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ABSTRACT: To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were
sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed.
Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen’s self-organizing
maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12
and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1,
PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was
relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics
indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper
understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.
KEYWORDS: longissimus dorsi, chemometric techniques, supervised Kohonen networks, PLS-DA, SWATH-MS

■ INTRODUCTION

Bovinemuscle tenderness represents the first quality required by
the consumer, and it is the result of complex biological processes
which occur in the striated muscles and in the closely linked
tissues during aging. The aging process is an extended time of
storage beyond the resolution of rigor and plays a key role in
enhancing meat palatability and quality parameters. Despite
interest from meat scientists, the biochemical changes underling
meat tenderness are not yet fully clarified. Nevertheless, there
are some major points of agreement about meat tenderizing
processes, which include, among others, proteolysis, as well as
cellular stress reactions.1

Over the last decade, proteomics has been applied to identify
biomarkers useful to predict the tenderness of bovinemeat.2−8 A
meta-proteomics analysis of 12 different gel-based proteomics
studies that identified biomarkers from Longissimus thoracis
(LT) and Semitendinosus (ST) muscles, of different types of
cattle from beef, hardy or mixed breeds, revealed strong
dissimilarities to identify generic biomarkers of beef tenderness.9

Indeed, muscle and gender specificities were identified.
Particularly, structural and contractile proteins, proteins
involved in protection against oxidative stress and apoptosis,
as well as proteins of energy metabolism, 70 family HSPs, and
proteasome subunits were more involved in LT than in ST
tenderness. Moreover, another recent meta-proteomics analysis
of the same research group,10 which included 28 proteomics
experiments investigating beef tenderness of solely Longissimus
muscle [i.e., Longissimus dorsi (LD), Longissimus lumborum, and
LT] detected a panel of 33 proteins. This panel, which warrants
further validation as universal biomarkers of beef Longissimus

tenderness, included proteins from the muscle structure and
contraction pathway, energy metabolism, response to stress, as
well as oxidative stress proteins and one protein involved in cell
detoxification. Interestingly, 16 proteins belonging to this panel
(i.e., ACTA1, MYH1, MYL1, TNNT3, TNNI2, CKM, ENO3,
ENO1, GAPDH, PGM1, PKM, HSPB1, HSPB6, CRYAB,
PARK7, and CA3) were also identified in our previous gel-based
proteomics study2 as related to tenderness of the LD muscle in
Charolais cattle. Here, we hypothesized that a high throughput
gel-free proteomics approach and advanced statistical analyses
would lead to an increased detection of biomarkers of LD
tenderness in Charolais beef breed.
In the present study, to broaden our understanding about the

biological mechanisms underpinning tenderization of LD of
Charolais cattle and to update the current status of protein
biomarker discovery involved in beef tenderness, a label-free
quantitative proteomics analysis based on Sequential Window
Acquisition of All Theoretical Mass Spectra (SWATH-MS)
coupled to multivariate statistical analysis and advanced data
mining was performed. In particular, pattern recognition tools
were applied: principal component analysis (PCA) and
Kohonen’s networks, the latter of which is able to identify
complex relationships between the variables based on nonlinear
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mapping. Then, partial least squares-discriminant analysis (PLS-
DA) was applied as a classification method, coupled to a variable
selection procedure in backward elimination, to identify the
biomarkers of tenderization. These multivariate analyses
allowed for an exhaustive detection of biomarkers and
contemporarily focused on the achievement of models with
the highest predictive ability.

■ MATERIALS AND METHODS
All chemicals described in this section were purchased from Sigma-
Aldrich (Milan, Italy).
Animals and Meat. The study was conducted on female (n = 4)

and male (n = 4) Charolais breed animals 14−18 and 15−19 months of
age, respectively, belonging to commercial batches intended for human
consumption. They were born in France and fattened in Italy for the last
6 months in two farms that adopted the same feeding plan. All the
animals were slaughtered the same day at an industrial abattoir (Reg.
EC/853/2004) that was around 1 h away by truck. After 2 h of resting
time in the lairage, the animals were captive-bold stunned and dressed
(Reg. EC/853/2004) and submitted to official inspection (Reg EC/
854/2004), and after that, the carcasses were classified (Reg. EC/1308/
2013, Reg. EC/1182/2017, and Reg. EC/1184/2017). The mean
weight of the carcasses was 338.3± 28.5 kg for females and 421.6± 15.6
kg for males, whereas the EC classification (category, carcass
conformation, and fat cover) was EU3 for females and AU2 for
males. A snippet of the LD muscle 30 min post-mortem was cut
between the fifth and sixth dorsal vertebra, immediately frozen in liquid
nitrogen, then stored at −80 °C, and was used as the sample of time 0
(t0, control). The carcasses were then suspended from the Achilles
tendon, kept at 12 °C for 2 h, and then placed in a chilled room (0−2
°C).Muscle pH and temperature were recorded at 40min post-mortem
and each hour for the next six in the LD muscle between fifth and sixth
vertebra using a Xerolyt Plus penetration electrode (Mettler Toledo,
Urdof, Switzerland) assembled on a portable pH meter (Knick 911,
Berlin, Germany) and a food core thermometer Testo 106 (Testo AG,
Lenzkirch, Germany). The pHwas thenmeasured at 24 h post-mortem.
4 days later, the sample of LD was excided from the right side of each
carcass (last eight dorsal vertebras). Each striploin bone-in was shared
in two parts (two blocks of four vertebrae each) and individually
vacuum-packaged into a shrink barrier bag (polyamide/polyethylene,
140 μm total thickness) used for commercial purposes. The samples
were transferred to the laboratory and stored in darkness at 2−4 °C
until their use. From the side of the sixth vertebrae of each animal,
before packaging, two pieces of meat (around 5 g) were taken,
singularly vacuum-packaged, and stored together with the blocks of
bone meat for 12 (t12) and 26 (t26) days when they were unpacked,
immediately frozen in liquid nitrogen, added with protease inhibitors,
and placed at −80 °C for proteomics analysis.
Sampling and Cooking Procedures. At 12- and 26-days post-

