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In our daily life, we constantly exert sustained and phasic cognitive control processes to manage multiple com-
peting task sets and rapidly switch between them. Increasing research efforts are attempting to unveil how the
brainmediates these processes, highlighting the importance of the prefrontal cortex. An intriguing question con-
cerns the influence of hemispheric asymmetries and whether it may be generalized to different cognitive do-
mains depending on lateralized processing. Another currently open question concerns the underlying causes
of the observed huge inter-individual variability in cognitive control abilities. Here we tackle these issues by in-
vestigating whether participants' hemispheric asymmetry in intrinsic (i.e., resting-state-related) brain dynamics
can reflect differences in their phasic and/or sustained cognitive control abilities regardless of the cognitive do-
main. To this aim, we recorded human participants' resting-state electroencephalographic activity and per-
formed a source-based spectral analysis to assess their lateralized brain dynamics at rest. Moreover, we used
three task-switching paradigms involving different cognitive domains to assess participants' domain-general
phasic and sustained cognitive control abilities. By performing a series of correlations and an intersection analy-
sis, we showed that participants with stronger left- and right-lateralized intrinsic brain activity in the middle
frontal gyrus were more able, respectively, to exert phasic and sustained cognitive control. We propose that
the variability in participants' prefrontal hemispheric asymmetry in the intrinsic electrophysiological spectral
profile reflects individual differences in preferentially engaging either the left-lateralized, phasic or the right-
lateralized, sustained cognitive control processes to regulate their behavior in response to changing task
demands, regardless of the specific cognitive domain involved.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Humans constantly cope with demands of an increasingly complex,
multitask environment, requiring frequent switching between different
operations. Cognitive control processes involved in this ability are com-
monly investigated using task-switching paradigms, with participants
performing two tasks either in isolation (in single-task blocks) or
intermixedly (in mixed-task blocks, composed by switch and repeat
trials). The basic findings are the so-called switching (Monsell, 2003)
and mixing (Rubin and Meiran, 2005) costs, representing respectively
the difference in performance between switch and repeat trials and
between repeat and single-task trials.

It is increasingly evident that switching and mixing costs might
reflect distinct executive functions. On the one hand, the switching
cost would reflect specific/phasic cognitive control processes required
to switch between different tasks, such as the transient activation of
appropriate rules or stimulus-response mappings in place of the
ence, University of Padua, Via

ini).
recently activated but inappropriate ones, or task set reconfiguration
processes (e.g., Kiesel et al., 2010). On the other hand, the mixing cost
would reflect global/sustained cognitive control processes required in
performing mixed- vs. single-task blocks, such as the increased active
maintenance demands due to keeping multiple task sets active and
the management of competition between them (Rubin and Meiran,
2005). Empirical dissociations support this conclusion (Rubin and
Meiran, 2005) and different neurophysiological mechanisms have
been shown tomediate switching andmixing costs (Wylie et al., 2009).

Moreover, switching and mixing costs would depend on comple-
mentary executive functions that are dissociable not only functionally
and temporally, but also anatomically. Different models have been pro-
posed about the anatomical basis of executive functions and, in particu-
lar, of the transient vs. sustained cognitive control processes, with a
particular attention to the organization of the prefrontal cortex (PFC).
The idea that different sub-regions of the PFCmay participate in a special-
ized manner to different executive functions is supported by findings
showing synaptic (Medalla and Barbas, 2009, 2010), cytoarchitectonical
(Petrides, 2005), and connectivity (Dosenbach et al., 2008; Tanji and
Hoshi, 2008) differences in the anatomo-functional organization of the
PFC. Consistent with these distinctions, different theories emerged in
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the last years proposing gradients of functional specialization within the
PFC along the three anatomical axes, that is, the ventro-dorsal (Owen,
1997; Petrides, 2005), rostro-caudal (Badre and D'Esposito, 2009;
Koechlin et al., 2003), and left–right (Kelley et al., 1998) axes.

In particular, the domain-based left–right organizational principle of
the PFC functions, according towhich the left and right hemispheres are
the locus of verbal and spatial processing, respectively (Kelley et al.,
1998; Wagner et al., 1998), is perhaps the first distinction suggested
and it is clearly the more intuitive one. Indeed, it is based on the fact
that the evolution provided us with two cerebral hemispheres that are
functionally lateralized, or asymmetrically specialized, according to a
verbal vs nonverbal axis (Corballis, 2009), with the verbal and visuospa-
tial cognitive domains involving left- and right-lateralized processing
(Hellige, 1993).

More recently, on the basis of extensive neuropsychological investi-
gation, the ROBBIA (ROtman-Baycrest Battery to Investigate Attention)
model of executive functions (Shallice et al., 2007, 2008; Stuss, 2011;
Stuss and Alexander, 2007) has been proposed, positing that the left–
right prefrontal specialization may be process-based and not only
domain-based. In particular, the ROBBIA model proposes a prefrontal
hemispheric specialization of two distinct executive functions: the
left-lateralized criterion-setting (or task-setting), which can be defined
as the phasic, transient cognitive control processes needed to form or
select task-relevant rules (Stuss and Alexander, 2007) and suppress
the task-irrelevant criteria and operations (Vallesi et al., 2012), and
the right-lateralized monitoring, which can be defined as the tonic,
sustained cognitive control processes needed to actively maintain ab-
stract coded representations of events and monitor their relative status
in relation to each other and the intended plan for behavioral adjust-
ments (Petrides, 2005; Stuss and Alexander, 2007; Vallesi et al., 2012).

On the basis of these proposals, the switching and mixing costs
would depend, respectively, on transient, left-lateralized criterion-
setting processes and sustained, right-lateralized monitoring processes.
Compatible with this view, neuroimaging studies revealed a functional
double dissociation in left and right PFC regions supporting, respective-
ly, transient and sustained cognitive control processes during task
switching (Braver et al., 2003; Wang et al., 2009). However, despite
accumulating evidence supporting the proposed function-based
prefrontal hemispheric asymmetry (e.g., Vallesi and Crescentini,
2011), it is still unknown whether this asymmetry is simply related to
task features and different cognitive domains known to depend on
lateralized processing (e.g., verbal, left-lateralized, vs. visuospatial,
right-lateralized; Hellige, 1993) or, rather, to “general” executive con-
trol abilities (Chein et al., 2011), that is, abilities that do not depend
on either the cognitive domain or the specific requirements of the
task. Indeed, previous studies have mostly investigated prefrontal
asymmetries by focusing on either the cognitive process (Braver et al.,
2003) or the domain (e.g., McCarthy et al., 1996), but their interplay re-
mains underinvestigated. Thus, how prefrontal asymmetries relate to
distinct executive functions regardless of task features remains an unre-
solved enigma.

To complicate the issue further, there are huge individual differences
in executive control performance (Miyake et al., 2000) related to differ-
ences in task-evoked brain activity (Kim et al., 2011) and even brain
structural organization (Gold et al., 2010). However, despite the rising
interest in what determines individual differences in executive func-
tioning (Braver et al., 2010), it is currently not known whether they
may in part depend on differences in intrinsic (i.e., resting-state-
related) brain dynamics (Laufs et al., 2006; Mennes et al., 2010) and
related hemispheric asymmetries.

Here, we sought to fill this gap by investigatingwhether hemispher-
ic asymmetries in intrinsic brain dynamics (as assessed by source-based
electroencephalography spectral analysis) are associated with behav-
ioral measures of domain-general phasic and sustained cognitive con-
trol (as assessed, respectively, by switching and mixing costs in three
task-switching paradigms involving different cognitive domains; see
Fig. 1). In doing this,we also aimed to verify the hypothesized prefrontal
hemispheric asymmetry of executive functions causing mixing and
switching costs (Braver et al., 2003; Vallesi, 2012).

Materials and methods

Participants

Fifty-six university students (41 females; mean age = 22.9 years,
SD = 2.1) voluntarily took part in the experiment. All participants
gave informed consent prior to their recruitment. They were reim-
bursed 20€ for their time. All had normal or corrected-to-normal visual
acuity and reported havingnormal color vision. The studywas approved
by the Bioethical Committee of the Azienda Ospedaliera di Padova and
was conducted according to the guidelines of the Declaration of Helsinki
(World Medical Association, 2013).

General procedure

For each participant, testing took place in three separate sessions
during a 1-month period. The order of administration was: 1) resting-
state electroencephalography (rsEEG) recording, 2) the verbal and spa-
tial task-switching paradigms, and 3) the color–shape task-switching
paradigm. The order of administration of the three sessions was fixed
for all participants tominimize any error due to participant by order in-
teraction (Miyake et al., 2000), but the verbal and spatial task-switching
paradigms were administered in randomized order during the second
session. In the last session, participants performed additional behavioral
tasks tapping into different executive functions, whichwere not the ob-
ject of the present study and whose results will be reported elsewhere.
Similarly, after the recording of the rsEEG, participants took part in an
event-related potential experiment, which will also be reported else-
where. Participants were tested in a quiet and normally illuminated
room. They were seated in front of a 17” computer screen (refresh
rate: 60 Hz, resolution: 1366 × 768) at a distance of approximately
60 cm.

Behavioral tasks and procedure

Since our aim was to investigate whether brain dynamics at rest in
prefrontal cortex (PFC) can specifically predict general executive func-
tion abilities, that is, the performance in phasic and sustained cognitive
control tasks regardless of both task features and cognitive domain, we
chose to use three different behavioral paradigms sharing the same un-
derlying executive functions and then, based on participants' perfor-
mance in these three paradigms, computed a compound measure of
the target executive process.

