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Mathematical Physics — Integrability of the spatial restricted three-body problem
near collisions (an announcement), by Franco Cardin and Massimiliano

Guzzo, communicated on November 9, 2018.1

Abstract. — We present the integration of the spatial circular restricted three-body problem in

a neighbourhood of its collision singularities by extending an idea of Tullio Levi-Civita.
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The circular restricted three-body problem is defined by the motion of a body P
of infinitesimally small mass in the gravitation field of two massive bodies P1 and
P2, the primary and secondary body respectively, which rotate uniformly around
their common center of mass. In a rotating frame we consider the Hamiltonian:

hðx; y; z; px; py; pzÞ ¼
p2x þ p2y þ p2z

2
þ px y� pyx� 1� m

r1
� m

r2
;ð1Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ mÞ2 þ y2 þ z2

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1þ mÞ2 þ y2 þ z2

q
denote the

distances of P from P1, P2; notice that the units of mass, length and time have
been chosen so that the masses of P1 and P2 are 1� m and m ðma 1=2Þ respec-
tively, their coordinates are ðx1; 0; 0Þ ¼ ð�m; 0; 0Þ, ðx2; 0; 0Þ ¼ ð1� m; 0; 0Þ, and
their revolution period is 2p.

For m > 0, no smooth constants of motion independent of the Hamilton func-
tion h are known, and this represents the major obstruction to the lack of explicit
uniform representations of solutions of the problem. There is a long history
around the existence/non-existence of first integrals for the three-body problem
as well as for general Hamiltonian systems. Theorems of non-existence of such
constant of motions are due to Bruns [2] (whose result concerns algebraic first
integrals) and Poincaré [13], revisited in [14, 1, 8]. Actually, whenever we dis-
cuss about the theorem of non-existence of Poincaré for the restricted three-body
problem, we are speaking precisely on uniform first integrals analytic with respect
to the mass parameter m in domains which, when represented using the Delaunay

1The purpose of this paper is to announce and present results which are to appear (see reference
[4] in the paper).



variables ðL;G; l; gÞ (for the planar problem), have the form D� T2 where
D � R2 is any open subset of the actions L, G with L > 0, [1]. The theorem of
Poincaré leaves the door open for the integration of the system in domains which
are not invariant under translations of the angles ðl; gÞ. The interest in these kind
of integrations depends on the specific domain. For example, when the domain is
a neighbourhood of the collision set:

Cj ¼ fðx; y; z; px; py; pzÞ : ðx; y; zÞ ¼ ðxj; 0; 0Þg; j ¼ 1; 2;

even restricted to constant energy levels, the integration would allow to solve the
(open) problem of close encounters, which we formulate as follows. Let s be ar-
bitrarily small; for any motion ðxðtÞ; yðtÞ; zðtÞÞ entering the ball Bðxj ;0;0ÞðsÞ � R3

(centered at ðxj ; 0; 0Þ of radius s) at time t ¼ t1 and leaving it at time t2, express
ðxðt2Þ; yðt2Þ; zðt2Þ; pxðt2Þ; pyðt2Þ; pzðt2ÞÞ as an explicit function of ðxðt1Þ; yðt1Þ;
zðt1Þ; pxðt1Þ; pyðt1Þ; pzðt1ÞÞ.

In a remarkable paper [11] T. Levi-Civita performed the integration of the
planar circular restricted three-body problem in a neighbourhood of a collision
set Cj through the introduction of a transformation which nowadays bears the
name of Levi-Civita (LC hereafter) regularization; explicitly:

x ¼ xj þ u21 � u22ð2Þ
y ¼ 2u1u2ð3Þ
dt ¼ rj ds;ð4Þ

where (2), (3) are equivalent to the complex transformation: x ¼ z2, x ¼
ðx� xjÞ þ iy, z ¼ u1 þ iu2, while (4) is a parametrization of the physical time t
into the proper time s. In a much less quoted part of the paper [11] Levi-Civita
proved the existence of an integral of the Hamilton–Jacobi equation of the
Hamiltonian representing the regularized planar circular restricted three-body
problem, which we call the Levi-Civita Hamiltonian, in a neighbourhood of
the collision singularity at Pj. In particular, he proved the existence of a second
first integral, independent of h, defined in a neighbourhood of the the collision
singularity at Pj and represented by a series analytic at ðu1; u2Þ ¼ ð0; 0Þ. The
coe‰cients of this series can be explicitly computed iteratively up to any arbi-
trary large order, so that the problem of planar close encounters can be solved
explicitly2.

