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Abstract

We classify the spherical birational sheets in a complex simple simply-connected algebraic
group. We use the classification to show that, when G is a connected reductive complex
algebraic group with simply-connected derived subgroup, two conjugacy classes O1, O2 of
G lie in the same birational sheet, up to a shift by a central element of G, if and only if the
coordinate rings of O1 and O2 are isomorphic as G-modules. As a consequence, we prove a
conjecture of Losev for the spherical subvariety of the Lie algebra of G.
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1 Introduction
Let G be a complex connected reductive algebraic group acting on a variety X. A sheet of X is
an irreducible component of the locally closed subset {x ∈ X | dim(G · x) = d} for some fixed d:
then X is the finite union of its sheets. Let B be a Borel subgroup of G, the complexity of X
is the codimension of a generic B-orbit in X. The variety X is spherical if has complexity zero.
By [2, Proposition 1], the complexity of orbits as homogeneous spaces of G is constant along the
sheets. In particular it follows that the property of being spherical is preserved along sheets. We
say that the sheet S is spherical if the orbits in S are spherical. Now assume X = G, and the
action is given by conjugation. Let T be a maximal torus of B, with Weyl group W . From the
Bruhat decomposition G =

⋃
w∈W BwB, it follows that for every conjugacy class O of G there

exists a unique wO ∈W such that O∩BwOB is dense in O. Similarly, for S a sheet of conjugacy
classes, there is a unique wS ∈W such that S ∩BwSB is dense in S. By [10, Proposition 5.3] if
S is a spherical sheet, then for every conjugacy class O lying in S we have wO = wS .

A natural question is to consider the ring of regular functions C[O] as O varies in a sheet S
and ask whether the G-modules C[O] are isomorphic. When G acts via the adjoint action on
its Lie algebra g, some answers were obtained in [4]: for g = sln(C) the G-module structure of
C[O] is preserved along sheets, but in this fails in general. In [20], Losev refined the notion of
sheets of adjoint orbits by introducing the definition of birational sheets. In [20, Theorem 4.4],
it is proven that birational sheets are locally closed subvarieties partitioning g. A remarkable
result (see [20, Remark 4.11]) states that if O1 and O2 are adjoint orbits of g lying in the same
birational sheet, then their G-module structures are isomorphic. In the same Remark, Losev
conjectured that the viceversa is also true, aiming for an intrinsic characterization of birational
sheets of the Lie algebra.

In this paper we deal with this problem with respect to spherical orbits both in the setting
of conjugacy classes in G with simply-connected derived subgroup and in the setting of adjoint

1



orbits in g. We recall the definition of birational sheet in g from [20] and in G from [1]. A
birational sheet is a certain union of G-orbits and is contained in a sheet, hence the property of
being spherical is preserved along birational sheets. We shall call spherical birational sheet any
birational sheet consisting of spherical orbits. For G simple simply-connected, we classify the
spherical birational sheets and observe that the union Gsph of all spherical conjugacy classes in G
is the disjoint union of spherical birational sheets. If O is a spherical conjugacy class, then C[O]
is multiplicity-free, i.e. a simple G-module occurs in C[O] with multiplicity at most 1. Therefore,
C[O] is completely determined as a G-module by its weight monoid, i.e. by the highest dominant
weights λ for which the simple G-module with highest weight λ occurs in the decomposition of
C[O].

In [14] the weight monoids are explicitely described for every spherical conjugacy class of G
simple simply-connected. Using these results and the classification of spherical birational sheets,
we shall prove the main result of this paper: let G be a complex connected reductive algebraic
group with simply-connected derived subgroup and let O1 and O2 be spherical conjugacy classes
in G. Let Sbir1 (resp. Sbir2 ) be the birational sheet containing O1 (resp. O2). Then C[O1] is
isomorphic to C[O2] as a G-module if and only if Sbir2 = zSbir1 for some z ∈ Z(G) (the assumption
on the derived subgroup of G cannot be relaxed).

>From this we also deduce the validity of Losev’s conjecture in the case of spherical adjoint
orbits in g. We also show that Losev’s conjecture (resp. the corresponding group anologue) is
true in the case g = sln(C) (resp. G = SLn(C)).

2 Definitions and notations
Let G be a connected reductive algebraic group over C and let g be its Lie algebra. If K is a
closed subgroup of G, we denote by K◦ its identity component, by K ′ its derived subgroup and
by Z(K) its centre. Similarly, if k is a Lie subalgebra of g, we denote by z(k) its centre.

If X is a K-set, we denote by X/K the set of K-orbits of elements in X. When K acts
regularly on a varietyX and x ∈ X, theK-orbit of x is denoted byK ·x. For Y1, Y2 ⊂ X, we write
Y1 ∼K Y2 if {K ·y1 | y1 ∈ Y1} = {K ·y1 | y1 ∈ Y1}; if Yi = {yi} for i = 1, 2, we write y1 ∼K y2. For
any n ∈ N, we define the locally closed subsets X(n) := {x ∈ X | dim(K · x) = n} of X. A sheet
of X for the action of K is an irreducible component of X(n) for some n ∈ N such that X(n) 6= ∅.
For Y ⊆ X, the regular locus of Y is Y reg = Y ∩X(n̄), where n̄ = max{n ∈ N | Y ∩X(n) 6= ∅},
an open subset of Y , and the normalizer of Y in K is NK(Y ) := {k ∈ K | k ·Y = Y }. For x ∈ X,
its stabilizer is Kx := {k ∈ K | k · x = x}. When we consider the conjugacy (resp. the adjoint)
action of G on itself (resp. on g) we adopt the following notation for orbits and stabilizers.
Dealing with K-conjugacy classes or K-adjoint orbits, we shall use the notation OKg := K · g,
OK
ξ := Ad(K)(ξ). We shall omit superscripts whenever K = G. For x ∈ G and η ∈ g, we write:

CG(x) := Gx = {g ∈ G | gxg−1 = x}; CG(η) := Gη = {g ∈ G | (Ad g)(η) = η};
cg(x) := {ξ ∈ g | (Adx)(ξ) = ξ}; cg(η) := gη = {ξ ∈ g | [η, ξ] = 0}.

For a subset Y ⊆ G, we set CG(Y ) :=
⋂
y∈Y CG(y).

We write UK for the unipotent variety of K and Nk for the nilpotent cone of k := Lie(K); we
also set U := UG and N := Ng. The set of all K-conjugacy classes of K is denoted K/K.

When we write g = su ∈ G we implicitly assume that su is the Jordan decomposition of g,
with s semisimple and u unipotent. Similarly for ξ = ξs + ξn ∈ g.

Let B be a Borel subgroup of G and T a maximal torus of B. We denote by Φ the root system
of G with respect to T , by ∆ the base of Φ individuated by B and by Φ+ the corresponding
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subset of positive roots. The one-parameter subgroup of G corresponding to the root α ∈ Φ will
be denoted by Uα. We call Levi subgroup of G every Levi factor of a parabolic subgroup of G.

A standard parabolic subgroup is a subgroup containing B: it is of the form PΘ = 〈B,U−α |
α ∈ Θ〉 for Θ ⊆ ∆. We have PΘ = LΘUΘ, where the Levi factor LΘ := 〈T,Uα, U−α | α ∈ Θ〉 is
called a standard Levi subgroup and UΘ is the unipotent radical of PΘ. We also set Lie(T ) = h,
Lie(B) = b, Lie(Uα) = gα for all α ∈ Φ.

A pseudo-Levi subgroup is the connected centralizer of a semisimple elements of G.
Finite-dimensional irreducible G-modules are parametrized by X(T )+, the set of dominant

weights of T (with respect to Φ+), and we write V (λ) for the irreducible G-module of highest
weight λ.

Let X be a conjugacy class in G/G or an adjoint orbit in g/G. We have a decomposition into
simple G-modules of the ring of regular functions C[X]:

C[X] 'G
⊕

λ∈X(T )+

nλV (λ),

where nλ is themultiplicity with which V (λ) occurs in C[X], denoted by [C[X] : V (λ)]. We denote
by Λ(X) the monoid of dominant weights occurring in C[X]. If a Borel subgroup of G has a
dense orbit on X, we call X spherical. Since X is quasi-affine, this is equivalent to the fact that
C[X] is multiplicity-free, i.e. nλ ∈ {0, 1} for every λ ∈ X(T )+: hence C[X] 'G

⊕
λ∈Λ(X) V (λ).

A closed subgroup H ≤ G is said to be spherical if the homogeneous space G/H is a spherical
variety.

We denote by Gsph (resp. gsph) the union of all spherical conjugacy classes in G (resp.
spherical adjoint orbits in g): these are closed subsets by [2, Corollary 2].

When G is simple, we denote the simple roots by α1, . . . , αn: we shall use the numbering and
the description of the simple roots in terms of the canonical basis (e1, . . . , ek) of an appropriate
Rk as in [5, Planches I–IX]. We denote by P the weight lattice, by P+ the monoid of dominant
weights. Also, α∨1 , . . . , α∨n are the co-roots, ω1, . . . ωn are the fundamental weights and ω̌1, . . . ω̌n
are the fundamental co-weights: these are the elements ω̌j of h defined by αi(ω̌j) = δij for
1 ≤ i, j ≤ n. The Weyl group of G is denoted by W , for w ∈ W we use the notation ẇ for
an element of NG(T ) representing w ∈ W ' NG(T )/T . We write si for the simple reflection
with respect to the simple root αi, for i = 1, . . . , n. Let β =

∑n
j=1 cjαj be the highest root in

Φ: we define ∆̃ = ∆ ∪ {−β}. For the exceptional groups, we shall write β = (c1, . . . , cn) For
Θ ( ∆̃, set LΘ := 〈T,Uα, U−α | α ∈ Θ〉. Following the terminology introduced in [27], we say
that LΘ is a standard pseudo-Levi subgroup of G. By [27, Proposition 2], pseudo-Levi subgroups
are conjugates of standard pseudo-Levi subgroups.

An element su ∈ G is isolated if CG(Z(CG(s)◦)◦) = G, as in [21, Definition 2.6]; in this case
we say that Osu is an isolated class.

A partition of n ∈ N \ {0} is a sequence of non-increasing positive integers d = [d1, . . . , dr]
such that

∑r
i=1 di = n: we write d = [d1, . . . , dr] ` n. If d ` n, the dual partition is dt = f ,

where fi = |{j | dj ≥ i}| for all i. We will also use the compact notation d = [em1
1 , . . . , emss ]

where e1 > · · · > es > 0 by grouping equal di’s. Partitions will be used to denote nilpotent
orbits in classical Lie algebras, whereas for exceptional Lie algebras we will use the Bala-Carter
labeling, as in [13].

We use the symbol t to denote a disjoint union.
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3 Jordan classes, sheets and birational sheets

3.1 Lie algebra case
Let l ⊆ g be a Levi subalgebra and embed it in a parabolic subalgebra p = l⊕ n, where n is the
nilradical of p. Let P ≤ G such that Lie(P ) = p, and let P = LUP be its Levi decomposition with
Lie(L) = l and Lie(UP ) = n. Let OL ∈ Nl/L. Then P acts on the closed subvariety OL + n ⊆ g
via the adjoint action. The generalized Springer map is:

γ : G×P (OL + n)→ Ad(G)(OL + n), g ∗ ξ 7→ (Ad g)(ξ). (1)

The image of γ is the closure of a single orbit O ∈ N/G, and Indg
l O

L := O is the orbit induced
from OL. It only depends on the pair (l,OL), not on the parabolic subgroup P chosen to define
(1). If O ∈ N/G cannot be induced from a nilpotent orbit OL in a proper Levi subalgebra l ( g,
then O is said to be rigid. For a complete exposition on induction, refer to [13, §7].

