
1

Controlled Gaussian Process Dynamical Models
with Application to Robotic Cloth Manipulation

Fabio Amadio1, Juan Antonio Delgado-Guerrero2, Adrià Colomé2, and Carme Torras2

Abstract—Over the last years, robotic cloth manipulation
has gained relevance within the research community. While
significant advances have been made in robotic manipulation
of rigid objects, the manipulation of non-rigid objects such as
cloth garments is still a challenging problem. The uncertainty
on how cloth behaves often requires the use of model-based
approaches. However, cloth models have a very high dimension-
ality. Therefore, it is difficult to find a middle point between
providing a manipulator with a dynamics model of cloth and
working with a state space of tractable dimensionality. For this
reason, most cloth manipulation approaches in literature perform
static or quasi-static manipulation. In this paper, we propose a
variation of Gaussian Process Dynamical Models (GPDMs) to
model cloth dynamics in a low-dimensional manifold. GPDMs
project a high-dimensional state space into a smaller dimension
latent space which is capable of keeping the dynamic properties.
Using such approach, we add control variables to the original
formulation. In this way, it is possible to take into account
the robot commands exerted on the cloth dynamics. We call
this new version Controlled Gaussian Process Dynamical Model
(CGPDM). Moreover, we propose an alternative parametric
structure for the model, that is richer than the one employed
in previous GPDM realizations. The modeling capacity of our
proposal has been tested in both a simulated and a real scenario,
where CGPDM proved to be capable of generalizing over a wide
range of movements and correctly predicting the cloth motions
obtained by previously unseen sequences of control actions.

I. INTRODUCTION

Robotic cloth manipulation has a wide range of applications,
from textile industry to assistive robotics [1], [2], [3], [4],
[5], [6]. However, the complexity of cloth behaviour results
in a high uncertainty in the state transition given a certain
action. This uncertainty is what makes cloth manipulation much
harder than manipulating rigid objects. Intuitively, learning the
cloth’s dynamics is the solution to reduce such uncertainty. In
literature, we can find several cloth models that simulate the
internal cloth state [7], [8], [9]. They represent cloth as a mesh
of material points, and simulate their behaviour taking into
account physical constraints. However, fitting those models
to real data can be a complex task. Moreover, such models
need not only to behave similarly enough to the cloth garment,
but to have a tractable dimension, for computational reasons.
As an example, an 8 ˆ 8 mesh representing a square towel
results in a 192-dimensional manifold. Such dimensionality is
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Fig. 1: The same CGPDM predicts two distinct latent state
trajectories in response to two different sequences of unseen
control actions. Each point in the latent space has associated
a particular configuration of the modeled cloth.

unmanageable, not only in terms of computational costs, but
also for building a tractable state-action space policy. Such is
the case of [10], where simulated results are obtained after
hours of computations. Hence, Dimensionality Reduction (DR)
methods are necessary.

In [11], linear DR techniques were used for learning cloth
manipulation by biasing the latent space projection with each
execution’s performance. Nonlinear methods, such as Gaussian
Process Latent Variable Models (GPLVM) [12] have also been
applied for this purpose. In [13], GPLVM was employed to
project task-specific motor-skills of the robot onto a much
smaller state representation, whereas in [14] GPLVM was
also used to represent a robot manipulation policy in a latent
space, taking contextual features into account. However, these
approaches focus the dimensionality reduction in the robot
action characterization, rather than in the manipulated object’s
dynamics. Instead, in [15] the same DR technique was applied
to learn a latent representation of the cloth state from point
clouds taken by depth sensors. However, such approach did
not consider the dynamics of the cloth handling task, and its
applicability is limited to a quasi-static manipulation.

