the path traversals made during the
analysis cannot be guaranteed to have included the worst-case path. [67] presents the Path Upper
Bounding (PUB) technique to artificially balance the branches of all individual conditional control
flow constructs in the program so that any branch is a safe upper-bound for all the other branches
in the same construct. Balancing is obtained with an extended binary version of the target program
(used at analysis time only), where additional core and cache access instructions are inserted as
needed on the individual branches of the conditional construct. The execution-time measurements
collected for the extended version of the program thus are by construction an upper bound to all
possible path traversals in the original program, which is the one that is eventually deployed at
operation. The degree of overestimation incurred by balancing depends on the particular structure
of the program under analysis. The main drawback of PUB is that it needs a qualified compiler
to generate a semantically preserving extended version of the original program. Indeed, those
compiler transformations may be overly difficult for complex programs; for example, those that
use “goto” or breaks in loops.

With a similar intent, Ziccardi et al. [114] propose the Extended Path Coverage (EPC) technique,
a fully automated approach to artificially extend the set of measurements to achieve the same ef-
fect of full path coverage. EPC relies on the concept of probabilistic path independence to generate
a set of synthetic observations that complement the set of measurements actually collected. EPC
operates at the level of basic blocks whose execution-time observations are synthetically made
independent from any specific path in the program, so that they can be used as building blocks
to derive end-to-end measurements for unobserved paths. Feeding EVT with the union of mea-
surements from observed and unobserved path traversals achieves the same effect as full-path
coverage, without any additional burden on the user. EPC requires that the original observations
assure basic block coverage: this is a realistic requirement in some application domains, certainly
lighter than its full coverage alternative.

Both PUB and EPC have been developed for HWRand platforms, but in principle they might
be adapted to SWRand platforms too. Instead, their direct use for time-deterministic platforms
would either fail or deliver too pessimistic results (e.g., assuming that almost all cache accesses are
misses).

4.3 Platform-Related Representativeness

The use of complex processors induces hardware-related sources of jitter that need to be accounted
for in any claim of representativeness. The MBPTA research in this regard follows two trails:
one that addresses time-deterministic platforms, which embed no MBPTA enabler underneath
the application; the other that studies how time randomization, transparently implemented in
hardware or software or both, helps meet the MBPTA application requirements.

4.3.1 Time-Deterministic Platforms. A reliable application of EVT for pWCET estimation re-
quires the user to accurately understand the population of hardware events that may occur during
operation [25] and determine whether and how far analysis-time observations can trigger them.
Admittedly, however, enumerating all sources and all combinations of execution conditions with
impact on the program’s execution-time behaviour is an intractable problem in the general case.
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Moreover, the cost and complexity of constructing an input dataset that triggers each and every
such event is out of reach for most users. In fact, to the best of our knowledge, no work exists to
date that solves this problem in a sufficiently general manner.

In [82], the authors propose random sampling across a program’s input values as a means to
explore different execution conditions. This approach, however, does not allow drawing solid con-
clusions on the coverage achieved. Interestingly, an approach of this kind may indeed produce
data samples capable of passing i.i.d. tests (except for programs with low variability in execution-
time behaviour), and thus lead to mechanically successful applications of EVT but that are unfit

for pWCET computation, owing to fundamental deficiencies in representativeness.
[83] studies measurement protocols in general, that is, abstract procedures to follow for col-

lecting execution-time measurements, without adapting them to any specific platform. This work
suggests that a measurement protocol converges by adding more measurements to the analysis
sample, given that a larger sample delivers a pWCET estimate closer to the pWCET that would have
been obtained using the whole population of execution times. A measurement protocol achieves
representativeness if there exists a number k of execution-time observations that allows obtaining
a pWCET close enough to the actual (ideal) WCET. Notably, [83] offers only a qualitative argument
to support the claim of convergence, which has not been sustained with quantitative evidence.

4.3.2 Time-Randomized Platforms. Several works present hardware designs that aim to help
achieve representativeness. All those proposals explore ways to control the jitter of certain pro-
cessor resources. We briefly survey each of them in isolation, noting, however, that they can be
combined opportunistically in accord with the characteristics of the platform and the needs of the
application.

Probabilistic Upper-Bounding. Time-randomized processor architectures aim at helping the user
achieve representativeness with less effort [71]. This approach attacks the hardware sources of
jitter with high-enough impact to justify design change. When the events that they generate be-
come random, then the user problem reduces to assuring that the quantity of observations made
is sufficiently large for the whole spectrum of variation to manifest itself. To put it simply, for
a random source of jitter with probability of appearance of Pe = 0.1 per use, the probability of
not observing it in R = 1, 000 single-use runs is Pno = (1 − Pe )R = (1 − 0.1)1000 ≈ 4.3 × 10−5. The
domain regulations will then determine whether such a probabilistic assurance level is sufficient.

Deterministic Upper-Bounding. Processor resources whose jitter is low enough to not justify time
randomization but not insignificant for the analysis, are modified to allow the user to set them to
respond with their worst-case latency during analysis [71]. In that manner, the jitterless timing be-
haviour of those resources during analysis is assured to upper-bound their jittery behaviour during
operation. A typifying example of these resources is the floating point unit (FPU), some of whose
operations may take a variable response time depending on the operands. It would be unthinkable
for the user to study the probability distribution of operands during operation and to figure how
to reproduce it during analysis. The ability to force the FPU to always respond with worst-case
jitter per operation type during analysis relieves the user from that burden. An approach of this
kind has been used also to study contention effects with hardware shared resources [12, 95].

Padding. An alternative to touching the hardware design is to artificially enlarge the collected
execution-time values before passing them to EVT [40]. The increment factor is designed, on per
processor resource basis, to capture the maximum time overhead that such resource might cause in
the observed use. This approach was used in [40] to upper-bound the impact of contention on ac-
cess to hardware shared resources in a multicore. Unlike deterministic upper-bounding, this tech-
nique is pessimistic in that the padding may yield jitter costs higher than the absolute maximum.
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4.3.3 Cache-Centric Solutions. [9] shows that, with time-randomized hardware, all high-impact
sources of jitter, except for cache placement, can be observed sufficiently well to apply EVT to
them. This is not surprising as caches are one of the processor resources with the highest impact
on the program’s WCET. As such, the quest for determining the worst-case behaviour of caches
has attracted the attention of the WCET research community [56].

