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Abstract

Modeling fuzziness and imprecision in human rating data is a crucial problem in many re-
search areas, including applied statistics, behavioral, social, and health sciences. Because of the
interplay between cognitive, affective, and contextual factors, the process of answering survey
questions is a complex task, which can barely be captured by standard (crisp) rating responses.
Fuzzy rating scales have progressively been adopted to overcome some of the limitations of stan-
dard rating scales, including their inability to disentangle decision uncertainty from individual
responses. The aim of this article is to provide a novel fuzzy scaling procedure which uses Item
Response Theory trees (IRTrees) as a psychometric model for the stage-wise latent response
process. In so doing, fuzziness of rating data is modeled using the overall rater’s pattern of
responses instead of being computed using a single-item based approach. This offers a con-
sistent system for interpreting fuzziness in terms of individual-based decision uncertainty. A
simulation study and two empirical applications are adopted to assess the characteristics of the
proposed model and provide converging results about its effectiveness in modeling fuzziness and
imprecision in rating data.

Keywords: fuzzy rating data, fuzzy rating scale, item response model, fuzzy numbers, decision
uncertainty

1 Introduction

Rating scales are the most common tools for collecting data involving the assessment of interests,
motivations, attitudes, personality traits, and a wide variety of health-related and sociodemographic
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constructs. A typical use of rating scales is in self-report questionnaires and social surveys where a
set of questions (items) are presented individually and respondents are asked to indicate the extent
of their agreement/disagreement on a scale with multiple response categories. Overall, rating scales
are effective, reliable, and easy to use instruments [1]. However, it is widely recognized that they
are not immune to problems such as response biases [2, 3], faking behaviors [4, 5], violation of rating
rules [6, 7], and cultural or cognitive differences in the use of response categories [8]. In addition,
rating scales do not allow for an in-depth inquire into respondents’ rating process [9]. As many
studies have shown, the process of answering multiple choice questions is a complex task since it
involves both individual-dependent cognitive and affective factors as well as individual-independent
contextual factors (e.g., [10, 11, 12]). For instance, when a respondent is presented with an item like
“I am satisfied with my current work”, which is rated on a five-point scale from “strongly disagree”
to “strongly agree”, he or she first retrieves long-term memory information about events, attitudes,
beliefs about his or her job. The retrieved events may activate affective components which influence
positively or negatively the opinion formation (for example, a recent promotion may enhance the
chance for answering the item positively). Then, cognitive and affective information are integrated
to activate the decision making stage, which includes the answer editing step where a set of candidate
answers is pruned to produce the final response [13]. As a result of conflicting demands from the
latter stages, some levels of decision uncertainty can impact the final rating choice. Consequently,
final responses on questionnaires only reflect a portion of the entire response process.

There have been numerous attempts to make rating scales more sensitive to detecting components
of response process such as decision uncertainty. Generally, there are three types of solutions to this
problem, a first one involving the use of additional measures like response times or latencies along
with standard multiple choice questions [14, 15, 16], a second one using extended item response
theory (IRT) models on standard rating data [17, 18, 19], and a third one involving the use of
alternative rating instruments such as those based on tracing methodology [20] and fuzzy rating
scales [21, 22, 23]. Since the seminal work of [23], the latter has become popular only in recent
years. Typically, there are two ways to define a fuzzy rating scale, one involving fuzzy conversion
systems and the other involving a direct fuzzy rating system. In the first case, a fuzzy conversion
system is used to transform standard rating responses into fuzzy numbers (e.g., see [24]). In the
second case, a tailor-made rating interface is instead adopted in order to map fuzzy numbers to a
rating process by means of implicit [21] or explicit [22] procedures. Despite their differences, both
the approaches aim at modeling decision uncertainty or its counterpart, fuzziness and imprecision
of rating data, as emerging from multiple choice rating tasks. The role of fuzziness in rating and
psychometric data has been highlighted by several researchers working at the interface between
statistics and applied mathematics (e.g., [25, 26, 27, 28, 29]).

In this paper, we contribute to this research stream by proposing a novel method which places
fuzzy rating scales in the context of Item Response Theory trees (IRTrees) models [17]. The aim is
to provide an approach to fuzzy rating data that incorporates a stage-wise cognitive formalization
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of the process that respondents use to answer survey questions. IRTrees are a novel class of item
response models aiming at representing the internal decision stages behind final rating outcomes.
By adopting a sequence of linear or nested binary trees, they allow for disentangling the result of the
rating process (e.g., the choice of the category “strongly disagree” on a common Likert-type scale)
and the sequential steps needed by raters to reach their final outcomes. In this manner they provide
an elegant way to mine information from rating data, which can be used to model fuzziness and
imprecision encapsulated into rating data.

Although the proposed method does not conflict with existing standard methods for fuzzy rat-
ing, there are some differences that should be highlighted along with some advantages as well as
disadvantages. First, the novel approach is grounded on a psychometric formalization of the rating
process and uses a statistical method (IRTree) to model the observed rating data in advance. This
results in a different characterization of the rating fuzziness, which does no longer represent the
actual degree of confident a rater has in providing his/her rating response. Rather, it represents the
conflicting demands provoked by the decision stage which precedes the expression of the final rating
response. In this sense, fuzzy-IRTree based fuzzy sets are computed as a function of the IRTree pa-
rameters instead of being derived from the data directly. Second, the new method does not require
specialized computerized interfaces through which measuring fuzzy sets, with the consequence that
it can be widely used with standard rating scale formats. Finally, fuzzy-IRTree avoids the use of
direct rating methods which might be potentially affected by cognitive biases regarding the direct
estimation of numerical quantities. However, as for any statistical model, a potential limitation of
the proposed method is that it requires a sufficiently large sample size and number of items in order
to get reliable results. Similarly, as it is based on IRTrees, the psychometric model formalizing the
rating response process should be chosen in advance. In this case, it might be advisable for data
analysts to refer to existing scientific literature or to use a statistically-oriented procedure to find
the best IRTree model given the sample data (e.g., this can be done by means of AIC based model
comparison).

The reminder of this article is organized as follows. Section 2 offers a review of the major
literature about fuzzy rating scales. Section 3 describes our method for modeling imprecision and
uncertainty in rating data using IRTrees. Section 4 reports the results of a simulation study designed
to validate our proposal whereas Section 5 describes two applications using empirical case studies.
Finally, Section 6 concludes the article by providing final remarks and suggestion for future research.
All the materials like algorithms and datasets used throughout the paper are available to download
at https://github.com/antcalcagni/firtree/.

2 Currently used methods in fuzzy rating

Fuzzy rating scales aim at quantifying fuzziness and imprecision of human subjective responses.
Typically, there are two approaches known in the literature to construct a fuzzy rating instrument,
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namely fuzzy direct or indirect scales and fuzzy conversion scales.
In fuzzy direct rating, a computerized rating scale is adopted and raters are asked to draw their

responses using fuzzy sets according to their perceived uncertainty [23, 30]. This method usually
require a two-step response process. First, raters draw an interval or a point on a pseudo-continuous
graphical scale which represent the set of admissible responses compatible with their assessment
of the item being rated. Then, they are asked to express the degree of confidence by drawing an-
other interval about their previous interval or point-wise responses. Finally, the two information are
combined to form triangular or trapezoidal fuzzy responses. An overview of direct fuzzy rating is de-
scribed in [31]. By contrast, the fuzzy indirect rating uses implicit subjective information to quantify
the fuzziness of rating data. On this research line, for instance, [21] adopted a system which includes
biometric measures of cognitive response process (e.g., response time, computer-mouse trajectories)
in the construction of fuzzy responses. Despite their differences, both the approaches have success-
fully been adopted to measure psychological constructs [32], to evaluate students’ perceptions and
feelings [33], to measure gendered beliefs [34], to inspect experience of perplexity [35], to evaluate
the quality of linguistic descriptions [36], to explore physicals’ perception of mental patients [37], to
evaluate service quality [38] as well as the quality of products [39].

