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Abstract
We investigate the appearance of new types of insulators and superconductors in long-range (LR)
fermionic quantum systems. These phases are not included in the famous ‘ten-foldway classification’
(TWC), valid in the short-range (SR) limit. This conclusion is obtained analysing atfirst specific one-
dimensionalmodels, in particular their phase diagrams and entanglement properties. The LR phases
are signalled, for instance, by the violation of the area-law for the vonNeumann entropy and by a
corresponding peculiar entanglement spectrum (ES). Later on, the origin of the deviations from the
TWC is investigated from amore general point of view and in any dimension, showing that it is related
with the presence of divergences occurring in the spectrum, due to the LR couplings. A satisfying
characterization for the LRphases can be achieved, at least for one-dimensional quantum systems, as
well as the definition of a nontrivial topology for them, resulting in the presence ofmassive edge states,
provided a careful evaluation of the LR contributions. Our results allows to infer, at least for one-
dimensionalmodels, theweakening of the bulk-boundary correspondence, due to the important
correlations between bulk and edges, and consequently to clarify the nature of themassive edge states.
The emergence of this peculiar edge structure is signalled again by the bulk ES. The stability of the LR
phases against local disorder is also discussed, showing notably that this ingredient can even
strengthen the effect of the LR couplings. Finally, we analyse the entanglement content of the
paradigmatic LR Ising chain, inferring again important deviations from the SR regime, as well as the
limitations of bulk-boundary (tensor-network based) approaches to classify LR spinmodels.

1. Introduction

The study of topological phases ofmatter experienced a growing interest in the last decades. In the absence of
interaction, a central result is the complete classification of the topologically inequivalent (families of)phases for
fermionic systems, the famous ‘ten-foldway classification’ (TWC) [1–6]. The systems included in this scheme
host a ‘symmetry-protected topological order’, indeed their nontrivial topology is constrained and protected by
some discrete symmetries, oppositely to genuine topological order. This theoretical achievement have been
confirmed and corroborated by the experimental characterization of solid-state compoundswith topological
properties [7–10].

In spite of an energy gap obstructing in general charge or spin bulk conductivity, themainmacroscopic
property exhibited by a nontrivial topological insulators and superconductors is the presence of edge
conductivity, due tomasslessmodes localized therein andwell distinct frombulk excitations.Moreover, phases
with different topology are separated each others by continuous transitions, where the bulkmass gap vanishes.
Concerning the entanglement properties, thematter included in the TWCdisplays short-range (SR)
entanglement and correlations, the opposite situation holding again for genuine topological order [11].
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All thementioned results are specific for quantum systems described byHamiltonianswith SR terms only.
However, in the last years also the study of long-range (LR) classical and quantum systems [12], both at and out
of the equilibrium, gained a renewed attention.

Independent theoretical studies have shown that LR quantum systems can exhibit various peculiar features,
mostly stemming from the breakdown of lattice locality [13–27]. This set includes static correlation functions
with hybrid (exponential and algebraic) decay [28–31], anomalous growth for the entanglement after quenches
[32], new constraints on thermalization [33] and on conductivity inNS/NSN junctions [34].

Evenmore interestingly, very recent works [26, 28, 29, 35–43] have suggested that LR systems can host new
phases at sufficiently small values of the decay exponentsα for theHamiltonian terms. These phases often
manifest interesting features not owned by the SR ones, including continuous quantumphase transitions
withoutmass gap closure, violation of the area-law for the vonNeumann entropy and of theMermin-Wagner
theorem, emergence ofmassive edge states.

The occurrence of these properties, some of them also checked in experiments of trapped ions [44, 45],
opened various issues and problems. In [28, 37, 38] it has been inferred that, for not interacting LR lattice
models,most of the described peculiarities can be relatedwith the action of some states in the bulk spectrum,
called ‘singular states’, encoding some divergences relatedwith the algebraic decay of the LR couplings.

In spite of these important clues, the understanding of the physical origin of thementioned purely LR
phases, as well as of their bulk and edge features, is still an open problem. Closely related, it appears a central
issue to classify these phases, understanding how theTWCevolves in the presence of LRHamiltonian terms,
when also correlation functions have been found not exponentially decaying any longer.

In the present paperwe start to investigate this problem.Usingfirst specific one-dimensional free fermionic
examples and later on performing amore general formal discussion (not limited to one-dimensional cases), we
show that LR insulating or superconducting phases can emerge, in some cases hostingmassive edge states, when
the bulk spectrummanifests a particular sub-set of thementioned singularities. The appearance of the latter
singularities parallels the area-law violation for the vonNeumann entropy, still in the presence of a nonvanishing
bulkmass gap, and a peculiar distribution for entanglement spectrum (ES).

We stress that, although our discussion exploitsmainly superconductingmodels as specific examples, our
results are not limited to them, but concern also the strictlymeant (topological) insulators. Indeed that possible
appearance of thementioned singularities in the spectrumdoes not depend directly on the superconducting or
insulating nature of the bulk.

Due to the same singularities, the definition of topologymust be reconsidered ab initio, requiring a proper
generalization of the approaches valid in the SR limit.

Finally, we infer, at least for one-dimensional systems, that the so-called bulk-boundary correspondence,
typical of the SR topological insulators and superconductors, gets weakened in the LR topological phases, as well
as the definition itself of localized edge state valid in the SR limit, due to the strong LR correlations between the
edges andwith the bulk dynamics. Indeed a nontrivial LR topology still reflects in the presence of states localized
on the edges, but these states have a nonzeromass and consequently a dynamics which is not separable from the
one of the bulk (in the sense that nomodes localized on a single edge can be defined from the bulk states), as
happens instead in the SR limit.

Notably, some of the ideas and results achieved for one-dimensional LR quadratic systems can hold, under
specific restrictions, for higher-dimensional ones, as well as for interacting and/or spin LRmodels.

The paper is organized as follows. In section 2we recall at first two specific examples of one-dimensional
fermionic LR quantum systems, discussing their phase diagrams and ground state properties, withmore details
for algebraic LRdecaywith exponent a < 1. Afterwards, starting from the analysis of previous results, in
section 2.3we infer that some gapped phases hosted by these systems do not insert in the classification for the SR
topological insulators and superconductors, but display a purely LR nature. This thesis is reinforced in section 3
by the analysis of the ES for the ground states after a spatial bipartition. This analysis is one of themain results of
the presentmanuscript, as well as the discussion of its consequences, performed in section 6. In section 4we
investigate at amore formal level the generic inapplicability of the TWCwhenLRHamiltonian terms are added,
reconsidering the classification of themaps from the Brillouin zone induced by theHamiltonian andnonlinear
σ-model approaches to the TWC.Notably, this discussion is again not limited to one-dimensional systems. In
section 5we deal, in part for the first time, with the classification, by Berry phase andwinding numbers, of the LR
phases encountered in the previous section, as well as with the limitations and open problems concerning these
approaches. At then end, we address the generalization of thesemethods to LR free fermionicmodels with
different symmetries and dimensionality. In section 6we analyse atfirst the behaviour of the correlation length
in LR systems. Later on, starting from the latter discussion and from the results on the ES, we infer theweakening
of the bulk-boundary correspondence in the LR topological phases, clarifying the nature of theirmassive edge
states. This is another central result of the present paper. In section 7we discuss the stability of the LR phases
against local disorder, expected to smear the effects of the LRHamiltonian terms In section 8we probe the
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possible extension of some results obtained so far to other LRmodels, spin-based and/or interacting. For this
task, we analyse the entanglement content of the paradigmatic LR Isingmodel, finding again peculiarities in the
ES at small enoughα. Conclusions arefinally presented in section 9. Further details,mentioned in themain text
but not immediately required to understand it, are given in the appendices A–D.

2.Discussion of previous results

In this sectionwe recall atfirst some basic features of the two LR generalization of the SRKitaevHamiltonian
[46]. Furthermaterial is given in appendix A. Later on, analysing the previous results about these chains, we infer
that their phases at a < 1cannot be included in the TWC for the SR topological insulators and superconductors
[1–6].

2.1. Themodels
In [28, 37, 38] two quadratic quantummodels involving spinless fermions on a one-dimensional lattice have
been studies extensively. Thefirst one is characterized by a LR pairing:
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For a closed chain, we define in equation (1) = ℓℓd ( = - ℓℓd L ) if <ℓ L 2 ( >ℓ L 2) andwe choose anti-
periodic boundary conditions [28].

The spectrum la ( )k of theHamiltonian in equation (1) displays a critical line at m = 1 for everyα and a
critical semi-line m = -1 for a > 1. Notably the energy of the quasiparticles diverges in p=k if a 1, while
it displays, at every finiteα and at the samemomentum, divergences in some k-derivatives for l ( )k ([28, 37]).
For these reasons the states close to p=k are called ‘singular states’ (and their dynamics as ‘singular dynamics’)
[38]; asmentioned in the introduction they have shown responsible of the deviations from the SR behaviours,
concerning for instance the phase content, the decay of the static correlation functions, the breakdown of
conformal symmetry at criticality and the underlying violation of the lattice locality. The stability of these
features against finite-size effects, smearing the divergences of the singular states, is discussed in the appendix B.

Importantly, at least for the closed chain, the ground state energy is still extensive also at a < 1, in spite of
the singular states, so that noKac rescaling is required [12, 28].

For future purposes, it is convenient to report the tight-bindingmatrixHamiltonian corresponding to
equation (1):
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thermodynamic limit,  ¥L , encoding thementioned singularities from the LR character of the
Hamiltonian.

TheHamiltonian in equations (1) and (2) shares the same symmetries of the SRKitaev chain, thatmeans,
beyond the unitaryZ2 parity of the total fermionic number, the anti-unitary charge conjugation and the time
reversal symmetries. This content in symmetries and the properties of the operators realizing them formally
locates themodel in equation (1) in the class BDI of the TWC [1–6].

Some generalizations of theHamiltonian in equation (1), involving aswell a LRhopping, can also be
considered:
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Thesemodels have been studied in [29, 40]. The structure and the expression for the energy of the ground-states
is very similar to the ones for theHamiltonian in equation (1), with the difference in equation (2) that

p - +a ( )k g kcos (for b a= )
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Still divergences in the quasiparticle spectrumoccur at p=k if a < 1and also high-order ones at everyfiniteα.
However these divergences display a central difference comparedwith the ones from a ( )f k in equation (2):
indeed - =a a( ) ( )g k g k , while - = -a a( ) ( )f k f k , affecting differently the singular dynamics, as wewill see in
detail in section 4. Again, theHamiltonian in equation (3) shares the same symmetries of the SRKitaev chain,
then it belongs to the BDI class of the TWC.