For set-associative caches, the de-facto standard in real processors, the events of interest to EVT
originate when the number of program’s code or data objects mapped to the same set exceeds the
set capacity (the number of ways) [9]. In fact, this scenario may cause an abrupt increase in the miss
ratio, and a correspondingly large inflation in the program’s execution time. If events of this kind
can happen with a non-negligible probability during operation, they have to be captured at least
once in the observation runs performed during analysis, in order for EVT to account for them [9].

The role of caches in the representativeness problem is discussed in [101] and [88]. [69] and [70]
study how that problem changes when the caches use random placement or modulo placement
combined with software randomization techniques.

Hardware-Randomized Caches. In non-parametric random placement caches [23, 104, 109],
placement considers only the address of the memory request. As a result, a given memory lay-
out determines a single cache placement, much like with conventional deterministic caches based
on modulo placement. The former and the latter therefore have the same limitation with respect
to representativeness: they are exposed to highly unlikely but extremely heavy pathological cases.

Time-randomized caches [59, 64, 66], on the other hand, feature parametric placement functions,
which allocate data in cache lines based on a combination of the request address and an arbitrary
random number. By changing the random parameter across runs, those designs yield a different
cache placement for each execution, which allows addressing the representativeness problem by
sampling observations across distinct program runs.

[9] shows that, for hash random-placement caches with S sets, it is possible to determine
whether at least W + 1 program objects out of the total K under consideration are mapped to
the same cache set, by considering all potential mappings of the K objects to the S cache sets and
the fraction of those mappings where at least one cache set hasW + 1 objects allocated to it. The
result of this operation can be approximated with weak compositions. A weak composition of an
integer n is a way of writing it as the sum of a sequence of non-negative integers. The cited work
studies all the weak compositions of K made of exactly S parts, where at least one part is higher
than W . From this analysis, the cited work derives the probability of the cache event of interest,
Pce , and the probability of not observing it in R observation runs, Pno = (1 − Pce )R . One proposed
solution then consists in increasing R until Pno becomes small enough to be acceptably ignored.
One other solution is to repeat the analysis with a cache with a smaller number of sets, to increase
the probability of occurrence of the cache event of interest to the point of capturing it with higher
probability with R observation runs.

[19] presents an alternative to weak compositions using the multinomial coefficient that derives
exact results instead of approximations. To mitigate the non-negligible computational costs of
using the multinomial coefficient, the cited work proposes Monte Carlo simulations to approximate
the probability of the event of interest, with a given precision.

[90] notes that the previous solutions assume that the impact of all addresses on execution time
is similar. For instance, given three addresses, A, B, and C , which access a direct-mapped cache,
those techniques assume that mapping A and B, A and C , or B and C to the same set has the
same impact on the program’s execution time. This might be so when the addresses are accessed
homogeneously. Yet, in the general case, not every combination of addresses—when mapped
to the same set—results in an execution-time increase of the same magnitude. To address this
challenge, the cited work proposes ReVS , a computationally intensive method to compute exactly
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the probability and impact that each cache allocation can have on execution time. For sets withW
ways, the proposed solution takes in input the sequence of accessed addresses of the program and
builds all combinations of W +m addresses (with m ≥ 1) out of the K addresses in the program.
The impact that each such combination can have on the miss count is determined with a cache
simulator, whereas their probability is derived analytically. With this analysis, the user can assess
whether R observation runs are sufficient to capture the cache allocations with low probability
and high impact. Otherwise, more runs are needed until the condition is satisfied.

[89] presents a less effort-intensive variant of that solution. Instead of running simulations in
the cache simulator for all combinations ofW +m or more addresses, it uses a quantitative metric
to single out the combinations ofW +m that may have high enough impact.

Software-Randomized Caches. [18] studies the difference between software- and hardware-
randomized caches, for programs with homogeneously accessed objects. The authors show that,
for hardware-randomized caches, the probability PS of an object to be assigned to a given set for
S sets is 1/S . With software-randomized caches, dependencies exist among the sets allocated to a
given object and those that can be assigned to another. Accordingly, the probability of allocating
an object to a given set reduces as more objects are already allocated to it. This dependency causes
the probability of the cache events of interest to differ for software-randomized caches from their
hardware counterpart.

4.4 Summary

Representativeness is a key concern for all measurement-based timing analysis approaches. Its
problem space spans the Cartesian product of all distinct sources of jitter of interest, both high-
level, such as program paths, and low-level, such as stateful processor resources. The MBPTA
results are valid only as long as the execution conditions experienced during analysis are (conser-
vatively) representative of those that may occur during operation.

The quest for sufficient path coverage in the analysis encompasses two contrasting trends.
Some authors [67, 114] seek to achieve full path coverage synthetically, adding structural pro-
gram knowledge to the postulate that the user-provided input data to the program assure basic
block coverage. Other authors [79, 82] prefer to soften the requirements and propose sampling ran-
domly from the input data space. While attractive from the user perspective [78, 79], solutions of
the latter kind have fundamental weaknesses: they cannot yield solid (upper-bounding) correlation
between the program paths traversed in the observation runs and the unseen ones; furthermore,
owing to the black-box nature of EVT, they may produce results that are either unreliable or overly
pessimistic [92, 102].

The same problem, only grander, presents itself for the processor resources, in the need to as-
sure that the effects of the execution conditions incurred in the observation runs upper-bound
those that may occur during operation. Expecting the user to achieve full control of the low-level
factors of interest is evidently untenable, and, again, random sampling from the program’s input
space as proposed in [82] offers only a manner to possibly incur enough variability to satisfy EVT
mechanically, but not to warrant a reliable solution for MBPTA. Low-cost hardware modifications,
transparent to the application, have been studied extensively to help in building arguments of rep-
resentativeness [9, 89, 90]. To become more industrially viable they have to be extended to COTS
processors, which is still a work in progress to date.