First, we chose to use the color–shape task-switching paradigm, as it
was frequently used in previous studies investigating switching and
mixing costs (Friedman et al., 2006, 2008; Garbin et al., 2010; Gold
et al., 2013; Prior and MacWhinney, 2010). This paradigm makes use
of non-verbal stimuli, requiring participants to indicate either the
color or the shape of a simple visual stimulus, and thus it is supposed
to involve right-lateralized cognitive processing related to the visuospa-
tial domain. However, a closer examination suggests that it would not
be well suited to investigate whether possible PFC asymmetries are
truly function-based or, rather, domain-based, as contrasting findings
exist about the hemispheric lateralization of color categorical perception
(Franklin et al., 2008), which recently has even been questioned (Witzel
and Gegenfurtner, 2011). Moreover, the performance in both color and
shape tasks could be influenced by the use of lexical codes, which
would rather involve left-lateralized verbal processes. Finally, the color–
shape task-switching paradigm shares a potential drawback with previ-
ous studies suggesting the existence of distinct, but paradigm- and
domain-general executive function abilities (e.g., Friedman et al., 2006,
2008; Miyake et al., 2000). Indeed, the paradigms used in most of the



Fig. 1. Task-switching paradigms. A, Task cues and task-relevant features of the stimuli in the three task-switching paradigms. In each paradigm (depicted in the rows), depending on the
specific task cue, the participants were asked to perform two different subtasks (depicted in the columns) in which they had to categorize the stimuli according to two orthogonal
task-relevant features. B, Temporal structure of the trials in the mixed-task blocks (see the Behavioral Tasks and Procedure section) in the three paradigms and exemplar stimuli. In all
the paradigms, tasks were either repeated (repeat trials) or switched (switch trials) from trial to trial on the basis of a pseudorandom sequence. See the The Color-Shape Task-Switching
Paradigm and The Verbal and Spatial Task-Switching Paradigms sections for details.
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previous studies, including the color–shape paradigm, embedded only
tasks requiring semantic decisions or decisions based on stimulus identi-
ty, thus involving exclusively the ventral visual stream of processing
(Goodale and Milner, 1992; Yehene and Meiran, 2007).

Based on these considerations, we developed a verbal and a spatial
task-switching paradigm that makes use of the same experimental
stimuli that were matched for a number of experimental features,
thusmaximizing the likelihood of detecting possible common cognitive
control processes. In particular, we used words shown in three-
dimensional text as stimuli in both paradigms. This allowed us to inves-
tigate both the left-lateralized verbal processes required to identify
lexico-grammatical features of the presented words and, importantly,
the right-lateralized visuospatial processes required to identify the spa-
tial properties (orientation) of the three-dimensional stimuli and to
mentally rotate them,which involve thedorsal visual streamof process-
ing (Goodale and Milner, 1992; see Hugdahl, 2000). However, since we
wanted to assess executive control processes that were not only inde-
pendent from (lateralized) cognitive domains, but also from the specific
task features of the novel paradigms, we also took the performance in
the color–shape paradigm into account in assessing the paradigm- and
domain-general executive function abilities of our participants.
The color–shape task-switching paradigm
The paradigm was adapted from Prior and MacWhinney (2010).

Target stimuli consisted of a heart or a star shape (visual angle: 2.1°
by 2.1° and 1.8 by 1.8°, respectively) that were presented at the center
of the screen in either red or blue (Fig. 1). A graphic cue (3.8° by .9°)
located 2.1° above the center of the screen served as task cue stimulus,
signaling the task to be performed by the participants (see below).
There were two types of task cues: the color task cue, consisting in a
color gradient formed by a row of three colored rectangles (purple, or-
ange, and yellow), and the shape task cue, consisting in a row of three
small black shapes (a triangle, a circle, and a square, see Fig. 1). We
chose to use graphic task cues to limit the use of linguistic information.
Eight different combinations of stimuli were thus available by mixing
the two possible shapes, two colors, and two cues.

A trial started with the presentation of a black fixation cross (.5° by
.5°) for 1500 ms, followed by the presentation of the task cue stimulus.
After a cue-to-target interval of 100 ms, the target stimulus was pre-
sented until a response was produced by the participant (Fig. 1). In
case of an erroneous response, a sound stimulus was presented via
headphones (duration: 916ms, error-onset delay: 50 ms) providing di-
rect error feedback. Stimulus presentation and data recordingwere con-
trolled by the Presentation software (Neurobehavioral Systems, Inc.,
Albany, CA) running on a Windows 7 operating system.

In the single-task condition, participants were required to perform
two types of subtasks, one at a time in different blocks. In the color-
type and the shape-type subtasks, participants were asked to respond
to either the color or the shape of the stimulus, respectively, by pressing
either the left or the right arrowbutton on the computer keyboard using
two index fingers. The four possible response-to-buttonmappingswere
counterbalanced across participants and preserved throughout the
single-task and mixed-task blocks. In the mixed-task block, the task
cue stimulus instructed participants about the specific subtask they
had to perform on any given trial.

Participants completed three blocks of trials. The first two blocks
were single-task blocks in which only one subtask (i.e., either color or
shape) was presented for the entire block. The specific assignment
was counterbalanced across participants. Each single-task block consisted
of six practice trials and 12 experimental trials. The third block was a
mixed-task block in which the two subtasks were equally distributed.
This block included 10 practice trials followed by 96 experimental trials
with a short rest break administered after half of the trials were complet-
ed. Switch and repeat trials were presented in equal proportion in a
pseudo-random order (Fig. 1).
The verbal and spatial task-switching paradigms
These paradigmswere the same as those used in a recent fMRI study

from our laboratory (Vallesi et al., 2015). Briefly, the stimulus material
consisted of 18 proper nouns and 18 common nouns, equally
subdivided into male and female nouns. All the words were presented
in lowercase 80-points Calibri bold font and subtended on average
1.6° of visual angle horizontally and 4.9° vertically. We applied both a
three-dimensional effect (depth: 10 points) and a three-dimensional
rotation in order to add depth to the shape of thewords andmanipulate
their spatial configuration. As a result, each word assumed both a pitch
(upward vs. downward) and a roll (clockwise vs. anti-clockwise) rota-
tion (Fig. 1). Each word could be filled with one of four colors: red,
blue, green, or brown. The blue and red colors were associated with
the task-switching condition, while the green and brown colors were
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used for the single-task condition (see below). The reader is referred to
the original study (Vallesi et al., 2015) for a detailed description of the
stimulus material.

A trial started with the presentation of a gray blank screen with a
light-gray frame for 400 ms (Fig. 1). The word stimulus was then
displayed for 2000 ms at the center of the frame. The participants
were asked to respond to the word according to the specific task in-
structions of each condition as outlined below. The inter-trial interval
was 1400ms. Stimulus presentation and data recordingwere controlled
by the E-Prime 2 software (Psychology Software Tools, Pittsburgh, PA)
running on a Windows 7 operating system. Participants' responses
were recorded using a keyboard.

The verbal single-task condition consisted of two subtasks that were
presented in different blocks. In the gender-type subtask, participants
were required to identify female and male nouns by pressing, respec-
tively, the “F” and “K” key with the left and right index finger. In the
name-type subtask, they had to identify proper and common nouns in
the same way. The assignment of categories to response keys was
counterbalanced across participants for each subtask condition. In the
verbal mixed-task blocks, the color of the word instructed participants
about the specific subtask they had to perform on any given trial. The
blue and red colors were associated with the name-type and gender-
type subtasks, respectively.

The spatial task was similar to the verbal one and it was implement-
ed on the same set of word stimuli. The spatial single-task condition
consisted of two subtasks that were presented in different blocks. Spe-
cifically, in the roll- and pitch-type subtasks, participants had to classify
the words according to either their clockwise/anti-clockwise or up-
ward/downward rotations, respectively. As for the verbal conditions,
the response keys were the “F” and “K” key on the computer keyboard,
and the assignment of categories to response keys was counterbalanced
across participants. In the spatial mixed-task blocks, the participants
had to perform either the roll-type subtask or the pitch-type subtask
when the color of the word was blue or red, respectively.

After a practice session (see Vallesi et al., 2015 for details), half of the
participants started with the verbal switching task, while the other half
startedwith the spatial one. Each of the two switching tasks consisted of
six experimental blocks (two single-task and four mixed-task blocks),
each comprising 32 trials (a higher number of mixed-task blocks was
administered to ensure a sufficient number of switch and repeat trials).
The first mixed-task block for each switching task was also preceded by
5 warm-up trials to allow participants to remember the corresponding
stimulus-response mapping. For the task-switching blocks, switching
trials were presented in a pseudo-random order.

Resting state EEG recording

We recorded rsEEG by using the BrainAmp system (BrainProducts,
Munich, Germany) from 64 Ag/AgCl electrodes that were mounted on
an elastic cap (EASYCAP GmbH, Germany) according to the 10–10
system. Electrooculographic activity was also recorded with an elec-
trode placed under the left eye. Impedances for each channel were
measured and adjusted until they were kept below 10 kΩ before
testing. All electrodes were referenced online to FCz during the re-
cording, and an electrode positioned at AFz served as the ground.
Continuous electroencephalographic (EEG) activity was digitized
at a sampling rate of 500 Hz and band-pass filtered online between
0.1 and 100 Hz.