2.2. The phase diagrams
Concerning the phase diagramof theHamiltonian in equation (1), in [28] it has been found that above the line
a = 1 two phases take place (at m <∣ ∣ 1 and m >∣ ∣ 1 respectively), continuously connectedwith the ordered and
disordered phase of the SRKitaev chain. There the area-law vonNeumann entropy after a bipartition is fulfilled,
as common in SR gapped systems [47] (although exceptions are known in peculiar ad hoc constructedmodels,
see e.g. [48]). Thismeans in formulae that

 ¥ ( ) ( )S l a, 5

where l characterizes the two parts of the chainwith length l and L−l (it also holds  ¥L ) and a is a constant.
At variance, below the line a = 1 two phases appear (at m < 1 and m > 1), signalled by a deviation from the

area-law for the vonNeumann entropy. In particular this deviation turns out to be ruled by a logarithmic scaling
law, as for SR quantum systems at criticality [49, 50]. In this way, similarly towhat done in [28, 29, 31], the area
law violation can bemodelled as follows

=( ) ( )S l
c

l
6

ln . 6eff

In equation (6) a value ¹c 0eff signals the area-law violation. The same violation has been demonstrated in [37]
by an effective theory close to the critical (semi-)lines m = 1.

The described phase diagram is shown, adapted from [28], in the appendix A.
A further striking feature of the zone below a = 1 is that at m < 1massive states localized on the edges

appear [28], remnant of theMajorana (massless) edgemodes present if m <∣ ∣ 1 and a > 1 (in the SR limit they
are proper of the ordered phase for the SRKitaev chain [46], for a review see also [51]). Indeed in [29] an
hybridizationmechanismof theMajoranamodes, yielding themassive edge states, has been conjectured, similar
to the one occurring atfinite sizes in the SR limit [46]. The samemechanismhas beenfinally proven in the limit
a  0 in [43].

Interestingly, the phases at a < 1are not separated by anymass gap closure, nor by any first-order transition
(see the next section), from the ones at a > 1 [28]. However at least a LR phase at m < 1 and a < 1 is required
by thefiniteness of themass gap in the same range: if this phase were not present, it could be possible to
interpolate continuously between the ordered and disordered phases at a > 1and m < 1 (see the phase diagram
recalled in the appendix A).

Some discontinuities, suggesting phase transitions, around a = 1have been observed, e.g., in the von
Neumann entropy at half chain and in the relatedmutual information, in the Berry phase [39], in thefidelity
susceptibility and in thefinite-size scaling behaviour of themultipartite entanglement [52].

2.3.Deviations fromTWC: clues fromprevious results
The phases at a < 1 for the fermionicHamiltonian in equation (1) cannot be included in the TWC for the SR
topological insulators and superconductors [1–6]. In favour of this thesis, we identify some evidences,
elaborating some results fromprevious works (mainly [29, 37, 39]):

(i)The appearance ofmassive edge states [29, 39] in itself already signals a breakdown of the TWC,where
onlymassless edgemodes are expected. The origin of thesemodes will be clarified in section 6.

(ii)TheTWCdoes not consider continuous phase transitions (especially between different topologies)
withoutmass gap closure, as in the present case approaching the line a = 1 (see [28] and the previous section).

The possibility of afirst-order phase transition seems ruled out in our cases by the absence of divergences in
thefirst derivative inα of the extensive ground-state energy a( )e L,0 . Similarly, a crossover is excluded by a
recent investigation of the fidelity susceptibility [52], as well as by basic considerations about the ground-state
structure of open chains: if a > 1 the vanishingmass of theMajorana edgemodes at m <∣ ∣ 1 implies the
existence of two degenerate ground-states with differentZ2 fermionic parity, while the nonzero edgemass at
a < 1 reflects in a unique ground state with even parity. The described ground state structure deeply affects also
the entanglement (spectrum) content, as will be discussed in section 3.

4
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The absence of amass gap closure can be justified heuristically by the large algebraically decaying tails of the
static correlation functions at small values ofα, also in the presence of a nonvanishingmass gap [28, 29, 37]4.

(iii)TheTWC involves SR (exponentially decaying) correlations and the fulfilment of the area-law for the
vonNeumann entropy between disconnected subsystems.However, for theHamiltonian in equation (1) below
a = 1, where the quasiparticle energy diverges, this law is violated, even if only logarithmically [28].

(iv)Thewinding numbersw, characterizing the phases of theHamiltonian in equation (1) at everyα at least
above 1, can be calculated directly following [53]:
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The results are correctly foundw=0 andw=1 at a > 1. On the contrary, at m < 1 a fake semi-integer

winding number =w 1

2
appears below a = 1, while = -w 1

2
is obtained at m > 1 [39]. In the latter phase no

edge states if found, and both the phases are characterized by a unique ground-state. These results signal a clear
inconsistence in the definition of topology by thewinding numbers valid in the SR limit, since these numbers,
when properly defined, can assume only integer values [54, 55]. However, themere emergence of this
inconsistence can be interpreted as a signal of TWCdeviation, relatedwith the other LR features described
above, as wewill detail in sections 4 and 5.

Finally, a bitmore of a subtle, but very relevant argument is given in5.
A similar analysis can be performed for theHamiltonians in equation (3), having the same symmetries of

equation (1). This analysis leads to qualitatively equal conclusions as the ones just above. Indeed in [29] for the
case b a= at a 1again an extended region has been found in the phase diagramwheremassive edge states
appear. Again this phase has a single ground-state, paralleling the nonvanishingmass of the edge states; however
the same phase is not continuously connectedwith the disordered phase of the SRKitaev chain.

Summing up, the arguments given above yield a quite compelling evidence that the phases at a < 1on the
Hamiltonians in equations (1) and (3) escape the TWC for SR fermionic systems.

3.Deviations fromTWC: further evidences fromES

The violation of the area-law for the vonNeumann entropy in gapped regimes at a < 1, suggesting the
appearance of new purely LRphases, induces a deeper study of the entanglement content in the same regimes.
For this reason, in the present sectionwe analyse, for the first time to our knowledge, the ES for the non-critical
LR paired Kitaev chain, equation (1). This study, which is one of themain results of the present paper, will help
us to determine in deeper detail the structure of the phases at a < 1, corroborating their purely LR nature and
linking together their peculiar properties.

The ES is defined in general as the set of (Schmidt)-eigenvalues of the reduced densitymatrix rB of a partB of
the considered quantum system after a bipartition (see e.g. [56]). It is known that ES is encoding evenmore
information than the vonNeumann entropy [57–60] and it can be calculated following the techniques described
in [56].

We assume in particular an open chainwith total length L and bipartite it in such away to isolate a segment of
it, say between L 4 and L3 4.

Wefind that, below a = 1and in the gapped regime m ¹ 1, in correspondencewith the violation of area-
law for the vonNeumann entropy, the ES resembles the typical one of a SRmodel at a critical point, assuming
indeed a nearly continuous distribution (see [58, 61] and references therein). In the light of this behaviour, it
deserves future effort to probe if this distribution is reproduced by the law found for critical one-dimensional SR
systems reported in [61]. There the relevant parameter appearing in the distribution law is the conformal charge
c, while in our case the same role should be played by the effective parameter ceff governing the area law violation
for the vonNeumann entropy, according to equation (6).

4
We acknowledge that the present hypothesis leaves open the issue to identify precisely the source of the singularities proper of a genuine

phase transition.
5
The appearance of only two phases in the SRKitaev chain can be also understood as follows. Time-reversal symmetry, although formally

proper of theHamiltonian in equations (1) and (A1), is explicitly broken by the same fact that spinless fermions are involved (in turn limiting
the dimensionality of the tight-bindingHamiltonian in equation (2)), then amagnetic order is implicitly required. Under this optic, the
Hamiltonian in equations (1) and (A1) can be effectively located in theD class of the TWC [3]. Accordingly, only two disconnected phases
occur in this class in the one-dimension case, isomorphic to the set of winding numbers = -{ }Z 1, 12 , characterizing e.g. the topological
invariant in [53]. For this reason, the appearance of other phases for theHamiltonians in equations (1) and (3) at a < 1 indicate a violation
of the TWC.

5
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More importantly, the degeneracies of the Schmidt eigenvalues are found to be different from the ones
generally expected for gapped SR systemswith same symmetries, as wewill see inwhat follows, signalling the
appearance of pure LR phases.

The explicit results are shown in figure 1. There it can be seen that for a 1 the Schmidt eigenvalues wn (n
labelling them starting from the highest one) composing the ES are arranged inwell-separatedmultiplets. In
particular when m <∣ ∣ 1 (left panel, showing the case m = -0.5 and a = 3), the dimension of themultiplets is
even, as implied by the presence of two degenerate vacua (in the thermodynamic limit) ñ∣GS and ñ∣GS 0 with
differentZ2 fermionic parity, as recalled in the appendix A (see also [59, 60, 62]).

Conversely, approaching the line a = 1, the samemultiplets tend to assume a continuous distribution
whose decay becomesmuch slower. Evenmore interestingly, alsowhen m <∣ ∣ 1 the even parity of themultiplets
disappears, paralleling the presence of a unique (Z2-even) ground state ñ∣GS .

The absence of constraints on the parity of the Schmidtmultiplets is also shown infigure 2, where the
behaviour of the difference between the two highest Schmidt eigenvalues, called ‘Schmidt gap’ [58], is reported
for different values ofμ and L=512.We see that, approximately below a = 1, this quantity becomes
nonvanishing for everyμ.

In order to exclude that the nonzero values for the Schmidt gap below a = 1 found infigure 2 are due to
finite-size corrections, we show infigure 3 a finite-size scaling of themost unfavourable case in the former figure
(m = 0.5), donewith the data for chainswith lengths from L=60 to L=512. This scaling yields at a = 0.5 a
value wD » 0.05 for the Schmidt gap, notably not far from the value at L=60; this fact indicates the limited
role of thefinite-size effects for the wD . Notice finally that wD » 0.05 ismuch bigger than the value at a = 2,
wherewe obtain wD < -10 5.

The differences in the distributions of the ES in the range m <∣ ∣ 1 and on the two sides of the line a = 1
confirms the appearance of purely LR phases below this threshold. Evenmore interestingly, the present results
stress oncemore the deep difference between the latter phases and the SR ones.

Indeed it is known [62, 63] that, nomatter the presence or the absence of interaction, only two phases
(ordered and disordered) can be realized on a single SRKitaev chain (see footnote 5). The disordered phase of
thismodel, having a single ground-state ñ∣GS , displays no constraint on the number of Schmidt eigenvalues in
eachmultiplet, so thatmultiplets with odd numbers of eigenvalues are also present. In particular, theminimum
degeneracy for amultiplet is 1. On the contrary, the ordered phase is characterized by even Schmidtmultiplets.
In particular, theminimumdegeneracy for amultiplet is 2.