5 SPTA

5.1 Introduction

Probabilistic reasoning has also entered the world of static timing analysis, which builds a priori

models of worst-case behaviour. [35] is an early instance of that union, which does not require
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any form of platform randomization, thus falling into the category of classic static timing analysis.
The cited work assumes that probabilities of occurrence can be attached to the outcomes of the
conditional branches in a program. By propagating that information along the abstract syntax
tree of the program, and assuming that the WCET cost of individual program units be statically
known, the authors compute a priori traversal frequencies for individual runs and consequently
for execution-time values.

Conversely, the static analysis techniques that assume (require) some degree of platform ran-
domization fall under the umbrella of Static Probabilistic Timing Analysis (SPTA), which aims to
yield probability distributions for the program’s execution time. The presence of a randomized
cache is the fundamental assumption at the basis of SPTA research and the fundamental enabler
to its state-of-the-art solutions. In randomized caches, a random eviction occurs in response to
either a cache access (evict-on-access) [26] or a cache miss (evict-on-miss) [64].

SPTA solutions construct ETPs, that is, discrete representations of the probability mass function

of the time cost of program units, which were considered for the first time in [22]. ETPs can
be defined at various levels of abstraction and granularity of program execution, from individual
processor instructions in the program binary (static view) or their executed instance (dynamic view,
which carries contextual information akin to loop unrolling and call-context in classic static timing
analysis [112]), to groups thereof. ETPs for static instructions provide a safe over-approximation
over all possible executions. ETPs for dynamic instructions, instead, allow constructing a tighter
bound to the actual timing behaviour. Representing the timing behaviour of single instructions as
an ETP requires a precise micro-architectural model of the execution platform, a common need
to static timing analysis [112]. Whether explicitly or implicitly, all current SPTA solutions work
at the level of static instructions, which is deemed more robust against the lack of precise timing
information, and thus less demanding to the user. Unless explicitly stated, therefore, we assume
this choice by default in the sequel.

For a given (static) instruction x , the ETP describes the latencies {etxi
} that its execution can

incur, and the associated probabilities {Pxi
} of occurrence. Accordingly, the ETP for instruction x

can be defined as follows:

ETP (x ) =

(
etx1 etx2 · · · etxn

Px1 Px2 · · · Pxn

)
,

n∑
i=1

Pxi
= 1.

SPTA postulates that the ETPs of individual instructions can be composed to build up the ETP
of any sequence of instructions up to the entire program. The independence of the ETPs of individ-
ual instructions in a sequence is guaranteed by either making assumptions on guarantees offered
by the underlying hardware platform [26] or explicitly removing potential dependencies in the
modelling of individual ETPs (e.g., by considering lower bounds to the probability of hitting in
cache). On the assumption of independence, SPTA computes the ETP of an instruction sequence
by applying discrete convolution (⊗) to their individual ETPs. More formally, let X and Y denote
the random variables that describe the execution time of instructions x and y, respectively. Their
convolutionZ = X ⊗ Y is defined as

P{Z = z} =
k=+∞∑

k=0

P{X = k } × P{Y = z − k }.

Figure 5(a) shows an example convolution of two ETPs. The remainder of this section illustrates
the SPTA application procedure and discusses how its computational cost can be mitigated.

ACM Computing Surveys, Vol. 52, No. 1, Article 14. Publication date: February 2019.



Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey 14:21

Fig. 5. SPTA basic concepts: (a) convolution; (b) sampling; (c) inter-ETP parallelization.

5.2 SPTA Application Procedure

The concept of ETPs and convolutions was first used by Zhou in [113], where the latencies of indi-
vidual instructions are determined by the cache hit and miss latency for code and data. The hit and
miss probabilities in a random cache relate to the number of memory accesses that occur between
two subsequent accesses to the same memory block (aka reuse distance): this value provides an
upper bound to the number of potentially evicting events. However, [15] shows that the eviction
probabilities across instructions are not independent in evict-on-miss random caches, and con-
sequently, the prerequisites for convolution do not hold. By using convolution on those dependent
ETPs, Zhou obtains a probabilistic approximation of the program’s execution time, which is not

a pWCET estimate, for it is not guaranteed to upper-bound the real execution-time distribution.
Hence, Zhou’s approach cannot be regarded as an instance of SPTA. While such model requires
only reuse distances for fully associative caches, it needs precise addresses and the corresponding
cache mapping for set-associative and direct-mapped ones. In fact, such constraint also holds for
all SPTA techniques considered next.

The first definition of a proper SPTA approach was presented by Cazorla et al. in [26]. The pro-
posed solution addresses single-path programs, assuming evict-on-access random caches, where
cache hits do cause evictions. In that work, the notion of reuse distance is applied to conserva-
tively build ETPs that are assuredly independent and can be convolved, so that the result is a true
pWCET estimate. In particular, the said authors use reuse distances to estimate lower bounds to the
probability of hit of each access. By using evict-on-access random replacement, whether memory
accesses in between two consecutive accesses to the same memory block hit or miss is irrelevant
since they cause a constant number of evictions, which facilitates the construction of independent
ETPs, as needed for convolution.

Subsequent works address other cache policies [36], multi-path programs [76], and attempt to
improve on the analysis precision [15]. [36] extends SPTA to evict-on-miss random replacement
caches, where eviction occurs only in the event of cache misses. [15] discusses the conditions for a
correct application of SPTA and the optimality of the equations used to approximate or statically
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bound the probability of hit and miss in random replacement caches. The authors of that work
stress the importance of using lower bounds to hit probabilities as a means to render the ETPs of
individual instructions independent. The cited work also proposes an enhanced analysis to tighten
the bounds on the miss probability. Instead of working with reuse distances considered in isolation
(i.e., for individual instructions), the proposed approach uses additional knowledge on the reuse
distance of instruction sequences.

[14] studies the tightness of different mathematical formulations of SPTA solutions. [101] ques-
tions the viability of applying SPTA to randomized caches, on the grounds that it cannot possibly
obtain results as good as those produced by deterministic timing analysis using caches with mod-
ulo placement and LRU replacement. [88] responds to that objection by noting that traditional
approaches have great difficulties at working with global stack distances, across instruction se-
quences, as studied in [15].

