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Abstract

We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their dis-
tributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation 
∂φ
∂z

+ ∂
∂t
[φ2/2] =w, where w is a bounded measurable function.
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1. Introduction

In the last years it has been largely developed the study of intrinsic submanifolds inside the Heisenberg groups 
Hn or more general Carnot groups, endowed with their Carnot–Carathéodory metric structure, also named sub-
Riemannian. By an intrinsic regular (or intrinsic Lipschitz) hypersurfaces we mean a submanifold which has, in the 
intrinsic geometry of Hn, the same role like a C1 (or Lipschitz) regular graph has in the Euclidean geometry. Intrinsic 
regular graphs had several applications within the theory of rectifiable sets and minimal surfaces in CC geometry, in 
theoretical computer science, geometry of Banach spaces and mathematical models in neurosciences, see [8,9] and 
the references therein.

We postpone complete definitions of Hn to Section 2. We only remind that the Heisenberg group Hn = Cn ×
R ≡ R2n+1 is the simplest example of Carnot group, endowed with a left-invariant metric d∞ (equivalent to its 
Carnot–Carathéodory metric), not equivalent to the Euclidean metric. Hn is a (connected, simply connected and 
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stratified) Lie group and has a sufficiently rich compatible underlying structure, due to the existence of intrinsic 
families of left translations and dilations and depending on the horizontal vector fields X1, . . . , X2n. We call intrinsic 
any notion depending directly by the structure and geometry of Hn. For a complete description of Carnot groups 
[8,21,25,26] are recommended.

As we said, we will study intrinsic submanifolds in Hn. An intrinsic regular hypersurface S ⊂Hn is locally defined 
as the non-critical level set of a horizontal differentiable function, more precisely there exists locally a continuous 
function f :Hn →R such that S = {f = 0} and the intrinsic gradient ∇Hf = (X1f, . . . , X2nf ) exists in the sense of 
distributions and it is continuous and non-vanishing on S. Intrinsic regular hypersurfaces can be locally represented 
as X1-graph by a function φ : ω ⊂W ≡ R2n → R, where W = {x1 = 0}, through an implicit function theorem (see 
[17]). In [4,6,7] the parameterization φ has been characterized as weak solution of a system of non-linear first order 
PDEs ∇φφ =w, where w : ω →R2n−1 and ∇φ = (X2, . . . , Xn, ∂

∂xn+1
+ φ ∂

∂t
, Xn+2, . . . , X2n) (see Theorem 2.9). By 

an intrinsic point of view, the operator ∇φφ acts as the intrinsic gradient of the function φ :W → R. In particular it 
can be proved that φ is a continuous distributional solution of the problem ∇φφ = w with w ∈ C0(ω; R2n−1) if and 
only if φ induces an intrinsic regular graph (see [7]).

Let us point out that an intrinsic regular graph can be very irregular from the Euclidean point of view: indeed, there 
are examples of intrinsic regular graphs in H1 which are fractal sets in the Euclidean sense [24].

The aim of our work is to characterize intrinsic Lipschitz graphs in terms of the intrinsic distributional gradient. It 
is well-know that in the Euclidean setting a Lipschitz graph S = {(A, φ(A)) : A ∈ ω}, with φ : ω ⊂ Rm → R can be 
equivalently defined

• by means of cones: there exists L > 0 such that

C

((
A0, φ(A0)

); 1

L

)
∩ S = {(

A0, φ(A0)
)}

for each A0 ∈ ω, where C((A0, φ(A0)); 1
L
) = {(A, s) ∈Rm ×R : |A −A0|Rm ≤ 1

L
|s − φ(A0)|};

• in a metric way: there exists L > 0 such that |φ(A) − φ(B)| ≤ L|A −B| for every A, B ∈ ω;
• by the distributional derivatives: there exist the distributional derivatives

∂φ

∂xi

∈ L∞(ω) ∀i = 1, . . . ,m

provided that ω is a regular connected open bounded set.

Intrinsic Lipschitz graphs in Hn have been introduced in [19,20], by means of a suitable notion of intrinsic cone in 
Hn. As a consequence, the metric definition (see Definition 2.13) is given with respect to the graph quasidistance dφ , 
(see (2.6)) i.e the function φ : (ω, dφ) →R is meant Lipschitz in classical metric sense. This notion turns out to be the 
right one in the setting of the intrinsic rectifiability in Hn. Indeed, for instance, it was proved in [20] that the notion 
of rectifiable set in terms of an intrinsic regular hypersurface is equivalent to the one in terms of intrinsic Lipschitz 
graphs.

We will denote by LipW(ω) the class of all intrinsic Lipschitz function φ : ω → R and by LipW,loc(ω) the one of 
locally intrinsic Lipschitz functions. Notice that LipW(ω) is not a vector space and that

Lip(ω)� LipW,loc(ω)� C
0,1/2
loc (ω),

where Lip(ω) and C0,1/2
loc (ω) denote respectively the classes of Euclidean Lipschitz and 1/2-Hölder functions in ω. 

For a complete presentation of intrinsic Lipschitz graphs [11,20] are recommended.
The first main result of this paper is the characterization of a parameterization φ : ω →R of an intrinsic Lipschitz 

graph as a continuous distributional solution of ∇φφ =w, where w ∈L∞(ω; R2n−1).

Theorem 1.1. Let ω ⊂W ≡R2n be an open set, φ : ω →R be a continuous function. φ ∈ LipW,loc(ω; R) if and only 
if there exists w ∈ L∞

loc(ω; R2n−1) such that φ is a distributional solution of the system ∇φφ =w in ω.

We stress that this is indeed different from proving a Rademacher theorem, which is more related to a pointwise 
rather than distributional characterization for the derivative, see [20]. Nevertheless, we find that the density of the 
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(intrinsic) distributional derivative is indeed given by the function one finds by Rademacher theorem. We also stress 
that there are a priori different notions of continuous solutions φ : ω →R to ∇φφ =w, which express the Lagrangian 
and Eulerian viewpoints. They will turn out to be equivalent descriptions of intrinsic Lipschitz graphs, when the source 
w belongs to L∞(ω; R2n−1). This is proved in Section 6 and it is summarized in the following theorem.

We introduce first a notation: L∞(ω; R2n−1) denotes the set of measurable bounded functions from ω to R2n−1, 
while L∞(ω; R2n−1) denotes the equivalence classes of Lebesgue measurable functions in L∞(ω; R2n−1) which are 
identified when differing on a Lebesgue negligible set of ω. We will keep this notation throughout the paper: its 
relevance is explained by Examples 1.3, 1.4 below.

Theorem 1.2. Let φ : ω →R be a continuous function. The following conditions are equivalent

(i) φ is a distributional solution of the system ∇φφ =w with w ∈L∞(ω; R2n−1);
(ii) φ is a broad solution of ∇φφ =w, i.e. there exists a Borel function ŵ ∈ L∞(ω; R2n−1) s.t.

(B.1) w(A) = ŵ(A) L2n-a.e. A ∈ ω;
(B.2) for every continuous vector field ∇φ

i (i = 1, . . . , 2n − 1) having an integral curve Γ ∈ C1((−δ, δ); ω), 
φ ◦ Γ is absolutely continuous and it satisfies at a.e.-s

d

ds
φ
(
Γ (s)

)= ŵi

(
Γ (s)

)
.

1.1. Outline of the proofs

With the intention of focusing on the nonlinear field, we fix the attention on the case n = 1.
Given a continuous distributional solution φ ∈ C0(ω) of the PDE

∇φφ(z, t)= ∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]
=w(z, t) for (z, t) ∈ ω,

we first prove that it is Lipschitz when restricted along any characteristic curve Γ : [a, b] → ω Γ (z) = (z, γ (z)), where 
γ̇ = φ ◦ Γ . The proof follows a previous argument by Dafermos (see Lemma 5.1). By a construction based on the 
classical existence theory of ODEs with continuous coefficients, we can then define a change of variable (z, χ(z, τ))

which straightens characteristics. This change of variables does not enjoy SBV or Lipschitz regularity, it fails injectiv-
ity in an essential way, though it is continuous and we impose an important monotonicity property. This monotonicity, 
relying on the fact that we basically work in dimension 2, is the regularity property which allows us the change of 
variables. As we exemplify below, we indeed have an approach different from providing a regular Lagrangian flow of 
Ambrosio–Di Perna–Lions’s theory, and it is essentially two dimensional. After the change of variables, the PDE is, 
roughly, linear, and we indeed find a family of ODEs for φ on the family of characteristics composing χ , with coef-
ficients which now are not anymore continuous, but which are however bounded. By generalizing a lemma on ODEs 
already present in [6], we prove the 1/2-Hölder continuity of φ on the vertical direction (z constant), and a posteriori 
in the whole domain. These are the main ingredients for establishing that φ defines indeed a Lipschitz graph: given 
two points, we connect them by a curve made first by a characteristic curve which joins the two vertical lines through 
the points, then by the remaining vertical segment. We manage this way to control the variation of φ between the two 
points with their graph distance dφ , checking therefore the metric definition of intrinsic Lipschitz graphs.

The other implication of Theorem 1.1 is based on the possibility of suitably approximating an intrinsic Lipschitz 
graph with intrinsic regular graphs. A geometric approximation is provided by [11]. We also provide a more ana-
lytic, and weaker, approximation as a byproduct of the change of variable χ which straightens characteristics, by 
mollification (see the proof of Theorem 6.10).

We stop now for a while in order to clarify the features of the statement in Theorem 1.2, and why it is so important 
here to distinguish among L∞(ω; R2n−1), which are pointwise defined functions, and L∞(ω; R2n−1), which are 
equivalence classes. Lagrangian formulations are affected by altering the representative, as the following example 
stresses.
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Fig. 1. Illustration of Examples 1.3, 1.4. Characteristics are drown for three particular continuous distributional solution to the equation ∂φ
∂z

+
∂
∂t
[φ2/2] = sgn(t)/2. Below the graphs of the corresponding functions φ are depicted.

Example 1.3. (Fig. 1.) Let ω = (0, 1) × (−1, 1) and let φ, w : ω →R be the functions defined as

φ(z, t) :=√|t |, w(z, t) :=
{

1/2 if t ≥ 0

−1/2 if t < 0

Then it is easy to verify that φ is a continuous distributional solution of

∇φφ = ∂φ

∂z
+ ∂

∂t

φ2

2
=w.

Consider the specific characteristic curve (z, γ (z)) := (z, 0). Even if γ̇ (z) = φ(z, γ (z)) = 0, the derivative of φ along 
this characteristic curve is not the right one:

∂φ

∂z
(z,0)= 0 �= 1

2
=w(z,0).

Eq. (3.9) holds however on every characteristic curves provided we choose correctly an L∞-representative ŵ ∈ L∞(ω)

of the source w: it is enough to consider

ŵ(z, t) :=
⎧⎨
⎩

1/2 if t > 0

0 if t = 0

−1/2 if t < 0

Notice that w(z, t) = ŵ(z, t) for L2-a.e. (z, t) ∈ ω. �
Before outlining Theorem 1.2 we exemplify other features mentioned above by similar examples.

Example 1.4. (Fig. 1.) Let ω = (0, 1) × (−1, 1), and choose

φ(z, t)=− sgn t
√|t |.

Again

∇φφ = ∂φ

∂z
+ ∂

∂t

φ2

2
=

{
1/2 if t > 0

−1/2 if t ≤ 0
=:w(z, t).

One easily sees that characteristics do collapse in an essential way. Considering instead

φ(z, t)= sgn t
√|t |

characteristics do split in an unavoidable way. Therefore, while it is proved in [14] that in Example 1.3 one can choose 
for changing variable a flux which is better than a generic other—the regular Lagrangian flow—we are not always in 
this case. This is the main reason why we refer in our change of variables to a monotonicity property.
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We have now motivated the further study for the stronger statement of Theorem 1.2. In order to prove it, we consider 
also the weaker concept of Lagrangian solution: the idea is that the reduction on characteristics is not required on 
any characteristic, but on a set of characteristics {χ(z, τ)}τ∈R composing the change of variables χ that one has 
chosen. Exhibiting a suitable set of characteristics for the change of variables χ(z, τ) is part of the proof. Roughly, an 
L∞-representative wχ for the source of the ODEs related to χ is provided by taking the z-derivative of φ(z, χ(z, τ)), 
which is φ evaluated along the characteristics {χ(z, τ)}τ∈R of the Lagrangian parameterization; by construction, it 
coincides with the second z-derivative of χ(z, τ). Here we have hidden the fact that we need to come back from (z, τ)

to (z, t), a change of variable that is not single valued, not surjective because the second derivative was defined only 
almost everywhere, and which may map negligible sets into positive measure sets [1]. We overcome the difficulty 
showing that it is enough selecting any value of the second derivative when present. However, if one changes the set 
of characteristics in general one arrives to a different function wχ ′ ∈ L∞(ω; R), which however identifies the same 
distribution as wχ . This issue is sensibly more complex for scalar balance laws with non-convex flux [1].

We defined broad solution a function which satisfies the reduction on every characteristic curve. In order to have 
this stronger characterization, we give a different argument borrowed from [1]. We define a universal source term ŵ in 
an abstract way, by a selection theorem, at each point where there exists a characteristic curve with second derivative, 
without restricting anymore to a fixed family of characteristics providing a change of variables. After showing that this 
is well defined, we have provided a universal representative of the intrinsic gradient of φ. In cases as Examples 1.3, 
1.4 it extends the one, defined only almost everywhere, provided by Rademacher theorem.

1.2. Outline of the paper

The paper is organized as follows. In Section 2 we recall basic notions about the Heinsenberg groups. In Section 3
we fix instead notations relative to the PDE, mainly specifying the different notions of solutions we will consider. 
One of them will involve a change of variables, for passing to the Lagrangian formulation, which is mainly matter of 
Section 4 and it is basically concerned with classical theory on ODEs. Then Appendix A also explains how to extend 
a partial change of variables of that kind to become surjective, and it provides a counterexample to its local Lipschitz 
regularity; it is improved in [1] showing that it may map negligible sets into positive measure set. In Section 5 we 
prove the equivalence among the facts that either a continuous function φ describes a Lipschitz graph, with intrinsic 
gradient w, or it is a distributional solution to the PDE ∇φφ =w, where w ∈ L∞. The further equivalencies are finally 
matter of Section 6.

With some simplification, we can illustrate the main connections by the following papillon. As mentioned above, 
there is also a connection with the existence of smooth approximations (see the proof of Theorem 6.10 by mollification 
and [11] with a more geometric procedure).

Definition 3.1 Definition 3.7 Definition 3.8

Continuous Distributional Th.6.6+L.5.1
Cor.6.3 (n= 1)

L.5.4

Continuous Broad

L.4.2 clearContinuous LagrangianTh.6.10

Th.6.6

clear

Intrinsic Lipschitz

Cor.6.3 (n= 1)

L.5.6

Continuous Broad*L.4.2

Definition 2.13 Definition 3.9

Description of the identification of the source terms. The intrinsic gradient is unique. Suppose φ is both intrinsic 
Lipschitz and a broad solution: then by definition at points of intrinsic differentiability the intrinsic gradient must 
coincide with ŵ, where ŵ is either the Souslin or Borel selection representative of w constructed in Section 6.2. 
As a broad solution is also a Lagrangian solution, at those points it must coincide also with any Lagrangian source 
w̄ ∈ L∞(ω; R). By Rademacher theorem, these functions are therefore identified Lebesgue almost everywhere, and 
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by Lemma 5.6 they are representative of the L∞(ω; R2n−1)-function which is the source term of the balance law. 
A different proof of this compatibility is given in [1].

We conclude remarking again that this identification Lebesgue almost everywhere is not enough for fixing all of 
them: both Lagrangian solutions and broad solutions require the right representative of the source also on some of 
the points of non-intrinsic differentiability, not captured by the source term in the distributional formulation (Fig. 1). 
A source term in the Lagrangian formulation instead fixes directly the source term of the distributional formulation, 
and it is fixed in turn by a source term in the broad formulation. This chain of implications fails instead for 1D-scalar 
balance laws

∂

∂z

[
φ(z, t)

]+ ∂

∂t

[
f

(
φ(z, t)

)]=w(z, t)

when f is smooth but not uniformly convex, as shown in [1], because Rademacher theorem fails.

2. Sub-Riemannian Heisenberg group

We first remind the definition of the Heisenberg groups Hn ≡Cn ×R ≡R2n+1 as noncommutative Lie groups. We 
later remind notions of intrinsic differential calculus and the main topic of this paper, which are intrinsic Lipschitz 
functions and graphs. We denote the points of Hn by

P = (x, t), x ∈R2n, t ∈R.