In this paper, we assume to have recorded data from several
cloth motions, as a time-varying mesh of points. This data will
often come from the processed RGB-D data of a camera. To
fit such data into a tractable dynamical model, we consider
Gaussian Process Dynamical Models (GPDM), first introduced
in [16], which are an extension of the GPLVM structure
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explicitly oriented to the analysis of high-dimensional time
series. GPDMs have been applied in several different fields,
from human motion tracking [17], [18] to dynamic texture
modeling [19]. In the context of cloth manipulation, GPDMs
were adopted in [20] to learn a latent model of the dynamics
of a cloth handling task. However, this framework, as it stands,
lacks in its structure a fundamental component to correctly
describe the dynamics of a system, namely control actions,
limiting generalization capacity.

Therefore, we propose here an extension of the GPDM
structure, that takes into account the influence of external
control actions on the modeled dynamics. We call it Controlled
Gaussian Process Dynamical Models (CGPDMs). In this new
version, control actions directly affect the dynamics in the
latent space. Thus, a CGPDM, trained on a sufficiently diverse
set of interactions, is able to predict the effects of control
actions never experienced before inside a space of reduced
dimensions, and then reconstruct high-dimensional motions
by projecting the latent state trajectories into the observation
space. We tested the applicability of such solution in both a
simulated and a real cloth manipulation scenario. CGPDM has
proved capable of fitting different types of cloth movement, and
predict the results of control actions never seen during training.
As an example, in Fig. 1, we show the trajectories predicted
by the same CGPDM subject to two different sequences of
control actions. Note how the two trajectories, starting from
the same latent state, are driven into different regions of the
latent space, where different cloth poses are reconstructed.

Previous GPDM applications [16], [17], [18] were based on
Gaussian Processes (GPs) equipped with isotrophic squared
exponential (SE) and homogeneous linear kernel functions.
The limited number of hyper-parameters of such GPs could
limit the generalization properties of the overall model. In
this work, we study the effects that a richer parameterization
could possibly have on prediction accuracy and generalization
capabilities. In particular, we compare two distinct CGPDM
implementations: (i) the lowly-parameterized CGPDM is a
direct extension of the standard GPDM’s maps to the case of
a controlled dynamical system; (ii) the highly-parameterized
CGPDM, instead, is characterized by the presence of a higher
number of hyper-parameters. In the last case, we employed
SE kernels with automatic relevance determination (ARD)
[21] and inhomogeneous linear kernels, together with tunable
scaling factors in the dynamical map. Despite these kernels
are commonly used in GP regression, they have not yet been
applied in the context of GPDM. In fact, to the best of our
knowledge, only [19] proposed to use kernels different from
the naive ones adopted in the original implementation [16],
but it introduced a multi-kernel structure only for the GPs
modeling the dynamics, without modifying the latent map.

The remainder of the paper is structured as follows. Prelimi-
naries are given in Sec. II. CGPDM framework is presented in
Sec. III. Sec. IV treats its training and explains how to make
predictions, in both latent and observation spaces. Experimental
results on a simulated robotic cloth manipulation scenario are
reported in Sec. V, while the application of CGPDM on a real
setup is described in Sec. VI. Sec. VII draws the conclusions.

II. PRELIMINARIES: FROM GPS TO GPDMS

GPs [22] are the infinite-dimensional generalization of
multivariate Gaussian distributions. They are defined as infinite-
dimension stochastic processes such that, for any finite set of in-
put locations x1, ...,xn, the random variables fpx1q, ..., fpxnq

have joint Gaussian distributions. A GP is defined by its mean
function mpxq and kernel kpx,x1q, that must be symmetric
and positive semi-definite. Usually GPs are indicated as

fpxq „ GPpmpxq, kpx,x1qq.

GPs can be used for regression models of the form y “
fpxq`ε, with ε an i.i.d. Gaussian noise, as they provide closed
formulae to predict new target y˚, given new input x˚. GP
regression has been widely applied as a data-driven tool for
dynamical system identification [23], usually describing each
state by its own GP. Nevertheless, such approach is unfeasible
when dealing with high-dimensional systems, due to the high
computational demands. Thus, DR strategies must be included.