mortem, half of the samples stored under vacuum were deboned and
sliced into several steaks of 25 mm thickness. The first six slices, from
the cranial side, were used for sensory analysis and two more slices for
instrumental tenderness measurement after cooking. Cooking was done
using a clam shell grill with a ribbed surface on top and bottom (Sirman
CORTRR PS, Marsango, PD, Italy) set at 250± 5 °C, as checked by an
infrared thermometer (Testo 831, Testo AG, Lenzkirch, Germany), up
to an internal temperature of 63 ± 0.5 °C monitored by a type T
thermocouple (Testo 108, Testo AG, Lenzkirch, Germany). Steaks for
texture analysis were immediately chilled to 4 °C using a blast chiller
(Tecnodom AT05ISO, Vigodarzere, PD, Italy), then wrapped with
aluminum foil, and stored at 2 ± 1 °C overnight before coring.11 The
steaks for sensory evaluation were immediately submitted to test.
Sensory Evaluation and Warner−Bratzler Shear Force. A

quantitative descriptive sensory analysis was conducted by a 10-
member panel (6 men and 4 women, with ages ranging from 26 to 55
years) according to ISO 8586:2012 who had skills with sensory analysis
(ISO 13299:2016) on different kinds of foods. The cooked slices still
warm were freed of removable epimysia connective tissue and reduced
in cubes of 1.27 cm side bymeans of a sample sizer, and two cubes for an

assessor, taken from different sites of the slices, were served for three
sessions a day over three consecutive days (three or two samples/
session). In each day, the samples were presented to assessors in a
randomized order. Samples were evaluated on a 10-point scale (1 = the
least intense and 10 = the most intense) for odor, taste, flavor, juiciness,
sweet, tenderness, saltiness, bitterness, acidity, gumminess, and overall
acceptability. The sessions were held far from breakfast and/or lunch,
and samples were tested at intervals of about 5min. The tests were done
in a laboratory, where the temperature was set at 20 °C (ISO
8589:2007).

Instrumental texture was measured using the Warner−Bratzler shear
(WBS) test.12 Six to eight strips, 1.27 cores, from each cooked steak
were cut parallel to the longitudinal orientation of the muscle fibers.
The cores were sheared using a TA-HDi texture analyzer (Stable Micro
Systems, Survey, UK). The cutting blade was 2 mm thick and had a
speed of 200 mm/min when cutting through strips.13 The results were
expressed as the maximum shear force in kg/cm2.

Protein Extraction and Proteomics Analysis. Pieces of 200 mg
of frozenmuscle tissue were homogenized as previously reported2 in 1.5
mL of lysis/solubilizing solution containing 7 M urea, 2 M thiourea, 3%
CHAPS, 20 mMTris, and 1X inhibitor cocktail tablet (Complete Mini;
Roche) by using nitrogen liquid. Proteins were then precipitated
overnight at −20 °C in four volumes of cold acetone, pelleted by
centrifugation at 14,000x g for 15 min at 4 °C, and resuspended in 600
μL of 100 mM NH4HCO3. After protein quantification by using BCA
protein assay, proteins were digested and peptides were subjected to
SWATH-MS analysis, as previously described.14 Briefly, liquid
chromatography tandem mass spectroscopy analyses were performed
using a micro-LC Eksigent Technologies system (Dublin, USA)
interfaced with a 5600+ TripleTOF instrument (AB Sciex, Concord,
Canada). The injection volume of each sample was 4.0 μL. Samples
used to generate the SWATH spectral library were subjected to data-
dependent acquisition (DDA) and then to cyclic data-independent
analysis using a 25 Da window. The MS data were acquired by using
Analyst TF v.1.7 (AB Sciex). PeakView v.1.2.0.3 and Protein Pilot v.4.2
(AB Sciex) software were used to generate the peak list. The MS files
were searched for protein identification using Protein Pilot and Mascot
(Matrix Science, Inc., Boston, MA). Quantification was performed with
PeakView and MarkerView v.1.2 (AB Sciex) by integrating the
extracted ion chromatogram of all the unique ions for a given peptide.
SwathXtend was employed to build an integrated assay library with the
DDA acquisitions using a protein FDR threshold of 1%. The six
peptides per protein with the highest MS1 intensity and six transitions
per peptide were extracted from the SWATH files. Peptides with FDR
lower than 1% were exported for the univariate and multivariate
statistical analyses.