A decomposition datum of g consists of a pair of a Levi subalgebra l ⊆ g and an orbit
OL ∈ Nl/L, see [3, §1.6]. To any element ξ = ξs + ξn ∈ g we can associate its decomposition
datum (cg(ξs),O

CG(ξs)
ξn

).
We denote by D(g) the set of decomposition data of g. G acts by simultaneous conjugacy on

the elements of D(g). We say that two elements of g are Jordan equivalent if their decomposition
data are conjugate in G. The Jordan class of ξ ∈ g is the set J(ξ) consisting of all elements
which are Jordan equivalent to ξ. If ξ ∈ g has decomposition datum (l,OL), then J(ξ) =
J(l,OL) = (AdG)(z(l)

reg
+OL). Jordan classes form a partition of g into finitely many irreducible

subvarieties parametrized by the (finite) set D(g)/G. They consist of unions of equidimensional
adjoint orbits and their closure J(l,OL) (resp. regular closure J(l,OL)

reg
) is a union of Jordan

classes.
Sheets for the adjoint action of G on the Lie algebra g have been studied in [4, 3]. They

are parametrized by the G-equivalence classes of decomposition data (l,OL) ∈ D(g) such that
OL ∈ Nl/L is rigid. The sheet S(l,OL) corresponding to the (class of) decomposition datum
(l,OL) with OL is rigid is:

S(l,OL) = J(l,OL)
reg

=
⋃
ξ∈z(l)

(AdG)(ξ + Ind
cg(ξ)
l OL).

Every sheet S(l,OL) contains a unique nilpotent orbit, i.e. Indg
l O

L. The dimension of a sheet
has been determined explicitly in [24], [25].

If g is simple of type A, its sheets are disjoint and the G-module structure of the rings of
functions C[O] is preserved along sheets, see [4]. In general, these properties do not hold and
sheets intersect non-trivially.

In [20], Losev introduced birational sheets of g by restricting conditions on induction. Let
(l,OL) ∈ D(g). As in [20, §4], we say that Indg

l O
L is birationally induced from (l,OL) if, for a

(hence any) parabolic subalgebra p with Levi factor l, the generalized Springer map as in (1) is
birational. If O ∈ N/G cannot be induced birationally from a proper Levi subalgebra, we say
that O is birationally rigid ; all rigid orbits are birationally rigid. For any (l,OL) ∈ D(g), one
can define, as in [20, §4], the set

Bir(z(l),OL) = {ξ ∈ z(l) | Ind
cg(ξ)
l OL is birationally induced}.

Since OL = Indl
l O

L is birationally induced from (l,OL), the inclusion z(l)
reg ⊂ Bir(z(l),OL)

holds. By [20, Proposition 4.2], the set Bir(z(l),OL) is open in z(l) and it is independent of the
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parabolic group chosen for induction. For (l,OL) ∈ D(g), the birational closure of J(l,OL) is
defined by as follows:

J(l,OL)
bir

=
⋃

ξ∈Bir(z(l),OL)

(AdG)(ξ + Ind
cg(ξ)
l OL).

In particular J(l,OL)
bir

is open in J(l,OL)
reg

and in J(l,OL), hence it is irreducible and contained
in a sheet.

Definition 3.1. For (l,OL) ∈ D(g) withOL birationally rigid, the birational sheet corresponding
to (l,OL) is defined as J(l,OL)

bir
.

In [20, Theorem 4.4], it is proven that birational sheets are locally closed subvarieties parti-
tioning the Lie algebra g; they are paramatrized by G-equivalence classes of pairs (l,OL) ∈ D(g)
where OL ∈ Nl/L is birationally rigid.

We state a remarkable result on birational sheets obtained by Losev, see [20, Remark 4.11].

Proposition 3.2. If O1 and O2 are two orbits of g lying in the same birational sheet, then their
G-module structure is isomorphic.

In addition, Losev conjectured that the viceversa is also true, giving hope for an intrinsic
characterization of birational sheets of the Lie algebra.

Conjecture 3.3. If O1 and O2 are two orbits of g with isomorphic G-module structure, then
they lie in the same birational sheet.

3.2 Group case
Before its introduction in the case of the adjoint action on the Lie algebra, induction was defined
by Lusztig and Spaltenstein for unipotent conjugacy classes in a connected reductive algebraic
group, see [22]. Consider a parabolic subgroup P ≤ G with Levi decomposition P = LUP and
OL ∈ UL/L. Then P acts on OLUP via conjugacy and one can define the generalized Springer
map:

γ : G×P OLUP → G · (OLUP ), g ∗ x 7→ gxg−1. (2)

The image of γ is the closure of a single conjugacy class O ∈ U/G, and IndGL (OL) := O is the
conjugacy class induced from (L,OL). When γ is birational, we say that IndGL (OL) is birationally
induced from (L,OL). If O is a unipotent class in G which cannot be induced (resp. birationally
induced) from (L,OL) from any proper Levi subgroup L of G and OL ∈ UL/L, we say that
it is rigid (resp. birationally rigid). All these notions are independent of the chosen parabolic
subgroup P , see [1, Lemma 3.5].
Remark 3.4. Thanks to the bijective correspondences between parabolic subgroups, Levi sub-
groups, unipotent classes in G and parabolic subalgebras, Levi subalgebras, nilpotent orbits in
g, we have that γ in (1) is birational if and only if γ in (2)is so, see [1, Remark 3.4].

Definition 3.5. Consider a pseudo-Levi subgroup M ≤ G, let Z := Z(M) and z ∈ Z. We say
that the connected component Z◦z satisfies the regular property (RP) for M if

CG(Z◦z)◦ = M. (RP)

Observe that, for a pseudo-Levi subgroup M ≤ G and z ∈ Z := Z(M), we have that Z◦z
satisfies (RP) for M if and only if Zreg ∩ Z◦z 6= ∅ if and only if Z(M) = 〈Z◦, Z(G), z〉 (see [11,
Remark 3.6]) if and only if M is a Levi subgroup of CG(z)◦ (see [1, Lemma 3.3]).
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Remark 3.6. Assume G simple, let M = LΘ for Θ ⊂ ∆̃, let s be such that M = C(s)◦ and
set Z := Z(M). Observe that Z◦s satisfies (RP) for M . Let z ∈ Z such that Z◦z satisfies
(RP) for M , then, by [10, Theorem 4.1] (see also [27, Theorem 7]), there is w ∈ W such that
w(Θ) = Θ and ẇ(Z◦z)ẇ−1 = Z◦ẑs for a certain ẑ ∈ Z(G). Let W1 = {w ∈ W | wsw−1s−1 ∈
Z◦Z(G)},W2 = {w ∈W | wsw−1s−1 ∈ Z◦}. The assignment w 7→ wsw−1s−1Z◦ defines a group
homomorphism W1 → Z◦Z(G)

Z◦ with kernel W2. Then the number of different G-classes of pairs
(M,Z◦z) for a fixed M with Z◦z satisfying (RP) for M is

dM :=

[
Z(G)

Z(G) ∩ Z◦
: W1/W2

]
. (3)

Remark 3.7. Let L ≤ G be a pseudo-Levi subgroup and let Z := Z(L), then L is a Levi subgroup
if and only if Z(L) = Z(G)Z(L)◦ if and only if Z(L)◦z satisfies (RP) for all z ∈ Z(L).

Lemma 3.8. Let L ≤ G be a Levi subgroup. Then two connected components of Z := Z(L) are
conjugate in G if and only if they are equal.

Proof. This is clear from Remark 3.7.

A decomposition datum of G consists of a triple (M,Z(M)◦z,OM ) such that:
(a) M is a pseudo-Levi subgroup of G;
(b) Z(M)◦z is a connected component of Z(M) satisfying (RP) for M ;
(c) OM is a unipotent conjugacy class of M .

To any element su ∈ G we can associate its decomposition datum (CG(s)◦, Z(CG(s)◦)◦s,OCG(s)◦

u ):
any decomposition datum is of this form.

The set of all decomposition data of G is denoted by D(G) and G acts on this set by simul-
taneous conjugacy on the triples.

Two elements g1, g2 ∈ G are said to be Jordan equivalent if their decomposition data are
conjugate in G. The Jordan class of su is the set of all elements which are Jordan equivalent to
su: it is denoted J(su).

If τ = (CG(s)◦, Z(CG(s)◦)◦s,OCG(s)◦

u ) is the decomposition datum of su, then

J(su) = J(τ) = G · ((Z(CG(s)◦)◦s)regOCG(s)◦

u ).

The group G is partitioned into its Jordan classes, which are finitely many locally closed ir-
reducible subvarieties parametrized by the finite set D(G)/G. Jordan classes are unions of
equidimensional conjugacy classes. The closure of a Jordan class is a union of Jordan classes.

Sheets for the conjugacy action of G on itself were studied in [11]. They are parametrized
by the G-equivalence classes of decomposition data τ = (M,Z(M)◦s,OM ) ∈ D(G) with OM ∈
UM/M rigid: the sheet corresponding to τ is

S(τ) := J(τ)
reg

=
⋃

z∈Z(M)◦s

G ·
(
s Ind

CG(z)◦

M OM
)
.

In the remainder of the paper, unless differently specified, we work under the assumption G′
simply-connected: as a consequence, centralizers of semisimple elements are connected.

As in [1, §5.1], for (M,Z(M)◦s,OM ) ∈ D(G) we define the set:

Bir(Z(M)◦s,OM ) = {z ∈ Z(M)◦s | Ind
CG(z)
M OM is birationally induced}.
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This is an open subset of Z(M)◦s, independent of the parabolic group chosen for induction ([1,
Remark 5.2, Proposition 5.1]): it contains (Z(M)◦s)reg, since OM = IndMM OM is birationally
induced from (M,OM ). For τ = (M,Z(M)◦s,OM ) ∈ D(G), the birational closure of J(τ) is

J(τ)
bir

:=
⋃

z∈Bir(Z(M)◦s,OM )

G ·
(
z Ind

CG(z)
M OM

)
.

Then J(τ) ⊆ J(τ)
bir
⊆ J(τ)

reg
: in particular, being J(τ)

reg
irreducible, it is contained in a

sheet, hence so is J(τ)
bir

. In fact J(τ)
bir

is an irreducible locally closed subvariety of G and a
union of Jordan classes ([1, Proposition 5.2, Corollary 5.3]).

Definition 3.9. We define the set

BB(G) := {(M,Z(M)◦s,OM ) ∈ D(G) | OM ∈ UM/M birationally rigid}.

For τ ∈ BB(G), we define the birational sheet of G corresponding to (the class of) τ as J(τ)
bir

.

It follows from [1, Theorem 5.1] that the birational sheets of G form a partition of G.
Remark 3.10. For G semisimple, a birational sheet coincides with a single conjugacy class if and
only if it is Osu with s isolated and OCG(s)

u a birationally rigid unipotent class of CG(s).