Unlike direct or indirect fuzzy rating, fuzzy conversion scales adopt stochastic or deterministic
procedures (e.g., fuzzy systems) to convert crisp rating data - usually collected by means of tradi-
tional rating tools (e.g., Likert-type scales) - into fuzzy sets with the aim of obtaining an improvement
of the scaling procedure. To this end, a number of conversion systems have been proposed, which
are mainly based on expert-knowledge, empirical-based or indirect methods [40]. Among them,
expert-knowledge conversion systems use a-priori information to derive fuzzy categories through
which crisp data are fuzzified. For instance, [24] proposed an improved Likert-type scale based on
a deterministic Mamdadi fuzzy system which includes fuzzification and defuzzification steps. On
this line, [41] compared Likert-type scale and three fuzzy conversion scales based on triangular,
trapezoidal, and Gaussian fuzzy numbers, respectively. This type of fuzzy scaling has been widely
applied, for instance, in measuring user experience [42], workers’ motivation [43], teachers’ beliefs
about mathematics [44], students’ perceptions about learning through a computer algebra system
[45], motivation, attention and anxiety [46], job satisfaction [47], tourists’ satisfaction [48, 49, 50], in
evaluating healthcare services [51], educational services [52, 53, 54], and to develop methodologies for
service quality analysis [55, 56, 57, 58]. Instead, empirical-based fuzzy conversion methods transform
crisp responses into fuzzy data using the information gathered directly from the empirical sample of
responses. For example, [59] developed a fuzzy system in which fuzzy categories are built based on
empirical distribution of Likert-type responses. Similarly, [60] developed a fuzzy system to measure
xenophobia through pollster method and frequency-based fuzzy set assignment. Still, [61, 62] and
[63] proposed to generate fuzzy categories via Dombi-intersection of sigmoid-shaped functions based
on the most likely, worst and best values assigned by raters. In a similar way, [64] derived fuzzy num-
bers using histograms of Likert-type responses and ideal histograms-based distances for modeling
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response-bias. Finally, indirect methods to fuzzy conversion scales use hybrid systems through which
fuzzy data are obtained by means of statistical models which are adapted on empirical crisp data
first. For instance, [65] proposed an innovative method where CUB models are used as a back-end
tool for quantifying fuzziness of rating responses. Similarly, [40] used ordinal regression in order to
generate well-founded fuzzy response categories. [66] proposed a statistically-oriented procedure by
means of which fuzzy sets are computed using non-parametric spline methods. On the same line,
[67] and [68] used an Item Response Theory model (i.e., Partial Credit Model) to convert linguistic
response categories in fuzzy numbers by means of the estimated IRT parameters.

There have been several attempts to compare fuzzy rating and conversion scales with respect to
more traditional rating methods. To this end, comparisons have been made based on hypothesis
testing about means [69, 70], descriptive summary measures [30], ratings accordance criterion in
empirical and simulated context [71, 72], scale reliability [73, 74]. Other research used validated
questionnaires to study the differences between traditional and fuzzy rating. For example, [75] used
the WHOQOL-BREF questionnaire to compare standard Likert-type scale, fuzzy direct scale, and
two fuzzy conversion scales. In a similar way, [76] proposed and compared four fuzzy version of
the pain intensity scales, namely fuzzy visual analogue scale, fuzzy numerical rating scale, fuzzy
qualitative pain scale, and fuzzy face pain scale.

3 An IRTree-based model for fuzzy rating

In this section we illustrate our approach to fuzzy rating scales, which is based upon the use of
IRT trees as computational models of the response process [17]. In particular, we adopt a two-stage
modeling strategy where IRTrees are first fit on rating data and then their estimated parameters
are mapped to parametric fuzzy numbers [68]. In so doing, a psychometric model is used to model
response data for each rater and item combination, which is in turn used as a building block for
representing final ratings in terms of fuzzy numbers.

3.1 IRT models

Item Response Theory (IRT) models represent a class of statistical models which are used to formalize
the measurement process underlying self-reported responses in questionnaires, tests, and surveys.
Being at the intersection of psychometrics and statistics, they offer a way to formalize the underlying
process a rater i responds to a given item j [77]. Although there are a number of IRT models
available nowadays (for an extensive review, see [78]), they all revolve around the assumption that
the probability P(Yij = y;θ) of responding to an item j for a given rater i is a function of at
least two parameters, namely the quality of the item αj (e.g., difficulty, informativeness) and the
characteristics of the rater ηi (e.g., latent personality trait, response style). In formulae, we have

P(Yij=y;θ) = g(αi, ηj)
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with g(.) being a twice differentiable link function (e.g., logistic, probit, generalized logistic). De-
pending on the complexity of the psychometric model being used, the basic IRT formulation can
be generalized to include many other information such as covariates (e.g., gender, age), additional
rater’s information (e.g., careless responding, lucky guessing), and questionnaire structure (e.g., la-
tent dimensions connecting items among them). Because of their characteristics, IRT models are
quite closed to Generalized Linear Mixed-Effect Models (GLMMs), another class of linear statisti-
cal models widely used in applied statistical analyses [79]. Indeed, parameters of IRT models are
conventionally estimated using methods typically adopted by GLMMs such as marginal maximum
likelihood, expectaction-maximization, and pairwise maximum likelihood. The simplest IRT model
is the well-known Rasch model (also called, 1-PL IRT model) which formalizes the probability of
responding to a dichotomous item Yij ∈ {0, 1} as follows:

P(Yij = 1;θ) =
1

1 + exp (ηi − αj)

where ηi ∼ N (0, σ2
η) and αj ∈ R with the constraint

∑J
j=1 αj = 0. The model formalizes the

intuition that for a fixed item j, the probability of a correct response P(Yij = 1) increases with
the rater’s ability η and, conversely, for a fixed rater i the probability of a right response decreases
as the item difficulty α increases. Given a set of n responses to J items, the 1PL parameters
can be estimated via maximum-likelihood theory and their estimates α̂ and η̂ can be used for
further analyses, including assessing tests or questionnaires to measure a particular ability or trait,
estimating raters information about response styles, evaluating difficulties of items.

3.2 IRTrees and response process

IRT trees are conditional linear models that represent final rating responses in terms of binary trees.
They formalize the response process as a sequence of conditional stages going through the tree to
end nodes. Intermediate nodes are defined such that they represent specific cognitive components
of the rating process whereas end nodes represent the possible outcomes of the decision process.
Figure 1a depicts the simplest IRT tree model for three-point rating scales (0: “perhaps”; 2: “yes”; 1:
“no”). It contains two intermediate nodes, one representing the first stage of the response process Z1

(e.g., answering with uncertainty vs. answering with certainty) with a single outcome (e.g., Y = 0:
“perhaps”) and the other representing the second decision stage Z2 (e.g., answering with certainty)
with two possible outcomes (e.g., Y = 2: “yes” vs. Y = 1: “no”). For instance, the probability of
uncertain responses (i.e., Y = 0: “perhaps”) is simply given by the probability to activate the first
stage of the decision process, i.e. P(Y = 0) = P(Z1;θ1). By contrast, the probability of a negative
response (i.e., Y = 1: “no”) is computed as P(Y = 1) = (P(Z1);θ1)(1 − P(Z2;θ2)). The simplest
case described by Figure 1a is paradigmatic of the cognitive modeling underlying IRT trees [80, 81].
These models assume the rater’s response process to be stage-wise: raters would first decide whether
or not provide their responses (Z1) and, then, decide on the direction and strength of their answers
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(Z2). The latent random variables Z1 and Z2 govern the two sub-processes of the rater’s response.
Similarly, Figure 1b generalizes a two-stage decision tree for the common five-point rating scale (e.g.,
from 1: “strongly disagree”; to 5: “strongly agree”). It contains three decision nodes, one for the
uncertain response category (i.e., Y = 3: “neither agree, nor disagree”), a second one for the levels of
disagreement (i.e., Y = 1: “strongly disagree”, Y = 2: “disagree”), and the last node for the levels of
agreements (i.e., Y = 4: “strongly disagree”, Y = 5: “disagree”). Probabilities for each response are
computed as before. Figures 1c-1d represents two cases of IRTrees for a six-point rating scale. The
trees differ in the way they model the middle categories (i.e., Y = 3 and Y = 4). In the first schema
(Figure 1c), they are represented independently from the extremes of the scale, as for the two-stage
IRTree (Figure 1a). By contrast, the second schema (Figure 1c) places the middle categories in the
same branches of the extremes, as to represent a more graded decision process [82]. There are many
possible ways to conceptualize decision processes in terms of IRTrees and the choice of a particular
decision schema depends primarily on research-specific hypotheses [81].