A single rsEEG session was recorded. Participants were required
to sit comfortably in a chair in a dimly illuminated, sound-shielded
Faraday recording cage properly designed to minimize external
stimulations interfering with the participants' resting state. They
were instructed to keep their eyes closed, relax as much as possible
while trying not to fall asleep, and not think of anything specific. The
EEG recording lasted 5 min and was always performed before the
behavioral tasks.
Behavioral data analysis

Response times (RTs) from incorrect responses were discarded, as
well as trialswith RTs shorter than 100ms,which are treated as guesses.
Median accuracy was greater than 89% in all the conditions of all the
task-switching paradigms. Since the distributions of the RTs were
skewed and/or kurtotic, we log-transformed RTs to improve normality.
Moreover, to obtainmeasures of central tendency thatwere as robust as
possible against aberrant observations, we applied an estimation proce-
dure that is robust to non-normality and sample size (Rousseeuw and
Verboven, 2002). For each participants and condition of the three
task-switching paradigms, we computed an M-estimator of location
with logistic psi-function andmedian absolute deviation as the auxiliary
scale estimate, as implemented by themloclogist andmadc functions in
the LIBRA Matlab library (Verboven and Hubert, 2005, 2010).

Next, for each of the three task-switching paradigms, we calculated
the switching cost as the difference between the M-estimator of loca-
tion for switch trials and that for repeat trials. Similarly, we computed
the mixing cost as the difference between the M-estimator of location
for repeat trials and that for single-task trials. After these transforma-
tions, the variables measuring switching and mixing costs for the
three task-switching paradigms showed acceptable skewness and kur-
tosis (respectively, mean = .03 and − .23; range = − .52 to .31 and
− .70 to 42) (see Fig. 2). The statistical significance of both the switching
and mixing costs for each of the three task-switching paradigms was
assessed by means of one-sample t-tests against zero. The Cohen's d
was used as the measure of the effect size (Cohen, 1977).

General switching and mixing costs
To obtain behavioral indexes of paradigm- and domain-general

phasic and sustained cognitive control abilities reflecting, respectively,
the commonalities among the three paradigm-specific measures of
switching and mixing costs, we computed general switching and
mixing cost measures as the average of the three paradigm-specific
switching and mixing costs after z-standardization. The zero-order cor-
relations among the three paradigm-specific measures and the corre-
sponding paradigm- and domain-general measure of cognitive control
were .77, .59 and .82 for the switching cost and .76, .78 and .67 for the
mixing cost in the color–shape, verbal and spatial task-switching para-
digm, respectively. It should be noted here that the resulting measures
of general switching andmixing costswere virtually identical to the cor-
responding factor scores obtained from factor analysis, as the respective
regression equation (when regressing the latter on the former) were
y=0+ .96x (R2 N .98) and y=0+1x (R2 N .88). Moreover, the subse-
quent analyses performed on factor scores yielded very similar results
to that reported here. However, we preferred not to use factor scores
obtained from factor analyses, which at a first sight could seem prefera-
ble andmore consistentwith previous studies (e.g., Miyake et al., 2000),
because the characteristics of our data did not fully satisfy the recom-
mendations for performing factor analyses (MacCallum et al., 1999),
mainly because of the small sample size and the range of communality
values.

EEG data analysis

EEG preprocessing
Offline EEG processing and analyses were performed using custom

Matlab (The MathWorks, Inc, Natick, Massachusetts, USA) scripts
using functions from the EEGLAB environment (version 12.0.2b;
Delorme and Makeig, 2004). The continuous EEG data were band-pass
filtered (.5–45 Hz) using a zero-phase Kaiser-windowed sinc FIR filter
(beta=6.317, transition bandwidth= .01Hz) as recently recommend-
ed (Widmann et al., 2014), and then visually inspected for clearly noisy
electrodes. TP9 and TP10 channels showed large fluctuations during the
entire experiment in most of the participants (probably because of bad
skin contact and/or excessive muscular artifacts) and thus were



Fig. 2. Participants' behavioral performance in the task-switching paradigms. A–C, Scatterplots showing the participants' mean M-estimates of natural log-transformed RTs in repeat
(x-axis) and switch (y-axis) trials for the color–shape (A), verbal (B), and spatial (C) task-switching paradigms. Circles represent data from each participant. The diagonal dashed line
indicates the identity line (y= x), so that circles above the diagonal represent participants exhibiting a switching cost. The boxplots in the insets show the distribution of the participants'
switching costs; the central line/point of the box represents the median, the edges of the box are the first and third quartiles, and the whiskers represent the range of the data.
E–G, Scatterplots showing the participants' behavioral performance in single-task (x-axis) and repeat (y-axis) trials for the color–shape (E), verbal (F), and spatial (G) task-switching
paradigms. The circles above the diagonal represent participants exhibiting a mixing cost. The boxplots in the insets show the distribution of the participants' mixing costs. Other conven-
tions are as above. D andH, The boxplots show the distribution of the participants' general switching (D) andmixing (H) costs computed from the three respective paradigm-specific costs
(see the Behavioral Data Analysis section for details). Other conventions are as above.
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excluded from further data analysis. Automatic rejection of noisy EEG
channels was then performed on continuous data and confirmed by vi-
sual inspection. Rejection thresholds were SD N 4 for the improbability
and spectral test, and SD N 7 for the kurtosis test. The resulting con-
taminated channels (one channel in seven participants, two channels
in one participant) were interpolated using spherical splines (Perrin
et al., 1989). Continuous EEG data were then segmented into non-
overlapping 2048 ms epochs and re-referenced to the average of all
EEG electrodes. The length of the epochs was chosen so as to maximize
the efficiency of the automatic artifact detection method (see below)
without excessive loss of data while being able to compute the rsEEG
spectral power for low (≈1 Hz) frequencies (since we aimed to com-
pute the total spectral power in the 1–45 Hz frequency range, see the
Spectral Power Analysis section).

We then performed automatic detection and rejection of artifactual
and/or outlier EEG data epochs by applying five different methods (see
Delorme et al., 2007) according to the following criteria, whichwere de-
termined on the basis of preliminary examination to optimize artifact
rejection in our sample: i) ±125 μV for the standard extreme values
thresholding (±75 μV for the EOG channel); ii) current drifts larger
than ±50 μV and R2 N .10 for the linear trend test; iii) SD N 5 (for each
channel) and SD N 3 (for all channels) for the improbability test; iv)
SD N 7 (for each channel) and SD N 4 (for all channel) for the kurtosis
test; and v) SD N 4 for the spectral pattern test in the 30–80 Hz band.
Epochs containing data points exceeding at least two of these criteria
were excluded from further data analysis. As a result, a mean of 21% of
the epochs (SD = 14%) were rejected. For each subject, 30 artifact-
free epochs were randomly selected for the estimation of sensors
variance, and the remaining epochs (mean=85, SD=20)were selected
for the source analysis.

Source analysis
Cortical EEG source imaging was performed on selected epochs of

individual participants using Brainstorm (Tadel et al., 2011), which is
documented and freely available for download online under the GNU
general public license (http://neuroimage.usc.edu/brainstorm). A dis-
tributed source model consisting in 15,002 elementary current dipoles
was used to estimate the cortical current source distribution. These di-
pole sources were distributed at each node (i.e., vertex) of a tessellated
corticalmesh template surface (brainmodel) derived from the standard
1 mm resolution brain (Colin27) of the Montreal Neurological Institute
provided in Brainstorm. Dipole orientationswere constrained to be nor-
mal to the cortex surface. The EEG forwardmodeling of volume currents
was completed with a symmetric boundary element model generated
with OpenMEEG (Gramfort et al., 2011; Kybic et al., 2005) using the
adaptive integration method. This volume conduction model of the
head uses three realistic layers corresponding to the surface of the
head (1082 vertices, relative scalp conductivity = 1), the outer skull
(642 vertices, relative skull conductivity = .0125), and the inner skull
(642 vertices, relative brain conductivity = 1).

To estimate the current strength dynamics of cortical sources of the
EEG time series, we used the depth-weighted minimum norm estima-
tion approach (Baillet et al., 2001), implemented in Brainstorm, with
default parameter settings. This technique has been shown to be robust
to noise in recorded data and headmodel approximationswith fair spa-
tial resolution (Baillet et al., 2001), and the depthweighting used in this

http://neuroimage.usc.edu/brainstorm
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approach alleviates the natural bias of basic minimum norm estimation
approaches toward superficial currents. A diagonal noise covariance
matrix computed for each participant on 30 randomly selected
artifact-free epochs was used as an estimate of sensors variance. Finally,
the recorded EEG time series at each electrode were multiplied by the
depth-weighted minimum-norm estimate inverse operator to yield
the estimated source current strength, as a function of time, at each of
the 15002 vertices composing the cortical surface. Given that this is a
linear transformation, it does not alter the spectral properties of the un-
derlying sources and it is thus possible to perform time–frequency anal-
ysis directly on the source space (Billeke et al., 2013).

Spectral power analysis
For spectral power analysis of the estimated activity of the cortical

sources, a parcellation of the cerebral cortex into anatomical regions of
interest (ROIs) was derived in Brainstorm from the cortical atlas by
Destrieux et al. (2010), which was modified by i) subdividing the orig-
inal gyral ROIs that were composed by more than 200 vertices into
smaller (≈100 vertices) ROIs on the basis of anatomical criteria, and
ii) excluding original sulcal ROIs that were composed by less than 40
vertices. For example, the left superior frontal gyrus ROI, composed by
451 vertices, was subdivided into the posterior, mid-posterior, middle,
mid-anterior, and anterior parts, composed respectively by 101, 114,
126, 117, and 100 vertices, while the left transverse temporal sulcus,
composed by only 13 vertices, was excluded from the analyses. This
was done to alleviate the variability in number of vertices across the
148 original ROIs and reduce the number of ROIs included in the analy-
sis while ensuring a homogeneous covering of the cortical surface. The
modifications we made to the Destrieux atlas were indeed effective in
reducing the size variability of the ROIs,measured as the SD of the num-
ber of vertices composing the ROIs, which was almost halved in the
modified atlas (from 81 to 42; the average number of vertices was 98
and 91, respectively). Moreover, the source activity for each of the
resulting ROIswas estimated by averaging the current strength time se-
ries of each elementary dipole source within each ROI (Hsiao et al.,
2014) to reduce the computational load and to better calculate the
asymmetry scores. Note that the results were virtually the same when
computing the median instead of the mean.