Lesage et al. [76] extend the multi-path approach in [36] by leveraging the improvements in
the upper bound to the cache miss probability proposed in [15]. The cited work assumes a single-
level, fully associative cache with evict-on-miss random replacement. The same technique could in
principle apply to set-associative caches, yet facing serious scalability challenges.

5.3 Speeding Up Convolutions

The number of elements in an ETP increases exponentially with the convolutions performed to
compute it. The ETP that results from the convolution of two ETPs with sizesm and n ranges from
m + n − 1 to m × n elements. Sampling techniques aim to keep that number under control, thus
also reducing the quantity of computations required to compute them [84, 100].

Re-sampling manipulates the values in an ETP so that the resulting ETP has fewer elements and
upper-bounds the original one, to avoid the risk of underestimation. Borrowing the definitions
from [80], and noting that an ETP describes a random variable, we can see re-sampling as follows.
Let X and Y be two random variables. Y upper-bounds X , denoted Y � X , if P (Y ≤ D) ≤ P (X ≤
D)∀D.

[100] selectsk elements from the originaln-element ETP and assigns the probability of the resid-
ual n − k elements to the largest value of the resulting ETP. The amount of pessimism incurred by
re-sampling depends on the value chosen for k , which is determined by the amount of time and
memory available for convolutions and ETPs, respectively. Maxim et al. in [84] propose three spe-
cific re-sampling techniques. A first basic method selects equally distanced values in the original
ETP and associates them with the sum of the probabilities of the ETP elements between them. This
method preserves the shape of the distribution but intensifies the peaks of it. Figure 5(b) shows an
example of sampling that reduces a 12-point ETP to a 3-point one. A second method attempts to
minimize the number of elements in the resulting ETP, using a re-sampling pass, to force exactly
the same distance among values in each operand of the ETP. In this manner, the number of distinct
values produced by the convolution gets closer to the theoretical minimum. The third and more
sophisticated technique collapses multiple ETP entries while seeking to minimize the pessimism
incurred in aggregating them.

Other techniques study how to reduce the computational requirements of SPTA. [91] proposes
precision-preserving optimizations using parallelization techniques: parallelizing the convolution
procedure itself and performing multiple convolutions in parallel, as depicted, for example, in
Figure 5(c). [91] presents a discretization technique similar to re-sampling, which reduces compu-
tational complexity at the cost of additional pessimism in the analysis. Discretization flattens the
probabilities in the ETPs by rounding up the probability of the highest latency, and rounding down
that of the lowest latency. In that manner, initially different ETPs eventually equalize, which yields
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computational gain as the convolution of two identical ETPs can be performed much faster than
the convolution of different ones.

5.4 Summary

Research on SPTA has made important advances lately, on methodological foundations and ap-
plication procedure. Yet, numerous challenges, which we enumerate below, remain to be solved
before it can become a viable alternative for industrial users.

Computational Complexity. Despite the considerable improvements achieved with re-
sampling techniques as proposed in [84, 91, 100], the computation of sequences of convolutions
still has a major computational impact. There is evident tension between performing convolutions
over large sets of ETP, each of which with a non-negligible number of entries, and the risk of
untenable pessimism incurred by re-sampling.

Requirements. While probabilistic analysis is resilient to occasional lack of information (e.g.,
particular addresses of given memory accesses), the quality of SPTA bounds in term of tightness
largely depends on the quality and the completeness of the information available to it, much like
classic static timing analysis in general. SPTA needs to know the latencies of each and every
hardware operation, whose availability and reliability are not certain [7]. Moreover, as observed
in [15], current SPTA formulations can only guarantee reasonably tight results if they exploit a
large amount of information on execution history, which is difficult to ensure and costly to main-
tain. Solutions have been proposed to that end, which aim to reduce (i.e., compress) the size of the
needed state information [52].

6 PLATFORM

6.1 Introduction

We now survey the PTA-related works that focus on the execution platform and propose hard-
ware designs or system and application software solutions to facilitate the use and improve the
effectiveness of PTA. To the best of our knowledge, no hardware or software support at the plat-
form level has been proposed for the purposes of SPTA. SPTA assumes hardware architectures
that feature a simple core with instruction timings that can be accurately derived, and single-level
fully associative or set-associative caches, with random replacement to enable probabilistic rea-
soning [26]. When set-associative caches are used, SPTA works further assume that all program
addresses are known so that it is possible to determine the precise cache set to which each address
is mapped. To date, SPTA has not been extended to multicore contention analysis.

Instead, numerous MBPTA works propose hardware designs to improve the quality or the cost
of the pWCET product. The techniques that they propose mostly seek to assure representative-
ness, which we discussed in Section 4. As a positive side effect, those solutions also help create
execution-time distributions that favor statistical analysis, for example, by creating less discrete
distributions or facilitating the probabilistic modelling of execution times with i.i.d. random
variables.

MBPTA has also been applied to COTS processors. The works in this scope fit into two distinct
sets: those that propose MBPTA-specific software solutions (e.g., in the compilation of the pro-
gram) or SWRand (cf. Table 1); and those that use COTS architectures with no special provisions
for MBPTA. The latter works fall short in representativeness, though, as discussed in Section 4.

6.2 MBPTA-Supportive Hardware Designs

The works in this area concentrate on the processor resources that cause jitter in the program’s
execution time and that are hard to model for timing analysis. Three processor resources have been
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studied extensively: caches, floating point units, and the mechanisms to govern parallel contention
on access to hardware shared resources in multicores. One common goal of those studies, which
we surveyed in Section 4.3.2 from the standpoint of representativeness, is to propose modified
designs for those resources that allow their jitter to be upper-bounded either probabilistically or
deterministically [71].