GPLVMs [12], [24] emerged as feature extraction methods
that can be used as multiple-output GP regression models.
These models, under a DR perspective, associate and learn low-
dimensional representations of higher-dimensional observed
data, assuming that observed variables are determined by
the latent ones. Finally, GPLVMs provide, as a result of an
optimization, a mapping from the latent space to the observation
space, together with a set of latent variables representing the
observed values. However, GPLVMs are not explicitly thought
to deal with data from time series, where observations at
different time steps are connected by some form of dynamics.

Thus, [16] first introduced Gaussian Process Dynamical
Models (GPDM), an extension of the GPLVM structure
explicitly oriented to the analysis of high-dimensional time
series. A GPDM entails essentially two stages: (i) a latent
mapping that projects high-dimensional observations to a low-
dimensional latent space (1); (ii) a discrete-time Markovian
dynamics that captures the evolution of the time series inside
the reduced latent space (2). GPs are used to model both
the latent map, as in GPLVMs, and the undergoing dynamics
transition function. GPDMs are then defined by

yt “ gpxtq ` ny,t, (1)

xt`1 “ hpxtq ` nx,t, (2)

where yt is the high-dimensional observation vector and xt

represents the latent state, at time step t. Here, ny,t and nx,t

are two zero-mean isotropic white Gaussian noise processes,
while g and h are two unknown functions.

III. CONTROLLED GPDM

Let us consider a system governed by an unknown dynamics.
At each time step t, it is possible to influence it by applying
control actions ut P RE and getting an observation yt P RD.
For high-dimensional observation spaces, it could be unfeasible
to directly model the evolution of a sequence of observations in
response to a series of inputs. For instance, in the case of a robot
moving a piece of cloth, we can consider as control actions
ut the instantaneous movement of the end-effector, while the



observations yt could be the coordinates of a mesh of material
points, representing the cloth configuration. In this context, it
could be convenient to capture the dynamics of the system in a
low-dimensional latent space Rd, with d ăă D. Let xt P Rd

be the latent state associated with yt. We propose to use a
variation of the GPDM that keeps into account the influence of
control actions, while maintaining the dimensionality reduction
properties of the original model. We call it Controlled Gaussian
Process Dynamical Model (CGPDM).

A CGPDM consists of a latent map (3) projecting obser-
vations yt into latent states xt, and a dynamics map (4) that
describes the evolution of the latent state xt, subject to ut.

yt “ gpxtq ` ny,t, (3)

xt`1 ´ xt “ hpxt,utq ` nx,t. (4)

Differently from original GPDM (2), control actions have
influence on the CGPDM transition function (4). On the other
hand, latent map (3) is identical to (1) because control actions
should not affect the dimensionality reduction process. Note
that we consider xt`1 ´ xt to be the output of the CGPDM
dynamic map, [17] suggested that this choice can help to
improve the smoothness of latent trajectories. In the following,
we report how to model (3) and (4) by means of GPs.

A. Latent variable mapping
Each component of the observation vector yt “

ry
p1q
t , . . . , y

pDq
t sT can be modeled a priori as a zero-mean GP

that takes as input xt, for t “ 1, . . . , N .
Let Y “ ry1, . . . ,yN s

T P RNˆD be the matrix that collects
the set of N observations, and X “ rx1, . . . ,xN s

T P RNˆd be
the matrix of associated latent states. We denote with Y:,j the
vector containing the j-th components of all the N observations.

Then, if we assume that the D observation components are
independent variables, the probability over the whole set of
observations can be expressed by the product of the D GPs.
In addition, if we choose the same kernel function kyp¨, ¨q for
each GP, differentiated only through a variable scaling factor
w´2

y,j , with j “ 1, . . . , D, the joint likelihood over the whole
set of observations is given by

ppY |Xq “
|Wy|

Nexp
´

´ 1
2 tr

´

pKypXqq
´1
YW 2

y Y
T
¯¯

a

p2πqND|KypXq|D
, (5)

where Wy “ diagpwy,1, . . . , wy,Dq, KypXq is the covariance
matrix defined element-wise by kyp¨, ¨q. Independence assump-
tion may be relaxed by applying, for instance, coregionalization
models [25], at the cost of greater computational demands.

