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Abstract

Let V be a valuation domain of rank one with quotient field K. We
study the set of extensions of V to the field of rational functions K(X)
induced by pseudo-convergent sequences of K from a topological point
of view, endowing this set either with the Zariski or with the con-
structible topology. In particular, we consider the two subspaces in-
duced by sequences with a prescribed breadth or with a prescribed
pseudo-limit. We give some necessary conditions for the Zariski space
to be metrizable (under the constructible topology) in terms of the
value group and the residue field of V .
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1 Introduction

Let D be an integral domain with quotient field K, and let L be a field
extension of K. The Zariski space Zar(L|D) of L over D is the set of all
valuation domains containing D and having L as quotient field. This set was
originally studied by Zariski during its study of the problem of resolution
of singularities [19, 20]; to this end, he introduced a topology (later called
the Zariski topology) that makes Zar(L|D) into a compact space that is not
Hausdorff [21, Chapter VI, Theorem 40].
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A second topology that can be considered on the Zariski space is the
constructible topology (or patch topology), that can be constructed from the
Zariski topology in the same way as it is constructed on the spectrum of a
ring. The Zariski space Zar(L|D) endowed with the constructible topology,
which we denote by Zar(L|D)cons, is more well-behaved than the starting
space Zar(L|D) with the Zariski topology, since beyond being compact it
is also Hausdorff; furthermore, it keeps its link with the spectra of rings,
in the sense that there is a ring A such that Spec(A) is homeomorphic to
Zar(L|D)cons [7].

Suppose now that D = V is a valuation domain. In this case, the
study of Zar(L|V ) often concentrates on the subset of the extensions of V
to L, i.e., to the valuation domains W ∈ Zar(L|V ) such that W ∩K = V .
When L = K(X) is the field of rational functions over K, there are sev-
eral ways to construct extensions of V to K(X), among which we can cite
key polynomials [9, 17], monomial valuations, and minimal pairs [1, 2]. An-
other approach is by means of pseudo-monotone sequences and, in particular,
pseudo-convergent sequences: the latter are a generalization of the concept
of Cauchy sequences that were introduced by Ostrowski [10] and later used
by Kaplansky to study immediate extensions and maximal valued fields [8].
Pseudo-monotone sequences were introduced by Chabert in [4] to describe
the polynomial closure of subsets of rank one valuation domains. In particu-
lar, Ostrowski introduced pseudo-convergent sequences in order to describe
all rank one extensions of a rank one valuation domain when the quotient
field K of V is algebraically closed (Ostrowski’s Fundamentalsatz, see [10,
§11, IX, p. 378]); recently, the authors used pseudo-monotone sequences to
extend Ostrowski’s result to arbitrary rank when the completion K̂ of K
with respect to the v-adic topology is algebraically closed [14, Theorem 6.2].

Motivated by these results, in this paper we are interested in the sub-
space V of Zar(K(X)|V ) containing the extensions of V defined by pseudo-
convergent sequences, under the hypothesis that V has rank 1 (see §2 for
the definition of this kind of extensions). The study of V was started in [13],
where it was shown that V is always a regular space (even under the Zariski
topology) [13, Theorem 6.15] and that the Zariski and the constructible
topology agree on V if and only if the residue field of V is finite [13, Propo-
sition 6.11]. We continue the study of this space by concentrating on the
problem of metrizability: more precisely, we are interested on conditions
under which V and some distinguished subsets of V are metrizable. More
generally, we look for conditions under which the whole Zariski space (en-
dowed with the constructible topology) is metrizable. To do so, we consider
two partitions of V.

In Section 3, we study the spaces V(•, δ) ⊂ V consisting of those exten-
sions of V induced by pseudo-convergent sequences having the same (fixed)
breadth δ ∈ R ∪ {∞} (see Section 2 for the definition); this can be seen as
a generalization of the study of valuation domains associated to elements of
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the completion of K tackled in [12], which in our notation reduces to the
special case δ = ∞. In particular, we show that V(•, δ) can be seen as a
complete ultrametric space under a very natural distance function (Theo-
rem 3.5) which induces both the Zariski and the constructible topology (that
in particular coincide, see Proposition 3.4); however, these distances (as δ
ranges in R ∪ {∞}), cannot be unified into a metric encompassing all of V
(Proposition 3.8).

In Section 4, we study the spaces V(β, •) ⊂ V consisting of those exten-
sions of V induced by pseudo-convergent sequences having a (fixed) pseudo-
limit β ∈ K (with respect to some prescribed extension of V to K). We show
that these spaces are closed, with respect to the Zariski topology (Propo-
sition 4.2), and that the constructible and the Zariski topology agree on
each V(β, •) (Proposition 4.6); furthermore, we represent V(β, •) through a
variant of the upper limit topology (Theorem 4.4), and we show that it is
metrizable if and only if the value group of V is countable (Proposition 4.7).
As a consequence, we get that, when the value group of V is not countable,
the space Zar(K(X)|V )cons is not metrizable (Corollary 4.8).

In Section 5, we look at the same partitions, but on the sets Vdiv and
Vstat of extensions induced, respectively, by pseudo-divergent and pseudo-
stationary sequences (the other type of pseudo-monotone sequences beyond
the pseudo-convergent ones, see [4, 11, 14]). Using a quotient onto the
space Zar(k(t)|k) (where k is the residue field of V ) we first show that
Zar(K(X)|V )cons is not metrizable if k is uncountable (Proposition 5.3);
then, with a similar method, we show that Vdiv(•, δ) is not Hausdorff (with
respect to the Zariski topology) when δ belongs to the value group of V
(Proposition 5.4). On the other hand, we show that fixing a pseudo-limit
(i.e., considering Vdiv(β, •)) we get a space homeomorphic to V(β, •) (Propo-
sition 5.5). For pseudo-stationary sequences, we show that both partitions
Vstat(•, δ) and Vstat(β, •) give rise to discrete spaces (Proposition 5.6).

2 Background and notation

Let D be an integral domain and L be a field containing D (not necessarily
the quotient field of D). The Zariski space of D in L, denoted by Zar(L|D),
is the set of valuation domains of L containing D endowed with the so-called
Zariski topology, i.e., with the topology generated by the subbasic open sets

B(φ) = {W ∈ Zar(L|D) | φ ∈W},

where φ ∈ L. Under this topology, Zar(L|D) is a compact space [21, Chapter
VI, Theorem 40], but it is usually not Hausdorff nor T1 (indeed, Zar(L|D)
is a T1 space if and only if D is a field and L is an algebraic extension of
D). The constructible topology on Zar(L|D) is the coarsest topology such
that the subsets B(φ1, . . . , φk) = B(φ1) ∩ · · · ∩ B(φn) are both open and
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closed. The constructible topology is finer than the Zariski topology, but
Zar(L|D)cons (i.e., Zar(L|D) endowed with the constructible topology) is
always compact and Hausdorff [7, Theorem 1].

From now on, and throughout the article, we assume that V is a valuation
domain of rank one; we denote by K its quotient field, by M its maximal
ideal and by v the valuation associated to V . Its value group is denoted by
Γv.

If L is a field extension of K, a valuation domain W of L lies over V if
W ∩ K = V ; we also say that W is an extension of V to L. In this case,
the residue field of W is naturally an extension of the residue field of V and
similarly the value group of W is an extension of the value group of V .

We denote by K̂ and V̂ the completion of K and V , respectively, with
respect to the topology induced by the valuation v. We still denote by v the
unique extension of v to K̂ (whose valuation domain is precisely V̂ ). We
denote by K a fixed algebraic closure of K.

Since V has rank one, we can consider Γv as a subgroup of R. If u is an
extension of v to K, then the value group of u is QΓv = {qγ | q ∈ Q, γ ∈ Γv}.

The valuation v induces an ultrametric distance d on K, defined by

d(x, y) = e−v(x−y).