We then exported the data in Matlab and estimated the source-
based spectral power of each participant's cortical activity by using the
EEGLAB (Delorme and Makeig, 2004) spectopo function to obtain a
.25 Hz resolution (Welch's averaged, modified periodogram method,
256-points Hamming window, 2048-points discrete Fourier transform,
8× oversampling). For each epoch, the current strength time series of
each ROI was converted into the power spectral density in the frequen-
cy range of 1–45Hz. The obtained absolute power spectrawere then av-
eraged across epochs, transformed into relative power by calculating
the proportion of each frequency with respect to the total absolute
power, and again averaged across frequencies to compute themean rel-
ative power for the alpha (7.5–12.5 Hz) and beta (12.5–24Hz) frequen-
cy bands.

Next, for each ROI, we computed the ratio between relative power in
beta and alpha bands (beta/alpha ratio: β/α) as a quantitative measure
of brain dynamics at rest reflecting spontaneous fluctuations of atten-
tion and vigilance levels (Laufs et al., 2006). This measure was log-
transformed to improve normality. In view of the peculiar pattern of
EEG spectral profile during resting state, we chose to use the β/α
measure, instead of the relative power in separate frequency bands, be-
cause it would represent a better quantitative measure of intrinsic
(i.e., resting-state-related) brain activity (Kilner et al., 2005) reflecting in-
creased attentional investment and cortical engagement in information
processing (Laufs et al., 2006). Most of the existing rsEEG studies have fo-
cusedmainly on the power in the alpha band, as it is considered the hall-
mark of the brain resting-state, with maximal amplitude during an eye-
closed relaxed condition. When the power in the alpha band is high
(and thus the β/α is low), the cortex is in a “idling” or unoccupied state
(Pfurtscheller et al., 1996), or even inhibited (Klimesch et al., 2007), and
the attentional resources are not engaged (Laufs et al., 2003). However,
the rsEEG relative alpha power cannot be interpreted as a marker of cor-
tical engagement/activity on its own, but should be analyzedwith respect
to the power in other, specific frequencybands. Indeed, low rsEEG relative
alpha powermay indicate either low or high vigilance/attentional invest-
ment at rest (Ota et al., 1996)when it is respectively accompanied byhigh
relative theta power or high relative beta power (and thus high β/α),
which in turn can be conceived as an EEG marker of attention and active
cognitive processing (Freeman, 2004). Moreover, the shift in the EEG
spectral profile toward beta frequencies in a given cortical region
(i.e., an enhancement in its β/α) has been shown to be associated with
its blood oxygen level dependent (BOLD) activation (Kilner et al., 2005),
indicating heightened attentional levels alongwith engagement in a vari-
ety of mental activities (Laufs et al., 2006). Take for example the case of
two individuals with the same relative rsEEG alpha power of .5. What
are their brain states and level of cortical activation (i.e., their intrinsic
brain activity) during the resting state session? Based on the above men-
tioned findings, we cannot provide a reliable answerwithout considering
the relative power in other frequencies and, in particular, the relative beta
power. Indeed, these two individuals would have very different brain
states and cortical activation levels according to the distribution of the re-
maining 50% or the total power across the different frequency bands: a
relative power of .45 either in the delta/theta bands (i.e., a high theta/
alpha ratio) or in the beta/gamma bands (i.e., a high β/α) would indicate,
respectively, low-arousal/drowsiness, local cortical deactivation, and a
“visual” occipital pattern of fMRI activations, or high arousal, local cortical
activation, and an “attentional” parieto-frontal pattern of fMRI activations
(Kilner et al., 2005; Laufs et al., 2006; Ota et al., 1996). Further supporting
our choice, finally, the power in the beta and alpha bands has been shown
to be oppositely correlated to behavioral measures of cognitive function-
ing (MacLean et al., 2012).

Finally, to quantify hemispheric asymmetries in intrinsic brain dy-
namics, we computed β/α hemispheric asymmetry scores (β/α_HAS)
as the right-left difference for each pair of ROIs. Therefore, higher
(i.e., more positive) β/α_HAS values represent a strongly right-
lateralized brain activity at rest, whereas lower (i.e., more negative) β/
α_HAS values represent a strongly left-lateralized brain activity at
rest. Note that, since we computed the relative (instead of absolute)
power in alpha and beta bands (see above), we already controlled for
potential individual differences in skull thickness and volume conduc-
tion, which could produce differences in the spectral power.

Inferential statistics

Our aim was to investigate whether hemispheric asymmetries in
rsEEG spectral activity in certain cortical regions – in particular, the
PFC – are specifically related to behavioral indexes of paradigm- and
domain-general phasic and sustained cognitive control abilities. To
this end, we first performed a series of correlation analyses between,
on the one side, the β/α_HAS for each ROI and, on the other side, either
the general switching cost or the general mixing cost, respectively.

We computed the Pearson's correlation coefficients and conducted
null hypothesis statistical significance testing by using the nonparamet-
ric percentile bootstrap test (2000 resamples; two-sided 95% confi-
dence intervals, corresponding to an alpha level of .05), which is more
robust against heteroscedasticity compared with the traditional t-test
(Pernet et al., 2012). Nevertheless, GLM statistical procedures – espe-
cially the correlation/regression analyses – are known to be overly sen-
sitive to deviant observations and characteristics of the dataset
(Rousselet and Pernet, 2012). In particular, the results of such analyses
can be flawed by the presence of bivariate outliers, which are hard to
identify with classical methods. Therefore, to overcome this problem,
we confirmed and refined the results of the standard correlation analy-
sis by performing robust regression analyses using the Robust Correla-
tion toolbox (Pernet et al., 2012). Specifically, we computed skipped
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correlations (Wilcox, 2004), which provide a robust generalization of
Pearson's correlation coefficient r by measuring the strength of the lin-
ear association between the pair of variables (i.e., the results are compa-
rable across the [−1:1] range). Differently from the standard Pearson
correlation, the skipped Pearson correlation takes the overall structure
of the data into account in protecting against the detrimental effects of
aberrant observations. Moreover, it can be more powerful than Pearson
correlation when data contain outliers (especially the bivariate ones),
and it allows maintaining the false positive rate below the nominal
alpha level (Pernet et al., 2012). As for the regular Pearson correlation,
null hypothesis statistical significance testing was conducted using the
nonparametric percentile bootstrap test. Therefore, for both the
paradigm- and domain-general phasic and sustained cognitive control
abilities, we first reported the ROIs for which the regular and/or skipped
Pearson's correlation coefficients were significant. We also report both
regular and skipped Spearman's ρ values for these ROIs as a further cau-
tion, to control for the potential detrimental effect of deviant observa-
tions and characteristics of the samples.

However, the analysis just outlined can only verify whether the par-
ticipants' β/α_HAS at rest for a given ROI is associated with either their
phasic or sustained cognitive control abilities, but it cannot verify
whether the participants' β/α_HAS for the same ROI is selectively (or
significantly differently) associated with one of the two general cogni-
tive control abilities. In other words, with the analysis outlined above
one cannot verify whether there is a differential power–behavior corre-
lation effect, that is, a significant correlation between theβ/α_HAS in an
ROI and one of the two general cognitive control abilities that is also sig-
nificantly different from the correlationwith the other general cognitive
control ability (see Nieuwenhuis et al., 2011). Therefore, since our main
aimwas to identify the cortical regions in which the hemispheric asym-
metry in intrinsic brain dynamics has a stronger correlation with one of
the two paradigm- and domain-general cognitive control abilities com-
pared to the other one, we first compared these two correlations for
each ROI by using a two-tailed z-test for correlations. It should be
noted, however, that it is possible (in principle) to have an ROI for
which there is significant result in the z-test comparing the mixing-
and switching-related correlations (i.e., a significant differential correla-
tion) even if neither of these correlations are significant on their own. In
this case, that ROI would show a significantly greater power–behavior
correlation for one of the two cognitive control processes as compared
to the other, but this very same correlation would be non-significant
in itself: the ROI would thus be relatively more involved in that control
process, but this involvement cannot be deemed as reliable.

To overcome this potential issue, we finally performed an intersec-
tion analysis. With this analysis, we determined the ROIs for which:
1) both the standard and the skipped Pearson correlation between the
β/α_HAS and the general switching cost (or, respectively, the general
mixing cost)were significant in the nonparametric bootstrap test, as de-
tailed above, and 2) they were also significantly different from those
found for the general mixing cost (or, respectively, the general
switching cost) in a two-tailed z-test comparison for correlations. This
ensured that the obtained power–behavior significant correlations spe-
cifically and/or differentially involved either the phasic or the sustained
general cognitive control ability (see Nieuwenhuis et al., 2011).

It should be noted that our procedure should have reduced the risk
of Type I error rate inflation due to multiple comparisons, since we
i) reported ROIs for which the statistical significance of the power–
behavior correlation was stable across both standard and robust corre-
lations, as tested with a nonparametric bootstrap test, ii) statistically
compared both correlation measures to test for differential correlation
effects, and iii) performed an intersection analysis between these two
results. However, the precise determination of the actual Type I error
rate in our results is a hard problem to solve, and thus we cannot be
sure to have completely eliminated the risk of its inflation. Therefore,
to overcome this potential drawback, we also applied a stricter control
against the risks of multiple comparisons to the results of the z-test
(FDR correction at a .05 level; Benjamini and Hochberg, 1995), further
protecting the results of primary theoretical interest against inflation
of Type I error rate. We also performed the same set of analyses on
the participants' β/α values for the 150 ROIs, but we do not report
themhere for the sake of brevity, as no ROIs survived the FDR correction
for both the regular and skipped Pearson correlation. Inline Supplemen-
tary Table S1 shows the results of the differential correlation analysis on
the β/α values that survived the FDR correction for the skipped Pearson
correlation only.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.09.035.