Figure 1.Entanglement spectrum for the open LRpaired chain in equation (1)with m = -0.5, different L, and for a = 3 (left panel)
and a = 0.5 (right panel).

Figure 2.Dependence onα of the difference wD between the two highest Schmidt eigenvalues (Schmidt gap) for the open LRpaired
chain in equation (1), different values ofμ and L=512.Notice that wD = 0 if a 1 and m <∣ ∣ 1, as expected in the SR limit.
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The described SRpicture is not realized instead in the LR phases at a < 1. Indeed these phases display also
single degeneracies in the Schmidtmultiplets but, as inferred in sections 2.3 and 5, they are disconnected from
the disordered phase of the SRKitaev chain.

This peculiar behaviour for the ES parallels the violation of the area-law and the appearance ofmassive edge
states (when m < 1), as wewill discuss inmore detail in section 6, where formal reasons for the inapplicability of
the arguments reported in [62] is also analysed.

4. Formal origin of the deviations fromTWC

In this sectionwe investigate, at amore formal level, the origin of deviations from theTWC that can occur in LR
quantum systems, analysing the hypothesis at the bottomof the TWCand their possible inapplicability in the
presence of LRHamiltonian terms. The same analysis suggests that in general only some singularities in the
energy spectrum can induce LRphases, while others preserve the SR phase content and in general the TWC.

We remember that, even if we are still dealingwith superconducting phases, themain results of our
discussion are not restricted to this set of systems.Moreover no limitations are implied on the dimensionality of
the considered LR quadratic fermionicmodels.

A key to understand the TWC in any dimension is based on the classification of the topologically
inequivalent continuousmaps from the space of the latticemomenta pÎ [ )k 0, 2 (assumed to be a good
quantumnumber, due to translational invariance in periodic systems)6, to a suitable grassmanianmanifold F,
induced by thematrixHamiltonian ( )H k ([1–6, 9] and references therein). Thesemaps are defined univocally
by some (sets of) integer numbers, generally calledwinding numbers. In general F has the formof a coset space
G , beingG and some groups. In the absence of further symmetries, thesemanifolds are strongly

constrained by the discrete anti-unitary charge-conjugation and time-reversal symmetries.
For instance, in the particular case of spinless superconductors, as for the generalizedKitaev chains in

equations (1) and (3), it is useful to classify thewindings of the unit vectors =ˆ
∣ ∣

nk
n

n
k

k
such that ( )H k can be

written as s=
( ) ∣ ∣ ˆ ·H nk nk k , where si are the Paulimatrices (see [53] for their differential expressions in the

one-dimensional D/BDI classes).
However, as discussed in the previous section, in the presence of LRHamiltonian terms in real space,

singularities for ( )H k and for its spectrum l ( )k can occur. The behaviour of these divergences, say at a
momentum k0, strongly affects the definition of thewinding numbersw (defined for the one dimensional case
in section 2.3) and the possible emergence of the LR phases. Indeed if +( )H k0 ( being a infinitesimal
quantity defining an open set around k0) does not depend explicitly on  (in one dimension if

 + = -( ) ( )H k H k0 0 ), the singularities at k0 do not really spoil this definition (in the particular case above
they are regularized dividing ( )H k by ∣ ∣nk : º˜ ( ) ( )

∣ ∣
H k H k

nk
), as well as of the relatedwinding numbers. This is the

case for a ( )g k in equation (4). In the followingwewill quote these divergencies as first type divergences/
singularities. This set also includes, as a special case, the situationwhere only (say) +( )H k0 diverges as   0,
while -( )H k0 tends to afinite value; an explicit example of this situation has been proposed recently in [64].

On the contrary, when +( )H k0 depends explicitly on  (in one dimension if  + ¹ -( ) ( ))H k H k0 0 ,
the path in the ( )H k manifold experiences not re-absorbable discontinuities. For this reason, thewinding

Figure 3. Finite-size scaling of the Schmidt gap at m a= = 0.5 (purple line in figure 2). Thefitted value wD » 0.05 strongly deviates
from themuch smaller values found at a > 1 and the sameμ (see themain text).Weused a polynomialfit up to the fourth power in

L

1
.

6
Isomorphic to the surface of aTn-torus (n being the space dimension). However, in spite of the toric shape of the Brillouin zone,most of

the properties of the SR topological insulators can be inferred considering instead the same zone isomorphic to a n-sphere, then evaluating
the homotopy classes p ( )Fn , see e.g. [5, 83].
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numbers of ( )H k that can define and classify the topology of the SR phases in every class of the TWCare now ill
defined7. In this condition the TWCcan generally fail and newLRphases can occur. In the followingwewill
quote these divergencies as second type divergences/singularities. The different played by the two types of
divergencies will be probed explicitly in section 5.

Notably in [37], using an effective theory close to the critical lines (where conformal invariance is explicitly
broken), it has been shown explicitly for themodel in equation (1) that divergences in ( )H k of the second type
induce directly the violation of the area-law for the vonNeumann entropy. The same holds also for the phase
transition at a = 1 [52]. Based on the discussion above, we are lead to think that this parallelisms holds generally
in gapped LR fermionic systems.

Recently some attempts to define a topology for some LR fermionic systems appeared [39], exploiting the
differential invariants in [53]. For the system in equation (1) these attempts led tomathematically inconsistent
results for a < 1: indeed semi-integer winding numbers have been obtained in this condition, in spite of the fact
that, beingmeasured on closed d-dimensional loops, winding numbers should assume only integer values
[54, 55]. In this way the topology defined in terms of these winding numbers ismathematically not evenwell
defined, aswell as a connection between these numbers, calculated in the bulk, and possible edge excitations (see
more details in sections 5 and 6). However, in the light of our discussion, themere appearance of winding
numbers with fake semi-integer numbers (the same numbers insteadwell definedwith integer values in the SR
limit) can be interpreted as a clear physical diagnostic of new LRphases beyondTWC. This point will be
discussed in better detail in section 5.

The analysis above suggests that no newphase is expected in the presence of other singularities in higher-
order derivatives of the spectrum l ( )k , as for theHamiltonians in equations (1) and (3) in p=k at everyfinite
a > 1 (on the contrary, the same singularities has been found responsible of other LR effects, as explained in the
previous section). In this way, a particular care is required for evaluating the regime a< <1 3

2
for the

Hamiltonian in equation (1) (a =c
3

2
being the critical value forαwhere the group velocity for the Bogoliubov

quasiparticles diverges if m ¹ 1), suspected in [39] to have LRnature:massive edge states and fractional winding
numbers. Formore details, see sections 5, 6 and 6.1 .

We discussed above that in the SR limit topology can be encoded in some (sets of)windings number(s)
induced by themapping  ( )Hk k itself [3, 5]. Exploiting a nonlinearσ-model description of these
grassmanianmanifolds, in the past literature the TWChas been obtain directly [1–3, 5]. Indeed F is strongly
constrained by the (anti-unitary) symmetries of the systemunder consideration, setting its topology class.
Remarkably, the same approach implicitly addresses the stability of the phases of the SR topological insulators
and superconductors against the introduction of a onsite disorder; indeed the latter ingredient is explicitly
assumed and encoded.

In the presence of LR singularities in ( )H k , we can show that the nonlinearσ-model construction, which
leads to the TWC, cannot be performed, at least in theway derived following the standard approach [65–70],
recalled in the appendix C (where the proof of the inapplicability of the standard construction is provided for the
first time).More in detail, the same approach generally yields a low-energy effective euclidean actionwhose
kinetic part has the following form:

 ~s [ ] ( ) ( )S Q C Q QTr , 8

beingQ an effectivematrix field andC a constant. However, as shown in the appendix C, the latter constant
turns to be divergent in the LR phases, testifying the inapplicability of theσ-model construction, valid instead in
the SR limit.

Wefinally comment that in LR systems the effect of disorder could be expected to bemore dramatic than in
SRmodels, spoiling the divergences in the energy spectrum that originate the LR phases and all the other LR
peculiarities, however this possibility will be ruled out in section 7.

5. Towards a bulk classification of LRphases

In this sectionwe deal with the problemof classifying the purely LR phases of quadratic fermionicHamiltonians,
also defining a nontrivial topology for them.We perform the discussion for one-dimensional systems at first.

We discussed in section 4 thatwinding numbers for thematrixHamiltonians ( )H k are apparently not
useful, being ill defined in the LRphases. The reason for that inapplicability lies on the discontinuities

7
Instead of ( )H k , for SR band insulators a different operator = -( ) ( )Q k P k1 2 has been used often (e.g. in [3, 5, 6]),

= å ñá( ) ∣ ( ) ( )∣P k u k u ka a afilled being a projector on the filled energy levels of the gapped SR fermionic system,with eigenvectors ñ∣ ( )u ka . This
operator encodes all themain qualitative properties of ˜ ( )H k and is continuously connected to it, so that themappings  ˜ ( )k H k and
 ( )k P k share the same topological numbers. This identification do not hold instead if ( )H k has second type singularities.
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encountered in the path on the ( )H k manifold as k varies in the Brillouin zone, e.g. in the correspondence of
second type divergences (say at k0), where  + ¹ -( ) ( )H k H k0 0 .

Another approach, still connectedwith the first one and also valid in the SR limit, is to consider the Berry
phase [71]

òF = á ¶ ñ∣ ( )k u ui d , 9
BZ

k k k

gathered again as k varies along the Brillouin zone. The vector ñ∣uk is an eigenvector of ( )H k and the integral
extends on the Brillouin zone. The same approach has been exploited in [39] for the particularHamiltonian in
equation (1).

For sake of generalization and in order to identify ambiguity problems in the definition of a nontrivial LR
topology, it is useful to discuss here themain step of the calculation for themodels in equations (1) and (3), both
in the SR limit and in the LR one. In both of the regimes the same calculation proceeds in a very similar way.

We notice atfirst that, since á ñ =∣u u 1k k , we have that, if wefix ñ∣uk real, á ¶ ñ =∣u u 0k k k , unless ñ∣uk and/or
¶ ñ∣ uk k are singular. In all the cases considered in the present paper ñ∣uk are well defined (finite), as well as the
Bogoliubov transformations leading to them [28, 37], while the second possibility can be realized, being ñ∣uk

discontinuous. This fact holds in the correspondence of second type singularities (say again at k0):

qñ = ñ + - ñ∣ ∣ ( )∣ ( )u v k k v , 10k k k1 0 2

or, equivalently,

qñ = ñ = + - ñ∣ ( ) ∣ ( ( ) ( )) ∣ ( )u M k v k k N k vI , 11k k k k00

being ( )M kk0
and ( )N k suitablematrices.Notice that ( )N k is continuous through k0:  + = - º( ) ( )N k N k0 0

( )N k0 ,moreoverwehave continuity in k0 for the energyl ( )k of ñ∣uk :  l l l+ = - =( ) ( ) ( )k k k0 0 0 . The latter
fact is central to assure theBerryphase tobewell defined.