If P = (x, t), Q = (x ′, t ′) ∈Hn and r > 0, the group operation reads as

P ·Q :=
(

x + x′, t + t ′ + 1

2

n∑
j=1

(
xjx

′
j+n − xj+nx

′
j

))
. (2.1)

The group identity is the origin 0 and one has (x, t)−1 = (−x, −t). In Hn there is a natural one parameter group of 
non-isotropic dilations δr(P ) := (rx, r2t) , r > 0.

The group Hn can be endowed with the homogeneous norm

‖P‖∞ := max
{|x|, |t |1/2}

and with the left-invariant and homogeneous distance

d∞(P,Q) := ∥∥P−1 ·Q∥∥∞.

The metric d∞ is equivalent to the standard Carnot–Carathéodory distance. It follows that the Hausdorff dimension 
of (Hn, d∞) is 2n + 2, whereas its topological dimension is 2n + 1.

The Lie algebra hn of left invariant vector fields is (linearly) generated by

Xj = ∂

∂xj

− 1

2
xj+n

∂

∂t
, Xj+n = ∂

∂xj+n

+ 1

2
xj

∂

∂t
, j = 1, . . . , n, T = ∂

∂t
(2.2)

and the only nonvanishing commutators are

[Xj ,Xj+n] = T , j = 1, . . . , n.

2.1. Horizontal fields and differential calculus

We shall identify vector fields and associated first order differential operators; thus the vector fields X1, . . . , X2n

generate a vector bundle on Hn, the so called horizontal vector bundle HHn according to the notation of Gromov (see 
[21]), that is a vector subbundle of THn, the tangent vector bundle of Hn. Since each fiber of HHn can be canonically 
identified with a vector subspace of R2n+1, each section ϕ of HHn can be identified with a map ϕ :Hn →R2n+1. At 
each point P ∈Hn the horizontal fiber is indicated as HHn

P and each fiber can be endowed with the scalar product 
〈·,·〉P and the associated norm ‖ · ‖P that make the vector fields X1, . . . , X2n orthonormal.
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Definition 2.1. A real valued function f , defined on an open set Ω ⊂Hn, is said to be of class C1
H
(Ω) if f ∈ C0(Ω)

and the distribution

∇Hf := (X1f, . . . ,X2nf )

is represented by a continuous function.

Definition 2.2. We shall say that S ⊂ Hn is an H-regular hypersurface if for every P ∈ S there exist an open ball 
U∞(P, r) and a function f ∈C1

H
(U∞(P, r)) such that

(i) S ∩U∞(P, r) = {Q ∈U∞(P, r) : f (Q) = 0};
(ii) ∇Hf (P ) �= 0.

The horizontal normal to S at P is νS(P ) := − ∇Hf (P )
|∇Hf (P )| .

Notation 2.3. Recalling that we denote a point of Hn as P = (x, t) ∈Hn, where x = (x1, . . . , x2n) ∈ R2n, t ∈ R, it is 
convenient to introduce the following notations:

• We will denote a point of R2n ≡R2n−1 ×R as A = (z, t) ∈R2n, where z ∈R2n−1, t ∈R. If z= (z1, . . . , z2n−1) ∈
R2n−1, for given i = 1, . . . , 2n − 1, we denote ẑi = (z1, . . . , zi−1, zi+1, . . . , z2n) ∈ R2n−2. When we will use this 
notation, we also denote a point A = (z, t) ∈R2n as A = (zi, ̂zi, t) ∈R ×R2n−2 ×R if n ≥ 2.

• Let B ⊂R2n, for given ẑi ∈R2n−2 and t ∈R we will denote Bẑi,t := {s ∈R : (s, ̂zi, t) ∈ B};
• Let B ⊂R2n, for given z ∈R2n−1 we will denote Bz := {t ∈R : (z, t) ∈ B}.
• Let B ⊂R2n, for given ẑi ∈R2n−2 we will denote Bẑi

:= {(s, t) ∈R2 : (s, ̂zi, t) ∈ B};
• W = {(x, t) ∈Hn : x1 = 0}. A point A = (0, z1, . . . , z2n−1, t) ∈W will be identified with the point (z, t) ∈R2n.
• Let ω ⊂W, for given zn ∈R we will denote ωzn := {(ẑn, t) ∈R2n−1 : (zn, ̂zn, t) ∈ ω}.

Definition 2.4. A set S ⊂ Hn is an X1-graph if there is a function φ : ω ⊂ W → R such that S = G1
H,φ(ω) :=

{A · φ(A)e1 :A ∈ ω}. When not otherwise stated, by intrinsic graph we will mean X1-graph.

Let us recall the following results proved in [17] (see also [10,18]).

Theorem 2.5 (Implicit function theorem). Let Ω be an open set in Hn, 0 ∈ Ω , and let f ∈ C1
H
(Ω) be such that 

X1f > 0. Let S := {(x, t) ∈ Ω : f (x, t) = 0}; then there exist a connected open neighborhood U of 0 and a unique 
continuous function φ : ω ⊂W →[−h, h] such that S ∩ U =Φ(ω), where h > 0 and Φ is the map defined as

ω � (z, t) �→Φ(z, t)= (z, t) · φ(z, t)e1

and given explicitly by

Φ(z, t)=
(

φ(z, t), z1, . . . , z2n−1, t − zn

2
φ(z, t)

)
.

Let n ≥ 2, A0 = (z0
1, . . . , z

0
2n−1, t

0) ∈R2n and define

Ir (A0) :=
{

(z, t) ∈R2n : ∣∣zn − z0
n

∣∣ < r,

2n−1∑
i=1
i �=n

[(
zi − z0

i

)2]
< r2,

∣∣t − t0
∣∣ < r

}
.

When n = 1 and A0 = (z0, t0) ∈R2 let

Ir (A0) :=
{
(z, t) ∈R2 : ∣∣z− z0

∣∣ < r,
∣∣t − t0

∣∣ < r
}
.

Following [4,5,28] we define the graph quasidistance dφ on ω. We set O1 := {(x, t) ∈ Hn : x1 = 0, t = 0}, T :=
{(x, t) ∈Hn : x1 = 0, . . . , x2n = 0}.
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Definition 2.6. For A = (zn, ̂zn, t), A′ = (z′n, ̂z′n, t ′) ∈ ω we define

dφ

(
A,A′) := ∥∥πO1

(
Φ(A)−1 ·Φ(

A′))∥∥∞ + ∥∥πT

(
Φ(A)−1 ·Φ(

A′))∥∥∞ (2.3)

Following Notation 2.3 we have explicitly if n ≥ 2

dφ

(
A,A′)= ∣∣(z′n, ẑ′n)− (zn, ẑn)

∣∣+ ∣∣∣∣t ′ − t − 1

2

(
φ(A)+ φ

(
A′))(z′n − zn

)+ σ
(
ẑn, ẑ

′
n

)∣∣∣∣
1/2

;

where σ(ẑn, ̂z′n) = 1
2

∑n−1
j=1(zj+nz

′
j − zj z

′
j+n). If n = 1 and A = (z2, t), A′ = (z′1, t ′) ∈ ω we have

dφ

(
A,A′)= ∣∣z′1 − z1

∣∣+ ∣∣∣∣t ′ − t − 1

2

(
φ(A)+ φ

(
A′))(z′1 − z1

)∣∣∣∣
1/2

.

An intrinsic differentiable structure can be induced on W by means of dφ , see [4,5,11,28]. We remind that a map 
L :W → R is W-linear if it is a group homomorphism and L(rz, r2t) = rL(z, t) for all r > 0 and (z, t) ∈W. We 
remind then the notion of ∇φ-differentiablility.

Definition 2.7. Let φ : ω ⊂W →R be a fixed continuous function, and let A0 ∈ ω and ψ : ω →R be given.

• We say that ψ is ∇φ-differentiable at A0 if there is a W-linear functional L :W →R such that

lim
A→A0
A�=A0

ψ(A)−ψ(A0)−L(A−1
0 ·A)

dφ(A0,A)
= 0. (2.4)

• We say that ψ is uniformly ∇φ-differentiable at A0 if there is a W-linear functional L :W →R such that

lim
r→0

sup
A,B∈Ir (A0)

A�=B

{ |ψ(B)−ψ(A)−L(B−1 ·A)|
dφ(A,B)

}
= 0 (2.5)

We will denote L = dWφ(A0). If φ is uniformly ∇φ-differentiable at A0, then φ is ∇φ-differentiable at A0.

Remark 2.8. If φ : ω →R is ∇φ-differentiable at A0 then its differential dWφ(A0) is unique (see [4]).

In [4] it has been proved that each H-regular X1-graph Φ(ω) admits an intrinsic gradient ∇φφ ∈ C0(ω; R2n), in 
sense of distributions, which shares a lot of properties with the Euclidean gradient. Notice that W =
exp(span{X2, . . . , X2n, T }), where the vector fields X2, . . . , X2n, T must be understood as restricted to W. It is 
possible to define the differential operators ∇φ := (∇φ

1 , . . . , ∇φ
2n−1) by

∇φ
j :=

⎧⎪⎪⎨
⎪⎪⎩

Xj+1 = ∂
∂zj

− zj+n

2
∂
∂t

j = 1, . . . , n− 1

Wφ =Xn+1 + φT = ∂
∂zn

+ φ ∂
∂t

j = n

Xj+1 = ∂
∂zj

+ zj−n

2
∂
∂t

j = n+ 1, . . . ,2n− 1

We identify them with a family of (2n − 1)-vector fields on ω. Each ∇φ
j is well defined from C1(ω) with values in 

C0(ω), and the fields ∇φ
j for j �= n are more regular. Even if φ is not an admissible function for the action of these 

differential operators, we can define it in sense of distributions by

Wφφ :=Xn+1φ + 1

2
T

(
φ2)= ∂φ

∂xn+1
+ 1

2

∂φ2

∂t
,

∇φφ :=
{

(X2φ, . . . ,Xnφ,Wφφ,X2+nφ, . . . ,X2nφ) if n≥ 2

Wφφ if n= 1.
(2.6)

The following characterizations were proved in [4,5,7]. The definitions of broad* and distributional solution of the 
system ∇φφ =w are recalled in Section 3.
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Theorem 2.9. Let ω ⊂W ≡R2n be an open set and let φ : ω →R be a continuous function. Then

(i) The set S :=Φ(ω) is an H-regular surface and ν1
S(P ) < 0 for all P ∈ S, where νS(P ) = (ν1

S(P ), . . . , ν2n
S (P )) is 

the horizontal normal to S at P .

is equivalent to each one of the following conditions:

(ii) There exists w ∈ C0(ω; R2n−1) and a family (φε)ε>0 ⊂ C1(ω) such that, as ε → 0+,

φε → φ and ∇φεφε →w in L∞
loc(ω),

and ∇φφ =w in ω, in sense of distributions, where ∇φφ is defined in (2.6).
(iii) There exists w ∈ C0(ω; R2n−1) such that φ is a broad* solution of the system ∇φφ =w.
(iv) There exists w ∈ C0(ω; R2n−1) such that φ is a distributional solution of ∇φφ =w.
(v) φ is uniformly ∇φ-differentiable at A for all A ∈ ω.

In particular, νS(P ) = (− 1√
1+|∇φφ|2 , ∇φφ√

1+|∇φφ|2 )(Φ−1(P )).

Remark 2.10. For given φ : ω →R ∇φ-differentiable at A0 ∈ ω, then the differential dWφ(A0) :W ≡R2n →R can 
be represented in terms of the intrinsic gradient ∇φφ(A0). More precisely (see [4,11])

dWφ(A0)(z)=
{
∇φφ(A0)z n= 1∑2n−1

i=1 ∇φ
i φ(A0)zi n≥ 2

Definition 2.11. Let φ : ω →R be a continuous function and let A ∈ω be given. We say that φ admits ∇φ
i -derivative 

at A if there exists α ∈R such that for each integral curve Γ : (−δ, δ) → ω of ∇φ
i with Γ (0) =A

∃ d

ds
φ
(
Γ (s)

)∣∣
s=0 = lim

s→0

φ(Γ (s))− φ(Γ (0))

s
= α,

and we will write α =∇φ
i φ(A).

Remark 2.12. Notice that if S =Φ(ω) is an H-regular hypersurface then φ admits ∇φ
i -derivative at A for every A ∈ ω

for i = 1, . . . , 2n − 1 (see [4,28]) and ∇φ
i φ(A) = dWφ(A)(ei), where {e1, e2, . . . , e2n−1} denotes the standard basis 

of R2n−1.

2.2. Intrinsic Lipschitz functions and intrinsic Lipschitz graphs

Let us now introduce the concept of intrinsic Lipschitz function and intrinsic Lipschitz graph.

Definition 2.13. Let φ : ω ⊂ W → R. We say that φ is an intrinsic Lipschitz continuous function in ω and write 
φ ∈ LipW(ω), if there is a constant L > 0 such that∣∣φ(A)− φ(B)

∣∣≤ Ldφ(A,B) ∀A,B ∈ ω (2.7)

Moreover we say that φ is a locally intrinsic Lipschitz function in ω and we write φ ∈ LipW,loc(ω) if φ ∈ LipW(ω′)
for every ω′ � ω.

Remark 2.14. When φ : ω ⊂W ≡R2 →R is intrinsic Lipschitz and γ : [a, b] → ω is an integral curve of the vector 
field Wφ , then [a, b] � s �→ φ(γ (s)) is Lipschitz continuous. Indeed, from the estimate (52) in [11], it follows that 
there exists a positive constant C, depending only on the Lipschitz constant of φ, such that

dφ

(
γ (s), γ (t)

)≤ C|t − s| ∀t, s ∈ [a, b].
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The inequality dφ(γ (s), γ (t)) ≥ |t − s| is true instead by Definition 2.6. Moreover we will see in Lemmas 4.2, 5.3
that φ is 1/2-Hölder continuous on the lines where t is fixed, and then globally in the two variables.

In [11] is proved the following characterization for intrinsic Lipschitz functions.

Theorem 2.15. Let ω⊂W be open and bounded, let φ : ω →R. Then the following are equivalent:

(i) φ ∈ LipW,loc(ω)

(ii) there exist {φk}k∈N ⊂ C∞(ω) and w ∈ (L∞
loc(ω))2n−1 such that ∀ω′ � ω there exists C = C(ω′) > 0 such that

(ii1) {φk}k∈N uniformly converges to φ on the compact sets of ω;
(ii2) |∇φkφk(A)| ≤ C L2n-a.e. x ∈ ω′, k ∈N;
(ii3) ∇φkφk(A) →w(A) L2n-a.e. A ∈ ω.

Moreover if (ii) holds, then ∇φφ(A) =w(A) L2n-a.e. A ∈ ω.

Let us finally recall the following Rademacher type theorem, proved in [20], see also [11].

Theorem 2.16. If φ ∈ LipW(ω) then φ is ∇φ-differentiable for L2n-a.e A ∈ ω.

Remark 2.17. If φ ∈ LipW(ω), then, from Theorem 2.16, φ admits ∇φ
i -derivative which by Remark 2.14 must be the 

derivative of φ restricted along any integral curve of the vector field ∇φ
i .

3. Solutions of the intrinsic gradient differential equation

Even when w ∈ C0(ω), where ω is an open subset of W ≡R2, the equation

∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]
=w(z, t) in ω (3.1)

allows in general for discontinuous solution. However, it is the case n = 1 of the system (2.6)

∇φφ =w ⇔
{

Xj+1φ =wj j = 1, . . . , n− 1, n+ 1, . . . ,2n− 1

Wφφ =wn
(3.2)

where w ∈ C0(ω, R2n−1) and this system, by Theorem 2.9, describes an H-regular surface S := Φ(ω) which is an 
X1-graph and has intrinsic gradient identified by w(z, t). When describing intrinsic Lipschitz graphs, matter of the 
present paper, it is then natural to assume that w ∈ L∞(ω; R2n−1) rather than being continuous, but the continuity of 
φ remains natural.

There are a priori different notions of continuous solutions φ : ω → R to (3.1). We recall some of them in this 
section: distributional, Lagrangian, broad, broad*. All of them will finally coincide.

After giving in the present sections the definitions for all n, we will focus in the next one the analysis on the 
non-linear equation in the case n = 1, which conveys the attention on the planar case (3.1). The generalization to other 
cases n ≥ 2 of most of the lemmas is straightforward, because the fields Xj and Yj are linear, with the exception of 
Lemma 6.2, where we prefer taking advantage of the continuity of χ ; however, we have no reason to prove it in full 
generality.

We recall that in general solutions are not smooth, even if we assume the continuity—see e.g. Example A.2 below. 
Improved local Lipschitz regularity, in the open set where φ(s, t) is non-vanishing, holds indeed only in the case of 
autonomous sources w =w(t) [2]. The equation is then generally interpreted in a distributional way.

