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ABSTRACT

The aim of this study was to evaluate the effective-
ness of mid-infrared spectroscopy in predicting milk 
protein and free amino acid (FAA) composition in 
bovine milk. Milk samples were collected from 7 Irish 
research herds and represented cows from a range of 
breeds, parities, and stages of lactation. Mid-infrared 
spectral data in the range of 900 to 5,000 cm−1 were 
available for 730 milk samples; gold standard methods 
were used to quantify individual protein fractions and 
FAA of these samples with a view to predicting these 
gold standard protein fractions and FAA levels with 
available mid-infrared spectroscopy data. Separate pre-
diction equations were developed for each trait using 
partial least squares regression; accuracy of prediction 
was assessed using both cross validation on a calibra-
tion data set (n = 400 to 591 samples) and external 
validation on an independent data set (n = 143 to 294 
samples). The accuracy of prediction in external valida-
tion was the same irrespective of whether undertaken 
on the entire external validation data set or just within 
the Holstein-Friesian breed. The strongest coefficient 
of correlation obtained for protein fractions in external 
validation was 0.74, 0.69, and 0.67 for total casein, 
total β-lactoglobulin, and β-casein, respectively. Total 
proteins (i.e., total casein, total whey, and total lac-
toglobulin) were predicted with greater accuracy then 
their respective component traits; prediction accuracy 
using the infrared spectrum was superior to prediction 
using just milk protein concentration. Weak to moder-
ate prediction accuracies were observed for FAA. The 

greatest coefficient of correlation in both cross valida-
tion and external validation was for Gly (0.75), indi-
cating a moderate accuracy of prediction. Overall, the 
FAA prediction models overpredicted the gold standard 
values. Near-unity correlations existed between total 
casein and β-casein irrespective of whether the traits 
were based on the gold standard (0.92) or mid-infrared 
spectroscopy predictions (0.95). Weaker correlations 
among FAA were observed than the correlations among 
the protein fractions. Pearson correlations between 
gold standard protein fractions and the milk processing 
characteristics of rennet coagulation time, curd firming 
time, curd firmness, heat coagulating time, pH, and 
casein micelle size were weak to moderate and ranged 
from −0.48 (protein and pH) to 0.50 (total casein and 
a30). Pearson correlations between gold standard FAA 
and these milk processing characteristics were also 
weak to moderate and ranged from −0.60 (Val and pH) 
to 0.49 (Val and K20). Results from this study indicate 
that mid-infrared spectroscopy has the potential to 
predict protein fractions and some FAA in milk at a 
population level.
Key words: mid-infrared spectroscopy, protein 
fractions, free amino acids, milk quality

INTRODUCTION

Detailed milk product quality is not considered in the 
Irish national dairy cow breeding objective, at present, 
despite its fundamental importance for adding value to 
the Irish agri-food industry. This is simply due to lack 
of routine access to data on detailed milk quality pa-
rameters, possibly owing to the expense of generating 
such data using gold standard methods. Consideration 
of milk quality parameters in national breeding goals is 
particularly important for exporting countries such as 
Ireland to consistently achieve a high-quality product 
suitable for value-added international markets.
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The concentration of protein and the composition 
of protein fractions in milk influence the production 
efficiency of cheese, infant milk formula, and both CN 
and whey protein supplements. Wedholm et al. (2006) 
stated that the concentration of CN in milk protein has 
a favorable effect on the quantity of protein transferred 
from milk into cheese curd and high concentrations of 
αS1-CN, β-CN, and κ-CN and of β-LG B were found 
to significantly increase cheese yield. Elofsson et al. 
(1996) demonstrated a low β-LG concentration reduces 
the fouling rate of heating equipment. β-Lactoglobulin, 
which is not present in human milk, is a major milk 
allergen and therefore efforts have been made to reduce 
the level of this protein in cow milk (Jabed et al., 2012). 
Therefore, milk protein composition is of increasing 
importance to the dairy industry due to the expected 
global demand for cheese (FAOSTAT, 2014). Protein 
plays an important role in immunity, growth, and de-
velopment of infants (Lönnerdal, 2003). Therefore, milk 
protein composition is particularly important for infant 
formula production (de Wit, 1998) as the composition 
of bovine milk is different from human milk (Jensen, 
1995). Infant formula production is the fastest growing 
sector in the world dairy market (FAOSTAT, 2014), 
and the international market for infant milk formula 
is worth approximately US$5 to $6 billion annually. 
Protein composition also affects milk processing char-
acteristics such as the heat coagulating time of bovine 
milk (Singh, 2004).

Regarding milk processing ability, high free AA 
(FAA) levels indicate poor quality milk as they arise 
from protein hydrolysis and are generally in greatest 
concentration in early and late lactation milk (Davis 
et al., 1994), when milk quality is poorest (Auldist et 
al., 1995). Human and bovine milk have different FAA 
content and composition, with bovine milk generally 
having a lesser concentration of FAA than human milk 
(Armstrong and Yates, 1963; Sarwar et al., 1998; Agos-
toni et al., 2000; Roucher et al., 2013). Therefore, for 
nutritional reasons, supplementation of infant formula 
with the required FAA may be of interest in infant 
formula production. Achieving a milk FAA profile in 
bovine milk similar to that of human milk through 
breeding may be an alternative strategy. The FAA pro-
file of milk is therefore of interest to dairy farmers, as 
milk processors may pay higher prices for milk based on 
its FAA composition.