Thematrix ( )M kk0
transforms locally ( )H k where the singular point k0 is encountered:

   + = + - +-( ) ( ) ( ) ( ) ( )H k M k H k M k 12k k0 0 0
1

00 0

so to assure that

l = á ñ( ) ∣ ( )∣ ( )k u H k u 13k k

varies continuously passing through k0.We stress that, in spite of thematrix ( )M k , the nature of the Berry phase
Φ is purely abelian in all the cases analysed in this paper, since no degeneracy for the ground state occurs.

It is straightforward to show that, passing through k0 frombelow, a Berry phase

p
F = - á ¶ ñ-∣ ( ) ( ) ∣ ( )∣v M k M k v

4
14k k k k k0

1
0 0 0 0

is gathered. This expression can be easily evaluatedwriting q - = + -( ) ( ( ))k k k k1 sign0
1

2 0 and using the

complex expression for the derivative of the ( )ksign function:

p d
¶

¶
=

( ) ( ) ( ) ( )k

k
k k

sign
i sign . 15

Importantly, the calculation scheme described aboveworks completely equivalent for the discontinuities
occurring in SR systems and for the LR ones from the second type singularities. Exploiting the same scheme, it is
easy to show that:

• For theHamiltonian in equation (1) (a < ¥, b = ¥), q qñ =∣ ( )u cos , sink k k , with

q
m

= -
+

a

b=¥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( ( ))

( )
f k

w g k

1

2
arctan , 16k

and =¥( )g k kcos . Two discontinuities in qsin k in ñ∣uk arise (at a( )k1,2 ) if m <∣ ∣ 1 and for everyα, because
there the diagonal terms in equation (2) change sign. Passing through each of them frombelow, a p

2
phase is

gathered. Indeed if a > 1 they give rise to the total Berry phase pF = proper of the phase withmassless edge
modes. In these cases thematrix ( )M k in equation (11) around a( )k1,2 reads:

q p s= + - -( ) ( ( )( ))M k kI Ix . Another discontinuity in qsin k appears if a < 1, because of a second type
singularity at p=k , responsible of the outcome of LRphases.More in detail, this is due to the behaviour of

p+a ( )f k : p+ = +¥p + ( )f klimk , and p+ = -¥p - ( )f klimk .Wefind that, passing through p=k
frombelow, a p

2
phase is gathered if m > 1, while a- p

2
phase is gathered if m < 1. In these cases thematrix

( )M k in equation (11) reads, around p=k , m p= - -( ) ( ) ( ( ))M k ksign 1 diag 1, sign , the same found in
[39].
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Collecting all these partial results, it is found that F = 0 if m >∣ ∣ 1 and pF = if m <∣ ∣ 1when a > 1, while

at a < 1we obtain F = - =p p
2

3

2
if m < 1 and F = p

2
if m > 1.

These findings show the presence of two purely LRphases at a < 1disconnected from the SR ones (having
different values ofΦ), as described in the section 2.Moreover, they indicate a nontrivial topology for (at least)
one of them, seemore detail in the following of the section.

• For theHamiltonian in equation (3)with a = ¥ and b < ¥ (LRhopping, SR pairing), exploiting the
expression for qk in equation (16), only phaseswith F = 0 and pF = are found, also at a < 1.
Correspondingly, a qualitatively equal situation as for theHamiltonian in equation (1) at a > 1 takes place:
massless edgemodes are found if pF = , while no edgemode at all if F = 0. These resultsmatch our
expectation thatfirst type singularities, as for b ( )g k ( =¥( )f k ksin is regular), do not induce alone LRphases.

Indeed these singularities yield =( )M k I.

• For theHamiltonian in equation (3)with bothfiniteα andβ, we obtain;
(a) if a b< , below a = 1wefind, asμ varies, zones with F = p

2
and F = p3

2
, as for the case a < ¥ and

b = ¥ (Hamiltonian in equation (1)). In particular, at fixedα the second zone occurs at smallerμ compared
with thefirst one. Correspondingly, the same content ofmassive edge states is found. The quantization of the
Berry phase, required to assure topological stability, will be discussed at the end of the present section;
(b) if a b> , below a = 1wefind, asμ varies, zones with pF = and F = 0, as for theHamiltonian in
equation (3)with LR hopping only. Indeed here the contribution of the (first and second type) singularities at

p=k from p+b ( )g k and p+a ( )f k effectively cancel each other. Atfixedα, thefirst zone occurs again at
smallerμ comparedwith the second one. If pF = massless edgemodes are found, while no edgemode at all
when F = 0;
(c) if a b= , at a < 1wefind, asμ varies, zones withαdependent Berry phases: p aF = - ( )K 2 and

p aF = -( ( ) )K1 2 , with a = -
ap

⎛
⎝⎜

⎞
⎠⎟( )( )K sin arctan1

2

1

tan
2

. Again at fixedα, the second zone occurs at

smallerμ compared to thefirst one, in this regimemassive edge states have been previously found, for the first
time [29]. The contribution aµ ( )K , due to the second type singularity, vanishes at a = 1, as expected, while
it tends to- p

2
at a = 0 (then the same values forΦ as in the first example above are recovered). Strikingly,

the quantityΦ varies continuously in the range  a0 1, so that apparently it cannot be assumed a priori as
an order parameter to distinguish SR and LRphases (while it appears effective to discriminate between the LR
phases) and to assure their topological stability against perturbations. However, a way to remove this problem
will be discussed close to the end of the present section.Moreover, the presence of these phases can be proven
also by the ground-state degeneracy arguments in section 2.2.

We notice that, as resulting from the discussed examples, differently from the SR systems, for LR ones the
appearance of a nonzero Berry phases, does not imply the presence of edge states in general. For instance, in the
first example (LR pairing only), in the regime m > 1 a phase F = p

2
is derived, which however does not

correspond to the presence ofmassive edge states, in spite of the fact that this value is different from F = 0, the
proper value in the absence of edgesmodes (as the empty space beyond the edges themselves). The difference
stems from the second type divergence at p=k ; this contribution is present for all the LR phases at everyμ,
indeed is exactly the one discriminating SR and LRphases.

The latter example indicates the necessity for amore specific criterium to link the Berry phaseΦwith the
possible presence of edge states andwith their properties in LR phases. From all the analysed examples, we are
led to think that, given a certainmodel having different LR phaseswith Berry phases F{ }i , edge states occur
whenever F = F - F ¹˜ 0i i M , where FM is the common contribution present in all the LRphases, not
quantized in general (as exemplified in the case (c) above), and only discriminating them from the SR phases
(indeed derives directly from the second type singularities in the quasiparticle spectrum). Then FM defines the
trivial LR topology. Consequently, the quantized quantity F ¹˜ 0 defines instead the nontrivial LR topology,
relatedwith themassive edge states. After (and only after) that the LR contribute FM has been properly
identified, the described subtraction procedure amounts to avoid the LR singularities in the calculation of the
Berry phase accordingly to equation (9).

The Berry phase approach, with the caveats discussed above, looks suitable for extension to classify LR
phases of (at least) one-dimensionalHamiltonians with different symmetry content from the BDI class
examined in the present paper.

The same ambiguity encountered for the Berry phase is found in the attempt to define a LR topology by the
winding numberw, defined as in section 2.3. The two approaches are linked together by a classical result by Berry
[71]: for the particular case of a 2×2 realmatrixHamiltonian, as in equation (2), it holds
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pF = ( )w. 17

Thementioned ambiguity is due again to the primary difficulty of identifying the trivial LR topology. For
instance, both for theKitaevHamiltonianwith LR pairing only and for theHamiltonianwith also LR hopping,
the path of the vector nk (defined in section 4) in the two LRphases, as k changes from0 to p2 , is a semi-circle
around the origin ( )0, 0 , which is closed by a jumpbetween the two ending points of the semi-circle, a direct
consequence of the LR divergences. Notably, the closed paths (considering also the jumps) in the two phases
differ by an entire circle, as noticed in [39]. This fact allows us to conclude that the two phases have different
topologies (D = - =∣ ∣w w w 11 2 , indeedw counts the number, also not integer in the LR regime, of closed
loops around the origin) and to suspect the appearance ofmassive edge states in one of them.

In order to discriminate between the LR phasewith trivial topology fromother ones with nontrivial topology
andmassive edge states we can use the relation in equation (17), leading back to the same discussion for the Berry
phase: identified as trivial the quantumLRphase having FM andwindingw1 (generally not integer), the LR
topological phases are characterized by the integer numbersDw and by the related phases

pF = F - F = D˜ ( )w. 18M

Finally, equation (18) ensures the quantization of the Berry phase also in the LR regime and its consequent
stability to perturbations.

In conclusion, the discussion of this section suggests that the Berry phase and the generalizedwinding
number can be still useful to define a nontrivial topology in LRquantum systems, resulting in the presence of
massive edge states, provided the proper primary identification of the trivial topology. This possibility should be
valid also for LR quantum systemswith higher dimensionality (for a review on the samemethods applied to
general SR topological insulators see for instance [9] and references therein), indeed no additional obstructions
seem to appear in these conditions. The evaluation of the two approaches on specific higher dimensional cases
(an issue also involving the problemof defining LR topological numbers entirely in terms of local quantities/
currents neglecting path discontinuities) deserves deep future attention in our opinion.

6. Partial failure of edge characterization: weakening of bulk-boundary correspondence

In sections 2 and 3we explained that the distribution of the ES in the LR phases of theHamiltonian in
equation (1) below a = 1does not insert in the SR classification scheme derived in [62] for the one-dimensional
BDI symmetry class.

In this sectionwe investigate at amore formal level the origin of this deviation. This analysis will yield further
information on other LRpeculiarities, for instance the nature of themassive edge states, their linkwith the bulk
excitations and the asymptotic behaviour of correlation functions.Moreover the same analysis will appear
suitable for almost straightforward extensions to other one-dimensional symmetry classes.

6.1.On the behaviour of the LR correlation length
The discussions of the previous sections require further investigations on the definition of the correlation length
ξ in LR systems.