Z1

Z2
Y = 0

Y = 2 Y = 1

(a) IRTree model for three response categories

Z1

Z2
Y = 3

Z4Z3

Y = 1 Y = 2 Y = 4 Y = 5

(b) IRTree model for five response categories

Z1

Z2 Z3

Y = 3 Y = 4

Z5Z4

Y = 1 Y = 2 Y = 5 Y = 6

(c) IRTree model for six response categories (schema 1)

Z1

Z2 Z3

Y = 3 Y = 4

Z4

Y = 2Y = 1

Z5

Y = 6Y = 5

(d) IRTree model for six response categories (schema 2)

Figure 1. Examples of IRTree models for modeling response processes in rating scales.

By using an IRT parameterization, IRTrees allow for introducing rater-specific and item-specific
components for the response process. Hence, the probability to agree or disagree with an item can
be represented as a function of a rater’s latent trait and the specific content of the item [17]. More
formally, let i ∈ {1, . . . , I} and j ∈ {1, . . . , J} be the indices for raters and items, respectively.
Then, the final response variable Yij ∈ {1, . . . ,m, . . . ,M} ⊂ N, with M being the maximum number
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of response categories, can be decomposed in terms of binary responses using N binary variables
Zijn ∈ {0, 1}, where n ∈ {1, . . . , N} denotes the nodes of the tree. For instance, in Figure 1a,
N = 2 and the final response Yij = 2 corresponds to Zij2 = 0. By following the common Rasch
representation [17], for a generic pair (i, j) the IRTree consists of the following equations:

ηi ∼ NN (0,Ση) (1)

πijn = P(Zijn = 1;θn) =
exp (ηin + αjn)

1 + exp (ηin + αjn)
(2)

Zijn ∼ Ber(πijn) (3)

where θn = {αj ,βi}, with the arrays αj ∈ RN and ηi ∈ RN denoting the easiness of the item
and the rater’s latent trait. As is usual in IRT models, latent traits for each node are modeled
using a N -variate centered Gaussian distribution with covariance matrix Ση. For instance, for the
two-stage decision process in Figure 1a, αj1 indicates the easiness of choosing the right branch of the
tree for the item j whereas αj2 denotes the easiness of providing an affirmative response (Y = 1 :

“yes”). Similarly, ηi1 indicates the rater’s attitude to navigate through the right branch of the tree
whereas ηi2 denotes the rater’s attitude to provide an affirmative response. Thus, the probabilities
to activate a branch of the tree can be computed using Eq. (2) recursively. For instance, in the
two-stage example, the probability of an uncertain response is computed as follows:

P(Yij = 0) = P(Zij1 = 0;θ1) = 1− exp (ηi1 + αj1)

1 + exp (ηi1 + αj1)

To generalize single-branch probability equations, we first define a M ×N Boolean matrix T indi-
cating how each response category (in rows) is associated to each node (in columns) of the tree. As
tmn ∈ {0, 1}, tmn = 1 indicates that the m-th category of response involves the node n, tmn = 0

indicates that the m-th category of response does not involve the node n, whereas tmn = NA in-
dicates that the m-th category of response is not connected to the n-th node at all. For instance,
considering the simplest two-stage example in Figure 1a, the mapping matrix T3×2 is defined as
follows:

T =

1 NA
1 0

1 1


Finally, the probability for a generic rating response can be easily computed as:

P(Yij = m) =

N∏
n=1

P(Zijn = tmn;θn)tmn

=

N∏
n=1

(
exp (ηin + αjn) tmn
1 + exp (ηin + αjn)

)δmn

(4)

where δmn = 0 if tmn = NA and δmn = 1 otherwise.
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IRTree models can be estimated either by means of standard methods used for generalized linear
mixed models, such as restricted or marginal maximum likelihood [83, 17], or using procedures
for multidimensional item response theory models, such as expectation-maximization algorithms
[84]. In general, these models are flexible enough to model simple situations like those requiring
unidimensional latent variables (a single η for each node of the tree) or common item effects (a
single α for each node of the tree) as well as more complex scenario involving multidimensional
high-order latent variables. For further details and implementations, we refer the reader to [17, 84].

3.3 Fuzzy numbers

A fuzzy set Ã of a universal set A is defined by means of its characteristic function ξÃ : A→ [0, 1]. It
can be easily described as a collection of crisp subsets called α-sets, i.e. Ãα = {y ∈ A : ξÃ(y) > α}
with α ∈ (0, 1]. If the α-sets of Ã are all convex sets then Ã is a convex fuzzy set. The support of Ã
is A0 = {y ∈ A : ξÃ(y) > 0} and the core is the set of all its maximal points Ac = {y ∈ A : ξÃ(y) =

maxy∈A ξÃ(y)}. In the case maxy∈A ξÃ(y) = 1 then Ã is a normal fuzzy set. If Ã is a normal and
convex subset of R then Ã is a fuzzy number. The quantity l(Ã) = maxA0 −minA0 is the length
of the support of the fuzzy set Ã. The class of all normal fuzzy numbers is denoted by F(R). Fuzzy
numbers can conveniently be represented using parametric models that are indexed by some scalars,
such as c (mode) and s (spread or precision). These include a number of shapes like triangular,
trapezoidal, gaussian, and exponential fuzzy sets [85]. A relevant class of parametric fuzzy numbers
are the so-called LR-fuzzy numbers [86] and their generalizations like non-convex fuzzy numbers
[87], flexible fuzzy numbers [62], and beta fuzzy numbers [88, 89, 90]. The latter represent a special
class of fuzzy sets that are defined by generalizing triangular fuzzy sets. In particular, let:

ξÃ(y) =

(
y − yl
c− yl

)
· 1(yl,c)(y) +

(
yu − y
yu − yl

)
· 1(c,yu)(y) (5)

be a triangular fuzzy set with yl, yu, c ∈ R being lower, upper bounds, and mode parameters,
respectively. Then, a beta fuzzy set is of the form:

ξÃ(y) =

(
y − yl
c− yl

)a(
yu − y
yu − c

)b
· 1(yl,yu)(y) (6)

c =
ayu + byl
a+ b

where yl, yu, a, b ∈ R, with yl and yu being the lower and upper bounds of the set, and c the mode
of the fuzzy set. Beta fuzzy numbers can be expressed in terms of mode c ∈ R and precision s ∈ R+
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parameters, as follows (yl = 0 and yu = 1 without loss of generality):

ξÃ(y) =
1

C
ya−1(1− y)b−1 (7)

a = 1 + cs

b = 1 + s(1− c)

C =

(
a− 1

a+ b− 2

)a−1
·
(

1− a− 1

a+ b− 2

)b−1
(8)

with C being a constant ensuring ξÃ is still a normal fuzzy set. Figure 2 shows some examples
of beta fuzzy sets (dashed black curves). Because of their shape, beta-based fuzzy sets can be of
particular utility in modeling bounded rating data (e.g., see [91]).

3.4 An IRT-map between fuzzy numbers and rating responses

Consider the case where a respondent i is faced with a M -choice item j. In the first stage of the
response process, the item content first triggers memories and emotions of past personal experiences.
Then, these activate the opinion formation stage, where a coherent opinion representation is formed
along with a finite set of potential responses Uij . Lastly, the final response yij is chosen by trimming
the set of possible responses (selection stage). Decision uncertainty emerges as a result of the
conflicting demands of the opinion formation stage and it can be quantified by analysing some
characteristics of Uij . Our approach resorts to using the latter as a source for mapping fuzzy
numbers to the latent rater’s response process underlying yij . To this end, IRT-trees are adopted
to estimate a probabilistic model for Uij as a function of estimated rater’s latent traits η̂i and item
content α̂j . In particular, for a given pair (i, j) the following procedure is used to obtain fuzzy rating
data:

1. Define and fit an IRT-tree model to a sample of I×J responses Y and get the estimates η̂N×1
and α̂N×1.

2. Plug-in η̂N×1 and α̂N×1 into Eq. (4) to get the estimated probability value P̂(Y = m) for
each m ∈ {1, . . . ,M}. This is the probabilistic model for Uij .