Definition 3.1 (Distributional solution). A continuous function φ : ω → R is a distributional solution to (3.2) if for 
each ϕ ∈ C∞

c (ω)ˆ
φ∇φ

j ϕ dL2n =−
ˆ

wjϕ dL2n, j = 1, . . . , n− 1, n+ 1, . . . ,2n− 1 (3.3)
ω ω
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and ˆ

ω

(
φ

∂ϕ

∂zn

+ 1

2
φ2 ∂ϕ

∂t

)
dL2n = −

ˆ

ω

wnϕ dL2n.

We consider now different versions for the Lagrangian formulation of the PDE. The first one somehow englobes a 
choice of trajectories for passing from Lagrangian to Eulerian variables, and imposes the evolution equation on these 
trajectories.

Definition 3.2 (Lagrangian parameterization). A family of partial Lagrangian parameterizations associated to a 
continuous function φ : ω → R and to the system (3.2) is a family of couples (ω̃i, χi) (i = 1, . . . , 2n − 1) with 
ω̃i ⊂R2n open sets and χi = χi(ξ, t) = χi(ξi, ξ̂i , t) : ω̃i →R Borel functions such that for each i = 1, . . . , 2n − 1

(L.1) the map Υi : ω̃i →R2n, Υi(ξ, t) = (ξ, χi(ξ, t)) is valued in ω;
(L.2) for every ξ ∈R2n−1, the function ω̃i,ξ � t �→ χi(ξ, t) is nondecreasing;
(L.3) for every interval ξ̂i ∈R2n−2, t ∈R, for every (s1, s2) ⊂ ω̃

i,ξ̂i ,t
, the function (s1, s2) � s �→ Υi(s, ξ̂i , t) is abso-

lutely continuous and Υi is an integral curve of the vector field ∇φ
i :

∂Υi

∂s
(s, ξ̂i , t)=∇φ

i

(
Υi(s, ξ̂i , t)

)
a.e. s ∈ (s1, s2). (3.4)

We call it a family of (full) Lagrangian parameterizations if χi : (ω̃i)ξ → ωξ is onto the section ωξ for all ξ .

We emphasize in this definition the nonlinear PDE of the system: a Lagrangian parameterization provides a cov-
ering of ω by characteristic lines for that equation. Indeed, a covering by characteristic lines of the other equations is 
immediately given by an expression like

χi(z1, . . . , z2n−1, t)=
{

t − zi+n

2 zi i = 1, . . . , n− 1

t + zi−n

2 zi i = n+ 1, . . . ,2n− 1

Moreover, the reduction along characteristics for the linear equations, and thus the equivalence between Lagrangian 
and distributional solution, holds with less technicality.

Definition 3.3. A family of (partial) parameterizations (ω̃i, χi) extends the family of (partial) parameterizations 
(ω̃′

i , χ̃
′
i ), we denote (ω̃′

i , χ̃
′
i ) � (ω̃i , χi), if there exists a family of Borel injective maps

Ji : ω̃′
i � (z, τ ) �→ (

z, j (z, τ )
) ∈ ω̃i such that χi ◦ Ji = χ̃ ′

i ∀i = 1, . . . ,2n− 1.

When (ω̃′
i , χ̃

′
i ) � (ω̃i , χi) and (ω̃i , χi) � (ω̃′

i , χ̃
′
i ) they are called equivalent.

Remark 3.4. The notion of Lagrangian parameterization given above does not consist in a different formulation for the 
notion of regular Lagrangian flow in the sense by Ambrosio–Di Perna–Lions (see [13] for an effective presentation). 
Particles are really allowed both to split and to join, therefore in particular the compressibility condition here is not 
required, while instead we have a monotonicity property.

Notation 3.5. When we need to distinguish sources, we denote with ̄· functions defined on ω but possibly related to a 
parameterization, with ·̃ functions defined on ω̃, and with ·̂ functions defined on ω not related to specific parameteri-
zations.

Remark 3.6. Notice that, given a full Lagrangian parameterization Ψ : ω̃n → ω of a continuous function φ : ω →R, 
then for a given ẑn ∈ R2n−2, the function Ψn = Ψn(·, ̂zn, ·) : ω̃n,ẑn

→ ω is continuous. Indeed assume n = 1, then 
Ψ1 ≡ Ψ : ω̃ → ω, Ψ (s, τ) = (s, χ(s, τ)) with (s, τ) ∈ ω̃ and χ(s, ·) : ω̃s → ωs is onto ∀s ∈R. Fix (s0, τ0) ∈ ω̃ and let 
δ0 > 0 such that

Q= [s0 − δ0, s0 + δ0] × [τ0 − δ0, τ0 + δ0] ⊂ ω̃.
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Observe now that ω̃s0 ⊇ [τ0 − δ0, τ0 + δ0] and, since ω is open, there exists σ0 = σ0(s) such that

ωs0 ⊇
[
χ(s0, τ0),χ(s0, τ0)+ σ0

]
. (3.5)

Since χ(s0, ·) : ω̃s0 → ωs0 is nondecreasing and onto, it follows that

∃ lim
τ→τ−0

χ(s0, τ )= χ(s0, τ0) ∀s ∈ [s0 − δ0, s0 + δ0], (3.6)

because otherwise one of the inequalities below would be strict

lim
τ→τ−0

χ(s0, τ )≤ χ(s0, τ0)≤ lim
τ→τ+0

χ(s0, τ ) (3.7)

and a contradiction to surjectivity would follow. On the other hand, notice that

χ(·, τ ) : [s0 − δ0, s0 + δ0]→R is Lipschitz continuous (3.8)

uniformly with respect to τ ∈ [τ0 − δ0, τ0 + δ0]. In fact, because the function [s0 − δ0, s0 + δ0] � s �→ χ(s, τ0 ± δ0)

is continuous and [τ0 − δ0, τ0 + δ0] → χ(s, τ) is non-decreasing ∀s ∈ [s0 − δ0, s0 + δ0], it follows that the map 
Ψ : Q → ω is bounded. Then by (L.3) (3.8) follows. Thus, (3.6) and (3.8) imply the continuity of χ : ω̃ → R at 
(s0, τ0).

When n > 1 we can repeat the same arguments of n = 1. Observe that, taking the proof in the case n = 1 into 
account, we could get the (global) continuity of the map Ψn : ω̃n → ω if for each A0 = (s0, ̂z0,n, τ0) ∈ ω̃n

• ω̃n,s0 � (ẑn, τ) �→ χn(s0, ̂zn, τ) is continuous.

We do not mind about this global continuity when n > 1.

Before giving the notion of Lagrangian solution, we recall that a set A ⊂Rn is universally measurable if it is mea-
surable w.r.t. every Borel measure, see [27, Section 5.5], see also [12, Chapter 8, Section 4]. Universally measurable 
sets constitute a σ -algebra, which includes analytic sets. A function f :Rn →R is said universally measurable if it is 
measurable w.r.t. this σ -algebra. In particular, it will be measurable w.r.t. any Borel measure.

Notice that Borel counterimages of universally measurable sets are universally measurable. Then the composition 
ϕ ◦ψ of any universally measurable function ϕ with a Borel function ψ is universally measurable. This composition 
would be nasty with ϕ just Lebesgue measurable.

Since restrictions of Borel functions on Borel sets are Borel, all the terms in the following definition are thus 
meaningful.

Definition 3.7 (Lagrangian solution). A continuous function φ : ω → R is a Lagrangian solution of (3.2) if there 
exists a family of Lagrangian parameterizations (ω̃i, χi) (i = 1, . . . , 2n −1), associated to φ and (3.2), and a family of 
universally measurable functions w̄χi

∈ L∞(ω) (i = 1, . . . , 2n − 1), such that ∀ξ̂i ∈ R2n−2, ∀t ∈ R, ∀(s1, s2) ⊂ ω̃ξi ,t , 
it holds that

(LS1) the function (s1, s2) � s �→ φ(Υi(s, ξi, t)) is absolutely continuous and

d

ds
φ
(
Υi(s, ξ̂i , t)

)= w̄χi

(
Υi(s, ξ̂i , t)

)
L1-a.e. s ∈ (s1, s2) (3.9)

where Υi is given in (L.1) of Definition 3.2.
(LS2) if φ admits ∇φ

i -derivative at A ∈ ω, then w̄χi
(A) =∇φ

i φ(A) ∀i = 1, . . . , 2n − 1.
(LS3) w̄χi

=wi L2n-a.e. in ω, for every i = 1, 2, . . . , 2n − 1.

We are going to prove in Section 6.3 that φ above is a distributional solution to (3.2).
We give now the strongest notion of solution: the evolution equation is imposed on every trajectories.

Definition 3.8 (Broad solution). A continuous function φ : ω →R is a broad solution of (3.2) if there exists a univer-
sally measurable function ŵ = (ŵ1, . . . , ŵ2n−1) ∈ L∞(ω; R2n−1) such that
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(B.1) ŵ =w L2n-a.e. in ω;
(B.2) ∀i = 1, . . . , 2n − 1, for every integral curve Γi ∈ C1((−δ, δ); ω) of the vector field ∇φ

i it holds that (−δ, δ) �
s �→ φ(Γi(s)) is absolutely continuous and

d

ds
φ
(
Γi(s)

)= ŵ
(
Γi(s)

)
a.e. s ∈ (−δ, δ);

(B.3) if φ admits ∇φ
i -derivative at A ∈ ω, then ŵi(A) =∇φ

i φ(A) ∀i = 1, . . . , 2n − 1.

We also remind the intermediate notion of broad* solution introduced in [6].

Definition 3.9 (Broad* solution). A continuous function φ is a broad* solution of (3.2) if for every A0 ∈ ω there exists 
a map, that we will call exponential map,

expA0

(∇φ
i

)
(·) : [−δ2, δ2] × Iδ2(A0)→ Iδ1(A0) � ω, (3.10)

where 0 < δ2 < δ1 such that, if Γ A
i (s) = expA0

(s∇φ
i )(A) for i = 1, . . . , 2n − 1, then

(B*.1) Γ A
i ∈ C1([−δ2, δ2];R2n),

(B*.2)

{
Γ̇ A

i =∇φ
i ◦ Γ A

i

Γ A
i (0)=A,

(B*.3) there exists a universally measurable function w̄ ∈ L∞(ω; R2n−1) such that w̄ = w L2n-a.e. in ω, ∀i =
1, . . . , 2n − 1 the map (−δ2, δ2) � s �→ φ(Γ A

i (s)) is absolutely continuous and

d

ds
φ
(
Γ A

i (s)
)= w̄

(
Γ A

i (s)
)

a.e. s ∈ (−δ2, δ2) ∀A ∈ Iδ2(A0);

(B*.4) if φ admits ∇φ
i -derivative at A ∈ ω, then w̄i(A) =∇φ

i φ(A) ∀i = 1, . . . , 2n − 1.

Being a distributional solution to the PDE, a Lagrangian solution will be in particular a broad* solution with 
w := w̄. Viceversa, if the exponential map related to a broad solution satisfies the relative monotonicity property, 
then one can prove that the broad* solution is also a Lagrangian solution, with the same w̄. One can moreover derive 
a procedure for constructing a Lagrangian parameterization in Lemma A.1, where the curves γ (s; ̄s, ̄t) should be 
replaced by the ones of the exponential map.

4. Existence of Lagrangian parameterizations

We focus in this section on the case n = 1. We discuss the generalization to the case n ≥ 2 in Remark 4.3.
Given a continuous function φ on clos(ω) ⊂W, we defined what we mean by ‘Lagrangian parameterization’. Here 

we show that the definition is non-empty. It is part of the very classical theory on ODEs with continuous coefficients 
covering ω with integral curves of the continuous vector field (1, φ), see for example the first chapters of [22]. In 
the definition of Lagrangian parameterization it is however essential that we cover the region with curves which are 
ordered and not with generic ones: we therefore briefly remind below one way of doing it, with also the aim being 
self-contained.

Firstly, in Lemma 4.1 we show, for familiarizing with notations, that if one takes the integral curves through 
an s-section of ω which are minimal, in the sense that any other curve through that point lies on its right side, 
then we get a partial Lagrangian parameterization. The same happens when selecting the maximal ones. Extending 
it to a full one will be matter of Appendix A. A full Lagrangian parameterization basically amounts to an order 
preserving parameterization, with a real valued parameter, of non-crossing curves through each point of the plane. We 
immediately give an example of a full one (Lemma 4.2 below).

Notice that the definition of Lagrangian parameterization concerns only classical theory on ODEs with continuous 
coefficients, as therefore Lemmas 4.1, 4.2, 6.2, 5.3, A.1.
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Lemma 4.1. Let φ : clos(ω) →R be a continuous function, (0, 0) ∈ ω. Then there are domains ω̃m, ω̃M associated to 
the functions

χm(s, τ ) := min
{
γ (s) : (

r, γ (r)
) ∈ clos(ω), γ̇ (r)= φ

(
r, γ (r)

)
, γ (0)= τ

}
χM(s, τ ) := max

{
γ (s) : (

r, γ (r)
) ∈ clos(ω), γ̇ (r)= φ

(
r, γ (r)

)
, γ (0)= τ

}
for which (ω̃m, χm), (ω̃M, χM) are partial Lagrangian parameterization relative to φ.

Proof. For every (s̄, τ̄ ) ∈ ω one could consider the minimal and maximal curves satisfying on clos(ω) the ODE for 
characteristics (3.4) and passing through that point: indeed the functions 

γ(s̄,τ̄ )(s) := min
{
γ (s) : (

r, γ (r)
) ∈ clos(ω), γ̇ (r)= φ

(
r, γ (r)

)
, γ (s̄)= τ̄

}
(4.1a)

γ (s̄,τ̄ )(s) := max
{
γ (s) : (

r, γ (r)
) ∈ clos(ω), γ̇ (r)= φ

(
r, γ (r)

)
, γ (s̄)= τ̄

}
(4.1b)

are well defined, Lipschitz, and because of the continuity of φ they are still integral curves [22, Section 3.2].
Denoting by r.i. the relative interior of a set, we define the domain

ω̃m = r.i.
{
(s, τ ) ∈R×ω0 : τ ∈ ω0,

(
s, γ(0,τ )(s)

) ∈ ω
}

where recall that ωo = {t ∈ R : (0, t) ∈ ω}. Since we are assuming that ω contains the origin, ω̃m is nonempty. The 
domain ω̃M is analogous.

Being γ(s̄,τ̄ )(s), γ (s̄,τ̄ )(s) Lipschitz solutions to the ODE with continuous coefficients, the functions χm(s, τ), 
χM(s, τ) in the statement are C1(ω ∩ {t = τ }) in the s variable for every τ fixed. χm, χM are jointly Borel in (s, τ)

by continuity in s and monotonicity in τ , monotonicity that now we show.
Notice the semigroup property: for t, h > 0, for example for (4.1a)

γ(0,τ )(s)=: τ , γ(s,τ )(h)=: τ̄ �⇒ γ(0,τ )(s + h)= τ̄ .

This yields the monotonicity of χm(s, τ) = γ(0,τ )(s) for each s fixed. Indeed, if τ1 < τ2 and γ(0,τ1)(ŝ) ≥ γ(0,τ2)(ŝ) at a 
certain ŝ > 0, by the continuity of the curves there exists 0 < s̄ ≤ ŝ when γ(0,τ1)(s̄) = γ(0,τ2)(s̄). But then the curve

γ (s)=
{

γ(0,τ1)(s) for s ≤ s̄

γ(0,τ2)(s) for s ≥ s̄

is a good competitor for the definition of γ(0,τ1), which implies

γ(0,τ2)(ŝ)= γ (ŝ)≥ γ(0,τ1)(ŝ),

and therefore equality. For γ (0,τ ) the argument is similar. �
In Lemma A.1 we show how to make a partial parameterization χ surjective: thus we cover ω by a family of 

characteristic curves which includes the ones of χ . In the following lemma, w.l.o.g. in a simpler setting, we provide 
instead a full Lagrangian parameterization, defined at once instead of extending a given one.

Lemma 4.2. There exists a (full) Lagrangian parameterization associated to a continuous function φ : (0, 1)2 → R

which is also continuous on the closure [0, 1]2.

Proof. Step 1. Let φ be a continuous function on [0, 1]2, we want to give a Lagrangian parameterization for his 
restriction to (0, 1)2 as we defined it on an open set. One can assume φ is compactly supported in (s, τ) ∈ [0, 1] ×
(0, 1). If not, one can extend it to a compactly supported function φ̄ on [0, 1] × (−1, 2): restricting the Lagrangian 
parameterization (ω̃φ̄, χφ̄) for φ̄, defined as described below, to the open set

ω̃ := {
(s, τ ) ∈ ω̃φ̄ : χφ̄(s, τ ) ∈ (0,1)

}
,

one will get a Lagrangian parameterization for φ. The assumption of τ compactly supported in (0, 1) implies that 
there are two characteristics, one starting from (0, 0) and one from (0, 1), which satisfy γ̇ (s) = φ(s, γ (s)) ≡ 0. This 
means respectively γ (s) ≡ 1 and γ (s) ≡ 0 for each s ∈ [0, 1].
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Step 2. After this simplification, we associate to each point (s̄, ̄t) ∈ [0, 1]2 a curve γ (s; ̄s, ̄t) which is minimal 
forward in s, maximal backward:

γ (s; s̄, t̄ )=
{

γ(s̄,t̄)(s) s ≥ s̄,

γ (s̄,t̄)(s) s < s̄.

where γ(s̄,t̄)(s), γ (s̄,t̄)(s) were defined in (4.1). Notice that the curves γ (·; ̄s, ̄t) are defined on the whole [0, 1]. Let us 
denote by

C := {
γ (·; s̄, t̄ ) : [0,1]→ [0,1], (s̄, t̄ ) ∈ [0,1]2}.