6.2.1 Cache Memories. Caches accelerate the program’s access to memory, thereby reducing
its WCET, at the cost of more complex timing analysis. Complexity increases because the addresses
at which the program’s code and data are located—its memory layout, which determines the pro-
gram’s cache layout, that is, the cache sets to which the program’s data and code map—are an
indirect consequence of multiple (asynchronous) factors of system development. Different cache
layouts can cause significant variations to the program’s execution time, owing to the possibly
(and normally) large imbalance between the cost of a cache miss over a hit. Even the smallest dif-
ference in the order in which the program’s object files are linked together may affect the cache
layout and thus impact execution time. The presence or absence of environmental variables and
directives in the program’s code, which one would consider irrelevant to this problem, can displace
the addresses of all program objects, changing its memory layout and consequently its cache lay-
out. Incremental integration, which is a convenient practice in industrial software development,
is another source of variations of cache layouts, regardless of the logical independence between
the old and the new software modules. [87] studies this problem outside of PTA.

The works that study MBPTA-supportive cache designs propose random placement in place of
deterministic modulo-based policies. Random placement first appeared in [104]. The cited work
proposes using a pseudo-random hash function in high-performance processors to distribute the
data across cache lines and thus make the cache performance less sensitive to different placements
compared to traditional modulo placement. [109] bases on the same idea but explores different
pseudo-random hashing functions and provides a more complete evaluation based on superscalar
out-of-order processor architectures. The cited work uses simulation to show that the proposed
solution reduces conflict misses. In skewed associative caches [23], each way uses a distinct hash
function for randomized placement across banks. That work shows that this solution reduces con-
flict misses for programs that process large matrices.

A common trait of those randomization solutions is that their placement function uses solely the
address of the access. Hence, for a given memory layout, only a single placement exists for all runs
of that program, which renders its effect similar to conventional deterministic architectures based
on modulo placement. For this reason, these non-parametric randomized cache designs cannot be
employed with MBPTA unless software randomization is used on top of them.

The time-randomized caches proposed in [59, 64] use parametric placement functions to allo-
cate data in cache lines based on the request address and an arbitrary random number. It is thus
sufficient to change the latter parameter (the random number) across program runs, to break the
dependence between the position in memory where an object is placed, that is, its address, and
the cache set to which it is mapped. This solution facilitates providing probabilistic assurance of
the coverage of cache layouts that result in high execution times, aka cache risk patterns [86].
Not surprisingly, the risk of pathological cache layouts is one of the principal impediments to the
unrestricted use of caches in real-time systems.

Research on random caches for real-time systems starts with [99], whose authors provide initial
evidence of how randomized replacement allows quantifying the risk of pathological behaviour,
which cannot be assured with deterministic cache policies. The cited work also shows that the
average performance of random-replacement caches is acceptable. Motivated by this initial study,
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several other solutions were proposed for fully time-randomized cache designs, deploying random
replacement and random placement.

Hash-based Parametric Random Placement [64] deploys a parametric hash function that com-
bines the requested memory address and a random number. That function delivers the index bits
used to determine the set to which the accessed address is mapped. The hash function combines
all the address bits, except for the cache-line offset bits, via a set of rotator blocks and XOR gates,
and ensures that all address to set mappings have equal probability. Every time the seed is changed
(e.g., when a task starts or ends), the cache contents are flushed. Accordingly, each (random) place-
ment of addresses is valid for a whole execution of the program of interest: the addresses mapped
to the same set compete for space during the whole run. With hash-based random placement, all
addresses are mapped to sets independently. Hence, addresses that would otherwise perfectly co-
exist in a given cache way, have a non-zero probability to map to the same set, which increases the
miss rate and negatively affects execution time. [16] presents the first FPGA implementation and
evaluation of the cache design proposed in [64], using the Mersenne Twister as random generator
instead of the Multiply With Carry, for its better statistical properties. The evaluation considers
the propagation delay and the area required on that FPGA board.

Random Modulo [59] keeps the locality advantages of modulo placement but breaks the de-
pendence between memory location and cache placement. To that end, Random Modulo prevents
conflicts between cache lines that map to the same cache way: by randomly permuting the ran-
dom seed with the address tag bits, two addresses with identical tag bits and different index bits
are necessarily mapped to distinct cache sets. Hence, two addresses that with modulo placement
would belong in the same cache way but different cache sets, are also prevented from mapping
to the same set with Random Modulo. This solution avoids pessimistic scenarios where several
addresses in the same cache way map to the same set. Similarly to [16], [59] presents an FPGA im-
plementation of the proposed Random Modulo design and synthesizes it with an ASIC cell library.
An evaluation based on the same criteria used in [64] shows how the performance of Random
Modulo exceeds that of hash-based parametric random placement.

Multi-level time-randomized caches have also been studied. The first attempt to analyse
them [65] considers hash random placement and shows how the events in a multilevel cache have
a probabilistic nature, hence fitting the premises of MBPTA. The authors analyse several L1-L2
inclusion policies (inclusive caches, exclusive caches, and non-inclusion control) and write-miss
policies (write through and write back).

[106] studies hash random placement for non-partitioned last-level caches. Cache partitioning is
the preferred solution for shared caches, as it protects the data updates of one core from the risk of
eviction by another core, thereby enabling per-core cache analysis. The cited work shows that the
probabilistic behaviour of random caches allows upper-bounding the impact that a task running
on one core may have on tasks assigned to other cores. This result is achieved by controlling the
frequency at which tasks are allowed to perform evictions on shared caches, thus sparing the need
to partition.

6.2.2 Arbitration Policies. Shared hardware resources normally comprise an arbiter that orches-
trates concurrent accesses as a means to prevent or regulate conflicts. In the scope of real-time
systems, the arbiter must implement an assignment policy that yields a known upper-bound to
the longest suffered delay. Where classic analysis seeks a deterministic single-valued bound (the
longest possible duration), MBPTA can use both deterministic and probabilistic bounds. While a
deterministic bound asserts that the probability that a request is delayed longer than the stipu-
lated amount is zero, probabilistic bounds provide a set of values, each attached to an exceedance
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probability. To facilitate the latter, arbitration policies are meant to incorporate some form of ran-
domization in the grant assignment process.