3. Compute the mode of the fuzzy beta number ỹij via the equality:

cij =
∑

y∈{1,...,M}

= y · P̂(Y = y) (9)

4. Compute the precision of the fuzzy beta number ỹij via the equality:

sij =
1

vij
with: vij =

∑
y∈{1,...,M}

= (y − cij)2 · P̂(Y = y) (10)
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In this context, ξỹij : Ω(y) → (0, 1), with Ω(y) = (1,M) being the space of the means of Yij
for each response value. Thus, likewise for latent responses in psychometric models, fuzzy rating
data are continuous and bounded instead of being discrete. Note that the above procedure is
quite general and can be extended to the more general case of LR-type fuzzy numbers, such as
triangular and trapezoidal, by means of any probability-possibility transformations [86] or other
general transformations preserving the original information content [92]. For instance, the easiest
way to obtain triangular fuzzy numbers from P̂(Y ) is to compute the core using Eq. (9) whereas
lower ylij and upper yuij

bounds can instead be computed using quantiles, such as ylij = min({y ∈
{1, . . . ,M} : P̂(y) ≥ 0}) and yuij

= max({y ∈ {1, . . . ,M} : P̂(y) ≥ 0}). Another solution would be
to transform fuzzy beta numbers using a kind of moments matching method [93] via the following
link equations:

ylij = cij − h2, yrij = cij − h2 + h1 (11)

h1 =
√

3.5vij − 3(cij − µij)2

h2 =
1

2
(h1 + 3cij − 3µij)

µij = (1 + cijsij)
/

(2 + sij)

The procedure yields regular triangular fuzzy sets defined in terms of lower bound yl, mode c, and
upper bound yu.

Figure 2 shows some hypothetical examples of fuzzy beta numbers for a two-stage IRTree with
M = 3 and N = 2. As a direct consequence of our modeling approach - which is based upon the use
of heterogeneity in rater’s pattern of responses - the final response yij may not reflect the mode of the
fuzzy response cij (or similarly other measures like the centroid). This is particularly true for high
uncertainty scenarios where two or more responses compete with each other (see Figure 2-c). Thus,
decision uncertainty does not necessarily coincide with the choice of the middle or “don’t know”
response category of the rating scale. Rather, it arises as a result of the transitions probabilities
estimated by the IRTree (the easier the transition is, the more certain the response is). This is
the case, for instance, shown in Figure 4-d where the middle response category is chosen with little
uncertainty.

4 Simulation study

The aim of this simulation study is to provide an external validity check on the results provided by
the fuzzy IRT-map to recover decision uncertainty from rating tasks. In particular, our model was
contrasted against another IRT model for rating data that uses response times (RTs) as a source
for modeling decision uncertainty [14, 94]. It is well established that RTs can be used for measuring
several cognitive facets such as item/question difficulties and participants’ performance on rating
and choice tasks [95]. Overall, the findings from the psychometric literature suggest that respondents
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Figure 2. Examples of hypothetical probability distributions (black dashed vertical lines) and asso-
ciated fuzzy numbers (black dashed curves) for a two-stage IRTree (M = 3 and N = 2). Note that
probability masses and fuzzy membership functions are overlapped over the same domain Ω(y), red
and blue circles represent observed (y) as opposed to most probable responses, respectively.
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who are very hesitant and uncertain about their final answers take a relatively long time to make
their final choice on a rating scale [94]. Conversely, respondents who are quite sure of their responses
are generally fast in providing their final choices. As such, RTs can be considered valuable indirect
measures of decision uncertainty in rating tasks [96]. In this study we assessed whether the fuzzy
IRT-map can retrieve decision uncertainty from rating data as accurate as response times. To this
end, first we will generate rating data and response times according to a dedicated IRT-RTs model,
and then we will apply the fuzzy IRT-map on the rating data by evaluating to what extent fuzzy
numbers computed via the fuzzy IRT-map will predict response times that were generated using the
IRT-RTs model. The whole simulation study has been performed on a remote HPC machine based
on 16 Intel Xeon CPU E5-2630Lv3 1.80Ghz, 16x4 Gb Ram whereas computations and analyses have
been performed in the R framework for statistical analyses.

Data generation model. Discrete rating data Yij ∈ {1, . . . ,M} and response times Rij ∈ (0,∞) for
respondent i ∈ {1, . . . , I} and item j ∈ {1, . . . , J} were generated according to the following IRT-RTs
model [94]:

ηi ∼ N (0, ση), ωi ∼ N (0, σω), εi ∼ N (0, σε)

P(Yij = m;θ) =
exp (

∑m
k=1(ηi − αj))∑m

h=1 exp (
∑m
k=1(ηi − αj))

(12)

ln rij = γj + ωi +

(
M∑
m=1

P(Yij = m;θ)2

)
βj + εij (13)

where ηI×1 and αJ×1 are respondents’ latent traits and item parameters, ωI×1 and γJ×1 are respon-
dents’ speeds and item times, βJ×1 are the time intensity parameters which relate the response data
submodel in Eq. (12) to the response time submodel in Eq. (13). The term

∑M
m=1 P(Yij = m;θ)2

in the response time submodel can be interpreted as the difficulty for the respondent i to respond
to the item j (DIFF) and is closely related to the so-called Probability-Difficulty (PD) hypothesis in
the IRT literature [14]. The DIFF-based model for RTs states that longer response times occur when
DIFF is lower, which is the case where all the M alternatives for the item j are equally probable.
By contrast, shorter response times are expected when DIFF is higher, which is the opposite case
where there is single a response category with probability equals to one [94].

Design. The design of the study involved four factors: (i) I ∈ {50, 100, 150}, (ii) J ∈ {5, 20}, (iii)
M ∈ {3, 5}, (iv) β0 ∈ {−10.5,−20.5}. They were varied in a complete factorial design with a total
of 3 × 2 × 2 × 2 = 24 scenarios. For each combination, B = 1000 samples were generated which
yielded to 1000× 24 = 24000 new data as well as an equivalent number of parameters.

Procedure. Let ih, jt, mp, β0
q be distinct levels of factors I, J ,M , β0. Then, rating data and response

times were generated according to the following procedure:
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(a) Respondents’ latent traits and speeds were drawn independently as ηih×1 ∼ N (0ih , Iih×ih)

and ωih×1 ∼ N (0ih , Iih×ih).

(b) Item parameters and average response times were generated independently asαjt×1 ∼ N (0jt , Ijt×jt)

and γjt×1 ∼ N (91jt , Ijt×jt).

(c) For i = 1, . . . , ih and j = 1, . . . , jt, probabilities for each of the mp response categories were
computed using the IRT component of the IRT-RTs model:

P(Yij = m) = exp

(
mp∑
k=1

(ηi − αj)

)/
mp∑
u=1

exp

(
mp∑
k=1

(ηi − αj)

)

and response data yij were drawn from a Multinomial distribution with probability equals to
P(Yij).

(d) Time intensity parameters were generated as βjt×1 ∼ N (β0
q1jt , Ijt×jt).

(e) Response times were computed using the second component of the IRT-RTs model, which
equals to the DIFF-based linear model:

ln rij = γj + ωi + DIFFijβj + εij

where DIFFij =
∑mp

m=1 P(Yij = m)2 and εij ∼ N (0, 0.25), for all i = 1, . . . , ih and j = 1, . . . , jt.

(f) The generated matrices of response data Yih×jt and times Rih×jt were analysed using the
fuzzy IRT-map. For both M = 3 and M = 5 cases, the sequential decision tree (see Figure 1a)
was adopted. Since α and η were simulated using the simplest model where latent traits and
item parameters are invariant across nodes (e.g., see [83]), an IRTree with a common latent
trait and common parameters was defined using the IRTrees R library [83]. The glmmTMB R
package [97] was used to estimate the model parameters. Once estimates were obtained, fuzzy
beta numbers were computed using the procedure described in Section 3.4, which yielded to
two new matrices for the modes Cij×jt and precisions Sij×jt of the fuzzy numbers.