3.3 Criteria for birational induction
We recollect some results from [1, Lemmas 3.2, 3.6]: they will be used to classify birational sheets
containing spherical conjugacy classes.

Lemma 3.11. Let P ≤ G be a parabolic subgroup with Levi decomposition P = LU , let OL ∈
UL/L, let O = IndGL OL and let γ be as in (2). The following are equivalent:
(i) γ is birational;
(ii) for all x ∈ O ∩OLU , we have CG(x) = CP (x);
(iii) there exists x ∈ O ∩OLU such that CG(x) = CP (x). �

Lemma 3.12. Let φ : N → U denote a Springer’s isomorphism and let G be the adjoint group in
the same isogeny class of G. Let ν ∈ N . Suppose that CG(ν) is connected. If Oφ(ν) = IndGL OL
for a Levi subgroup L ≤ G and OL ∈ UL/L, then Oφ(ν) is birationally induced from (L,OL). �

Remark 3.13. Let G = SLn(C), then the condition in Lemma 3.12 is always fulfilled, hence a
unipotent class in G (resp. a nilpotent orbit in g) is rigid if and only if it is birationally rigid if
and only if it is {1} (resp. {0}), see [1, Example 3.4]. Moreover, sheets coincide with sheets in g
and in G, see [1, Corollary 5.4].

3.4 Birationally rigid unipotent classes
In this section we assume G simple and we recollect the complete list of birationally rigid con-
jugacy classes in U (equivalently of birationally rigid adjoint orbits in N ).

Namikawa gave in [26] a criterion to test when a nilpotent orbit is birationally rigid for simple
classical Lie algebras. If g is of type A, then the only birationally rigid orbit is the only rigid
orbit, i.e. the null orbit. Now let g be of type B,C,D. Let d = [d1, . . . , dr] denote the partition
corresponding to a nilpotent orbit O. Then O is birationally rigid in g if and only if d has full
members, i.e. 1 = dr and di − di+1 ≤ 1 for all i = 1, . . . , r − 1, with the exception of the case
d = [2n−1, 12] in Dn for n = 2m+ 1,m ≥ 1, which is birationally induced as a Richardson orbit.
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Fu worked out the exceptional types in [16]: birationally rigid orbits coincide with rigid ones,
except in type E7, where also A2 +A1 and A4 +A1 are birationally rigid, and in type E8, where
also A4 +A1 and A4 + 2A1 are birationally rigid.

For a complete list of rigid nilpotent orbits in the exceptional cases, see [23, Appendix 5.7].
It follows that every spherical nilpotent orbit is (birationally) rigid, apart from 2A1 in type E6

and (3A1)′′ in type E7.

Remark 3.14. Recall from [3, Lemma 3.9] that all nilpotent orbitsO in g simple are characteristic,
except for:
(1) g of type D4: Aut(g) acts transitively on {O[42],O

′
[42],O[5,13]} and on {O[24],O

′
[24],O[3,15]}.

(2) g of type D2m,m ≥ 3: the graph automorphism permutes Od and O′d for every very even
partition d ` 4m.

It follows that all birationally rigid nilpotent orbits in simple Lie algebras are characteristic,
analogously for all birationally rigid unipotent classes in simple algebraic groups.

3.5 Birational sheets and translation by central elements
Let τ := (M,Z(M)◦s,OM ) ∈ D(G). For each z ∈ Z(G), let τz := (M,Z(M)◦zs,OM ). Then we
have J(τz)

bir
= zJ(τ)

bir
, so that the union of all J(τz)

bir
as z varies in Z(G) is

Z(G)J(τ)
bir

:=
⋃

z∈Z(G)

zJ(τ)
bir
. (4)

We shall be interested in Z(G)J(τ)
bir

for τ ∈ BB(G): to describe it, it is enough to describe
J(τ)

bir
and to count the number of birational sheets in Z(G)J(τ)

bir
.

Remark 3.15. For G simple, let τ := (M,Z(M)◦z,OM ) ∈ D(G) and set Z := Z(M). We have
seen that the number of different G-classes of pairs (M,Z◦z) for a fixed M , with Z◦z satisfying
(RP) for M equals the index dM =

[
Z(G)

Z(G)∩Z◦ : W1/W2

]
, defined in Remark 3.6. If OM is

characteristic in M , the number of different G-classes of triples (M,Z(M)◦z,OM ) for fixed M
and OM , with Z◦z satisfying (RP) for M is again the index dM .

4 The ring of regular functions as an invariant
We open this section with an analysis of the behaviour of the ring of regular functions on
conjugacy classes belonging to the same Jordan class. After that, we focus on G simple of type
A: in this case the relation between (birational) sheets and the decomposition into simple G-
modules of rings of regular functions on orbits is completely understood; we give an overview of
the problem in the Lie algebra and we conclude similar results in the simply-connected group.

It is proven in [8, §3.7] that ξ1, ξ2 ∈ g belong to the same Jordan class if and only if their
centralizers CG(ξ1) and CG(ξ2) are G-conjugate: in this case Oξ1 and Oξ2 are isomorphic as
G-homogeneous spaces and their rings of regular functions are isomorphic as G-modules.

We address the similar problem in the group case, where the presence of a non trivial centre
Z(G) yields CG(x) = CG(zx) for all x ∈ G, z ∈ Z(G). The Springer–Steinberg Theorem on
connectedness of centralizers of semisimple elements allows to prove

Proposition 4.1. Suppose G′ is simply-connected and let x, y ∈ G. If Z(G)J(x) = Z(G)J(y),
then CG(x) and CG(y) are G-conjugate. In particular, for any Jordan class J in G and any pair
of classes O1,O2 ⊂ Z(G)J we have C[O1] 'G C[O2].
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As far as the other implication is concerned, we have

Proposition 4.2. Let G be simple and simply-connected, let x, y ∈ G. If CG(x) ∼G CG(y), then
Z(G)J(x) = Z(G)J(y) except for the following cases:
(i) G of type E6, and {Ox,Oy} = {Oϕu1u2u3

,Oϕ−1u1u2u3
}, where ϕ = exp(2πiω̌4/3) and

u1, u2, u3 ∈ SL3(C) unipotent, with ui 6∼SL3(C) uj for i 6= j;
(ii) G of type E8, and {Ox,Oy} = {Oϕu1u2 ,Oϕ2u1u2

}, where ϕ = exp(2πiω̌5/5) and u1, u2 ∈
SL5(C) unipotent such that u1 6∼SL5(C) u2.

Proof. We may assume CG(x) = CG(y), with x = su and y = s′u′. Note that CG(s) is the
unique minimal pseudo-Levi subgroup containing CG(x): if M ≥ CG(x) is a pseudo-Levi in G,
then Z(M) ≤ Z(CG(x)). The structure of Z(CG(x)) described in [19, Theorem 2.1] implies
Z(M) ≤ Z(CG(s)), which yields CG(s) ≤ M . Similarly, CG(s′) is the unique minimal pseudo-
Levi subgroup containing CG(y). This implies CG(s) = CG(s′) =: H and CH(u) = CH(u′),
equivalently u ∼H u′, by [19, Theorem 2.1].

Hence we may assume x = su and y = s′u, where CG(s) = CG(s′) =: H ∼G MΘ, for Θ ⊂ ∆̃.
By [27, Proposition 7], the group Z(H)/Z(G)Z(H)◦ is cyclic of order dΘ := gcd{ci | αi ∈ ∆̃\Θ}
and it is generated by the cosets of s and s′. Note that when s ≡ s′ mod Z(G)Z(H)◦, then
Z(G)J(x) = Z(G)J(y): we will therefore concentrate on the other cases. Recall that 1 ≤ dΘ ≤ 6.

If dΘ ∈ {1, 2}, then we always have s ≡ s′ mod Z(G)Z(H)◦ and we conclude.
If dΘ ∈ {3, 4, 6} and (G, dΘ) 6= (E6, 3), then the cosets of s, s−1 are the only two generators

of Z(H)/Z(G)Z(H)◦. If s′ ≡ s−1 mod Z(G)Z(H)◦, then as in the proof of [27, Proposition 7],
there exists w ∈ W such that s′ ≡ wsw−1 mod Z(G)Z(H)◦; moreover w fixes the irreducible
components of Θ, which are of type An, D5 or E6, so that any lift ẇ ∈ NG(T ) preserves the class
OHu : this allows to conclude that Z(G)J(x) = Z(G)J(y).

In the remaining cases, (G, dΘ) = (E6, 3) or (E8, 5), H is semisimple hence Z(G)J(x) =
Z(G)J(y) if and only if x ∼G zy for some z ∈ Z(G).

We discuss the case (G, dΘ) = (E6, 3): we may assume s = ϕ := exp(2πiω̌3/3) and s′ =
ziϕ−1, where z := exp(−2πiω̌1) ∈ Z(G) and i ∈ {0, 1, 2}. We have H = H1H2H3 with H1 =
〈X±α1 , X±α3〉, H2 = 〈X±α5 , X±α6〉, H3 = 〈X±α2 , X±β〉 and Hi ' SL3(C) for i = 1, 2, 3. We
write u = u1u2u3, with ui ∈ Hi. There exists w of order 2 inW as in the proof of [27, Proposition
7] such that wϕw−1 = ϕ−1. We may choose a lift ẇ ∈ NG(T ) inducing the automorphism of
SL3(C)× SL3(C)× SL3(C), (g1, g2, g3) 7→ (g2, g1, γ(g3)), where γ is the graph automorphism of
SL3(C) ([17, Table 4.7.1]). Moreover, there exists ρ of order 3 in W such that ρϕρ−1 = zϕ.
We may choose a lift ρ̇ ∈ NG(T ) inducing the automorphism of SL3(C) × SL3(C) × SL3(C),
(g1, g2, g3) 7→ (g3, g1, g2). Since NG(H)/H ' 〈w, ρ〉 ' S3, we have Z(G)Oϕu = Z(G)Oϕ−1u if
and only if ui ∼SL3(C) uj for some i 6= j.

We are left with the case (G, dΘ) = (E8, 5): we may assume s = ϕ := exp(2πiω̌5/5) and
s′ ∈ {ϕ2, ϕ3, ϕ4}. We have H = H1H2 with Hi ' SL5(C) and write u = u1u2 with ui ∈ Hi,
for i = 1, 2. There exists w of order 4 in W as in the proof of [27, Proposition 7] such that
wϕw−1 = ϕ2. We may choose a lift ẇ ∈ NG(T ) inducing the automorphism of SL5(C)×SL5(C),
(g1, g2) 7→ (γ(g2), g1), where γ is the graph automorphism of SL5(C) ([17, Table 4.7.1]). It follows
that ϕu ∼G ϕ4u and ϕ2u ∼G ϕ3u. Since NG(H)/H ' 〈w〉, we have Oϕu = Oϕ2u if and only if
u1 ∼SL5(C) u2.

We note that the assumption on G′ in Proposition 4.1 cannot be removed.