In this metric, V is the closed ball of center 0 and radius 1. Given s ∈ K
and γ ∈ Γv, the closed ball of center s and radius r = e−γ is:

{x ∈ K | d(x, s) ≤ r} = {x ∈ K | v(x− s) ≥ γ}.

The basic objects of study of this paper are pseudo-convergent sequences,
introduced by Ostrowski in [10] and used by Kaplansky in [8] to describe im-
mediate extensions of valued fields. Related concepts are pseudo-stationary
and pseudo-divergent sequences introduced in [4], which we will define and
use in Section 5.

Definition 2.1. Let E = {sn}n∈N be a sequence in K. We say that E is a
pseudo-convergent sequence if v(sn+1 − sn) < v(sn+2 − sn+1) for all n ∈ N.

In particular, if E = {sn}n∈N is a pseudo-convergent sequence and n ≥ 1,
then v(sn+k − sn) = v(sn+1 − sn) for all k ≥ 1. We shall usually denote
this quantity by δn; following [18, p. 327] we call the sequence {δn}n∈N the
gauge of E. We call the quantity

δE = lim
n→∞

v(sn+1 − sn) = lim
n→∞

δn

the breadth of E. The breadth δE is an element of R∪{∞}, and it may not
lie in Γv.
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Definition 2.2. The breadth ideal of E is

Br(E) = {b ∈ K | v(b) > v(sn+1 − sn),∀n ∈ N} = {b ∈ K | v(b) ≥ δE}.

In general, Br(E) is a fractional ideal of V and may not be contained
in V . If δ = +∞, then Br(E) is just the zero ideal and E is a Cauchy se-
quence in K. If V is a discrete valuation ring, then every pseudo-convergent
sequence is actually a Cauchy sequence.

The following definition has been introduced in [8], even though an equiv-
alent concept already appears in [10, p. 375] (see [10, X, p. 381] for the
equivalence).

Definition 2.3. An element α ∈ K is a pseudo-limit of E if v(α − sn) <
v(α−sn+1) for all n ∈ N, or, equivalently, if v(α−sn) = δn for all n ∈ N. We
denote the set of pseudo-limits of E by LE , or LvE if we need to emphasize
the valuation.

If Br(E) is the zero ideal then E is a Cauchy sequence in K and converges
to an element of K̂, which is the unique pseudo-limit of E. Kaplansky proved
the following more general result.

Lemma 2.4. [8, Lemma 3] Let E ⊂ K be a pseudo-convergent sequence. If
α ∈ K is a pseudo-limit of E, then the set of pseudo-limits of E in K is
equal to α+ Br(E).

Lemma 2.4 can also be phrased in a geometric way: if α ∈ LE , then LE
is the closed ball of center α and radius e−δE .

The following concepts have been given by Kaplansky in [8] in order to
study the different kinds of immediate extensions of a valued field K, i.e.,
extensions V ⊆W of valuation rings where neither the residue field nor the
value group change.

Definition 2.5. Let E be a pseudo-convergent sequence. We say that E is
of transcendental type if, for every f ∈ K[X], the value v(f(sn)) eventually
stabilizes; on the other hand, if v(f(sn)) is eventually strictly increasing for
some f ∈ K[X], we say that E is of algebraic type.

The main difference between these two kinds of sequences is the nature
of the pseudo-limits: if E is of algebraic type, then it has pseudo-limits
in the algebraic closure K (for some extension u of v), while if E is of
transcendental type then it admits a pseudo-limit only in a transcendental
extension [8, Theorems 2 and 3].

The central point of [13] is the following: if E = {sn}n∈N ⊂ K is a
pseudo-convergent sequence, then the set

VE = {φ ∈ K(X) | φ(sn) ∈ V, for all but finitely many n ∈ N} (1)
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is a valuation domain of K(X) extending V [13, Theorem 3.8]. If E,F are
pseudo-convergent sequences of algebraic type, then VE = VF if and only if
LuE = LuF for some extension u of v to K [13, Theorem 5.4]. In general, we
say that two pseudo-convergent sequences E,F are equivalent if VE = VF ;
this condition can also be expressed by means of a notion analogous to the
one defined classically for Cauchy sequences (see [13, Definition 5.1]).

We are interested in the study of the following subspace of Zar(K(X)|V ):

V = {VE | E ⊂ K is a pseudo-convergent sequence}.

The space V is always regular under both the Zariski and the constructible
topologies [13, Theorem 6.15]; however, these two topologies coincide if and
only if the residue field of V is finite [13, Proposition 6.11].

3 Fixed breadth

In this section, we study the subsets of V obtained by fixing the breadth of
the pseudo-convergent sequences.

Definition 3.1. Let δ ∈ R∪{+∞}. We denote by V(•, δ) the set of valuation
domains VE such that the breadth of E is δ.

If δ = ∞, then the elements of V(•, δ) are the rings defined through
pseudo-convergent sequences with Br(E) = (0), i.e., from pseudo-convergent
sequences that are also Cauchy sequences. In this case, E has a unique limit
α ∈ K̂, and by [13, Remark 3.10] we have

VE = Wα = {φ ∈ K(X) | v(φ(α)) ≥ 0}.

Therefore, there is a natural bijection between K̂ and V(•,∞), given by
α 7→ Wα; by [12, Theorem 3.4], such a bijection is also a homeomoprhism,
when K̂ is endowed with the v-adic topology and V(•,∞) with the Zariski
topology. In particular, it follows that the latter is an ultrametric space.
Note that when V is a discrete valuation ring, V = V(•,∞).

Proposition 3.2. Let V be a discrete valuation ring. Then, V ' K̂ is an
ultrametric space.

Proof. The claim follows from the previous discussion and the fact that if V
is discrete then every pseudo-convergent sequence has infinite breadth.

The purpose of this section is to see how the homeomorphism V(•,∞) '
K̂ generalizes when we consider pseudo-convergent sequences with fixed
breadth δ ∈ R.

Fix δ ∈ R ∪ {∞}, and set r = e−δ. Given two pseudo-convergent se-
quences E = {sn}n∈N and F = {tn}n∈N, with VE , VF ∈ V(•, δ), we set

dδ(VE , VF ) = lim
n→∞

max{d(sn, tn)− r, 0}.
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It is clear that if r = 0 (or, equivalently, δ = +∞) then dδ(VE , VF ) = d(α, β),
where α and β are the (unique) limits of E and F , respectively; so in this
case we get the same distance as in [12]. We shall interpret dδ in a similar
way in Proposition 3.6; we first show that it is actually a distance.

Proposition 3.3. Preserve the notation above.

(a) dδ is well-defined.

(b) dδ is an ultrametric distance on V(•, δ).

Proof. (a) Let E = {sn}n∈N and F = {tn}n∈N be two pseudo-convergent
sequences. We start by showing that the limit of an = max{d(sn, tn)− r, 0}
exists. If all subsequences of {an}n∈N go to zero, we are done. Otherwise,
there is a subsequence {ank

}k∈N with a positive (possibly infinite) limit; in
particular, there is a δ < δ and k0 ∈ N such that v(snk

− tnk
) < δ for all

k ≥ k0. Choose k1 ∈ N such that δ < min{δk1 , δ′k1} (where {δn}n∈N and
{δ′n}n∈N are the gauges of E and F , respectively). Fix an m = nl such that
m > k1 and l > k0. Then, for all n > m, we have

v(sn − tn) = v(sn − sm + sm − tm + tm − tn) = v(sm − tm)

since v(sn − sm) = δm > δk1 > δ > v(snl
− tnl

) = v(sm − tm), and likewise
for v(tn − tm). Hence, an is eventually constant (more precisely, equal to
e−v(sm−tm) − e−δ); in particular, {an}n∈N has a limit.

In order to show that dδ is well-defined, we need to show that, if VE =
VE′ , where E = {sn}n∈N and E′ = {s′n}n∈N, then

lim
n→∞

max{d(sn, tn)− r, 0} = lim
n→∞

max{d(s′n, tn)− r, 0}.