Measures. For each condition of the study, we assessed whether the rating uncertainty, as recov-
ered by the precision of the fuzzy set, predicted the response times. Thus, response times were
dichotomized into fast responses (rij = 1) and slow (rij = 0) responses by an item median split [98].
Then, for each of the jt item, a Binomial linear model with logit link was used to predict the Boolean
vector r∗ih×1 as a function of the precision values sih×1. Finally, predictions of the generalized linear
model r̂∗ih×1 were compared against the observations r∗ih×1 and the average Area Under the Curve
(AUC) index was computed as follows:

AUCavg =
1

jt

jt∑
j=1

(
1

B

B∑
b=1

AUC(r∗b , r̂
∗
b)j

)
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It is expected that the closer the AUCavg to one, the more accurate the precisions of the fuzzy
numbers will resemble the response times.

Results. Table 1 shows the average AUC index as a function of the simulation condition. Overall,
AUCavg was greater than the threshold for a random classification (AUCavg = 0.5), which indicated
that precisions of the fuzzy numbers predicted response times better than random chance. Predic-
tions were more accurate for the cases with M = 5 response categories and a larger number of items
(J = 15). The number of sample units did not affect the accuracy of prediction. As expected, the
greater accuracy was obtained for the cases with stronger time intensity parameters β0 = −20.5, a
condition that occurs if the variation of response times is mainly due to the task (as measured by
the DIFF term). By and large, these findings suggest that, if compared to a RTs-based model for
decision uncertainty, fuzzy numbers appropriately encode the uncertainty component associated to
the choice of the final response in rating scales.

β = −10.5 β = −20.5

J = 5 J = 15 J = 5 J = 15

M = 3

I = 50 0.666 (0.059) 0.77 (0.052) 0.694 (0.062) 0.812 (0.054)
I = 150 0.649 (0.036) 0.744 (0.031) 0.683 (0.036) 0.803 (0.032)
I = 500 0.662 (0.019) 0.755 (0.017) 0.697 (0.02) 0.813 (0.017)

M = 5

I = 50 0.754 (0.059) 0.776 (0.059) 0.772 (0.061) 0.812 (0.061)
I = 150 0.736 (0.035) 0.746 (0.034) 0.765 (0.035) 0.792 (0.035)
I = 500 0.736 (0.022) 0.767 (0.018) 0.766 (0.022) 0.808 (0.019)

Table 1: Simulation study: Average AUC index and its standard deviation (in parenthesis) over the
B = 1000 samples as a function of the simulation conditions.

5 Applications

In this section we illustrate the features of the proposed approach using four applications to real
data. In particular, the first two are based on a controlled scenario in which varying levels of decision
uncertainty were experimentally controlled. These two studies offer a way to assess the empirical
effectiveness of the fuzzy IRT-map in retrieving decision uncertainty from standard rating data.
Instead, the last two studies explore the differences between the proposed fuzzy-IRTree approach
and two alternative methods for fuzzy ratings, namely the computerized Fuzzy Rating Scale (FRS)
[30] and the Dynamic Fuzzy Rating Scale (DYFRAT) [21].
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5.1 Case study 1: Rating data under experimental faking condition

The effects of faking behaviors on rating data have been widely studied in the area of psychometrics
(e.g., see [4, 5, 99, 100]). Faking is defined as a deliberate behavior through which respondents
distort their responses towards ones they consider more favorable in order to give overly positive
self-descriptions, to dissimulate vocational interests, to simulate physical or psychological symptoms
as a way to obtain rewards, or to have access to advantageous work positions [101]. In all these
cases, faking acts as a kind of systematic error which alters the unfolding mechanism of the response
process. For instance, in the case of faking-good or faking-bad response styles (i.e., the tendency to
use higher or lower response categories in rating procedures, respectively), this results in reducing
the overall response variability and increasing the number of stereotype answers. Because of its
characteristics, faking can serve as a good candidate for studying uncertainty in rating process. In
this application, we resorted to use rating data which were collected under honest and instructed
faking-good measurement conditions. The aim is assessing to what extent our approach is sensitive
enough to detect variations in decision uncertainty as arise from honest as opposed to faking response
patterns. In particular, we expect to observe decreasing levels of decision uncertainty as responses
patterns varies from honest to faking-good condition.

Data and measures. Data were originally collected and analysed by [5, 102] and refer to a sample
of n = 484 undergraduate students (79% females, ages ranged from 18 to 48, with mean age of
20.61 and standard deviation of 2.69) at the University of Padua (Italy). They were administered
a personality questionnaire, the Perceived Empathic Self-Efficacy Scale (AEP/A) [103], with items
scored on a 5-point scale where 1 denotes that she/he “Cannot do at all” and 5 denotes that she/he
“Certain can do” the behavior described by the item. The questionnaire was administered using a
paper and pencil format. Participants were randomly assigned to two groups, one (n = 237) receiv-
ing the instruction to answer the questionnaire items as honest as possible (no faking condition),
and the other (n = 247) receiving the instruction to answer using a faking good response style.
Faking-good was induced by letting participants know that a recruitment company was interested
in hiring candidates for a very appealing job position and the questionnaire would have been used
as a first method of selection. Following the rational described in [5], for the current analyses we
retained a subset of four items only, which guarantee representativeness of the complete item pool,
a good factorial structure, and a clear difference between the two groups in response frequencies.1

Data analyses and results. Table 2 shows the observed frequencies for the four items in the honest (H)
and faking (F) conditions as well as the mean response value computed over the five categories. As

1The items were as follows: Q1. When you meet new friends, find out quickly the things they like and those they
do not like? Q2. Recognize if a person is seriously annoyed with you? Q3. Understand the state of mind of others
when you are very involved in a discussion? Q4. Understand when a friend needs your help, even if he/she doesn’t
overtly ask for it?
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expected, items in the faking condition showed increased frequencies of response categories associated
to positive responses (i.e., Y ∈ {4, 5}) as compared to items in the honest condition. A typical IRTree
model for 5-point rating scales was defined and adapted to both groups (see Figure 1c). In this case,
the decision structure was defined using three nodes, which represent the rating situation where
answer using extreme points of the scale (Y ∈ {1, 2, 4, 5}) is contrasted to the uncertain response
category (Y = 3) [17]. Thus, the IRTree model implied four item parameters and three latent traits,
with the last trait being the same for lower and higher extreme responses. The model structure was
defined using the IRTrees R library whereas item and person parameters were estimated via marginal
maximum likelihood as implemented in the glmmTMB R package [97]. Overall, model fits showed
good accuracy in terms of observed as opposed to predicted missclassification error (AUCH = 0.75,
AUCF = 0.79). Tables 3-4 show the estimated model parameters for both honest and faking
conditions. As expected, the probability to activate the right-branch of the nodes increased in the
faking condition, especially for nodes 1 and 2. Similarly, latent traits were more strongly correlated
in the faking condition as opposed to the honest condition. Once model’s parameters have been
estimated, fuzzy beta numbers for both honest and faking groups were computed using the procedure
given in Section 3.4. Thus, for each of the four items, we obtained n = 484 fuzzy numbers expressed
in terms of mode (m) and precision (s). Figure 3 shows an exemplary set of reconstructed fuzzy
numbers. In order to compare honest and faking conditions with regards to the decision uncertainty
as recovered by fuzzy beta numbers, in addition to mode (m) and precision (s) we computed fuzzy
cardinality |Ã| =

∫
A0
ξÃ(y) dy and fuzzy centroid A = 1+sm

2+s as well. Figure 4 shows the distribution
of these measures for both the experimental conditions. As expected, fuzzy numbers in the faking
condition showed higher precision and smaller cardinality as compared to the honest case. Similarly,
modes and centroids increased in the faking condition which is in agreement with the previous results
on faking experiments [5, 102]. Overall, the reconstructed fuzzy numbers behave according to the
faking-good manipulation, which implied a reduction of the rating uncertainty and the choice of
high rating scores. This was reflected by a highly increase in precision (s) as well as a decrease in
the size of fuzzy sets (fuzzy cardinality).