Statistical Analyses. The data of WBS were analyzed by the
analysis of variance (ANOVA) test with animal, days of aging, and their
interaction as the main effects. When the ANOVA was significant,
means were compared using the Tukey b posteriori test. The
statistically significant difference was established at p < 0.05.

The differences in protein expression between samples were
analyzed statistically by Student’s t-test using a p-value <0.05 and fold
change (FC) >1.3 and <0.769. The multivariate statistical analysis was
carried out using PCA after autoscaling15 for a preliminary exploration
of the data set. The study was focused to identify candidate biomarkers
in four different comparisons: t0 vs t12 (biomarkers of early
maturation); t12 vs t26 (biomarkers of late maturation); t0 vs t26
(biomarkers of long maturation); and t0 vs t12&t26 (general
biomarkers of maturation). Kohonen’s self-organizing maps (SOMs)
were also applied to each of the comparisons performed.16 Kohonen’s
SOMs are artificial neural networks, that is, mathematical algorithms
able to solve complex problems by simulating the human brain
functioning. Kohonen’s SOMs are based on an auto-associative
unsupervised algorithm: the data described by their multivariate
structure (here, each sample described by its protein profile) are
presented to the network, which groups them depending on their
similarity. This similarity can also be local, that is, related to a subset of
the variables employed to describe the problem. Kohonen’s SOMs are
based on a single layer of neurons, usually arranged in a square (top
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layer), where the samples appear grouped at the end of the learning
phase. Below each neuron of the top layer, there is a column of cells, one
cell for each descriptor (X variables, here the proteins), which contains
the weights of the network. During one epoch of the learning process,
each sample is presented in turn to the network. For each sample, the
distance between the sample and every column of weights is calculated.
The column with the minimum distance is considered as the winning
neuron. The weights of this neuron are modified so that, at the
subsequent cycle, the distance of the same sample from the winning
neuron is the smallest. A similar correction is applied to the neurons in
the neighborhood of the winner. This correction decreases with the
distance and usually also decreases with the number of epochs. In the
beginning, all the network is affected by the corrections, while in the last
cycles, only the winning neuron is corrected. Similarly, in the beginning,
the learning rate, that is, the amount of correction introduced, is larger
than in the last cycles. The aim of Kohonen learning is to map similar
signals to similar neuron positions. The final result is a map of neurons,
where the most similar samples are in the same cell or in close cells. The
weights below each neuron give insights into the reason for the
clusterization of the objects. In the present work, for all the
comparisons, Kohonen’s networks were run with the following settings:
toroidal boundary, batch algorithm, hexagonal topology, random
initialization of weights, and learning rate decreasing linearly from 0.5 to
0.01; for the general maturation (t0 vs t12&t26 samples), a top map of
10 × 10 neurons and 300 training epochs provided the best results,
while a top map with 8 × 8 neurons and 200 training epochs were
adopted for the other comparisons.
PLS-DA17,15 was then applied to identify candidate biomarkers in

each of the four performed comparisons, with a variable selection

strategy in backward elimination, allowing the selection of the most
discriminant variables according to the smallest percentage classi-
fication error rate in cross-validation (leave-more-out procedure with 5
cancellation groups of 20% of the samples randomly selected each time,
procedure repeated 1000 times): at each iteration of the variable
selection algorithm, the variable with the lowest VIP score was
eliminated.18 The final results were reported both in fitting and in cross-
validation and compared to the PLS-DA models calculated with the
variables selected on the basis of the monovariate approach. The
classification performances were evaluated on the basis of several
parameters: accuracy %, non-error-rate %, sensitivity, specificity, and
precision.19

PCA and PLS-DA were carried out by MATLAB R2014a (The
Mathworks, Natick, MA, USA) using in-house-developed routines and
the Classification Toolbox from Milano Chemometrics;20 Kohonen
SOMs were built with the Kohonen and CPANN toolbox forMATLAB
from Milano Chemometrics.16 Graphical representations were carried
out by MATLAB, Statistica v.7 (Statsoft Inc., Tulsa, OK, USA), and
Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

Bioinformatics Analyses.Gene ontology (GO) annotations of the
identified proteins were screened against Bos Taurus database using the
PANTHER platform v.15.0 (http://www.pantherdb.org/).21 Protein−
protein interactions and enriched KEGG pathways were detected using
STRING tool v.11.0 (http://string-db.org) setting p < 0.05 and gene
count >2 as the cut-off point and Bos Taurus as taxonomy.22

Interactions were retrieved at the high confidence level (score 0.7)
based on experimental and database knowledge, excluding all the other
prediction methods implemented in STRING (such as co-expression

Figure 1.Kinetic of post-mortem pH decline and beef sensory quality. (a) pH values and temperature of LDmuscles of heifers and bulls in the first 6 h
post-mortem (mean± standard deviation). The pooled ultimate pH value (24 h p.m.) was 5.51± 0.04 and 5.53± 0.07 (p > 0.05) for heifers and bulls
respectively. (b) Sensory attribute analysis of LD muscle after early (D12) and long (D26) aging time. (c) Sensory attribute analysis of LD muscle
comparing heifers and bulls.