In previous works on GPDMs [16], [17], [18], the GPs of
the latent map were equipped with an isotrophic SE kernel,

k1ypxr,xsq “ exp
ˆ

´
β1

2
||xr ´ xs||

2

˙

` β´1
2 δpxr,xsq, (6)

with parameters β1 and β2 (δpxr,xsq is the Kronecker delta).
Instead here, we adopt the richer ARD structure for the SE

kernel, characterized by the presence of length-scales that can
weight differently each component of the latent state:

kypxr,xsq “ exp
´

´||xr ´ xs||Λ´1
y

¯

` σ2
yδpxr,xsq. (7)

Λ´1
y “ diagpλ´2

y,1, . . . , λ
´2
y,Dq is a positive definite diagonal

matrix, which weights the norm used in the SE function,
and σ2

y is the variance of the isotropic noise in (3). The
trainable hyper-parameters of the latent map model are then
θy “ twy,1, . . . , wy,D, λy,1, . . . , λy,D, σyu.

B. Dynamics mapping

Similarly to Sec. III-A, we can model a priori each com-
ponent of the latent state difference xt`1 ´ xt “ rx

p1q
t`1 ´

x
p1q
t , . . . , x

pdq
t`1 ´ x

pdq
t sT as a zero-mean GP that takes as input

the pair pxt,utq, for t “ 1, . . . , N ´ 1.
Let X “ rx1, . . . ,xN s

T P RNˆd be the matrix collecting
the set of N latent states, we can denote by Xr:s,i the vector
of the i-th components from time step r to time step s, with
r, s “ 1, . . . , N . We indicate the vector of differences between
consecutive latent states along their i-th component with
∆:,i “ pX2:N,i ´X1:N´1,iq P RN´1. ∆ “ r∆:,1, . . . ,∆:,ds P

RpN´1qˆd is the matrix that collects differences along all the
components. Finally, we compactly represent the GP input of
the dynamic model as x̃t “ rxT

t ,u
T
t s

T P Rd`E , and refer
to the the matrix collecting x̃t for t “ 1, . . . , N ´ 1 with
X̃ “ rx̃1, . . . , x̃N´1s

T
P RpN´1qˆpd`Eq.

With similar assumptions to the ones made for the latent
map, and denoting the common kernel function for all the
GPs with kx, and the different scaling factors with wx,1, for
i “ 1, . . . , d, the joint likelihood is given by

pp∆|X̃q “

|Wx|
N´1exp

ˆ

´ 1
2 tr

ˆ

´

KxpX̃q
¯´1

∆W 2
x∆T

˙˙

b

p2πqpN´1qd|KxpX̃q|d
,

(8)
where Wx “ diagpwx,1, . . . , wx,dq and KxpX̃q is the covari-
ance matrix defined element-wise by kxp¨, ¨q.

In standard GPDM [16], dynamic mapping GPs have
been proposed with constant scaling factors wx,i “ 1 for
i “ 1, . . . , d, and equipped with the simple kernel resulting
from the sum of an isotrophic SE and an homogeneous linear
function, characterized only by four trainable parameters:

k1xpx̃r, x̃sq “ α1exp
´

´
α2

2
||x̃r ´ x̃s||

2
¯

` . . . (9)

¨ ¨ ¨ ` α3x̃
T
r x̃s ` α

´1
4 δpx̃r, x̃sq.

Analogously to the latent mapping, we decided to adopt a
more complex kernel function, detailed in the following,

kxpx̃r, x̃sq “ exp
´

´||x̃r ´ x̃s||Λ´1
x

¯

` . . . (10)

¨ ¨ ¨ ` rx̃T
r , 1sΦrx̃

T
s 1sT ` σ2

xδpx̃r, x̃sq.