5.2 Case study 2: Rating data in moral dilemma scenarios

Moral dilemmas are emotionally salient scenarios in which an agent ought to adopt one of two mu-
tually exclusive alternatives that differ in terms of violation of essential moral principles. Typical
moral dilemmas include, for instance, the choice between letting one person die when that is nec-
essary to saving five others (footbridge), the choice of smothering the supposedly incurable patient
with a pillow in order to get the patient’s life insurance (smother for dollars), the choice of handing
over one of two children to a doctor for painful experiments (Sophie’s choice), the choice of killing
an healthy man to transplant his organs and saving five other patients (transplant) [104]. In all
these cases, the choice between the lesser of two evils involves a tangled web of cognitive and emo-
tional reactions that result in high levels of decision uncertainty. Because of these characteristics,
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Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 mean response
item1 (H) 0.00 0.08 0.58 0.32 0.02 3.27
item1 (F) 0.00 0.03 0.48 0.44 0.04 3.50
item2 (H) 0.00 0.05 0.30 0.51 0.14 3.75
item2 (F) 0.00 0.04 0.22 0.54 0.20 3.90
item3 (H) 0.02 0.20 0.39 0.33 0.06 3.22
item3 (F) 0.01 0.13 0.36 0.38 0.11 3.45
item4 (H) 0.00 0.04 0.22 0.60 0.14 3.84
item4 (F) 0.00 0.01 0.20 0.52 0.27 4.04

Table 2: Case study 1: Observed frequency tables as a function of item number and type of group
(H: honest group; F: faking group).

node 1 node 2 node 3

θ̂ σθ̂ θ̂ σθ̂ θ̂ σθ̂

H

α1 -0.32 0.14 1.99 0.35 -1.60 0.29
α2 0.85 0.15 3.39 0.42 -1.25 0.22
α3 0.47 0.14 0.87 0.24 -0.43 0.21
α4 1.28 0.16 3.69 0.44 -1.52 0.22

F

α1 0.08 0.13 9.19 1.82 -2.12 0.30
α2 1.30 0.16 10.06 1.80 -1.02 0.19
α3 0.58 0.14 5.31 1.13 -0.68 0.20
α4 1.46 0.17 12.55 2.27 -0.77 0.18

Table 3: Case study 1: Estimates (θ̂) and standard errors (σθ̂) for item parameters in the honest
(H) and faking (F) conditions.

η1 η2 η3 σ̂η

H
η1 1.00 0.35
η2 -0.27 1.00 1.37
η3 0.38 -0.99 1.00 1.06

F
η1 1.00 0.44
η2 0.58 1.00 7.59
η3 0.56 -0.35 1.00 0.90

Table 4: Case study 1: Estimated correlation matrix and standard deviations (σ̂η) for latent traits
in the honest (H) and faking (F) conditions.
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(D) Rater: 1, Item: 1, y = 3, m = 3.1
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(E) Rater: 1, Item: 4, y = 3, m = 3.7
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(F) Rater: 40, Item: 3, y = 5, m = 3.4

Figure 3. Case study 1: Fuzzy beta numbers (black curves) and estimated probabilities of response
categories (black dashed vertical lines) for some raters of the honest (A-C panels) and faking groups
(D-F panels). Note that probability masses and fuzzy sets are overlapped over the same domain
Ω(y), red and blue circles represent observed response (y) and fuzzy mode (m), respectively.

moral dilemmas can serve as a framework for studying how ratings behave as a function of decision
uncertainty. In this application, we used two moral dilemmas - i.e. footbridge and transplant - and
assessed how they impacted the intensity of raters’ negative emotions towards the scenario’s protag-
onist. In both dilemmas, the protagonist must choose between the sacrifice of one person (a stranger
in the footbridge case, a victim’s physician in transplant) in order to save a larger group. However,
these scenarios differ because of an additional role conflict that results from the different method of
killing [105]: while in footbridge the perpetrator is an anonymous pedestrian with no relationship to
the victim, in transplant the perpetrator is a doctor with moral duties. As such, we expect a higher
degree of uncertainty in assessing negative emotions for the transplant case as opposed to footbridge.

Data and measures. Data were originally collected by [105] in a large project assessing many aspects
of moral decision making, including several cognitive scales and personality surveys. For the purposes
of this study, we selected a subset of the entire dataset. The final sample consisted of n = 500

participants (54% females, ages ranged from 18 to 58, with mean age of 25.06 and standard deviation
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Figure 4. Case study 1: Distribution of summary statistics (mode, precision, cardinality, centroid)
for fuzzy numbers computed for each participant in honest (in light brown color) and faking (in
orange color) conditions. Note that plots in the first row show the observed frequencies as a function
of the experimental conditions.

of 3.96), mainly composed of German speakers. They read both dilemma scenarios and rated the
intensity of their negative emotions toward the scenario’s protagonist using a 5-point scale. A total
of four emotional items was presented along with the question “When I think of the protagonist and
his/her decision, I feel [disappointment, disgust, contempt, anger]”. The texts used for the moral
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dilemmas were as follows:

Footbridge. A runaway trolley with malfunctioning breaks is heading down the tracks towards a group
of five workmen. A pedestrian observes this from a footbridge. If nothing is done the trolley will overrun
and kill the five workmen. The only way for the pedestrian to avoid the deaths of the five workmen
is to push a large stranger who is standing next to him off the bridge onto the tracks below where his
large body will stop the trolley but which will also kill the stranger. Outcome: The pedestrian decided
to push the stranger off the bridge. Due to this decision the trolley was stopped and the five workmen
were saved; but the stranger was killed.

Transplant. Five patients are treated in a hospital. Each of whom is in critical condition due to organ
failing. A healthy man consults the head physician for routine checkup. If nothing is done the five
patients will die due to a shortage of available transplants. The only way for the head physician to save
the lives of the first five patients is to kill the healthy man (against his will) and to transplant his organs
into the bodies of the other five patients. Outcome: The head physician decided to kill the healthy man
and to transplant the organs. Due to this decision five patients were saved; but the healthy man was
killed.

Data analysis and results. Two IRTree models with sequential structure (see Figure 1a) were sep-
arately defined and adapted to footbridge (F) and transplant (T) data. The IRT models required
J = 4 item parameters and N = 4 number of nodes and latent traits. The model structure was
defined using the IRTrees R library whereas model parameters were estimated via marginal max-
imum likelihood as implemented in the glmmTMB R package [97]. Tables 5-6 show the estimated
model parameters for both footbridge and transplant scenarios. Once model’s parameters have been
estimated, fuzzy beta numbers were computed using the procedure given in Section 3.4. The final
models showed a satisfactory fit (AUCF = 0.89, AUCT = 0.86). Finally, for each of the four items,
we obtained n = 500 fuzzy numbers expressed in terms of mode (m) and precision (s). Likewise for
the first case study, also in this context footbridge and transplant were compared in terms of modes,
precisions, fuzzy cardinalities, and fuzzy centroids. Figure 5 shows the distribution of these measures
for both the moral scenarios. As expected, unlike for the footbridge scenario, ratings in transplant
were characterized by higher levels of decision uncertainty. Overall, fuzzy numbers showed larger
modes and centroids, precisions of the fuzzy sets were higher in median and more variable, and
fuzzy cardinalities were smaller in median. Finally, Figure 6 shows a subset of estimated fuzzy beta
numbers for both dilemma scenarios. We can observe how fuzzy sets for transplant showed larger
support then fuzzy sets associated to footbridge. Interestingly, because of the different levels of de-
cision uncertainty underlying rating responses, the estimated modes often differ from the observed
final responses.