Let l be the limit on the left hand side and l′ the limit on the right hand
side.

If F is equivalent to E and E′, by [13, Definition 5.1 and Theorem 5.4]
for every k there are i0, j0, i

′
0, j
′
0 such that v(si − tj) > δk, v(s′i′ − t′j′) > δ′k

for i ≥ i0, j ≥ j0, i′ ≥ i′0, j′ ≥ j′0. Hence, both l and l′ are equal to 0, and
in particular they are equal.

Suppose that F is not equivalent to E and E′. If l is positive, and
η = − log(l + r), then v(sn − tn) = η for large n, and η < δk for some k;
since E and E′ are equivalent there is a i0 such that v(si − s′i) > δk for all
i ≥ i0. Hence, for all large n,

v(s′n − tn) = v(s′n − sn + sn − tn) = v(sn − tn) = η,

as claimed. The same reasoning applies if l′ > 0; furthermore, if l = 0 = l′

then clearly l = l′. Hence, l = l′ always, as claimed.
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(b) dδ is obviously symmetric. Clearly dδ(VE , VE) = 0; if dδ(VE , VF ) = 0,
for every rk = e−δ

′
k < r (where δ′k = v(tk+1 − tk)) there is i0 such that

d(si, ti) < rk for all i ≥ i0. Thus, if i, j ≥ i0, then

d(si, tj) = max{d(si, ti), d(ti, tj)} = rk.

Hence, E and F are equivalent and VE = VF . The strong triangle inequal-
ity follows from the fact that d(sn, tn) ≤ max{d(sn, s

′
n), d(s′n, tn)} for all

sn, s
′
n, tn ∈ K. Therefore, dδ is an ultrametric distance.

Let VK(•, δ) be the subset of V(•, δ) corresponding to pseudo-convergent
sequences with a pseudo-limit in K. We recall that by [13, Theorem 5.4] the
map VE 7→ LE , from VK(•, δ) to the set of closed balls in K of radius e−δ,
is a one-to-one correspondence. When δ = ∞, VK(•,∞) corresponds to K
under the homeomorphism between V(•,∞) and K̂; in particular, V(•,∞) is
the completion of VK(•,∞) under d∞. An analogous result holds for δ ∈ R.

Proposition 3.4. Let δ ∈ R. Then V(•, δ) is the completion of VK(•, δ)
under the metric dδ. In particular, V(•, δ), under dδ, is a complete metric
space.

Proof. Let {ζk}k∈N ⊂ Γ be an increasing sequence of real numbers with limit
δ and, for every k, let zk be an element of K of valuation ζk; let Z = {zk}k∈N.
It is clear that Z is a pseudo-convergent sequence with 0 as a pseudo-limit
and having breadth δ. Then, for every s ∈ K, s + Z = {s + zk}k∈N is a
pseudo-convergent sequence with pseudo-limit s and breadth δ.

Let E = {sn}n∈N be a pseudo-convergent sequence with breadth δ, and
let Fn = sn + Z. By above, VFn ∈ VK(•, δ), for each n ∈ N. We claim that
{VFn}n∈N converges to VE in V(•, δ). Indeed, fix t ∈ N, and take k > t such
that ζk > δt. Then,

u(st + zk − sk) = u(st − sk + zk) = δt;

hence, d(VE , VFn) = e−δn − e−δ. In particular, the distance goes to 0 as
n→∞, and thus VE is the limit of VFn .

Conversely, let {VFn}n∈N be a Cauchy sequence in VK(•, δ), and let sn ∈
K be a pseudo-limit of Fn. Then, sn + Z is another pseudo-convergent
sequence with limit sn and breadth δ; by [13, Theorem 5.4] it follows that
VFn = Vsn+Z . There is a subsequence of E = {sn}n∈N which is pseudo-
convergent; indeed, it is enough to take {snk

}k∈N such that d(snk
, snk+1

) <
d(snk−1

, snk
). Hence, without loss of generality E itself is pseudo-convergent;

we claim that VE is a limit of {VFn}n∈N. Indeed, as above, u(st+zk−sk) = δt
for large k, and thus dδ(VE , Vsn+Z) = e−δt−e−δ. Thus, {VFn}n∈N has a limit,
namely VE . Therefore, V(•, δ) is the completion of VK(•, δ).

We now prove that the topology induced by dδ is actually the Zariski
topology.
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Theorem 3.5. Let δ ∈ R ∪ {∞}. On V(•, δ), the Zariski topology, the
constructible topology and the topology induced by dδ coincide.

Proof. If δ =∞, then the Zariski topology and the topology induced by dδ
coincide by [12, Theorem 3.4].

Suppose now that V is nondiscrete and fix δ ∈ R. Let VE ∈ V(•, δ)
and ρ ∈ R, ρ > 0: we show that the open ball B(VE , ρ) = {VF ∈ V(•, δ) |
dδ(VE , VF ) < ρ} of the ultrametric topology induced by dδ is open in the
Zariski topology. Since by Proposition 3.4 VK(•, δ) is dense in V(•, δ) under
the metric dδ, without loss of generality we may assume that VE ∈ VK(•, δ),
i.e., E has a pseudo-limit b in K. To ease the notation, we denote by B(φ)
the intersection B(φ) ∩ V(•, δ).

Let γ < δ be such that ρ = e−γ − e−δ. We claim that

B(VE , ρ) =
⋃

δ>v(c)>γ

B

(
X − b
c

)
.

Indeed, suppose VF ∈ B(VE , ρ), where F = {tn}n∈N. If F is equivalent to
E then VE = VF and v

(
tn−b
c

)
= δn − v(c); since γ < δ and Γ is dense in

R, there is a c ∈ K such that γ < v(c) < δ, and for such a c the limit of
δn − v(c) is positive; hence, VE belongs to the union. If F is not equivalent
to E, then 0 < dδ(VE , VF ) < ρ, that is, e−δ < limn d(sn, tn) < e−δ + ρ. By
the proof of Proposition 3.3(a), v(sn − tn) is eventually constant, and thus
there is an ε > 0 such that δ > v(sn − tn) ≥ γ + ε for all large n. Let c ∈ K
be of value comprised between γ and γ + ε (such a c exists because Γ is
dense in R); then,

v

(
tn − b
c

)
= v(tn−b)−v(c) = v(tn−sn+sn−b)−v(c) ≥ min{γ+ε, δn}−v(c) > 0

since δn becomes bigger than γ + ε. Hence, X−b
c ∈ VF , or equivalently

VF ∈ B
(
X−b
c

)
.

Conversely, suppose VF 6= VE belongs to B
(
X−b
c

)
for some c ∈ K such

that γ < v(c) < δ. Since LE∩LF = ∅ by [13, Theorem 5.4], b is not a pseudo-
limit of F ; therefore, v(tn − sn) = v(tn − b+ b− sn) = v(b− tn) ≥ v(c) > γ
for sufficiently large n. Thus,

dδ(VE , VF ) = lim
n
d(sn, tn)− e−δ = lim

n
d(b, tn)− e−δ < e−γ − e−δ = ρ,

i.e., VF ∈ B(VE , ρ). Thus, being the union of sets that are open in the
Zariski topology, B(VE , ρ) is itself open in the Zariski topology. Therefore,
the ultrametric topology is finer than the Zariski topology.

Let now δ be arbitrary, φ ∈ K(X) be a rational function, and suppose
VE ∈ B(φ) for some VE ∈ V(•, δ). We want to show that for some ρ > 0
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there is a ball B(VE , ρ) ⊆ B(φ), and thus that B(φ) is open in the ultrametric
topology induced by dδ. We distinguish two cases.