The most basic randomized policy is known as lottery [74] where, at every (slot) round of du-
ration L, the grant is assigned randomly to one of Nr requestors. Hence, the probability for a
requestor to be granted access in the first round is (1/Nr )1 × ((Nr − 1)/Nr )1−1 = 1/Nr . Likewise,

the probability of being granted access in the second round is (1/Nr )1 × ((Nr − 1)/Nr ) (2−1) , which

becomes (1/Nr )1 × ((Nr − 1)/Nr ) (3−1) in the third round, and so forth. Lottery is an MBPTA-
supportive policy thanks to the probabilistic nature of the guarantees that it offers of granting
access in a specific number of cycles, and to the fact that this assurance holds at analysis and at
operation. It, however, suffers the risk that the probability of not being granted access is never null
(albeit very small) after several rounds of arbitration.

Random permutations for buses [63] and tree networks-on-chip [105] is an alternative random-
ized policy that is also MBPTA-supportive. Unlike lottery, it guarantees that the probability of a
request not being granted access in a given number of arbitration slots does fall to zero. This is
assured by the use of an arbitration window of Nr slots, which contains the permutations of the
IDs of all requestors. The order in which access is granted follows the permutation window, which
changes randomly every time it is exhausted.

Other policies that allow providing a deterministic bound to the longest wait time for a request
owing to arbitration have been shown to be MBPTA-supportive. For example, this is the case
for round-robin [63] and TDMA [94]. The cited work shows that random arbitration solutions
outperform deterministic alternatives either in terms of pWCET estimates or average performance.

6.2.3 Pseudo-Random Number Generation. Pseudo-random number generators provide the
random bits needed by random placement, replacement, and arbitration policies [10]. While the
sequence of bits that they generate is not truly random, the cited work presents an implementation
that provides an output long enough to prevent repetitions for durations commensurate with task
run periods, thus preventing potential correlation of events.

6.3 MBPTA-Supportive Software Solutions

While HWRand platforms support MBPTA with low-complexity designs, some of which have been
implemented on FPGAs, it will take some time before they can enter the processor market for good.
Software support for MBPTA hence aims at providing a short-term solution to apply MBPTA to
COTS processors. To date, the works in this area have concentrated on COTS caches.

All the proposed software randomization solutions leverage the fixed relation between the main
memory position and cache placement in deterministic systems, as well as between the binary and
main memory layout. In addition, all those solutions use random padding to displace programs’
memory objects, and also reorder them across program runs or program compilations. The various
software randomisation solutions differ in the way they employ randomisation, their intrusiveness
on the compilation tool chain, and their friendliness to the certification process.

Dynamic Software Randomisation [69] (DSR) uses self-modifying code during program initial-
ization (hence, at every program run), to randomly allocate code and global data, including the
stack frame, whose size is decided at runtime. The DSR runtime has been ported to PowerPC [69]
and SPARCv8 [33]. That work improves the original implementation by reducing its memory foot-
print and bounding the execution-time effect of its runtime operation. DSR has been tested with
avionics [111] and aerospace case study applications [33], which have increased its TRL.

However, the DSR self-modifying code does conflict with automotive practices and technolo-
gies that allocate read-only code and data to flash memories. Moreover, the use of pointers and
dynamic objects is restricted by safety standards, for example, ISO26262 [62]. Static Software
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Randomisation [70] (SSR) addresses those issues. Unlike DSR, SSR operates in a static manner by
performing a random reallocation of object across distinct binaries of the same program. Selecting
one executable from the set of binaries generated by SSR allows reasoning in probabilistic terms
about the coverage of cache layouts. The static nature of SSR makes the compiled software more
amenable to certification. SSR has been verified on top of real hardware platforms like AURIX [68].

7 TIMING ANALYSIS IN THE PRESENCE OF FAULTS

7.1 Introduction

Various authors have studied the impact of (hardware) faults on program’s execution time, leading
to probabilistic WCET estimates.

[57] analyses the impact of random and independent permanent faults disabling lines in modulo-
placement and LRU-replacement instruction caches, using traditional static timing analysis (STA).
The cited work studies the faulty cache maps that may result from a given failure rate in SRAM
bit cells, and the degradation that this may cause to WCET estimates, associating the latter to
the probability of occurrence of each cache map. This work shows that, for specific failure rates
in SRAM bit cells, faults may occur in locations that affect execution time (hence, the program’s
WCET) with a probability sufficiently high to deserve attention. The probabilistic WCET estimates
that result from this analysis therefore relate specifically to the pathology of faulty maps. Hardy
et al. [58] extend their earlier work, proposing hardware techniques to mitigate the impact of
permanent faults in instruction caches. They show that the cache sets whose lines are all faulty
are the major contributors to WCET degradation, and they propose mitigation techniques that use
either a hardened cache way, so that each cache set has at least one fault-free line, or a 1-entry
shared buffer for cache sets with all lines faulty. Their results show that those solutions trade off
differently, for hardware cost and WCET improvement, against non-hardened instruction caches.

Other works focus on time-randomized caches. Chen et al. [31] consider fully associative caches
with random replacement policies3 and model cache behaviour with Markov chains, where each
state corresponds to a different set of cache contents. With exponential cost, such Markov chains
allow modelling precisely and statically the probabilistic execution time of the analysed programs,
thus yielding costly but highly accurate pWCET outcomes. This form of SPTA is further optimized
by limiting the set of addresses considered, thus trading accuracy for speed of computation. Build-
ing on this Markov model, the authors consider the impact of transient and permanent faults
on the pWCET estimates. Transient faults change the current state in the Markov model—with a
probability related to the failure rate of a SRAM bit cell—by removing the contents of one cache
line. That transition happens on trigger from hardware fault detection mechanisms such as par-
ity checks. For permanent faults instead, the work describes the program’s timing behaviour with
N + 1 Markov models, where N is the number of cache lines. Each model corresponds to a number
n ∈ 0 . .N of faulty cache lines. Upon a permanent fault, the content of the affected cache line is
marked erroneous and the system transitions from its current Markov model with N − i fault-free
lines, to the model with N − i − 1 ones.

