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Abstract. Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease whose
mechanisms are still fully unclear. Being able to predict ALS prognosis would help in
improving the patients’ quality of life and support clinicians in planning treatments. On
the one hand, most of the modeling approaches to ALS miss to catch the evolving na-
ture of the disease; on the other, Process Mining (PM) comprehends techniques useful to
generally describe processes, but often misses methods to reveal statistically significant
differences in the mined pathways. In this paper, we investigate ALS evolution using
PM techniques enriched to easily mine processes and, at the same time, automatically
reveal how the pathways differentiate according to patients’ characteristics.

1 Introduction
Amyotrophic Lateral Sclerosis (ALS) is a rare neurological disease that primarily

affects motor neurons, causing progressive paralysis of most voluntary muscles and
usually leading to death for respiratory insufficiency within 3-5 years from onset. In
ALS, the pathogenic mechanisms as well as the rate of progression and impairment
patterns are still unclear, making its diagnosis as well as the development of therapies
or intervention plans very challenging [1].

In this context, developing data-driven tools able to model the progression of ALS
could help to describe the manifold nature of this disease, to identify risk factors, to
group patients based on similar evolution patterns, and can become a mean for person-
alized predictive purposes. For this reason, there is a growing interest in methods for
mining and analyzing the progression of ALS, particularly by considering longitudi-
nal clinical data: examples include Neural Networks, Sequential Pattern Mining, and
Dynamic Bayesian Networks [2, 3, 4].

In this work, we consider a different perspective by adopting a process-oriented ap-
proach for mining, describing, and predicting the progression of ALS in a clinical trial
population. First, we structure the patients’ longitudinal information collected during
the trial as an Event Log (EL). EL is a sequence of tuples <patient ID, Event, Date-
time, Attributes>, where the Event can be any clinical or relevant event occurred in
the patient’s life (e.g., medical examination, a new impairment, death) and Attributes is
an optional set of features specific for that event (e.g., a set of numeric values for an
event of type ‘Lab exam’, or the grade of an adverse event for an event of type ‘Drug
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Figure 1: The computational pipeline exploited for the analysis.

administration’). Then, by employing Process Mining (PM) techniques such as the Di-
rect Following Diagram (DFD) and the CareFlow Miner (CFM), we aim at discovering
the underlying models that generated the patients’ EL. We are then in the position to
analyze the patterns of evolution of the patients, and investigate the predictive potential
of the mined processes for describing and forecasting the prognosis – in terms of timing
or sequence of events – based on the value of specific covariates at baseline.

2 Materials and Methods
The traditional PM computational pipeline can be summarized as follows:
• Preprocessing: the data are processed and shaped in the form of an EL. More ELs

can be produced, at this point, to highlight different aspects of the data.
• General Descriptive Statistics: it is performed to identify volumes, general data

distribution and reveal statistical biases. Here we used DFD and CFM to perform
this task. The produced reports are commented with domain experts, and are used
to formulate hypotheses.

• Statistical Inference: it is performed to identify and reveal statistical dependen-
cies and correlations, with indicators such as p-values or confidence intervals,
among data. This is a pivotal step of the pipeline, that allows to confirm or reject
formulated hypotheses, and to support the formulation of further theses as well.

• Final Report/Model delivery: if evidences are supported by the help of domain ex-
perts, communicative reports can be produced; Decision Support Systems models
can be made usable and delivered to the final users.

Figure 1 provides an overview of the described pipeline. Each descriptive or inferen-
tial step represents an opportunity to refine the analysis by formulating and testing new
hypotheses. This loop-back reflects the iterative nature of a PM analysis, where mining
process can be refined, and new or different data can be integrated to get more efficient
results [9].

In this work, the analysis is performed using pMineR [7], a software library in R
specifically born to support PM analysis in healthcare and recently improved in the
direction of exploring differences among the mined pathways.

2.1 Dataset and Preprocessing
We consider the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT)

dataset [5], that comprehends demographic and clinical longitudinal information of pa-
tients enrolled in 23 distinct ALS clinical trials. PRO-ACT includes a large sample size
and high frequency of visits, that allow a precise characterisation of how ALS progresses
in the study population.