Suppose that E is of algebraic type, and let β ∈ LuE for some extension u
of v to K. By [13, Lemma 6.6], there is an annulus C = C(β, τ, δ) = {s ∈ K |
τ < u(s − β) < δ} such that φ(s) ∈ V for every s ∈ C. Let ε = e−τ − e−δ.
Let F = {tn}n∈N be a pseudo-convergent sequence with dδ(VE , VF ) < ε.
Then, for every n such that e−δn − e−δ > dδ(VE , VF ), we have

d(tn, β) = max{d(tn, sn), d(sn, β)} = e−δn ,

and in particular v(tn−β) becomes larger than τ . Hence, tn is eventually in
C and φ(tn) ∈ V for all large n, and thus φ ∈ VF ; therefore, B(VE , ε) ⊆ B(φ).

Suppose that E is of transcendental type. Let φ(X) = c
∏A
i=1(X − αi)εi

over K, where each εi is either 1 or −1. Then, there is an N such that
u(sn−αi) is constant for every i and every n ≥ N . Let δ′ be the maximum
among such constants; then, δ′ < δ (otherwise the αi where such maximum
is attained would be a pseudo-limit of E, in contrast to the fact that E is of
transcendental type). Let ε be such that e−δ+ε < e−δ

′
and let VF ∈ B(VE , ε),

with F = {tn}n∈N. For all i, and all large n,

d(tn, αi) = max{d(tn, sn), d(sn, αi)} = d(sn, αi),

and thus u(tn−αi) = u(sn−αi). It follows that v(φ(tn)) = v(φ(sn)) for large
n; in particular, v(φ(tn)) is positive, and φ ∈ VF . Hence, B(VE , ε) ⊆ B(φ).

Hence, B(φ) is open under the topology induced by dδ and therefore the
Zariski topology and the topology induced by dδ on V(•, δ) are the same.

In order to prove that these topologies coincide also with the constructible
topology, we need only to show that every B(φ), φ ∈ K(X), is closed in the
Zariski topology. Let then VE /∈ B(φ). If E is of transcendental type, ex-
actly as above there exists ε > 0 such that for each VF ∈ B(VE , ε), where
F = {tn}n∈N, v(φ(tn)) = v(φ(sn)) for large n; in particular, v(φ(tn)) is
negative, and φ /∈ VF ; thus B(VE , ε) is disjoint from B(φ). If E is of alge-
braic type, then by [13, Remark 6.7], there exists an annulus C = C(β, τ, δ)
such that φ(s) /∈ V for every s ∈ C. As above, for every pseudo-convergent
sequence F = {tn}n∈N with dδ(VE , VF ) < ε, with ε = e−τ − e−δ, we have
tn ∈ C for all but finitely many n ∈ N, so that φ(tn) /∈ V . Again, this shows
that B(VE , ε) is disjoint from B(φ).

Joining Proposition 3.4 with Theorem 3.5, we obtain that the set VK =
{VE ∈ V | LE ∩ K 6= ∅} =

⋃
δ VK(•, δ) of all the extensions arising from

pseudo-convergent sequences with pseudo-limits in K is dense in V, with
respect to both the Zariski and the constructible topology. This result can
also be obtained as a corollary of [13, Proposition 6.9].

If we restrict to pseudo-convergent sequences of algebraic type, the dis-
tance dδ can be interpreted in a different way.
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Proposition 3.6. Let E,F ⊂ K be pseudo-convergent sequences of alge-
braic type with breadth δ, and let u be an extension of v to K. If β ∈ LuE
and β′ ∈ LuF , then

dδ(VE , VF ) = max{du(β, β′)− e−δ, 0}.

Proof. If du(β, β′) ≤ e−δ, then the pseudo-limits of E and F coincide, and
thus VE = VF by [13, Theorem 5.4]; hence, dδ(VE , VF ) = 0. On the other
hand, if du(β, β′) > e−δ then u(β − β′) < δ and thus, for large n,

v(sn − tn) = u(sn − β + β − β′ + β′ − tn) = u(β − β′);

hence, dδ(VE , VF ) = du(β, β′)− e−δ, as claimed.

If V is a DVR, then V = V(•,∞), so, in this case, the distance d∞ is an
ultrametric distance on the whole V. On the other hand, if V is not discrete,
it is not possible to unify the metrics dδ in a single metric defined on the
whole V. To this end, we need the following lemma.

Lemma 3.7. Let δ ∈ R∪ {∞}. Then the closure of V(•, δ) in V is equal to⋃
δ′≤δ
V(•, δ′).

Proof. If V is discrete, then the statement is a tautology (see Proposition
3.2). We assume henceforth that V is not discrete.

Let E = {sn}n∈N be a pseudo-convergent sequence with breadth δ′ < δ;
we want to show that VE is in the closure of V(•, δ). By Proposition 3.4,
V(•, δ′) is contained in the closure of VK(•, δ′); hence, we can suppose that
E has a pseudo-limit in K.

For each n ∈ N, let En be a pseudo-convergent sequence with pseudo-
limit sn and breadth δ: since δ′ < δ, by [13, Proposition 6.9] VE is the limit
of VEn in the Zariski topology, and thus it belongs to the closure of VK(•, δ′),
as claimed. If δ = ∞ we are done; suppose for the rest of the proof that
δ <∞.

Suppose δ′ > δ; we claim that if E = {sn}n∈N is pseudo-convergent
sequence with breadth δ′ then there is an open set containing VE and disjoint
from V(•, δ). Let γ ∈ Γv be such that δ′ > γ > δ; then, there is an N such
that v(sn − sn+1) > γ for all n ≥ N . Take s = sN , and consider the
open set B

(
X−s
c

)
, where c ∈ K has value γ. Then, VE ∈ B

(
X−s
c

)
since

v(sn−sN ) = δ′N > γ for all n ≥ N . On the other hand, if F = {tn}n∈N ⊂ K
is a pseudo-convergent sequence of breadth δ and VF ∈ B

(
X−s
c

)
, then F

would be eventually contained in the ball of center s and radius γ, and in
particular v(tn− tn+1) ≥ γ for all large n. However, v(tn− tn+1) < δ < γ, a
contradiction. Therefore, VF /∈ B

(
X−s
c

)
and so VE is not in the closure of

V(•, δ).
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Proposition 3.8. Let V be a rank one non-discrete valuation domain. Sup-
pose V is metrizable with a metric d. Then, for any δ ∈ R ∪ {∞}, the
restriction of d to V(•, δ) is not equal to dδ.

Proof. If the restriction of d is equal to dδ, then by Proposition 3.4 V(•, δ)
would be complete with respect to d. However, this would imply that V(•, δ)
is closed, in contrast to Lemma 3.7.

To conclude this section, we analyze the relationship among the sets
V(•, δ), as δ ranges in R ∪ {∞}. Recall that two metric spaces (X, d) and
(X ′, d′) are similar if there is a map ψ : X −→ X ′ and a constant r > 0
such that d′(ψ(x), ψ(y)) = rd(x, y) for every x, y ∈ X. We call such a map
ψ a similitude.

Proposition 3.9. If δ1 − δ2 ∈ Γv, then the metric spaces (V(•, δ1), dδ1)
and (V(•, δ2), dδ2) are similar; in particular, they are homeomorphic when
endowed with the Zariski topology.

Proof. Given a pseudo-convergent sequence E = {sn}n∈N and c ∈ K, c 6= 0,
we denote by cE the sequence {csn}n∈N. Clearly, cE is again pseudo-
convergent, it has breadth δE + v(c), and two sequences E and F are equiv-
alent if and only if cE and cF are equivalent.

