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Abstract

We propose a state-space model to estimate the dynamic network structures among

67 financial institutions selected from STOXX 600 North America in the period Jan-

uary 2005 to May 2020. We measure the network strength and find that the spillover

effect increases significantly during the period of the latest two crises: the 2008 financial

crisis and the coronavirus pandemic. Using weekly updates of the weight matrix, we

detect four time-varying communities using the Louvain approach. Three communities

mostly include companies of the financial supersectors (banks, financial services and

insurance), while the remaining one includes mostly Canadian companies. Further-

more, we notice that communities centralities are peaking during 2008 financial crisis,

while during the COVID-19 period lower values are estimated.
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1 Introduction

Recent crises have shown that knowing the financial market network structure is of paramount

importance to understand potential spillover effects across the system as well as the role of

single institutions. Furthermore, detecting the potential presence of communities can pro-

vide more insight on the channels of propagations of shocks, and on which target groups to

focus on to prevent potential damages to the entire system.

So far, a variety of methods have been proposed for estimating financial networks. One

group of methods construct the network by measuring the bilateral risk exposures, e.g.,

Granger-causality (Billio et al., 2012), CoVaR (Adrian and Brunnermeier, 2011) or copula

(Li et al., 2018). Another popular group of methods focuses on matrices related to the

underlying network, e.g., the inverse covariance (Friedman et al., 2008; Torri et al., 2018) or

weight matrix in a SAR model (Meen, 1996; Bhattacharjee and Jensen-Butler, 2013). Given

that financial networks are inherently dynamic, when considering time-varying networks, the

most common way is to adopt a moving-window approach. If the network relationships are

assumed to be cross-lagged, one could also apply time-varying VAR (Kimura et al., 2003).

A different strand of the financial literature shows that big public health events might

cause strain on the financial market (Gong et al., 2020; Leoni, 2013). In particular, the

potential effects of COVID-19 on stock markets are very much under scrutiny, as the pan-

demic could have consequences on the entire financial system (Goodell, 2020). Several recent

papers investigate the impact of the pandemic on the US stock market volatility (Albulescu,

2020; Baker et al., 2020), but to our knowledge, only a handful of papers examine the impact

from a systemic risk angle. One such example is Rizwan et al. (2020), the authors study the

stock market in eight countries which are affected the most by the coronavirus, and shows

that the systemic risk increases significantly in the pandemic period.

In this paper, we make a step forward and propose the use of a state-space model to
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estimate the weekly evolution of the network across financial institutions listed in the STOXX

600 North America index. Further, we detect communities and study network strength and

centrality during crisis periods. Empirical results show that the network strength has a

steep upraise during both the 2008 financial crisis and the COVID-19 pandemic crisis. In

the meanwhile, the network centralities of the identified groups peak in 2008 and decrease

afterwards.

2 Model Description

In a spatial autoregressive model (SAR), the weight matrix captures the relationship among

subjects or different entities. If the number of subjects is D, the simplest form of SAR is,

yt = ρW̃yt + εt, εt ∼ N(0, σ2
ε ID) (1)

where yt is the vector containing the log returns of D companies at week t, and W̃ is the

D × D weight matrix, representing the relationships among entities. W̃ is usually row-

normalized with zero diagonal elements. Depending on the model specification, ρ can be a

diagonal matrix with distinct or equal entries (Caporin and Paruolo, 2015). The latter case

is here adopted, and the scalar coefficient ρ quantifies the overall network strength.

To obtain a time-varying network structure, we introduce the following state-space model,

 yt = Atyt−1 + (Wt +W 2
t )yt + εt, εt ∼ N(0, σ2

ε ID),

xt = xt−1 + ηt, ηt ∼ N(0, σ2
ηIDx).

(2)

The first equation (the observation equation) includes three elements: the time lag Atyt−1,

the spatial lag (Wt+W 2
t )yt and a white noise εt. At is a diagonal matrix capturing the serial

dependence, and we define Wt = ρtW̃t. Moreover, W̃ is assumed to be max-row normalized,
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similarly to Billio et al. (2017), thus allowing to recover ρt from the sequence of Wt. We

treat the diagonal of At and the off-diagonal elements of Wt as hidden states. Thus, the

state vector xt has dimension Dx = D2. The second equation (the state equation) in (2)

allows xt to evolve stochastically.

Different from the conventional SAR, whereas the weight matrix is usually pre-specified,

Wt in (2) evolves according to a multivariate regression scheme, and in order to address the

second order of spillover effects, W 2
t is included. Notice that higher orders (larger than 2)

of Wt can be easily included in the model (2), but we find that the current form delivers

the best results. The possible reason is that higher orders of the weight matrix introduce

limited information, which is largely offset by the extra noise they bring. Considering the

observation equation is nonlinear, the ensemble Kalman filter (Evensen, 1994) is applied for

the state estimation.