Example 4.3. Consider G = SL2(C), let G = PSL2(C) and let π : G → G, π(g) = ḡ be the
isogeny. Let us consider the torus T ≤ G given by diagonal elements: T = {tk = diag[k, k−1] |
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k ∈ C×}. We have the following situation for the centralizer of a regular element tk, k 6= ±1:

CG(t̄k) =

{
H := NG(T ) if k = ±i;
T = H

◦
if k /∈ {±i,±1}

Observe that G · (T reg) is the Jordan class in G consisting of regular semisimple elements.
Along G · (T reg) neither the G-module structure nor the G-homogeneous space structure of
conjugacy classes is preserved:

k C[OGt̄k ] Λ(OGt̄k )

k = ±i C[G/H] 4nω

k ∈ C× \ {±1,±i} C[G/T ] 2nω

Table 1: Regular semisimple spherical classes in PSL2(C).

4.1 Type A

The study of sheets of g for the adjoint action of G in [4] was a first attempt to classify sets of
orbits O such that the decomposition of C[O] into simple G-modules is constant: the main result
in this direction is summed up in the following statement.

Theorem 4.4 ([4, Theorems 3.8 and 6.3]). Let G be simple and adjoint. Let S be a sheet of
g and let O be the unique nilpotent orbit in S, let ν ∈ O. Suppose that O is normal and that
CG(ν) is connected. Then C[O] 'G C[O] 'G C[O′] 'G C[O′] for all orbits O′ in S.

Suppose G is simple and adjoint of type A, then the sheets of g are disjoint and parametrized
by the unique nilpotent orbit contained in them [15]. Let O be a nilpotent oribt of g, then the
hypothess of Theorem 4.4 are fulfilled: normality of O follows from [18] and all centralizers in G
of elements in g are connected. Therefore, Borho and Kraft could conclude in [4, Nachtrag bei
der Korrektur ] that the multiplicities of simple G-modules in the decomposition of the algebras
of regular functions on adjoint orbits are preserved along sheets of g.

The natural question is: does the invariant given by the multiplicities separate distinct sheets
of sln(C)? The answer is affirmative, as recorded in the following statement: we are indebted to
Eric Sommers for suggesting the use of small modules in the proof.

Proposition 4.5. Let G be simple of type A. If O1 and O2 are two distinct nilpotent orbits in
g, then Λ(O1) 6= Λ(O2). In particular C[O1] 6'G C[O2].

Proof. Let C denote the trivial representation of a group. Let λ ∈ P+ and let V (λ)0 = V (λ)T

be the zero weight subspace in V (λ). Then V (λ)0 is a W -module, in general reducible. Let L
be a Levi subgroup of G with Weyl group WL. By [7, Proof of Corollary 1], if V (λ) is small (i.e.
if twice a root never occurs as a weight of λ), we have V (λ)L = (V (λ)0)WL and, by Frobenius
reciprocity, dim(V (λ)0)WL = [IndWWL

(C) : V (λ)0]. In the case of sln(C), for every irreducible
Sn-module M there exists λ in P+ ∩ ZΦ such that V (λ) is small and V (λ)0 'Sn M , see [7,
example p. 389]. Conjugacy classes of Levi subgroups of SLn(C) are indexed by partitions
d = [d1, . . . , dk] of n with dk > 0: the induced Richardson nilpotent class is Odt . Let Ld be the
standard Levi subgroup, with Weyl group Sd = Sd1

× · · · × Sdk , corresponding to the partition
d = [d1, . . . , dk]. We know that [C[Odt ] : V ] = dimV Ld for every simple SLn(C)-module V . We
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put Ud = IndSnSd
(C) and denote by Vd the simple Sn-module (Specht module) corresponding to

d. Then
Ud = Vd ⊕

⊕
f>d

Kf dVf (5)

where the coefficients Kf d are the Kostka numbers and < is the lexicographic total order on
partitions of n. Let d, f be different partitions of n: we may assume d > f . By the previous
discussion, there exists a small simple SLn(C)-module V (λ) such that Vf 'Sn V (λ)0. Then
[C[Of ] : V (λ)] = 1 6= 0 = [C[Od] : V (λ)] and this allows to conclude.

We gather the arguments above in the following result.

Theorem 4.6. Let G be simple of type A. Then two adjoint orbits O1,O2 in g belong to the
same sheet if and only if C[O1] 'G C[O2] if and only if Λ(O1) = Λ(O2).

Remark 4.7. One direction of Theorem 4.6 is a particular case of Proposition 3.2 while the other
direction proves Conjecture 3.3 for g = sln(C), as in this case birational sheets coincide with
sheets.

Since pseudo-Levi subgroups of SLn(C) are Levi subgroups, we deduce a group analogue of
Theorem 4.6.

Theorem 4.8. Let G = SLn(C), O1 and O2 be conjugacy classes of G and let S1 (resp. S2) be the
(birational) sheet containing O1 (resp. O2). Then C[O1] 'G C[O2] if and only if Λ(O1) = Λ(O2)
if and only if S2 = zS1 for some z ∈ Z(G).

Proof. Recall that (birational) sheets in G are disjoint and are parameterized by G-classes of
pairs (L,Z(L)◦z), with L a Levi sugbroup of G and a certain z in Z(G), see [1, Corollary 5.4].
For every x ∈ G there exists ξ ∈ g such that CG(ξ) = CG(x): if the sheet of G containing Ox
corresponds to the G-class of (L,Z(L)◦z), then the sheet of g containing ξ corresponds to the
G-class of Lie(L). Let xi ∈ Oi and ξi ∈ g such that CG(ξi) = CG(xi), and let (Li, Z(Li)

◦zi)
correspond to Si for i = 1, 2. Then C[Oi] = C[Oξi ] for i = 1, 2. Therefore C[O1] 'G C[O2] if
and only if L1 ∼G L2 by Theorem 4.6, hence if and only if S2 = zS1 for some z ∈ Z(G). The
equivalence C[O1] 'G C[O2] if and only if Λ(O1) = Λ(O2) follows from Theorem 4.6.

5 Spherical birational sheets
This section is dedicated to the main result of the paper: the classification of spherical conjugacy
classes grouped in birational sheets and the verification of the analogues of Proposition 3.2 and
Conjecture 3.3 in the case of G connected reductive with G′ simply-connected.

The property of being spherical is preserved along sheets, as proven in [2, Proposition 1]. A
spherical sheet is a sheet consisting of spherical orbits, as in [10]. Since every birational sheet is
irreducible, it is contained in a sheet, and the following definition is well-posed.

Definition 5.1. Let τ ∈ BB(G). We say that the birational sheet J(τ)
bir

is spherical if one of
the following equivalent properties is satisfied:
(i) all conjugacy classes O ⊂ J(τ)

bir
are spherical;

(ii) there exists a spherical conjugacy class O ⊂ J(τ)
bir

;
(iii) J(τ)

bir
is contained in a spherical sheet.
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As recalled in the Introduction, if O (resp. S) is a conjugacy class (resp. a sheet) of G and
we denote by wO (resp. wS) the unique element of W such that O∩BwOB is dense in O (resp.
S ∩BwSB is dense in S), then if S is spherical, for every conjugacy class O lying in S we have
wO = wS . For a birational sheet J(τ)

bir
we may define wτ as the unique element of W such that

J(τ)
bir
∩ BwτB is dense in J(τ)

bir
. It follows that for a spherical birational sheet J(τ)

bir
, we

have wτ = wO for every conjugacy class O ⊂ J(τ)
bir

and wτ = wS for every sheet S containing
J(τ)

bir
.

We state our main result.

Theorem 5.2. Let G be a complex connected reductive algebraic group with G′ simply-connected.
Then the spherical birational sheets form a partition of Gsph. Let O1 and O2 be spherical con-

jugacy classes in G. Let J(τ1)
bir

(resp. J(τ2)
bir

) be the birational sheet containing O1 (resp.
O2). Then C[O1] is isomorphic to C[O2] as a G-module if and only if J(τ2)

bir
= zJ(τ1)

bir
for

some z ∈ Z(G).

Since the birational sheets form a partition of G, the spherical birational sheets form a
partition of Gsph. The remainder of this section is devoted to the proof of Theorem 5.2: it is
enough to assume G simple.

>From the list of spherical conjugacy classes inG simple simply-connected [9, 14], we compute
the list of spherical birational sheets in G, proceeding as follows.

If z ∈ Z(G), then Oz = {z}, wz = 1 and C[Oz] = C: then {z} is the unique sheet and the
unique birational sheet containing z. Therefore, we shall deal only with non-central spherical
conjugacy classes.

First, we compute all spherical birational sheets containing semisimple elements. These are
exactly those obtained as J(τ)

bir
with τ = (M,Z(M)◦s, {1}) ∈ BB(G) and M a spherical

pseudo-Levi subgroup of G. All such possible subgroups M can be deduced from [9, 14]: by
inspection, we have two possibilities.
(i) If M is a spherical Levi subgroup, the birational sheet J(τ)

bir
is dense in the spherical

sheet J(τ)
reg

. Moreover, it turns out that J(τ)
reg
\ J(τ) is a union of isolated classes: by

checking whether each of these classes is birationally induced by means of Lemmas 3.11
and 3.12, we produce J(τ)

bir
.

(ii) If M is a spherical pseudo-Levi subgroup which is not Levi, then M is semisimple and
J(τ)

bir
= J(τ)

reg
= J(τ) is an isolated class.

At this point we are left with considering all non-semisimple spherical conjugacy classes which
are not birationally induced as in (i). By inspecting the lists in [9, 14], these are spherical classes
Osu with s semisimple isolated and OCG(s)

u birationally rigid: we conclude that these classes are
spherical birational sheets.

As recalled in the introduction, for a spherical conjugacy class O the G-module structure
of C[O] is completely determined by the weight lattice Λ(O). We collect the list of spherical
birational sheets in a table. In the first column there is a certain τ = (M,Z(M)◦s,OMu ) ∈ BB(G)

with M = CG(s) and Osu spherical in G. In the second column we describe J(τ)
bir

. From the
tables in [14] we verify that the weight monoid is constant on the orbits in J(τ)

bir
and we describe

its elements in the third column. In the cases when Z(G) is non-trivial, we list also a fourth
column indicating the number of (disjoint) birational sheets in Z(G)J(τ)

bir
. This is produced

by applying Remark 3.15 in all cases, except for one case where G is of type C2p and M is of
type CpCp, see Remark 5.8).
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The fact that Λ(O) is independent of the orbit O in J(τ)
bir

(and hence in Z(G)J(τ)
bir

)
proves the group analogue of Proposition 3.2 (for spherical conjugacy classes in G simple simply-
connected). To prove the validity of the group analogue of Conjecture 3.3 one has to check that
the entries in the third column are pairwise distinct.

For k = 1, . . . , n, we put

σk := exp

(
2πi

ck
ω̌k

)
; (6)

Θk := ∆ \ {αk} Lk := LΘk ; (7)

Θ̃k := ∆̃ \ {αk} Mk := LΘ̃k
= CG(σk). (8)

We shall freely use the notation from [14]. For K ≤ G, K simple, we will consider the isogeny
πK : K → K := Kad to the adjoint group, omitting subscripts when K = G.

5.1 Type An, n ≥ 1

Here G = SLn+1(C), for n ≥ 1. Theorem 5.2 holds for G, as a consequence of Theorem 4.8. For
the sake of completeness, we list the spherical birational sheets of G and the weight monoids of
classes contained in them. Set m =

⌊
n+1

2

⌋
.