The regularization of the spatial restricted three-body problem has been done
by Kustaanheimo and Stiefel [9, 10] many decades after Levi-Civita, but the inte-
grability of the regularized Hamiltonian, which we call the Kustaanheimo–Stiefel

2As a matter of fact, Levi-Civita constructed the solution of the Hamilton–Jacobi equation only

for the collision singularity at P1. Nevertheless, Levi-Civita’s argument is valid also in a neighbour-
hood of the singularity at the secondary body P2. Formally this extension is achieved by exchanging

1� m with m within the series. We notice that while the series at P1 is analytic also in m ¼ 0, the series
at P2 is not.
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Hamiltonian, has never been addressed. Here, our purpose is precisely to extend
to the fully spatial case the point of view followed by Levi-Civita, thus o¤ering a
complete integrability of the spatial problem near collisions.

Regularizations of spatial problems are dramatically more complicate than
regularizations of the planar problem, see [12]. As for the Levi-Civita regula-
rization, the Kustaanheimo–Stiefel regularization (KS hereafter) is defined by
the introduction of a transformation on the space variables and by a time-
reparametrization; but the KS space transformation is more complicate than
the LC space transformation, since for an algebraic reason that we explain
below (related to the extension of complex numbers to a space of quaternions)
it is a map from a space of redundant variables u1, u2, u3, u4 to a space of
Cartesian variables q1, q2, q3. Following [9, 10], we introduce the projection
map:

p : R4 ! R3ð5Þ
ðu1; u2; u3; u4Þ 7! pðu1; u2; u3; u4Þ ¼ ðq1; q2; q3Þ;

where ðq1; q2; q3; 0Þ ¼ AðuÞu, and:

AðuÞ ¼

u1 �u2 �u3 u4

u2 u1 �u4 �u3

u3 u4 u1 u2

u4 �u3 u2 �u1

0
BBB@

1
CCCAð6Þ

is a matrix which plays a central role in the KS regularization, it is a linear homo-
geneous function of u1; . . . ; u4 and satisfies AðuÞATðuÞ ¼ juj2I. Matrices with
such properties exist only for n ¼ 1; 2; 4; 8 (see [7]), and the lack of this result for
n ¼ 3 is precisely the reason for the definition of the KS regularization in a
4-dimensional space. Then, for any motion in the KS variables we introduce the
parametrization of time (4); notice that we have rj ¼ juj2. The space and time
transformations (4), (5) have been used to represent the regularized equations of
motions of the spatial circular restricted three-body problem in various forms (see
[3] for a review of the subject). Below, we present it with the notations which we
find useful to investigate the transformation of the KS Hamiltonian with respect
to a suitable sub-group of SO(4).

The KS Hamiltonian

We first perform the phase-space translation

X ¼ x� xj; Y ¼ y; Z ¼ z; Px ¼ px; Py ¼ py � xj; Pz ¼ pz;ð7Þ

conjugating h to the Hamiltonian (to fix ideas we present all these compu-
tations for j ¼ 2, so that the reference system defined above will be called
planetocentric):
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HðX ;Y ;Z;Px;Py;PzÞ ¼ð8Þ

¼
P2
x þ P2

y þ P2
z

2
þ PxY � PyX � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2 þ Y 2 þ Z2
p

� ð1� mÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX þ 1Þ2 þ Y 2 þ Z2

q � 1þ X

0
B@

1
CA� ð1� mÞ � ð1� mÞ2

2
;

the constant terms being kept for compliance with the values of the original
Hamiltonian h; we will use also the compact notation x ¼ ðX ;Y ;Z;Px;Py;PzÞ.
The traditional KS regularization is obtained from the space transformation (5)
with ðq1; q2; q3Þ ¼ ðX ;Y ;ZÞ, and can be expressed in the following Hamiltonian
form:

Kðu;U ;EÞ ¼ 1

8
jU � bð0;0;1ÞðuÞj2 �

1

2
juj2jð0; 0; 1Þ � pðuÞj2 � juj2Em � mð9Þ

� ð1� mÞjuj2 1

jpðuÞ þ ð1; 0; 0Þj � 1þ pðuÞ � ð1; 0; 0Þ
� �

;

Em ¼ E þ ð1� mÞ þ ð1� mÞ2

2
;

where U ¼ ðU1;U2;U3;U4Þ denote the conjugate momenta to u ¼ ðu1; u2;
u3; u4Þ, and the vector potential boðuÞ (in (9) we have o ¼ ð0; 0; 1Þ), is defined
by

boðuÞ ¼ 2ATðuÞLoAðuÞu; Lo ¼

0 �o3 o2 0

o3 0 �o1 0

�o2 o1 0 0

0 0 0 0

0
BBB@

1
CCCA:ð10Þ

The Hamiltonian K is a regularization of the spatial three-body problem at
P2. This means that if ðuðsÞ;UðsÞÞ is a solution of the Hamilton equations of
KðU ; u;EÞ with initial conditions satisfying:

(i) uð0ÞA 0;
(ii) lðuð0Þ;Uð0ÞÞ ¼ 0, where lðu; _uuÞ ¼ u4 _uu1 � u3 _uu2 þ u2 _uu3 � u1 _uu4 is called the

bilinear form;
(iii) Kðuð0Þ;Uð0Þ;EÞ ¼ 0,

and s in a small neighbourhood of s ¼ 0, then xðtÞ ¼ ðXðtÞ;YðtÞ;ZðtÞ;PxðtÞ;
PyðtÞ;PzðtÞÞ such that:

ðX ðtðsÞÞ;Y ðtðsÞÞ;ZðtðsÞÞ; 0Þ ¼ AðuðsÞÞuðsÞ
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ðPxðtðsÞÞ;PyðtðsÞÞ;PzðtðsÞÞ; 0Þ ¼
1

2juðtðsÞÞj2
AðuðtðsÞÞUðtðsÞÞÞ

tðsÞ ¼
Z s

0

juðtÞj2 dt;

is a solution of the Hamilton equations of (8), and Hðxð0ÞÞ ¼ E.

Statement of the main result

Our integration of the spatial circular restricted three-body problem is based on
the definition of a complete integral Wðu; n;E; mÞ of the Hamilton–Jacobi equa-
tion of Hamiltonian Kðu;U ;EÞ which is defined for all the values of the param-
eters n ¼ ðn1; . . . ; n4Þ in a neighbourhood of the sphere jnj ¼ 1, and is analytic in
a neighbourhood of u ¼ 0. At this regard, we can prove (the proof will appear
elsewhere [4]):

Theorem 1. For fixed values of E� and of m� > 0, there exists a complete integral
Wðu; n;E; mÞ of the Hamilton–Jacobi equation:

K
�
u;
qW

qu
ðu; n;E; mÞ;E

�
¼ mðjnj2 � 1Þð11Þ

depending on the four parameters n and on E, m, which is analytic for E, m, n in the
set:

fjm� m�j < a; jE � E�j < b; j jnj � 1j < cg

and u in the (complex) ball:

fu a C4 : jnj < dg

with suitable constants a; b; c; d > 0 (depending only on E�, m�). The coe‰cients of
the Taylor expansions of W with respect to the variables u can be explicitly com-
puted iteratively to any arbitrary order; in particular we have:

W ¼
ffiffiffiffiffi
8m

p X4

j¼1

njuj þ O3ðuÞ:ð12Þ

Remarks. (I) The complete integral W of the Hamilton–Jacobi equation de-
fines a canonical transformation through the system

Ul ¼
qW

qul
ðu; n;E; mÞ; l ¼ 1; . . . ; 4ð13Þ

nl ¼
qW

qnl
ðu; n;E; mÞ; l ¼ 1; . . . ; 4:ð14Þ
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conjugating Kðu;U ;EÞ to the Hamiltonian:

K̂Kðn; nÞ ¼ mðjnj2 � 1Þ:

We can prove the following technical points: ðiÞ the sub-system (13) has a
global analytic inversion: n ¼ n̂nðu;U ;E; mÞ defined for u, U so that u belongs
to some complex ball around u ¼ 0 and U belongs to the image of the map:
n 7! qW

qu
ðu; n;E; mÞ with n in a suitable neighbourhood of the unit sphere jnj ¼ 1;

ðiiÞ the canonical transformation preserves the bilinear relation, i.e. we have
lðu;UÞ ¼ 0 if and only if lðn̂n; n̂nÞ ¼ 0. Therefore, by denoting with ðn; nÞ ¼ ðn̂nðu;
U ;E; mÞ; n̂nðu;U ;E; mÞÞ the canonical transformation, the solutions ðuðsÞ;UðsÞÞ of
the Hamilton equations of Kðu;U ;EÞ are obtained from:

ðnð0Þ þ 2mnð0Þs; nð0ÞÞ ¼ ðn̂nðuðsÞ;UðsÞ;EÞ; n̂nðuðsÞ;UðsÞ;EÞÞ:ð15Þ

Formula (15) provides all the solutions of the spatial circular restricted three-
body problem in a neighbourhood of the collision set C2.

