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Abstract Recent advances in geophysical methods have been increasingly exploited as inverse model-
ing tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical
inverse problem to reduce inversion errors have been made using time-lapse geophysical measurements
through both coupled and uncoupled (also known as sequential) inversion approaches. Despite the appeal
and popularity of coupled inversion approaches, their superiority over uncoupled methods has not been
proved conclusively; the goal of this work is to provide an objective comparison between the two
approaches within a specific inversion modeling framework based on the ensemble Kalman filter (EnKF).
Using EnKF and a model of Lagrangian transport, we compare the performance of a fully coupled and
uncoupled inversion method for the reconstruction of heterogeneous saturated hydraulic conductivity
fields through the assimilation of ERT-monitored tracer test data. The two inversion approaches are tested
in a number of different scenarios, including isotropic and anisotropic synthetic aquifers, where we change
the geostatistical parameters used to generate the prior ensemble of hydraulic conductivity fields. Our
results show that the coupled approach outperforms the uncoupled when the prior statistics are close to
the ones used to generate the true field. Otherwise, the coupled approach is heavily affected by ‘‘filter
inbreeding’’ (an undesired effect of variance underestimation typical of EnKF), while the uncoupled
approach is more robust, being able to correct biased prior information, thanks to its capability of capturing
the solute travel times even in presence of inversion artifacts such as the violation of mass balance. Further-
more, the coupled approach is more computationally intensive than the uncoupled, due to the much larger
number of forward runs required by the electrical model. Overall, we conclude that the relative merit of the
coupled versus the uncoupled approach cannot be assumed a priori and should be assessed case by case.

1. Introduction

Hydrological models often require abundant and high-quality data in order to deliver reliable results and
predictions. While this has been known for a long time, only the availability of (a) novel data and (b) more
advanced methods to exploit the data information has recently fostered our capability of building better
models that have a conceptual structure consistent with reality and reproduce more accurately all available
data.

Concerning new data availability, the use of geophysical data for hydrological purposes has had a tremen-
dous impulse in the 1990s, as the mutual understanding of hydrological needs and geophysical potential
matured in the two scientific communities. This ultimately led to the development of a discipline of its own,
named hydrogeophysics, i.e., the investigation through minimally invasive techniques of the shallow sub-
surface, with the aim of understanding its hydrological properties. This is now a very active field of research
[e.g., Vereecken et al., 2006; Singha et al., 2015], with a number of studies recently appeared in the literature,
emphasizing particularly on ground-penetrating radar (GPR) [e.g., Annan, 2005] and electrical resistance
tomography (ERT) [e.g., Binley and Kemna, 2005]. These techniques work not only as powerful imaging
methods but also as means to measure changes in soil moisture content [e.g., Deiana et al., 2008] or solute
concentration [e.g., Cassiani et al., 2006] by conducting time-lapse measurements. While a number of issues
are still open regarding the resolution characteristics of each geophysical method, hydrogeophysical
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investigations have received wider acceptance in the hydrological community. A strength of these techni-
ques lies in the possibility of deriving, albeit often approximately, estimates of hydrological state varia-
bles (such as solute concentration or water saturation) at the spatial and temporal scale, depth, and
resolution needed in hydrological sciences, and often not achievable with traditional monitoring techni-
ques [Singha et al., 2015]. However, it is well known that resolution limitations [Day-Lewis et al., 2005]
can produce severe mass balance errors [Singha and Gorelick, 2005] even in the most favorable cross-
hole configurations. The problem can be even more serious when surface-based ERT is used to monitor
natural or artificial irrigation from the ground surface [e.g., Cassiani et al., 2012], where resolution dra-
matically drops with depth and a direct conversion of inverted resistivity values into estimates of soil
moisture content may prove elusive.