[30] extends this line of work to account for the delay occurring between fault detection and
the diagnosis of its permanent nature. The cited authors acknowledge that transient and perma-
nent faults yield different latencies, and propose considering a fault as transient until diagnosed
otherwise. They further show that, if permanent faults occur sufficiently often, as could occur in
harsh environment conditions (e.g., space), the corresponding latencies need to be accounted for,
which requires quick diagnostic mechanisms, to contain the inflation of pWCET estimates.

3The cited authors note that their work also applies to set-associative caches with deterministic placement, by studying

each cache set separately.
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Slijepcevic et al. [107] study the impact of permanent and transient (hardware) faults, including
the overhead of fault detection, correction, classification, and recovery, in the context of MBPTA.
The cited authors assume processors that embed time-randomized caches, with random place-
ment and replacement policies, and show that the random nature of fault location, paired to ran-
dom placement lead to simple fault models. While time-deterministic caches require considering
all potential fault maps (whose cardinality grows exponentially with the number of faults), time-
randomized caches only require considering the maximum fault count, regardless of the fault lo-
cation. Moreover, the probabilistic nature of the fault-free platform (with time-randomized be-
haviour) and the fault occurrence allow considering permanent faults in all cache memories at
once, independently of the complexity of the cache hierarchy. The cited work supports its claims
on a multi-level cache hierarchy, with a unified L2 cache for instructions and data, and TLBs. Exper-
imental evidence shows that pWCET estimates degrade slowly as the fault count increases, since
pathological alignments of faults and address placement occur with decreasing probabilities. The
authors also provide hints on how to account for faults in components other than cache memories
as part of the pWCET estimates, by decreasing the operating frequency when needed [107].

Höfig [60] studies the impact of faulty sensors in WCET estimates. The cited work analyses the
impact that such faults may have on program’s execution time, and proposes a failure-dependent
timing analysis that considers fault handling as determined by the applicable safety requirements.
The authors assume that worst-case response time bounds are known for all system components
as well as fault probabilities for all sensors. At that point, the safety mechanisms in place and their
associated execution-time cost are characterised as probabilistic additions to the known WCET,
thus leading to pWCET estimates. Interestingly, this approach can be combined opportunistically
with any technique that delivers any type of WCET estimate, whether probabilistic or not.

8 MISCELLANEA

8.1 Introduction

A few other significant lines of work in the state of the art on PTA escape the taxonomy presented
in Section 2. We discuss them here under three headings: case studies, which determine the via-
bility and performance of PTA solutions in application scenarios; comparative assessments, which
study how PTA fares with respect to traditional STA; and argumentative analyses, which assess
the fitness for use of PTA in certification-regulated domains.

8.2 Case Studies

The works in this category use either real processor boards with real-world applications, or ab-
stract hardware models or architectural simulators with benchmark suites [54, 98]. All PTA case
studies employ MBPTA: to the best of our knowledge, in fact, no evaluation of SPTA has been
performed to date in any of the above settings.

[68] uses an Automotive Cruise Control System (ACCS), automatically generated from a
Simulink model and targeted to the AURIX TC277 processor, to show that static software ran-
domization (cf. Section 6.3) enables MBPTA to capture the effect of cache jitter on the pWCET.

[111] evaluates the use of dynamic software randomization (cf. Section 6.3) with MBPTA for
single-core and multicore variants of an MBPTA-supportive processor simulator [63, 69] running
two avionics applications (one for acquisition and maintenance of flight-control data, the other
for estimating the center of gravity position of the aircraft). [33] targets an FPGA platform based
on LEON3 with a mixed-criticality space application, controlling an active optics instrument for
space telescopes, to evaluate the performance of DSR (cf. Section 6.3) implemented within the
LLVM compiler and integrated with an industrial-quality RTOS. The cited work shows that DSR
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enables MBPTA at the cost of a modest performance penalty. Interestingly, the pWCET estimates
computed in those experiments are tighter than the typical 20% margin considered in current
industrial practice over the high water mark execution time.

Fernandez et al. [48] use a LEON3 made MBPTA-supportive, with the FPU forced to work at
its highest latency, and deploying time-randomized caches and TLBs, as presented in [59], to run
a Thrust Vector Control Application developed by the European Space Agency. The cited work
shows how the modified hardware allowed MBPTA to derive sound pWCET estimates.

Lima and Bates in [78] apply EVT to measurement observations collected on a Rolls-Royce
Digital Engine Controller application, using the single-bucket approach discussed in Section 4.2.1.
The cited work presents the Indirect Estimation in Statistical Time Analysis (IESTA) technique,
which the authors propose as an alternative to time-randomization applied at hardware or software
level, to enable the use of EVT with otherwise overly discrete or poorly analysable datasets. IESTA
uses an artificial random variable to inject timing variability into the observation measurements
collected during the analysis, before applying EVT. The authors report that IESTA allowed them
to derive statistically sound models of the application’s timing behaviour.

8.3 Comparisons

Making a fair and sound comparison of different timing analysis techniques is a hard challenge
as individual techniques often build upon very different (and possibly even antagonistic) assump-
tions. Yet, some works made some inroad in that direction.

[6] compares MBPTA, STA, and SPTA on a simple processor setup where instructions have fixed
latency except for the jitter caused by the instruction cache, which is deterministic for STA and
time-randomized for SPTA and MBPTA. The quantitative results (a qualitative comparison is also
performed) of that study show that STA performs better when the program fits in cache whereas
MBPTA gets better results when conflict misses arise.

[7] compares the requirements set by STA, SPTA, and MBPTA on the procedure needed to obtain
high-confidence WCET estimates for multicore processors. The cited work ranks those techniques
according to the affordability of satisfying their use requirements in industrial-use scenarios.

8.4 Certification

To support the penetration of MBPTA in the industrial practice of application domains subject to
rigorous qualification or certification, some reasoned argument ought to be constructed to explain
why the method is suitable. Interestingly, however, the question of how to construct an explicit
argument for the WCET problem in general lacks an established literature. Implicit argumentations
are more frequent, often in the form of underlying assumptions and associated context vocabulary.