Journal of Agricultural and Food Chemistry pubs.acs.org/JAFC Article

https://doi.org/10.1021/acs.jafc.1c03578
J. Agric. Food Chem. XXXX, XXX, XXX−XXX

C

http://www.pantherdb.org/
http://string-db.org
https://pubs.acs.org/doi/10.1021/acs.jafc.1c03578?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.1c03578?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.1c03578?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jafc.1c03578?fig=fig1&ref=pdf
pubs.acs.org/JAFC?ref=pdf
https://doi.org/10.1021/acs.jafc.1c03578?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and text mining). Proteins were subjected to k-means clustering for five
clusters, and disconnected nodes were excluded.

■ RESULTS AND DISCUSSION

Sensory and Tenderness Evaluation of Early and Long
Aging of LD Muscles. Sensory quality traits, tenderness, and
proteomic changes of the bovine LD muscle during early and
long maturation time were analyzed, following the experimental
design reported in Figure S1. The kinetics of pH decline
measured in the LD muscle in the first 6 h of post-mortem is
shown in Figure 1a. The decrease appeared relatively linear and
without significant differences between males and females.
However, the mean slope of the pH curve of heifers was
significantly greater (p < 0.05) than that of bulls. The pH
measured after 1- and 2-h post-mortem, which was always higher
than 6 for all animals, except one female, was significantly
correlated (p < 0.05) with the shear force measured at 26 days of
aging (r =−0.723 and−0.709 respectively, p < 0.05). Therefore,
it seems that the higher the pH in the first hour’s post-mortem,
the lower the shear force after 26 days of aging. It has been
demonstrated that the temperature of m. L. dorsi at pH 6
(approximately) is on average equal to 32 and 35 °C in heifers
and bulls, respectively.23 Here, the results showed that the
average temperature at pH 6 was lower, around 25 °C, which
could be related to the lengthening of the aging time from 12 to
26 days, which caused the significant variation of some sensory
attributes. The intensity of sweet, salty (p < 0.001), and sour (p <
0.01) tastes was increased, similar to the juiciness (p < 0.01) and
tenderness (p < 0.001) in the samples aged for 26 days
compared to those at 12 days (Figure 1b). Several studies have
demonstrated the relationship between sensory tenderness and
aging: in particular, an increase in sensory tenderness of the L.
dorsi muscle has been shown, which was correlated with the
aging times between 7 and 56 days,24 from 9 to 14 days of
aging,25 and finally between 3 and 35 days of aging.26

Regarding the comparison between bulls and heifers,
significant differences were observed (Figure 1c): the intensity
of odor (p < 0.05), bitterness (p < 0.001), acidity (p < 0.05), and
gumminess (p < 0.005) was greater in bulls than in heifers, while
the intensity of taste (p < 0.05), flavor (p < 0.001), juiciness (p <
0.001), and acceptability (p < 0.01) was higher in heifers than in
bulls. The meat of the heifers showed a higher sensory quality
than that of the bulls, as highlighted also by other authors.27,28

The juiciness was correlated with tenderness (r = 0.756, p <
0.01) and with gumminess (r = −0.643, p < 0.01), while
acceptability was correlated with gumminess (r = −0.567, p <
0.05). The shear force measurements showed a significant effect
of the aging period, with an average difference of −11.15 N
between 26 and 12 days (Table 1). Indeed, the shear force values
were significantly correlated with sensory tenderness (r =
−0.664, p < 0.01). Nonetheless, the aging time acted differently
on bulls and heifers. At 12 days, the WBS was significantly
greater in heifers than in bulls (39.7 vs 31.7, p < 0.01), while at 26
days, the values were comparable (24.8 vs 24.3, p > 0.05). It is
interesting to note the correlation between the shear force and
the time lapse: a recent study has observed the decrease in the
shear force values at 14 days of aging compared to the
measurements conducted at 9 days on m. L. dorsi.25 It has been
found that shear force values at 14 days were lower than those
measured at 7 days29 and that shear force values at 4 weeks of
aging were significantly lower than those measured after 2
weeks.30

Proteome Changes in the Bovine LD Muscle during
Early and Long Aging. Proteins from muscle samples of
Charolais heifers and bulls (0, 12, and 26 days after slaughter)
were subjected to SWATH-MS analysis (Table S1). Each
biological replicate was measured in three technical replicates,
and one sample (sample code 10/1, female at t12) was discarded
for technical problems. Figure S2 reports the results of PCA
applied to the overall data set consisting of 69 samples (24 t0
samples, 21 t12 samples, and 24 t26 samples) described by 137
variables (protein signals) after autoscaling. The first two PCs
explained about 34% of the overall information (PC1: 21.03%
and PC2: 13.77%): the samples were quite well grouped
according to the maturation time, but no evident information on
the gender was present. However, the differences in the protein
profile related to gender were investigated also by monovariate
statistics. Student’s t test (p < 0.05, FC > 1.3 and <0.79) detected
five less abundant (HSP90AA1, TF, S100A1, MYOZ2, and
PABPC1) and four more abundant (FBP2, UQCRC1,
ERCC6L, and PGM1) proteins in meat of heifers with respect
to meat of bulls, regardless of the state of maturation. These
differences can be explained by the hormonal influence on
muscle proteins, which have already been demonstrated.31