Lemma 5.3. Let d = [d1, . . . , dr] ` n+ 1 and let Ld be the standard Levi subgroup of G indexed
by d. Then Z(Ld) has exactly gcd{di | di ∈ d} connected components, pairwise not conjugate in
G.

Proof. We have Z(L) ' S := {(z1, . . . , zr) ∈ (C×)r | zd1
1 · · · zdrr = 1}. If d = gcd{di | i =

1, . . . , r}, we have Z(L)/Z(L)◦ ' S/S◦ ' Z/dZ. The last assertion follows from Lemma 3.8.

For n = 1, every conjugacy class of G is spherical and there are three (birational) sheets:
{−1}, {1} and Greg.

Let n ≥ 2. Consider the Levi subgroups Li, for all i = 1, . . . ,m. Then L′i ' SLn+1−i × SLi,
the centre Z(Li) is one-dimensional and consists of d = gcd(n+ 1− i, i) = gcd(i, n+ 1) distinct
connected components which are not conjugate in G. Let di = [n + 1 − i, i] and let τi :=
(Li, Z(Li)

◦, {1}), then Z(Li)
◦ = exp(Cω̌i), Z(G) ∩ Z(Li)

◦ has order n+1
d and

J(τi)
bir

= J(τi)
reg

=
⋃

z∈Z(Li)◦

G · (z Ind
CG(z)
Li

{1}) =
⋃

ζ∈C\2πiZ

Oexp(ζω̌i) t
⊔

z∈Z(G)∩Z(Li)◦

zOdti
,

by [13, Theorem 7.2.3]. Moreover the unipotent class Odti
is the class denoted by Xi in [14, §4.1].

τ J(τ)
bir

Λ(O) d

(L`, Z(L`)
◦, {1})

` = 1 . . . ,m− 1

⋃
ζ∈C\2πiZ

Oexp(ζω̌`)t

t(Z(G) ∩ Z(Li)
◦)X`

∑̀
k=1

nk(ωk + ωn−k+1) gcd(`, n+ 1)

(Lm, Z(Lm), {1})
n = 2m

⋃
ζ∈C\2πiZ

Oexp(ζω̌m) t Z(G)Xm
m∑
k=1

nk(ωk + ωn−k+1) 1

(Lm, Z(Lm)◦, {1})
n+ 1 = 2m

⋃
ζ∈C\2πiZ

Oexp(ζω̌m) t ±Xm
m−1∑
k=1

nk(ωk + ωn−k+1) + 2nmωm m

Table 2: Type An, n ≥ 1,m =
⌊
n+1

2

⌋
.
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5.2 Type Cn, n ≥ 2

We have Z(G) = 〈ẑ〉 with ẑ =
∏bn+1

2 c
i=1 α∨2i−1(−1). We set p :=

⌊
n
2

⌋
.

5.2.1 Type C2

Lemma 5.4. Let G = Sp4(C). Let Si := JG(τi)
reg

with τi := (Li, Z(Li)
◦, {1}) for i = 1, 2.

Then S2 = J(τ2)
bir

is a birational sheet and S1 = J(τ1)
bir
t O[22].

Proof. Observe that L2 is maximal and Z(L2) is connected. Then

S2 =
⋃

z∈Z(L2)

G · (z Ind
CG(z)
L2

{1}) = G · ((Z(L2))reg) t IndGL2
{1} t ẑ IndGL2

{1}.

We have IndGL2
{1} = O[22], and u = xβ1(1)xβ2(1) ∈ O[22] = X2 satisfies CG(u) ≤ PΘ2 , so that

O[22] is birationally induced from (L2, {1}) by Lemma 3.11 and S2 is a birational sheet.
For S1, observe that L1 < M1 < G, where Z(L1) = Z(L1)◦ t ẑZ(L1)◦. We have

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) tG · (σ1 IndC1

L1
{1}) t IndGL1

{1}.

Observe that M1 is of type A1A1, so the class IndM1

L1
{1} = OM1

xβ(1) is birationally induced by
Remark 3.13. The subregular unipotent class O[22] = IndGL1

{1} is not birationally induced

from (L1, {1}), so that J(τ1)
bir

=
⋃
ζ∈C\πiZOexp(ζω̌1) t Oσ1xβ(1) and Z(G)J(τ1)

bir
= J(τ1)

bir
t

ẑJ(τ1)
bir

.

There is only one more spherical pseudo-Levi subgroup M1 giving rise to the (birational)
sheet Oσ1

. Note that σ1 and ẑσ1 are conjugate, hence Z(G)Oσ1
= Oσ1

.
Up to central elements, there is only one more spherical conjugacy classes X1 corresponding

to the partition [2, 12]: this is a birationally rigid unipotent conjugacy class in G.

τ J(τ)
bir

Λ(O) d

(L2, Z(L2), {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌2) tX2 t ẑX2 2n1ω1 + 2n2ω2 1

(L1, Z(L1)◦, {1})
⋃

ζ∈C\πiZ
Oexp(ζω̌1) t Oσ1xβ(1) 2n1ω1 + n2ω2 2

(M1, {σ1}, {1}) Oσ1 n2ω2 1

(G, {1},O[2,12]) X1 2n1ω1 2

Table 3: Type C2.

Remark 5.5. The subregular unipotent class O[22] lies in both the sheets S1 and S2. This agrees
with what is stated in [4, §6(c)]: O[22] can be deformed in semisimple classes of both types
Oexp(ζω̌1) and Oexp(ζω̌2), but in general the multiplicities of the weights can decrease. Indeed, for
ζ ∈ C \ πiZ, we have Λ(Oexp(ζω̌1)) = 〈2ω1, ω2〉 > 〈2ω1, 2ω2〉 = Λ(O[22]) = Λ(Oexp(ζω̌2)).

Remark 5.6. The sheet S1 is not a union of birational sheets.
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5.2.2 Type Cn, n ≥ 3

Lemma 5.7. Let n ≥ 3. Then:
(i) Let τ1 = (L1, Z(L1)◦, {1}); then the spherical sheet S1 := J(τ1)

reg
decomposes as the union

of J(τ1)
bir

and the unipotent birationally rigid class Od with d = [22, 12(n−1)]; similarly
for the birational sheet ẑS1.

(ii) Let τn = (Ln, Z(Ln), {1}); then the spherical sheet Sn := J(τn)
reg

is a birational sheet
containing the unipotent class Of , with f = [2n].

Proof. (i) L1 is of type T1Cn−1 and L1 < M1 < G and Z(L1) = Z(L1)◦ t ẑZ(L1)◦. Then

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) tG · (σ1 IndM1

L1
{1}) t IndGL1

{1}.

The class IndM1

L1
{1} is birationally induced, by Remark 3.13. The unipotent class Od = IndGL1

{1}
is not birationally induced from (L1, {1}), indeed it is birationally rigid by §3.4 and it coincides
with a whole birational sheet. Hence

J(τ1)
bir

=
⋃

ζ∈C\πiZ

Oexp(ζω̌1) t Oσ1xβ1
(1)

and Z(G)J(τ1)
bir

= J(τ1)
bir
t ẑJ(τ1)

bir
.

(ii) Ln is maximal of type T1Ãn−1 and Z(Ln) is connected, as Ln = CG(exp ω̌n) and
exp(2πiω̌n) = ẑ.

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) = G · (Z(Ln)reg) t IndGLn{1} t ẑ IndGLn{1}.

We have IndGLn{1} = Of , with u = xβ1
(1) · · ·xβn(1) ∈ Of = Xn satisfies CG(u) ≤ PΘn , so that

Xn is birationally induced and Sn is a birational sheet

J(τn)
bir

= J(τn)
reg

= Sn =
⋃

ζ∈C\2πiZ

Oexp(ζω̌n) tXn t ẑXn

and Z(G)J(τn)
bir

= J(τn)
bir

.

We consider the remaining spherical pseudo-Levi subgroups.
(i) For ` = 1, . . . , p, M` is maximal of type C`Cn−` and Z(M`) = 〈σ`〉 × Z(G). Then, for

(M`, {σ`}, {1}) we get Oσ` , a (birational) sheet consisting of an isolated class. We have
Z(G)Oσ` = Oσ`tẑOσ` except when n = 2p, ` = p, in which case σ` and ẑσ` areG-conjugate
and Z(G)Oσp = Oσp .

(ii) For ` = 2, . . . , p, the pseudo-LeviM` of type C`Cn−` admits the birationally rigid unipotent
class OM`

xβ1
(1) of the form [2, 12`−2]× {1}. Then Oσ`xβ1

(1) is a (birational) sheet consisting
of an isolated class.

(iii) For ` = 1, . . . , p, the pseudo-Levi M` of type C`Cn−` has the birationally rigid unipo-
tent class OCG(σ`)

xαn (1) of the form {1} × [2, 12(n−`)−2]. Then Oσ`xαn (1) is a (birational) sheet
consisting of an isolated class.
In cases (ii) and (iii), we have Z(G)Oσ`xβ1

(1) = Oσ`xβ1
(1)tẑOσ`xβ1

(1) and Z(G)Oσ`xαn (1) =
Oσ`xαn (1) t ẑOσ`xαn (1). The only case which needs further explanation is when n = 2p,
` = p: then σp and ẑσp are G-conjugate, but σpxβ1

and ẑσpxβ1
are not G-conjugate.
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Remark 5.8. This is an example of (M,Z◦s1,OM ), (M,Z◦s2,OM ) in BB(G) with (M,Z◦s1) ∼G
(M,Z◦s2), but (M,Z◦s1,OM ) 6∼G (M,Z◦s2,OM ): in this case the rigid orbit OM of M is not
characteristic.

Up to central elements, the remaining spherical conjugacy classes inG areX` corresponding to
the partition [2`, 12n−2`], for ` = 1, . . . , n−1: these are all birationally rigid unipotent conjugacy
classes in G, see §3.4.

τ J(τ)
bir

Λ(O) d

(Ln, Z(Ln), {1})
⋃

ζ∈C\πiZ
Oexp(ζω̌n) tXn t ẑXn

n∑
i=1

2niωi 1

(L1, Z(L1)◦, {1})
⋃

ζ∈C\πiZ
Oexp(ζω̌1) t Oσ1xβ1

(1) 2n1ω1 + n2ω2 2

(M`, {σ`}, {1})
` = 1, . . . , p− 1

Oσ`
∑̀
i=1

n2iω2i 2

(Mp, {σp}, {1})
if n = 2p+ 1 Oσp

p∑
i=1

n2iω2i

2

(Mp, {σp}, {1})
if n = 2p

1

(Mp, {σp},OMp{1}×[2,12(n−p)−2]
) Oσpxαn (1)

n∑
i=1

niωi |
bn+1

2 c∑
i=1

n2i−1 ∈ 2N 2

(M`, {σ`},OM`{1}×[2,12(n−`)−2]
)

` = 1, . . . , p− 1
Oσ`xαn (1)

2`+1∑
i=1

niωi |
`+1∑
i=1

n2i−1 ∈ 2N 2

(M`, {σ`},OM`[2,12`−2]×{1})

` = 2, . . . , p
Oσ`xβ1

(1)

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

(G, {1},O[2`,12n−2`])

` = 1, . . . , n− 1
X`

∑̀
i=1

2niωi 2

Table 4: Type Cn, n ≥ 3, p =
⌊
n
2

⌋
.