Milk compositional traits such as protein fractions 
have a major influence on milk processing ability-
related traits such as rennet coagulating time (RCT; 
Auldist et al., 2004; Ikonen et al., 2004; Wedholm et 
al., 2006). It is well documented that milk composition 
and milk coagulation properties are affected by envi-

ronmental factors including stage of lactation (Ostersen 
et al., 1997; Heck et al., 2009). Auldist et al. (1995) 
documented a stage of lactation effect on both cheese 
yield and quality. The majority of milk production in 
Ireland is seasonal (Berry et al., 2006), as most dairy 
cows calve in spring (Berry et al., 2013). Therefore, 
it may be of interest to milk processors on how the 
correlations between milk compositional traits and pro-
cessing ability characteristics differ in different stages 
of lactation.

Despite the importance of quantifying individual 
proteins and FAA in milk, no inexpensive and effi-
cient method of measuring these components in milk 
is available. Mid-infrared spectroscopy (MIRS) is a 
technique that studies the interactions between light 
and matter at wavelengths in the spectral range of 
900 to 5,000 cm−1. It is based on the capability of 
molecules to reflect, transmit, or absorb part of the 
electromagnetic radiation when exposed to light. Ac-
cording to the Beer-Lambert law (Swinehart, 1962), the 
quantity of the electromagnetic radiation absorbed is 
directly proportional to the amount of the absorbent 
molecule in the sample. Mid-infrared spectroscopy is 
an efficient method currently used by milk recording 
organizations worldwide to predict milk fat, protein, 
and lactose and has recently been used to predict more 
detailed milk composition traits such as fatty acids (De 
Marchi et al., 2011; Soyeurt et al., 2011;), coagulation 
traits (De Marchi et al., 2013), as well as animal-level 
characteristics such as energy balance (McParland et 
al., 2011, 2012) and feed efficiency (McParland et al., 
2014). Limited studies exist evaluating the effective-
ness of MIRS in predicting milk protein fractions (De 
Marchi et al., 2010; Bonfatti et al., 2011; Rutten et 
al., 2011). The gold standard method used in both the 
studies of De Marchi et al. (2010) and Bonfatti et al. 
(2011) was HPLC; however, Rutten et al. (2011) used 
capillary zone electrophoresis. In the studies of Bon-
fatti et al. (2011) and Rutten et al. (2011), the ratio 
performance deviation ranged from 1.04 (γ-CN) to 2.12 
(protein) and from 0.48 (β-CN) to 1.06 (total whey), 
respectively. Across studies (Bonfatti et al., 2011; 
Rutten et al., 2011), the coefficient of determination 
for cross validation ranged from 0.08 (γ-CN) to 0.80 
(protein). However, De Marchi et al. (2009) expressed 
protein fractions as grams per liter, whereas Rutten et 
al. (2011) expressed them on a protein percentage basis 
(g/100 g) and Bonfatti et al. (2011) expressed them in 
both forms. Higher coefficient of determination values 
were obtained when protein fractions were expressed in 
grams per liter rather than on a percentage basis.

The aim of this study was to quantify the effectiveness 
of MIRS to predict individual milk proteins and FAA 
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as well as to estimate the association between these 
MIRS-predicted traits and other phenotypic character-
istics of milk including RCT, curd firming time (k20), 
curd firmness (a30), heat coagulation time (HCT), and 
pH. The use of MIRS as a tool to predict detailed milk 
quality traits is attractive because the mid-infrared 
spectrum of individual milk samples is available at a 
negligible cost to routine milk recording.

MATERIALS AND METHODS

Milk Sample Collection

Milk samples were obtained from 7 research farms 
operated by the Teagasc Animal and Grassland Re-
search and Innovation Centre, Moorepark, Fermoy, Co. 
Cork between August 2013 and August 2014, inclusive. 
Cows were milked daily at 0700 h (a.m.) and 1500 h 
(p.m.), and milk composition was recorded weekly us-
ing a MilkoScan FT6000 (Foss Electronic A/S, Hillerød, 
Denmark). The resulting spectrum, containing 1,060 
transmittance data in the mid-infrared region between 
900 and 5,000 cm−1, was stored. Following composi-
tion analysis, 505 a.m. and 225 p.m. milk samples were 
preserved with Broad Spectrum Microtabs II contain-
ing 8 mg of Bronopol and 0.3 mg of Natamycin (D&F 
Control Systems Inc., Norwood, MA) and stored at 4°C 
for further analysis. Samples were selected to maximize 
diversity of breed [Holstein Friesian (n = 454), Jersey 
(n = 117), Norwegian Red (n = 15), and Holstein Frie-
sian, Jersey, and Norwegian Red crossbreds (n = 144)], 
stage of lactation, milking time (i.e., a.m. or p.m. milk-
ing), parity and mid-infrared spectrum and represented 
621 animals; animals had a maximum of 3 records each.