Results

Behavioral results

For the color–shape task-switching paradigm, the analysis revealed
a characteristic pattern of results for the participants' RTs. Mean M-
estimates of log-transformed RTs were 6.202 (SE = .016), 6.742 (SE =
.025), and 6.959 (SE=.028) for the single-task, repeat, and switch trials,
respectively. This resulted in significant switching (M = .217, t(55) =
13.661, p b 10−18, d = 1.826) and mixing (M = .540, t(55) = 29.061,
p b 10−34, d=3.883) costs that were exhibited by almost all of the par-
ticipants (respectively, 55/56 and 56/56; see Fig. 2A and E) with sub-
stantial inter-individual variability (see inset in Fig. 2A and E,
respectively). A similar pattern of results for the participants' RTs was
found in the verbal task-switching paradigm. Mean M-estimates of
log-transformed RTs were 6.577 (SE = .019), 6.879 (SE = .019), and
7.091 (SE = .016) for the single-task, repeat, and switch trials, respec-
tively. The resulting switching and mixing costs were significant (re-
spectively, M = .211 and .302, t(55) = 14.873 and 18.632, p b 10−20

and 10−24, d= 1.987 and 2.490) and observed in almost all of the par-
ticipants (respectively, 55/56 and 56/56) (Fig. 2B and F, respectively).
Finally, as for the preceding analyses, the characteristic pattern of re-
sults for the participants' RTs emerged also for the spatial task-
switching paradigm. Mean M-estimates of log-transformed RTs were
6.538 (SE = .024), 6.778 (SE = .024), and 7.021 (SE = .024) for the
single-task, repeat, and switch trials, respectively. Again, the resulting
switching and mixing costs were significant (respectively, M = .243
and .240, t(55) = 20.135 and 13.561, p b 10−26 and 10−18, d = 2.691
and 1.812) and observed in most of the participants (respectively, 56/
56 and 51/56) with substantial variability (Fig. 2C and G, respectively).

After having checked the reliability and the stability of the results
across the task-switching paradigms (see General Switching and
Mixing Costs), we computed the general switching and mixing cost
measures as the average of the three paradigm-specific switching and
mixing costs after z-standardization (Fig. 2D and H). It should be
noted here that general switching and mixing costs were anti-
correlated (r = − .36) across participants. However, this did not bias
our result of main interest (see Differential correlations and
Intersection analysis sections), as the statistical significance of the dif-
ferential correlation (see the Inferential Statistics section) was assessed
using a z-test that controls for the correlation between the switching
and mixing costs (Meng et al., 1992).

Source-based spectral analysis

As detailed in the Source Analysis and Spectral Power Analysis sec-
tions, participants' rsEEG data were submitted to a distributed source
reconstruction to estimate the current strength dynamics of the rsEEG
cortical sources. We then carried out a spectral power analysis on the
model-derived current strength time-series within 150 anatomically-
defined ROIs and computed the relative power (% of the total power)
for the alpha (7.5–12.5 Hz) and beta (12.5–24 Hz) frequency. Figs. 3
and 4 show the cortical maps of the source-based relative power of
the alpha and beta bands, respectively. Next, for each ROI, we computed
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Fig. 3. Cortical map of the source-based relative power (%) of the alpha (7.5–12.5 Hz) frequency band within the 150 anatomically-defined ROIs.
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the β/α ratio as a quantitative measure of brain dynamics at rest
reflecting spontaneous fluctuations of attention and vigilance levels
(Laufs et al., 2006) (see the Spectral Power Analysis and Discussion sec-
tions). Fig. 5 shows the cortical map of the natural log-transformed β/α
ratio. Finally, to quantify hemispheric asymmetries in intrinsic brain dy-
namics, we computed theβ/α_HAS, that is, the hemispheric asymmetry
score for theβ/αmeasure, as the right-left difference for each pair of ROIs.
Therefore, higher (i.e., more positive)β/α_HAS values represent a strong-
ly right-lateralized brain activity at rest, whereas lower (i.e., more nega-
tive) β/α_HAS values represent a strongly left-lateralized brain activity
at rest. Inline Supplementary Fig. S1 shows the cortical map of the
β/α_HAS values.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.09.035.

We assessed the reliability of our spectral measures. To this aim, we
split the model-derived current strength time-series into two halves
(corresponding to the first and second half of the rsEEG session) and
carried out a separate spectral power analysis on each half as detailed
in the Spectral Power Analysis section. Then, for each participant and
for each ROI, we computed the split-half reliability index between the
power spectral densities in the 1–45 Hz range for the first and the sec-
ond half of the rsEEG session. The reliability index was computed as
Fig. 4. Cortical map of the source-based relative power (%) of the beta (12
the Pearson's correlation coefficient corrected with the Spearman–
Brown prophecy formula. This analysis revealed that the power spectral
densities for the first and the second half of the rsEEG sessionwere very
similar, with a median reliability index of .998 across both participants
and ROIs (interquartile range = .003). Moreover, we also computed
the reliability indices for the β/α_HAS values. The analysis revealed
that the asymmetry scores were stable both across participants
(i.e., when correlating the β/α_HAS values in the 75 ROIs in the first
vs. second half for each participant; median = .975, interquartile
range = .028) and across ROIs (i.e., when correlating the β/α_HAS
values of the 56 participants in the first vs. second half for each ROI;
median = .961, interquartile range = .026).

Power–behavior correlations

Correlation analysis
Tables 1 and 2 shows the statistics for the results of the robust corre-

lation analysis for both the behavioral measures of phasic and sustained
general cognitive control ability, that is, the general switching and
mixing costs, respectively (see General Switching and Mixing Costs).
Inline Supplementary Figs. S2 and S3 show the cortical maps of the cor-
relations for the switching and mixing costs, respectively.
.5–24 Hz) frequency band within the 150 anatomically-defined ROIs.
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Fig. 5. Cortical map of the source-based relative power (%) of the natural log-transformed β/α ratio within the 150 anatomically-defined ROIs. Warmer and cooler colors indicate, respectively,
higher and lower β/α values (dark red and dark blue correspond to a β/α ratio of≈ .37 and .11, respectively).
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Inline Supplementary Figs. S2 and S3 can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2015.09.035.

The robust and regular correlation analyses detected three ROIs for
which the participants' general sustained cognitive control ability was
significantly associated with their hemispheric asymmetry in intrinsic
rsEEG spectral activity (Table 1). In particular, significant skipped and
regular Pearson correlations between participants' general mixing
costs and β/α_HAS were found in the ROI including the four orbital
gyri (OG), in an ROI in the dorsolateral PFC, namely the middle part of
the middle frontal gyrus (mMFG), and in the mid-posterior superior
frontal gyrus (mpSFG) ROI, which included the pre-supplementary
motor area (pre-SMA). For all of these ROIs, participants who showed
higher β/α power in the right than left hemisphere (i.e., with higher
β/α_HAS in these ROIs) also had significantly smaller general mixing
costs. In other words, participants who showed a more strongly right-
lateralized brain activity at rest in these cortical regions also showed
smaller mixing costs when subsequently performing the task-switching
paradigms. Moreover, significant skipped correlations were found in
four additional ROIs, namely the inferior frontal gyrus, pars opercularis
(IFGop), the superior segment of the circular sulcus of the insula (sCirInS),
the superior precentral sulcus (supPrCS), and the anterior inferior tempo-
ral gyrus (aITG) (Table 1). The results for these ROIs were consistent with
those described above for the OG, mMFG, and mpSFG ROIs, as they also
reflected negative skipped correlations between the participants' β/
α_HAS and their general mixing costs. However, these latter results
were presumably influenced by the presence of outliers, since the non-
parametric percentile bootstrap test failed to find the statistical sig-
nificance of the regular Pearson correlation indexes for these ROIs
(Table 1). Therefore, we suggest caution in their interpretation.

The analysis also revealed that the participants' general phasic cog-
nitive control abilitywas significantly associatedwith their hemispheric
asymmetry in intrinsic rsEEG spectral activity in two of the ROIs for
which a significant correlation between mixing costs and β/α_HAS
was found, namely, thempSFG/pre-SMA andmMFG (Table 2). In partic-
ular, for these two PFC ROIs, a significant positive association was found
between the participants' β/α_HAS and their general switching costs,
meaning that participants who showed higher β/α power in the left
than right hemisphere, that is, with a more strongly left-lateralized
brain activity at rest in these PFC regions, also showed a greater ability
to phasically exert cognitive control to rapidly switch between different
tasks when subsequently asked to perform the task-switching
paradigms. The analysis also revealed three ROIs for which contrasting
results were found between the skipped and regular correlation
analyses. Indeed, two additional ROIs exhibited significant skipped
Pearson correlations but non-significant regular Pearson correlations,
that is, the posterior inferior temporal gyrus (pITG) and the adjacent an-
terior occipital sulcus (aOS) (Table 2). Moreover, a further temporal re-
gion (the anterior transverse temporal gyrus, aTransTG) showed a
significant regular Pearson correlation but a non-significant skipped
correlation (Table2). For all these temporal ROIs, there was an inverse
relationship between the participants' β/α_HAS and their general
switching costs. Also in this case, however, the lack of consistency in
the results of both correlation analyses calls for caution in their
interpretation.