Λ´1
x “ diagpλ´2

x,1, . . . , λ
´2
x,d`Eq is a positive definite diagonal

matrix, which weights the norm used in the SE component
of the kernel. Also Φ “ diagpφ2

1, . . . , φ
2
d`E`1q is a positive

definite diagonal matrix that describes the linear component.
σ2
x is the variance of the isotropic noise in (4). In comparison

to (9), the adopted kernel weights differently the various
components of the input in both SE and linear part, where
the GP input is also extended as rx̃T

s , 1s
T . The trainable



hyper-parameters of the dynamic map model are then θx “
twx,1, . . . , wx,d, λx,1, . . . , λx,d, φ1, . . . , φd`E`1, σxu.

In the following we will refer to the proposed CGPDM
structure with kernels (7) and (10), and trainable scaling factors
in the dynamical map, as highly-parameterized CGPDM. On
the contrary, lowly-parameterized CGPDM will indicate the
version that straightforwardly extends the standard GPDM
structure from [16], using its same kernels, (6) and (9), and
constant scaling factors. Although kernels such (7) and (10)
are commonly adopted in GP regression literature [22], to the
best of our knowledge, they have not been tested before in the
context of GPDM. Furthermore, also the adoption of trainable
scaling factors constitutes a novelty for this kind of models.

IV. CGPDM TRAINING AND PREDICTIONS

Training the CGPDM entails using numerical optimization
techniques to estimate the unknowns in the model, i.e., latent
states X and the hyper-parameters θx, θy. Latent coordinates
X are initialized by means of PCA [26], selecting the
first d principal components of Y . A natural approach for
training CGPDMs is to maximize the joint log-likelihood
ln ppY |Xq`ln pp∆|X̃q w.r.t. tX, θx, θyu. As regards numerical
optimization, we used the L-BFGS algorithm [27].

Hence, the overall loss will be given by

L “ Ly ` Lx, (11)

where

Ly “
D

2
ln|KypXq| `

1

2
trpKypXq

´1YW 2
y Y

T q ´N ln|Wy|,

Lx “
d

2
ln|KxpX̃q|`

1

2
trpKxpX̃q

´1∆W 2
x∆T q´pN´1qln|Wx|.

A trained CGPDM can be used to fulfill two different pur-
poses: (i) map a given new latent state x˚t to the corresponding
y˚t in observation space, (ii) predict the evolution of the latent
state at the next time step x˚t`1, given x˚t and a certain control
u˚t . The two processes, together, can predict the observations
produced by a given series of control actions.

A. Latent prediction

Given x˚t , its corresponding observation y˚t is distributed
as ppy˚t |x

˚
t , X, θyq “ N pµypx

˚
t q, vypx

˚
t qW

´2
y q, with

µypx
˚
t q “ Y TKypXq

´1kypx
˚
t , Xq

vypx
˚
t q “ kypx

˚
t ,x

˚
t q ´ kypx

˚
t , Xq

TKypXq
´1kypx

˚
t , Xq,

where kypx
˚
t , Xq “ rkypx

˚
t ,x1q, . . . , kypx

˚
t ,xN qs

T .

B. Dynamics prediction

Given x˚t and u˚t , let’s define x̃˚t “ rx˚Tt ,u˚Tt sT . The
probability density of the latent state at the next time step
x˚t`1 is ppx˚t`1|x̃t, X, θxq “ N pµxpx

˚
t q, vxpx

˚
t qW

´2
x q, with

µxpx
˚
t q “ x˚t `∆TKxpX̃q

´1kxpx̃
˚
t , X̃q,

vxpx
˚
t q “ kxpx̃

˚
t , x̃

˚
t q ´ kxpx̃

˚
t , X̃q

TKxpX̃q
´1kxpx̃

˚
t , X̃q,

where kxpx̃
˚
t , X̃q “

“

kxpx̃
˚
t , x̃1q, . . . , kxpx̃

˚
t , x̃N´1q

‰T
.

