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The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in 
infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface 
fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive 
interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal 
antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the 
prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: 
(1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures 
highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this 
Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of 
RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious 
diseases in young children and older adults worldwide.

Introduction
Acute lower respiratory infection (ALRI) caused by 
respiratory syncytial virus (RSV) has gained recognition 
as a global health problem with a high burden of disease, 
and no vaccine licensed for prevention. In children under 
5 years, it is estimated that 33∙1 million episodes of 
ALRI, 3∙2 million hospital admissions, and as many as 
118 200 deaths were attributable to RSV worldwide 
in 2015 (figure 1).1 Although often characterised as a 
paediatric disease, RSV infection in adults represents a 
substantial health burden. Mortality attributable to RSV 
in adults aged 65 years or older is estimated to be 7∙2 per 
100 000 person-years,7 and 8% of RSV ARLI among older 
adults admitted to hospital was reported to result in 
death8 in the USA. RSV vaccine candidates aim to protect 
at least three target populations that are at risk for severe 
RSV disease: (1) young infants (0–6 months), (2) older 
infants and young children (2 months or older) through 
active immunisation, and (3) older adults (65 years 
or older).

Development of effective RSV vaccines and monoclonal 
antibodies (mAbs) presents both opportunities and 
challenges. First, concerns of enhanced respiratory 
disease (ERD) following vaccination with the formalin-
inactivated RSV (FI-RSV) vaccine in the 1960s have 
complicated the design and testing of RSV vaccines.9 
Second, an absolute correlate of protection against a 
clinically relevant RSV infection remains elusive, 
although cell-mediated immunity,10 mucosal IgA,11 and 
potent neutralising antibodies12 have been associated 
with decreased disease severity.

Between 2016, and 2017, three phase 2b or phase 3 
trials (two vaccine trials in older adults13,14 and one mAb 
trial in infants15) did not meet clinical endpoints. In 
addition to possible inadequacies in trial design and 

implementation, the failure of these candidates 
shows the continued gaps in knowledge regarding 
immunological mechanisms of protection in the 
different target populations. Another challenge to RSV 
vaccine design is the lack of consensus regarding 
clinical endpoints, which might differ according to the 
target population. Finally, a consideration in RSV 
vaccine development is the limited protection conferred 
by immune responses elicited by natural RSV infection. 
Natural immunity provides only transient protection 
against subsequent infection, and re-infection occurs 
frequently,16 although the most severe RSV disease is 
usually observed during the primary infection. mAbs 
circumvent the problem of transient immunity to RSV 
and an immature immune response to vaccination in 
young infants at risk of severe disease. An ideal RSV 
vaccine candidate should prevent severe disease in at-
risk populations and might also lessen person-to-person 
transmission.17

Despite these obstacles, there are several opportunities 
for RSV vaccine and mAb development. First, RSV 
disease burden has received increasing attention from 
international stakeholders such as WHO18 and the Bill & 
Melinda Gates Foundation, based on better estimates 
of RSV-associated mortality worldwide.19 Second, the 
discovery and stabilisation of the prefusion (pre-F) 
conformation of the RSV surface fusion (F) glycoprotein 
provided a new target for vaccines and mAbs20,21 as 
pre-F specific antibodies might be more potent than 
postfusion (post-F) antibodies in protecting against RSV 
ALRI. Third, pharmaceutical companies have recognised 
the urgent unmet need of RSV prevention and prioritised 
the development of RSV vaccines and mAbs.

In 2015, RSV prevention and therapeutic strategies 
were reviewed, identifying ten vaccines in clinical 
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development.22 An update of the 2015 review is necessary 
in light of the recent failures and new candidates in the 
years since 2015. In this Review, we show that only 40% 
(four of ten) of the vaccine candidates from 2015 are 
continuing in clinical trials and 14 additional new 
vaccine candidates have entered clinical trials (figure 2). 
A single vaccine candidate can be in clinical development 
both in different populations and in different clinical 
phases; in these instances, they are considered to be 
additional candidates. Therefore, the RSV F nanoparticle 
is considered to be three candidates and Ad26.RSV.preF 
to be two. Throughout the manuscript we have adhered 
to the 19 vaccine candidates and mAbs in clinical 
development according to the PATH Vaccine Snapshot.23

RSV vaccine history
RSV vaccine development started shortly after the first 
identification of the virus in humans in 1957.24 However, 
ERD upon natural RSV infection after vaccination with a 
FI-RSV candidate in a series of trials in the 1960s severely 
hindered inactivated virus and subunit vaccine develop-
ment for many years. Nevertheless, work continued on the 
development and human testing of live-attenuated RSV 
vaccine candidates. In the following 60 years, only two 
products were licensed for prevention of RSV: (1) RSV 
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Figure 1: Global burden of RSV in children under 5 years of age1–6