Gold Standard Methodologies

Milk Protein Determination. Total protein was 
predicted by MIRS and calibrated using the Kjeldahl 
method. Milk protein fractions were also determined 
for 557 samples within 48 h of sample collection. Milk 
protein fractions were quantified using reverse-phase 
HPLC. Samples including the Sigma-Aldrich (St. 
Louis, MO) standards were prepared in denaturing buf-
fer (7 M urea + 20 mM Bis-Tris propane, pH 7.5) to 
which 5 μL/mL of mercaptoethanol was added to give 
a final protein concentration of approximately 2 mg/
mL. The samples were then incubated for 1 h at room 
temperature before filtering through a 0.22-μm filter. 
Protein composition was determined by reverse-phase 
HPLC using an adaptation of the method of Visser et 
al. (1991). Separation was performed using an Agilent 
Poroshell 300SB C18 column (2.1 mm × 75 mm; Agi-

lent Technologies UK Ltd., Stockport, UK). The HPLC 
system consisted of an Agilent 1200 Separation Module 
with MWD Detector and Agilent Chemstation Soft-
ware. Gradient elution and peak detection were per-
formed according to Mounsey and O’Kennedy (2009) 
and Reid et al. (2015). All CN and whey standards 
were supplied by Sigma-Aldrich.

Total CN was calculated as the sum of αS2-CN, αS1-
CN, β-CN, and κ-CN; total whey was calculated as the 
sum of α-LA, β-LG A, and β-LG B.

Protein fractions were expressed as grams per liter of 
milk, but were also expressed as a percentage of total 
protein or casein by dividing the yield of each protein 
fraction by the total protein or casein content of the 
milk sample.

Free Amino Acid Determination. The FAA, Lys, 
Val, Glu, Gly, Asp, Arg, and Ser were quantified in 
715 milk samples using cation exchange HPLC coupled 
with postcolumn ninhydrin detection as described by 
Mounier et al. (2007). Seven hundred fifty microliters 
of each milk sample was deproteinized by mixing with 
750 μL of 24% (wt/vol) trichloroacetic acid and left 
to stand for 10 min. Samples were subsequently cen-
trifuged at 20,817 × g (Microcentaur; MSE, London, 
UK) for 10 min at 4°C. The resulting supernatants were 
diluted with 0.2 M sodium citrate buffer (pH 2.2) to 
give approximately 250 nmol/mL of each AA residue. 
Samples were then diluted 1 in 2 with the internal 
standard, norleucine, to give an end concentration of 
125 nm/mL. Twenty microliters of each sample was 
then quantified for FAA using a Jeol JLC-500/V AA 
analyzer (Jeol UK Ltd., Garden City, UK) fitted with a 
JEOL Na+ high-performance cation-exchange column.

Determination of Milk Coagulation Properties

Milk coagulation properties were determined on 
preserved milk samples within 5 d of collection, using 
a Formagraph (Foss Electronic A/S) as described by 
Visentin et al. (2015). Coagulation properties measured 
included (1) RCT, defined as the number of minutes 
taken from rennet addition to the beginning of the co-
agulation, (2) k20, the time from the gel development to 
a width of 20 mm in the graph, and (3) curd firmness 
measured as the width of the graph after 30 min (a30) 
after rennet addition.

Heat Coagulation Time and pH Determination

Heat coagulation time was tested within 48 h of 
sample collection using the hot oil bath method as de-
scribed by Davies and White (1966). Heat coagulation 
time was measured by visual analysis and taken as the 
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time when each sample started to coagulate. Samples 
with a HCT > 30 min were classified as noncoagulat-
ing and discarded from the analyses. The pH of each 
sample was measured using a Seven compact pH-meter 
S220 (Mettler Toledo AG, Greifensee, Switzerland) 
within 24 h of sample collection.

Data Analysis

Identification of outlier gold standard values and 
trait distribution was determined using PROC UNI-
VARIATE in SAS (SAS Institute Inc., Cary, NC). 
Traits that did not have a normal distribution were 
transformed using a natural logarithm transformation. 
Gold standard values that were >3 standard deviations 
from the mean were considered to be outliers, and up 
to 3 outliers were removed from the protein fraction 
analyses, whereas up to 22 outliers were removed from 
the FAA analyses. Observations for each protein or 
FAA did not exist for all samples, primarily for logisti-
cal reasons (Table 1).

Spectral data were transformed from transmittance 
to linear absorbance through a logarithmic transforma-
tion of the reciprocal of the wavelength values (Soyeurt 
et al., 2011). Preliminary analyses revealed no improve-
ment in model prediction accuracy following math-
ematical pre-treatment (Savitzky-Golay first and sec-
ond derivatives of the log-transformed spectral data); 
therefore, the prediction models were developed using 
untreated spectra. Only one spectrometer was used in 
the present study. Equations were developed to predict 
each milk quality parameter separately using partial 

least squares regression (Proc PLS; SAS Institute Inc.). 
Spectral regions from 926 to 1,580 cm−1, 1,717–2,986 
cm−1, and 3,696–3,808 cm−1, were used to develop all 
prediction models based on the observed loadings for 
each wavelength.

Accuracy of the prediction equations was determined 
using external validation whereby 25% of data were 
excluded from equation calibration and used as an in-
dependent validation data set (VD). This procedure 
was repeated 4 times, using a different 25% of the data 
in the VD each time. Samples were selected for VD to 
represent similar variation to that present in the gold 
standard data in the calibration data set (CD) used 
to develop prediction equations. For each prediction 
model, the data set was sorted by the trait of interest. 
The first sample and every fourth sample thereafter 
were included in the VD for the first iteration; for the 
second iteration, the second sample and every fourth 
sample thereafter was chosen for the VD with a similar 
procedure used for the third and fourth iteration.