Fig. 2: Simulated setup for cloth manipulation with bimanual
robot. The cloth is positioned in its starting configuration.

C. Trajectory prediction
Starting from an initial latent state x˚1 , one can predict

the evolution of the system over a desired horizon of length
Nd, when subject to a given sequence of control actions
u˚1 , . . . ,u

˚
Nd´1. At each time step t “ 1, . . . , Nd ´ 1, x˚t`1

can be sampled from the normal distribution ppx˚t`1|x̃t, X, θxq
defined in Sec. IV-B. Hence, the generated trajectory in the
latent space x˚1 , . . . ,x

˚
Nd

can be mapped into the associated
predicted sequences of observations y˚1 , . . . ,y

˚
Nd

by mean of
ppy˚t |x

˚
t , X, θyq, defined in Sec. IV-A.

V. EXPERIMENT WITH SIMULATED CLOTH

Initially, we validated CGPDM in a simulated scenario,
consisting of a bimanual robot that moves a piece of cloth by
holding its two upper corners. The cloth is modeled as an 8ˆ8
mesh of material points. The two points in the upper corners are
assumed to be attached to the two robot’s end-effectors, while
the other points move following the dynamical model proposed
in [28]. In this context, the observation vector is given by the
Cartesian coordinates of all the points in the mesh (measured
in meters); hence yt P RD with D “ 192. We assume that the
two end-effectors can be controlled exactly in the operational
space. In this system, the controls acting at time step t are the
differences between position commands at instant t` 1 and
t (measured in meters); so ut P RE with E “ 6. The overall
setup is shown in Fig. 2. The objective of the experiment is to
learn the high-dimensional cloth dynamics using CGPDM, in
order to make predictions about cloth movements in response
to sequences of actions that were not seen during training.
We adopted a latent space of dimension d “ 3, resulting in
a dimensionality reduction factor of D{d “ 64. Such high-
dimensional task would be unfeasible to model by standard
GP regression without DR. CGPDMs was implemented in
Python*, employing PyTorch library [29]. We aim to evaluate
how prediction accuracy is affected by
‚ the number of observation sequences used for training,
‚ the range of the cloth movements,
‚ the use of lowly or highly CGPDM (defined in Sec. III).

A. Data collection
Data were obtained by recording mesh trajectories associated

with several types of cloth oscillation, obtained by applying

*Code publicly available at https://bitbucket.org/fabio_ama/gpdm_lib.

https://bitbucket.org/fabio_ama/gpdm_lib


Fig. 3: Representation of the movement ranges within which
control parameter γ was sampled during data collection.

different sequences of control actions. All the considered
trajectories start from the same cloth configuration and last 5
seconds. Observations were recorded at 20 Hz, hence N “ 100
total number of steps for each sequence.

Let ut “
“

rδXt ,
r δYt ,

r δZt ,
l δXt ,

l δYt ,
l δZt

‰T
, where rδXt , rδYt

and rδZt (lδXt , lδYt and lδZt ) indicate the displacement of the
right (left) end-effector position along the three Cartesian axes,
between step t and t ` 1. Specifically, we used the same
commands for both end-effectors. Denoting with

`

δXt , δ
Y
t , δ

Z
t

˘

the common displacements, the applied ut were given by,

δXt “ 0, δ
rY,Zs
t “ A ¨ cosp2πfY tq r´cospγq, sinpγqs (12)

Such controls make the end-effectors oscillate on the Y-Z
plane of the operational space. The maximum displacement is
regulated by A, that we set to 0.01 meters. Parameter γ can be
interpreted as the inclination of u1 w.r.t. the horizontal, and it
loosely defines a direction of the oscillation. fY and fZ define
the frequencies of the oscillations along Y and Z axes. If they
are similar, the end-effectors move mostly along the direction
defined by γ, if not, they swipe in a broader space.