To homogenize the data set, we selected the patients with a shared panel of exams and
the variables with less than 50% of missing values. Then, we filtered out the subjects
with unknown time of onset and the visits without a functional assessment or performed
before the trial start. Finally, for each visit we converted the available functional eval-
uations into the Milano-Torino staging (MiToS) system [6], that is, 4 binary dynamic
variables that trace when a specific functional domain among (1) Walking/Self-care, (2)
Swallowing, (3) Communicating, or (4) Breathing is impaired. For each binary vari-
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able, a value of 1 indicates that the domain is impaired, 0 is used otherwise, resulting in
a string such as M 0001. We then converted the data into an EL, considering as events:
the disease onset, the trial start, the MiToS impairments, and the death or the censoring
time. For each event we coded as attributes the subjects’ static information (sex, age at
onset, site of onset) and the results of the lab tests (e.g., hemoglobin, sodium, bilirubin).

This resulted in an EL of 9,009 logs and 31 attributes, that refers to 1,874 subjects.

2.2 Direct Following Diagram
The DFD is probably one of the most intuitive graphical languages which simply

connects two nodes representing two events with an edge when they are subsequent in
at least one trace. We generated a DFD for the whole EL. To prune the graph, differ-
ent kind of thresholds can then be applied (e.g., based on the absolute/relative number
of transitions, timing, etc). In pMineR, the DFD is available by the class firstOrder-
MarkovModel and implements some additional features to allow the exploration of:

• time to fly: the kernel density distribution function of the time needed to move
from a given node to a destination node;

• survival functions: Kaplan-Meier (KM) curves can be built, including possible
constraints to select the cohort(s) (e.g., passing or not through specific nodes and
nodes playing the role of censoring), and then compared with a log-rank test to
check statistically significant differences among the cohorts;

• deltaGraphs: two DFD graphs, each built for instance on a cohort with different
baseline characteristics, can be overlaid to measure the differences in terms of
transaction probabilities among nodes. Thresholds can be applied to reduce the
noise and focus only on the relevant differences.

2.3 CareFlowMiner
From the DFD, the process is mined using the CFM algorithm, whose version imple-

mented in pMineR is an extension of [8]. Starting from a root node, each trace in the EL
contributes to create a branch of a tree where the top level (first after the root) represents
the first event of each trace, and the next levels correspond to further events of each
trace. Each node is labelled with the name of the corresponding event and additional
information, such as the number of patients passing through that node or statistics about
the time needed to reach it. To avoid the Spaghetti Effect, a CFM tree is normally pruned
on the base of a threshold, to exclude highly infrequent paths and reduce the complexity
of the tree. On the one hand, the tree tends to explode in terms of nodes and edges. On
the other hand, the meaning of the language is easy to understand and the algorithm is
clear. The latter, differently from existing PM algorithms such as Alpha Algorithm or
Fuzzy Miner [9], helps in reducing the psychological barrier the clinician may have with
respect to what they can feel as black box solutions. By itself, CFM is an algorithm able
to show the most frequent paths, thus revealing strange behaviours and suggest further
investigations, but it is not able to provide p-values or confidence intervals on their oc-
currence. pMineR overcomes this limit offering the opportunity to compare two CFM
graphs (corresponding for instance to two different cohorts of patients, such as male vs
female, young vs old, or with vs without a comorbidity at baseline). Such two CFMs
are compared node by node with a Fisher’s exact test or a chi-square test (depending on
the cardinality of patients passing through the node) for dicotomic categorical variables,
or with a Wilcoxon-Mann-Whitney test to compare the time needed to move from the
root to the node or to move from the node to a given possible event (e.g., death).

3 Results
Fig. 2 reports the exploratory analysis of the paths followed by the whole study

population mined through the DFD. Notably, the topological organization of the DFD
reflects the increasing trend of functional domains affected as ALS progresses: none at
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the top (corresponding to the first trials’ visit), one thereafter, and so on until the final
states M 1111 (all domains affected), censored, or death are reached.

Figure 2: DFD graph representing the paths followed by the study population, delineating the increase in
disability experienced by the subjects. Only the arcs with a transition probability > 0.03 are represented.