We will endow C by the topology of uniform convergence on [0, 1] and the following total order relation

γ (·; s1, t1)� γ (·; s2, t2) ⇐⇒ γ (s; s1, t1)≤ γ (s; s2, t2) ∀s ∈ [0,1]. (4.2)

Let us denote by C∗ the closure of C ⊂ C0([0, 1]) endowed with the topology of uniform convergence. We prove in 
the rest of this step the following claims:

C∗ is compact; (4.3)

the total order relation (4.2) still applies in C∗; (4.4)

C∗ is connected; (4.5)

C∗ is still a family of characteristic curves for φ, (4.6)

i.e. for each γ ∈ C∗ γ̇ (s) = φ(s, γ (s)) ∀s ∈ [0, 1].
Proof of (4.3). Since C is a family of equi-Lipschitz continuous and bounded functions of C0([0, 1]), then, from 

Arzelà–Ascoli’s theorem C∗ is compact.
Proof of (4.4). Let γ, γ̃ ∈ C∗ and let us prove that γ � γ̃ or γ̃ � γ . By definition there are two sequences 

{γh}h, {γ̃ }h ⊂ C such that γh → γ and γ̃h → γ̃ uniformly on [0, 1]. Assume γ �= γ̃ , then there is s0 ∈ [0, 1] such 
that

γ̃ (s0) < γ (s0) or γ (s0) < γ̃ (s0).

For instance, let γ̃ (s0) < γ (s0) and let us prove that

γ̃ (s)≤ γ (s) ∀s ∈ [0,1]. (4.7)

Let 0 < ε <
γ(s0)−γ̃ (s0)

2 , there exists h̄= h̄(ε) such that∣∣γ (s)− γh(s)
∣∣ < ε and

∣∣γ̃ (s)− γ̃h(s)
∣∣ < ε ∀s ∈ [0,1], ∀h > h̄. (4.8)

From (4.8) it follows that

γ̃h(s0) < γ̃ (s0)+ ε < γ (s0)− ε < γh(s0), ∀h > h̄.

Because γ̃h and γh are ordered, it follows that γ̃h(s) ≤ γh(s) ∀s ∈ [0, 1], ∀h > h̄. Passing to the limit as h →∞ in the 
previous inequality, we get (4.7).

Proof of (4.5). By contradiction, suppose that C∗ = C1 ∪ C2, with C1 and C2 non-empty, closed sets in C0([0, 1]). 
It is well-known that, from (4.3) and (4.4), for each subset A ⊂ C∗ there exists the least upper bound (or supremum) 
and greatest lower bound (or infimum) of A; we will denote respectively by supA, infA. Thus let

l1 := infC1 ≤ L1 := supC1, l2 := infC2 ≤ L2 := supC2.

Because C1 and C2 are closed, l1, L1 ∈ C1 and l2, L2 ∈ C2. Since C1 ∩ C2 = ∅, we have L1 � l2 or L2 � l1. Assume, 
for instance, that L1 � l2. Then L1(s) ≤ l2(s) ∀s ∈ [0, 1] and L1(s0) < l2(s0) for a suitable s0 ∈ [0, 1]. Let

s̄ := s0, t̄ := L1(s0)+ l2(s0)

2
, γ (s) := γ (s; s̄, t̄ ) s ∈ [0,1].

By definition, γ ∈ C ⊆ C∗, but L1 � γ � l2 and therefore we have a contradiction since γ /∈ C1 ∪ C2 = C∗.
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Proof of (4.6). Let γ ∈ C∗, then by definition there exists a sequence {γh}h ⊂ C such that γh → γ uniformly in 
[0, 1]. Because

γh(s)− γh(0)=
sˆ

0

φ
(
σ,γh(σ )

)
dσ ∀σ ∈ [0,1], ∀h,

passing to the limit as h →∞ in the previous identity we get (4.6).
Step 3. Let us now consider the map θ : C∗ →R defined by

θ(γ ) :=
∞∑

k=0

1

2k
γ (rk)

where {rk}k∈N is an enumeration of Q ∩ [0, 1]. Notice that θ satisfies the following properties:

θ is continuous; (4.9)

θ is strictly order preserving, that is θ(γ1) < θ(γ2) if γ1 ≺ γ2; (4.10)

θ
(
C∗

)= [0,2]; (4.11)

there exists θ−1 : [0,2]→ C∗ continuous. (4.12)

Indeed (4.9) and (4.10) immediately follow by the definition of θ . Equality (4.11) follows by (4.5) and (4.9) noticing 
that θ(γ (·; 0, 0)) = 0, θ(γ (·; 0, 1)) = 2; (4.12) is a consequence of (4.3), (4.10) and (4.11). Eventually let us consider 
the map χ : [0, 1] × [0, 2] →[0, 1]

χ(s, τ ) := θ−1(τ )(s) if (s, τ ) ∈ [0,1] × [0,2].
Then, from (4.12), χ is continuous. Moreover the map Υ : (0, 1) ×(0, 2) → (0, 1)2, defined by Υ (s, τ) := (s, χ(s, τ)), 
turns out to be a full Lagrangian parameterization associated to φ : (0, 1)2 →R. �
Remark 4.3. Notice that the same construction works with more variables, considering analogous characteristic curves 
γ (s; ̄s, ̄̂zn, ̄t)—having the same order relation at ¯̂zn frozen—and the relative parameterization given by χ(s, ̂zn, τ) :=
γ (s; ̄s, ̂zn, ̄t) with τ = θ(γ (s; ̄s, ̂zn, ̄t)) defined as above. The continuity in ẑn however is not guaranteed.

5. Distributional solutions = Intrinsic Lipschitz graphs

In this section we prove Theorem 1.1 about the distributional characterization of intrinsic Lipschitz graphs, without 
dimensional restrictions.

5.1. Some properties of distributional solutions

Preliminary we highlight here two properties of continuous distributional solutions φ(z, t) to the problem 
∇φφ =w. In particular we need regularity results of the solution along the characteristics lines γ of the fields ∇φ

j . In 
the case of the non-linear field Wφ , the integral curves of γ̇ (s) = φ(s, ̂zn, γ (s)) exist by the continuity and bounded-
ness of φ.

Lemma 5.1. Let ω ⊂ W be an open set. A continuous distributional solution φ : ω → R to ∇φφ = w in ω is 
‖wn‖L∞(ω)-Lipschitz along any characteristic line γ : [−δ, δ] →R satisfying

γ̇ (s)= φ
(
s, ẑn, γ (s)

)
s ∈ [−δ, δ], ẑn fixed.
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Proof. In the same way in Dafermos [15] for n = 1 and as in [7, Theorem 1.2], for n ≥ 2, we obtain for a, b ∈ (−δ, δ)
and ẑn fixed

γ (b)+εˆ

γ (b)

φ(b, ẑn, t)dt −
γ (a)+εˆ

γ (a)

φ(a, ẑn, t)dt −
bˆ

a

γ (s)+εˆ

γ (s)

wn(s, ẑn, t) dt ds

=−
bˆ

a

[
φ
(
s, ẑn, γ (s)+ ε

)− φ
(
s, ẑn, γ (s)

)]2
ds ≤ 0 (5.1)

and then

γ (b)+εˆ

γ (b)

φ(b, ẑn, t)dt −
γ (a)+εˆ

γ (a)

φ(a, ẑn, t)dt ≤
bˆ

a

γ (s)+εˆ

γ (s)

wn(s, ẑn, t) dt ds

≤ ‖wn‖L∞(ω)(b− a)ε.

Dividing by ε and getting to the limit to ε → 0 we obtain

φ
(
b, ẑn, γ (b)

)− φ
(
a, ẑn, γ (a)

)≤ ‖wn‖L∞(ω)(b− a).

The opposite inequality is obtained in a similar way integrating on the left of the characteristic. �
We obtain the same result of Lemma 5.1 for the linear fields Xj , j = 2, . . . , n, n + 2, . . . , 2n, following the same 

proof.

Lemma 5.2. Let ω ⊂ W be an open set. A continuous distributional solution φ : ω → R to ∇φφ = w is 
‖wj‖L∞(ω)-Lipschitz along any characteristic line Γ : [−δ, δ] → ω satisfying

Γ̇ (s)=∇φ
j

(
Γ (s)

)
j = 1, . . . , n− 1, n+ 1, . . . ,2n− 1.

We pass now to the Hölder continuity in the other variable.

Lemma 5.3. Let Q1 = [−δ, δ] ×[τ0−δ1, τ0+δ1] and Q2 = [−δ, δ] ×[τ0−δ, τ0+δ] with 0 < δ < δ1. Let f ∈C0(Q1)

and γ :Q2 →[τ0 − δ1, τ0 + δ1] be given such that

(i) γ (·, τ) ∈ C1([−δ, δ]) ∀τ ∈ [τ0 − δ, τ0 + δ]. 
(ii)

{
dγ
ds

(s, τ )= f (s, γ (s))

γ (0, τ )= τ
∀s ∈ [−δ, δ], ∀τ ∈ [τ0 − δ, τ0 + δ]. 

(iii) ∃L > 0 such that∣∣f (
s, γ (s, τ )

)− f
(
s′, γ

(
s′, τ

))∣∣≤ L
∣∣s − s′

∣∣ ∀s, s′ ∈ [−δ, δ], ∀τ ∈ [τ0 − δ, τ0 + δ].
Then ∀τ1, τ ∈ [τ0 − δ, τ0 + δ], |τ1 − τ | < δ4

16 ,∣∣f (0, τ1)− f (0, τ )
∣∣≤ 2

√
2L

√|τ1 − τ2|.

Proof. Let 0 < r0 < δ4

16 and let us denote

β := L, α := max
{
2
√

2L, r
1/4
0

}
, f0(τ )= f (0, τ ).

Let us observe that β

α2 ≤ 1
8 .

By contradiction, let us assume there exist −δ ≤ τ2 < τ1 ≤ δ, 0 < r̄ < r0 < δ such that

0 < |τ1 − τ2| ≤ r̄ (5.2)
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|f0(τ1)− f0(τ2)|√
τ1 − τ2

> α. (5.3)

The idea of the proof is the following: the Lipschitz condition in the hypothesis is an upper bound on the second 
derivative of the mentioned curves γ . Therefore, if their first derivative wants to change it takes some time in s. If we 
assume that at s = 0 the first derivative differs at two points τ1, τ2 at least of the ratio (5.3), then the relative curves 
γ1, γ2 starting from those points must meet soon. However, at the time they meet the first derivative did not have the 
time to change enough to become equal, providing an absurd.

Let us introduce curves γ1, γ2 such that for i = 1, 2, s ∈ (−δ, δ)

γ̇i(s)= f
(
s, γi(s)

)
,

γi(0) := τi .

We observe that, by our Lipschitz assumption, d
ds

f (s, γi(s)) := hi(s) is a function bounded by L. Therefore we can 
represent each γi(s) for each s ∈ [−δ, δ] as

γi(s)= τi +
sˆ

0

f
(
σ,γi(σ )

)
dσ

= τi + f0(τi) s +
sˆ

0

σ̂

0

hi(z) dz dσ. (5.4)

In particular by the second equality in (5.4), for −δ ≤ s ≤ δ,

γ1(s)− γ2(s)≤ τ1 − τ2 +
(
f0(τ1)− f0(τ2)

)
s + 2βs2. (5.5)

By (5.3) we get either

f0(τ1)− f0(τ2) < −α
√

τ1 − τ2 (5.6)

or

f0(τ1)− f0(τ2) > α
√

τ1 − τ2. (5.7)

Let us prove now that if (5.6) holds then there exists 0 < s∗ < δ such that

γ1
(
s∗

)= γ2
(
s∗

)
. (5.8)

Let s̄ := 2
√

τ1−τ2
α

then

s̄ ∈ [0, δ], γ1(s̄)≤ γ2(s̄). (5.9)

Indeed by (5.2) and the definition of α, s̄ = 2 
√

τ1−τ2
α

≤ 2 (τ1 − τ2)
1/4 ≤ 2 ̄r1/4 ≤ δ. On the other hand by (5.5) (with 

s = s̄), (5.6) gives

γ1(s̄)− γ2(s̄)≤ τ1 − τ2 − 2 (τ1 − τ2)+ 8β

α2
(τ1 − τ2)

= (τ1 − τ2)

(
−1+ 8β

α2

)
≤0

Then (5.9) follows. Let

s∗ := sup
{
s ∈ [0, δ] : γ1(s) > γ2(s)

}
then by (5.8) 0 < s∗ < s̄ ≤ δ and it satisfies (5.8).
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If (5.7) holds we can repeat the argument reversing the s-axis getting that there exist −δ < s∗ < 0 such that (5.8)
still holds.

Let us prove now that

f
(
s∗, γ1

(
s∗

)) �= f
(
s∗, γ2

(
s∗

))
, (5.10)

then a contradiction and the thesis will follow. Indeed, for instance, let us assume (5.6). Then by (5.4) and the bound 
on hi

f
(
s∗, γ1

(
s∗

))− f
(
s∗, γ2

(
s∗

))= f0(τ1)− f0(τ2)+
s∗ˆ

0

h1(σ )− h2(σ )dσ

≤ f0(τ1)− f0(τ2)+ 2β s∗ ≤ f0(τ1)− f0(τ2)+ 2β s̄

≤ −α
√

τ1 − τ2 + 2
2β

α

√
τ1 − τ2

≤ 2α
√

τ1 − τ2

[
−1

2
+ 2β

α2

]
.

Therefore we get that

f
(
s∗, γ1

(
s∗

))− f
(
s∗, γ2

(
s∗

))
< 0

and (5.10) follows. �
5.2. Proof of the equivalence

We are now able to give the proof of Theorem 1.1. We distinguish the two different implications in the following 
two lemmas.

Lemma 5.4. Let ω ⊂ W be an open set and w ∈ L∞
loc(ω; R2n−1). If φ is a continuous distributional solution of 

∇φφ =w in ω, then φ ∈ LipW,loc(ω).

Proof. Let B = (zn, ̂zn, t), B ′ = (z′n, ̂z′n, t ′) ∈ Iδ0(A) for a sufficiently small δ0. For n ≥ 2 let X, Wφ be the vector 
fields given by

X :=
2n−1∑
j=1
j �=n

(
z′j − zj

)∇φ
j + 1

2

n−1∑
j=1

(
z′j − zj

)(
z′n+j − zn+j

)
T , Wφ := ∂

∂zn

+ φ
∂

∂t
.

We apologize for the following abuse of notations. Taking the classical notion into account, we denote by

[−δ0, δ0] � t �→ exp
(
tWφ

)
(B) ∈ ω

a solution Γ : [−δ0, δ0] → ω of the problem{
Γ̇ (t)=Wφ

(
Γ (t)

)
Γ (0)= B

.

Define

B∗ := exp(X)(B)

= B ·
(

0,
(
z′1 − z1, . . . , z

′
n−1 − zn−1, z

′
n+1 − zn+1, . . . , z

′
2n−1 − z2n−1

)
, t + 1

2

n−1∑
j=1

(
z′j − zj

)(
z′n+j − zn+j

))

=
(

zn, ẑ
′
n, t +

1

2

n−1∑
j=1

(
z′j − zj

)(
z′n+j − zn+j

)− σ
(
ẑ′, ẑ

))

B ′′ := exp
((

z′n − zn

)
Wφ

)(
B∗)= (

z′n, ẑ′n, t ′′
) (

for a certain t ′′
)
.
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Observe that B∗ and B ′′ are well defined, if B, B ′ ∈ Iδ0(A) for a sufficiently small δ0. Moreover, by the Baker–

Campbell–Hausdorff formula, since the only non-vanishing commutators are [∇φ
j , ∇φ

n+j ] = T , we get

exp(X)(B)= exp
((

z′2n−1 − z2n−1
)∇φ

2n−1

) ◦ · · · ◦ exp
((

z′n+1 − zn+1
)∇φ

n+1

)
◦ exp

((
z′n−1 − zn−1

)∇φ
n−1

) ◦ · · · ◦ exp
((

z′1 − z1
)∇φ

1

)
(B). (5.11)

For n = 1, X is not defined and we set B∗ = B and B ′′ := exp((z′n − zn)W
φ)(B) = (z′n, t ′′).