3 Empirical Results

We focus on D = 67 financial companies listed in STOXX 600 North America, selected from

three supersectors, banks, financial services and insurance; Appendix A lists the companies’

ticker symbols. We consider the stock log-returns in the period from January 5, 2001 to

May 8, 2020, for a total of T = 1010 weekly observations. The first 209 observations (4

years) are used for warm-up, as in high dimension (in our case Dx = 4489) the filter needs

several steps to converge. Moreover, the observation variance σ2
ε is calculated from a 26-week

moving window, while the state variance σ2
η is set differently for At and Wt: the variance of

At is 0.12 and the variance of Wt is 0.0012. The initial guess for the states is sampled from a

N(0.01, 0.052). Empirical results are then reported starting from January 2005. Robustness

tests with different starting points over the available data and different window lengths

provide qualitatively similar results and are not reported.
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Network strength and the COVID-19 crisis

Given the weekly full weight matrices Wt obtained from the model estimation, we first

calculate the dynamic network strength ρt and plot in Figure 1 (a). The curve shows ρt rises

steeply during the periods of the 2008 financial crisis and the recent pandemic crisis. The

evidence implies that during the pandemic crisis the spillover effect plays a bigger role in the

stock price movement. Further, Figure 1 (b) compares the movement of ρt with the daily

confirmed COVID-19 cases in the US and in the 5 most affected European countries (Italy,

France, Germany, Spain and UK).1 It’s clear that the blue line echoes the upraise of the red

lines, which confirms the relation between the pandemic and the network strength.

Communities Detection

Louvain algorithm is applied to the weekly weight matrices to identify network partitions.

Figure 2 reports the detected communities across the 67 companies (columns), whose names

are colored according to their supersectors: blue for banks, red for financial services, black

for insurance companies. In each week (row), the companies that belong to the same group

have the same color. In total, four stable communities are detected. We notice that, with

few exceptions, the detected communities are coherent with the supersectors. Specifically,

group 1, 2 and 4 correspond to the supersectors banks, financial services and insurance,

respectively. Differently, group 3 (in orange) includes all the Canadian companies.

We further calculate the centrality for each group by averaging the closeness centralities

of the group members. Figure 3 compares the centralities of the four detected groups. We

see that all groups achieve the highest centrality during the 2008 crisis and diminish slightly

during the post-crisis period. In general, the banks group and the financial services group

have higher centrality than the insurance group. As for the period of the recent pandemic

(in a black box), we observe that the insurances group starts to show a steady upward trend.

1The COVID-19 data have been downloaded from the online data repository provided by Johns Hopkins
University at https://github.com/CSSEGISandData/COVID-19.
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Figure 1: (a) ρt, from January 2005 to May 2020. The grey shaded bars indicate the periods
of two latest crises: the 2008 financial crisis and the COVID-19 pandemic crisis. (b) ρt and
confirmed COVID-19 cases since 2020. The red dashed line is the sum of the confirmed daily
COVID-19 cases in 5 European counties: Italy, Germany, Spain, France and UK.

A possible explanation is that the insurance companies are expected to deal with much more

reimbursements during the post-pandemic period.

4 Conclusion

In this article, we use a state-space model to estimate the dynamic network structures for

US financial market. The steep raises of the network strength shows the spillover effect is
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Figure 2: Community detection. Each company corresponds to one column, the color of
which indicates the weekly detected groups for this company. The company name at the
bottom is colored by supersectors (from STOXX): blue for banks, red for financial services
and black for insurance companies.

much higher during both the 2008 crisis and the COVID-19 pandemic. We identify four stable

groups and show how their centralities vary across the study period. Our work provides some

new evidence showing that the financial network can be subject to change as a consequence

of a pandemic crisis.
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Figure 3: Group centralities, from January 2005 to May 2020. The recent pandemic period
is outlined in a black box.

Appendices

A Tickers of 67 financial companies

Supersector Stock ticker symbol

Banks BAC, BOM, BNS, CM, C, CMA, FITB, HBAN, JPM, KEY, MTB,

NTIOF, PNC, RF, RY, SIVB, TD, TFC, USB, WFC, ZION

Financial Services AXP, BAM, BK, BLK, COF, SCHW, ETFC, EFX, BEN, GS,

MCO, MS, NTRS, RJF, SPGI, SEIC, STT, TROW, AMTD

Insurance AFL, Y, AIG, AON, AJG, ALL, ACGL, BRO, BRK.B, CB, CINF,

RE, FRFHF, GL, HIG, LNC, L, MFC, MKL, MMC, MET, POW,

PGR, RGA, SLF, TRV, WRB
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