In gapped SR systems the correlation length can be defined in variousways. Themost commonone is by the
asymptotical exponential decay of the two-points correlation functions. Let us take afield f ( )x of a generic
model, the correlation functionwewill consider is the following

f f= á ñ ~ x¥
-( ) ∣ ( ) ( )∣ ( )C x GS x GS0 e . 19x

x

This quantity is expected, instead, to diverge at the continuous critical points, where the correlation
functions decay algebraically.Moreover, at criticality, violation of the area-law for the vonNeumann entropy
occurs [49, 50], a fact which is at the base of the scaling hypothesis and of the effective RGdescription for critical
phenomena (see e.g. [72]).

For a +( )1 1 -dimensional SR quantum system, a second definition for ξ can be given close to (but not
exactly at) the a critical point, by the asymptotic scaling of the vonNeumann entropy. Given l the length of a
subsystem, the entropy goes

x~  ¥( ) ( )S l
c

l
6

ln as , 20

c denoting again the central charge describing the critical point and ( )S l being defined as in section 2.2 [50]. This
law is similar to the one in equation (6). Equation (20) implies that the vonNeumann entropy saturates for large
l, to afinite value, function of ξ. Importantly the latter definition only relies on the existence of a critical point,
described by a conformal theory. For this reason, although the two definitions for ξ in equations (19) and (20)
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match each others for SR systems (up to constants of order 1), the second one appearsmore suitable for
generalizations to LRmodels, at least until conformal invariance is preserved.

Applying thefirst definition for ξ in equation (19) to the LRKitaev chains (as well as to the notable examples
in [29–31]), the hybrid decay for correlation functionsmentioned in the introduction yields, at every finiteα, an
infinite correlation length, x  ¥. However, this result does notmatch the fact that these systems display, up to
critical (model dependent)α, both a saturation of the vonNeumann and conformal points, such that
equation (20) is valid and ξ is expected to befinite.Moreover, in the particular cases of LRKitaev chains in
section 2, if a< < ¥1 , the realized phases are continuously connectedwith the ones in the SR limit, so that a
divergence of ξ, according to the definition in equation (19), looks definitively odd.

For these reasons, a unique definition ξ for LR systems appears an open issue. At least for themodels that we
are analysing, a partial help comes from the two points correlation functions º á ñ( ) †g R a aR1 0 and

º á ñ( )( ) † †g R a aR1
anom

0 . Indeed their hybrid decay atfiniteα is characterized by a typical distance *R , increasing
withα, and separating the exponential and the algebraic decay regimes, at short and large separations
respectively [28–31]. In particular, the exponential part becomes practically absent at a 1, so that the
algebraic tail strongly dominates.

In light of this behaviour, in the largeα limit (where equation (20) holds and the algebraic part of the
correlations also begins at very large separations andwith very smallmagnitudes), a typical length for
correlations can still be defined by the exponential decay close to * ¥R .

On the contrary, in the regime a 1, where the exponentially decaying part is negligible, a characteristic
length is not available any longer. In this regime the system effectively behaves like a SR system at criticality, as
one can understand from at the area law violation for the vonNeumann entropy and from the continuous
distribution for the ES, described in section 3. The parallelism for the latter quantities is also someway justified
by the fact that if a < 1 the correlation functions ( )g R1 and ( )( )g R

1
anom , which determine alone the ES and the

vonNeumann entropy in quadratic fermionicmodels [56], decay algebraically with an exponent g < 1always
[28, 29, 37], as for the critical SR quadraticHamiltonians in one dimension (see [73] and references therein).

This analogy naturally leads us to conjecture that ξ effectively diverges for a 1. In the next sectionwewill
check that this hypothesis is able to explain the emergence and various properties of the LRphases.We leave as
open and important issues the probe on othermodels and the rigorous justification of this hypothesis, as well as
a definition for ξ in the regime a 1.

6.2. Inapplicability of the edge operators approach for the ES
In this sectionwe analyse how the ES characterization for the one-dimensional BDI symmetry class discussed in
[62] can be not applicable in the presence of LRHamiltonian terms.

In that paper the discussion is based on the analysis of certain edge operators QR L, able to induce the bulk
transformations belonging to the invariance group of the consideredHamiltonian, at least involving the states
with highest Schmidt eigenvalues (thenmore likely after a bipartition). In this way, the (anti)-commutation
relations between the operators QR L andwith the generators of the symmetries of theHamiltonian are able to
constrain entirely the ES, classifying without ambiguities the SR fermionic phases. The properties of the edge
operators reflect the ones owned by the edges, in particular due to the possible presence of localizedmodes on
them. For one-dimensional quantum systems, both fermionic and bosonic (as spinmodels, analysed in [74]),
this construction formalizes the so called bulk-boundary correspondence conjecture.

The demonstration of these results starts, in [62], showing first that local operations performed
asymptotically far from the edges cannot change the (highest part of the) entanglement content of the considered
system.

A crucial property exploited at thisfirst step is the cluster decomposition for correlation functions. It is
expected therefore that fermionic systems violating the cluster decomposition can display important deviations
from the classification scheme in [62]. However, this property is preserved for the Bogoliubov ground-state of
the LRKitaev chains in equations (1) and (3) [28, 29, 37]8.

The second step of the discussion in [62] is the explicit construction of the boundary operators, relying on a
MPS-like approach (valid for both fermionic and spinmodels). This construction is valid again for the highest
Schmidt eigenstates and it requires thefiniteness of the correlation length ξ. In particular the error in the
implementation of theHamiltonian symmetry transformations on these states by operators involving l sites

from the edges scales as~ -xe
l
.

However, for ourmodels, within the LR phases, ξ appears effectively divergent, as explained in section 6.1.
Moreover, relatedwith the divergence of ξ and as required implicitly by theMPS-like approach used in [62], the
fulfilment of the area-law for the vonNeumann entropy in gapped regimes results a necessary condition for the

8
A remarkable case of violation of cluster decomposition in spinmodels, effectively LR, has been described recently in [84].
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validity of the edge operators construction. This ingredient is again not present for a < 1 in the LR systems
studied in the present paper. Notably a logarithmic violation of the area-law in a gapped regime is already
sufficient to determine important deviations from the SR picture, but evenmore dramatic deviations are
expected in LR systemswhere the area-law is substituted by an almost volume-law, a situation described for
instance in [41] andwhich deserves an further investigation in our opinion.

Finally, we comment that from the previous discussion it appears that the loss of validity of the cluster
decomposition property implies the area-law violation; the opposite implication, instead, is not true in general
(as also exemplified by the SR critical systems): the area-law violation seems to indicate the loss of validity of the
cluster decomposition in its exponential formonly [75].

6.3. Nature of themassive edge states andweakened bulk-boundary correspondence
The analysis of the last section can help to shed light on the nature of themassive edge states found for the LR
Hamiltonians in equations (1) and (3) [28, 29, 40].

Indeed the inapplicability of the discussion in [62], based on the action of the edge operators QR L, suggests
that, oppositely to the SR limit, the purely LRphases cannot be characterized entirely by their edge structure.
Indeed symmetry operations on a bulk state cannot be represented faithfully by operations near the two edges.
For the same reason, a certain bulk structure, for instance related to the ES, does not reflect directly in the
properties of the two edges (e.g. the presence of localizedmodes). In this sense we have a violation of the so-
called bulk-boundary correspondence, at the base of the TWC in the SR limit.

The picture defined above seems not tomatch entirely with the discussion done in the previous sections on
the LRpairedKitaev chain. Indeed there the appearance ofmassive edge states (withmassm), below a = 1and
for m < 1, has been found to parallel a nonvanishing Berry phase calculated in the bulk and a consequent a
nontrivial LR topology.However, in this situation, in spite of the double edge localization of the first Bogoliubov
wavefunction (with positive energy) ñ∣m , no real distinction between left and right edgemodes can bemade,
oppositely to the SR limit. Roughly speaking, below a = 1 the two edges are so correlated each others andwith
the bulk, that a rigorous definition of localizedmodes on each of them, distinguished from the bulk dynamical
excitations, is not allowed any longer, not even in the thermodynamic limit. Such an important correlation is
testified by the algebraic decay tails of the edgewavefunctions, strongly dominating at a 1 [28, 29]. In turn,
the relevant overlap of the latter tails can justify an hybridizationmechanismof the SRMajoranamodes [29, 43],
responsible for the appearance of themassive edge states ñ∣m , in analogywith the situation occurring at finite
sizes in the SR limit [46].

The described situation, apparently peculiar of the LR quantum systems, can be quoted asweakened bulk-
boundary correspondence.More in detail, this definition denotes the situationwhere a nontrivial LR topology still
reflects on the presence of states localized on the edges, but these states have a nonzeromass and consequently a
dynamics not separable from the bulk one (in the sense that nomodes localized on a single edge can be defined
from these bulk states), as happens instead in the SR limit.

Exploiting the Bogoliubov construction of the bulk states and reviewing the standard construction of the
edgemodes above a = 1 [76], in the appendixDwe show the correctness of the picture described above.We
argue in particular that the nonzeromass for ñ∣m at a < 1corresponds to the impossibility of defining, from
ñ∣m , two states localized separately on the left-hand and the right-hand edges. The same result implies in itself the

inapplicability, for our LRmodels, of the edge characterization in [62] and of the bulk-boundary
correspondence valid for SR systems, in favour of the describedweakened version.

We conclude the present section noticing that the important correlations between edge and bulk dynamics,
resulting in the nonvanishingmassm for the analysed one-dimensional examples, could indicate the absence of
edge conductivity for LR topological insulators and superconductors with dimensionality bigger than 1, where
LR correlations (as in the a  0 andmean field limits) are even enhanced. In our opinion, it is highly worthy to
probe this conjecture in future investigations.

7. Stability of the LRphases against local disorder

In this sectionwe investigate the stability of the LR phases for a < 1of theHamiltonian in equation (1) against
local disorder. The present specific study can be easily generalized to other LR non interactingmodels, also in
higher dimensions.

We inferred in section 4 the inapplicability of theσ-model construction, valid for SR systems, in LR free
models at small enoughα, due to a type of divergence in their energy spectrum at somemomenta. The same
construction encodes the effect of a local disorder and it allows to derive directly the TWC (see e.g. [5]).

This result is someway counterintuitive, since disorder could be expected instead to smear and/or localize
the divergences in the spectrum (and also the ones in its higher order derivatives), spoiling all the LR features.
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In this sectionwe infer that this possibility can be ruled out, at least for free one-dimensional LRmodels, like
those in equations (1) and (3), elaborating the results got in a previous study about the effect of local disorder on
a spinless fermionic chainwith LR hopping, performed in [77].

We assume to add to theHamiltonian in equation (1) a onsite energy term å †a ai i i i, i being randomly

distributed in an interval - h h⎡⎣ ⎤⎦,
2 2

, so that the standard deviation is s hµ .