5.3 Type Bn, n ≥ 3

We have Z(G) = 〈ẑ〉 with ẑ = α∨n(−1).
The following result holds indepedently of the parity of n.

Lemma 5.9. Let τ1 = (L1, Z(L1), {1}). Then S1 := J(τ1)
reg

= J(τ1)
bir

is a spherical birational
sheet of G containing the unipotent class Od, with d = [3, 12n−2].

Proof. L1 is maximal of type T1Bn−1 and Z(L1) is connected since L1 = CG(exp ω̌1) and
exp(2πiω̌1) = ẑ.

S1 =
⋃

z∈Z(L1)

G · (z Ind
CG(z)
L1

{1}) = G · (Z(L1)reg) t Od t ẑOd.

We have IndGL1
{1} = Od, with d = [3, 12n−2] and u = xγ1

(1) ∈ Od = Z1, where γ1 = e1 is the
highest short root of G, satisfies CG(u) ≤ PΘ1 , so that Z1 is birationally induced and S1 is a
birational sheet. Therefore

S1 =
⋃

ζ∈C\2πiZ

Oexp(ζω̌1) t Z1 t ẑZ1

and Z(G)J(τ1)
bir

= J(τ1)
bir

.
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5.3.1 Type B2m+1,m ≥ 1

In this section we deal with cases n = 2m+1, m ≥ 1. We set uk :=
∏k
i=1 xβi(1) for k = 1, . . . ,m.

Lemma 5.10. Let τn = (Ln, Z(Ln), {1}) and let Sn := J(τn)
reg

. Then Sn = J(τn)
bir

is a
spherical birational sheet in G.

Proof. Ln is of type T1An−1 and Ln < Mn < G, where Z(Ln) is connected since Ln =
CG(exp ω̌n) and σ2

n = ẑ. Then

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) =

= G · (Z(Ln)reg) ∪G · (σn IndMn

Ln
{1}) ∪G · (σ−1

n IndMn

Ln
{1}) ∪ IndGLn{1} ∪ ẑ IndGLn{1}.

We show that IndMn

Ln
{1} is birationally induced from (Ln, {1}). Observe that Mn is of type Dn

and IndMn

Ln
{1} is the unipotent class corresponding to [22n−1, 12] in SO2n(C). Let K := Mn,

for u ∈ IndKLn , we have CK(πK(u)) is connected by [12, p. 399], so the claim follows. Also
IndGLn{1}, the unipotent class corresponding to the partition [3, 2n−1], denoted by Zm+1 in [14],
is birationally induced from (Ln, {1}). Indeed, for u ∈ IndGLn{1}, the centralizer CG(π(u)) is
connected by [12, p. 399], and we conclude. Thus Sn is a birational sheet in G. We observe
moreover that G · (σn IndMn

Ln
{1}) = G · (σ−1

n IndMn

Ln
{1}) = Oσnum , as w0 conjugates σn to its

inverse and OMn
um is characteristic in Mn. Therefore

Sn = J(τn)
bir

=
⋃

ζ∈C\πiZ

OGexp(ζω̌n) t Oσnum t Zm+1 t ẑZm+1

and Z(G)Sn = Sn.

We consider the remaining spherical pseudo-Levi subgroups:
(i) For ` = 2, . . . , n, the pseudo-Levi M` is maximal of type D`Bn−`. If ` is even we have

σ2
` = 1 and Z(M`) = 〈σ`〉 × Z(G); if ` is odd we have σ2

` = ẑ and Z(M`) = 〈σ`〉. In any
case σ` and ẑσ` are G-conjugate (via the reflection se1). Then Oσ` is a (birational) sheet
consisting of an isolated class, and Z(G)Oσ` = Oσ` .

(ii) For ` = n, the subgroup Mn of type Dn admits the birationally rigid unipotent class OMn
uk

,
corresponding in SO2n(C) to the partition [22k, 12(n−2k)], for k = 1, . . . ,m − 1. Since
σn ∼W σ−1

n by sn and OMn
uk

is characteristic, Z(G)Oσnuk = Oσnuk is a (birational) sheet
consisting of an isolated class.

Up to central elements, the remaining spherical conjugacy classes in G are X` correspond-
ing to the partition [22`, 12n+1−4`], for ` = 1, . . . ,m and Z` corresponding to the partition
[3, 22(`−1), 12n+2−4`], for ` = 2, . . . ,m: these are all birationally rigid unipotent conjugacy classes
in G.
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τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌1) t Z1 t ẑZ1 2n1ω1 + n2ω2 1

(Ln, Z(Ln), {1})

⋃
ζ∈C\πiZ

Oexp(ζω̌n)t

tOσnum t Z(G)Zm+1

n−1∑
i=1

niωi + 2nnωn 1

(M`, {σ`}, {1})
` = 2, . . . ,m

Oσ`
2`−1∑
i=1

2niωi + n2`ω2` 1

(M`, {σ`}, {1})
` = m+ 2, . . . , n

Oσ`
2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 1

(Mm+1, {σm+1}, {1}) Oσm+1

n∑
i=1

2niωi 1

(Mn, {σn},OMnu` )
` = 1, . . . ,m− 1

Oσnu`
2`+1∑
i=1

niωi 1

(G, {1},O[22`,12n+1−4`])

` = 1, . . . ,m
X`

∑̀
i=1

n2iω2i 2

(G, {1},O[3,22(`−1),12n+2−4`])

` = 2, . . . ,m
Z`

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

Table 5: Type Bn, n = 2m+ 1, m ≥ 1.

5.3.2 Type B2m,m ≥ 2

In this section we assume n = 2m, m ≥ 2. We set uk :=
∏k
i=1 xβi(1) for k = 1, . . . ,m.

Lemma 5.11. Let τn = (Ln, Z(Ln)◦, {1}) and let Sn := J(τn)
reg

. Then Sn = J(τn)
bir
t

O[3,22(m−1),12], where O[3,22(m−1),12] is a birationally rigid unipotent class in G.

Proof. We have Ln of type T1An−1 and Ln < Mn < G, where σ2
n = 1 and Z(Ln) = Z(Ln)◦ t

ẑZ(Ln)◦ with Z(Ln)◦ = exp(Cω̌n). Then

Sn =
⋃

z∈Z(Ln)◦

G · (z Ind
CG(z)
Ln

{1}) =

= G · ((Z(Ln)◦)reg) ∪G · (σn IndMn

Ln
{1}) ∪ IndGLn{1}

where the last two members in the union are the isolated classes in Sn. We show that IndMn

Ln
{1}

is birationally induced. We have Mn of type Dn, and um = xβ1(1) · · ·xβm(1) is an element of
IndMn

Ln
{1}. Then if K := Mn, the centralizer CK(πK(um)) is connected by [12, p. 399], and the

claim follows.
We have IndGLn{1} = Od with d = [3, 22(m−1), 12] a full-member partition (see §3.4), hence

Od is birationally rigid, hence not birationally induced from (Ln, {1}), and it forms a single
birational sheet. Therefore

J(τn)
bir

=
⋃

ζ∈C\πiZ

Oexp(ζω̌n) t Oσnum

and Z(G)J(τn)
bir

= J(τn)
bir
t ẑJ(τn)

bir
. Also Sn = J(τn)

bir
t Zm.

We consider the remaining spherical pseudo-Levi subgroups:
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(i) For ` = 2, . . . , n, the subgroup M` is maximal of type D`Bn−`. If ` is even we have σ2
` = 1

and Z(L) = 〈σ`〉 × Z(G); if ` is odd we have σ2
` = ẑ and Z(L) = 〈σ`〉. In any case σ` and

ẑσ` are G-conjugate (via the reflection se1). Then Oσ` is a (birational) sheet consisting of
an isolated class, and Z(G)Oσ` = Oσ` .

(ii) For ` = n, we getMn maximal of type Dn. ThenMn admits the birationally rigid unipotent
class OMn

uk
, corresponding to the partition [22k, 12(n−2k)] in SO2n(C), for k = 1, . . . ,m− 1.

Since σn ∼W ẑσn via sn and OMn
uk

is characteristic inMn, we have that Z(G)Oσ`uk = Oσ`uk
is a (birational) sheet consisting of an isolated class, for k = 1, . . . ,m− 1.

Up to central elements, the remaining spherical conjugacy classes in G are X` correspond-
ing to the partition [22`, 12n+1−4`], for ` = 1, . . . ,m and Z` corresponding to the partition
[3, 22(`−1), 12n+2−4`], for ` = 2, . . . ,m: these are all birationally rigid unipotent conjugacy classes
in G.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌1) t Z1 t ẑZ1 2n1ω1 + n2ω2 1

(Ln, Z(Ln)◦, {1})
⋃

ζ∈C\πiZ
Oexp(ζω̌n) t Oσnum

n−1∑
i=1

niωi + 2nnωn 2

(M`, {σ`}, {1})
` = 2, . . . ,m− 1

Oσ`
2`−1∑
i=1

2niωi + n2`ω2` 1

(M`, {σ`}, {1})
` = m+ 1, . . . , n

Oσ`
2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 1

(Mm, {σm}, {1}) Oσm
n∑
i=1

2niωi 1

(Mn, {σn},OMnu` )
` = 1, . . . ,m− 1

Oσnu`
2`+1∑
i=1

niωi 1

(G, {1},O[22`,12n+1−4`])

` = 1, . . . ,m− 1
X`

∑̀
i=1

n2iω2i 2

(G, {1},O[22m,1]) Xm
m−1∑
i=1

n2iω2i + 2nnωn 2

(G, {1},O[3,22(`−1),12n+2−4`])

` = 2, . . . ,m− 1
Z`

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 2

(G, {1},O[3,22(m−1),12]) Zm
n∑
i=1

niωi |
m∑
i=1

n2i−1, nn ∈ 2N 2

Table 6: Type Bn, n = 2m, m ≥ 2.

5.4 Type Dn, n ≥ 4

We fix the following notation:

ẑ1 = σ1 = α∨n−1(−1)α∨n(−1), ẑn−1 = σn−1, ẑn = σn.

Then:
- if n = 2m is even, ẑn−1 and ẑn are involutions and ẑnẑn−1 = ẑ1; in particular,

m−1∏
j=0

α∨2j+1(−1) =

{
ẑn m even
ẑn−1 m odd

,

hence Z(G) = 〈ẑ1, ẑn〉 = 〈ẑ1, ẑn−1〉 ' Z2 × Z2.
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- If n = 2m+1 is odd, ẑn = ẑ−1
n−1 has order 4 and ẑ2

n = ẑ1, hence Z(G) = 〈ẑn〉 = 〈ẑn−1〉 ' Z4.
The following result holds for any n ≥ 4:

Lemma 5.12. Let τ1 := (L1, Z(L1)◦, {1}) ∈ D(G). Then the sheet S1 := J(τ1)
reg

= J(τ1)
bir

is
a spherical birational sheet containing the unipotent class Od, with d = [3, 12n−3].