Then, univariate and multivariate statistical analyses were
carried out in order to identify dysregulated proteins related
to meat aging.
The proteomic profile was then correlated to the sensory

evaluation and the WBS force measurements by means of the
correlation matrix, as reported in Table S1. The correlation
matrix reports the proteins identified on the rows and the
sensory variables and the WBS force on the columns; in each
position of the matrix, the correlation between the two variables
indicated on the corresponding row and column is reported:
correlation values range between −1 (corresponding to two
variables with a negative linear dependence) and 1 (correspond-
ing to two variables with a positive linear relationship), while
values around 0 are reported for variables with no linear
dependence. Because the correlation is an evaluation of the
linearity between two variables, if it is around 0, the two variables
could be completely independent or show a nonlinear behavior.

Table 1. Instrumental Measurements of LD Muscle
Tenderness after 12 and 26 Days of Aginga

DWBS
pooled std.

dev. F p-value

Heifer 1 (nD12 = 5; nD26 = 5) −10.6 6.6
Heifer 2 (nD12 = 5; nD26 = 5) −23 14.4
Heifer 3 (nD12 = 5; nD26 = 5) −13.8 13.6
Heifer 4 (nD12 = 5; nD26 = 5) −12.2 7.4
Bull 1 (nD12 = 5; nD26 = 5) −6.8 6.9
Bull 2 (nD12 = 5; nD26 = 5) −0.8 8.0
Bull 3 (nD12 = 5; nD26 = 5) −12.4 9.0
Bull 4 (nD12 = 5; nD26 = 5) −9.6 10.9
Average DWBS −11.15
Animal 2.88 <0.05
Days 39.49 <0.001
Animal x Days 1.59 ns
aDifference of WBS force values (DWBS) calculated as the difference
between the mean WBS at t26 and at t12 for each sample (animal)
independently, the corresponding standard deviation (Pooled Std.
Dev.) calculated by pooling the standard deviations obtained for each
animal independently, as well as F values and significance of animal
and aging days’ effects and their interaction on WBS data, are
reported.
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The red values in the correlation matrix indicate correlations
statistically significant at p < 0.05. In general, a few proteins can
be identified as positively or negatively correlated to the
sensorial evaluations or the WBS force. In particular, among the
eight proteins detected as positively correlated with tenderness,
there were ATP2A1, which plays a role in apoptotic cell death,32

ACTN3 and CKM muscle proteins, as well as five different
metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and
PFKM). Fourteen proteins negatively correlate with tenderness,
eight of which were cytoskeletal proteins, that is, keratins.
Early-Aging Biomarkers. Kohonen’s SOMs were applied to

the early-maturation data set, consisting of 45 samples (24
samples at t0 and 21 at t12) described by 137 variables. The top
map (Figure 2a) shows the samples well separated in the two
groups: similar samples are located by the algorithm in the same
neuron or in adjacent neurons. Due to the toroidal structure, the
neurons located on the boundary at the extreme left and right
show similar characteristics, and the same applies to neurons
located on the boundary at the bottom or at the top of the map.
In the top map, the three replications of each sample are in the
same neuron or in adjacent neurons, showing that the
instrumental variability is smaller than the biological one. PCA
was then applied to the weights calculated for each neuron: the

score plot and the loading plot are reported in Figure S3 (panel
a). The score plot reports the neurons of the top map in the
space given by the first two PCs: neurons where samples of the
two classes are present are indicated with different labels, while
empty neurons are indicated as black circles. PCA highlights a
good separation of the neurons where different groups of
samples are located: t0 samples mainly at positive scores on PC2
and t12 samples in the opposite position. The loading plot shows
a group of variables with larger signals in t12 samples at positive
loadings on PC1 and negative ones on PC2 and another group at
negative loadings on PC1 and positive on PC2, with the opposite
behavior.
PLS-DA coupled to the variable selection algorithm selected

58 variables and 2 latent variables (LVs), providing the correct
classification of 100% of the samples in fitting and almost the
same result in cross-validation (accuracy = 99.77%, 20% of the
samples in the test set at each iteration, 1000 iterations) (Table
S1). As comparison, the model including all the variables
provided the best results in cross-validation (20% of the samples
in the test set at each iteration, 1000 iterations) with 7 LVs,
achieving an accuracy of 97% (100% in fitting): the variable
selection procedure was therefore effective in the identification
of the most discriminating variables, achieving a simpler model