(II) The proof of Theorem 1 is achieved through several steps: first, a geomet-
ric analysis of the KS Hamiltonian is needed to identify the parameters n1; . . . ; n4,
providing the conserved momenta of Hamiltonian K̂Kðn; nÞ; second, an analytic
part based on the Cauchy–Kowaleski theorem is used to provide analytic solu-
tions to the Hamilton–Jacobi equation. The geometric analysis is the real heart
of the proof and is completely original with respect to the work of Levi-Civita,
since the geometric part required by the planar case is rather simpler. In fact, we
need to represent in the space of the fictitious variables ðu1; . . . ; u4Þ the rotations
of the euclidean space ðq1; q2; q3Þ with matrices which are in SO(4) and leave
invariant the bilinear form. Moreover, to subgroup of SO(4) that we obtain this
way must be parameterized by four parameters n1; . . . ; n4, constrained to the unit
sphere, such that the inversion of the system of equations (13, 14) has no singu-
larities (which arise if, for example, we parameterize the subgroup with three
Euler angles). The analytic part is instead the argument that we extend from the
integration of the planar problem, with an additional care for the global defini-
tion of the family of particular solutions found.

(III) An additional interesting question concerns the existence of Cartesian
first integrals F ðX ;Y ;Z;Px;Py;PzÞ independent of HðX ;Y ;Z;Px;Py;PzÞ de-
fined in a neighbourhood of the collision set Cj. The existence of Cartesian first
integrals is not granted a priori from the existence of first integrals of the KS
Hamiltonian; for example jnj2 and lðn; nÞ do not provide, with evidence, Carte-
sian first integrals. A deeper reason is that the map p has not a global smooth
inversion defined in a neighbourhood of q ¼ ðX ;Y ;ZÞ ¼ 0 (see [6], where a
similar problem is addressed for the global definition of chaos indicators for the
spatial three-body problem). We need at least two local inversions ûueðqÞ of p
to cover a full neighbourhood of q ¼ 0, and consequently two local inversions
ðûueðqÞ; ÛUeðq; pÞÞ, where p ¼ ðPx;Py;PzÞ, satisfying lðûue; ÛUeÞ ¼ 0 covering a
neighbourhood of the collision set Cj. For any x ¼ ðq; pÞ in the common domain
of the local inversions, we prove that there exists an angle a (depending on q)
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such that:

uþ ¼ S0
a u�; Uþ ¼ S0

a U�; nþ ¼ S0
a n�; nþ ¼ S0

a n�n̂n;

where ue :¼ ûueðqÞ, Ue :¼ ÛUeðq; qÞ, ne :¼ n̂nðue;UeÞ, ne :¼ n̂nðue;UeÞ, and S0
a is

the SOð4Þ matrix:

S0
a ¼

cos a 0 0 �sin a

0 cos a sin a 0

0 �sin a cos a 0

sin a 0 0 cos a

0
BBB@

1
CCCA:ð16Þ

Therefore, the first integrals n̂neðûuðqÞ; ÛUðq; pÞ;EÞ depend in principle on the local
inversion map, and we do not grant their extension to global smooth functions in
any neighbourhood of the collision set. But, if we consider the dynamics in the n,
n variables, we notice that the functions:

Nx ¼ n1n4 � n4n1; Ny ¼
1

2
ðn1n3 � n1n3 þ n2n4 � n4n2Þ;

Nz ¼
1

2
ðn1n2 � n1n2 þ n4n3 � n3n4Þ

are first integrals and are invariant by application of the map ðn; nÞ 7!
ðS0

a n;S
0
a nÞ. Their local representatives: Ne

x ðxÞ, Ne
y ðxÞ, Ne

z ðxÞ satisfy, in their
common domain:

Nþ
x ¼ N�

x ; Nþ
y ¼ N�

y ; Nþ
z ¼ N�

z ;

and therefore are the local representatives of functions Nx, Ny, Nz globally
defined and smooth in a neighbourhood of the collision set. We consider the set
of three first integrals:

ðH; N2 :¼ N2
x þN2

y þN2
z ; NzÞ:

We notice that, since N2, Nz are first integrals, we have:

fH;N2g ¼ 0; fH;Nzg ¼ 0:

The Poisson bracket fH;Nzg ¼ 0 is su‰cient to grant the complete integrability
of the planar circular restricted three-body problem in a neighbourhood of its col-
lision singularities. It remains to understand if even the spatial case is completely
integrable. At this regard, we notice that in the space of the variables n, n, we
have:

fN 2;Nzg ¼ lðn; nÞaðn; nÞ;ð17Þ
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so that the two integrals are in involution on the level set lðn; nÞ ¼ 0. The atypical
Poisson bracket in (17) seems a rule for the KS regularization. For example, the
elementary Poisson brackets of q ¼ q̂qðuÞ; p ¼ p̂pðu;UÞ defined from q̂qðuÞ ¼ pðuÞ,
ð p̂p1; p̂p2; p̂p3; 0Þ ¼ 1

2juj2
AðuÞU , satisfy:

fq̂qi; p̂pjg ¼ dij; fq̂qi; q̂qjg ¼ 0; f p̂pi; p̂pjg ¼ lðu;UÞfijðu;UÞ; i; j ¼ 1; 2; 3:ð18Þ

From (17) and (18) we get:

fN2;Nzg ¼ 0:

The existence of a complete set of Cartesian first integrals defined in a neighbour-
hood of the singularity o¤ers a classification of the close encounters which uses
the Cartesian variables.

On the proof of Theorem 1

Consider the reference frame defined by

ðx� xj; y; zÞ ¼ lRðq1; q2; q3Þ;ð19Þ

for any arbitrary matrix R a SOð3Þ and l > 0, and introduce the KS space
and time regularization (5), (4). We obtain the regularization represented by the
Hamiltonian:

KlRðu;UÞ ¼ 1

8l2
jU � l2boðuÞj2 �

1

2
l2juj2jo� pðuÞj2 � ml�1 � juj2Emð20Þ

� ð1� mÞjuj2
� 1

jlpðuÞ þ ej � 1þ lpðuÞ � e
�
:

where o ¼ RTð0; 0; 1Þ, e ¼ RTð1; 0; 0Þ.
The Hamiltonians KlRðu;U ;EÞ are conjugate to Kðu;U ;EÞ by a peculiar

set of linear transformations of R4 parameterized by four parameters n, which
are conjugate (through the map p) to the transformations (19). Precisely, for any
n ¼ ðn1; n2; n3; n4Þ a R4n0 we define the matrices:

Sn ¼

n1 �n2 �n3 �n4

n2 n1 �n4 n3

n3 n4 n1 �n2

n4 �n3 n2 n1

0
BBB@

1
CCCA:

We have: SnS
T
n ¼ jnj2I, lðSnu;SnUÞ ¼ jnj2lðu;UÞ for all ðu;UÞ a T �R4 and,

for any u a R4, we have:

pðSnuÞ ¼ RnpðuÞð21Þ
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where:

Rn ¼
n21 � n22 � n23 þ n24 �2ðn1n2 þ n3n4Þ �2ðn1n3 � n2n4Þ
2ðn1n2 � n3n4Þ n21 � n22 þ n23 � n24 �2ðn2n3 þ n1n4Þ
2ðn1n3 þ n2n4Þ �2ðn2n3 � n1n4Þ n21 þ n22 � n23 � n24

0
B@

1
CAð22Þ

satisfies: RnR
T
n ¼ jnj4I, and depends on the n as in the Euler–Rodrigues for-

mula. Therefore, the map:

P : S ¼
S

n AR4n0 Sn ! SOð3Þ

Sn 7! PðSnÞ ¼
1

jnj2
Rn;

is surjective. For any matrix Sn a S, we have the identity:

KðSnu;S
�T
n UÞ ¼ jnj2Kjnj2PðSnÞðu;UÞ:ð23Þ

which is crucial to relate the particular solutions ~WW ðu;E; m; k; n1; . . . ; n4Þ of the
Hamilton–Jacobi equation:

Kjnj2PðSnÞ

�
u;
q ~WW

qu

�
¼ k

jnj2
;ð24Þ

to the solutions W of the Hamilton–Jacobi equation (11) through the formula:

W ðu;E; m; nÞ ¼ ~WWðjnj�2
ST
n u;E; m; kn; nÞ;ð25Þ

with kn ¼ mðjnj2 � 1Þ. For fixed values E� and m > 0, the Cauchy–Kowaleski the-
orem grants the existence of solutions of equation (24) satisfying:

~WW ð0; u2; u3; u4;E; m; k; n1; . . . ; n4Þ ¼ 0

which are analytic for all the values of the parameters ðE; k; n1; . . . ; n4Þ in a suit-
able neighbourhood of ðE; kÞ ¼ ðE�; 0Þ and of the unit sphere jnj ¼ 1, in the same
common neighbourhood of u ¼ 0. Finally, the function defined by (25) is the
complete integral of the Hamilton–Jacobi equation (11).
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