Inmomentum space the effect of the disorderHamiltonian termHD is tomix the quasiparticles of the clean
system ( =H 0D ), possibly resulting in a localization of them in a restricted region of the entire system.However,
thismechanism is efficient for the singular states only if themagnitude of the disorder ~ ~s hmD L L1 2 1 2 is at

least comparable with the distance between the energy levels close to the singularity, »k k0 (in our case p»k ),
dl ~ h

a-( )L 1 , as shown rigorously in [77]. From the two scaling laws formD and dl, we expect that, for a < 3

2
,

localization of the singular states does not occur, therefore the typical disorder as in equation (C2) should not
spoil the LRphases below a = 1.

On the contrary, the states far from =k k0, instead, can be generally localized byHD [77]. For this reason the
disorder can even highlight the role played by the singular states.

8. Similar entanglement behaviour in the LR Isingmodel

In the previous sections we argued that in gapped non-interacting fermionic systems the appearance of the area-
law violation for the entropy and the peculiar behaviour of the ES signal newpurely LR phases, induced by
singular dynamics.Wewould like to probe now this picture on other LR systems, for instance spinmodels or
interacting fermionic systems. For this reason, in this sectionwe consider another paradigmatic LR system, the
LR Isingmodel, recently studied both theoretically [29, 31, 38] and experimentally [44, 45]. After recalling, in
section 8.1, themain features of themodel, in section 8.2we discuss the behaviour of the ES, focusing on the
regime a < 1, which is themain result of the present section.

8.1. Phase diagramand ground-state properties
TheHamiltonian of the LR Ising antiferromagnetic chain reads
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=

-

=
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Recently thisHamiltonian has been simulated experimentally by atoms in a cavity, with an exponent tunable in
the range a 3 [44, 45, 78].

Studying byDMRGcalculations the vonNeumann entropy and the energy spectrumof themodel described
by equation (21), in the range of parameters q< < p0

2
(for q p< <p

2
the phase diagram ismirrored) and

a< < ¥0 , it has been shown [31] that a quantumphase transition separating the antiferromagnetic and the
paramagnetic phases survives for allfinite a 1.

At variance, below this approximate threshold, a newphase arises on the paramagnetic side, bounded from
above by a transitionwith non vanishingmass gap and preserved spin-flip (along x̂ axis)Z2 symmetry (a unique
ground-state appears in theDMRG spectrum). Correspondingly a logarithmic violation of the area-law for the
VonNeumann entropy has been found [29, 31]. In spite of the limited sizes achieved byDMRG ( <L 150), in
[31] the same violation has been probed also by finite size scaling, showing that it is not originated from finite size
effects.

Notably an exact calculation in the limit a  0 and q p 0, allows to conclude that the ground state
energy of the LR Ising chain is extensive in the LR paramagnetic phase9, so that noKac rescaling [12] is required
to define rigorously the thermodynamic limit. The same conclusion can be achieved by the study of the Lipkin–
Meshkov–Glick (LMG)model [79], coincidingwith the LR Isingmodel when a  0.

The phase diagram for the LR Isingmodel is depicted infigure 4, where the critical semi-line is reported, as
well as the violation of the area-law. Similarly to the LRKitaev chains, a dynamics of singular states has been
recently shown [38], responsible for the breakdown of the conformal invariance along the antiferromagnetic-
paramagnetic quantumphase transition at small enoughα (from a criticalαwhose value is in the range
 a1 2 [29, 31]).

9
The extensivity of the ground-state energy of theHamiltonian in equation (21) can be shown calculating it in the limit q p (even if in

this limit afirst order transition occurs [85]). A variational calculation shows that in this case the ground state can be generally written as a
(superposition of classical) state(s)with L

2
spins forwhich the eigenvalues of s( )

i
x are equal to

1

2
. The samenumber of spins,

L

2
, is counted for

s = -( )
i
x 1

2
. The total energy for these states (whose number is ⎜ ⎟⎛

⎝
⎞
⎠

L
L 2

, assuming L even) is q= -E L sinGS
1

2
.We have therefore that in this

limit the ground-state energy is extensive. The same result should be valid for any θ and a 0.
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The LR Isingmodel, equation (21), can bemapped bymeans of a Jordan–Wigner transformation to an
interacting LR interacting fermionic chain [29]10. The regime of the latterHamiltonian at a 1corresponding
to the paramagnetic one for the LR Ising chain is characterized by the appearance ofmassive edge states, similar
to the ones found for the LR pairedKitaev chain. This fact parallels and confirms the existence of a new phase for
the LR Isingmodel at a < 1.

8.2. ES and inapplicability ofMPS-based bulk-boundary classifications
In this sectionwe study the ES for the LR Ising chain after an half-chain cut andwe compare it with the results in
the SR limit.We also assume open boundary conditions.

Exploiting anMPS-based boundary operator approach, similar to the one discussed in section 6 for the BDI
one-dimensionalHamiltonians, in [74] it was shown that for a purelyZ2 symmetric and SR spin chain only two
disconnected phases with preservedZ2 spin-flip symmetry can be found, having the ES contents qualitatively
equal to the two phases of the SR IsingHamiltonian [56]11 or the open SRKitaev chain (see section 6). Inmore
detail, the ordered phase displays a distribution for the ES in the formof Schmidtmultiplets with even
degeneracy, while the disordered phase has no constraint on the ES distribution, in particular theminimum
multiplet degeneracy is equal to one.

We now check if and towhat extent, the picture described above for the SR quantum Ising chain still remains
valid in the presence of LRHamiltonian terms.

Wefind that the distribution for the ES, typical of the SR disordered phase, also occurs in the LR phase below
a = 1on the paramagnetic side, as visible in figure 5. In particular, in the lower panel, we display the behaviour
of the Schmidt gap (as defined in section 3) wD for L=100 and different values ofα, finding a non closure for it
if a < 1, up tofinite-size effects.We also see that wD at a  0 increases as θ gets closer to 0 and the LRphase
gets far from its boundwith the anti-ferromagnetic phase.

For this reason, similarly to the LRKitaev chains, wefind that the ES distribution found in the LRphase for

a 1escapes the SR classification [74]. Indeed, againwe find a second LR phasewith realizedZ2 spin flip
symmetry and no constraint on the Schmidtmultiplets. This behaviour remains up to the LMG limit obtained
for a  0. Since themain steps in the discussion of [74] follow the same logic as in [62], from section 6we can
conclude that the reason of this deviation is again the violation (even if only logarithmic) of the area-law for the
vonNeumann entropy and the related effective divergence of the correlation length, which spoil theMPS-based
edge operator approaches.

Figure 4.Phase diagramof the LR Isingmodel in equation (21), derived analysing the area-law deviation for the vonNeumann
entropy.We report in particular the quantity ceff defined in equation (6). The purple semi-line is critical, there themass gap vanishes.
The narrow zone close to the line q = 0 is left white since not investigated, due to aDMRG instability. The antiferromagnetic and the
paramagnetic phases at a > 1 are denoted by the symbols AMandPM1 respectively, while the LR phase on the paramagnetic side at
a < 1 is quoted as PM2. A similar phase diagramhas been originally derived in [29].

10
While the energy spectra and the phase contents of the two openmodels are in one-to-one correspondence, since the Jordan–Wigner

transformation is nonlocal, the knowledge of the space properties (entanglement content, edge properties) of oneHamiltonian does not help
to shed light on the same properties of the other one (see e.g. [86]).
11

Strictly speaking, the anti-ferromagnetic phase of the SR Ising chain has twodegenerate ground (Neel) states ñ∣ { }n 1,2 in the thermodynamic
limit, in turn forcing the even degeneracy in themultiplets of the ES. The same degeneracies can be obtained by considering, as ground-
states, the combinations (typical of thefinite-size regime, where however degeneracy in energy does not hold) ñ º ñ  ñ∣ (∣ ∣ )n n n1

2 1 2 .
Adopting theseZ2 invariant combinations, one reproduces the case with even Schmidtmultiplets predicted in the [74], whereZ2 invariance
is explicitly assumed. This two-fold interpretation of the SR anti-ferromagnetic phase is possible since the transformation between ñ∣n and

ñ∣ { }n 1,2 does not commutewith theZ2 symmetry operator. Clearly, also this second interpretation supports the deviation from [74] of the LR
phase at a 1 for themodel in equation (21).
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9. Conclusions

In this paper we investigated the emergence of new types of bulk insulators and superconductors in the presence
of LRHamiltonian terms, not included in the classification of the SR topological insulators and
superconductors, the so-called TWC. The reasons of these deviations are analysed,first studying specific one-
dimensional examples, later focusing on the general structure, in any dimension, of LR non interacting
fermionicHamiltonians.

The new phases are found originated from a particular type of divergences occurring in the thermodynamic
limit due to the LR couplings: if the latter ones are important enough, the same divergencies spoil some
continuity hypothesis (mainly on the bulk energy spectrum) at the basis of the TWC, determining its
breakdown. Related to this fact, a topology can still be defined, at least for one-dimensional systems, bywinding
numbers or Berry phase approaches, provided a proper identification of the LR contributions to these numbers
and consequently of the topologically trivial phases.

From amany body point of view, the central ingredient for the appearance of purely LR insulating or
superconducting phases seems to be the violation of the area-law for the vonNeumann entropy in gapped
regimes. Notably a logarithmic (soft) violation is suggested already sufficient for the one-dimensional cases
considered in this paper. In thesemodels, the emergence of the LR regimes deeply reflect on the behaviour of
another entanglement indicator, the ES, whose analysis also allowed us to reconsider critically the link between
bulk and edge dynamics.Moreover, also in the light of the hybrid (exponential plus algebraic) decay behaviour
found previously for the static correlation functions, the area-law violation induced to re-discuss the concept of
correlation length in LR systems.

The stability of the LRphases againstfinite-size effects and local disorder is discussed aswell, showing
notably that current trapped ion techniques should already be able to reach sufficient system sizes to guarantee
the observation of the described LR effects.Moreover, we find notably that disorder can even strengthen the
effects of the LRHamiltonian terms, instead of smearing them, as it could be naively expected.

Concerning the edge properties of the purely LR phases, the analysis of the ES strongly suggested the partial
loss of validity, at least in one-dimension, of the bulk-edge correspondence, valid instead for SR topological
insulators and superconductors, due to the strong correlations between bulk and edges dynamics. However, the
parallelismbetween the appearance ofmassive edge states and of nontrivial Berry phases andwinding numbers
(although definedwith particular caveats, such to identify properly the LR contributions) suggested the
emergence of aweakened formof bulk-boundary correspondence, peculiar of LR quantum systems. There, a
nontrivial topology still reflects in the presence of states localized on the edges, but these states have a nonzero
mass and consequently a dynamics not separable from that of the bulk (in the sense that nomodes localized on a
single edge can be defined from these bulk states), as it happens instead in the SR limit.