Let c ∈ K be such that v(c) = δ1 − δ2. Then, the map

Ψc : V(•, δ2) −→ V(•, δ1)

VE 7−→ VcE

is well-defined and bijective (its inverse is Ψc−1 : V(•, δ1) −→ V(•, δ2)). We
claim that Ψc is a similitude. Indeed, let E = {sn}n∈N and F = {tn}n∈N be
pseudo-convergent sequences of breadth δ2, and suppose VE 6= VF . By the
proof of Proposition 3.3, there is an N such that v(sn − tn) = v(sN − tN )
for all n ≥ N . Hence, for these n’s,

e−v(csn−ctn) − e−δ1 = e−v(c)e−v(sn−tn) − e−δ1 = e−v(c)[e−v(sn−tn) − e−δ2 ]

so that, passing to the limit, dδ1(VcE , VcF ) = e−v(c)dδ2(VE , VF ). Hence, Ψc is
an similitude, and in particular a homeomorphism when V(•, δ1) and V(•, δ2)
are endowed with the metric topology. Since this topology coincides with
the Zariski topology (Theorem 3.5), they are homeomorphic also under the
Zariski topology.

4 Fixed pseudo-limit

In the previous section, we considered valuation domains induced by pseudo-
convergent sequences having the same breadth; in this section, we reverse the
situation by considering pseudo-convergent sequences having a prescribed
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pseudo-limit. Note that, in particular, these pseudo-convergent sequences
are of algebraic type.

Throughout this section, let u be a fixed extension of v to K.

Definition 4.1. Let β ∈ K. We set

Vu(β, •) = {VE ∈ V | β ∈ LuE}

To ease the notation, we set Vu(β, •) = V(β, •).

Equivalently, a valuation domain VE is in V(β, •) if β is a center of LuE ,
i.e., if LuE = {x ∈ K | u(x − β) ≥ δE}. Note that if VE ∈ Vu(β, •) then E
must be of algebraic type, since it must have a pseudo-limit in K.

If V is a DVR, then V(β, •) reduces to the single element Wβ = {φ ∈
K(X) | φ(β) ∈ V } (see [13, Remark 3.10]), which corresponds to any Cauchy
sequence E ⊂ K converging to β.

We start by showing that each V(β, •) is closed in V.

Proposition 4.2. Let β ∈ K, and let u be an extension of v to K. Then,
V(β, •) = Vu(β, •) is closed in V with respect to the Zariski topology.

Proof. If V is discrete, then V(β, •) has just one element (see the comments
above). By [12, Theorem 3.4] each point of V is closed, so the statement is
true in this case. Henceforth, for the rest of the proof we assume that V is
non discrete.

Let VE /∈ V(β, •). We distinguish two cases.
Suppose first that E = {sn}n∈N is of algebraic type, and let α ∈ K be

a pseudo-limit of E with respect to u. Since β /∈ LE ⇔ u(α − β) < δE
(Lemma 2.4) it follows that there is m ∈ N such that u(α−β) < u(α− sm).
Let s = sm. Choose a d ∈ K such that

u(β − α) = u(β − s) < v(d) < u(α− s) < δE ,

and let φ(X) = X−s
d ; we claim that VE ∈ B(φ) but B(φ) ∩ V(β, •) = ∅.

Indeed,

v(φ(sn)) = v

(
sn − s
d

)
= v(sn − s)− v(d) > 0

since v(sn− s) = u(sn−α+α− s) = u(α− s) for large n; hence VE ∈ B(φ).
On the other hand, if F = {tn}n∈N has pseudo-limit β, then v(tn − s) =
u(tn − β + β − s) = u(β − s) for large n and so

v(φ(tn)) = u(β − s)− v(d) < 0,

i.e., VF /∈ B(φ). The claim is proved.
Suppose now that E = {sn}n∈N is of transcendental type: then, u(sn−β)

is eventually constant, say equal to λ. Then, λ < δ, for otherwise β would
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be a pseudo-limit of E; hence, we can take a d ∈ K such that λ < v(d) < δ.
Choose an N such that u(sN − β) = λ and such that v(d) < δN , and
define φ(X) = X−sN

d . Then, v(φ(sn)) = δN − v(d) > 0 for n > N , and
thus VE ∈ B(φ). Suppose now v(φ(t)) ≥ 0. Then, v(t − sN ) ≥ v(d) > λ;
however, v(t− sN ) = u(t− β + β − sN ), and since u(β − sN ) = λ we must
have u(t − β) = λ. In particular, there is no annulus C of center β such
that φ(t) ∈ V for all t ∈ C; hence, by [13, Lemma 6.6], VF /∈ B(φ) for every
VF ∈ V(β, •), i.e., V(β, •) ∩B(φ) = ∅. The claim is proved.

We now want to characterize the Zariski topology of V(β, •). By [13,
Theorem 5.4], there is a natural injective map

Σβ : V(β, •) −→ (−∞,+∞]

VE 7−→ δE .
(2)

In general this map is not surjective: for example, there might be some
β ∈ K which is not the limit of any Cauchy sequence in K (with respect to
u) and thus δE 6= +∞ for every VE ∈ V(β, •). By [13, Proposition 5.5] the
image of Σβ is (−∞, δ(β,K)], where δ(β,K) is defined as

δ(β,K) = sup{u(β − x) | x ∈ K}.

In order to study the Zariski topology on V(β, •), we introduce a topology
on the interval (−∞, δ(β,K)].

Definition 4.3. Let a, b ∈ R∪{−∞,+∞}, with a < b, and let Λ ⊆ R. The
Λ-upper limit topology on (a, b] is the topology generated by the sets (α, λ],
for λ ∈ Λ ∪ {∞} and α ∈ (a, b]. We denote this space by (a, b]Λ.

The Λ-upper limit topology is a variant of the upper limit topology (see
e.g. [16, Counterexample 51]), and in fact the two topologies coincide when
Λ = R.

For the next theorem we need to recall a definition and a result from
[13]. Let E = {sn}n∈N be a pseudo-convergent sequence; we can associate
to E the map

wE : K(X) −→ R ∪ {∞}
φ 7−→ lim

n→∞
v(φ(sn));

this map is always well-defined, and it is possible to characterize when it is a
valuation on K(X) [13, Propositions 4.3 and 4.4]. Given s ∈ K and γ ∈ R,
we set

Ω(s, γ) = {VF ∈ V | wF (X − s) ≤ γ};

this set is always open and closed in V (with respect to the Zariski topology)
[13, Lemma 6.14].
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Theorem 4.4. Suppose V is not discrete, and let β ∈ K be a fixed element.
The map Σβ defined in (2) is a homeomorphism between V(β, •) (endowed
with the Zariski topology) and (−∞, δ(β,K)]QΓv .

Proof. To shorten the notation, let X = (−∞, δ(β,K)]QΓv .
We start by showing that Σβ is continuous. Clearly, Σ−1

β (X ) = V(β, •)
is open.

Suppose γ ∈ QΓv satisfies γ < δ(β,K). Then, there is a t ∈ K such that
u(t− β) > γ; we claim that

Σ−1
β ((−∞, γ]) = Ω(t, γ) ∩ V(β, •).

Indeed, let E = {sn}n∈N be a pseudo-convergent sequence having β as a
pseudo-limit. If δE ≤ γ, then (since u(β − t) > γ)

wE(X − t) = lim
n→∞

v(sn − t) = lim
n→∞

u(sn − β + β − t) = δE

and so VE ∈ Ω(t, γ). Conversely, if VE ∈ Ω(t, γ)∩V(β, •) then wE(X−t) ≤ γ,
and thus (using again u(β − t) > γ)

δE = lim
n→∞

u(sn−β) = lim
n→∞

u(sn−t+t−β) = lim
n→∞

u(sn−t) = wE(X−t) ≤ γ,

i.e., Σβ(VE) ≤ γ.
By [13, Lemma 6.14], Ω(t, γ) is open and closed in V; hence, Σ−1

β ((−∞, γ])

and Σ−1
β ((γ, δ(β,K)]) are both open. If now (a, b] is an arbitrary basic open

set of X , with b ∈ QΓ, then

Σ−1
β ((a, b]) = Σ−1

β ((−∞, b]) ∩

 ⋃
c∈QΓv
c>a

Σ−1
β ((c, δ(β,K)])


is open. Hence, Σβ is continuous.