We have to show that there exists L > 0 such that∣∣φ(B)− φ
(
B ′)∣∣≤Ldφ

(
B,B ′) ∀B,B ′ ∈ Iδ0(A). (5.12)

We have∣∣φ(B)− φ
(
B ′)∣∣≤ ∣∣φ(B)− φ

(
B∗)∣∣+ ∣∣φ(

B∗)− φ
(
B ′′)∣∣+ ∣∣φ(

B ′′)− φ
(
B ′)∣∣ (5.13)

Let us now prove that, if n ≥ 2,

∣∣φ(B)− φ
(
B∗)∣∣≤

(
2n−1∑
j=1
j �=n

‖wj‖L∞(ω)

)∣∣ẑ′n − ẑn

∣∣ (5.14)

from which we will get∣∣φ(B)− φ
(
B∗)∣∣≤ L1dφ

(
B,B ′) (5.15)

with L1 := ∑2n−1
j=1

j �=n+1

‖wj‖L∞(ω). Define B0 = B , Bj = exp((z′j − zj )∇φ
j )(Bj−1) if 1 ≤ j ≤ n − 1 and Bj =

exp((z′j+1 − zj+1)∇φ
j+1)(Bj−1) if n ≤ j ≤ 2n − 2. From Lemma 5.2 and (5.11) it follows that

∣∣φ(
B∗)− φ(B)

∣∣= ∣∣φ(B2n−2)− φ(B0)
∣∣≤ 2n−2∑

j=1

∣∣φ(Bj )− φ(Bj−1)
∣∣

≤
2n−1∑
j=1
j �=n

‖wj‖L∞(ω)

∣∣z′j − zj

∣∣

and (5.14) follows. From Lemma 5.1∣∣φ(
B ′′)− φ

(
B∗)∣∣≤ ‖wn‖L∞(ω)

∣∣z′n − zn

∣∣ (5.16)

and then |φ(B ′′) − φ(B∗)| ≤ L2dφ(B, B ′) with L2 := ‖wn‖L∞(ω). By using Lemmas 5.1 and 5.3 and arguing as in 
the proof of [6, Theorem 3.2], it can be proved that there exists a positive constant L3 = L3(‖wn‖L∞(ω)) > 0 such that

∣∣φ(
B ′)− φ

(
B ′′)∣∣≤ L3

√∣∣t ′ − t ′′
∣∣ (5.17)

Let us observe that

∣∣t ′ − t ′′
∣∣ =

∣∣∣∣∣t ′ − t − 1

2

n−1∑
j=1

(
z′j − zj

)(
z′n+j − zn+j

)+ σ
(
ẑ′n, ẑn

)

−
z′n−znˆ

0

φ
(
exp

(
sWφ

)(
B∗))ds

∣∣∣∣∣
≤

∣∣∣∣∣t ′ − t − 1

2

(
φ
(
B ′)+ φ(B)

)(
z′n − zn

)+ σ
(
ẑ′n, ẑn

)∣∣∣∣∣+ ∣∣ẑ′n − ẑn

∣∣2
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+ 1

2

∣∣∣∣∣(φ(
B ′)+ φ(B)

)
(z′n − zn)− 2

z′n−znˆ

0

φ
(
exp

(
sWφ

)(
B∗))ds

∣∣∣∣∣
≤ dφ

(
B ′,B

)2 + 1

2

∣∣φ(
B ′)− φ

(
B ′′)∣∣∣∣z′n − zn

∣∣+ 1

2

∣∣φ(
B∗)− φ(B)

∣∣∣∣z′n − zn

∣∣

+ 1

2

∣∣∣∣∣[φ(B ′′)+ φ(B∗)
]
(z′n − zn)− 2

z′n−znˆ

0

φ
(
exp

(
sWφ

)(
B∗))ds

∣∣∣∣∣
=: dφ

(
B ′,B

)2 +R1
(
B ′,B

)+R2
(
B ′,B

)+R3
(
B ′,B

)
. (5.18)

For the case n = 1 we arrive to (5.18) with the same line (it is sufficient to follow the same steps “erasing” the term 
σ(ẑ′n, ̂zn)).

Now we want to prove that for all ε > 0 there exists C1 = C1(ε) > 0 such that

R1
(
B ′,B

)≤ C1
∣∣z′n − zn

∣∣2 + ε
∣∣t ′ − t ′′

∣∣ (5.19)

for all B ′, B ∈ Iδ0(A) and that there exist C2, C3 > 0 such that

R2
(
B ′,B

)≤ C2dφ

(
B ′,B

)2 (5.20)

R3
(
B ′,B

)≤ C3
∣∣z′n − zn

∣∣2 (5.21)

for all B ′, B ∈ Iδ0(A),
These estimates are sufficient to conclude: in fact, choosing ε := 1/2 and using (5.18), (5.21), (5.19) and (5.20), 

we get∣∣t ′ − t ′′
∣∣≤ dφ

(
B ′,B

)2 +C1
∣∣z′n − zn

∣∣2 + ∣∣z′n − zn

∣∣2 + ∣∣t ′ − t ′′
∣∣/2+C2dφ

(
B ′,B

)2

whence there exists C4 > 0 such that∣∣t ′ − t ′′
∣∣1/2 ≤C4 dφ

(
B,B ′).

Then by (5.17) the desired estimate (5.12) follows.
By (5.17) we obtain

R1
(
B ′,B

)≤ 2L3

√∣∣t ′ − t ′′
∣∣∣∣z′n − zn

∣∣≤ ε
∣∣t ′ − t ′′

∣∣+ L2
3

ε

∣∣z′n − zn

∣∣2
,

whence (5.19) follows.
Observe that (5.20) follows from R2(B, B ′) = 0 if n = 1, and from

R2
(
B ′,B

)= 1

2

∣∣z′n − zn

∣∣∣∣φ(B)− φ
(
B∗)∣∣

≤ 2C2
∣∣z′n − zn

∣∣∣∣ẑ′n − ẑn

∣∣≤C2
∣∣z′ − z

∣∣2 ≤ C2dφ

(
B ′,B

)2

if n ≥ 2. Finally, for s ∈ [−δ0, δ0] we can define

g(s) := 2

sˆ

0

φ
(
exp

(
rWφ

)(
B∗))dr − [

φ
(
exp

(
sWφ

)(
B∗))+ φ

(
B∗)]s; (5.22)

We have

g(s)= 2

sˆ [
φ
(
exp

(
rWφ

)(
B∗))− φ

(
B∗)]dr − [

φ
(
exp

(
sWφ

)(
B∗))− φ

(
B∗)]s = O

(
s2)
0
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because (−δ0, δ0) � s �→ φ(exp(sWφ)(B∗)) is Lipschitz by Lemma 5.1. Therefore (5.21) follows with s =
z′n − zn. �
Corollary 5.5. Let ω⊂W be an open set and w ∈L∞(ω; R2n−1). If φ ∈ C0(ω) is a distributional solution of ∇φφ =
w in ω, then for each ω′ � ω there exists a positive constant C = C(ω′) > 0 such that∣∣φ(A)− φ(B)r

∣∣≤ C
√|A−B| ∀A,B ∈ ω′ (5.23)

Lemma 5.6. If φ ∈ LipW,loc(ω), then φ is a distributional solution of ∇φφ =w in ω for a suitable w ∈ L∞
loc(ω, R2n−1)

such that w(A) =∇φφ(A) L2n-a.e. A ∈ ω.

Proof. By Theorem 2.15 there exist {φk}k∈N ⊂ C∞(ω), such that {φk}k uniformly converges to φ on the compact sets 
of ω, |∇φkφk(A)| ≤ C L2n-a.e. A ∈ ω for every k ∈ N and ∇φkφk(A) → w(A) L2n-a.e. A ∈ ω. Therefore, denoting 
wk := ∇φkφk , we have for every k ∈N and for every ϕ ∈ C∞

c (ω)ˆ

ω

φkXjϕ dL2n =−
ˆ

ω

wj,kϕ dL2n, j = 1, . . . , n− 1, n+ 1, . . . ,2n− 1

ˆ

ω

(
φk

∂ϕ

∂zn

+ 1

2
φ2

k

∂ϕ

∂t

)
dL2n = −

ˆ

ω

wn,kϕ dL2n.

Getting to the limit for k →∞ we obtainˆ

ω

φXjϕ dL2n =−
ˆ

ω

wjϕ dL2n, j = 1, . . . , n− 1, n+ 1, . . . ,2n− 1

ˆ

ω

(
φ

∂ϕ

∂zn

+ 1

2
φ2 ∂ϕ

∂t

)
dL2n = −

ˆ

ω

wnϕ dL2n

i.e. φ is a distributional solution of the problem ∇φφ =w in ω. �
From Lemmas 5.4 and 5.6, Theorem 2.16 and Remarks 2.10 and 2.17, it follows that

Corollary 5.7. Let ω ⊂W be an open set. If φ ∈ C0(ω) is a distributional solution of ∇φφ = w in ω for a suitable 
w ∈ L∞

loc(ω; R2n−1) then φ is ∇φ-differentiable L2n-a.e. in ω and ∇φφ(A) =w(A) L2n-a.e. A ∈ ω.

6. Further equivalences

In the previous section we established the equivalence between

‘φ : ω ⊂W≡⊂R2 →R is intrinsic Lipschitz continuous with intrinsic gradient w̃’

and, denoting by w the distribution identified by the bounded, a.e defined function w̃,

‘φ ∈ C0(ω) and there exists w ∈L∞(
ω;R2n−1) such that ∇φφ =w in D′(ω)’.

We establish now in Section 6.2 the following characterization: one can reduce the PDE

∇φφ =w in ω

along any integral line of the vector fields ∇φ
i , i = 1, . . . , 2n − 1. This involves as an essential point a suitable choice 

of the L∞(ω; R2n−1) representative ŵ of the distribution identified by w.
As an introduction, we first prove in Section 6.1 the following weaker statement: one can reduce the PDE to 

ODEs along a selected family of characteristics constituting a Lagrangian parameterization. As well, the converse 
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holds: if the ODEs on characteristics are satisfied, one has a continuous distributional solution to the PDE. The 
sources of the two formulations can be identified, but the explicit proof is not contained in this section. Once proved 
that Lagrangian solutions are intrinsic Lipschitz continuous functions, the latter implication is known from [11], as 
recalled in Lemma 5.6. A different proof is in [1].

The conclusion of this last section will be the following.

Corollary 6.1. The various notions of continuous solutions to (3.1), (3.2) we defined are equivalent.

6.1. Distributional solutions are Lagrangian solutions

The present section is an introduction to the next one, which proves the stronger statement that distributional 
solutions are broad solutions. Being technically simpler, this section provides a guideline for some ideas implemented 
next. One can in particular notice that the proof concerns only ODEs.

In order to avoid technicalities we focus on n = 1 and we do proofs for ω = [0, 1]2 and ω̃ = [0, 1]2. We maintain 
the different notations for ω and ω̃ in order to distinguish better domain and codomain of χ . We refer to Section 6.2
for the stronger statement with the universal source term ŵ.

Lemma 6.2. Let φ : [0, 1]2 →R be a continuous function. Consider a Lagrangian parameterization ([0, 1]2, χ(s, τ))

and assume that [0, 1] � s �→ φ(s, χ(s, τ)) is Lipschitz continuous for all τ ∈ [0, 1]. Then there exists a Borel function 
w̄ : [0, 1]2 →R such that for all τ

∂φ

∂s

(
s,χ(s, τ )

)= ∂2χ

∂s2
(s, τ )= w̄

(
s,χ(s, τ )

)
for L1-a.e. s ∈ [0,1].

Corollary 6.3. If a function φ : [0, 1]2 →R is

• either an intrinsic Lipschitz continuous function with intrinsic gradient w
• or a continuous distributional solutions φ of the balance law (3.1)

then it is a Lagrangian solution to the equation ∇φφ = w̄ in [0, 1]2 for a bounded function w̄ : [0, 1]2 → R which 
identifies the L1-function w.

Proof of Corollary 6.3. The existence of a Lagrangian parameterization has been given in Lemma 4.2. By Re-
mark 2.14 an intrinsic Lipschitz continuous function is continuous and Lipschitz along characteristics. Also contin-
uous distributional solutions to the balance law (3.1) are Lipschitz continuous along characteristics by Lemma 5.1. 
Then from Lemma 6.2, properties (LS1) and (LS2) immediately follow. The identification of w and w̄ is not the point 
here, but we mention how can be deduced.

Eventually, if ∇φφ =w in [0, 1]2 in sense of distributions, then by Corollary 5.7

dWφ(A)(e1)=∇φφ(A)=w(A) L2-a.e. A ∈ ω. (6.1)

On the other hand, if

∂φ

∂s

(
s,χ(s, τ )

)= w̄
(
s,χ(s, τ )

)
L1-a.e. s ∈ [0,1], ∀τ ∈ [0,1]

and χ(s, ·) : [0, 1] →[0, 1] is onto, by Remark 2.14, we also get that

dWφ(A)(e1)=∇φφ(A)= w̄(A) L2-a.e. A ∈ [0,1]2. (6.2)

Thus by (6.1) and (6.2), (LS3) follows. �
Proof of Lemma 6.2. We prefer to distinguish the notations for the domains ω̃ and ω, even if both are [0, 1]2. This is 
important to make clear in which space we are defining the functions. We remind the notation

Υ : ω̃ → ω Υ (s, τ ) := (
s,χ(s, τ )

)
.

Step 1: Second derivative in ω̃.
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Claim. The subset B ⊂ ω̃ of those (s, τ) where χ(s, τ) is twice s-differentiable is a full measure, Fσδ set. ∂
2χ

∂s2 (s, τ) is 
a Borel function on it.

Proof. By assumption ∂χ
∂s

(s, τ) = φ(s, χ(s, τ)) is Lipschitz continuous in s, therefore ∂
2χ

∂s2 (s, τ) is a Borel function on 
its domain. Moreover, the subset B ⊂ ω̃ of those (s, τ) where χ(s, τ) is twice s-differentiable must have full measure 
by Tonelli theorem, because each τ -section has full measure by the Lipschitz continuity of φ(s, χ(s, τ)). Being φ
continuous, one can see that B is an Fσδ set: just write it as

⋂
ε↓0

⋃
r∈Q

⋃
δ>0

{
(s, τ ) : φ(Bδ(s, τ ))− φ(s, τ )

δ
⊂ Bε(r)

}
.

The second differentiability of χ(s, τ) however does not answer the question: the function ∂2χ

∂s2 (s, τ) is defined on ω̃, 
while we are looking for a function defined on ω.

Step 2: A preliminary comment. In order to check that Υ lifts ∂2χ

∂s2 to a map w̄ a.e. defined on ω, which would 
provide our thesis, it would be natural to show that

• Υ (B) is a Lebesgue measurable subset of ω with full measure;

• ∂2χ

∂s2 (s, τ) is constant on the level set of Υ intersected with B .

Since χ is not Lipschitz, we do not manage to prove at this point that Υ (B) has full measure. We instead assign 
a specific value, 0, to the function out of Υ (B). This choice of the extension does not affect our claim. We notice 
moreover that the second point is not true in that strong form, but we show that the points of the level set of Υ

corresponding to more values of ∂
2χ

∂s2 are not relevant.
Step 3: Analysis of Υ (B) and partial inverse of Υ . The proof of the Borel measurability of Υ (B) requires some 

technicality: we apply a theorem due to Srivastava ([27], Theorem 5.9.2) deriving that there exists a Borel restriction 
which is one-to-one with image Υ (B). Precisely we mean that there exists a Borel set S and a Borel injective function

Ξ−1 : S ⊂ ω̃ → Υ (B)⊂ ω s.t. Ξ−1(s, τ )≡ Υ (s, τ ) ∀(s, τ ) ∈ S, Im
(
Ξ−1)= Υ (B).

This implies that Υ (B) is a Borel image by a one-to-one map. Theorem 4.12.4 in [27], due to Lusin, asserts then on 
one hand that Υ (B) is Borel, and moreover that this restriction Ξ−1 has a Borel inverse

Ξ : Υ (ω̃)⊂ ω → ω̃.