Therefore, separate VD and CD were generated for 
each prediction equation. All records from cows includ-
ed in the VD were removed from the CD and included 
only in the VD; therefore, no cow was represented in 
both the CD and VD in a given iteration.

Criteria used to determine the effectiveness of MIRS 
predictive models were the coefficient of correlation of 
cross validation (rc) and external validation (rv), the 
root mean square error of cross validation (RMSEc) 
and external validation (RMSEv), the slope (b), 
which is the linear regression coefficient between pre-
dicted values and gold standard values of each trait, 
the mean bias of prediction, which is the average differ-
ence between MIRS-predicted values and gold standard 
values in external validation, the standard error of the 
slope, and the bias and the ratio performance deviation 
(RPD), which is the ratio of the standard error in 
prediction to the standard deviation of each trait. Four 
validation data sets were created and then appended 
onto each other and the rc, rv, RMSE, b (SE), and 
bias (SE) was calculated based on all 4 iterations of 
combined. The average number of factors (#L) used 
to build the prediction equations was the average num-
ber from all 4 iterations rounded to the nearest whole 
number. Validation was also performed within just the 
Holstein-Friesian breed (i.e., the predominant breed) 
as well as across breeds. Furthermore, protein fractions 
were also predicted in the external validation using 
just the total milk protein concentration and compared 
with prediction accuracy using the MIRS.

Pearson correlations among the gold standard and 
among the MIRS-predicted values of protein fractions 
and FAA were estimated. Pearson correlations between 

Table 1. Number of records (n), mean, standard deviation, and 
coefficient of variation for the studied traits

Trait n Mean SD CV

Protein, g/L     
 Total CN 554 35.97 7.11 19.77
 αS1-CN 557 13.92 3.18 22.84
 αS2-CN 555 3.62 0.97 26.90
 β-CN 555 12.64 2.64 20.91
 κ-CN 556 5.92 1.67 28.27
 Total whey 549 6.08 1.79 29.45
 α-LA 551 1.11 0.32 28.34
 Total LG 552 4.97 1.65 33.20
 β-LG A 557 2.55 1.26 49.42
 β-LG B 554 2.44 1.69 69.31
Free AA, μg/mL     
 Total free AA 715 64.12 22.41 34.95
 Lys 686 4.52 4.26 94.35
 Val 625 1.67 1.43 85.73
 Glu 714 30.70 15.96 52.00
 Gly 699 7.00 5.25 74.90
 Asp 595 2.62 1.63 62.45
 Arg 612 3.38 1.68 49.67
 Ser 591 1.39 0.83 59.74
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gold standard and MIRS-predicted FAA with RCT, k20, 
a30, HCT, and pH were also estimated.

RESULTS

The total data set consisted of 730 samples; 584 milk 
samples were from spring-calving cows fed a predomi-
nantly grazed grass-based diet and the remaining 146 
samples were from autumn-calving cows fed a TMR 
diet. Milk samples represented different stages of lac-
tation and ranged from 5 to 375 d in milk; first to 
eleventh parity cows were represented.

Descriptive Statistics

Mean gold standard values of all milk traits are sum-
marized in Table 1. Mean values of αS1-CN (13.92 g/L), 
αS2-CN (3.62 g/L), β-CN (12.64 g/L), and κ-CN (5.92 
g/L) in the present study were approximately in the 
ratio 3:1:3:1. Large differences were observed in the 
coefficient of variation across traits. The coefficient of 
variation for protein fractions ranged from 20% (total 
CN) to 69% (β-LG B).

The FAA present at the greatest concentration was 
Glu (mean = 30.70 μg/mL) but exhibited a large vari-
ability (SD of 15.96 μg/mL), whereas Ser was present 
at the lowest concentration (mean = 1.39 μg/mL). The 
coefficient of variation was generally large for all FAA, 
with a wide range from 35% (total FAA) to 94% (Lys).

The lactation profile of (gold standard) total FAA 
(Figure 1) indicated that the concentration of total 
FAA was greatest in early and late lactation. Protein 
concentration decreased in early lactation and increased 
linearly across lactation thereafter (Figure 2).

Protein Prediction Accuracy

Prediction accuracies achieved for cross validation 
and external validation are summarized in Table 2. The 
mean bias in prediction of protein fractions was not 
different from zero (P > 0.05). The number of factors 
included in the partial least squares prediction model 
varied from 4 (total CN, αS1-CN, β-CN, and β-LG B) to 
16 (β-LG A). The rc between gold standard and MIRS-
predicted protein fractions ranged from 0.43 (β-LG A) 
to 0.76 (total LG), and the greatest rv values obtained 
for protein fractions were 0.67, 0.69, and 0.74 for β-CN, 
total β-LG, and total CN, respectively. Total CN also 
had the greatest RPD (1.49). The slope between the 
gold standard and MIRS-predicted values for protein 
fractions ranged from 0.76 (β-LG B) to 0.99 (κ-CN and 
β-CN). The average difference in rv when undertaken 
across all breeds or within just the Holstein-Friesians 
(Supplemental Table S1; http://dx.doi.org/10.3168/
jds.2015-9747) varied from −0.08 (Arg) to 0.06 (αS1-
CN).