Let now φ be an arbitrary nonzero rational function over K, and for
ease of notation let B(φ) denote the intersection B(φ) ∩ V(β, •). Suppose
δ ∈ Σβ(B(φ)), and let E = {sn}n∈N be a pseudo-convergent sequence of
breadth δ having β as a pseudo-limit. By [13, Lemma 6.6] there are θ1, θ2 ∈
QΓv such that θ2 < δ ≤ θ1 and such that v(φ(t)) ≥ 0 for all t ∈ C(β, θ1, θ2).
In particular, if VF ∈ V(β, •), F = {tn}n∈N, is such that Σβ(VF ) ∈ (θ1, θ2]
we have that tn ∈ C(β, θ1, θ2) for each n ≥ N , for some N ∈ N, so that
v(φ(tn)) ≥ 0 for each n ≥ N , thus φ ∈ VF . Hence, (θ1, θ2] ⊆ Σβ(B(φ)), and
thus (θ1, θ2] is an open neighbourhood of δ in Σβ(B(φ)), which thus is open.

Hence, Σβ is open, and thus Σβ is a homeomorphism.

Let W be the set of valuation domains of K(X) associated to the valu-
ations wE defined above, as E ranges through the set of pseudo-convergent
sequences of K such that wE is a valuation. When V is not discrete, we
obtain a new proof of the non-compactness of W, independent from [13,
Proposition 6.4].
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Corollary 4.5. The spaces V and W are not compact.

Proof. If V is a DVR, then V is homeomorphic to K̂ ([12, Theorem 3.4]). In
particular, it is not compact. The space W is not compact by [13, Proposi-
tion 6.4].

Suppose that V is not discrete, and let β ∈ K be a fixed element. By
Proposition 4.2, V(β, •) is closed in V; hence if V were compact so would
be V(β, •). By Theorem 4.4, it would follow that X = (−∞, δ(β,K)]QΓv is
compact. However, let γ1 > γ2 > · · · be a decreasing sequence of elements in
QΓv, with δ(β,K) > γ1. Then, the family (γ1, δ(β,K)], (γ2, γ1], . . . , (γn+1, γn], . . .
is an open cover of X without finite subcovers: hence, X is not compact,
and so neither is V.

Let Ψ : W −→ V be the map WE 7→ VE (see [13, Proposition 6.13]).
Since Ψ is continuous, if W were compact then so would be its image
V0. Hence, as in the previous part of the proof, also V0 ∩ V(β, •) would
be compact; however, since Σβ(V0 ∩ V(β, •)) = (−∞, δ(β,K)] \ {+∞}, we
can use the same method as above (eventually substituting (γ1,+∞] with
(γ1,+∞)) to show that this set can’t be compact. Hence,W is not compact,
as claimed.

We note that, when V is a DVR, K̂ (and thus V) is locally compact if
and only if the residue field of V is finite [3, Chapt. VI, §5, 1., Proposition
2]. We conjecture that V is locally compact also when V is not discrete.

Proposition 4.6. Let β ∈ K, and let u be an extension of v to K. Then,
the Zariski and the constructible topologies agree on V(β, •) = Vu(β, •).

Proof. It is enough to show that B(φ)∩V(β, •) is closed for every φ ∈ K(X).
Suppose δ ∈ C = Σβ(V(β, •) \ B(φ)) and let VE ∈ V(β, •) \ B(φ): by
[13, Lemma 6.6 and Remark 6.7], there is an annulus C = C(β, θ1, θ2) with
θ1, θ2 ∈ QΓv, θ1 < δ ≤ θ2 and such that φ(t) /∈ V for all t ∈ C. Hence,
(θ1, θ2] is an open neighborhood of δ in (−∞, δ(β,K)]QΓv contained in C;
thus, C is open and B(φ) ∩ V(β, •) is closed, being the complement of the
image of C under the homeomorphism Σ−1

β (see Theorem 4.4).

To conclude, we study the metrizability of V(β, •) and V. It is well-known
[16, Counterexample 51(4)] that the upper limit topology is not metrizable,
since it is separable but not second countable. Something similar happens
for (a, b]Λ.

Proposition 4.7. Let Λ be a subset of (a, b] that is dense in the Euclidean
topology. The following are equivalent:

(i) Λ is countable;
(ii) (a, b]Λ is second-countable;

(iii) (a, b]Λ is metrizable;

16



(iv) (a, b]Λ is an ultrametric space.

Proof. (iii) =⇒(ii) follows from the fact that (a, b]Λ is separable (since, for
example, Q ∩ (a, b] is dense in (a, b]Λ); (iv) =⇒ (iii) is obvious.

(ii) =⇒ (i) Any basis of (a, b]Λ must contain an open set of the form
(α, λ], for each λ ∈ Λ (and some α ∈ (−∞, λ)). Hence, if (a, b]Λ is second-
countable then Λ must be countable.

(i) =⇒ (iv) Suppose that Λ is countable, and fix an enumeration {λ1, λ2, . . .}
of Λ. Let r : Λ −→ R be the map sending λi to 1/i; then, for each x, y ∈ (a, b]
we set

d(x, y) =

{
max{r(λ) | λ ∈ [min(x, y),max(x, y)) ∩ Λ}, if x 6= y
0, if x = y.

We claim that d is a metric on (a, b] whose topology is exactly (a, b]Λ.
Note first that d is well-defined and nonnegative; it is also clear from the

definition (and the fact that Λ is dense in R) that d(x, y) = 0 if and only
if x = y and that d(x, y) = d(y, x). Let now x, y, z ∈ (a, b], and suppose
without loss of generality that x ≤ y. If z ≤ x, then [z, y) ⊇ [x, y), and
thus d(x, y) ≤ d(y, z); in the same way, if y ≤ z then [x, z) ⊇ [x, y) and
d(x, y) ≤ d(x, z). If x ≤ z ≤ y, then [x, y) = [x, z) ∪ [z, y); hence, d(x, y) =
max{d(x, z), d(y, z)}. In all cases, we have d(x, y) ≤ max{d(x, z), d(y, z)},
and thus d induces an ultrametric space.

Let now x ∈ Λ ⊆ (a, b] and ρ ∈ R be positive; we claim that the open
ball B = Bd(x, ρ) = {t ∈ (a, b] | d(x, t) < ρ} is equal to (y, z], where

y = max{λ ∈ Λ ∩ (−∞, x) | r(λ) ≥ ρ},
z = min{λ ∈ Λ ∩ (x,+∞) | r(λ) ≥ ρ}

(with the convention max ∅ = a and min ∅ = b). Note that since ρ > 0,
there are only a finite number of λ with r(λ) ≥ ρ; in particular, y, z ∈ Λ
and by definition, y < x < z.

Let t ∈ (a, b]. If t < y, then r(λ) ≥ ρ for some λ ∈ (t, x) ∩ Λ, and thus
d(t, x) ≥ ρ, and so t /∈ B; in the same way, if y < t < x, then r(λ) < ρ
for every λ ∈ (t, x) ∩ Λ, and thus t ∈ B. Symmetrically, if x < t < z then
t ∈ B, while if z < t then t /∈ B. We thus need to analyze the cases t = y
and t = z.

By definition,

d(x, z) = max{r(λ) | λ ∈ [x, z) ∩ Λ};

since by definition r(λ) < ρ for every λ ∈ [x, z)∩Λ, we have d(x, z) < ρ and
z ∈ Bd(x, ρ).

Since y ∈ Λ, we have r(y) ≥ ρ. Thus,

d(x, y) = max{r(λ) | λ ∈ [y, x) ∩ Λ} ≥ r(y) ≥ ρ
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and y /∈ Bd(x, ρ). Thus, Bd(x, ρ) = (y, z] as claimed; therefore, Bd(x, ρ) is
open in (a, b]Λ.