Incidence is shown worldwide for children less than 5 years of age unless otherwise stated. The hospital admission rate of 15∙9 hospital admissions per 1000 neonates 
per year is in developing countries. The RSV ALRI hospital admission rate of 15∙9 among neonates is reported per 1000 individuals per year in developing countries. 
OR=odds ratio. LRTI=lower respiratory tract infection. RSV=respiratory syncytial virus. HIC=high-income country. *Compared with children who survived RSV 
hospitalisation and were mechanically ventilated.
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Figure 2: Overview of vaccine candidates and monoclonal antibodies in clinical trials per preventive approach 
including candidates for which development was halted
RSV=respiratory syncytial virus. *Development has been halted since the last RSV therapeutics review performed in 
2015.22 Candidates for which development is halted but are not indicated with an asterisk are still listed in clinical 
development according to the PATH snapshot.23 †Three candidates. ‡Two candidates.
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intravenous immunoglobulin (RSV-IVIG) and (2) pali-
vizumab. Over the past 10 years, development of preventive 
interventions for RSV has rapidly expanded. Currently, 
19 vaccine candidates and mAbs for different target 
populations are in clinical trials, and many more are in 
preclinical development.23 The history of RSV vaccine 
development is discussed in more detail in the appendix.

Lessons from the vaccine and mAb graveyard
There have been three late-phase vaccine and mAb trial 
failures between 2016, and 2017 (table 1). It is important 
to distil lessons learned from these results to inform 
future vaccine development. First, a phase 3 trial in 
1149 healthy preterm infants was done to evaluate 
REGN2222 (suptavumab), a mAb against antigenic site V 
on the RSV pre-F protein.25 The trial did not meet its 
primary efficacy endpoint to prevent medically attended 
RSV infections up until day 150 of life.26 REGN2222 was 
accelerated from phase 1 to phase 3 because of promising 
results and the US Food and Drug Administration 
(FDA) granted fast-track designation in October, 2015. 
Ultimately, the basis for failing to meet the primary 
clinical endpoint is not known, as analyses of this 
late-stage failure have not yet been made public.

Second, an RSV F nanoparticle vaccine candidate based 
on stabilised F protein exhibiting post-F morphology did 
not meet the predefined study endpoint in older adults. 
The results of the preceding phase 2 trial showed modest 
efficacy27 and promising immunogenicity measures, as 
identified by a rise in geometric mean titre for IgG 
antibodies against the F protein and palivizumab 
competing antibodies (PCA).28 The trial was granted fast-
track designation by the FDA in 2016.29 In the phase 3 trial, 
11 850 participants were enrolled over a single season. 
However, the vaccine candidate did not show efficacy 
against RSV moderate–severe lower respiratory tract 
disease (ms-LRTD) in phase 3 results.14 Compared with the 
previous season, RSV acute respiratory disease (RSV-ARD) 
and ms-LRTD attack rates were lower than expected in the 
2015–16 season (RSV-ARD 2∙0% vs 4∙9% and RSV-msLRTD 
0∙4% vs 1∙8% during the vaccine and previous season, 
respectively). The vaccine manufacturer speculates that the 
difference in vaccine efficacy observed might in part be due 
to this lower attack rate and high pre-existing immunity in 
the study population.27 Another proposed explanation for 
failure of this vaccine candidate is that the quantity of the 
immune response to vaccination might not represent 
effective immunity. PCA titres might not correspond to 
effective immunity as non-neutralising antibodies can also 
bind the palivizumab binding site and can interfere with 
the binding of neutralising antibodies.30 In a post-hoc 
subgroup analysis, the vaccine candidate showed efficacy 
against hospital admissions for all-cause chronic 
obstructive pulmonary disease (COPD) exacerbations.27 
There was a non-statistically significant trend towards 
higher RSV microneutralisation titres in adults without 
RSV-ARD when compared with adults with RSV-ARD. 
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One conclusion that can be drawn from this trial is that 
late-phase clinical research for RSV vaccine candidates 
should include evaluation across more than one RSV 
season.

Third, development of the MEDI-7510, a subunit 
vaccine candidate using soluble (unaggregated) post-F 

conformation of the F protein with a TLR4 agonist 
adjuvant, was discontinued after a phase 2b trial in 
1900 adults aged 60 years or older. Safety and increased 
B and T cell responses in the vaccine compared with the 
placebo group were shown in a phase 1 clinical trial31 
after safety and improved immunogenicity with an 

Target Population Pre-F Immunity35 Immune response Mucosal/systemic

Particle-based

RSV F nanoparticle (Novavax) M Pre-F<post-F Broadly neutralising antibodies Systemic

RSV F nanoparticle (Novavax) O Pre-F<post-F Broadly neutralising antibodies Systemic

RSV F nanoparticle (Novavax) P Pre-F<post-F Broadly neutralising antibodies Systemic

SynGEM (Mucosis) O and P Unclear F conformation Activation of B and T cells; local 
secretion of neutralising IgA in the 
nose; production of IgG neutralising 
IgG in the blood

Mucosal and systemic

Vector-based

MVA-BN RSV (Bavarian Nordic) O Pre-F<post-F B and T cell response; antibodies 
against 5 RSV antigens

Systemic

ChAd155-RSV (GSK) O Pre-F>post-F B and T cell response; neutralising 
antibodies against F antigen; CD8 T 
cells against F, N and M2-1 antigens