The rv for the different proteins predicted from just 
protein content was on average 0.18 less than prediction 
of the same traits using MIRS. Expressing protein frac-
tions as a percentage of total protein, accuracy of pre-
diction was poorer than when proteins were expressed 
as grams per deciliter of milk (results not shown); 
the difference between rv for traits when expressed as 
grams per liter of milk compared with when expressed 
as a percentage of protein ranged from 0.01 (κ-CN) to 
0.42 (α-LA).

Prediction Accuracy of Free Amino Acids

Accuracy of the developed equations to predict FAA 
are summarized in Table 2. The number of factors in-
cluded in the prediction model ranged from 9 (Ser and 

Figure 2. Trend in protein concentration across lactation.

Figure 1. Trend in total free AA (i.e., the sum of gold standard 
Lys, Val, Glu, Gly, Asp, Arg, Ser) across lactation.
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Arg) to 15 (Gly). Moderate prediction accuracy of FAA 
were achieved, particularly for Gly, Lys, and Glu, with 
an rc and rv of 0.75 and 0.75, respectively, for Gly and 
an rc of 0.68 and an rv of 0.59, respectively, for Glu; Gly 
also had the greatest RPD (1.38). Arginine had the 
lowest rv (0.26). The slope between the gold standard 
and MIRS-predicted values ranged from 0.67 (Ser) to 
0.92 (Asp). The FAA were on average overpredicted (P 
< 0.05).

Phenotypic Correlations

Pearson correlations among the protein fractions are 
summarized in Table 3. Correlations among the gold 
standard proteins and among the MIRS-predicted pro-
tein fractions were all different (P < 0.05) from zero. 
The correlations between gold standard total CN and 
gold standard casein fractions ranged from 0.67 (αS2-
CN) to 0.92 (αS1-CN and β-CN) and were similar to 
correlations between the MIRS-predicted total CN and 
the MIRS-predicted components of CN. However, the 
correlation between the gold standard values of αS1-CN 
and αS2-CN (0.53) was weaker than the respective cor-
relation between the MIRS-predicted values (0.85).

The correlation between total whey and total LG was 
0.99 (gold standard values) and 0.94 (MIRS-predicted 
values). Similarly, the correlation between the gold 
standard α-LA and total LG (0.47) was similar to the 
respective correlation between their MIRS-predicted 

values (0.48), whereas the correlations between the 
gold standard β-LG A and β-CN (0.36) and their cor-
responding MIRS-predicted values (0.79) differed.

Pearson correlations among gold standard FAA and 
among MIRS-predicted FAA are in Table 4. In general, 
the correlations among the gold standard FAA and the 
respective correlations among the MIRS-predicted FAA 
were in less agreement than the correlations among the 
gold standard or the MIRS-predicted protein fractions.

Pearson correlations among protein-related traits 
(i.e., MIRS-predicted protein, MIRS-predicted casein, 
gold standard protein fractions) and milk processing 
characteristics (i.e., RCT, k20, a30, HCT, and pH) in 
early (DIM < 60) and late (DIM > 180) lactation 
are in Table 5; all correlations were generally weak 
to moderate. Rennet coagulating time was positively 
associated with MIRS-predicted protein in early lac-
tation (r = 0.19), but was negatively correlated with 
MIRS-predicted protein in late lactation (r = −0.11), 
corresponding with the increase in protein concentra-
tion across lactation (Figure 2). In early lactation, RCT 
was negatively associated with MIRS-predicted casein 
(−0.21). Curd firming time was negatively correlated 
with the protein-related traits in both early and late 
lactation. The opposite was true for a30, which was 
generally positively correlated with the protein-related 
traits in early and late lactation. Native pH was nega-
tively correlated with gold standard protein fractions in 
early lactation, but was both negatively and positively 

Table 2. Number of records (n), average number of factors (#L; rounded to the nearest whole number), root mean square error (RMSE), 
correlation coefficient between gold standard and predicted values in cross validation (rc) and external validation (rv), bias (SE in parentheses), 
slope (b: SE in parentheses), and ratio performance deviation (RPD) tested using the split sample cross validation and external validation

Trait n

Cross validation

 