The family of the intervals (y, z], as z ranges in Λ and y in (a, b], is a basis
of (a, b]Λ; therefore, the topology induced by d on (a, b] is exactly the Λ-upper
limit topology. Hence, (a, b]Λ is an ultrametric space, as claimed.

As a consequence, we obtain a necessary condition for metrizability, while
in [13, Corollary 6.16] we obtained a sufficient condition, namely, if V is
countable, then V is metrizable.

Corollary 4.8. Let V be a valuation ring with uncountable value group.
Then, V and Zar(K(X)|V )cons are not metrizable.

Proof. If V were metrizable, so would be V(β, •), in contrast to Theorem 4.4
and Proposition 4.7 (note that, if the value group of V is uncountable, in
particular V is not discrete). Similarly, if Zar(K(X)|V )cons were metrizable,
so would be V(β, •), endowed with the constructible topology. Since the
Zariski and the constructible topologies agree on V(β, •) (Proposition 4.6),
this is again impossible.

5 Beyond pseudo-convergent sequences

Corollary 4.8 gives a condition for the non-metrizability of Zar(K(X)|V )cons

that depends on the value group of V . In this section we prove a similar
criterion, but based on the residue field of V .

Lemma 5.1. Let V be a valuation ring with quotient field K, let L be an
extension field of K and let W be an extension of V to L. Let π : W −→
W/M be the quotient map. Then, the map

{Z ∈ Zar(L|V ) | Z ⊆W} −→ Zar(W/MW |V/MV ),

Z 7−→ π(Z)

is a homeomorphism, when both sets are endowed with either the Zariski or
the constructible topology.

Proof. Apply [15, Lemma 4.2] with D = V .

Lemma 5.2. Let X be an uncountable compact topological space with at
most one limit point. Then, X is not metrizable.

Proof. Since X is infinite and compact it has a limit point, say x0, which
is also unique by assumption. Suppose that X is metrizable, and let d be
a metric inducing the topology. For each integer n > 0, let Cn = {y ∈
X | 1/n ≤ d(y, x0)}. By construction, x0 /∈ Cn, and thus all points of Cn
are isolated. Furthermore, Cn is closed (since it is the complement of an
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open ball), and thus it is compact; therefore, Cn must be finite. Hence, the
countable union

⋃
n>0Cn is a countable set, against the fact that the union

is equal to the uncountable set X \{x0}. Therefore, X is not metrizable.

Proposition 5.3. Let V be a valuation ring with uncountable residue field.
Then, Zar(K(X)|V )cons is not metrizable.

Proof. Let W be the Gaussian extension of V (see e.g. [6]); then, W is
an extension of V to K(X) having the same value group of V and whose
residue field is k(t), where k = V/M is the quotient field of V and t is an
indeterminate. Consider ∆ = {Z ∈ Zar(K(X)|V ) | Z ⊆ W}; by Lemma
5.1, ∆ is homeomorphic to Zar(k(t)|k), when both sets are endowed with
the constructible topology. Hence, it is enough to prove that Zar(k(t)|k)cons

is not metrizable.
The points of Zar(k(t)|k) are k(t), k[t−1](t−1) and the valuation rings of

the form k[t](f(t)), where f ∈ k[t] is an irreducible polynomial. The points
different from k(t) are isolated: indeed, k[t−1](t−1) is the only point in the
open set Zar(k(t)|k) \ B(t), while k[t](f(t)) is the only point in the open set
Zar(k(t)|k) \ B(f(t)−1). Since Zar(k(t)|k)cons is compact the claim follows
from Lemma 5.2.

In the following, we study more deeply spaces like {Z ∈ Zar(L|V ) | Z ⊆
W} by using two classes of sequences that are similar to pseudo-convergent
sequences. Let E = {sn}n∈N be a sequence in K; then, we say that:

� E is a pseudo-divergent sequence if v(sn − sn+1) > v(sn+1 − sn+2) for
every n ∈ N;

� E is a pseudo-stationary sequence if v(sn−sm) = v(sn′−sm′) for every
n 6= m, n′ 6= m′.

These two kinds of sequences have been introduced in [4] and together with
the class of pseudo-convergent sequences introduced by Ostrowski form the
class of pseudo-monotone sequences [11]. Most of the notions introduced for
pseudo-convergent sequences, like the breadth and the valuation domain VE ,
can be generalized to pseudo-monotone sequences, see [14]. In particular, the
notion of pseudo-limit generalizes as well; however, there are fewer subsets
that can be the set LE of pseudo-limits of E. More precisely:

� if E is a pseudo-divergent sequence, then there is an α ∈ K such that
LE = {x ∈ K | v(x − α) > δE}, where δE is the breadth of E; if
δE = v(c) ∈ Γv, in particular, LE = α+ cM ;

� if E is pseudo-stationary sequence, then there is an α ∈ K such that
LE = α+ cV , where v(c) = δE is the breadth of E.
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Furthermore, for every set L of this kind (with the additional hypothesis
that the residue field of V is infinite for pseudo-stationary sequences) there
is a sequence E of the right type with L = LE . In particular, both pseudo-
divergent sequences and pseudo-stationary sequences always have a pseudo-
limit in E, and the elements of E themselves are pseudo-limits of E ([14,
Lemma 2.5]). For both pseudo-divergent and pseudo-stationary sequences
the ring VE is uniquely determined by the pseudo-limits: i.e., if E,F are
pseudo-divergent (respectively, pseudo-stationary) then VE = VF if and only
if LE = LF . For details, see [14, Section 2.4].

Suppose that the residue field k of V is infinite, and let Z = {zt}t∈k be
a complete set of residues of k. Fix two elements α, c ∈ K, and let δ = v(c).
Let L = {x ∈ K | v(x − α) ≥ δ} = α + cV be the closed ball of center
α and radius δ. Then, there are a pseudo-convergent sequence E and a
pseudo-stationary sequence F such that LE = L = LF ; by [14, Proposition
7.1], VE ( VF .

For every z ∈ Z, there is also a pseudo-divergent sequence Dz such that
LDz = α − cz + cM . Then, VDz 6= VE and VDz ( VF for every z ∈ Z;
furthermore, VDz 6= VDz′ if z 6= z′. Let

Xα,δ = {VE , VF , VDz | z ∈ Z}

be the set of the rings in this form. By [14, Proposition 7.2], the map π̃ of
Lemma 5.1 restricts to

π̃ : Xα,δ −→ Zar(k(t)|k)

VF 7−→ k(t),

VE 7−→ k[1/t](1/t),

VDz 7−→ k[t](t−π(z)),

and the lemma guarantees that π̃ is also a homeomorphism between Xα,δ
and its image.

In particular, we get the following; we denote by Vdiv the set of valuation
rings VE , as E ranges among the pseudo-divergent sequences.

Proposition 5.4. Let Vdiv(•, δ) = {VE | E is a pseudo-divergent sequence
with δE = δ}. Then:

(a) if δ /∈ Γv, then Vdiv(•, δ) = VK(•, δ);

(b) if δ ∈ Γv and the residue field of V is finite, then Vdiv(•, δ) is discrete
(with respect to the Zariski and the constructible topology);

(c) if δ ∈ Γv and the residue field of V is infinite, then Vdiv(•, δ) is not
Hausdorff (with respect to the Zariski topology).

In particular, if the residue field of V is infinite then Vdiv is not Hausdorff,
with respect to the Zariski topology.
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Proof. (a) If δ /∈ Γv, then for every β ∈ K we have {x ∈ K | v(x − β) ≥
δ} = {x ∈ K | v(x − β) > δ}. Hence, if E,F are, respectively, a pseudo-
convergent and a pseudo-divergent sequence having β as a pseudo-limit and
having breadth δ then LE = LF , and thus by [14, Proposition 5.1] VE = VF .
Since every pseudo-divergent sequence has pseudo-limits in K, it follows
that Vdiv(•, δ) = VK(•, δ).