Conversely, the traditional use of data to calibrate hydrological models has made tremendous pro-
gresses in the past two decades, partly thanks to the ever increasing available computational power.
Many inverse models have been developed to estimate aquifer hydraulic properties [e.g., Carrera and
Neuman, 1986; Certes and De Marsily, 1991; Carrera et al., 1993; RamaRao et al., 1995; McLaughlin and
Townley, 1996; Gomez-Hernandez et al., 1997; Zimmerman et al., 1998; Vrugt et al., 2008; Hendricks and
Kinzelbach, 2009; Zhou et al., 2014], where, traditionally, hydraulic conductivity and head measurements
have been used to provide the necessary information [e.g., Chen and Zhang, 2006; Hendricks Franssen
and Kinzelbach, 2008; Karahan and Ayvaz, 2008; Li et al., 2012; Xu et al., 2013]. Alternative techniques
that have recently gained interest in this framework are data assimilation schemes (see Judd and Stemler
[2010] and Montzka et al. [2012] for recent discussions on this topic), which allow automatic incorpora-
tion of measured information into numerical simulations. While the parameter estimation problem is dif-
ferent from the state estimation problem, the two can be combined in data assimilation, where an
improved state estimate and a set of improved model parameters are searched for simultaneously [Even-
sen, 2009]. In addition to being able to solve the inverse problem, these techniques are developed with
the aim of preserving the dynamics of the system, and for this reason are of high interest in hydrologi-
cal modeling [e.g., Pauwels et al., 2001; Margulis et al., 2002]. Ensemble Kalman filter (EnKF) and its varia-
tions (e.g., ensemble smoother) are particularly well suited for our types of applications [e.g., Camporese
et al., 2009a, 2009b, 2011; Crestani et al., 2013], thanks to their capability to solve efficiently the com-
bined parameter and state estimation problem [Evensen, 2009].

Geophysical measurements can be informative of the hydrological response of the soil and groundwater if
applied in time-lapse monitoring mode. In particular, many authors have recently demonstrated that it is
possible to use geophysical methods to effectively monitor a saline tracer that moves within the subsurface
and, from that knowledge, to infer the spatial variability of hydraulic parameters, in particular the hydraulic
conductivity [Kemna et al., 2002; Irving and Singha, 2010; Pollock and Cirpka, 2010; Camporese et al., 2011].
However, in order to extract this hydrological information, the assimilation of measurements in a hydrologi-
cal model is needed. Two different approaches may be applied, named respectively, ‘‘uncoupled’’ (or
‘‘sequential’’) and ‘‘coupled’’ hydro-geophysical inversions.

The procedure for an uncoupled inversion can be summarized by the following steps:

1. The spatial distribution of the geophysical quantity of interest (e.g., electrical resistivity for ERT) is derived
from the inversion of geophysical field data.

2. The application of a petrophysical relationship leads to obtaining, from the geophysical quantity, an esti-
mation of moisture content or concentration distribution.

3. The estimated hydrologic state variable (concentration or moisture content), in its spatiotemporal distri-
bution, is used to calibrate and constrain a hydrological model, thus identifying the corresponding gov-
erning parameters (e.g., hydraulic conductivity).

The inversion of geophysical measurements is usually a problem characterized by ill-posedness, which can
be tackled using prior information. If no solid independent information is available, the most common
approach is the introduction of a regularizing functional, commonly a smoothness constraint [e.g., Menke,
1984]. As a consequence of ill-posedness and regularization, the inversion procedure can lead to artifacts,
misinterpretations, and unphysical results, especially in the subsurface regions where the sensitivity of the
measurements is low [e.g., Day-Lewis et al., 2005].
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To overcome these problems, a coupled hydrogeophysical modeling can be applied [e.g., Busch et al., 2013;
Jardani et al., 2013; Soueid Ahmed et al., 2014; Tran et al., 2014], consisting typically of the following steps:

1. A hydrological model is used to predict the evolution of hydrological state variables, e.g., moisture con-
tent or concentration, on the basis of a set of hydrological governing parameters, the identification of
which is the final aim of the inversion.