Figure 2. Results of multivariate statistics. Kohonen’s top map, score plot of the first two LVs and plot of the coefficients for each PLS-DA model
calculated: (a) early-aging biomarkers (58 variables in the final model); (b) late-aging biomarkers (43 variables in the final model); (c) long-aging
biomarkers (86 variables in the final model); (d) biomarkers of general aging (97 variables in the final model). The plots of the coefficients were
separated in two panels for more clarity.
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with higher performances in cross-validation and reducing the
risk of overfitting. The first two LVs explained 34.35% of the
total variance of the X variables and 45.73% of the class
memberships (details are given in Table S1). The score plot of

the first two LVs and the plot of the coefficients of the model
calculated with 2 LVs are reported in Figure 2a: the samples
appeared very well separated, with t12 samples at negative values
on LV1 and the controls at positive values; the plot of the

Figure 3.Results of monovariate statistics. Score plot of the first two LVs and plot of the coefficients for each PLS-DAmodel calculated: (a) early-aging
biomarkers (17 variables in the final model); (b) late-aging biomarkers (20 variables in the final model); (c) long-aging biomarkers (47 variables in the
final model); (d) biomarkers of general aging (32 variables in the final model).
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coefficients showed at positive values the 36 proteins
upregulated at t12, and at negative values the 22 proteins
downregulated at t12.
The monovariate approach highlighted 17 proteins as

deregulated (p < 0.05) in the comparison between controls
and 12 days aged meat (Table S1). These biomarkers were used
as input to a PLS-DA model: the best predictive results were
obtained with one LV in the final model (accuracy = 95.56% in
fitting and 95.39% in cross-validation; Table S1). The
corresponding score and coefficient plots are reported in Figure
3a: the samples appeared quite well separated along LV1, with
two control samples misclassified in the t12 class (the solid
horizontal line corresponds to the delimiter between the two
classes). The plot of the coefficients showed 7 proteins as
upregulated at t12 and 10 proteins as downregulated after 12
days.
Late-Aging Biomarkers. Kohonen’s SOMs were applied to

the late-maturation data set, consisting of 45 samples (21
samples at t12 and 24 samples at t26) described by 137 variables.
The top map (Figure 2b) shows the samples well separated in
the two groups, considering its toroidal structure. As for early
aging, the three replications of each sample are in the same
neuron or in adjacent neurons of the top map, showing that the
instrumental variability is smaller than the biological one. PCA,
applied to the weights calculated for each neuron, gave the
results reported in Figure S3 (panel b); also in this case, neurons
containing t26 or t12 samples were indicated by a different
marker, while neurons containing no samples were indicated as a
black circle. In general, most of neurons containing t26 samples
appear to be located at negative scores on PC1 and at positive
ones on PC2, while most of neurons containing t12 samples are
at positive scores on PC1. The corresponding loading plot
highlights a group of variables at negative loadings on PC1:
among these, those with a positive score on PC2 have larger
signals in t26 samples, while those with a negative loading on
PC2 have a larger signal on the three t12 samples at negative
scores on PC2; the variables with the most positive loadings on
PC1 show instead larger signals in t12 samples.
PLS-DA was then applied; in this case, 43 variables were

included in the final model by the variable selection algorithm,
providing the best prediction results with 2 LVs: the perfect
classification of all the samples in fitting and almost perfect
classification (accuracy = 99.98%) in cross-validation (20% of
the samples in the test set at each iteration, 1000 iterations)
(Table S1). Also in this case, the model including all the
variables showed the best results in cross-validation (20% of the
samples in the test set at each iteration, 1000 iterations) with 6
LVs, with an accuracy of 96% (100% in fitting). As for the
previous case, the variable selection procedure proved to be
effective in the identification of the most discriminating
biomarkers, providing a simpler model and higher performances
in cross-validation and reducing the risk of overfitting. The first
two LVs explained 27.95% of the total variance of the X variables
and 46.25% of class belonging (Table S1). The score plot of the
first two LVs and the corresponding plot of the coefficients are
reported in Figure 2b: the samples appeared to be very well
separated with t12 samples at negative values on LV1 and t26
samples at positive values; the plot of the coefficients showed at
positive values the 20 proteins upregulated at t26 and at negative
values the 23 proteins downregulated at t26.
The monovariate analysis by Student’s t test (p < 0.05)

identified 20 deregulated proteins in the comparison between
controls and 12 days aged meat (t12 vs t26) (Table S1),

providing a PLS-DA model including 1 LV, characterized by
very good classification performances (accuracy = 100% in
fitting and 98.91% in cross-validation; Table S1). Figure 3b
reports the score plot of the first LV, with the samples well
separated along the y-axis (the solid line represents the delimiter
between the two classes); the corresponding coefficients plots
(Figure 3b) report 4 proteins as upregulated at t26 (at positive
values) and 16 downregulated ones (at negative values).