(b) Suppose that δ ∈ Γv, and let c ∈ K be such that v(c) = δ. Let E
be a pseudo-divergent sequence with breadth δ, and let α ∈ LE ; since the
residue field is finite we can find β1, . . . , βk ∈ K such that 0, α−β1c , . . . , α−βkc
is a complete set of residues of the residue field of V .

We claim that

{VE} = B

(
X − α
c

)
∩B

(
c

X − βk

)
∩ · · · ∩B

(
c

X − β1

)
∩ Vdiv(•, δ).

Let Ω be the intersection on the right hand side. Since α ∈ LE the value
v(sn−α) decreases to δ, and thus v

(
sn−α
c

)
is always positive; in particular,

VE ∈ B
(
X−α
c

)
. On the other hand, v(sn − βi) = v(sn − α + α − βi) =

v(α− βi) = δ for every i ∈ {1, . . . , k} and every n, and thus v
(

c
sn−βi

)
= 0,

i.e., VE ∈ B
(

c
X−β1

)
. Hence, VE ∈ Ω.

Suppose now that F = {tn}n∈N is a pseudo-divergent sequence such that
VF ∈ Ω. Then, VF ∈ B

(
X−α
c

)
, i.e., v(tn − α) ≥ δ for all large n, and thus

F must be eventually contained in the closed ball {x ∈ K | v(x−α) ≥ δ} =
α + cV = βi + cV (for every i). Since F has breadth δ, by the discussion
after Proposition 5.3 its set LF of pseudo-limits is in the form z + cMV ,
where z is any element of LF ; therefore, LF is either α+ cMV or βi + cMV

for some i (by the assumption on the βi’s). However, if LF = βi + cMV

then v(tn − βi) > δ for all n, which implies that VF /∈ B
(

c
X−βi

)
, against

VF ∈ Ω; therefore, LF = α + cMV = LE and thus VF = VE by by [14,
Proposition 5.1]. Therefore, Ω = {VE} and VE is isolated. Since VE was
arbitrary, Vdiv(•, δ) is discrete.

(c) Suppose that δ ∈ Γv and that the residue field is infinite. With the
notation as before the statement, consider the set Xd(α, δ) = Xα,δ\{VF , VE}:
then, Xd(α, δ) is a subset of Vdiv(•, δ), and by Lemma 5.1 it is homeomorphic
to Λ = {k[t](t−z) | z ∈ k} ⊆ Zar(k(t)|k). The map Spec(k[t]) −→ Zar(k[t]),
P 7→ K[t]P , is a homeomorphism (when both sets are endowed with the
respective Zariski topologies) [5, Lemma 2.4], and thus Λ is homeomorphic
to Λs = {(t − z) | z ∈ k} ⊆ Max(k[t]). The Zariski topology on Max(k[t])
coincides with the cofinite topology; since Λs is infinite, it follows that Λs is
not Hausdorff; thus, neither Λ nor Xd(α, δ) nor Vdiv(•, δ) are Hausdorff.

On the other hand, if we fix a pseudo-limit, we obtain a situation very
similar to the pseudo-convergent case.
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Proposition 5.5. Let β ∈ K, and let Vdiv(β, •) = {VE | E is a pseudo-
divergent sequence with β ∈ LE}. Then,

Vdiv(β, •) ' V(β, •) ' (−∞,+∞]QΓv .

Proof. For every β, β′ ∈ K, we have Vdiv(β, •) ' Vdiv(β′, •) and V(β, •) '
V(β′, •), so we can suppose β = 0.

Consider the map
ψ : K(X) −→ K(X)

φ(X) 7−→ φ(1/X).

Then, ψ is a K-automorphism of K(X) that coincide with its own in-
verse, and thus it induces a self-homeomorphism

ψ : Zar(K(X)|V ) −→ Zar(K(X)|V )

VE 7−→ ψ(VE).

We claim that ψ sends Vdiv(0, •) to V(0, •), and conversely.
Note first that, for every φ ∈ K(X) and every t ∈ K, we have φ(t) =

(ψ(φ))(t−1).
Suppose E = {sn}n∈N is a pseudo-divergent sequence having 0 as a

pseudo-limit; without loss of generality, 0 6= sn for every n. Then, δn =
v(sn) is decreasing, and thus F = {s−1

n }n∈N is a pseudo-convergent sequence
having 0 as a pseudo-limit. Then, φ(sn) = (ψ(φ))(s−1

n ), and thus φ ∈ VE
if and only if ψ(φ) ∈ VF , i.e., ψ(VE) = VF , so that ψ(Vdiv(0, •)) ⊆ V(0, •).
Conversely, if F = {tn}n∈N is a pseudo-convergent sequence having 0 as
a pseudo-limit, then E = {t−1

n }n∈N is a pseudo-divergent sequence with
0 ∈ LE , and as above φ ∈ VF if and only if ψ(φ) ∈ VE , i.e., ψ(V(0, •)) ⊆
Vdiv(0, •).

Since ψ is idempotent, it follows that ψ(V(0, •)) = Vdiv(0, •), and so
Vdiv(0, •) and V(0, •) are homeomorphic. The homeomorphism V(0, •) '
(−∞,+∞]QΓv follows from Theorem 4.4.

Note that, while the homeomorphism between V(β, •) and (−∞,+∞]QΓv

is constructed by sending VE to δE (Theorem 4.4), the one between Vdiv(β, •)
and (−∞,+∞]QΓv sends VE to −δE .

We conclude with analyzing the pseudo-stationary case, showing that
the two partitions give rise to especially uninteresting spaces.

Proposition 5.6. The following hold.

(a) For every δ ∈ Γv, the set

Vstat(•, δ) = {VE | E is a pseudo-stationary sequence with δE = δ}

is discrete, with respect to the Zariski and the constructible topology.
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(b) For every β ∈ K, the set

Vstat(β, •) = {VE | E is a pseudo-stationary sequence with β ∈ LE}

is discrete, with respect to the Zariski and the constructible topology.

Proof. Since the constructible topology is finer than the Zariski topology, it
is enough to prove the claim for the latter.

(a) Take a pseudo-stationary sequence E = {sn}n∈N of breadth δ, and
let β ∈ LE ; let also c ∈ K be such that v(c) = δ. Consider the function
φ(X) = X−β

c ; we claim that B(φ) ∩ Vstat(•, δ) = {VE}.
Indeed, for large n we have v(sn−β) = δ, and thus v(φ(sn)) = v(sn−β)−

v(c) = 0, so that φ ∈ VE , i.e., VE ∈ B(φ). Conversely, suppose VF ∈ B(φ),
where F = {tn}n∈N is pseudo-stationary with breadth δ. Then, for large n,
we must have v(tn − β) ≥ δ. Since v(tn − tm) = δ for n 6= m, we must have
v(tn − β) = δ, i.e., β is a pseudo-limit of F . Thus, LE = β + cV = LF and
VE = VF by [14, Proposition 5.1],

Therefore, B(φ) ∩ Vstat(•, δ) = {VE} and VE is an isolated point of
Vstat(•, δ). Since VE was arbitrary, Vstat(•, δ) is discrete, as claimed.

(b) Let E = {sn}n∈N be a pseudo-stationary sequence having β as a
pseudo-limit, and let c ∈ K be such that v(c) = δE . Let φ(X) = X−β

c ; we
claim that B(φ, φ−1) ∩ Vstat(β, •) = {VE}.

The proof that VE ∈ B(φ, φ−1) follows as in the previous case. Suppose
now that F = {tn}n∈N is in the intersection. Then, we must have v(φ(tn)) ≥
0 and v(φ−1(tn)) = −v(φ(tn)) ≥ 0; thus, v(tn−β) = δE for large n. However,
since β is a pseudo-limit of F , we also have v(tn − β) = δF ; hence, δE = δF
and VE = VF . Therefore, as above, VE is an isolated point of Vstat(β, •),
which thus is discrete.
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