2. A suitable petrophysical relationship (same as for point (2) above) translates hydrological state variables
into geophysical quantities, such as resistivity or dielectric constant.

3. The simulated geophysical quantities are used to predict the geophysical field measurements.

4. A comparison between predicted and measured geophysical (and hydrological, when available) field
measurements allows a calibration of the complex of hydrological and geophysical models (thus the defi-
nition ‘‘coupled inversion’’), leading to the identification of the hydrological parameters, which are the
key objective of the study.

Although it is commonly believed that fully coupled approaches are superior to the uncoupled ones, very
few studies comparing the two approaches in a comprehensive and objective manner are available in the
literature [e.g., Hinnell et al., 2010]. Due to the increasing interest in the use of data assimilation techniques
as inversion tools, the main goal of this paper is to compare the coupled and uncoupled versions of a spe-
cific inverse modeling framework, based on the Lagrangian formulation of transport and the ensemble Kal-
man filter (EnKF). The inversion model is here applied to assess the spatial distribution of hydraulic
conductivity (K) by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) data generated
for a synthetic tracer test in a heterogeneous aquifer. In the coupled approach, the K distribution is retrieved
by assimilating raw ERT resistance data without a preliminary geoelectrical inversion. In the uncoupled
approach, K is estimated by assimilating electrical conductivity data derived from a previously performed
traditional geophysical inversion of the same resistance data set. We compare the performance of the two
approaches in a number of simulation scenarios, both isotropic and anisotropic, each of them characterized
by a different choice of the geostatistical parameters used to generate the prior ensemble of K
distributions.

2. Theory and Methods

2.1. Flow and Transport Model
The problem of nonreactive transport in a two-dimensional heterogeneous flow field is solved here via the
Lagrangian approach [Dagan, 1989], following the method proposed by Salandin and Fiorotto [1998]. First,
the steady state flow field in a saturated, spatially heterogeneous porous medium is computed by solving
the equation

r � KrHð Þ50; (1)

defined over a domain X with prescribed conditions on the boundary C. In equation (1), K is saturated
hydraulic conductivity, H is hydraulic head, and r is the gradient operator.

The hydraulic conductivity field KðxÞ is assumed, as usual, lognormally distributed, and characterized by the
mean value hYi and the covariance structure CYðrÞ5r2

Y expð2r=lrÞ, where Y5logK is the hydraulic log- con-
ductivity, r is the separation distance measured either along the coordinate x or z, lr is the relevant integral
scale (lx or lz, according to the coordinate), and r2

Y is the hydraulic log-conductivity variance [Dagan, 1989].

Equation (1) is solved using bilinear finite elements in order to compute the spatial distribution of H (piezo-
metric field). A continuous Eulerian velocity field VðxÞ is obtained adopting the method proposed by
Cordes and Kinzelbach [1992], according to whom the velocity field is given from a known distribution of
hydraulic head by subdividing each quadrilateral element into four subelements. A continuous flux distri-
bution across the boundaries of the subelements is computed by imposing conditions of continuity and
irrotationality. The stream function is interpolated over each subelement using the same bilinear shape
function used for the piezometric field.

The integral relationship between the resulting continuous flow field and the Lagrangian trajectory of the
solute particle Xtðx0; tÞ is
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Xtðx0; tÞ5
ðt

0
V Xsðx0; sÞð Þds; (2)

where x0 is the particle coordinate at the starting point at t 5 0. In our simulations we assume Lagrangian
stationarity and neglect pore-scale dispersion and diffusion, the transport process being dominated by the
spatial variability of K at larger scales [Dagan, 1989].