Systemic

VXA-RSVf oral (Vaxart) O Pre-F<post-F B and T cell immunity, protection at 
mucosal surface

Mucosal>systemic

Ad26.RSV.preF (Janssen) P Pre-F B and T cells Systemic

Ad26.RSV.preF (Janssen) O Pre-F B and T cells Systemic

Subunit

GSK RSV F (GSK) M Pre-F B and T cell response Systemic

DPX-RSV (Dalhousie University, 
Immunovaccine, and VIB)

O None B cell response specific to SHe antigen Systemic

RSV F DS-Cav1 (NIH/NIAID/VRC) O and M Pre-F Pre-F-specific serum neutralising 
antibodies, and CD4 T cells

Systemic

Live-attenuated

rBCG-N-hRSV (Pontificia Universidad 
Catolica de Chile)

P Pre-F and post-F B and T cell response; Th1 polarised 
response; antibodies against N, F, G

Systemic

RSV D46 cp ΔM2-2 (Sanofi Pasteur/LID/
NIAID/NIH)

P Pre-F and post-F B and T cell response; enhanced 
antibody production due to increased 
antigen production from M2-2 deletion

Mucosal and systemic

RSV LID ΔM2-2 1030s (Sanofi Pasteur/LID/
NIAID/NIH)

P Pre-F and post-F B and T cell response; enhanced 
antibody production due to increased 
antigen production from M2-2 deletion

Mucosal and systemic

RSV ΔNS2 Δ1313/I1314L (Sanofi Pasteur/
LID/NIAID/NIH)

P Pre-F and post-F B and T cell response Mucosal and systemic

RSV D46 ΔNS2 N ΔM2-2-HindIII (Sanofi 
Pasteur/LID/NIAID/NIH)

P Pre-F and post-F B and T cell response; enhanced 
antibody production due to increased 
antigen production from M2-2 deletion

Mucosal and systemic

RSV LID cp ΔM2-2 (Sanofi Pasteur/LID/
NIAID/NIH)

P Pre-F and post-F B and T cell response; enhanced 
antibody production due to increased 
antigen production from M2-2 deletion

Mucosal and systemic

Monoclonal antibody

MEDI8897 (MedImmune) P NA NA NA

Pre-F=prefusion conformation of the RSV F protein. Post-F=postfusion conformation of the RSV F protein. N=RSV nucleocapsid protein. F=RSV fusion protein. G=RSV 
attachment protein. O=older adults. M=maternal. P=paediatric. VIB=Flemish Institute of Biotechnology. NIH=National Institutes of Health. NIAID=National Institutes of 
Allergy and Infectious Diseases. VRC=Vaccine Research Center. LID=Laboratory of Infectious Diseases. RSV=respiratory syncytial virus. NA=not applicable or not available. 
BLP=bacterium-like-particle. MVA=modified vaccinia Ankara. 

Table 2: Expected immune response for vaccine candidates and monoclonal antibodies
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adjuvant was demonstrated in a first-in-human trial.32 
The study did not meet its primary efficacy objective; the 
incidence of RSV-associated respiratory illness as 
diagnosed by PCR was 1∙7% and 1∙6% in the vaccine and 
placebo groups respectively, for a vaccine efficacy of 
–7∙1.31 On day 29, 93% of vaccinees had an anti-F IgG 
antibody seroresponse and there was a 4∙6 geometric 
mean times rise in anti-F IgG titre at the end of the RSV 
season in vaccine recipients compared with the placebo 
group.31 One proposed explanation for the negative 
results could be that the selected post-F antigen induced 
antibodies without appropriate epitope specificity.33 
Other proposed explanations include a low incidence of 
laboratory-confirmed RSV in the study population, or 
selection of the study population, which included high-
risk and low-risk older adults. Considerations for the 
future include selection of an older study population at 
higher risk of severe RSV infection.

Vaccine antigens
Vaccine antigens included in RSV vaccine candidates are 
diverse. The majority of vaccines in clinical trials (11 of 
18) use the F protein, a class I viral fusion protein, as an 
antigenic target. The RSV F protein is highly conserved 
and facilitates viral fusion with host cells. Understanding 
the structural differences between pre-F and post-F 
conformations, and stabilisation of the pre-F soluble 
forms, has resulted in advances in vaccine antigen 
design.21,34 Current vaccine candidates use pre-F and 
post-F as vaccine antigens (table 2). The predominant 
conformation displayed on the FI-RSV vaccine candidate 
was the post-F conformation.36 It remains unclear as to 
whether there is a trigger for the pre-F to post-F 
conformational change, but it does occur spontaneously, 
making it difficult to ensure that a wildtype F vaccine 
antigen maintains a pre-F conformation. However, 
stabilising mutations have been identified that can 
preserve the pre-F-specific epitopes.34,37 The antigenicity 
of some stabilised pre-F constructs has not been 
rigorously investigated, and remains an open question as 
to whether particular stabilising mutations affect the 
conformation of antibody binding sites. Assays to assess 
antigen conformation are needed. There is no consensus 
on cellular receptors that determine viral tropism.38