External validation

#L RMSE rc Bias (SE) b (SE) RMSE rv RPD

Protein           
 Total CN 554 4 4.68 0.75  −0.0068 (4.71) 0.98 (0.04) 4.80 0.74 1.49
 αS1-CN 557 4 2.16 0.70  0.0057 (2.23) 0.97 (0.05) 1.26 0.66 1.35
 αS2-CN 555 5 0.78 0.60  0.0072 (0.80) 0.90 (0.06) 1.99 0.66 1.22
 β-CN 555 4 1.92 0.69  0.0008 (1.99) 0.99 (0.05) 2.37 0.67 1.33
 κ-CN 556 6 1.25 0.67  −0.0037 (1.26) 0.99 (0.05) 0.81 0.56 1.33
 Total whey 549 6 1.17 0.76  0.0049 (1.22) 0.87 (0.04) 1.36 0.65 1.32
 α-LA 551 8 0.26 0.58  0.0012 (0.26) 0.88 (0.06) 0.26 0.54 1.17
 Total LG 552 14 1.01 0.76  0.0015 (1.06) 0.87 (0.04) 1.20 0.69 1.38
 β-LG A 557 16 1.14 0.43  0.0003 (1.14) 0.94 (0.09) 1.16 0.39 1.09
 β-LG B 554 4 1.29 0.65  0.0016 (1.50) 0.76 (0.06) 1.39 0.44 1.15
Free AA          
 Total free AA 715 12 16.29 0.69  −0.0487 (17.87) 0.88 (0.04) 17.79 0.61 1.26
 Lys1 686 14 0.56 0.69  −0.6910 (3.30) 0.89 (0.04) 3.35 0.55 1.27
 Val1 625 11 0.57 0.60  −0.3381 (1.62) 0.76 (0.04) 1.93 0.59 1.14
 Glu1 714 13 0.41 0.68  −2.0689 (13.22) 0.86 (0.04) 0.46 0.59 1.20
 Gly1 699 15 0.41 0.75  −0.4769 (3.54) 0.91 (0.04) 3.50 0.75 1.38
 Asp1 595 10 0.55 0.58  −0.3744 (1.67) 0.92 (0.08) 1.66 0.44 1.15
 Arg1 612 9 0.38 0.66  −0.2347 (1.59) 0.91 (0.05) 4.35 0.26 1.25
 Ser1 591 9 0.48 0.51  −0.1460 (0.79) 0.67 (0.07) 1.22 0.42 1.07
1Traits were log-transformed before analysis.
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correlated with gold standard protein fractions in late 
lactation. The correlations among HCT and β-LG in 
early and late lactation were −0.17 and 0.22, respec-
tively. The Pearson correlations between HCT and 
κ-CN in both early and late lactation were not different 
from zero (r = −0.05 and r = 0.08, respectively).

Correlations between gold standard FAA and milk 
processing characteristics in early (DIM < 60) and late 
(DIM > 180) lactation are in Table 6. Correlations 
were strongest among gold standard FAA and the milk 
processing characteristics in early lactation. Similar 
to the correlations with the gold standard FAA, RCT 
was positively associated with MIRS-predicted FAA in 
late lactation (Supplemental Table S2; http://dx.doi.
org/10.3168/jds.2015-9747). However, a30 was posi-
tively associated with MIRS-predicted FAA in early 
lactation but was negatively associated with MIRS-
predicted FAA in late lactation (Supplemental Table 
S2; http://dx.doi.org/10.3168/jds.2015-9747). In early 
lactation, pH was negatively correlated with all gold 
standard FAA.

DISCUSSION

The objective of the present study was to demon-
strate the ability of MIRS to predict milk quality traits, 
including 7 individual proteins and 7 FAA. Predictions 
of these traits by MIRS could be of benefit to the 
dairy industry because MIRS is a low-cost and efficient 
method for acquiring phenotypic information on milk 
quality using infrastructure and logistics for the acqui-
sition of milk samples that already exists.

Limited studies exist evaluating the effectiveness 
of MIRS in predicting milk protein composition (De 
Marchi et al., 2010; Bonfatti et al., 2011; Rutten et al., 
2011), and no studies have evaluated the ability of the 
MIRS to predict FAA. Furthermore, comparison with 
other studies of MIRS-prediction accuracy for protein 
fractions is difficult due to differences in the dairy 
production system as well as methods of determining 
protein fractions used (i.e., different gold standard 
analyses, experimental design, different breeds, stages 
of lactations, parities, diets and milking times). For 
example, the level of CP in the diet affects the milk 
protein profile (Reid et al., 2015); animals in the pres-
ent study were on a predominately grass-based diet. 
To our knowledge, this is the first study to use data 
from a mainly grazed grass-based production system to 
develop equations to predict protein composition and 
FAA from milk MIRS.

Caseins constitute approximately 80% of milk pro-
tein and consist of αS1-CN, αS2-CN, β-CN, and κ-CN 
fractions, typically in the ratio 3:1:3:1 (Farrell et al., 
2004). Mean values of the respective caseins in the pres-T
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ent study were consistent with this ratio. Mean values 
of 1.11 and 4.97 g/L for both the gold standard and 
MIRS-predicted α-LA and total LG were in the ratio 
of 1:3, consistent with values documented by Farrell et 
al. (2004). Similarly, the ratio of total CN to total whey 
was 6:1 irrespective of whether it was calculated using 
the gold standard or MIRS-predicted values. Multiple 
sampling dates, as well as variability attributed to the 
numerous research farms, breeds, parities, and milking 
times used to maximize the variation in the sample 
populations, are likely contributing to the greater coef-
ficient of variation in protein fractions compared with 
other studies (De Marchi et al., 2010).

Glutamic acid was the FAA present in the greatest 
concentration in the milk. This conclusion was con-
sistent with previous studies by Sarwar et al. (1998), 
Lindmark-Mansson et al. (2003), and Roucher et al. 
(2013), who also documented Glu to be one of the most 
abundant FAA in bovine milk. The FAA Asp, Arg, and 
Ser were present in low concentrations in the present 
study.

The lactation profile of (gold standard) total FAA 
(Figure 1) indicated that the greatest concentration 
of FAA was during early and late lactation. This was 
similar to a finding by Ghadimi and Pecora (1963), 
who also documented variation in the concentration of 
FAA at different stages of lactation, with the greatest 
concentration of FAA present in the colostrum, and the 
least concentration in transitional milk.