We are left now with checking that we can apply Srivastava’s theorem. We partition ω̃ into the level sets of Υ , 
which are Gδ . Indeed it is easy to see that, if (s0, t0) ∈ Υ (ω̃), then

Υ −1((s0, t0)
)= {s0} × It0

where It0 is a closed bounded interval. In order to prove the Borel measurability of the partition {Υ −1((s0, t0)) :
(s0, t0) ∈ Υ (ω̃)}, see [27, Section 5.1], let us prove that Υ −1(Υ (O)) is a Borel set for each open set O ⊂ R2. For 
simplicity, consider the case when χ is already a full parameterization and thus it is continuous (see Remark 3.6). 
Every open set O is σ -compact: thus, by continuity, Υ (O) is σ -compact, and finally Υ −1(Υ (O)) is σ -compact. 
Therefore by Srivastava’s theorem there is a Borel cross section S for the partition: defining the function Ξ−1 as the 
restriction of Υ to S ∩B , then Ξ−1 is Borel, injective and onto Υ (B).

Step 4: Analysis of ∂
2χ

∂s2 (s, τ) for (s, τ) ∈ B . We can define w̄ as

w̄(s, τ )=
{

∂2χ

∂s2 (Ξ(s, τ )) (s, τ ) ∈ Υ (B),

0 (s, τ ) ∈ ω \Υ (B)

This map satisfies the claim by the next analysis of the set where ( ∂2χ
2 ) ◦Υ −1 is multivalued.
∂s
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Step 5: Analysis of multivalued points of ( ∂2χ

∂s2 ) ◦ Υ −1. The set of points (s, τ) ∈ B such that there exists (s̄, τ̄ ) ∈ B

satisfying Υ (s, τ) = Υ (s̄, τ̄ ) and ∂
2χ

∂s2 (s, τ) �= ∂2χ

∂s2 (s̄, τ̄ ) is Borel: just see it as

M := Υ −1 ◦Υ

({
(s, τ ) ∈ B :

∣∣∣∣∂2χ

∂s2
(s, τ )− ∂2χ

∂s2

(
Ξ

(
Υ (s, τ )

))∣∣∣∣ > 0

})
.

The value of w̄ on this set is not at all relevant: we show below that for any fixed τ ∈ [0, 1] the intersection of Υ (M)

with the characteristics curve {χ(s, τ)}s∈[0,1] is at most countable.
Fix m ∈N and let

M∗
m := Υ

({
(s, τ ) ∈ B : 1

m
≤

∣∣∣∣∂2χ

∂s2
(s, τ )− ∂2χ

∂s2

(
Ξ

(
Υ (s, τ )

))∣∣∣∣≤m

})
.

Let us prove that the set {s ∈ [0, 1] : (s, τ) ∈ B and Υ ((s, τ)) ∈M∗
m∩{χ(s, τ)}s∈[0,1]} is composed by isolated points. 

From which it follows that

Υ (M)∩ {
χ(s, τ )

}
s∈[0,1] =

∞⋃
m=1

(
M∗

m ∩ {
χ(s, τ )

}
s∈[0,1]

)
is at most countable.

Indeed, fix a curve γ (s) := γ (s, τ), for simplicity assume that γ (s) = 0. Let (s̄, τ) ∈ B be such that Υ (s̄, τ) ∈
M∗

m ∩ {γ (s)}s∈[0,1], let (s̄, τ ′) :=Ξ(Υ (s̄, τ)), let γ ′ : [0, 1] →R be the function defined by γ ′(s) := χ(s, τ ′). Notice 
that, in particular,

γ ′(s̄)= γ (s̄)= 0, γ̇ ′(s̄)= φ
(
s̄, γ ′(s̄)

)= φ
(
s̄, γ (s̄)

)= γ̇ (s̄)= 0

and we can assume, for instance, that

1

m
≤ γ̈ ′(s̄)≤m.

By Taylor’s expansion, there exists δ̄ = δ(s̄) > 0 such that

(s − s̄)2

3m
≤ γ ′(s)≤ 3

2
m(s − s̄)2 ∀s ∈ (s̄ − δ̄, s̄ + δ̄). (6.3)

By contradiction, assume there exists a different (s̄2, τ) ∈ B such that Υ (s̄2, τ) ∈M∗
m ∩ {γ (s)}s∈[0,1] and |s̄ − s̄2| < δ̄. 

Let (
s̄2, τ

′
2

) :=Ξ
(
Υ (s̄2, τ )

)
, γ ′

2(s) := χ
(
s, τ ′2

)
s ∈ [0,1], δ̄2 = δ(s̄2).

Then, for instance, let s̄ < s̄2, by applying (6.3) with γ ′ and then with γ ′ ≡ γ ′
2, it follows that there exists ξ ∈ (s̄, ̄s2)

such that the curves {Υ (s, τ ′) : s ∈ [0, 1]} and {Υ (s, τ ′2) : s ∈ [0, 1]} intersect at s = ξ and cross each other. Then a 
contradiction for (L.2) of Definition 3.2. �
6.2. Distributional solutions are broad solutions

Below we show Theorem 6.6: there exists Borel functions ŵi(z, t), i = 1, . . . , 2n − 1, such that every curve Γi(s)

satisfying the ODE with continuous coefficient

Γ̇i(s)=∇φ
i

(
Γi(s)

)
has first derivative Lipschitz, and it satisfies in the sense of distributions

d

ds
φ
(
Γi(s)

)= ŵi

(
Γi(s)

)
.

For the nonlinear field i = n this is a statement on the second derivative of Γn(s). The remarkable fact is that ŵn(z, t)
could be defined independently of any set of characteristic curves. This is thus different, and stronger, from what we 
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already proved for n = 1, which is that there exists a Lagrangian parameterization χ and an associated function wχ

satisfying ∂
2χ

∂s2 (s, τ) =wχ(s, χ(s, τ)). The new point is indeed that ŵ is a universal representative for the source term.
Due to its nature this proof works for any n with no further complications. The only difference is that ω will be a 

subset of R2n instead of R2. We write it with n = 1 only for notational convenience. In particular we generalize here 
the previous Lemma 6.2.

Since the argument is more intuitive, we mention first how to construct such a Souslin function ŵ(z, t). We proceed 
then with the Borel construction because it gives a better result.

6.2.1. Souslin selection
The first step is to define pointwise, but in a measurable way, by von Neumann’s selection principle, a representative 

function ŵ : ω → R which will replace the original source w. More precisely, let (z, t) ∈ ω be a given point and 
consider the family of C1,1 curves [z− δ, z+ δ] � s �→ (s, γ (s)) ∈ ω with γ (z) = t satisfying

∃ lim
σ↓0

1

±σ

z±σˆ

z

γ̈ (s)ds = γ̈ (z) ∈R (6.4)

and

γ̇ (s)= φ
(
s, γ (s)

) ∀s ∈ [z− δ, z+ δ]. (6.5)

Then, by the afore-mentioned selection principle, we will define ŵ(z, t) := γ̈(z,t)(z) for a suitable curve γ(z,t) chosen 
among those satisfying (6.4) and (6.5).

Let φ : clos(ω) → R be continuous and assume that it is uniformly Lipschitz along characteristic curves, that is, 
there exists L > 0 such that for each curve [a, b] � s �→ (s, γ̄ (s)) ∈ ω satisfying ˙̄γ (s) = φ(s, γ̄ (s)) ∀s ∈ [a, b], it 
holds ∣∣ ˙̄γ (s)− ˙̄γ (

s′
)∣∣≤ L

∣∣s − s′
∣∣ ∀s, s′ ∈ [a, b]. (6.6)

Let δ > 0,

X = ωδ :=
{
(z, t) ∈ ω : dist

(
(z, t), ∂ω

)≥ δ‖φ‖∞
}
,

and

Y = C1([−δ, δ])× [−L,L]
where, in the following, ‖ · ‖∞:=‖ · ‖L∞(ω). We will denote by G = G(φ, L, δ) the subset of

ωδ ×C1([−δ, δ])× [−L,L] ⊃ G � (
(z, t), γ, ζ

)
defined by ((z, t), γ, ζ ) ∈ G if and only if

(G1) (z, t) ∈ ωδ

(G2) γ ∈ C1([−δ, δ]), (−δ, δ) � s �→ (s + z, γ (s)) ∈ ω,{
γ̇ (s)= φ

(
s + z, γ (s)

) ∀s ∈ [−δ, δ]
γ (0)= t

(G3)
∣∣γ̇ (s)− γ̇

(
s′

)∣∣≤L
∣∣s − s′

∣∣ ∀s, s′ ∈ [−δ, δ]

(G4) ζ ∈ [−L,L] and ζ = lim
σ↓0

1

±σ

z±σˆ

z

γ̈ (s)ds.

We are going to apply Von Neumann’s selection theorem ([27, Section 5.5], [16]) to the subset G, within the envi-
ronment of the space ωδ ×C1([−δ, δ]) × [−L, L] understood, with the same notation of [27], as a product of Polish 
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spaces X = ωδ and Y = C1([−δ, δ]) × [−L, L] endowed by their standard topologies. In order to apply Von Neu-
mann’s result, we need that G is, at least, universally measurable, even though we prove a better regularity from the 
measurability viewpoint in the lemma below.

Let ΠX :X × Y →X denote the projection on X = ωδ in the following.

Lemma 6.4. G is a Borel set.

Proof. Components ((z, t), γ ). Consider the closed subset(
(z, t), γ, ζ

) ∈ C ⊂ ωδ ×C1([−δ, δ])× [−L,L] (6.7)

identified by the constraints (G2) and (G3). Its projection is ΠX(C) = X = ωδ . Indeed one can find through every 
point a characteristic curve by Peano Theorem, and Lemma 5.1 ensures that φ is Lipschitz continuous along it.

Component ζ , discretization. In order to establish the existence (and the value) of the limit in (G4) for the second 
derivative of γz at z, it suffices to prove the existence of the limit for the sequence

hn+1 = hn − h2
n, h1 = 1/2.

Indeed, then for h ∈ (hn+1, hn], for example at z= 0∣∣∣∣∣ 1

h

hˆ

0

γ̈z − 1

hn

hnˆ

0

γ̈z

∣∣∣∣∣=
∣∣∣∣∣
(

1

h
− 1

hn

) hˆ

0

γ̈z − 1

hn

hnˆ

h

γ̈z

∣∣∣∣∣≤ 2L
hn − h

hn

.

By construction however

|hn − h| ≤ |hn − hn+1| = h2
n,

yielding that the existence of the limit along {hn}n implies the existence of the limit for any h ↓ 0. Notice that this 
would not hold choosing a generic h̃n ↓ 0 instead of {hn}n.

Measurability of G. The further condition (G3) can be written in terms of suitable sets Ck,n (k, n ∈ N), defined as 
the points ((z, t), γ, ζ ) such that

(z, t) ∈ ωδ, γz(z)= t,

∣∣∣∣ζ − γ̇z(z± hn)− γ̇z(z)

±hn

∣∣∣∣≤ 2−k.

Therefore, we can represent G as the set

G = C ∩
(⋂

k∈N

(⋃
n̄∈N

(⋂
n≥n̄

Ck,n

)))
. (6.8)

Since Ck,n is closed for each k, n ∈N, G is Borel. �
Remark 6.5. Let D :=ΠX(G) ⊆X = ωδ , then it has full measure, that is L2(D) = L2(ωδ). This property is proved in 
[1] only by assuming the uniform Lipschitz continuity of φ along its characteristic curves (that is (6.6)). Here we point 
out it easily follows by assuming that φ is intrinsic Lipschitz. Indeed, from Theorem 2.16, φ admits ∇φ-derivative for 
L2n-a.e. A ∈ ω. Thus, for L2n-a.e. A = (z, t) ∈ ω and for each characteristic curve [a, b] � s �→ (s, γ (s)) ∈ ω passing 
through A, it holds that ((z, t), γ, ∇φφ(A)) ∈ G by Remark 2.14.

By Lemma 6.4, we can apply Von Neumann theorem [27, Theorem 5.5.2] to define a Souslin selection of G in 
X × Y , that is a function

X = ωδ ⊇D :=ΠX(G) � (z, t) �→ (
γ(z,t), γ̈(z,t)(z)

) ∈ Y = C1([−δ, δ])× [−L,L]
such that ((z, t), γ(z,t), γ̈(z,t)(z)) ∈ G. This map is measurable with respect to the σ -algebra of analytic subset of ωδ

and, as a byproduct, it is also universally measurable. As well, one can define a Souslin function ŵδ →R such that

ŵδ(z, t) := γ̈(z,t)(z)=w(z,t) ∀(z, t) ∈D ⊆ ωδ
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which we can extend to the whole ω in the following way. Let (δm)m ↓ 0 and define ω1 := ωδ1 and ωm := ωδm \ωδm−1

if m ≥ 2. Since the sequence of sets (ωm)m are pairwise disjoint and ω = ⋃∞
m=1 ωm, we can define a universally 

measurable function ŵ, defined L2-a.e. in ω, by

ŵ(z, t) := ŵδm(z, t) if (z, t) ∈ ωm. (6.9)

The importance of this selection is due to the following theorem.

Theorem 6.6. Let φ : clos(ω) →R be a continuous function which is uniformly Lipschitz along characteristic curves, 
that is (6.6) holds. Then, for each characteristic curve [a, b] � s �→ (s, γ̄ (s)) ∈ ω, one has

d

ds
φ
(
s, γ̄ (s)

)= ŵ
(
s, γ̄ (s)

)
L1-a.e. s

where ŵ : ω →R is the function defined in (6.9)

Corollary 6.7. A continuous distributional solution φ : ω → R of ∇φφ = w in ω, with w ∈ L∞(ω), is also a broad 
solution with a source term ŵ satisfying the same uniform bound.

By the identification of the source, discussed e.g. in Corollary 6.3, we also know that ŵ identifies w.

Proof of Corollary 6.7. Step 1. Assume that φ ∈ C0(clos(ω)). Observe that (6.6) holds from Lemma 5.1 with L =
‖w‖∞. Thus, from Theorem 6.6, conditions (B.2) and (B.3) of Definition 3.8 immediately follow. Condition (B.1) 
follows from Corollary 5.7 and Remark 2.17.

Step 2. In the general case, let {ωj }j∈N be an increasing sequence of open sets such that

ωj ⊂ clos(ωj )⊂ ω ∀j ∈N,

∞⋃
j=1

ωj = ω.

Let us observe that, for a given j , φ ∈ C0(close(ωj )) and φ is still a continuous distributional solution of ∇φφ = w

in ωj . From the previous step, φ is also a broad solution. On the other hand, by a standard argument, it is easy to see 
that φ is a broad solution of ∇φφ =w in ω. �
6.2.2. Borel selection

Before proving Theorem 6.6, for the sake of completeness, we show that one can define as well a Borel function, 
that we still denote as ŵ(z, t), for which Theorem 6.6 still holds. This requires a bit more work than the previous 
argument, and it is conceptually a little more involved: we do not associate immediately to each point (where it is 
possible) an eligible curve and its second derivative, but something which must be close to it. We will find then with 
the proof of Theorem 6.6 that we end up basically with the same selection.

Lemma 6.8. For every δ, ε > 0, there are h̄= h(ε) > 0 and a Borel function defined on the projection D :=ΠX(G) ⊆
X = ωδ

D � (z, t) �→ (γε,(z,t),wε,(z,t)) ∈ C1([−δ, δ])× [−L,L]
such that ((z, t), γε,(z,t), wε,(z,t)) ∈ C of (6.7) and

∣∣∣∣∣wε,(z,t) − 1

h

z+hˆ

z

γ̈ε,(z,t) ds

∣∣∣∣∣ < ε ∀0 < |h|< h̄.

Proof. We apply Arsenin–Kunugui selection theorem ([23], or Th. 5.12.1 of [27]) to the set

C̃ :=
⋃ ⋂ {

(z, t, γ, ζ ) ∈C :
∣∣∣∣ζ − γ̇ (z± hm)− γ̇ (z)

±hm

∣∣∣∣≤ ε

}
,

n∈Nm>n
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where C was defined in (6.7) and {hn}n∈N immediately below that, in the same proof. More precisely, for every 
(ȳ, ̄t) ∈ ωδ the subset of C1([−δ, δ]) × [−L, L] given by the section

C(z̄,t̄) = C ∩ {
(z, t, γ, ζ ) : z= z̄, t = t̄

}
,

which is made by C1([−δ, δ]) curves through (z̄, ̄t) with L-Lipschitz continuous second derivative, is compact by 
Ascoli–Arzelà theorem, because φ is continuous and bounded. Moreover{

(z, t, γ, ζ ) :
∣∣∣∣ζ − γ̇ (z+ h)− γ̇ (z)

h

∣∣∣∣≤ ε, z= z̄, t = t̄

}

is closed: therefore each (z̄, ̄t)-section of C̃ is σ -compact. Then the hypothesis of the theorem are satisfied: it assures 
there exists a Borel section of C̃, that is ΠX(C̃) is a Borel set and there exists a Borel map

X = ωδ ⊇ΠX(C̃) � (z, t) �→ (γε,(z,t),wε,(z,t)) ∈ Y = C1([−δ, δ])× [−L,L]
such that ((z, t), γε,(z,t), wε,(z,t)) ∈ C̃. �

From Lemma 6.9, it follows, for every δ, ε > 0, the existence of a Borel function ŵδ,ε : ωδ →[−L, L] defined by

ŵδ,ε(z, t) := χ{(z,t)∈D}wε,(z,t) if (z, t) ∈ ωδ.