Finally, the possible extension of some results and ideas for the free LR insulators and superconductors has
been probed on a paradigmatic example of spinmodel, the LR Ising chain, which can bemapped to LR
interacting fermions. Again important deviations from the structure expected for the SR spin chains are
identified in the entanglement content; consequently the limitations of bulk-boundary (tensor-network based)
approaches to classify LR spinmodels is also discussed.

Figure 5.Upper panel: distribution of the ES (Schmidt eigenvalues) for the LR Ising chainwith L=100, in the point belonging to the
LR phase at q a= = 0.2. Lower panel: behaviour of the Schmidt gap wD as a function ofα and for different θ. Notice that wD is
always nonvanishing along the line q = 0.2, since the same line never enters in the paramagnetic side where the LR phase occurs.
Moreover, approaching q = 0, wD increases, as expected.
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Natural developments of the present work are: (i) the identification and classification of possible LR
topological phases for quantum systemswith arbitrary dimensionality. The same phases are expected since LR
Hamiltonian terms are able to induce (second-type)divergences in the quasiparticle spectrumnomatter the
dimensionality of the system. The analysis of the conditions for the emergence ofmassive edge states seems to be
a promising approach; (ii) the corresponding investigation of the nature of the edge states in LR fermionic
systemswith dimensionality bigger than one, in order to probe theweakened bulk-boundary correspondence
(also following the logic in [80, 81]). Interestingly from the experimental and technological points of view, this
issue also concerns the possible absence of edge conductivity, present instead for SR topological insulators and
superconductors(first examples have been recently given in [87, 88]); (iii) the generalization to interacting LR
models, also exploiting entanglement indicators (for instance, in the SR limit the ES is proved to be effective also
in the presence of explicit interactions [62]); (iv) the study of the effects of stronger deviations from the area-law
for the vonNeumann entropy, for instance assuming a (almost) volume-law scaling, as in the set of systems
investigated in [41]; (v) the understanding of the role of disorder on the singular dynamics in interacting LR
systems, as for the LR Isingmodel. There effects ofmany-body localization [82] are expected to play a relevant
role; (vi) the identification of a general scheme for the experimental detection of the LRphases, for instance
based on directmeasurements of the entanglement or of some topological invariants, e.g. by imaging
techniques; (vii) the study of the stability of LR (topological) phases atfinite temperature.
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AppendixA. LRpairedKitaev chain

In [28, 37, 38] a quadratic quantummodel involving spinless fermions on a one-dimensional lattice have been
studied extensively. This is characterized by a LRpairing:
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For a closed chain, we define in equation (A1) = ℓℓd ( = - ℓℓd L ) if <ℓ L 2 ( >ℓ L 2) andwe choose anti-
periodic boundary conditions [28].

The spectrumof excitations is obtained via a Bogoliubov transformation and it is given by w = ºD( )1
2

:

l m p= - + +a a( ) ( ) ( ) ( )k k f kcos . A2n n n
2 2

In equation (A2), p p= - + +( )k n L2 1 2n , with  <n L0 and º åa
a

=
-( ) ( ) ℓf k kl dsinl

L
1
1 . For the sake of

simplicity, in the following, the subscript nwill be neglected. The functions a ( )f k can also be evaluated in the
thermodynamic limit, where they become polylogarithmic functions [87].

The ground-state of equation (A1) is given by q qñ =  - ñ=
-

-∣ ( )∣† †i a aGS cos sin 0n
L

k k k k0
2 1 , with

q p m= - + -a( ) ( ) ( )f k ktan 2 cos ;k notably it is even under theZ2 parity symmetry of the fermionic number
(see below).

TheHamiltonian in equation (A1) is invariant both under time reversal symmetry and particle-hole
symmetries, realized respectively by the anti-unitary transformations  = K UT T and  = K Uc C , beingK the
complex-conjugation operator and = =U U 1T C

2 2 . In this way, it belongs to the BDI symmetry class of the TWC
[1–6].

The phase diagramof theHamiltonian in equation (1) is reported infigure A1, plotting the area-law
violation for the vonNeumann entropy, quantified as described in themain text. The critical (semi)-lines are
also drawn.
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Further features of the SR limit a  ¥ and the LR regime a 1are discussed inmore detail in the section
below.

Known features of the SR limit a  ¥
In the SR limit a  ¥ theHamiltonian in equation (A1) reduces to the usual Kitave chain [46]. Thismodel
hosts two phases (see footnote 5), characterized respectively by thewinding numbersw=0 andw=1 of the
first homotopy class [54, 55] of themap  ( )k kn , where ( )kn is such that thematrixHamiltonian in
momentum space is written as s=

( ) ∣ ∣ ˆ ·H nk nk k and =ˆ
∣ ∣

nk
n

n
k

k
(see themain text). In the (disordered) phase

withw=0 a unique ground-state ñ∣GS , eigenstate of theZ2 fermionic parity (with even parity), occurs (see e.g.
[51]). This parity is defined in general on the number of fermions á ñ = áå ñ=

ˆ †F a ai
L

i i1 in a certain state.
The second (ordered) phase withw=1 is characterized by the presence of twoMajorana (massless) edge

modes at its ends, exactly due to its nontrivial topology. Thanks to the presence of themassless edgemodes, two
ground-states, ñ∣GS (defined just above) and ñ∣GS o, are present in the thermodynamic limit, having differentZ2
fermionic parity. In particular hñ = ñ∣ ∣†GS GSo 0 has odd parity; the fermionic operator h h h= + iL R0 is
constructed by the ones relatedwith the twomassless (Majorana) edgesmodes h{ }R L, . The states ñ∣GS and ñ∣GS o

are degenerate in energy in the thermodynamic limit, exactly because the edgemodes aremassless. However, no
spontaneous symmetry breaking, indicated by a local order parameter, occurs (see e.g. [51, 62]).

The two phases also correspond, via Jordan–Wigner transformation, with the ones of SR Isingmodel,
discriminated by (themodulus of) the expectation value of the average longitudinalmagnetization

s s sá ñ = á ñ¥ +∣ ∣ ∣ ∣( ) ( )limx l i
x

i l
x , a local parameter [76]12. In turn this parameter signals the behaviour of the two

phases under theZ2 (sx) spin-flip symmetry, in the two cases realized and spontaneously broken respectively.
The spin-flipZ2 symmetry and theZ2 fermionic parity of the open SRKitaev chain are related by the

following relation [51]:
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Appendix B. Finite size stability of the LRphases at a < 1

In themain text we commented that the deviations fromTWCoccurring in LR quantumphases of themodels in
equations (1) and (3) are due to the action of the singular states at p= k , where the divergences in the
spectrum l ( )k appear for a < 1. A natural general question at this point is how and towhat extent the possible
LR phases escaping the TWC in the thermodynamic limit can also occur infinite-size LR systems, where the
divergences encoded by the singular states are smeared? This stability is clear in the analysis of the previous
section, where numerical data forfinite chains are reported, however amore formal justificationwould be
desirable. The same question is also relevant for current experiments on LR systems, realized by trapped ions
arrays, where very limited sizes (30–40 sites) can be reached (see e.g [44, 45]).

Thefinite-size stability of the LR phases of theHamiltonian in equation (1) can be understood for instance,
analysing the behaviour for different values of L of the quantity

Figure A1.Phase diagramof the LR paired Kitaev chain in equations (1) and (A1), derived analysing the area-law deviation for the von
Neumann entropy.We report in particular the quantity ceff defined in equation (6). The purple (semi-)lines are critical, there themass

gap vanishes,moreover =ceff
1

2
at a > 1 and =c 1eff at a < 1 [37].

12
Instead the quantity s s= å¯ ( )

x L i i
x1 always vanishes.
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This parameter characterizes when a  ¥ the paramagnetic-(anti-)ferromagnetic quantumphase transition
of the SR Isingmodel. Indeed in the same limit ma ( )m coincides [76]with themodulus of the average
longitudinalmagnetization

s s sá ñ = á ñ
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of the SR Isingmodel: in particular it has non vanishing values when m <∣ ∣ 1only. The same identification holds
atfiniteα, where s( )

i
x refer to the nonlocal spinmodel obtained from theHamiltonian in equation (A1) by

Jordan–Wigner transformation (see e.g. [73]).We plot infigure B3 the quantity

m = = =a ( )m L l
L

for 800,
2

400 and different values of m aand .

Infigure B2we plot instead ma ( )m at m = -3.2 and various L andα.Wefind that m ¹a ( )m 0 if a 1 (the
extension of the zonewhere ma ( )m change value depends on L), suggesting that the phase withmassive edge
states survives also in the presence of important finite-size effects, smearing the singular states.

Qualitatively the same result is obtained analysing themass of the edge states in the regime m <∣ ∣ 1 and
varyingα around the line a = 1 [28].

The behaviour of ma ( )m can be understood in a better way analysing how the divergences at p= k
develop in thematrixHamiltonian in equation (2), in particular from the contribution due to a ( )f k . This can be
done following the evolutionwith L and for different a < 1of the parameter
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Figure B2. Plot of the quantity ma ( )m in equation (B1) for m = -3.2 and for different values of L andα.

Figure B1. Plot of the quantity ma ( )m in equation (B1) for the LR pairedKitaev chain in equations (1) and (A1).We assumed L=800
and different values ofμ andα. Notice that if m > 1, ma ( )m is found vanishing for everyα.
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measuring the ratio between the differences of the functions a ( )f k and ( )kcos calculated in the closest point to
k=0 ( p=k , for the shifted value p+a ( )f k appearing in equation (2)), thatmeans = pk

L
, and in the second

closest one, = pk
L

3 .We see infigure B3 that, at fixed L, rapidly increases asα decreases from1 and, even in
themost unfavourable case a  1, we obtain = 10 if »L 40. The same threshold value for is obtained
approximately at L=20 if a = 0.5.

This behaviourmeans that for every a < 1 the singularity in l p( ) develops very rapidly with L increasing,
making effective, already at limited sizes, the singular dynamics at the base of the purely LRphases.

The stability of the phases below a = 1can also be clarified on the basis of general considerations on the
static correlation functions. All these quantities can be constructed from the two point correlators

º á ñ( ) †g R a aR1 0 and º á ñ( )( ) † †g R a aR1
anom

0 byWickʼs theorem. Their qualitative behaviour, characterized by the

typical separating distance *R , has been recalled in section 6.1.
We plot infigure B4 (left panel) the behaviour of ( )g R1 , for m = -5, a = 1.5 and a = 3, and for various

system sizes L.We see that, decreasing L from L=300, the algebraic tails become shorter and shorter, while the
exponential part remains practically stable, as well as the point * »R 20. Therefore, when L reaches the length

*»L R , the algebraic tail disappears and only the exponential part remains, as in the case of SR systems. A
qualitatively same behaviour is found for ( )( )g R

1
anom .