In order to obtain a heterogeneous set of trajectories for
the composition of training and test sets, we collected several
movements obtained by choosing in a random fashion the
control parameters γ, fY and fZ . Angles γ were uniformly
sampled inside a variable range r´R

2 ,
R
2 s (deg); in the follow-

ing, we indicate this range with the amplitude of its angular
area, R (deg). Instead, frequencies fY and fZ were uniformly
sampled inside the fixed interval [0.3, 0.6] (Hz).

We considered four movement ranges of increasing size,
namely R P t30°, 60°, 90°, 120°u (see Figure 3), and collected
a specific data-set DR associated with each range. Every set
contains 50 cloth trajectories obtained by applying control
actions of the form (12) with 50 different random choices for
parameters γ, fY and fZ . From each DR, 10 trajectories were
extracted and used as test sets Dtest

R for the corresponding
movement range, while several training sets Dtrain

R were built
by randomly picking from the remaining sequences.

B. Model training

The objective of the experiment is to evaluate CGPDM
prediction accuracy in different movement ranges, and for
different amounts of training data. Also, we want to observe
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Fig. 4: Average distances (with 95% C.I.) between true and
predicted mesh points obtained by different CGPDM setups.

if the use of lowly-parameterized or highly-parameterized
CGPDMs yield a substantial difference in terms of accuracy.

Consequently, for each considered movement range R, we
trained different highly-parameterized CGPDMs employing an
increasing number of sequences randomly picked from Dtrain

R .
Specifically, we used 10 different combinations of 5, 10, 15
and 20 sequences for each range. In this way, we were able
to reduce the dependencies on the specific training trajectories
employed, and to average prediction accuracy over different
possible sets of training data. For each such model, a lowly-
parameterized CGPDM was trained on exactly the same data.

C. Results

We used each learned CGPDM to predict the cloth move-
ments when subject to the test control actions relative to the
associated Dtest

R , for R P t30°, 60°, 90°, 120°u. Let ypR,kq
t and

u
pR,kq
t denote the observation and control action, at time step

t, of the k-th test trajectory in Dtest
R , with k “ 1, . . . , 10.

For every considered range R, one can follow the procedure
described in Sec. IV-C and employ the trained CGPDMs
to predict the trajectories resulting from the application of
control action sequences tupR,kq

t u
N´1
t“1 , for k “ 1, . . . , 10. Let

x
˚pR,kq
t be the predicted latent state at time t, and y

˚pR,kq
t the

corresponding predicted observation.
By visualization of the predicted movements†, we can state

that CGPDMs, trained with a sufficient amount of data (10,
15 and 20 sequences in this example), are able to capture
the cloth dynamics of oscillations along axes Y and Z. Such
models obtained satisfying results in a variety of movement
ranges. In fact, for smaller movement ranges (R “ 30° or
R “ 60°), the reconstructed trajectories of the mesh of points
appear very similar to the true ones. On the other hand, for
wider ranges (R “ 90° or R “ 120°), discrepancies between
true and predicted points begin to be more evident, but the
CGPDMs are still able to describe the overall movement of
the cloth. In Figure 4, we report, for all the movement ranges,
the mean distances between true and predicted mesh points
obtained in the test sets by the different CGPDM setups. Results

†Video of the experiments available at https://youtu.be/vUO_3nYgMeg.

https://youtu.be/vUO_3nYgMeg


true corners pred. corners

Fig. 5: True and predicted corners for a real cloth movement.

are expressed in terms of mean and 95% confidence intervals
obtained by averaging over the different training sets adopted
(as indicated in Section V-B, we repeated all the experiments
10 times, using a Dtrain

R of random composition every turn).
As it was natural to expect, CGPDMs trained with only

5 sequences show higher errors than the models trained
employing more data. But the resulting errors do not always
diminish with the increase in the amount of training trajectories.
In fact, in all the considered movement ranges, accuracy does
not considerably change passing from 15 training sequences
to 20. Moreover, the proposed highly-parameterized CGPDM
structure seems able to improve accuracy and consistency of
the results in the majority of cases. This effect is clearer in a
low-data regime, with models trained on 5 or 10 sequences.