Now, arguing as in the construction of the Souslin representative ŵ : ω → R (see (6.9)), we can extend it to a Borel 
function ŵε : ω →[−L, L] defined by

ŵε(z, t) := ŵδm,ε(z, t) if (z, t) ∈ ωm. (6.10)

Definition 6.9. We define the Borel representative of w, ŵ : ω →[−L, L], as the function

ŵ(z, t)= lim inf
ε↓0

wε(z, t).

6.2.3. Proof of Theorem 6.6
We provide now the proof of Theorem 6.6 with ŵ : ω → [−L, L] either the Borel function in Definition 6.9 or 

the Souslin one in (6.9): we consider any characteristic [a, b] � s �→ Γ (s) := (s, γ̄ (s)) ∈ ω and remind that, by (6.6), 
[a, b] � s �→ ˙̄γ (s) is Lipschitz. We prove that

¨̄γ (s)= ŵ
(
s, γ̄ (s)

)
a.e. s ∈ [a, b]. (6.11)

Notice also that, if (δm)m ↓ 0, there is m̄ ∈ N such that Γ ([a, b]) ⊂ ωδm̄
⊂ ω. As a consequence, both Borel and 

Souslin representative functions ŵ can be meant as defined in ωδm̄
.

Step 1: Countable decomposition. Let D denote the differentiability points of the function (a, b) � s �→ ˙̄γ (s). By 
Rademacher theorem, D has full measure in [a, b] and (z, γ̄ (z)) ∈Dδm̄

for every z ∈D, since ∃ ¨̄γ (z), where Dδm̄
≡D

is the set in Lemma 6.4 with δ = δm̄.
Let

Sk :=
{
z ∈D : ∣∣ŵ(

z, γ̄ (z)
)− ¨̄γ (z)

∣∣≥ 1

k

}
k ∈N,

then

{
z ∈D : ŵ(

z, γ̄ (z)
) �= ¨̄γ (z)

}= ∞⋃
k=1

Sk. (6.12)

Let us observe that, from the definition of Borel and Souslin representative functions, for each z ∈ D and k ∈ N

there exist n̄ ∈N and a curve [z− δm̄, z+ δm̄] � s �→ (s, γk,(z,γ̄ (z))(s)) such that,∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

±σ

z±σˆ
γk,(z,γ̄ (z))

∣∣∣∣∣ <
1

k
, ∀0 < σ < δm̄,n > n̄, (6.13)
z
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where, respectively, if one considering the Borel representative function in Definition 6.9, γk,(z,γ̄ (z))(s) :=
γεk,(z,γ̄ (z))(s − z) and

[−δm̄, δm̄] � s �→ (
z+ s, γεk,(z,γ̄ (z))(s)

) ∈ ω

is a curve selected in Lemma 6.8 for a suitable εk < 1/k, or, if one considering the Souslin representative function in 
(6.9), γk,(z,γ̄ (z))(s) := γ(z,γ̄ (z))(s − z).

Define for k, n ∈N

Sk,n :=
{

z ∈D : ∀0 < σ < min
{
δm̄,2−n

}
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

σ

z+σˆ

z

¨̄γ
∣∣∣∣∣≥ 1

k
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

σ

zˆ

z−σ

¨̄γ
∣∣∣∣∣≥ 1

k

}

and, respectively,

S∗k,n :=
{

z ∈D : ∀0 < σ < min
{
δm̄,2−n

}
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

±σ

z±σˆ

z

¨̄γ
∣∣∣∣∣≥ 3

k
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

±σ

z±σˆ

z

γ̈k,(z,γ̄ (z))

∣∣∣∣∣ <
1

k

}
.

By (6.13),

Sk ⊆
∞⋃

n=1

Sk,n ⊆
∞⋃

n=1

S∗k,n. (6.14)

Step 2: Reduction argument. Notice that for k, n ∈N

S∗k,n ⊆
{

z ∈D : ∀0 < σ < min
{
δm̄,2−n

}
, ŵ

(
z, γ̄ (z)

)
>

1

±σ

z±σˆ

z

¨̄γ + 3

k
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

±σ

z±σˆ

z

γ̈k,(z,γ̄ (z))

∣∣∣∣∣ <
1

k

}
. (6.15)

We prove that, for given k, n ∈N, the set

{
z ∈D : ∀0 < σ < min

{
δm̄,2−n

}
, ŵ

(
z, γ̄ (z)

)
>

1

±σ

z±σˆ

z

¨̄γ + 3

k
,

∣∣∣∣∣ŵ(
z, γ̄ (z)

)− 1

±σ

z+σˆ

z

γ̈k,(z,γ̄ (z))

∣∣∣∣∣ <
1

k

}
(6.16)

cannot contain points z1, z2 with |z1 − z2| ≤ δn := min{δm̄, 2−n}. Then the thesis will follow: by (6.12), (6.14) and 
(6.15), the set of z ∈ (a, b) where the second derivative of γ̄ (z) exists and it is different from wt,γ̄ (z) will be countable. 
Therefore the second derivative of γ̄ (z) will be almost everywhere precisely ŵ(z, γ̄ (z)).

Step 3: Analysis of the single sets. By contradiction, assume that (6.16) contains two such points, z1, z2 with 
z1 < z2. Let us prove that the curves through (z1, γ̄ (z1)), (z2, γ̄ (z2)),

γ1 := γk,(z1,γ̄ (z1)), γ2 := γk,(z2,γ̄ (z2))

must intersect in the time interval [z1, z2], say at time y′. Indeed, denote wi := ŵ(zi , γ̄ (zi)) (i = 1, 2), then from the 
first and second inequality defining set (6.16) it respectively follows that, for each i = 1, 2, ∀s ∈ [zi −δn, zi +δn] \{zi}
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γ̄ (s) < γ̄ (zi)+ ˙̄γ (zi)(s − zi)+ wi − 3/k

2
(s − zi)

2, (6.17)

γ̄ (zi)+ ˙̄γ (zi) (s − zi)+ wi − 1/k

2
(s − zi)

2 < γi(s)

< γ̄ (zi)+ ˙̄γ (zi) (s − zi)+ wi + 1/k

2
(s − zi)

2. (6.18)

By (6.17) and (6.18), we get that

γ1(z1)= γ̄ (z1) < γ2(z1), γ1(z2) > γ2(z2)= γ̄ (z2),

then the desired conclusion. Since curves γi , i = 1, 2 satisfy the ODE for characteristics, where they intersect they 
have the same derivative. Being all of them Lipschitz, we have then

˙̄γ (z1)+
z′ˆ

z1

γ̈1 = γ̇1
(
z′

)= γ̇2
(
z′

)= ˙̄γ (z2)−
z2ˆ

z′
γ̈2.

Comparing the LHS and the RHS, one arrives to

˙̄γ (z2)− ˙̄γ (z1)=
z′ˆ

z1

γ̈1 +
z2ˆ

z′
γ̈2.

However, since the times z1, z2 belong by construction to the set (6.16) one has

z′ˆ

z1

γ̈1 +
zˆ

z′
γ̈2 > w1

(
z′ − z1

)+w2
(
z2 − z′

)− 2/k >

z2ˆ

z1

¨̄γ + 1/k = ˙̄γ (z2)− ˙̄γ (z1)+ 1/k

reaching a contradiction. �
6.3. Lagrangian solutions are distributional solutions

In this section we prove, without passing through the implicit function theorem, that if a continuous function φ
satisfies the Lagrangian formulation (see Definition 3.7) of the balance law (3.1), then the distribution

∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]

corresponds to a bounded function in L∞(ω). We rely here on a mollification procedure in the Lagrangian variables. 
We do not discuss here the fact that this function identifies the same distribution as w(z, t). An explicit proof based 
on the computation in Lemma 5.1 can be found in [1], and here it is discussed at page 929 according to the previous 
literature. See also [11], where a different, pointwise approximation of the distributional solution is provided, starting 
from a broad* solution. This basically shows the converse of Dafermos’ statement in [15].

We already motivated why focusing on the case n = 1, whereas the equation reduces to

∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]
=w(z, t). (3.1)

We give generalizations to the case n ≥ 2 in Remark 6.12

Theorem 6.10. Every continuous Lagrangian solution to (3.1) is also a distributional solution.

Corollary 6.11. Any continuous broad solution φ to (3.1) is also a distributional solution.
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Proof of Theorem 6.10. Let Υ : ω̃ → ω, Υ (z, τ) = (z, χ(z, τ)), be a Lagrangian parameterization associated to φ, 
and w̄ : ω →R (see Definition 3.7) such that, for each τ ∈R, for each interval (z1, z2) ⊂ ω̃τ ,

φ
(
z,χ(z, τ )

)− φ
(
z1, χ(z1, τ )

)=
zˆ

z1

w̄
(
r,χ(r, τ )

)
dr ∀z ∈ (z1, z2).

We prove then that φ is a distributional solution of the balance equation

∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]
= w̄(z, t) in ω.

As this is a local argument, one can assume in order to avoid technicalities that χ is constant out of a compact: 
just modify χ , and consequently φ and w̄, out of an open ball where one wants to prove the statement. By a partition 
of unity the statement will hold then on the desired domain. By a change of variables one can as well assume that χ
is valued in (0, 1) and that the support of φ is compactly contained in (0, 1)2. In particular w.l.o.g. we can assume 
that Υ : ω̃ := (0, 1) × (a, b) → ω := (0, 1) × (t1, t2) with −∞ < a < b < +∞, 0 < t1 < t2 < 1 and that χ can be 
meant as a continuous function (0, 1) × R → (0, 1) by defining it χ(z, τ) = t1 for each z ∈ (0, 1) and τ ≤ a, and 
χ(z, τ) = t2 for each z ∈ (0, 1) and τ ≥ b.

Step 1: Smoothing of χ in the τ -variable. Consider a suitable convolution kernel ρε(τ ) compactly supported in 
{|τ | < ε} and define the τ -regularized function χε : (0, 1) ×R →R given by

χε(z, τ )= (1+ ετ)
(
χ(z, ·) ∗ ρε

)
(τ )= (1+ ετ)

ˆ

R

χ(z, ξ)ρε(τ − ξ)dξ.

Claim. The function χε is (locally) Lipschitz continuous and, for each z ∈ (0, 1), χε(z, ·) : R →R is strictly increas-
ing, smooth and, for ε small enough and each (z, τ) ∈ (0, 1) ×R,

∂χε

∂τ
(z, τ )= ε

(
χ(z, ·) ∗ ρε

)
(τ )+ (1+ ε τ)

(
∂χ

∂τ
(z, ·) ∗ ρε

)
(τ ) > 0, (6.19)

where ∂χ
∂τ

(z, ·) ∗ ρε denotes the convolution between the (finite) non-negative measure ∂χ
∂τ

(z, ·) and the kernel ρε(τ )

(see, for instance, [3, Theorem 2.2]). Moreover χε converges locally uniformly to χ for ε ↓ 0.

Proof. The Lipschitz regularity in the variable z remains clearly unchanged. The smoothness in τ and (6.19) follow by 
general properties of the convolution and conditions 0 < t1 ≤ χ(z, τ) ≤ t2 < 1 for each z ∈ (0, 1), τ ∈ [a, b], χ ≡ t1
in (0, 1) × (−∞, a), χ ≡ t2 in (0, 1) × (b, ∞). The locally uniform convergence of χε to χ is also a well-known 
convolution’s feature. The monotonicity is a direct consequence of the monotonicity of χ(z, τ) and it becomes strict 
because of the scaling factor (1 + ετ): from

τ1 < τ2 ⇒ χ(z, τ1)≤ χ(z, τ2)

one can compute that

χε(z, τ1)= (1+ ετ1)

εˆ

−ε

χ(z, τ1 + ξ)ρε(ξ)dξ

≤ (1+ ετ1)

εˆ

−ε

χ(z, τ2 + ξ)ρε(ξ)dξ

< (1+ ετ2)

εˆ

−ε

χ(z, τ2 + ξ)ρε(ξ)dξ = χε(z, τ2).

Step 2: Smoothing of φ in the τ -variable. Let Υε : (0, 1) ×R → (0, 1) ×R, Υε(z, τ) := (z, χε(z, τ)).
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Claim. Υε is a homeomorphism, locally Lipschitz continuous with its inverse.

Proof. By definition Υε is 1-to-1, onto and continuous (see Remark 3.6). Then its inverse Υ −1
ε : (0, 1) ×R → (0, 1) ×

R, Υ −1
ε (y, t) := (y, θε(y, t)) is also continuous, being the inverse of an injective and onto continuous map between 

two open sets of R2. Eventually, by standard arguments about the regularity of an inverse function and (6.19), it 
follows that θε ∈W

1,∞
loc ((0, 1) ×R) and

∂θε

∂y
(y, t)=−

∂χε

∂z

∂χε

∂τ

(
Υ −1

ε (y, t)
)
,

∂θε

∂t
(y, t)=− 1

∂χε

∂τ

(
Υ −1

ε (y, t)
)
.

Let φ̃ε : (0, 1) × R → R be the function defined by φ̃ε(z, τ) := (1 + ετ) (φ(z, χ(z, ·)) ∗ ρε)(τ ) and define the 
approximation φε : (0, 1) ×R →R by φε(z, t) := φ̃ε(Υ

−1
ε (z, t)). Observe that

φε
(
z,χε(z, τ )

)= φ̃ε(z, τ )= (1+ ετ)

(
∂χ

∂z
(z, ·) ∗ ρε

)
(τ )= ∂χε

∂z
(z, τ ). (6.20)

Claim. φε is a (locally) Lipschitz smooth function.

Proof. By definition, the function φ̃ε ∈W
1,∞
loc ((0, 1) ×R) and, by the previous claim,

Υ −1
ε ∈W

1,∞
loc

(
(0,1)×R;R2).

Thus the composition is still Lipschitz regular.

Claim. φε(z, t) converges in L1((0, 1)2) to φ(z, t) as ε ↓ 0.

Proof. By the properties of convolutions one has that φε(z, χε(z, τ)) is converging uniformly to φ(z, χ(z, τ)) as 
ε ↓ 0. Because φε and φ are compactly supported in (0, 1)2, by a change of variables through the map Υε, one hasˆ

(0,1)2

∣∣φε(y, t)− φ(y, t)
∣∣dydt =

ˆ

(0,1)×R

∣∣φε(z, t)− φ(z, t)
∣∣dzdt

=
ˆ

(0,1)×R

∣∣φε
(
z,χε(z, τ )

)− φ
(
z,χε(z, τ )

)∣∣∂χε

∂τ
(z, τ )dzdτ

≤
ˆ

(0,1)×R

∣∣φε
(
z,χε(z, τ )

)− φ
(
z,χ(z, τ )

)∣∣∂χε

∂τ
(z, τ )dzdτ

+
ˆ

(0,1)×R

∣∣φ(
z,χ(z, τ )

)− φ
(
z,χε(z, τ )

)∣∣∂χε

∂τ
(z, τ )dzdτ.

The first factor of both the integrals in the RHS is uniformly convergent to zero, while ∂χε

∂τ
(z, τ)dzdτ weakly* con-

verges, as measure, to the nonnegative measure ∂χ
∂τ

(dz, dτ).

Step 3: Approximation of the source. Define an approximate source wε : ω →R by

∂φε

∂z
(z, t)+ ∂

∂t

(φε)2

2
(z, t)=wε(z, t) L2-a.e. (z, t) ∈ ω. (6.21)

Being φε a Lipschitz function, we can assume that wε is a Borel function. From the smoothness and the defini-
tion (6.20) of the function φε(s, t), the expression (6.21) is immediately equivalent to

wε
(
s,χε(s, τ )

)= ∂2χε

2
(s, τ )= ∂φε (

s,χε(s, τ )
)
.

∂s ∂s
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Since we started from a Lagrangian parameterization, the further regularity in the s variable

∂2χ

∂s2
(s, τ )= ∂φ

∂s

(
s,χ(s, τ )

)= w̄
(
s,χ(s, τ )

)
for the relative pointwise representative w̄ implies the relation

wε
(
s,χε(s, τ )

)= ∂2χε

∂s2
(s, τ )= (1+ ετ)

∂2χ

∂s2
(s, τ ) ∗ ρε(τ )

= (1+ ετ)w̄
(
s,χ(s, τ )

) ∗ ρε(τ ).

In particular, the sources wε are uniformly bounded by (1 + ε) times the uniform bound for w̄. Moreover, for each 
s fixed wε(s, χε(s, τ)) converges in all Lp(dτ) to w̄(s, χ(s, τ)), and thus in Lp(dsdτ); the convergence is clearly 
uniform when w̄ is continuous.