We then employed the DFD to shed some light into the kinetics of different clinical
subtypes of ALS patients. Based on their site of onset, we compared the paths of spinal
vs bulbar patients, under the hypothesis that their impairment patterns would differ. By
stratifying on these cohorts and inspecting the corresponding DFD deltaGraphs reported
in Fig. 3a), we can test the hypothesis by analyzing, for instance, the transition from
M 0000 (first visit without an impairment) to M 1000 (impaired in Walking/Self-care),
that results probabilistically different. The corresponding difference in terms of transi-
tion times can be inspected in terms of KM curves compared by a log-rank test (see Fig.
3b). It is of course pivotal to take into account the cardinality of the considered edges,
to avoid results that overfit a very specific class of cases.

Figure 3: (a) Zoom on the DFD deltaGraph obtained stratifying the population by onset site (spinal vs
bulbar). The highlighted edges represent an increased transition probability for the spinal (red) or bulbar
(green) cohort, thresholded for displaying only differences between the probabilities greater than > 0.03.
(b) KM curves of the time passing from M 0000 and M 1000 for the two cohorts. The log-rank test shows
statistically significant difference between the cohorts.

Figure 4 reports the most frequent patterns mined through the CFM, here built start-
ing from the node M 0000. For each node, the total number of patients passing through
it (in brackets), as well as the minimum, median, and maximum time needed to reach
that node from the root (second line, in days) are shown. The edges report the per-
centage of patients passing through the son node with respect to the entire population.
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Figure 4: CFM graph built starting from M 0000. Each node reports the total number of patients passing
through it (round brackets) and the min-median-max time, in days, needed to reach it from the root.
Colours are graded on the median times, with intervals: <250, 251-350, 351-450, and >450 days.

As the DFD, the CFM tree can also be stratified by a variable of interest in order to
assess any significant differences in the paths’ occurrence according to the subjects char-
acteristics. Guided by clinical hypotheses, we explored the distribution of the subjects
in the nodes, focusing in detail on:

• age at onset (quantized into two levels according to its median value = 57 years)
on the death, testing that older age at onset corresponds to a worse outcome,

• onset site (spinal vs bulbar) on the occurrence of the impairments, further check-
ing that a spinal onset early affects motor skills while a bulbar one causes early
dyspnea, dysphagia, or dysphonia.

Fig. 5 shows the obtained graphs. Each node reports the number of subjects passing
through it for each cohort (young/aged onset or spinal/bulbar subjects, respectively),
with the ratio in brackets, and the p-value of the Fisher’s exact/chi-squared test, depend-
ing on the cardinalities involved in each node, on their distribution.

The results match with the expectation, quantitatively showing the exposure to early
death for the oldest patients (the risk of death is significantly higher in most of the
Dead nodes). It also emerges a significant predominance of a first impairment in the
walking/self-care domain for the subjects with spinal onset (M 1000, ratio spinal/bulbar
equal to 6.9), and a significant predominance of first impairment in the swallowing or
in the communicating domains (M 0100 and M 0010, with a ratio spinal/bulbar equal
to 0.14 and 0.36, respectively) for the bulbar onset subjects.

4 Conclusion
In this work, to support the investigation of the disease trajectories in ALS, we per-

formed a PM analysis of a dataset of clinical trial patients. Mining the processes by two
different algorithms, we outlined the impairments’ patterns followed by the patients and
inspected the effect of specific covariates on their probability and timing of occurrence.

The adopted approach allowed to formulate, to test and to iteratively refine hypothe-
ses, also suggesting further directions of research, such as the analysis of the prognostic
effect of additional covariates collected at baseline or in correspondence of specific
events. The graphical representations of the mined process effectively supported the
dialogue with the clinicians, helping in getting access to the information recorded in the
data and in communicating the findings.

We believe this work can provide an original perspective in analyzing how ALS
evolves. The mined processes can be exploited as decision support systems, indicat-
ing the probability of a patient to follow a given path based on his/her characteristics;
further, they can allow to simulate the likely evolution of the disease and, in the fu-
ture, to assess the impact of treatments. Future work will focus on validating the mined
processes with real-world data, to test how general are the observed patterns.
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Figure 5: CFM graphs built starting from M 0000 and stratified for (a) quantized age at onset or (b)
onset site. Each node reports the number of patients passing trough it for each cohort, the ratio of the two
cardinalities (in the round brackets), and the p-value for the Fisher’s exact/chi-squared test. The node box
is coloured in yellow if the p-value is lower than a given threshold (here 0.05).
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