VI. EXPERIMENT WITH REAL CLOTH

Finally, we tested CGPDM on data collected in a real cloth
manipulation experiment. For this purpose, we used a Barrett
WAM Arm, whose end-effector consists of a coat rack that can
firmly grip a piece of cloth from its corners. The overall setup
is depicted in Fig. 6. The task considered is totally analogous
to the one simulated in Sec. V, despite having here only a
single robot involved. We controlled robot’s end-effector in
position, recording the resulting movement of the cloth through
a motion capture system. We combined object detection, image
and point cloud processing for segmenting cloth-like objects.
The implementation‡ is based on [30], [31] and [32].

A. Data Collection

As before, we captured the cloth as a 8ˆ8 mesh of
points, whose coordinates constitute the observation vector
yt P RD with D “ 192. While the mesh size can be
changed, its sensitivity analysis is left out of the scope
of this paper. As control actions, we considered the differ-
ence between consecutive position commands (with fixed
orientation); hence ut P RE with E “ 3. Robot was
controlled at 100 Hz, with commands chosen following (12).

‡Code: https://github.com/MiguelARD/cloth_point_cloud_segmentation

Fig. 6: Real experimental setup.

In this case, fY and
fZ have been uniformly
sampled in [0.2, 0.5]
(Hz) and A was re-
duced to 0.004 meters,
due to the higher con-
trol frequency. On the
other hand, the motion
capture system could
work only at lower
rates, with no guaran-
tees on the sampling in-
terval. Thus, it was nec-
essary to post-process
the data to make them ready for modeling. Firstly, motion
capture data were smoothed by a moving average filter. Then we
interpolated the positions of both the end-effector and the cloth
mesh, to obtain two synchronized sequences of observations
and control actions, sampled at 20 Hz. We collected 20 different
3 second long trajectories for each of the two ranges, R “ 30°
and R “ 60° (40 sequences in total).

B. Model training & Results
We trained two CGPDMs model, one for R “ 30° and

the other for R “ 60°. We adopted the highly-parameterized
structure, as it performed better in the simulated experiment.
For each R, the CGPDM was trained using ten trajectories,
while the others were set aside for testing the trained model.
As before, we set the dimension of the latent space to d “ 3.

We tested the two trained CGPDM following the same
procedure that was adopted in Sec. V-C. The two models
were used to predict the cloth movements obtained in response
to the control actions of each test trajectory†. The average
distance between the real and the predicted mesh points in
range R “ 30°, was 0.012˘0.005, while, in range R “ 60°, it
was 0.015˘ 0.006. These results are slightly inferior to those
obtained in the simulated experiment (Fig. 4). Nevertheless,
CGPDMs seem able to cope with the high noise that afflicts the
real experimental setup and still capture the dynamics of the
cloth. In Fig. 5, we provide a visual representation of the cloth
movements, by representing the true and predicted trajectories
of the four corners, for one of the considered test cases.

VII. CONCLUSIONS

We presented CGPDM, a modeling framework for high-
dimensional dynamics governed by control actions. Essentially,
this model projects observations into a latent space of low
dimension, where dynamical relations are easier to infer.
CGPDMs were applied to a robotic cloth manipulation task,
where the observations are the coordinates of the cloth mesh.
We tested CGPDMs on both simulated and real experiments.
The first was used to compare two possible parameterizations
of the model, while in the second we challenged CGPDM with
noisy real data. In the future, CGPDM formulation could be
extended through the introduction of back constraints [33] to
preserve local distances and obtain an explicit formulation of
the mapping from the observation to latent space. Moreover, the
models can be developed further in order to include contacts.

https://github.com/MiguelARD/cloth_point_cloud_segmentation
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