Step 4: Limiting argument. The LHS of equation (6.21) passes to the weak limit by the L1-convergence of φε(z, t)
to φ(z, t) established above. The same holds as well for the RHS, since wε(z, t)dzdt converges w∗−L∞ to a function 
¯̄w(z, t)dzdt . Thus φ is a distributional solution of the equation

∂φ

∂z
(z, t)+ ∂

∂t

[
φ2(z, t)

2

]
= ¯̄w(z, t) in ω.

By Corollary 5.7 the function ¯̄w(z, t) coincides L2-a.e. with the intrinsic gradient ∇φφ of φ. However, by Remark 2.14
and the definition of intrinsic gradient, this is L2-a.e. equal to the Lagrangian source w̄(z, t). �
Remark 6.12. Theorem 6.10 works immediately also in higher dimensions, because for almost every ẑ1 ∈R2n−2 the 
restriction to the plane ωẑ1 of φ is still a Lagrangian solution, with source term the restriction w̃ �ωẑ1

. For every test 
function ϕ ∈ C∞

c (ω) we have then by Fubini–Tonelli Theorem
¨

ω

[
φ

∂ϕ

∂z1
+ φ2

2

∂ϕ

∂t

]
dzdt =

¨

R2n−2

dẑ1

ˆ

ωẑ1

dz1dt

[
φ

∂ϕ

∂z1
+ φ2

2

∂ϕ

∂t

]
�ωẑ1

Th. 6.10= −
¨

R2n−2

dẑ1

ˆ

ωẑ1

dz1dt[ϕw̃ �ωẑ1
] = −

¨

ω

ϕw̃ dzdt.

Considering also the linear fields we gain the implication from (ii) to (i) in Theorem 1.2, and more generally that a 
Lagrangian solution is also a distributional solution.
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Appendix A. Filling in Lagrangian parameterizations

In the present section we deal with the issue of extending a partial Lagrangian parameterization to a ‘full’ one. We 
construct a function χ(s, τ) satisfying the ODE (3.4), both monotone and surjective in the τ variable, which extends 
a given one χ̃ . This is the matter of Lemma A.1: we recall below how to extend a solution to an ODE with continuous 
coefficients, whose existence is a classical result.

The procedure can be first understood considering Example A.2 below, illustrated in Fig. 2. This deals with the 
simpler case of an s-independent φ, but it has all the ingredients of the general construction of Lemma A.1.
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Moreover, Example A.2 provides a counterexample for the following fact: even if characteristics are C1 in s with 
Lipschitz derivative, it is not possible in general to extend a partial, monotone Lagrangian parameterization to a full 
one which is locally Lipschitz continuous.

The reduction of the balance law along characteristics, which is Eq. (3.9), has been inserted in the text (Lemma 4.2
and Theorem 6.6). Here we just notice that it holds, with some w̄χ pointwise defined in ω, for a particular Lagrangian 
parameterization (ω̃, χ). The argument is 2-dimensional.

Lemma A.1. Any partial Lagrangian parameterization can be extended to a full one.

Proof. Let χ̃(s, τ) be a partial Lagrangian parameterization. Focus e.g. the attention on s, τ ∈ [0, 1] and χ̃(s, τ)

valued in [0, 1] and right continuous, the general case being similar. We fix also ‖φ‖∞ ≤ 1.
We construct an extension χ̃ ′ by a recursive procedure. For convenience, the induction index is given by couples 

(h, n) with n ∈N and h = 0, . . . , 2n−1−1. The ordering is lexicographic, starting from the second variable: (h1, n1) ≤
(h2, n2) iff either n1 < n2 or n1 = n2 and h1 ≤ h2.

The starting point is χ0 = χ̃ defined for s ∈ [0, 1], τ ∈ T0 = [0, 1]. Consider the dichotomous points sh,n =
2−n + 2−n+1h, which go from 2−n to 1 − 2−n at step 2−n+1, associated to the indexes (h, n) with n ∈ N and 
h = 0, . . . , 2n−1 − 1.

Induction step (h, n), n ≥ 1: General description. Assume you have been given χ defined on (s, τ) ∈ [0, 1] × T by 
a previous step. If at s = sh,n the map τ �→ χ(sh,n, τ) is not onto [χ(sh,n, 0), χ(sh,n, 1)] we construct an extension 
χh,n such that

• τ �→ χh,n(sh,n, τ) is onto [χ(sh,n, 0), χ(sh,n, 1)] for h = 0, . . . , 2n−1 − 1;
• there exists a strictly increasing map jh,n, with L1(jh,n(T )) −L1(T ) ≤ 21−2n, such that

χh,n
(
s, jh,n(τ )

)= χ(s, τ ).

These properties of the new partial Lagrangian parameterization will determine that we get at the end a limit which is 
a full parameterization extending χ̃ .

Induction step (h, n), n ≥ 1: Change of parameter set. Because of monotonicity the complementary of the image of 
τ �→ χ(sh,n, τ) is the at most countable union of disjoint intervals {Ik}k , which correspond to the discontinuities {τk}k
of this real valued map. At those parameters {τk}k the two characteristics s �→ χ(s, τ−k ) and s �→ χ(s, τ+k ) bifurcate, 
and at time sh,n their opening is an interval Ik:

min Ik = χ
(
sh,n, (τk)

−)
sup Ik = χ

(
sh,n, τk

)
.

Define consequently the strictly increasing map opening each of those parameters τk into an interval proportional 
(with factor 1/22n−1) to the hole Ik that the relative characteristics leave at sh,n:

T → Th,n =
[
0, jh,n(1)

]
jh,n : τ �→ τ +L1

( ⋃
τk≤τ

Ik

)/
22n−1.

The inequality |Th,n| − |T | ≤ 21−2n holds because we are assuming that χ is valued in [0, 1], thus L1(
⋃

k Ik) ≤ 1. 
The set Th,n will be the new space of parameters, and the injection jh,n will bring from the old set T to the new one.

Induction step (h, n), n ≥ 1: Extension of the parameterization. We just constructed a new parameter set Th,n and 
an immersion jh,n from the old one T . In particular, the Lagrangian parameterization is fixed on jh,n(T ), but in order 
to conclude the induction step we need to define the new Lagrangian parameterization on Th,n \ jh,n(T ). We clearly 
need to respect also the monotonicity property, taking into account that part of the parameterization is already fixed: 
the new characteristics that we are going to define must not cross the old ones.

For each z ∈ Ik , consider the C1 maximal curve through (sh,n, z) defined at (4.1) until it touches either s �→
χ(s, τ+k ) or s �→ χ(s, τ−k ), in which case it goes on with the curve which has been touched. It is a little complicated 
to write formally, but it is just that. The times when this touching happens, if it ever happens, are
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s±+
(
sh,n, z

)= inf
{
1,

{
s > sh,n : γ (sh,n,z)(s)= χ

(
s, τ±k

)}}
s±−

(
sh,n, z

)= sup
{
0,

{
s > sh,n : γ (sh,n,z)(s)= χ

(
s, τ±k

)}}
.

With the notation that {s : a ≤ s ≤ b} is empty if b < a, a possible right continuous extension is then give by 
γ (s; sh,n, z) defined as⎧⎪⎨

⎪⎩
γ (sh,n,z)(s) for s−−

(
sh,n, z

)∨ s+−
(
sh,n, z

)≤ s ≤ s−+
(
sh,n, z

)∧ s++
(
sh,n, z

)
,

χ
(
s, τ+k

)
for s++

(
sh,n, z

)≤ s ≤ s−+
(
sh,n, z

)
and s−−

(
sh,n, z

)≤ s ≤ s+−
(
sh,n, z

)
χ

(
s, τ−k

)
otherwise.

Define finally on [0, 1] ×Th,n the Lagrangian parameterization which coincides with the previous one on the image 
of the old parameter set, and which is extended as described above elsewhere: χh,n(s, σ) defined as{

if σ = jh,n(τ ) χ(s, τ ),

if σ ∈ [
jh,n

(
τ−k

)
, jh,n

(
τk

))
, z := χ

(
sh,k, τ+k

)− 22n−1
(
jh,n

(
τ+k

)− σ
)

γ
(
s; sh,n, z

)
.

For the second line, jh,n(τ+k ) − σ is the length of the segment �σ, jh,n(τ+k )�, which was added to the parameter 
set precisely at the (h, n)-th step. Rescaled by 22n−1, it gives the length of the segment �z, χ(sh,k, τ+k )�: the point 
(sh,n, z) is where we start for defining the characteristic γ (s; sh,n, z) that we are inserting for extending the Lagrangian 
parameterization. Notice that also the surjectivity property at s = sh,n is satisfied.

Conclusion. Let us first look at how much the domain T0 grows in the extension process. Since 2n−1 couples of 
indices have second variable n, then the total size of the intervals added by those couples altogether is at most 2−n: 
thus, setting Tn =⋃

h Th,n,

T0 = [0,1], T1 ⊂ [0,3/2], . . . , Tn ⊂
[
0,2− 2−n

]
, . . . .

The maps j h̄,n̄ ◦ · · · ◦ j0,1 are

• strictly increasing;
• valued in [0, 2 − 2−n̄];
• with 1-Lipschitz inverses, provided that at discontinuity points of j h̄,n̄ one fills the graph.

By Ascoli–Arzelà theorem the inverses converge uniformly, to a monotone map which is the inverse of a right contin-
uous function j : [0, 1] →[0, 2]. By construction j is strictly increasing.

By construction each χh̄,n̄ is surjective at each s = sh,n with (h, n) ≤ (h̄, n̄).
The Lagrangian parameterizations χh̄,n̄ and χh,n have different domains for the second components, the space of 

parameters Th,n, Th̄,n̄. However, as seen in the previous step there are strictly monotone injections from each of them 
to the interval �0, 2� given by ◦(�,m)≥(h,n)j

�,m and ◦(�,m)≥(h̄,n̄)j
�,m. Being strictly monotone, they are invertible if we 

fill the graphs at discontinuity points: we can compare these compositions, with the same second component in [0, 2], 
and we find for them∥∥χh̄,n̄ − χh,n

∥∥∞ ≤ 2−n.

The sequence of these compositions therefore converges uniformly. One verifies that the limit is a monotone La-
grangian parameterization χ which extends χ̃ , with injection map j .

Being surjective and monotone, each τ → χ(sh,m, τ) is continuous. By the continuity in s we deduce then 
surjectivity also at the remaining times: indeed if by absurd we had χ(s̄, τ̄−) �= χ(s̄, τ̄+), we could not have 
χ(sh,m, τ̄−) = χ(sh,m, τ̄+) at sh,m arbitrarily close to s̄. �

The following example introduces the extension of a Lagrangian parameterization. It shows moreover that it is 
not possible in general to get a full one which is Lipschitz continuous, even though characteristics below are twice 
continuously differentiable.
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Fig. 2. A partial monotone Lagrangian parameterization is extended to a ‘full’ one. Different colors denote different steps in the extension, which 
are countably many. Each step corresponds to a dichotomous value of s: the relative extension of the parameterization must cover the relative 
s-section. In this example the full parameterization cannot be locally Lipschitz. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Example A.2. Consider the very simple equation for (z, t) in the rectangle [z∞, 0] × [0, 1]
∂

∂t

[
φ2(z, t)

2

]
=w(z, t), φz(z, t)= 0.

Being φ dependent on one variable, we change notation and we write φ(z, t) = φ(t).
We consider the partial Lagrangian parameterization χm defined in Lemma 4.1. This would need to specify the 

function φ: since the construction is involved, we specify it below and the reader can immediately visualize it in Fig. 2
(LHS), where a family of integral curves γ̇ (s) = φ(γ (s)) is drown.

We now describe in details the construction.
Step 1: Building block (Fig. 2, RHS). Define first a smooth function γ (s), for s ∈ [0, 1], which increases continuously 

from 0 to 1. Let γ̇ (s − 1/2) be even, strictly increasing in the first half interval from 0 to its maximum. Let γ̈ vanish 
at 0; 1/2; 1 and be positive in [0, 1/2]. For instance, consider

γ (s)= s + 1/(2π) sin(2πs − π), γ ′(s)= 1+ cos(2πs − π).

Step 2: Iteration step. We define now a first sequence of points z0 ≥ z1 ≥ . . . zi ↓ z∞ and intermediate ones zi =
z2i ,i ≤ · · · ≤ z0,i = zi−1 where φ(z) and w(z) will vanish. The first ones are approximatively 0, −0.455, −0.635, 
−0.713, −0.748, −0.764, −0.772, . . . , and each interval [zi+1, zi] is divided into 2i equal subintervals for determining 
the points zh,i . For i ∈N, h = 0, . . . , 2i

z0 := 0, zi−1 − zi = 2−i

ln(i + 2)
, z∞ :=−

∞∑
j=1

2−j

ln(j + 2)
,

zi =−
i∑ 2−j

ln(j + 2)
= z2i ,i = z0,i+1, zh,i := zi−1 − 2−2ih

ln(i + 2)
.

j=1
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Step 3: Iteration. Now we define the functions φ(z), w(z) on each subinterval [zh+1,i , zh,i]. As a preliminary 
half-step consider the rescaled smooth functions γh,i(s) given by

γh,i(s)= zh+1,i + γ (2i s)

22i ln(i + 2)
, s ∈ [

0,2−i
]
.

Notice that each increases monotonically from zh+1,i to zh,i , and the first two derivatives vanish at the endpoints. In 
particular, we can associate to each z ∈ [z∞, 0] a curve γh,i(s) such that

γh,i(s)= z.

It will be unique out of the points {zh,i}h,i , while at these junctions there will be two such curves, with however 
vanishing first two derivatives. Observing Fig. 2, this curve γh,i(s) is just the first segment of what will be part of χm[

0,2i
] � s �→ γh,i(s)≡ χm

(
s, z+h+1,i

)
.

Define then,

for s: γh,i(s)= z, φ(z)= γ̇h,i (s) and w(z)= γ̈h,i (s).

These functions are clearly continuous out of the nodes {zh,i}h,i , and they vanish there, but the continuity at the limit 
point z∞ should be checked. It holds because |γ̇h,i| ≤ 2−i/ ln(i + 2) and |γ̈h,i | ≤ 1/ log(i + 2), which implies they 
vanish for i ↑∞.

Step 4: Non-Lipschitz Lagrangian parameterization. Having defined the function φ, we have already defined the 
partial Lagrangian parameterization χm of Lemma 4.1. We now extend it to a surjective one, but there is no way of 
having it Lipschitz continuous, as we compute now. Different colors in Fig. 2 show different steps of the extension 
process.

1. Minimal characteristics starting from z= 0 do not cover almost all the interval at z= 1. Adding those starting at 
z= 1, it remains to cover at z= 1/2 open intervals of total length

∞∑
i=1

2i∑
h=0

(zh,i − zh+1,i )=
∞∑
i=1

2i 2−2i

ln(i + 2)
= z0 − z∞.

2. Including at the second step all those minimal characteristics which intersect the line z= 1/2, similarly, one does 
not cover the whole line z= 1/4; 3/4: a length

∞∑
i=2

2−i

ln(i + 2)
= z1 − z∞

remains to cover at both those two values of z.

(i) At the subsequent i-th step, at each of the 2i−1 values of

sh,i = 2−i + h2−i+1, h= 0, . . . ,2i−1 − 1

one needs covering a length 
∑∞

j=i 2−j / ln(j + 2). In the whole process, it must be covered a total length equal to

∞∑
j=1

(
1+ · · · + 2j−1) 2−j

ln(j + 2)
=

∞∑
j=1

(
2j − 1

) 2−j

ln(j + 2)

=
∞∑

j=1

1

ln(j + 2)
−

∞∑
j=1

2−j

ln(j + 2)
=+∞.

Any monotone, Lagrangian parameterization χ must map a disjoint family of real intervals {Ih,i}h,i with ∑
h,i |Ih,i | < 1 to the intervals {[z∞, zi+1]}i , respectively at the above values {sh,i}h,i . However, we have just com-

puted that for all constants C
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∞=
∑

h=0,...,2i−1−1, i∈N
|zi+1 − z∞|

=
∑

h=0,...,2i−1−1, i∈N
χ

(
zh,i , [Ih,i]

)

> C
∑

h=0,...,2i−1−1, i∈N
|Ih,i |,

preventing any Lipschitz regularity. Indeed, the map τ �→ χ(sh,i , τ) can be Lipschitz with some constant Ci , but Ci

must blow up as i →∞. At other values of s, this map is just W 1,1(R).
Notice finally that the fact that the blow-up of the Lipschitz constant is caused here by a behavior approaching 

the boundary z = z∞ is incidental. Indeed, one can extend the present construction also on {z < z∞} for example 
reflecting the characteristics w.r.t. the axis {z= z∞}.

One can as well construct examples where χ has a Cantor part (see [1]).
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