5.3 Case study 3: fuzzy-IRTree and Fuzzy Rating Scale (FRS) in model-
ing rating data

The computerized Fuzzy Rating Scale (FRS) is a direct rating method which allows raters to ex-
press their responses by using fuzzy sets (for further details, see Sect. ??). The main difference
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node 1 node 2 node 3 node 4

θ̂ σθ̂ θ̂ σθ̂ θ̂ σθ̂ θ̂ σθ̂

F

α1 8.75 0.59 0.46 0.17 -1.04 0.26 -9.65 1.68
α2 7.81 0.54 0.16 0.18 -0.16 0.27 -9.49 1.69
α3 7.71 0.53 0.08 0.18 -0.86 0.28 -9.34 1.68
α4 9.32 0.61 0.76 0.18 0.08 0.26 -8.89 1.58

T

α1 6.45 0.61 3.87 0.50 3.38 0.41 -1.97 0.31
α2 6.41 0.61 4.16 0.51 3.81 0.46 -1.39 0.30
α3 8.42 0.74 4.59 0.55 3.76 0.44 -0.99 0.28
α4 9.25 0.79 5.38 0.61 4.64 0.51 -0.54 0.27

Table 5: Case study 2: Estimates (θ̂) and standard errors (σθ̂) of item parameters in the footbridge
(F) and transplant (T) scenarios.

η1 η2 η3 η4 σ̂η

F

η1 1.00 9.49
η2 0.06 1.00 2.23
η3 0.06 0.81 1.00 2.65
η4 0.32 0.39 0.58 1.00 6.14

T

η1 1.00 6.26
η2 0.14 1.00 3.09
η3 0.05 0.62 1.00 2.72
η4 0.21 0.60 0.66 1.00 4.13

Table 6: Case study 2: Estimated correlation matrix and standard deviations (σ̂η) for latent traits
in the footbridge (F) and transplant (T) scenarios.

between FRS and the proposed fuzzy-IRTree method is that FRS is based on a direct elicitation of
the respondent’s fuzziness for each item being rated. By contrast, fuzzy-IRTree is an indirect rating
method and computes the fuzziness of a rating response using a psychometric model (IRTree), which
in turn formalizes the response process underlying the observed rating response. Thus, in the first
case, the fuzziness of a rating response reflects to what extent the rater is uncertain about his/her
response to a specific question, or rather the degree of confidence he/she has in the final response
[30]. Instead, in the second case, the fuzziness of a rating response reflects the rater’s decision uncer-
tainty as resulting from the conflicting demands of the opinion formation stage, which comes before
the responding stage. As a result, the fuzzy-IRTree method computes the fuzziness of a specific
item j as a function of the entire rater’s response pattern yiJ×1

(by means of the estimated IRTree
parameters), instead of being computed on the j-th item only. Hence, with regards to the fuzzy
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Figure 5. Case study 2: Distribution of summary statistics (mode, precision, cardinality, centroid)
for fuzzy numbers computed for each participant in footbridge (in light brown color) and transplant
(in orange color) scenarios. Note that plots in the first row show the observed frequencies as a
function of the dilemma scenarios.

sets produced by the two methods, we expect no differences in terms of modes (as they reflect the
final rating responses) and substantial differences in terms of fuzzy cardinalities (as they reflect the
fuzziness of the final rating responses). In particular, we expect that fuzzy-IRTree produces larger
fuzziness as it models the entire response pattern yiJ×1

.
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Figure 6. Case study 2: Fuzzy beta numbers for some raters of the footbridge (light brown curves)
and transplant (orange curves) scenarios along with their estimated modes (filled circles). Note that
yT and yF indicate the observed crisp responses for footbridge and transplant, respectively.

Data and measures. Data were originally collected by [22] and refer to a survey of J = 13 items
administered to a sample of n = 70 raters about restaurant and service quality. The respondents pro-
vided their responses using two different rating scales, namely a crisp Likert-type scale with M = 5

levels (from 1: “Strongly Disagree” to 5: “Strongly Agree”) and the computerized Fuzzy Rating Scale
(FRS). Thus, the final dataset consisted of crisp Likert-type responses as well as trapezoidal fuzzy
responses.

Data analysis and results. The fuzzy-IRTree method was applied on the n×J dataset of Likert-type
responses. To this end, the simplest IRTree model for 5-point scales was defined and adapted to
the observed data (see Figure 1b). The model implied J = 13 item parameters and N = 4 nodes
with a single latent trait. The model structure was defined using the IRTrees R library whereas
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model parameters were estimated via marginal maximum likelihood as implemented in the glmmTMB
R package [97]. The estimated model showed a satisfactory fit (AUC = 0.71). Finally, for each of
the thirteen items, n = 70 beta fuzzy numbers were obtained. To adequately compare fuzzy-IRTree
and FRS, the fuzzy sets produced by the two methods were linearly rescaled in [0, 1]. Next, they
were summarized in terms of modes (i.e., m for beta fuzzy sets, (m1 +m2)/2 for trapezoidal fuzzy
sets), support lengths (i.e., max(A0)−min(A0) for beta fuzzy numbers, ub− lb for trapezoidal fuzzy
sets), and fuzzy cardinalities (i.e., |Ã| =

∫
A0
ξÃ(y) dy). Finally, since for each rater J × 2 = 26 fuzzy

sets were available (i.e., J items for fuzzy-IRTree and J items for FRS), summary measures were
averaged across items and comparisons were made over the n independent raters. Figure 7 shows the
distributions of these measures for both methods. As expected, fuzzy sets computed trhough fuzzy-
IRTree showed larger cardinalities and wider supports as opposed to fuzzy sets computed via FRS
whereas no differences can be seen for modes. Moreover, the distribution of these measures were less
variable for fuzzy-IRTree. This is potentially due to the fact that beta fuzzy sets were computed as
a function of the estimated parameters of the IRTree statistical model (i.e., they are computed using
denoised observed data). To evaluate whether the sample differences were statistically significant,
three Beta linear models were run with the type fuzzy rating method being used as categorical
predictor (note that Beta linear models were chosen because of the distribution characteristics of
the involved outcome variables) [106]. In particular, with regards to the modes of fuzzy sets there was
no statistically significant difference between the two methods (β̂type:FRS = 0.085, σ̂β̂type:FRS

= 0.086,
zβ̂type:FRS

= 0.988, α = 0.05). On the contrary, cardinalities of fuzzy sets were statistically different
for both methods (β̂type:FRS = −0.243, σ̂β̂type:FRS

= 0.064, zβ̂type:FRS
= −3.787, α = 0.05). Similarly,

support lengths differed for both methods (β̂type:FRS = −0.515, σ̂β̂type:FRS
= 0.075, zβ̂type:FRS

= −6.790,
α = 0.05). Overall, the results suggest that the assessment of restaurant and service quality involved
a higher level of fuzziness, in particular that referring to the decision uncertainty component which
has been quantified trhough the fIRTree method. This would indicate the presence of a particular
pattern of uncertainty in selecting the final response across all the J = 8 items being considered.

5.4 Case study 4: fuzzy-IRTree and Dynamic Fuzzy Rating Scale (DYFRAT)
in modeling rating data

The Dynamic Fuzzy Rating Scale (DYFRAT) is an indrect method which computes fuzziness using
implicit biometric measures such as hand movements and response times (for further details, see
Sect. ??). Although both fuzzy-IRTree and DYFRAT are indirect fuzzy rating methods, DYFRAT
is more similar to FRS in the way it computes respondent’s fuzziness: it does not use a statistical
model to represent the respondent’s rating process and rater’s fuzziness is based on an item-level
analysis. Hence, likewise for the previous case study, we expect to observe no differences in terms
of modes of the final fuzzy sets and larger fuzziness for those fuzzy sets produced by fuzzy-IRTree.

Data and measures. Data refer to a survey of J = 8 items which were administered to a sample
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Figure 7. Case study 3: Distribution of summary statistics (mode, support length, cardinality)
for beta fuzzy numbers (fIRTree) and trapezoidal fuzzy numbers (FRS) computed across items for
fuzzy-IRTree (in light brown color) and Fuzzy Rating Scale (in orange color) methods.

of n = 72 young drivers in Trentino region (north-est of Italy). The items were part of the short
version of the Driving Anger Scale (DAS) [107], useds to assess driving anger provoked by someone
else’s behaviors like slow driving and discourtesy. The items were administered using DYFRAT [21]
on a pseudo-circular rating scale with M = 5 levels. In this case, fuzzy responses were represented
using beta fuzzy numbers. For the sake of comparison, crisp Likert-type responses were collected as
for the FRS method. Thus, the final dataset consisted of crisp Likert-type responses as well as beta
fuzzy responses.