Other less frequent vaccine antigens, used alone or in 
combination with other antigens, include the RSV 
envelope associated glycoproteins G (one of 18) and small 
hydrophobic (SH) protein (one of 18), as well as internal 
proteins: nucleocapsid (N) (three of 18), M (one of 18), and 
M2-1 (one of 18). Besides the F protein, the G protein is 
the only other target for neutralising antibodies on the 
viral surface. The G protein is most important for viral 
attachment and is less frequently used as a vaccine antigen 
due to high variability across RSV strains,39 and little 
knowledge of its surface structure.40 The G protein exists 
as an oligomer on the surface of RSV particles and as a 
monomer when secreted from infected cells in soluble 

form.41 There is evidence that the soluble form of the 
G protein can act as a decoy that helps the virus to evade 
the antibody response.42 Another possible vaccine target, 
the SH protein, is not well understood, but data suggest 
that it has a role in viral replication in vivo38 and 
inflammasome activation.43 The SH protein contains 
transmembrane and extracellular domains;44 the latter has 
been used as a vaccine antigen.45 Internal proteins are 
particularly relevant to induce T cell-mediated immunity.40 
As such, three non-membrane RSV proteins have been 
included in RSV vaccine design. The N protein is the 
major nucleocapsid protein that encapsidates the RNA 
genome of the virus.46 The M2-1 and M2-2 proteins are 
specific to RSV and other pneumoviridae. M2-1 is essential 
for viral transcription,47 and M2-2 deletion is used in live 
vaccine candidates for viral attenuation. Finally, the 
M protein is a membrane-associated protein that gives 
virions their filamentous shape.48,49 In summary, different 
viral proteins are being used as antigens in RSV vaccine 
design. Viral surface glycoproteins such as F and G are 
known to induce antibodies with differing neutralisation 
capacity. The SH protein might be important for induction 
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Vaccine type

Pregnant mothers 

RSV F nanoparticle (Novavax) Particle-based

GSK RSV F (GSK) Subunit

RSV F DS-Cav1 (NIH/NIAID/VRC) Subunit

Paediatric

RSV F nanoparticle (Novavax) Particle-based

ChAd155-RSV (GSK) Vector-based

SynGEM (Mucosis) Particle-based

Ad26.RSV.preF (Janssen) Vector-based

rBCG-N-hRSV (Pontificia Unversidad Catolica de Chile) Chimeric

RSV D46 cp ΔM2-2 (Sanofi Pasteur/LID/NIAID/NIH) Live-attenuated

RSV LID ΔM2-2 1030s (Sanofi Pasteur/LID/NIAID/NIH) Live-attenuated

RSV ΔNS2 Δ1313 I1314L(Sanofi Pasteur/LID/NIAID/NIH) Live-attenuated

RSV D46/NS2/ N/ΔM2-2-HindIII (Sanofi Pasteur/LID/NIAID/NIH) Live-attenuated

RSV LID cp ΔM2-2 (Sanofi Pasteur/LID/NIAID/NIH) Live-attenuated

MEDI8897 (MedImmune) Monoclonal antibody

Older adults

RSV F nanoparticle (Novavax) Particle-based

SynGEM (Mucosis) Particle-based

MVA-BN RSV (Bavarian Nordic) Vector-based

VXA-RSVf oral (Vaxart) Vector-based

Ad26.RSV.preF (Janssen) Vector-based

DPX-RSV-Protein (Immunovaccine, VIB and Dalhousie University) Subunit

RSV F DS-Cav1 (NIH/NIAID/VRC) Subunit

NIH=National Institutes of Health. NIAID=National Institutes of Allergy and Infectious Diseases. LID=Laboratory of 
Infectious Diseases. VIB=Flemish Institute of Biotechnology. VRC=Vaccine Research Center. RSV=respiratory syncytial 
virus.

Table 3: Overview of vaccines and monoclonal antibodies by target population
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of antibody dependent cell-mediated cytotoxicity (ADCC), 
whereas non-membrane proteins are especially important 
to induce a robust T-cell response.40

Target populations
RSV prophylactic interventions are designed to protect 
at least two populations most susceptible to severe 
RSV disease: RSV-naive young infants and children, and 
older adults, although other high-risk populations are 
important to consider. It is estimated that 45% of hospital 
admissions and in-hospital deaths due to RSV-ALRI occur 
in infants younger than 6 months of age,1 an age at which 
vaccines are generally less immunogenic. Older adults 
and adults with chronic cardiopulmonary conditions have 
emerged as an important target for RSV prevention 
owing to an increased understanding of RSV burden in 
this population. An overview of all RSV vaccine candidates 
per target population is shown in table 3 and strategies to 
prevent RSV in different target populations are discussed 
in more detail in the appendix.