Industrial practice is normally very specific in the validation program that development and
verification methods alike have to undergo before being deemed fit for use. In the face of standard
prescriptions, fitness for use requires compliance. The CAST guidelines [27] aim to help the cer-
tification authorities in the avionics domain to understand what is being proposed as alternative

means of compliance: the objectives met, the rationale for using the alternative means, its engineer-
ing and safety adequacy, without prescribing a way to generate or document this information. A
plausible argument pattern would map its objectives to those of the applicable standard, showing
that the method is trustworthy as well as feasible to implement (for usability, automation, or user
competency). To this very end, [108] constructs a model certification argument to instantiate for
specific validation programs, which follows an explicit argumentation approach that seeks max-
imum clarity in its claims, shows where probabilities and confidence apply, and suggests how to
transfer the argument between domains.
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Another angle of interest in this regard arises with mixed-criticality systems, which integrate
applications at different safety assurance levels, into multicore embedded platforms, in the hope
of reaping performance, cost, size, weight, and power benefits. When safety assurance is at stake,
the pursuit of determinism at all levels of execution behaviour is often perceived as a major factor
of simplification in the process of gathering the prescribed certification evidence [1]. Yet, that de-
terminism is compromised in most modern COTS multicore platforms, where the quest for higher
average performance is a far greater concern than determinism. [11] shows that the use of MBPTA
may fit, for compliance to domain regulations and resource efficacy, in the definition of a safety
concept for a mixed-criticality multicore system equipped with hardware protection mechanisms
for use in the automotive domain. Regarding the compliance concern, the authors report the pos-
itive independent assessment of that safety concept by an independent certification body. For the
efficacy concern, the cited work shows how MBPTA helps mitigate the untenable pessimism that
may arise from the use of traditional WCET analysis or the (potentially unsound) addition of con-
servative margins to the high water mark values obtained by observation.

[11]’s safety concept sees MBPTA as a competitive solution to prevent resource over-
provisioning and ensure independence among mixed-criticality applications. The pseudo-random
number generator plays a central role in processors that support MBPTA. One interesting ramifi-
cation of the certification-enabling works cited in this section was to assess whether a design exists
for such a device that meets the safety requirements in IEC-61508 for no less than SIL 3, and war-
rants seamless integration in a real-world multicore processor. This concern was addressed in [10].

9 CONCLUSIONS AND OUTLOOK

9.1 Status

The unprecedented rise in guaranteed performance needs in critical real-time embedded systems
promotes the adoption of high-performance processors that feature deep cache hierarchies and
multicore execution even in otherwise conservative industrial domains. While transitioning to
complex hardware platforms has been acknowledged as the only cost-effective manner to meet the
emerging performance requirements, it also pushes existing timing analysis techniques to their
limits, for complexity and effectiveness. In this context, probabilistic/statistical timing analysis
methods have recently emerged as a promising paradigm to overcome the limitations of standard
deterministic timing analysis approaches and to deliver sustainable, reliable, and industrial-quality
WCET estimates. The rapid rise of interest in those techniques has motivated the production of
a vast body of literature in the state of the art. Unfortunately, however, those works often have a
very diverse range of goals and assumptions that are difficult to tell apart, thus impeding a clear
understanding of the proposed problem-and-solution landscape.

This survey originates from the need to fill that gap, with particular focus on the worst-case
timing analysis of critical real-time systems. To this end, this work covers the state of the art
of probabilistic timing analyses, from their theoretical basis, to their evaluation and assessment
against industrial applications. The result shows that several, substantially different approaches
were previously collected under the indistinct umbrella of probabilistic timing analysis.

This work shows that much progress has been made towards the consolidation of PTA, not
only in foundational terms, but also to make it viable for industrial use and to quantitatively and
qualitatively assess the performance of its solutions.

9.2 PTA Limitations and Research Directions

To conclude this survey, we single out directions of future work on PTA which should help this
research area to further its maturation and extend its reach into broader acknowledgment and use.
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Advancing SPTA. Whereas the static and dynamic (measurement-based) families of PTA tech-
niques were born together and were seen as equally disruptive, the largest proportion of the sub-
sequent research efforts has concentrated on the measurement-based variant.

As a consequence, SPTA does not seem to have reached yet the level of maturity required to
warrant low complexity of application and viable use prerequisites. In that respect, the research
on SPTA has large margins for improvement. In order to maintain its attractiveness, it is desirable
that further research efforts be directed to improve the computational complexity of SPTA and to
extend it to multi-level cache hierarchies and more realistic processor architectures.

Measurement-Based Methods, Platform Requirements, and Representativeness. In contrast with
SPTA, measurement-based methods have been vastly investigated in the last few years, leading
to the publication of diverse approaches with different assumptions, procedures, and degrees of
formalization, using statistical tools from Extreme Value Theory as a common trait of most of
them.

A clear distinction among MBPTA approaches derives from the assumptions that they make
on the hardware or software of the execution platform. Employing MBPTA (with EVT) on de-
terministic platforms, while not necessarily antagonistic to the EVT hypotheses, challenges the
provision of confirmatory arguments, which afflicts measurement-based analysis domain for rep-
resentativeness with respect to the coverage attained of program paths and execution conditions.
MBPTA-supportive platforms address this problem specifically, in the form of real hardware im-
plementation or software-level solutions, which allow the user to reason on representativeness
in probabilistic terms. However, most existing platforms lack adequate hardware support, while
software-level support has been shown to pose additional use challenges: these limitations prevent
applying those techniques to several current platforms and applications.

The applicability of EVT per se has also been questioned as it may not be possible to derive
satisfactory results on all classes of software programs. How to intercept those situations and
whether there exists an alternative approach to circumvent them thus are interesting research
questions to further investigate.

Industrialization. Insisting on industrialization is a necessary driver for the consolidation of PTA
as the industrial concerns with the timing analysis problem were the origin to probabilistic ap-
proaches in the first place. Meeting the certification requirements of the real-time critical domains
is a mandatory prerequisite in this respect. This line of work has been already initiated for certi-
fiable railway applications and needs to be further extended to other industrial domains.
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