Milk MIRS Prediction Equations

Prediction of Protein Fractions. The rc and rv 
of total proteins (i.e., total CN, total whey, and total 
β-LG) were predicted with greater accuracy than their 
components, which was probably attributed in part 
to their greater concentration in the milk. The ability 
to predict components in greater concentration in the 
milk corroborates the conclusion of Soyeurt et al. (2006, 
2011) and Rutten et al. (2009), who all attempted to 
predict milk fatty acid content using MIRS. Accuracy 

of prediction of protein fractions overall in the pres-
ent study were consistent with those documented in 
other publications previously (De Marchi et al., 2010; 
Bonfatti et al., 2011; Rutten et al., 2011). Differences 
among studies could be due to differences in the gold 
standard methods used. The HPLC was used in this 
present study as well as in both the studies of De Mar-
chi et al. (2010) and Bonfatti et al. (2011), whereas 
Rutten et al. (2011) used capillary zone electrophoresis. 
The traits predicted with the poorest accuracy were 
β-LG A and β-LG B (rv = 0.39 and rv = 0.44). This 
may be because the quantity of β-LG A and β-LG B 
are directly related to the milk protein variants of the 
cow; if cows are AA the content of β-LG B is 0 and if 
cows are BB the content of β-LG A is 0 (Ng-Kwai-Hang 
and Kim, 1996).

A high RPD is advantageous; an RPD greater than 
2 indicates the generated prediction could be used for 
analytical purposes (Williams, 2007). No RPD value 
greater than 2 was achieved, however, in the present 
study. All protein fractions had an RPD between 1 and 
2 in the present study, and this finding is consistent 
with a previous study on milk protein fractions (Bon-
fatti et al., 2011). According to Williams (2007), a slope 
of the gold standard values on the MIRS-predicted 
values of a trait that deviates greatly from 1 (e.g., less 
than 0.85 and 1.15 or greater) will result in an unstable 
calibration, whereas a prediction equation with a slope 
between 0.95 and 1.05 will be more stable. The predic-
tion models for 4 protein fractions (total CN, αS1-CN, 
β-CN, and κ-CN) had slopes between 0.95 and 1.00 
in the present study. Protein fractions were, however, 
on average underpredicted. This could result in farm-
ers being underpaid should a milk payment system on 
protein fractions be implemented.

A poorer accuracy of prediction was obtained when 
protein fractions were expressed as a percentage of 
MIRS-predicted protein in milk; this was consistent 
with results from previous studies by Bonfatti et al. 
(2011) on protein fractions and by Soyeurt et al. (2006) 
on fatty acid content. The poorer accuracy of prediction 

Table 4. Pearson correlations between gold standard (below diagonal) and mid-infrared spectroscopy predicted 
(above diagonal) free AA1

Trait Lys Val Glu Gly Asp Arg Ser

Lys — 0.69 −0.23 0.05 −0.18 0.69 0.31
Val 0.57 — 0.01 0.26 0.06 0.67 0.36
Glu −0.10 0.20 — 0.38 0.70 −0.29 0.10
Gly 0.07 0.31 0.35 — 0.40 −0.10 0.30
Asp −0.01 0.15 0.70 0.33 — −0.40 −0.10
Arg 0.53 0.58 0.03 0.08 −0.06 — 0.39
Ser 0.19 0.35 0.34 0.43 0.14 0.43 —
1Traits were log-transformed before analysis. Correlations ≤ |0.07| were not different from zero (P > 0.05).
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when protein fractions were expressed as a percentage 
could be explained by a variation in the protein frac-
tions present in different milk samples. For example, 
2 milk samples could have the same concentration of 
protein in the milk, but be made up of different pro-
tein fractions. Another possible explanation for poorer 
accuracy of prediction is that the protein content of 
milk was actually predicted and not the actual protein 
composition. Protein content and protein composition 
are highly correlated (expressed as g/L). Nonetheless, 
exploiting the infrared spectrum in the prediction of 
milk protein composition generated superior prediction 
accuracy than when protein composition was predicted 
solely based on milk protein content suggest that the 
spectrum is in fact providing additional information in 
the prediction process.

Prediction of Free Amino Acids. The present 
study is the first attempt to predict FAA in milk from 
MIRS. The moderate prediction accuracies for FAA 
achieved in the present study may be due to the low 
concentration of FAA present in the milk samples. The 
optimum number of factors included in the partial least 
squares prediction model for FAA was similar to pre-
vious studies (De Marchi et al., 2010; Soyeurt et al., 
2011) for the prediction of CN fractions and fatty acid 
composition. However, FAA required a greater number 
of factors than for CN fraction prediction in the present 
study.

Glutamic acid, which was predicted with moderate 
accuracy from MIRS, may be important for infant for-
mula production as the sum of Glu and Gln represents 
50% of the total FAA in human milk (Agostoni et al., 
2000). The prediction ability for all FAA was too poor 
for industrial use. The prediction models for all FAA 
had slopes of the gold standard values on the MIRS-
predicted values between 0.85 and 1, with the excep-
tion of Val (0.76) and Ser (0.67), which had slopes of 
the gold standard values on the MIRS-predicted values 
of <0.85 and therefore may have unstable calibrations 
(Williams, 2007).

Because protein and FAA are correlated, the MIRS 
could be indirectly predicting the FAA by predicting 
the protein content of the milk.