Long-Aging Biomarkers. Kohonen’s SOMs were applied to
the late-maturation data set, consisting of 48 samples (24
samples at t0 and 24 at t26) described by 137 variables. The top
map (Figure 2c) shows the samples well separated in the two
groups, considering its toroidal structure. Also in this case, the
three replications of each sample are in the same neuron or in
adjacent neurons of the top map. PCA, applied to the weights
calculated for each neuron, gave the results reported in Figure S3
(panel c), with neurons containing t0 or t26 samples with a
different marker and neurons containing no samples with a black
circle. The score plot shows the perfect separation of the
neurons containing t0 or t26 samples, the last ones being located
at negative scores both on PC1 and on PC2 and t0 samples
located mainly in the opposite position. The corresponding
loading plot highlights a group of variables at negative loadings
on both PC1 and PC2, with a larger signal in t26 samples and
another group at positive loadings on both PCs with an opposite
behavior.
To identify long-maturation biomarkers, PLS-DA was applied

with variable selection. The final model included 86 variables
and 2 LVs, providing the perfect classification of the samples in
fitting and almost perfect results in cross-validation (accuracy =
99.95%, 20% of the samples in the test set at each iteration, 1000
iterations) (Table S1). The model including all the variables
showed the best results in cross-validation (20% of the samples
in the test set at each iteration, 1000 iterations) with 4 LVs, with
an accuracy of 99.5% (100% in fitting): in this case, the results
with and without variable selection appear to be quite similar for
the cross-validation performances; however, variable selection
provides a simpler model (two LVs rather than four), and the
risk of overfitting is therefore reduced.
The first two LVs explain 38.10% of the variance of the X

variables and 46.27% of class membership (Table S1). The score
plot of the first two LVs is reported in Figure 2c: the samples
appear to be well separated along the first LV, with the control
samples at positive values along LV1 and the t26 samples at
negative values. The plot of the coefficients (Figure 2c) is
separated into two panels for the sake of clarity: 52 variables are
upregulated at t26 (positive coefficients), while 34 are
downregulated (negative coefficients).
The monovariate approach identified 47 proteins having a

different abundance in the comparison between controls and 26
days aged meat (Table S1). The corresponding PLS-DA model
contained two LVs and showed performances slightly lower than
the multivariate model, with the perfect classification of all the
samples in fitting and almost perfect performances in cross-
validation (accuracy = 99.64%) (Table S1). The corresponding
score and coefficient plots for this model are reported in Figure
3c: the samples are very well separated along LV1, with control
samples at positive values and t26 values at negative ones. The
plot of the coefficients shows 16 markers as upregulated at t26
and 31 markers as downregulated after 26 days.

General Biomarkers of Aging. Kohonen’s SOMs were
applied to the general-aging data set, comprising all the 69
samples (24 samples at t0, and 21 and 24 samples at t12 and t26,
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respectively) described by 137 variables. The neurons in the top
map containing samples of different groups are indicated by a
different color (Figure 2d): if t0 vs all the other samples are
considered, the samples appear to be well separated on the top
map, considering the toroidal structure, while the separation is
not so clear if the three distinct groups are considered. Again, the
three replications of each sample are in the same neuron or in
adjacent neurons of the top map. PCA, applied to the weights
calculated for each neuron, gave the results reported in Figure S3
(panel d), with neurons containing t0, t12, or t26 samples with
different markers and neurons containing no samples with a
black circle. The score plot shows quite a good separation of the
neurons containing t0 samples with respect to neurons
containing the other two groups of samples: t0 samples are
mainly located at positive scores on PC1 and at negative ones on
PC2, while t12 and t26 neurons are located in the opposite
position. The corresponding loading plot highlights a group of
variables at negative loadings on PC1 and at positive ones on
PC2, with a larger signal particularly in t26 samples and partially
in t12 samples with respect to t0 samples, while the variables
located in the opposite behavior show a larger signal in t0
samples.
To identify general biomarkers of aging, PLS-DA was applied

to the overall data set comparing t0 samples vs all other samples
with variables selection. The final model included 97 variables
and 6 LVs, providing the perfect classification of the samples in
fitting and almost perfect results in cross-validation (accuracy =
99.82%) (Table S1). The comparison with results obtained
without variable selection proved the effectiveness of the
selection procedure in providing the most discriminating
biomarkers, achieving in the meantime a simpler model with
higher performances in cross-validation and reducing the risk of
overfitting. The model including all the variables in facts showed
the best results in cross-validation (20% of the samples in the test
set at each iteration, 1000 iterations) with 5 LVs, with an
accuracy of 98% (100% in fitting).
The first two LVs explain 30.48% of the variance of the X

variables and 38.76% of class membership (Table S1). Figure 2d
shows the score plot of the first two LVs, with samples well
separated in the space given by the first two LVs; the plot of the
coefficients (Figure 2d) is separated in two panels for more
clarity: 56 variables are upregulated in t12 and t26 samples
(positive coefficients), while 41 are downregulated (negative
values).
The monovariate approach identified 32 proteins with

different abundances in the comparison between controls and
other samples (Table S1). The corresponding PLS-DA model
contained six LVs and showed performances lower than the
multivariate model, with the perfect classification of all the

samples in fitting and good performances in cross-validation
(accuracy = 95.39%) (Table S1). The corresponding score and
coefficient plots for this model are reported in Figure 3d: the
samples are quite well separated along LV1, with t0 samples at
negative values and t12 and t26 values at more positive ones.
The plot of the coefficients shows 10 markers as upregulated
with aging and 22 markers as downregulated with aging.
The results obtained by the different approaches (fold-