Note that the reported results did not depend on the size of the ROIs
or the differences in size between left and right hemisphere, both when
using the strength of both the regular and the skipped Pearson's corre-
lation reported above (all |r|s ≤ .187, all ps ≥ .109) and when using the
corresponding r2 values (all |r|s ≤ .127, all ps ≥ .276). Similarly, we can
exclude potential confounding effects on our results due to the β/
α_HAS variability (SD) across participants (all |r|s ≤ .115, all ps ≥ .326)
or the split-half reliability computed across participants (see the
Spectral Power Analysis section; all |r|s ≤ .141, all ps ≥ .229).

Finally, we assessedwhether the significant correlations revealed by
the correlational analyses detailed above can be specifically attributed
to the β/α_HAS values in those ROIs or, rather, could be biased by the
β/α_HAS values in nearby regions.We first carried out two stepwise re-
gression analyses with either the switching or the mixing costs as the
dependent variable and the β/α_HAS values in all of the 75 ROIs as
regressors. The analysis on the switching costs revealed that the
β/α_HAS for the mMFG ROI was the only significant regressor to enter
the model (β = .309, t(54) = 2.384, p = .021), which explained the
9.53% of the variance. The β/α_HAS for the mMFG ROI was also one of
the two significant regressors to enter the model for the mixing costs
(β = − .304, t(54) = −2.482, p = .016) along with the β/α_HAS for
OG ROI, the first regressor to enter the model (β = − .327,
t(54) = −2.677, p = .010). In this case, the model explained the
20.96% of the variance (F(2,53) = 7.027, p= .002). Therefore, the results
of the stepwise regression analyses suggested that the β/α_HAS for the
mMFG ROI was a specific and reliable predictor of the participants' task
switching performance. Next, we further verified the potential con-
founding effect of the β/α_HAS values in the ROIs surrounding the
mMFG region. We thus carried out two separate multiple regressions
for the switching and mixing costs by forcing the β/α_HAS values for
all of the ROIs surrounding the mMFG to enter the model. These ROIs
were the posterior and anterior part of the MFG, the superior and
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Table 1
Results of the power–behavior correlation analyses for the general mixing costs.

Pearson's correlation Spearman's correlation

Skipped Regular Skipped Regular

ROI #Out r LBCI95% UBCI95% r LBCI95% UBCI95% ρ LBCI95% UBCI95% ρ LBCI95% UBCI95%

mMFG 0 − .321 − .545 − .068⁎ − .321 − .551 − .067⁎ − .229 − .464 − .001⁎ − .239 − .475 − .001⁎
OG 0 − .343 − .579 − .097⁎ − .343 − .575 − .033⁎ − .312 − .556 − .019⁎ − .312 − .556 − .023⁎
mpSFG 1 − .235 − .428 − .040⁎ − .215 − .399 − .037⁎ − .229 − .442 − .003⁎ − .218 − .433 .015
supPrCS 3 − .290 − .507 − .046⁎ − .167 − .444 .161 − .285 − .493 − .031⁎ − .244 − .479 − .161⁎
aITG 4 − .275 − .439 − .097⁎ − .030 − .303 .232 − .312 − .517 − .081⁎ − .151 − .397 .109
IFGop 2 − .239 − .438 − .024⁎ − .181 − .466 .129 − .237 − .464 .031 − .203 − .460 .079
sCirInS 1 − .305 − .545 − .025⁎ − .223 − .514 .058 − .273 − .520 .022 − .237 − .500 .060

#Out, number of data points identified as outliers; LBCI95% and UBCI95%, lower and upper bound of the 95% bootstrap confidence interval, respectively; mMFG, middle part of the middle
frontal gyrus; OG, orbital gyri; mpSFG, mid-posterior superior frontal gyrus; supPrCS, superior precentral sulcus; aITG, anterior inferior temporal gyrus; IFGop, inferior frontal gyrus,
pars opercularis; sCirInS, superior segment of the circular sulcus of the insula.
⁎ p b .05 at the nonparametric percentile bootstrap test (see the Inferential Statistics section).
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inferior frontal sulci, the mid-posterior, middle, and mid-anterior parts
of the SFG, and the opercular and triangular parts of the IFG. The results
revealed that none of the regressorswere significant predictors of either
the switching or mixing costs. However, a closer inspection of the re-
sults revealed that in both the analyses there was a risk of overfitting
and high multicollinearity that was likely due to the inclusion of the re-
gressors for the inferior and superior frontal sulcus ROIs, which both
had low tolerance values (.14 and .16, respectively). Therefore, we
re-ran the two multiple regression analyses excluding these two reg-
ressors. The results showed that the β/α_HAS for the mMFG ROI was
the only significant predictor of the participants' mixing costs
(β=− .380, t(47) =−2.346, p= .023) and the only marginally signif-
icant predictor of the participants' switching costs (β = .300, t(47) =
1.800, p = .078), thus suggesting that the β/α_HAS in the mMFG ROI
predicted the participants' task switching performance over and above
the potential confounding contribution of the nearby PFC ROIs.

Differential correlations
Table 3 shows the results of the z-test comparing both the standard

Pearson and the skipped Pearson correlation between the β/α_HAS for
each ROI and either the general switching cost or the general mixing
cost (see Inline Supplementary Fig. S4 for the corresponding cortical
map). This analysis revealed five ROIs showing a differential correlation
effect for both correlation indexes, namely the three PFC ROIs which
already emerged in the previous analyses (i.e., the mMFG, mpSFG/pre-
SMA, and OG ROIs), as well as the contiguous temporal ROIs pITG and
aOS (Table 3). The analysis also revealed three ROIs for which contrast-
ing results were found between the z-tests for the skipped and regular
correlations. Indeed, the analysis revealed a differential correlation
effect for the regular Pearson correlation, but not the skipped Pearson
correlation, in the aTransTG ROI, as well as in the posterior inferior tem-
poral sulcus (ITS) and the inferior frontal sulcus (IFS). As for the other
results showing a discrepancy between the skipped and regular correla-
tion analyses, we suggest caution in the interpretation of these results.
Table 2
Results of the power–behavior correlation analyses for the general switching costs.

Pearson's correlation

Skipped Regular

ROI #Out r LBCI95% UBCI95% r LBCI95%

mMFG 1 .341 .114 .544⁎ .309 .094
mpSFG 1 .246 .006 .459⁎ .232 .017
pITG 2 − .461 − .634 − .269⁎ − .251 − .542
aOS 3 − .345 − .551 − .128⁎ − .189 − .523
aTransTG 1 − .208 − .429 .032 − .259 − .463

#Out, number of data points identified as outliers; LBCI95% and UBCI95%, lower and upper bound
frontal gyrus; mpSFG, mid-posterior superior frontal gyrus; pITG, posterior inferior temporal g
⁎ p b .05 at the nonparametric percentile bootstrap test (see the Inferential Statistics section
Inline Supplementary Fig. S4 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.09.035.

Again, these results (in terms of the absolute value of the z for both
the regular and skipped Pearson's correlation) did not depend on the
size of the ROIs or on the differences in size between the left and right
hemisphere (all |r|s ≤ .130, all ps ≥ .265). Similarly, we can exclude po-
tential confounding effects on our results due to theβ/α_HAS variability
(SD) across participants (both |r|s ≤ .080, all ps ≥ .497) or the split-half
reliability computed across participants (see the Spectral Power
Analysis section; both |r|s ≤ .163, all ps ≥ .162).

Intersection analysis
We then refined our results by performing an intersection analysis.

The specific purpose was to determine for which of the ROIs emerging
from the correlation analyses the significant correlation between the
β/α_HAS and one of the two general cognitive control abilities was
also significantly different from the correlation with the other general
cognitive control ability (see the Inferential Statistics section).

Among the above reported ROIs showing a significant power–be-
havior correlation, a first PFC ROI emerged from the intersection analy-
sis as the one for which participants' β/α_HAS was significantly more
strongly and selectively associated with their general mixing costs,
namely the OG ROI (Fig. 6). Specifically, participants who showed
higher β/α power in the right than left OG (i.e., with a more strongly
right-lateralized β/α_HAS in this ROI) also had significantly smaller
general mixing costs (Table 1), and this association was significantly
stronger than the correlation revealed for the general switching costs
(Table 3),whichwere not significantly associatedwith individual differ-
ences in β/α_HAS in these ROIs (Table 2). Moreover, a further frontal
ROI, the mpSFG/pre-SMA, showed a significantly bivalent differential
power–behavior correlation effect (Table 3, Fig. 6). In fact, the analysis
revealed that a higher β/α power in the right than left mpSFG/pre-
SMA was associated with smaller general mixing costs (Table 1),
while a higher β/α power in the left than right mpSFG/pre-SMA was
Spearman's correlation

Skipped Regular

UBCI95% r LBCI95% UBCI95% r LBCI95% UBCI95%

.520⁎ .349 .107 .565⁎ .341 .099 .558⁎

.421⁎ .244 .004 .461⁎ .244 .006 .450⁎

.055 − .443 − .638 − .197⁎ − .313 − .558 − .024⁎

.120 − .364 − .579 − .093⁎ − .280 − .538 .014
− .026⁎ − .224 − .477 .047 − .262 − .488 .016

of the 95% bootstrap confidence interval, respectively; mMFG, middle part of the middle
yrus; aOS, anterior occipital sulcus; aTransTG, anterior transverse temporal gyrus.
).

http://dx.doi.org/10.1016/j.neuroimage.2015.09.035
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Table 3
Results of the differential correlation and intersection analyses.