Conversely, decreasingα atfixed L, also *R decreases [28, 29, 37]. In particular, as visible infigure B4, *R
becomes very small in comparisonwith L, so that the decay is purely algebraic. The described behaviour holds
qualitatively nomatter the values ofμ andα and it has been probed also for other LRmodels (e.g. the LR Ising
model [29]).

From the discussion above, it turns out that the size *R gives the natural scale for the appearance of the LR
physics. Thismeans that, when *L R , the system, even if described by anHamiltonianwith LR terms, is
practically indistinguishable from its SR counterpart and speaking about LR physics has nomeaning in this
condition, where   1.

The present analysis justifies á posteriori, the behaviour observed infigure B2 for ma ( )m , suggesting the
stability of the regimewithmassive edge states for a < 1, up to very small sizes *> L R 0.

More generally, we can infer that possible LR phases escaping the TWC remain stable atfinite-sizes, in spite
of the fact that the origin of the deviations fromTWC, the singular dynamics, ismathematically well defined in

Figure B3. Plot of the ratio  in equation (B4) for L varying and a = 0.99 (dashed line), a = 0.5 (dotted line), and a = 0.2
(continuous line).

Figure B4. Static correlation functions º á ñ( ) †g R a aR1 0 in log–log scale for the LR pairedKitaev chain in equation (1), for m = -5,
a = 3 (lower lines) and a = 1.5 (higher lines), and different lengths L.
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the thermodynamic limit only. In this way, the same phases are expected to be probable in current experiments,
where only limited sizes are reachable.

AppendixC. Inapplicability of theσ-model construction

In this appendixwe show the inapplicability, in the presence of singularities in ( )H k , of the nonlinearσ-model
construction leading to the TWC, at least as derived following the standard approach [65–70]. Herewe briefly
sketch that derivationwithout entering toomuch into detail, and referring to the cited literature for
technicalities.

The starting point is the observation that themetal or the insulating nature of a disordered system is usually
described by the behaviour of the disorder averaging of the diffusion propagator [66]

á ¢ ¢ ñ+ +( ) ( ) ( )G Gr r r r, , , C1E w
R

E w
A

2 2 disorder

where h¢ = á -  ¢ñ( ) ∣( )∣G E Hr r r r, iE
R A, are the retarded/advanced single particle Greenʼs functions, h  0 is

a real infinitesimal value implementing the usual Feynmanprescription (see e.g. [89]). The totalHamiltonianH
contains the free part, here denoted asH0, and a disorder term

å= ( )†H a a . C2D
i

i i i

The randomvariable i is supposed to be normally distributed:

 µ -( ) ( )P e . C3i
v4i

2

Introducing the grassmann variablesψ and ȳ, one canwrite in the Euclidean space

òh
y y yy

- 
µ -¯ ¯

E H
D D

1

i
e ,S

where òy h y= - ¯ ( )S E H i0 is disorder dependent.
In order to evaluate the effect of disorder on a certain observable one shouldmake a stochastic averaging of

the quantum expectation values of this observable evaluated at different disorder configurations.
For this purpose, one can resort to the so-called replicamethod [66], which allows to performdisorder

averaging in terms of quantum expectation valuesweighted by a replicatedHamiltonian supplemented by a
quartic (interaction) term and taking the zero replica limit.More specifically, the disorder average of the
expectation value á ñof a generic operator is given by

 rá ñ = ( ) ( )ZTr , C4

where r= ( )Z Tr is the partition function and ρ the density operatorwhich defines the quantum state.
Since the randomvariables are present both in the numerator and in the denominator the stochastic

averaging is unpractical. However the great advantage of the replicamethod is that itmakes possible to describe
the average over disorder of the ratio in the formof the ratio of the averages. Indeed, introducing n independent
replicas of the system,we can formally write

  rá ñ =
a

a
 =

⎛
⎝⎜

⎞
⎠⎟ ( )Zlim Tr , C5

n

n
n

0 1
1

where1means that acts only on one replicated system. The price to pay is that the effective action acquires a
interacting term among the replicas:

  ò ò

ò

åå

åå

y y y y

y y y y y y

= - -

= - +

a
a a

a b
a b b a

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

¯ ( ) ¯

¯ ¯ ¯ ( )

Z D D d P S

D D S v

exp

exp , C6

n
i i

i
i i i

i j
i j j i

0

0
, ,

where the sum run over the sites (i, j) and the replica (α,β) indeces. Bymeans of theHubbard–Stratonovich
transformation, we can decouple this so-obtained quartic term, introducing an auxiliarymatrix fieldQ.We
therefore get an effective action, reading inmomentum space:

å h d

=

+ Y + - + Y-
- +

[ ]

¯ {[ ( )] } ( )

S
V w

Q

s E H V Qk

1 1
Tr

i i . C7z

k

k q
k q q k q

2

,
0 ,0

1
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The symbol Yk denotes amulti-spinor in the replica space Y = Y Y Y( ), ..., nk k k k1 2 , and in the particle/hole and
retarded/advanced (±) spaces, so that, explicitly, y y y yY = - -a a+ + - -¯ ( ¯ ¯ ), , , ,k k k k k ,

y y y yY =a a+ + - -( ¯ ¯ ), , , t
k k k k k , while sz is the Paulimatrix in the latter space, µ -w v 1proportional to the

scattering time at the Born approximation level, andV the volume of the space. Let us call
 h d= + - + -

-{[ ( )] }s E H V Qki iz q q0 ,0
1 the fermionic propagator appearing in equation (C7).

Integrating nowover the fermionic fields Yk and Ȳk , one gets an actionwhich depends only on Qk:

= - -[ ] [ ] ( )S Q
V w

Q
1 1

Tr
1

2
Tr ln , C8k

2 1

where Tr is the trace over all the spaces. After finding the saddle point solutionQsp, the quantumfluctuations are
such that =Q Qr

2
sp
2 , and the action can bewritten as follows:

= - +[ ] [ ] ( ) ( )S Q S Q G W
1

4
Tr ln 1 , C9sp 0

where = - +- ( )G E H Q0
1

0
2

sp
2 , and

= = -[ ] · ( )W Q H QJi , , C100

where = ( ) ( )HJ k kk 0 is a current vertex operator. In the consequent gradient expansionwe also obtain:

 ( ) ( ) ( ) ( )G WG W G G Q QJ JTr Tr Tr , C110 0 0 0

the desiredσ-model.
The expansion in equation (C11) fails if ( )H k0 diverges (and it is not regolarizable without discontinuities, as

for the second-type singularities). In this condition the charge ò ( )k J kd also diverges. For this reason theσ-
model characterizing the coset F cannot be constructed. The present discussion leaves open the possibility of the
inapplicability of theσ-model construction alsowhen only ( )J k diverges.

AppendixD. Structure of the edge states at a < 1

In section 6.3wementioned for the LRKitav chains in the equations (1) and (3) the impossibility to identify, in
the LR regimes at a < 1, low-energy states localized separately on the left-hand and the right-hand edges. This
impossibility, directly encoded on the ES structure analysed in sections 3 and 6, has been claimed in the same
section 6.3 to be in a one-to-one correspondence with the nonvanishing of themasses for the edge states.

In order to substantiate our thesis, it is useful to start from the construction of the Bogoliubov states for
quadratic fermionicHamiltonians. As it happens in the ordered phase for the open SRKitaev chain (and for the
Hamiltonians in equations (1) and (3)), the fermionic state ñ∣m , whosewavefunction is localized symmetrically
at both the edges of the chain, can bewritten as [76]

åhñ = ñ = + ñ
=

∣ ∣ ( ) ∣ ( )† †m GS g a h a GS , D1m
i

L

mi i mi i
1

a similar ansatz holding for the other (bulk) eigenstates of theHamiltonians. Notice that, compared to ñ∣GS , ñ∣m
differs in the fermionic number/parity by a unit; this fact is encoded in the different sign on the two states of the
topological pfaffian invariant discussed in [53].

As suggested by the linearity of the diagonalizing ansatz for the freeHamiltonians in equations (1) and (3)
and followingwhat is done in the SR limit (wherem=0), one could attempt to decompose the state ñ∣m ,
involving symmetrically both the edges, defining two (right and left) edge operators fR L as follows (see e.g.
[29, 90]):

h = + f( ) ( )f f
1

2
e D2m R L

i

(the pre-factor 1

2
testifying the sameweight for the two edges andf being a phase constant to befixed),

depending linearly on ai and
†ai . Ifm=0, the so constructed operators f = p( )fR L 2

, fulfilling theMajorana

condition = q†f fe
R L R L

i R L , are relatedwith twowavefunctions localized separately on each edge.

For theHamiltonians in equations (1) and (3), the situation is very different if a < 1. Indeed, since ¹m 0,
the operators fR L do not fulfil any longer theMajorana condition, as argued in [29]; for this reason the

canonical anti-commutation rules for hm, h h ={ }†, 1m m imply:

= ={ } { } ( )† †f f f f, , 1. D3R R L L

In this way, fR L are usual fermionic operators, able to induce states (as ñ = ñ∣ ∣†R L f GS
R L ) of theHilbert space

for the consideredHamiltonians. The same possibility does not hold instead ifm=0, since
= ={ } { }†f f f f, , 0R L R L R L R L and physical states can be constructed only by combinations of them, as in
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equation (D2) (see for instance [90]). However, states as ñ∣R L do not belong to theHilbert space of the
Hamiltonians in equations (1) and (3), suggesting that the construction in equation (D2), although formally
possible, is not correct in the absence of theMajorana condition for fR L, then if ¹m 0. On the contrary, only
the state ñ∣m , involving both of the edges,makes sense in this condition.

The other possibility ñ = ñ∣ ∣† †m f f GS
R L is ruled out by the linearity of the diagonalization problem for the

considered quadraticHamiltonians, as well as by the fact that the canonical anti-commutation rules
d={ }†a a,i j ij allow cancellations of ai and

†ai only pairwise, then a linear ansatz as in equation (D1) cannot be
obtained from the quadratic ansatz for ñ∣m just above. Finally, nonlocal ansatzs are discarded since the
beginning, in such away as not to change the locality property of the excitations in the bulk/edge spectrum (as
done by the Jordan–Wigner transformation for theMajoranamodes in the SR limit, see e.g. [86]).
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