Immunological endpoints
Antibodies are thought to be the key players in limiting 
RSV ALRI as evidenced by proven protection in 
immunoprophylaxis trials in children.50–52 Evidence from 
experimental human infection in adults suggests a 
protective role for nasal RSV-specific IgA against RSV 
infection,11 underscoring the importance of mucosal 
immunity. A limited ability to generate memory IgA 
responses after RSV infection could be in-part responsible 
for incomplete immunity and subsequent RSV re-
infection. Antibodies directed against different antigenic 
sites of the F protein display different neutralisation 
capacities with the most neutralisation-sensitive epitopes 
exclusive to the pre-F conformation. Antibodies with 
specificity for antigenic sites ∅ and V show high 
neutralising activity and are exclusive to the pre-F 
conformation.25,53 Antigenic site ∅ is located at the apex of 
the pre-F conformation, the most variable region of the 
highly conserved F protein.21 Antibodies against antigenic 
site III prefer the pre-F conformation and have high 
neutralising activity.54 Antibodies directed against site II 
and IV, present on both pre-F and post-F, have medium to 
high neutralisation potency.53,55 Finally, antibodies against 
antigenic site I, present primarily on post-F, show weak or 
no neutralisation. Escape mutants of these antigenic sites 
have been identified, but global RSV genetic data are 
needed to assess the molecular heterogeneity of RSV and 
the subsequent susceptibility or resistance to mAbs 
targeting RSV among circulating viruses.

The mechanisms of protection could differ according to 
vaccine type, and, therefore, many different immuno-
logical assays are used in clinical trials. Neutralising 
activity of serum is a frequent immuno logical endpoint of 
vaccine trials. A measure of functional antibody response 
can be elucidated by the ratio of times-increase in RSV-
binding antibodies to times-increase in RSV-neutralising 

antibodies (ELISA-to-neutralisation response ratio). A 
ratio of less than 1 might be an important correlate of 
protection.56 Furthermore, rather than a definitive 
protective threshold for antibodies, times-rise in antibody 
titre could be a relevant correlate of protection for live-
attenuated vaccines, since that might be the best indicator 
of B-cell priming. In 2017, efforts by PATH, WHO, and 
the National Institute for Biological Standards and Control 
(NIBSC) examined the variability of RSV neutralisation 
assays across laboratories and recommended steps for 
improved standardisation globally,57 resulting in the 
development of a new WHO International Standard for 
Antiserum to RSV with 1000 IU of RSV subtype A 
neutralising activity per vial now available through the 
NIBSC.58 Standardisation of other frequently used 
immunological assays such as PCA, ELISA, and T-cell 
assays has not yet taken place.

Once infection of the lower airways is established, CD8 
T cells play an important part in viral clearance.35 

Th2-biased responses have been associated with animal 
models of RSV ERD and measurement of Th1 and Th2 
responses are considered important to predict safety of 
vaccine candidates other than live-attenuated vaccines in 
clinical trials in young children.

Animal models are important for preclinical develop-
ment of vaccine candidates and assessing the possibility 
of enhanced disease. Alveolitis in the cotton rat and 
priming of a Th2 response in mice are considered 
markers to assess possible ERD. However, there is no 
consensus on the ability to reproduce ERD in calves.59

Although we discuss several potential immunological 
correlates of protection for vaccine trials, we considered 
cell-mediated immunity beyond the scope of the manu-
script. The different aspects of the expected immune 
response for all 19 vaccine candidates and mAbs in 
clinical development are highlighted in table 2. 
A definitive threshold for protection against RSV disease 
remains elusive. So far, no vaccine candidates have been 
tested in the experimental human infection model, but 
the model provides a unique opportunity to test vaccine 
candidates in the natural host despite practical and ethical 
challenges.60 Ultimately, the outcome of large-scale 
vaccine trials will inform which immunological measures 
correspond to protection from clinical RSV disease.

Vaccine strategies
We have divided vaccines in clinical development into 
four categories in accordance with the PATH RSV 
vaccine and mAb snapshot: particle-based, vector-based, 
subunit, and live-attenuated or chimeric vaccines.24 We 
have also included mAbs in clinical development for the 
prevention of RSV ALRI. In the snapshot there are 
43 vaccines and four mAbs in development, of which 
19 are in clinical stage development. In table 4 we provide 
a comprehensive overview and more detailed comparison 
of all characteristics of the 19 vaccine candidates and 
mAbs in clinical development. Other approaches, which 
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are still in preclinical development, including nucleic 
acid-based vaccines, whole-inactivated vaccines, and 
biosimilars, are discussed in the appendix.

Particle-based vaccines
The RSV F nanoparticle-based vaccine platform is being 
evaluated for protection of three target populations: 
(1) infants through maternal vaccination, (2) children 
between 6 months and 5 years, and (3) older adults aged 
60 years or older. These vaccine candidates use aggregates 
of a modified stabilised F protein which has the post-F 
morphology.86 The maternal RSV F nanoparticle vaccine 
candidate is farthest along in clinical development and 
the PREPARE trial has entered the third year of a phase 3 
trial to enrol up to 8618 pregnant women at 80 sites in 
11 countries.27 In January, 2018, an informational analysis 
of the phase 3 trial was announced in which the vaccine 
candidate successfully targeted an efficacy threshold 
against the primary endpoint in infants at day 90 of 
more than 40%.87 Second in clinical development is the 
RSV F nanoparticle vaccine for older adults. Despite the 
absence of efficacy in a phase 3 trial (RESOLVE) with a 
non-adjuvanted vaccine candidate, development was 
continued in a phase 2 study initiated in January, 2017, in 
Australia in 300 adults. The aim of this trial is to establish 
whether two dose regimens with an adjuvant (Matrix-M, 
a saponin-based adjuvant, or aluminium phosphate) 
could increase the magnitude and quality of the immune 
response in this population. The results from the 
RESOLVE trial in older adults suggested vaccine efficacy 
in adults with COPD, leading to considerations to initiate 
a future trial in this older adult population at high risk 
for severe RSV infection.27 Finally, the phase 1 trial was 
completed in young children 24–72 months of age in 
2016, but no data have been published yet.88