Skipped correlation Regular correlation

ROI z p z p

mMFGa −3.538 .0004⁎ −3.352 .0008⁎
mpSFGb −2.526 .0115⁎ −2.344 .0191⁎
OGb −2.273 .0230⁎ −2.273 .0230⁎
pITG 3.658 .0003⁎ 2.403 .0163⁎
aOS 2.859 .0043⁎ 1.994 .0461⁎
IFS 1.311 .1898 2.312 .0208⁎
ITS 1.845 .0651 2.177 .0294⁎
aTransTG .930 .3522 2.140 .0324⁎

mMFG, middle part of the middle frontal gyrus; mpSFG, mid-posterior superior frontal
gyrus; OG, orbital gyri; pITG, posterior inferior temporal gyrus; aOS, anterior occipital
sulcus; IFS, inferior frontal sulcus; ITS, inferior temporal sulcus; aTransTG, anterior trans-
verse temporal gyrus.

a Significant at the intersection analysis, FDR-corrected.
b Significant at the intersection analysis, uncorrected.
⁎ p b .05.
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associated with smaller general switching costs (Table 2). In other
words, participants with a strongly right-lateralized brain activity at
rest in the mpSFG/pre-SMA were more able to exert a sustained cogni-
tive control and had a better management of competition between dif-
ferent task sets, whereas participants with a strongly left-lateralized
brain activity at rest in the same PFC regionweremore able to phasically
exert cognitive control to rapidly switch between different tasks when
subsequently asked to perform the task-switching paradigms.

However, the results for these two PFC ROIs were not strictly con-
trolled for multiple comparisons (see the Inferential Statistics section)
and they did not survive the FDR correction for both the skipped and
regular correlation analysis, sowe cannot absolutely exclude a potential
inflation of the Type I error rate for these results. The only result that
remained significant when performing the same intersection analysis
while controlling for the inflation of Type I error risk due to multiple
comparisons concerned, again, a PFC ROI. In fact, the FDR-corrected in-
tersection analysis revealed that the mMFG showed a significant biva-
lent differential power–behavior correlation effect (Table 3, Fig. 6)
Fig. 6. Results of the intersection analysis. Upper row, partially inflated cortical surface of the
significant at the uncorrected and FDR-corrected intersection analysis are presented in orange a
between the participants' hemispheric asymmetry of rsEEG spectral activity (β/α_HAS, x-axis)
tively. Generalmixing and switching costs aremeasured as thedifference in thenatural log-tran
values of β/α_HAS indicate a stronger right-lateralized brain activity at rest (see Spectral Powe
relation for the general mixing and switching costs, respectively. *Indicates significant correlat
similar to that observed for thempSFG/pre-SMAROI, as the participants'
β/α_HAS values were negatively correlated with the mixing costs
(Table 1) and positively correlated with the switching costs (Table 2).
This result was further confirmed by a quartile split analysis showing
that participants' with a more strongly right-lateralized β/α power in
the mMFG showed significantly smaller general mixing costs (− .125,
SD = .562) as compared to participants' with a more strongly left-
lateralized β/α power in the same PFC ROI (.411, SD = .759; t(26) =
2.123, p = .043, d = .833) while, conversely, participants' with a more
strongly left-lateralized β/α power in the mMFG showed significantly
smaller general switching costs (− .373, SD=.535) as compared to par-
ticipants' with a more strongly right-lateralized β/α power in the same
PFC ROI (.461, SD=.781; t(26)=3.298, p=.003, d=1.294). To sumup,
participants with a strongly right-lateralized brain activity at rest in the
mMFG had a better sustained cognitive control to resolve the competi-
tion between different task sets, whereas participants with a strongly
left-lateralized brain activity at rest in the same PFC region were more
able to phasically exert cognitive control to rapidly switch between dif-
ferent tasks.

Finally, to further assess the exclusivity of the β/α_HAS effects and,
thus, provide stronger evidence for the functional specificity of the
chosen rsEEG measure and the relevance of the observed effects, we
also performed the same set of analyses on two other rsEEG asymmetry
scores for which we did not predict a functional relevance to the
phasic/sustained cognitive control processes, that is, the β/θ_HAS
and γ/α_HAS. These measures were computed in the same way as
for the β/α_HAS (see the Spectral Power Analysis section) as, re-
spectively, the right-left difference in the ratio between relative
power in beta and theta (θ, 4–7.5 Hz) bands, and that between rel-
ative power in gamma (γ, 24–45 Hz) and alpha frequency bands.
Inline Supplementary Tables S2 and S3 show the results of the dif-
ferential correlation analysis on the β/θ_HAS and γ/α_HAS mea-
sures, respectively. No single ROI survived the FDR correction for
both the regular and skipped Pearson correlation for either the
β/θ_HAS and γ/α_HAS measures. In the differential correlation anal-
ysis on the β/θ_HAS values, two frontal ROIs survived the FDR cor-
rection for the skipped Pearson correlation only, namely, the
left hemisphere showing the ROIs detected by the intersection analysis. ROIs that were
nd red, respectively. The scatterplots in the lower row show the corresponding correlations
and their general mixing and switching costs (y-axis) in red and light blue points, respec-
sformedRTs (seeGeneral Switching andMixing Costs section and Figs. 2D and2H). Positive
r Analysis section). The red and light blue regression lines reflect the skipped Pearson cor-
ions (see Tables 1 and 2 for the general mixing and switching costs, respectively).
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inferior frontal gyrus, pars opercularis, and the short insular gyrus
(Inline Supplementary Table S2). These results provide some further
support for the functional specificity of the β/α_HAS effects we
found but, again, we suggest caution in their interpretation as they
show a discrepancy between the skipped and regular correlation
analyses.

Inline Supplementary Tables S2 and S3 can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2015.09.035.

Discussion

In the present study, we aimed to test the hypothesis of a left–right
prefrontal hemispheric specialization for executive functionsmediating
switching and mixing costs, respectively (Vallesi, 2012), as implied by
the ROBBIA model of executive functions (Stuss, 2011; Stuss et al.,
2005). Specifically, we investigated whether participants' hemispheric
asymmetry in rsEEG spectral activity can reflect differences in their pha-
sic and/or sustained cognitive control abilities regardless of the particu-
lar task specifics, and would therefore be predictive of their general
switching and mixing costs. To this end, we recorded participants'
resting-state electroencephalographic activity and performed a source-
based spectral analysis to obtain a quantitative ROI-based measure of
hemispheric asymmetries in intrinsic brain dynamics, that is, the differ-
ence in β/α power between the right and left hemispheres (β/α_HAS).
Moreover, we asked participants to perform three different task-
switching paradigms involving different cognitive domains and pro-
cessing streams in order to obtain paradigm- and domain-general
measures of their phasic and sustained cognitive control abilities
in task-switching contexts.

Our principal finding was a significant bivalent association between
the β/α_HAS at rest in a PFC ROI (mMFG) and both the switching and
mixing costs, as revealed by the intersection analysis: Participants
with stronger left-lateralized intrinsic brain activity in the mMFG were
more able to phasically exert cognitive control to rapidly switch
between different tasks, whereas participants with stronger right-
lateralized intrinsic brain activity in the same PFC region were more
able to exert sustained cognitive control to resolve the competition be-
tween different task sets.

This result suggests that the differential neurophysiological activity
of the left/right PFC at rest may complexly mediate the dynamic inter-
play between phasic and sustained cognitive control abilities, which in
turn regulate our behavior in response to changing task demands. This
is in line with the recently proposed hypothesis (Stuss and Alexander,
2007; Vallesi, 2012), which posits that switching and mixing costs
would depend on complementary executive functions dissociable both
temporally and along the left–right axis in the PFC, that is, respectively,
the phasic left-lateralized criterion-setting processes and the sustained
right-lateralized monitoring processes.

The putative PFC area we found to show a bivalent power–behavior
correlation is consistentwith previous fMRI literature showing differen-
tial lateral PFC activation patterns induced by phasic and sustained cog-
nitive control processes. Indeed, task-related activity in the left PFC has
been associated with phasic cognitive control processes (Badre and
Wagner, 2006; Braver et al., 2003;Wang et al., 2009) and a better ability
to rapidly switch between different tasks (Kim et al., 2011; Ravizza and
Carter, 2008), whereas task-related activity in the right/bilateral PFC has
been associated with sustained cognitive control processes (Dreher
et al., 2002;Wang et al., 2009) and a better ability to resolve the compe-
tition between different task sets (Braver et al., 2003).

Butwhat is the relevance of prefrontalβ/α_HAS at rest to the phasic/
sustained cognitive control processes? Building on previous EEG-fMRI
studies (Kilner et al., 2005; Laufs et al., 2003, 2006), we measured par-
ticipants' rsEEG β/α_HAS to operationalize their brain dynamics at
rest reflecting increased brain activity and attentional investment (see
the Spectral Power Analysis section). Indeed, Laufs and colleagues
showed that the spectral power in the alpha band recorded from
prefrontal electrodes is negatively correlatedwith the BOLD signal in bi-
lateral parieto-prefrontal circuits (Laufs et al., 2003) and that rsEEG ses-
sions characterized by alpha desynchronization and greater relative
beta power (i.e., with higher β/α) were related to BOLD signal increases
in the same bilateral parietal and prefrontal cortices (Laufs et al., 2006).
Therefore, high relative rsEEGβ/α power in PFCwould indicate a partic-
ular brain state characterized by the engagement of bilateral parieto-
prefrontal cortical circuits in unspecific attention-demanding cognitive
processes. Albeit these studies did not investigate potential hemispheric
asymmetries, left and right parieto-frontal networks may be considered
as distinct resting-state networks (Damoiseaux et al., 2006;Meyer et al.,
2013) reflecting distinct lateralized, task-related networks (Smith et al.,
2009).Moreover, recent resting-state fMRI studies showed that individ-
ual differences in fluctuation amplitude of the BOLD signal during rest
are related to differences in both evoked BOLD activity in task-related
cortical regions and behavioral performance in executive function
tasks (Mennes et al., 2011; Xu et al., 2014; Zou et al., 2013).