Proof. L1 is maximal of type T1Dn−1 and Z(L1)◦ = exp(Cω̌1), Z(L1) = Z(L1)◦tZ(L1)◦ẑn. We
have

S1 =
⋃

z∈Z(L1)◦

G · (z Ind
CG(z)
L1

{1}) = G · ((Z(L1)◦)reg) ∪ IndGL1
{1} ∪ ẑ1 IndGL1

{1}.

Then the only unipotent isolated class in S1 is IndGL1
{1} = Od, where d = [3, 12n−3] in SO2n(C).

We show that IndGL1
{1} is birationally induced from (L1, {1}). Let u ∈ IndGL1

{1}, the centralizer
CG(π(u)) is connected by [12, p. 399], and the claim follows. Moreover the class O[3,12n−3] is the
class denoted by Z1 in [14]. Therefore

S1 =
⋃

ζ∈C\2πiZ

Oexp(ζω̌1) t Z1 t ẑ1Z1

and Z(G)S1 = S1 t ẑnS1

5.4.1 Type D2m, m ≥ 2

Let ϑ denote the graph automorphism of G swapping αn−1 and αn.

Lemma 5.13. The following spherical sheets of G are spherical birational sheets.
(i) Sn := J(τn)

reg
= J(τn)

bir
, where τn := (Ln, Z(Ln)◦, {1});

(ii) Sn−1 := ϑ(Sn) = J(τn−1)
reg

= J(τn−1)
bir

, where τn−1 := (Ln−1, Z(Ln−1)◦, {1}),

Proof. Consider Ln of type T1An−1 and maximal; moreover, Z(Ln)◦ = exp(Cω̌n) and Z(Ln) =
Z(Ln)◦ t Z(Ln)◦ẑ1. We have

Sn =
⋃

z∈Z(Ln)◦

G · (z Ind
CG(z)
Ln

{1}) = G · ((Z(Ln)◦)reg) ∪ IndGLn{1} ∪ ẑn IndGLn{1}.

Let O = IndGLn{1}, then O is one of the two unipotent classes corresponding to the very even
partition [2n], the one denoted by Xm in [14]. We show that IndGLn{1} is birationally induced
from (Ln, {1}). Let u ∈ IndGLn{1}, then CG(π(u)) is connected by [12, p. 399], and the claim
follows.

Therefore
Sn =

⋃
ζ∈C\2πiZ

Oexp(ζω̌n) tXm t ẑnXm

is a spherical birational sheet and Z(G)Sn = Sn t ẑ1Sn. By applying the automorphism ϑ we
get

Sn−1 =
⋃

ζ∈C\2πiZ

Oexp(ζω̌n−1) tX ′m t ẑn−1X
′
m

and Z(G)Sn−1 = Sn−1 t ẑ1Sn−1.
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We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . ,m, the subgroup
M` is maximal of type D`Dn−`. If ` is even we have σ2

` = 1 and Z(M`) = 〈σ`〉 × Z(G); if ` is
odd we have σ2

` = ẑ1 and Z(M`) = 〈σ`〉 × 〈zn〉. For ` = 2, . . . ,m − 1, σ` is not G-conjugate to
ẑnσ` and ẑn−1σ`, as one can see by passing to SO2n(C). On the other hand, for ` = 2, . . . ,m, ω`
is W -conjugate to ω` − 2ω1, therefore σ` is G-conjugate to ẑ1σ`. Moreover, ωm is W -conjugate
to ωm − 2ω1, ωm − 2ωn−1, ωm − 2ωn, hence σm is G-conjugate to ẑ1σm, ẑn−1σm and ẑnσm.
Then Oσ` is a (birational) sheet consisting of an isolated class, and Z(G)Oσ` = Oσ` t ẑnOσ` for
` = 2, . . . ,m− 1, whereas Z(G)Oσm = Oσm .

Up to central elements, the remaining spherical conjugacy classes in G are X` correspond-
ing to the partition [22`, 12n−4`], for ` = 1, . . . ,m − 1 and Z` corresponding to the partition
[3, 22(`−1), 12n−4`+1], for ` = 2, . . . ,m: these are all birationally rigid unipotent conjugacy classes
in G.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1)◦, {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌1) t Z1 t ẑ1Z1 2n1ω1 + n2ω2 2

(Ln, Z(Ln)◦, {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌n) tXm t ẑnXm

m−1∑
i=1

n2iω2i + 2nnωn 2

(Ln−1, Z(Ln−1)◦, {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌n−1) tX ′m t ẑn−1X

′
m

m−1∑
i=1

n2iω2i + 2nn−1ωn−1 2

(M`, {σ`}, {1})
` = 2, . . . ,m− 1

Oσ`
2`−1∑
i=1

2niωi + n2`ω2` 2

(Mm, {σm}, {1}) Oσm
n∑
i=1

2niωi 1

(G, {1},O[22`,12n−4`])

` = 1, . . . ,m− 1
X`

∑̀
i=1

n2iω2i 4

(G, {1},O[3,22(`−1),12n−4`+1])

` = 2, . . . ,m− 1
Z`

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 4

(G, {1},O[3,22(m−1),1]) Zm

n∑
i=1

niωi |
m∑
i=1

n2i−1, nn−1 + nn ∈ 2N
4

Table 7: Type Dn, n = 2m,m ≥ 2.

5.4.2 Type D2m+1, m ≥ 2

Lemma 5.14. Let τn = (Ln, Z(Ln), {1}) ∈ D(G). The spherical sheet Sn := J(τn)
reg

is a
birational spherical sheet, containing the unipotent class Od, with d = [2n−1, 12].

Proof. Consider Ln: it is maximal of type T1An−1 and Z(Ln) = exp(Cω̌n) is connected. We
have:

Sn =
⋃

z∈Z(Ln)

G · (z Ind
CG(z)
Ln

{1}) =

= G · (Z(Ln)reg) ∪ IndGLn{1} ∪ ẑ1 IndGLn{1} ∪ ẑn−1 IndGLn{1} ∪ ẑn IndGLn{1}.

Let O = IndGLn{1}, then O is the unipotent class corresponding to the partition [2n−1, 12] in
SO2n(C), the unipotent class denoted by Xm in [14]. We show that IndGLn{1} is birationally
induced from (Ln, {1}). Let u ∈ IndGLn{1}, then CG(π(u)) is connected by [12, p. 399], and the
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claim follows. Therefore

Sn =
⋃

ζ∈C\2πiZ

Oexp(ζω̌n) tXm t ẑ1Xm t ẑn−1Xm t ẑnXm

is a spherical birational sheet and Z(G)Sn = Sn

We consider the remaining spherical pseudo-Levi subgroups. For ` = 2, . . . ,m,M` is maximal
of type D`Dn−`. If ` is even we have σ2

` = 1 and Z(M`) = 〈σ`〉 ×Z(G) ' Z4 ×Z2; if ` is odd we
have σ2

` = ẑ1 and Z(M`) = 〈σ`, zn〉 ' Z4 × Z2. For ` = 2, . . . ,m, σ` is not G-conjugate to ẑnσ`
(and ẑn−1σ`), as one can see by passing to SO2n(C). On the other hand, for ` = 2, . . . ,m, ω`
is W -conjugate to ω` − 2ω1 and therefore σ` is G-conjugate to ẑ1σ`. Then Oσ` is a (birational)
sheet consisting of an isolated class, and Z(G)Oσ` = Oσ` ∪ ẑnOσ` for ` = 2, . . . ,m.

Up to central elements, the remaining spherical conjugacy classes in G are X` correspond-
ing to the partition [22`, 12n−4`], for ` = 1, . . . ,m − 1 and Z` corresponding to the partition
[3, 22(`−1), 12n+1−4`], for ` = 2, . . . ,m: these are all birationally rigid unipotent conjugacy classes
in G.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1)◦, {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌1) t Z1 t ẑ1Z1 2n1ω1 + n2ω2 2

(Ln, Z(Ln), {1})

⋃
ζ∈C\2πiZ

Oexp(ζω̌n) tXmt

tẑ1Xm t ẑn−1Xm t ẑnXm

m−1∑
i=1

n2iω2i + nn−1(ωn−1 + ωn) 1

(M`, {σ`}, {1})
` = 2, . . . ,m− 1

Oσ`
2`−1∑
i=1

2niωi + n2`ω2` 2

(Mm, {σm}, {1} Oσm
n−2∑
i=1

2niωi + nn−1(ωn−1 + ωn) 2

(G, {1},O[22`,12n−4`])

` = 1, . . . ,m− 1
X`

∑̀
i=1

n2iω2i 4

(G, {1},O[3,22(`−1),12n−4`+1])

` = 2, . . . ,m− 1
Z`

2∑̀
i=1

niωi |
∑̀
i=1

n2i−1 ∈ 2N 4

(G, {1},O[3,22(m−1),13]) Zm

n−2∑
i=1

niωi + nn−1(ωn−1 + ωn) |
m∑
i=1

n2i−1 ∈ 2N
4

Table 8: Type Dn, n = 2m+ 1,m ≥ 2.

5.5 Type E6

We have Z(G) = 〈ẑ〉, ẑ = α∨1 (ξ)α∨6 (ξ−1)α∨3 (ξ−1)α∨5 (ξ) where ξ is a primitive third root of 1.

Lemma 5.15. Let τ1 = (L1, Z(L1), {1}). Then the spherical sheet S1 := J(τ1)
reg

is a spherical
birational sheet containing the unipotent class 2A1.

Proof. L1 is maximal of type D5T1 and Z(L1) is connected since L1 = CG(exp ω̌1) and exp(2πiω̌1) =
ẑ. Then

S1 =
⋃

z∈Z(L1)

G · (z IndGL1
{1}) =

⋃
ζ∈C\2πiZ

Oexp(ζω̌1) ∪ Z(G) IndGL1
{1}.
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The class IndGL1
{1} = 2A1 is birationally induced from (L1, {1}) by Lemma 3.12. Indeed, for

u ∈ IndGL1
{1}, the subgroup CG(ū) is connected, by [12, p. 402]. Hence

S1 = J(τ1)
bir

=
⋃

ζ∈C\2πiZ

Oexp(ζω̌1) t Z(G)2A1

and Z(G)J(τ1)
bir

= J(τ1)
bir

.

There is only one more spherical pseudo-Levi subgroup, M2 of type A1A5. Observe that
σ2

2 = 1 and Z(M2) = 〈σ2〉 × Z(G). M2 gives rise to the (birational) sheet Oσ2
which coincides

with an isolated class. We have Z(G)Oσ2 = Oσ2 t ẑOσ2 t ẑ2Oσ2 . Up to central elements, the
remaining spherical conjugacy classes in G are A1 and 3A1: these are birationally rigid unipotent
conjugacy classes in G.

τ J(τ)
bir

Λ(O) d

(L1, Z(L1), {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌1) t Z(G)2A1 n1(ω1 + ω6) + n2ω2 1

(M2, {σ2}, {1}) Oσ2 n1(ω1 + ω6) + n3(ω3 + ω5) + 2n2ω2 + 2n4ω4 3

(G, {1}, A1) A1 n2ω2 3

(G, {1}, 3A1) 3A1 n1(ω1 + ω6) + n3(ω3 + ω5) + n2ω2 + n4ω4 3

Table 9: Type E6.

5.6 Type E7

We have Z(G) = 〈ẑ〉, ẑ = α∨2 (−1)α∨5 (−1)α∨7 (−1).