Data analysis and results. The fuzzy-IRTree method was applied on the Likert-type dataset. As
for the previous case, the simplest IRTree model for 5-point scales was defined and adapted to the
observed data (see Figure 1b). The model implied J = 8 item parameters and N = 4 nodes with
a single latent trait. The IRTrees and glmmTMB R libraries were used for model definition and
parameters estimation [97]. The estimated model showed a satisfactory fit (AUC = 0.72). Next,
for each of the eight items, n = 72 beta fuzzy numbers were obtained. Finally, to adequately
compare fuzzy-IRTree and DYFRAT, fuzzy sets produced by the two methods were linearly rescaled
in [0, 1]. Three measures were used in order to summarize fuzzy sets: modes (i.e., m), support
lengths (i.e., max(A0) − min(A0)), and fuzzy cardinalities (i.e., |Ã| =

∫
A0
ξÃ(y) dy). They were

averaged across items so that comparisons were made over n independent raters. Figure 8 shows
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the distributions of these measures for both methods. The results were in the expected directions,
namely the two methods showed differences in terms of cardinalities and support lengths, with
fuzzy-IRTree based measures being less variable (this is potentially due to the fact the fuzzy-IRTree
works on denoised data). In order to evaluate these results statistically, three Beta linear models
were run with the type fuzzy rating method being used as categorical predictor [106]. In particular,
the modes of fuzzy sets were no statistically significant across methods (β̂type:DYFRAT = −0.053,
σ̂β̂type:DYFRAT

= 0.077, zβ̂type:DYFRAT
= −0.686, α = 0.05). On the contrary, both cardinalities

(β̂type:DYFRAT = −0.625, σ̂β̂type:DYFRAT
= 0.044, zβ̂type:DYFRAT

= −14.170, α = 0.05) and support
lengths (β̂type:DYFRAT = −1.247, σ̂β̂type:DYFRAT

= 0.056, zβ̂type:DYFRAT
= −22.140, α = 0.05) differed

across methods. Overall, the results indicate that self-assessing the anger provoked by driving
behavior induced a certain level of fuzziness. However, this was not completely represented by the
patterns of hesitation to provide the final rating response - i.e., that component of fuzziness quantified
by the DYFRAT method. Rather, fuzziness was mainly due to raters’ decision uncertainty, namely
that component of fuzziness which emerges as a stable response style across all the items being
assessed.
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Figure 8. Case study 4: Distribution of summary statistics (mode, support length, cardinality) for
beta fuzzy numbers computed across items for fuzzy-IRTree (in light brown color) and Dynamic
Fuzzy Rating Scale (in orange color) methods.
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6 Discussion and conclusions

In this paper we described a novel procedure to represent rating responses in terms of fuzzy numbers.
Similarly for other types of fuzzy conversion scales, our approach followed a two-step process by
means of which fuzzy numbers are computed based on a previously estimated psychometric model for
rating data. To this end, Item Response Theory-based trees (IRTrees) have been used, which provide
a formal representation of the stage-wise cognitive process of answering survey questions [80, 108].
Unlike traditional IRT models, IRTrees allows for a flexible modeling of the rating response where
item contents relate to latent traits by means of a priori specified response styles, which include
decision nodes for the tendency to choose moderate as opposed to extreme response categories as
well as for the tendency to agree versus disagree with a given item content. As a consequence,
fuzziness of rating responses has been recovered from the characteristics of rater’s response pattern
yi, instead of being computed as a byproduct of the item-based direct rating. This offered a coherent
meaning system in which fuzzy responses ỹi can be interpreted in terms of decision uncertainty that
characterized the rater’s response process. To this end, although other type of fuzzy sets have
been suggested for rating data (e.g., triangular, trapezoidal [30, 74]), we resorted to adopt two-
parameter fuzzy beta numbers since beta-like models have been proved to adequately represent the
characteristics of asymmetry of bounded rating data [91]. Simulation and real case studies were
adopted to evaluate the characteristics and properties of our proposal. In particular, the simulation
study was designed in order to provide converging results about the effectiveness of our proposal to
recover decision rating uncertainty. To this purpose, a controlled scenario was used and our model
was contrasted against a standard IRT-RTs model which uses response times (RTs) to quantify
decision uncertainty in rating responses [94]. The results showed the ability of the fuzzy IRT-map to
detect decision uncertainty when it is present in rating data. This was also confirmed by the results
of the first two case studies, which involved two empirical situations characterized by ratings under
uncertainty. Two additional case studies were also used to highlight the differences of the proposed
method in relation with two existing methods, namely the computerized Fuzzy Rating Scale (FRS)
and the Dynamic Fuzzy Rating Scale (DYFRAT). The results showed that fuzzy-IRTree recovers
fuzziness of rating responses differently from standard fuzzy rating methods. In particular, when
compared to FRS and DYFRAT, the proposed method produced less variable fuzzy responses, with
fuzzy sets having a higher degree of fuzziness. By and large, this difference can be explained in light
of three characteristics that make fuzzy-IRTree different from existing fuzzy rating methods: (i) It
represents fuzziness in terms of the rater’s decision uncertainty which results from the conflicting
demands of the opinion formation stage instead of the conflict provoked by the final response stage;
(ii) It is grounded on a model-based approach which uses the IRTree model as a formal representation
of the rater’s response process, with the consequence that fuzziness is computed as a function of
the entire rater’s response pattern yi; (iii) It uses a statistical model (i.e., IRTree) which acts by
denoising the observed data in advance, with the consequence that fuzzy sets are computed using
the estimated IRTree parameters α̂ and η̂ instead of being derived from the observed data directly.
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Hence, the fuzzy-IRTree method might be of particular utility when data analysts need to quantify
the uncertainty that arises through the rater’s decision process on the whole, from the opinion
formation stage to the choice of the final response. Instead, other fuzzy rating methods such as
FRS and DYFRAT might be used in all those cases whether the interest concerns the quantification
of the degrees of hesitation or uncertainty at a single-item level, regardless of the other items or
questions. As a result, in the first case fuzziness is calculated by considering the rater’s response
style to a set of questions or items whereas in the second case fuzziness is quantified as discrepancy
between the final response and the other competing responses for a given item.

Some advantages of the proposed fuzzy IRT-map are as follows. First, since the procedure does
not require a dedicated measurement setting, it is applicable over a wide range of survey situations
including different rating formats (e.g., Likert-type, forced-choice, funnel response-format) [81, 109].
Second, it avoids using direct rating scales which can often provide distorted responses because
of cognitive biases underling numerical and intensity estimation [110]. Third, it uses a flexible
psychometric model to represent the cognitive stages of the response process, which can each time
be adapted by researchers to model specific rating situations. Moreover, the use of a statistical
model as a first processing step allows fuzzy responses to be computed on a kind of denoised data.

However, as for other statistical-based fuzzy quantification procedure, also the proposed fuzzy
IRT-map can potentially suffer from some limitations. For instance, as it is based on a psychometric
model for rating responses, sample size or the number of items should be large enough to provide
reliable results for the estimates θ̂ = {α̂, η̂} [111, 112]. In addition, the hypothesized IRTree rating
model should also be valid for the sample being analyzed. For instance, in empirical cases for
which a rating model cannot be determined in advance, it may be advised to define and test several
IRTrees, the best of which can be chosen by means of minimum Akaike Information Criteria (AIC)
[17]. Similarly, for studies involving huge samples, MCMC based algorithms should be preferred to
estimate IRTrees over standard marginal maximum likelihood-based algorithms [113]. To this end,
several methods and implementations are available nowadays (e.g., see [114]).

Our proposal may be extended in several ways. For instance, IRTree models including response
times in the computation of raters’ decision uncertainty [14] may also be adopted and generalized
fuzzy numbers may be used accordingly [62, 115]. In conclusion, modeling uncertainty in rating data
is a crucial task in all those research contexts involving human subjects as source of information
such as social surveys, formative and teaching evaluation, decision support systems, quality control,
psychological assessment, medical and health decision making, military promotion screening, etc.
We believe that our proposal may offer an ecological but reliable procedure to address the problem
of measuring subjective evaluations.
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