Building on this corpus of evidence, our results of a significantly bi-
valent power–behavior correlation inmMFG suggest that the variability
in participants' prefrontal rsEEG β/α_HASwould reflect stable individu-
al differences in preferentially engaging either the left-lateralized, pha-
sic or the right-lateralized, sustained cognitive control processes to
regulate their behavior in response to changing task demands, regard-
less of the particular task specifics. Specifically, smaller general
switching (mixing) costs observed in individuals with stronger left-
lateralized (right-lateralized) PFC β/α at restwould be the consequence
of displaying a specific brain state at rest characterized by greater activ-
ity in the left (right) parieto-prefrontal circuit supposedly involved in
the phasic criterion-setting (sustained monitoring) processes (Vallesi,
2012), which would in turn facilitate the activation of the same cortical
circuit during the execution of task-switching operations, leading to a
better performance in exerting phasic (sustained) cognitive control.

Our proposal of a stable individual disposition toward a specific ex-
ecutive function mediated by intrinsic brain dynamics finds support in
a recent study investigating the relationship between cognitive func-
tions and individual differences in the rsEEG spectral profile (MacLean
et al., 2012). In this study, participants with a better performance in
an attention task showed more beta than alpha power (i.e., higher β/
α) in two rsEEG sessions recorded two hours before/after the attention
task, leading the authors to propose that individual differences in the
rsEEG spectral profile could represent a stable, trait-like measure. Fur-
ther support comes from studies showing that personality traits can
modulate behavioral performance (Genet and Siemer, 2011) and even
brain responsiveness (Avila et al., 2012) in switching tasks. Further-
more, it should be noted that in the Laufs and colleagues' study
(2006) no systematic within- or between-sessions difference was
found in the participants' characteristic rsEEG-fMRI pattern, especially
for the parieto-prefrontal “attentional” pattern, showing the stability
over time of this brain state.

In light of our proposed explanation, the long-term temporal stabil-
ity of the β/α_HAS at rest is particularly crucial, especially because
rsEEG and behavioral measure were collected in different days. Despite
the fact that, to the best of our knowledge, the test–retest reliability of
the specific rsEEG asymmetry measure we used has not yet been inves-
tigated (see the Limitations and Considerations section), substantial
converging evidence suggests that this index could have good temporal
stability. Indeed, previous research has shown that resting-state EEG
spectral measures have a good long-term stability (i.e., for test–retest
intervals ranging from one week to several months) (e.g., McEvoy
et al., 2000; Salinsky et al., 1991; see also VanAlbada et al., 2007).More-
over, most of the variance in the EEG spectral profile appears to be ge-
netically determined (e.g., Christian et al., 1988; Lykken et al., 1974;
see van Beijsterveldt and van Baal, 2002, for a review and meta-
analysis). These findings, however, provide only indirect evidence for
the temporal stability of more complex or derived rsEEG spectral mea-
sures such as the β/α_HAS at rest we used. One could thus argue that

http://dx.doi.org/10.1016/j.neuroimage.2015.09.035
http://dx.doi.org/10.1016/j.neuroimage.2015.09.035
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they cannot provide support for the long-term temporal stability of our
β/α_HAS measure. Nonetheless, good test–retest reliability has also
been shown for more derived rsEEG measures such as the (delta and
theta)/(alpha and beta) ratio (Salinsky et al., 1991) and the asymmetry
in alpha and beta bands (Tomarken et al., 1992). Evenmore relevant for
our claims, high test–retest reliability at 1–2 weeks has been shown for
a complex and highly-derived rsEEGmeasure reflecting the actual com-
positions of brain oscillations and their percent ratio (Fingelkurts et al.,
2006), which was claimed by the authors to “possess distinct trait-like
qualities”. A high test–retest reliability has also been shown for rsEEG
measures for test–retest intervals of more than a year, with the best re-
sults obtained by taking the shape of the entire power spectra into ac-
count (Napflin et al., 2007). Moreover, a recent study (La Rocca et al.,
2014) showed that a very high degree of intra-individual repeatability
of rsEEG biometrics over 1–3 weeks can be achieved by considering
rsEEG spectral measures combining different frequency bands in the
.5–30 Hz. Taken together, these findings strongly suggest that complex,
highly-derived rsEEG spectral measures may be treated as an intra-
individually “stable trait” (Gasser et al., 1985) or even as a “statistical
signature of a person” (Napflin et al., 2007) and they may even be
used for automatic biometric-based individual recognition (Campisi
and La Rocca, 2014), thus providing indirect support for the proposed
role of prefrontal rsEEG β/α_HAS in reflecting stable individual disposi-
tion toward specific cognitive control processes.

Furthermore, the hypothesis of an intrinsic (electro)physiological
basis mediating individual differences in executive functioning is con-
sistent with diffusion tensor imaging studies showing that switching
costs depend on the integrity of a parieto-frontal network of whitemat-
ter regions (Kennedy and Raz, 2009; Seghete et al., 2013). Of particular
interest for the present study, Gold et al. (2010) showed an association
between task-switching performance and microstructural properties of
the left superior longitudinal fasciculus ensuring the transmission of in-
formation between left parietal and prefrontal cortices, including the
mMFG. Moreover, the gray matter volume in subcortical regions con-
nected with the PFC has been shown to mediate both switching and
mixing costs (Leunissen et al., 2014). These findings suggest that the
functional power–behavior association we found could be mediated
by underlying individual differences in brain structural organization.

The intersection analysis also revealed other results that are consis-
tent with our main finding and hypothesis. Indeed, we found a signifi-
cant selective association between the participants' general mixing
costs and their β/α_HAS at rest in the OG, a PFC region involved in cog-
nitive processes important to cognitive control over simultaneous task
sets, such as learning and retaining visuomotor associations to guide
conditional choices (Rushworth et al., 2005) and implementing behav-
ioral strategies to optimize task performance (Bussey et al., 2001).
Moreover, a bivalent differential power–behavior correlation (similar
to that found for the mMFG) was found for the mpSFG/pre-SMA, an
area known to be implicated in both phasic (Chiu and Yantis, 2009;
Cole and Schneider, 2007; Dove et al., 2000; Rushworth et al., 2002)
and sustained (Wang et al., 2009) cognitive control. However, these re-
sults did not survive the FDR correction. Thus, they do not allow us
drawing firm conclusions about our main question and should be
taken with caution.

Limitations and considerations

A first limitation of the present study is that the estimation of the
rsEEG cortical sources was performed by using a source model derived
from a standard brain template (the MNI Colin27) that, as for the
other brain templates available in Brainstorm, was not bilaterally sym-
metrical. Control analyses suggested that our results were not influ-
enced by either the size of the ROIs in the left or right hemisphere or
by the difference in size between the left and right hemisphere (see
the Correlation Analysis and Differential Correlations sections). Howev-
er, we cannot rule out the possibility that lateral asymmetries in the
anatomyof the participants, which cannot bemodeled in the brain tem-
plate, could have influenced in some way our results. Therefore, future
studies should address this issue by either using a symmetrical brain
template or, better, by using individual structural MR images in the
source reconstruction to fully account for individual differences in ana-
tomical hemispheric asymmetries.

Our proposal that a participant's lateralized prefrontal rsEEG spectral
profile would bias which of the two cognitive control processes he/she
would preferentially employ during task-switching – thus modulating
his/her task-switching performance – has a logical implication, that is,
lateralized β/α power at rest should be related to the BOLD activity in
the corresponding lateralized parieto-prefrontal circuit during task-
switching execution. However, we only recorded participants' electro-
physiological activity at rest and, to the best of our knowledge, no
study has yet investigated the relationship between resting-state EEG-
fMRI correlation, EEG-fMRI measures of task-related brain activity, and
behavioral performance in task-switching paradigms. Therefore, our ac-
count may be deemed as somewhat speculative, albeit it represents a
testable hypothesis. It would thus be interesting to conduct further
studies to directly verify this hypothesis by simultaneously recording
EEG and fMRI at rest and fMRI during the execution of task-switching
paradigms.

It should also be noted that, despite some promising findings
supporting our use of the β/α power as a measure of cortical activity
at rest in a given brain region (e.g., Kilner et al., 2005; Laufs et al.,
2006), to fully establish what this measure means in terms of neural ac-
tivity requires further investigation. Moreover, the β/α_HAS measure
we used to assess hemispheric asymmetries in intrinsic brain dynamics
is a highly derived measure, being the difference (right–left hemi-
sphere) of a ratio (β/α) of relative spectral power estimated by a source
space analysis, and the relationship between this measure and underly-
ing cognitive processes is complex, even if we accept the β/α ratio as a
reliable measure of cortical activity. Finally, even if there are reasons to
believe that the rsEEG β/α_HAS we used may be considered a stable
measure over time (see Discussion), as we noted above, no previous
study has investigated the long-term temporal stability of this specific
rsEEG measure.

These considerations add to the degree of novelty of our results and
analytical approach in highlighting the need of further investigations to
directly assess the long-term stability of our rsEEG spectralmeasure and
to replicate the present results to further unravel how individual differ-
ences in executive control are influenced by hemispheric asymmetries
in intrinsic brain dynamics.

Conclusions

The present study provides support for the hypothesis of a left–right
prefrontal hemispheric specialization for executive functionsmediating
switching and mixing costs, respectively (Vallesi, 2012), above and be-
yond the specific task requirements. We propose that the variability in
participants' prefrontal hemispheric asymmetry in the intrinsic EEG
spectral profile at rest would reflect individual differences in preferen-
tially engaging either the left-lateralized, phasic criterion-setting
processes or the right-lateralized, sustained monitoring processes to
regulate their behavior in response to changing task demands, regard-
less of both the cognitive domain involved and the particular task
specifics.
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