Lemma 5.16. Let τ7 = (L7, Z(L7), {1}). Then the spherical sheet S7 := J(τ7)
reg

is a spherical
birational sheet containing the unipotent class (3A1)′′.

Proof. L7 is maximal of type E6T1 and Z(L7) is connected since L7 = CG(exp ω̌7) and exp(2πiω̌7) =
ẑ. Then

S7 =
⋃

z∈Z(L7)

G · (z IndGL7
{1}) =

⋃
ζ∈C\2πiZ

Oexp(ζω̌7) ∪ Z(G) IndGL7
{1}.

The isolated class IndGL7
{1} = (3A1)′′ is birationally induced: for u ∈ IndGL7

{1}, the group
CG(π(u)) is connected, by [12, p. 403]. Hence

S7 = J(τ7)
bir

=
⋃

ζ∈C\2πiZ

Oexp(ζω̌7) t Z(G)(3A1)′′

and Z(G)J(τ7)
bir

= J(τ7)
bir

.

We consider the remaining spherical pseudo-Levi subgroups:
(i) Consider M2, maximal of type A7. We have σ2

2 = ẑ and Z(M2) = 〈σ2〉, σ2 and ẑσ2 = σ−1
2

are G-conjugate via w0. Then Oσ2 is a (birational) sheet consisting of an isolated class,
and Z(G)S = S.

(ii) ConsiderM1, maximal of type D6A1. We have σ2
1 = 1 and Z(M1) = 〈ẑ, σ1〉, σ1 and ẑσ1 are

not G-conjugate (in fact G has 2 classes of non-central involutions: Oσ1
and Oẑσ1

). Then
Oσ1

is a (birational) sheet consisting of an isolated class, and Z(G)Oσ1
= Oσ1

t ẑOσ1
.
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Up to central elements, the remaining spherical conjugacy classes in G are A1, 2A1, (3A1)′ and
4A1: these are birationally rigid unipotent conjugacy classes in G.

τ J(τ)
bir

Λ(O) d

(L7, Z(L7), {1})
⋃

ζ∈C\2πiZ
Oexp(ζω̌7) t Z(G)(3A1)′′ n1ω1 + n6ω6 + 2n7ω7 1

(M1, {σ1}, {1}) Oσ1 2n1ω1 + 2n3ω3 + n4ω4 + n6ω6 2

(M2, {σ2}, {1}) Oσ2

7∑
i=1

2niωi 1

(G, {1}, A1) A1 n1ω1 2

(G, {1}, 2A1) 2A1 n1ω1 + n6ω6 2

(G, {1}, (3A1)′) (3A1)′ n1ω1 + n3ω3 + n4ω4 + n6ω6 2

(G, {1}, 4A1) 4A1

7∑
i=1

niωi | n2 + n5 + n7 even 2

Table 10: Type E7.

5.7 Type E8

There are no spherical proper Levi subgroups. We list the spherical pseudo-Levi subgroups.
(i) Consider M8, maximal of type A1E7. We have σ2

8 = 1 and Z(M8) = 〈σ8〉. Then Oσ8
is a

(birational) sheet consisting of an isolated class.
(ii) Consider M1, maximal of type D8. We have σ2

1 = 1 and Z(M1) = 〈σ1〉. Then Oσ1
is a

(birational) sheet consisting of an isolated class.
The remaining spherical conjugacy classes in G are A1, 2A1, 3A1 and 4A1: these are birationally
rigid unipotent conjugacy classes in G.

τ J(τ)
bir

Λ(O)

(M8, {σ8}, {1}) Oσ8 n1ω1 + n6ω6 + 2n7ω7 + 2n8ω8

(M1, {σ1}, {1}) Oσ1

8∑
i=1

2niωi

(G, {1}, A1) A1 n8ω8

(G, {1}, 2A1) 2A1 n1ω1 + n8ω8

(G, {1}, 3A1) 3A1 n1ω1 + n6ω6 + n7ω7 + n8ω8

(G, {1}, 4A1) 4A1

8∑
i=1

niωi

Table 11: Type E8.

5.8 Type F4

There are no spherical proper Levi subgroups. We list the spherical pseudo-Levi subgroups.
(i) Consider M1, maximal of type A1C3. We have σ2

1 = 1 and Z(M1) = 〈σ1〉. Then Oσ1
is a

(birational) sheet consisting of an isolated class.
(ii) Consider M4, maximal of type B4. We have σ2

4 = 1 and Z(M4) = 〈σ4〉. Then Oσ4
is a

(birational) sheet consisting of an isolated class.
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(iii) M4 admits the birationally rigid unipotent class OM4

xβ1
(1), corresponding to the partition

[22, 15] in SO9(C). Then Oσ4xβ1
(1) is a (birational) sheet consisting of an isolated class.

The remaining spherical conjugacy classes in G are A1, Ã1 and A1 + Ã1: these are birationally
rigid unipotent conjugacy classes in G.

τ J(τ)
bir

Λ(O)

(M4, {σ4}, {1}) Oσ4 n4ω4

(M1, {σ1}, {1}) Oσ1

4∑
i=1

2niωi

(M4, {σ4},OM4

[22,15]
) Oσ4xβ1

(1)

4∑
i=1

niωi

(G, {1}, A1) A1 n1ω1

(G, {1}, Ã1) Ã1 n1ω1 + 2n4ω4

(G, {1}, A1 + Ã1) A1 + Ã1 n1ω1 + n2ω2 + 2n3ω3 + 2n4ω4

Table 12: Type F4.

5.9 Type G2

There are no spherical proper Levi subgroups. We list the spherical pseudo-Levi subgroups.
(i) Consider M2, maximal of type A1Ã1. We have σ2

2 = 1 and Z(M2) = 〈σ2〉. Then Oσ2 is a
(birational) sheet consisting of an isolated class.

(ii) Consider M1, maximal of type A2. We have σ3
1 = 1 and Z(M1) = 〈σ1〉; moreover, σ1 and

σ−1
1 are G-conjugate. Then Oσ1

is a (birational) sheet consisting of an isolated class.
The remaining spherical conjugacy classes in G are A1, Ã1: these are birationally rigid

unipotent conjugacy classes in G.

τ J(τ)
bir

Λ(O)

(M2, {σ2}, {1}) Oσ2 2n1ω1 + 2n2ω2

(M1, {σ1}, {1}) Oσ1 n1ω1

(G, {1}, A1) A1 n2ω2

(G, {1}, Ã1) Ã1 n1ω1 + 2n2ω2

Table 13: Type G2.

Proof of Theorem 5.2. From the tables in [14], for each group G the weight monoid is preserved
along the classes in each Z(G)J(τ)

bir
. On the other hand, the entries in the third column of the

tables in §5 are pairwise distinct, except for one case in Table 4, with n = 2p for p ∈ N, p ≥ 2:

τ1 = (Mp, {σp},O
Mp

{1}×[2,1n−2]) = (Mp, {σp},O
Mp

xαn (1))

τ2 = (Mp, {σp},O
Mp

[2,1n−2]×{1}) = (Mp, {σp},O
Mp

xβ1
(1)).

In this case σp and ẑσp are G-conjugate, and so are σpxαn(1) and ẑσpxβ1
(1). Therefore τ1 and

(Mp, {ẑσp},O
Mp

xβ1
(1)) are G-conjugate, i.e. J(τ1)

bir
= ẑJ(τ2)

bir
.
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We conclude this Section with another characterization of spherical birational sheets up to
central elements. If H is a spherical subgroup of G, by [6, Theorem 1], there exists a flat
deformation of G/H to a homogeneous spherical space G/H0, where H0 contains a maximal
unipotent subgroup of G: such an homogeneous space is called horospherical, and H0 a horo-
spherical contraction of H, see also [28]. Moreover, if G/H is (isomorphic to) a conjugacy class,
then C[G/H] 'G C[G/H0], see [14, Theorem 3.15].

Proposition 5.17. Let G be a complex connected reductive algebraic group with G′ simply-
connected. Let x1, x2 ∈ Gsph. Then Ox1

and Ox2
are contained in the same birational sheet up

to a central element if and only if CG(x1) and CG(x2) have the same horospherical contraction.

Proof. Let x ∈ Gsph and H = CG(x). We recall the description of the horospherical contraction
H0 of H containing U from [14, Corollary 3.8]. Let w be the unique element in W such that
Ox ∩ BwB is dense in Ox. By choosing x ∈ wB, the dense B-orbit in Ox is OBx . Then
P := {g ∈ G | g · OBx = OBx } is a parabolic subgroup containing B. Let Θ ⊆ ∆ be such that
P = PΘ. One has H0 = 〈U−, UwΘ , Tx〉, where, w := w0wΘ, UwΘ := U ∩ LΘ, Tx := T ∩ CG(x).

We may assume that xi lies in the dense B-orbit OBxi (⊆ BwiB), for i = 1, 2. We have seen
that Ox1

and Ox1
are contained in the same birational sheet up to a central element if and only

if Λ(Ox1
) = Λ(Ox2

). The last equality is equivalent to w1 = w2 and Tx1
= Tx2

by [14, Lemma
3.9, Theorem 3.23].

Remark 5.18. From the classification it follows that the birationally rigid unipotent conjugacy
class OM appearing in the decomposition datum τ = (M,Z(M)◦z,OM ) is in fact rigid, except
in the cases
(i) (G, {1}, X2) in type Cn, n ≥ 3;
(ii) (G, {1}, Zm) in type B2m, m ≥ 2.

In the first (resp. second) case J(τ)
bir

is contained only in the (spherical) sheet corresponding
to (L1, Z(L1)◦, {1}) (resp. (Ln, Z(Ln)◦, {1})).

In the other cases J(τ)
bir

is contained only in the sheet J(τ)
reg

: in particular every spherical
birational sheet is contained in a unique sheet.

6 Remarks for Lie algebras
By [2, Proposition 1], the subset gsph consisting of spherical ajoint orbits is a union of sheets.
Since every birational sheet is contained in a sheet, gsph is a union of spherical birational sheets.
Being birational sheets disjoint, gsph is a disjoint union of spherical birational sheets.

Having described the spherical birational sheets in G, from the tables in §5 one can easily
deduce the corresponding classification of spherical birational sheets in g. In each table we have
a spherical birational sheet J(l,OL)

bir
for each τ = (L,Z(L)◦,OL) with L a Levi subgroup of

G: here l := Lie(L) and OL is the nilpotent orbit in l corresponding to OL. Moreover, if L = G,
then J(g,O)

bir
= O; if L � G, then L is a maximal Levi subgroup Li of G and OLi = {1}

so that OLi = {0}. There are two possibilities: either J(τ)
bir

does not contain unipotent
conjugacy classes, or it contains a unique unipotent conjugacy class Ou. In this case, let Oν

be the corresponding nilpotent orbit in g. Then we have J(li, {0})
bir

=
⋃
ζ 6=0 Oζω̌i in the first

case and J(li, {0})
bir

=
⋃
ζ 6=0 Oζω̌i ∪ Oν in the second case. In particular this proves Losev’s

Conjecture 3.3 for gsph:

Theorem 6.1. Let g be reductive and let O1 and O2 be spherical adjoint orbits of g. Then
Λ(O1) = Λ(O2) if and only if O1 and O2 are contained in the same birational sheet of g.
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