change, p-level calculated by the monovariate approach,
coefficient of the PLS-DA model, and loadings of the first two
PCs calculated from the Kohonen network) are reported in
Table S1 and Figure S3, showing the general agreement between
the different approaches, notwithstanding the more exhaustive-
ness reached by PLS-DA. The present results showed that the
multivariate statistical analysis was more comprehensive and, for
all the considered comparisons, allowed us to identify more than
double of biomarkers detected by univariate analysis. Over-
lapping and nonoverlapping proteins with changes of the
abundance after 12 and 26 days of aging, detected by univariate
and multivariate analysis, are reported in Figure 4 (for protein
names, see Table S1). Hemoglobin alpha and beta subunits and
carbonic anhydrase 3 were the most decreased proteins in the
LD muscle after 12 days of aging. Mimecan, chains of collagen
alpha-1(I), and alpha-2(I) were instead identified as the most
decreased proteins in meat aged for 26 days. Mimecan
expression is associated with collagen deposition, while post-
mortem degradation of collagen fibers plays a key role in meat
tenderness by altering the connective tissue structure.33

Therefore, the greater tenderness of meat after 26 days of
maturation can be ascribed to degradation of connective tissue, a
process that does not seem to be involved during the early aging,
as suggested by the absence of chains of collagen.

Functional Enrichment, Pathway, and Protein−Protein
Interaction Network Analyses. Proteins detected by multi-
variate analysis (PLS-DA) were subjected to bioinformatics to
explore the biological functions and pathways and to construct
specific molecular networks (Table S1). In order to identify
overrepresented biological processes (BP), cellular components
(CC), and molecular functions (MF), proteins were subjected
to a GO enrichment analysis using the PANTHER classification
system (Figure 5). Themain enriched categories were similar for
the different comparisons carried out, that is, cellular and
metabolic processes (for the BP category), cellular anatomical
entity, intracellular and protein complex (for the CC category),
binding, catalytic, and transporter activity (for MF), with a
higher percentage of the identified genes in long and general
aging. To determine key proteins in the function networks, the
STRING online tool was used to analyze protein−protein
interactions. The analysis resulted in statistically significant

Figure 4. Venn diagrams showing the number of significantly affected proteins by early, late, long and general aging. Significant proteins were selected
based on (a) univariate (Student’s t test) or (b) multivariate (PLS-DA) analysis (see Table S1 for gene/protein names).
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networks (shown in Figure S4) with an average node degree
(i.e., number of interactions at the score threshold that a protein
has on the average in the network) of 1.42 (t0 vs t12), 0.78 (t12
vs t26), 1.98 (t0 vs t26), and 2.35 (t0 vs t12&26). This pointed

out the presence of higher connected neighborhoods in the
network after 26 days of aging, as indicated by the presence of
larger groups of interacting proteins. The clusters determined by
the k-means method were found to be enriched in interacting

Figure 5. Functional classifications of biomarkers of meat tenderness. GO analysis of proteins followed by BP, CC and MF, depicts the functional
distribution of proteins in bovine meat after (a) early, (b) late, (c) long, and (d) general aging. The number of assigned genes may be greater than the
number of recognized genes as the same gene can be included in different categories.
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proteins of ″muscle structure and contraction″ and ″energy
metabolism″ in all the comparisons and also in proteins of
″response to stress and to oxidative stress″, particularly after the
long and general aging. Lastly, KEGG pathway enrichment was
performed to extract the biological pathways related to the
differentially abundant proteins (Table S1). The most
significant enriched pathway was ″muscle contraction″ (q-
value = 5.83e-06) for early aging; ″glycolysis/gluconeogenesis″
and ″carbon metabolism″ (both with q-value = 2.48e-07) for
late aging; and ″carbon metabolism″ for long and general aging
(q-value 2.41e-13 and 7.86e-10, respectively). This analysis
revealed that dysregulated proteins of early maturation were
highly associated with pathways related to muscle structure and
contraction (i.e., ″cardiac muscle contraction″, ″hypertrophic
cardiomyopathy″, and ″dilated cardiomyopathy pathways″);
those of late aging were also involved in ″biosynthesis of amino
acids″, ″oxidative phosphorylation″, and in metabolism of
carbohydrates (galactose, starch, and sucrose), while proteins
with altered abundance after long aging were also implicated in
″metabolism of glyoxylate, dicarboxylate, and propanoate.″
In summary, the proteome changes in the LD muscle of

Charolais cattle after 12 or 26 days of aging were investigated
herein. The gel-free high throughput proteomics approach
coupled to advanced statistics confirmed 24 out of the 39 unique
proteins previously identified2 and allowed us to identify a huge
amount of other additional biomarkers, which were not
previously detected by gel-based proteomics analysis. In
conclusion, the data gathered by this study enlarge the panel
of biomarkers associated with meat tenderness of Charolais
cattle34−36 and provide a powerful method based on gel-free
proteomics and multivariate chemometric techniques that can
be applied also in other areas of meat science.
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