SynGEM is a particle-based needle-free vaccine 
candidate containing the RSV F protein attached to 
empty bacterial particles made from Lactococcus lactis. In 
this vaccine platform, an antigen is presented by a 
bacterial particle. An influenza vaccine candidate in 
clinical trials that uses the same vaccine platform has 
shown both local and systemic antibody responses89 but 
further optimisation is needed for RSV vaccination. The 
preliminary results of immuno genicity testing of 
SynGEM have been reported. The immunogenicity of 
this vaccine was evaluated after delivery as a nasal spray 
to healthy adult volunteers. Two intranasal doses of 
SynGEM were administered 28 days apart at a low or 
high dose in 24 individuals per group (six participants in 
each group receiving placebo, double-blinded). Assays of 
serum RSV F-specific antibodies, PCA, and F-specific 
IgA indicated some immunogenicity, but the results did 
not reach the threshold set for continuation to viral 
challenge and the studies were suspended in 
2017 (P J Openshaw, Imperial College London; 
and C Chiu, Imperial College London, personal 
communication). 
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Vector-based vaccines
Five vector-based vaccines are in clinical development. 
The first uses a modified vaccinia Ankara (MVA) virus, a 
replication-defective smallpox viral vector, and the 
remaining four vaccine candidates use an adenovirus 
vector to display viral antigens. The MVA vector has been 
safely used in vaccines for other infectious diseases.90 

This vaccine candidate, MVA-BN-RSV, induces both 
humoral and cell-mediated responses by displaying four 
vaccine antigens: F, G, N and M2-1. Phase 2 results in 
healthy older adults from this candidate will soon be 
announced.

The second vector-based vaccine candidate, VXA-
RSV-f, uses an innovative platform with an adenovirus 5 
based oral tablet that is stable at room temperature. 
Using the same oral adenovirus vaccine delivery 
platform, a phase 1 trial for influenza has been 
conducted, which showed neutralising antibody 
responses against influenza and no interference of pre-
existing vector immunity.91 Preclinical studies for the 
RSV vaccine candidate in the cotton rat model showed 
an increase in anti-F antibodies and protection against 
RSV challenge.71 In the older adult population, 
immunosenescence can be characterised by impaired 
T-cell responses to RSV.92,93 This vaccine can didate, 
which induces a strong humoral response, could be a 
promising intervention in this population.

Third and fourth, Ad26.RSV.preF, is a vaccine candidate 
being developed for older adults and the paediatric 
population. In this candidate, pre-F antigen is expressed 
in the human adenovirus strain 26, a vector with a 
favourable safety profile when used for other infectious 
diseases.94,95 Previously, the vaccine candidate vector 
expressed post-F as antigen (FA2) but has now been 
changed to stabilised pre-F conformation. The stabilised 
pre-F protein has five aminoacid changes from wildtype, 
and is stable at 4°C and heat-stable.34 With the expectation 
that this vaccine candidate will induce highly neutralising 
antibodies against pre-F, phase 2 trials will be conducted 
in RSV-seropositive children. In December, 2017, a 
phase 2 trial began comparing concomitant admixtion of 
RSV vaccine and seasonal influenza vaccine versus 
seasonal influenza vaccine alone in healthy older adults.96

Fifth, ChAd155-RSV, the replication-incompetent 
chimpanzee adenovirus 155 has been used as a vector 
for the F, N, and M2-1 proteins. The anticipated use for 
this paediatric vaccine is to start immunisation at 
2 months of age, and to use two doses alongside the 
normal paediatric vaccination schedule, instead of 
seasonally.74 This vaccine candidate is being evaluated in 
12–23-month-old RSV seropositive children. In the 
future, there are plans to conduct clinical trials in 
seronegative children sequen tially from older to younger 
ages (12–24 months, followed by 6–12 months, and sub-
sequently 2–6 months of age) to ensure safety in RSV-naive 
populations. Results of phase 2 trials are expected to be 
announced in 2020.

In summary, vector-based vaccines are used to display 
various RSV viral proteins and three of these vaccine 
candidates are already in phase 2 trials.

Subunit vaccines
Owing to concerns of ERD associated with protein-based 
vaccines, subunit vaccines are only in development for 
pregnant women and older adult populations.

One subunit vaccine in development is the GSK RSV F 
vaccine candidate, which uses a version of soluble 
secreted F protein empirically engineered to maintain 
the pre-F conformation. Results from a phase 1 trial 
showed safety and immunogenicity as evidenced by RSV 
neutralising antibody response in healthy men.76 

However, a phase 2 trial scheduled for 2017 was halted 
because of instability of the pre-F antigen during manu-
facturing.