Phenotypic Correlations

The correlations among the gold standard traits were 
comparable to the correlations among the correspond-
ing MIRS-predicted traits for the majority of protein 
fraction traits. This could be due to the moderately 
accurate predictions, which yielded MIRS-predicted 
protein fraction values similar to gold standard protein 
fraction values. The correlation between gold standard 
β-LG A and gold standard β-LG B (−0.38) was not T
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in agreement with the correlation between the MIRS-
predicted β-LG A and the MIRS-predicted β-LG-B 
(0.33), as these protein fractions β-LG A (rv = 0.39) 
and β-LG B (rv = 0.44) were poorly predicted from 
MIRS. The poor prediction of β-LG A and β-LG B may 
also contribute to the large difference in the correla-
tions between the gold standard and MIRS-predicted 
values of these 2 traits with total CN.

Overall, the correlations among the gold standard 
FAA and the respective correlations among the MIRS-
predicted FAA were in less agreement than the correla-
tions among the gold standard and the MIRS-predicted 
protein fractions; this may be due to poorer accuracy 
of prediction for FAA.

Previous studies have shown that RCT, k20, and pH 
are all positively correlated and these traits are all 
negatively correlated with both a30 and HCT (Ikonen et 
al., 2004; Cassandro et al., 2008; Visentin et al., 2015). 
Therefore, if RCT has a positive correlation with pro-
tein; k20 and pH should also have positive correlations 
with protein and both a30 and HCT should be nega-
tively correlated with protein. This study estimated 
RCT was positively correlated with MIRS-predicted 
protein and the majority of gold standard protein 
fractions in early lactation, but in late lactation RCT 
was negatively correlated with MIRS-predicted protein 
and gold standard protein fractions. The correlations 
between RCT, MIRS-predicted protein, and gold stan-
dard protein fractions could be explained by the in-
crease in protein content throughout lactation (Figure 
2) because as protein content increases, RCT decreases 
(Visentin et al., 2015) and also the FAA concentration 
decreases. Throughout lactation, k20 had negative as-
sociations with protein-related traits but had positive 
associations with the majority of gold standard FAA; 
this could be due to protein hydrolysis, which releases 

FAA into the milk. The negative associations of k20 
with protein-related traits and the positive associations 
of k20 with the majority of gold standard FAA were 
also in accordance with the positive correlation among 
RCT and k20. The RCT was negatively correlated with 
a30; therefore, the positive correlations between a30 and 
protein-related traits in both early and late lactations 
and the negative associations with gold standard FAA 
in mid lactation were expected. Negative correlations 
were demonstrated between pH and both MIRS-
predicted CN and gold standard protein fractions in 
early lactation, but both negative and positive correla-
tions were demonstrated between pH and these traits 
in late lactation. These correlations may be explained 
by Vasbinder and De Kruif (2003), who showed that 
a small change in pH had a large effect on whey pro-
tein denaturation and gelation properties of milk. Milk 
proteins, in particular β-LG and κ-CN, are known to 
have an effect on milk processing characteristics, such 
as HCT (Singh, 2004). However, no strong correlations 
were demonstrated between these proteins and milk 
processing characteristics in this present study.

CONCLUSIONS

Findings from this study indicate that MIRS is useful 
to routinely and efficiently measure milk quality traits 
such as protein fractions and some FAA at a population 
level. Prediction of these traits by MIRS could play an 
important role in selective breeding and therefore be of 
benefit to the dairy and breeding industry worldwide, 
allowing for the more accurate selection of milk for hu-
man consumption, infant milk formula, and cheese pro-
duction. Further research is required to quantify genetic 
correlations between protein fractions and FAA and to 
estimate the genetic variance of these traits, which will 

Table 6. Pearson correlations1 between gold standard free AA (FAA) and rennet coagulation time (RCT), curd-firming time (k20), curd firmness 
(a30), heat coagulation time (HCT), and pH across 2 stages of lactation

Item Lys Val Glu Gly Asp Arg Ser Total FAA

Early lactation              
 RCT 0.14 −0.02 0.19* −0.05 0.04 0.16 −0.10* 0.05
 k20 −0.01 0.00 0.21 −0.11 0.17 0.07 −0.03 0.10
 a30 0.08 −0.02 0.26 0.32 0.19 0.00 0.24 0.25
 HCT −0.12 −0.01 0.06 −0.35 −0.06 0.11 −0.10 0.02
 pH −0.48* −0.60* −0.33* −0.52* −0.32* −0.30* −0.38* −0.51*
Late lactation              
 RCT 0.06 0.20 0.40* 0.01 0.05 0.29 0.37* 0.28
 k20 −0.14 0.49 0.30 −0.01 0.08 0.10 0.23 0.18
 a30 0.06 −0.01 −0.34 −0.03 −0.11 −0.09 −0.26 −0.22
 HCT −0.23 0.03 0.08 −0.04 −0.13 0.02 0.08 0.01
 pH −0.09* 0.09* 0.09* −0.06* −0.01* 0.05* 0.27* −0.02*
1Correlations ≤|0.18| were not different from zero (P > 0.05).
*Correlations are significantly different to each other in early and late lactation (P < 0.01).
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indicate the usefulness of the developed MIRS models 
for practical animal breeding purposes.
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