DPX-RSV is a vaccine candidate with a unique choice of 
vaccine antigen: the extracellular domain of the SH protein 
of RSV.45 The DepoVax technology allows for a prolonged 
exposure of antigen and adjuvant, and aims to induce 
ADCC using a liposome and oil-based depot.97 The antigen 
and adjuvant are encapsulated in a liposome, lyophilised 
and suspended in oil, and the process is expected to 
produce vaccines with long shelf-life stability.97 Phase 1 
results on safety and immunogenicity in the older adult 
population have been released and are expected to be 
published from this investigator-initiated study.

Structure-guided stabilisation of the pre-F confor-
mation has yielded a subunit vaccine candidate, RSV F 
DS-Cav1. The stabilisation includes a foldon trimerisation 
domain, the introduction of cysteine residues to form a 
disulphide bond, and cavity-filling hydrophobic residues.37 
The vaccine is able to preserve neutralisation-sensitive 
epitopes on a functional pre-F form of the viral surface 
protein. In preclinical studies, the subunit vaccine 
induced high amounts of RSV-neutralising antibodies in 
mice and non-human primates.37 Preliminary results 
from the phase 1 trial, VRC 317, are promising and are 
expected to be published soon.

Finally, another stabilised pre-F subunit vaccine 
candidate, which has been optimised for antigen design 
after screening 360 candidates with cryo-electron micro-
scopy, is expected to enter phase 1 clinical trials soon.99

Live-attenuated and chimeric vaccines
In the context of historical concerns for enhanced RSV 
disease, live-attenuated vaccines can be considered safe 
for RSV-naive infants, based on consistent clinical 
study results showing that these candidates do not 
prime for ERD following subsequent exposure to 
wildtype RSV after vaccination.100 Another benefit of 
live-attenuated vaccines against RSV in young infants 
is their ability to replicate in the respiratory tract despite 
the presence of maternally acquired antibodies, and to 
elicit a broad humoral and cellular response.101 
Live-attenuated vaccines are probably limited to the 
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paediatric population under 2 years of age, as 
pre-existing immunity in older populations might not 
permit sufficient replication to generate protective 
immune responses. Safety could be a concern for 
intra nasal live-attenuated vaccines, in particular if 
attenuation is insufficient. However, evaluation of 
current vaccines has not shown evidence of increased 
rates of vaccine-associated ALRI or fever, though there 
might be increased rates of rhinorrhoea, similar to 
what has been observed with the live-attenuated 
influenza vaccines.

Five live-attenuated vaccine candidates in phase 1 clinical 
trials are being developed in partnership with the National 
Institutes of Health. Live-attenuated vaccines face the 
challenge of achieving sufficient attenuation to be safe, 
and remaining immunogenic enough to induce a 
protective immune response. An improved understanding 
of the RSV viral genome has informed the development of 
new vaccine candidates that could overcome this challenge. 
Two main modifications to the RSV genome have been 
engineered through reverse genetics: the ∆M2-2 deletion 
which attenuates viral replication and upregulates antigen 
expression,102 and the ΔNS2 deletion, which reduces viral 
suppression of host interferon thereby boosting the innate 
immune response. RSV MEDI ΔM2-2 reduced viral 
replication while inducing a strong primary serum 
neutralising antibody and potent anamnestic response in 
RSV-seronegative infants and children.102 Further results 
from phase 1 clinical trials with the other live-attenuated 
vaccine candidates are expected.

The only chimeric vaccine candidate in clinical de- 
velopment, rBCG-N-hRSV, is delivered via a BCG strain. 
BCG has a safe profile in newborn babies and infants, 
induces a Th1 response,81,82 and allows for combined 
vaccination against two major respiratory pathogens: 
Mycobacterium tuberculosis and RSV. Not only is the Th1 
cellular response important in protecting against lung 
pathology, inflammation, and viral repli cation83 but the 
candidate also induces a humoral response. The antigen 
presented by this vaccine candidate is the RSV N 
protein.103 So far, this candidate is the only vaccine 
candidate intended for administration to newborn 
babies.103

Monoclonal antibodies
A promising highly potent monoclonal antibody has 
emerged as a passive administration strategy to prevent 
severe RSV infection. MEDI8897, also known as 
nirsevimab, was optimised from the human antibody D25 
that targets antigenic site ∅ on the pre-F con formation, 
which is more neutralisation sensitive than the 
palivizumab epitope, antigenic site II. Using the 
YTE (aminoacid substitutions Met252Tyr/Ser254Thr/
Thr256Glu) technology, which extends antibody half-life 
and modulates ADCC,104 the three-times increase in half-
life of MEDI8897,105 compared with palivizumab offers the 
possibility of passive protection for all infants for an entire 

season through a single intramuscular injection. The 
intended use is for term and preterm infants entering their 
first RSV season. Passive vaccination with an extended 
half-life antibody offers an approach to protecting infants 
that is safe and can be reasonably priced. Representatives 
of the pharmaceutical company have indicated that they 
expect vaccine-like pricing for MEDI8897. Given the 
increased potency, the extended half-life, and the required 
dose, it is expected that the cost to protect an infant during 
the RSV season can be kept relatively low.84

Considerations by regulatory agencies and WHO
Considerations in population selection for vaccine trials 
mentioned by the European Medicines Agency (EMA) 
include: first testing a vaccine candidate in a seropositive 
before testing in a seronegative population, testing a 
maternal vaccine in non-pregnant women of child-
bearing age before testing in pregnant women, and 
including older adults with comorbidities in vaccine 
trials. No particular considerations were mentioned for 
population selection in studies for mAbs. In October, 2017, 
the EMA released draft guidelines for the clinical 
evaluation of RSV prophylactic interventions that 
included guidance regarding trial design, assessment of 
efficacy, and safety.106 The draft guidelines will be revised 
after a period of public consultation based on comments 
and new publications.

WHO has recognised the importance of RSV as a global 
health problem and has identified the development of 
RSV vaccines as a priority for the WHO Initiative for 
Vaccine Research and for Biological Standardization. 
WHO has developed RSV vaccines preferred product 
characteristics and research and development technical 
roadmap documents.107,108 Further guidance for develop-
ment will contribute to adequate policy making. WHO 
standardisation activities led to the development and 
establishment of the first international standard for 
antiserum to RSV. Development of guidelines for 
evaluation of quality, safety, and efficacy of RSV vaccines 
has been initiated and will be part of the consultation with 
regulators, manufacturers, and academia in 2018, with the 
aim of finalisation in 2019. Further discussion on guiding 
principles for mAbs is needed before proceeding with the 
development of the WHO guidelines. These and other 
WHO standards serve as a basis for setting national 
regulatory requirements and WHO prequalification.

Finally, the WHO is now doing a surveillance pilot 
study in 14 countries to test the feasibility of using the 
Global Influenza Surveillance and Response System 
platform for RSV surveillance and it is expected that this 
pilot will contribute to our understanding of the RSV 
disease burden and seasonality in different geographical 
regions.109

Discussion
Challenges in RSV vaccine design include concerns of ERD 
post-vaccination, lack of definitive immunological correlates 
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of protection, lack of consensus regarding clinical endpoints, 
and little natural immunity following RSV infection. 
Despite these challenges, developments such as an 
understanding of the structural biology of the RSV fusion 
protein, as well as lessons learned from late-phase vaccine 
trial failures have informed the field as it moves forward.

We attempted to collect data regarding expected plans 
for access to a preventive intervention in low-income and 
lower middle-income countries (LMICs) and expected 
pricing for all vaccine candidates; however, this 
information is not publicly available. Given that the most 
severe RSV infection occurs in low-income and LMICs,19 
information regarding LMIC target countries and 
potential pricing for vaccine candidates will be essential 
to facilitate access to vaccines worldwide, especially in 
areas where the mortality burden is highest. A 
mechanism should be introduced to ensure that 
information regarding expected pricing and access to 
interventions is transparent and available in the public 
domain. RSV vaccines and mAbs will be considered in 
the development of the Vaccine Investment Strategy by 
Gavi, the Vaccine Alliance in 2018.110

A vaccine trial can be considered a probe study to 
establish whether a causal relationship exists between 
RSV infection and asthma, a long-standing question in 
the field. If long-term follow up had been undertaken 
during the pivotal RSV prevention trials using 
palivizumab, these trials would now have provided 
20 years of follow up on respiratory morbidity after RSV 
prevention in high-risk infants. Lack of long-term 
surveillance for airway morbidity in vaccine trials is a 
missed opportunity to provide novel scientific insights, 
important not only to understand the pathogenesis, but 
also the long-term vaccine efficacy against airway 
morbidity following RSV infection. In addition to 
wheeze, objective outcomes such as lung function 
measurements, including demonstration of bronchial 
hyperreactivity and IgE measurements, will ideally be 
incorporated in vaccine trials to fully understand the 
effect of RSV prevention on asthma development.

Viral interference, in which RSV inhibits infection by 
other viruses, is becoming an increasingly important 
concept to understand in the context of an approved RSV 
vaccine. RSV vaccination could conceivably result in an 
increased prevalence of other respiratory viruses. There 
is evidence supporting viral interference for influenza 
vaccination,111,112 for RSV prevention,113,114 and during the 
RSV season in the absence of RSV.115 It is important for 
vaccine trials to examine this effect by evaluating the 
prevalence of all-cause ALRI, as well as RSV-specific 
ALRI, to better understand the implications of viral 
interference for an RSV vaccine.

This Review provides an extensive overview of the 
19 vaccine candidates and mAbs in clinical trials to 
prevent RSV infection. RSV vaccine development is 
moving rapidly and shows promise to address an unmet 
global health problem. Vaccines for various target 

populations are in clinical development. One vaccine 
candidate and one mAb are in late-phase trials (2b or 3) 
and aim to prevent the disease burden in infants. Despite 
some failures, RSV vaccine candidates and mAbs in 
clinical development hold promise that a preventive 
intervention for RSV is on the horizon.
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