Within this framework, the continuously distributed injection of a nonreactive solute in an area A0 can be
approximated by the release of a large finite set of N particles regularly spaced at intervals Dx0. A dimen-
sionless measure of the solute concentration C over a finite element of area DA (� Dx0) and centroid
located in x is given by [Camporese et al., 2011; Crestani et al., 2013]

Cðx; t; t0Þ5
/
M

ð
DA

ð
A0

C0ðx0Þd½x02Xtðx0; t0Þ�dx0 dx0

5
1

NDA

ð
DA

XN

i51

d½x02Xtðx0; t0Þ�Dx0 dx0;

(3)

where M5/C0A0 is the total mass of initial concentration C0 uniformly injected in the area A0, being / the
porosity, and d is the Dirac delta function. In this study, we consider the spatial variability of / negligible
with respect to that of K, as usually assumed in natural sedimentary aquifers [Gelhar, 1993].

2.2. Electrical Model
The relationship between the electrical properties of a porous medium, its structural characteristics, and its
hydrological state is generally defined by empirical laws. In this paper, we adopted the well-known Archie’s
law [Archie, 1942], where any effect of surface electrical conductivity is neglected, and bulk electrical con-
ductivity r depends on water saturation Sw (always equal to 1 in this study) and pore water electrical con-
ductivity rw

r5/mSn
wrw; (4)

where m (‘‘cementation exponent’’) and n (‘‘saturation exponent’’) are site-specific empirical parameters and
rw is a function of the tracer concentration.

Electrical resistivity tomography (ERT) is an inversion technique that allows the reconstruction of the bulk
electrical conductivity distribution in space, and often in time, starting from the measurements of injected
current Ie and resulting voltage Ve (and thus the relevant resistance R5Ve=Ie) at two distinct pairs of electro-
des [Binley and Kemna, 2005]. ERT is composed of

1. A forward model that can predict resistance values, given the space-time distribution of bulk electrical
conductivity, and that is in practice a numerical solution of the partial differential equation

r � rrVð Þ50; (5)

subjected to suitable boundary conditions. The variable V is the electric potential (voltage) and, as com-
monly accepted for geoelectrical methods, the model assumes point-like electrodes.

2. An inversion procedure seeking an electrical conductivity distribution that, using the forward model,
reproduces the data to a specified level of uncertainty, usually derived from a quantitative estimate of
measurement errors. This is normally accomplished by solving the inverse problem as a regularized opti-
mization problem, where the objective function to be minimized can be expressed as a weighted sum of
data misfit and a regularization term, usually constructed on the basis of a roughness matrix that is often
chosen to be a numerical approximation of the second spatial derivative of the reconstructed conductiv-
ity field. The optimal weight between data misfit and regularization term is commonly made dependent
on the error level in the data, and the corresponding solution is the smoothest compatible with the data
within their error bounds (an Occam’s type solution), as defined by Binley and Kemna [2005]. As described
in Camporese et al. [2011], the objective function to be minimized can be expressed as

wðmÞ5wdðmÞ1awmðmÞ; (6)

with wd being the data misfit, defined as
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wdðmÞ5jjW½d2fðmÞ�jj2; (7)

where m is the vector of unknowns made of the log-transformed electrical conductivities of each grid pixel;
d is the vector of data, made of the log-transformed electrical resistances measured at each quadrupole of
electrodes; fðmÞ is the vector of electrical resistances predicted by the forward model derived from the
numerical solution of equation (5); W is a data weighting matrix associated with the individual data errors;
wmðmÞ is a regularization term taking smaller values for smoother m fields; and a is a regularization parame-
ter that controls the trade-off between wd and wm. This inversion procedure also allows the computation of
a covariance matrix of the estimated conductivity field and the corresponding measurement error covari-
ance matrix (for details, see Camporese et al. [2011]).

In this work, for both forward and inverse solution of the electrical current flow problem, we used the 2-D
resistivity, 3-D current ERT code R2 by A. Binley, Lancaster University (http://www.es.lancs.ac.uk/people/
amb/Freeware/freeware.htm), which is based on a finite element forward model solution and on an
Occam’s approach to regularized inversion.

2.3. Hydrogeophysical Inversion
2.3.1. Ensemble Kalman Filter
Given a set of measurements of a system state and a dynamical model with known uncertainties, the
ensemble Kalman filter (EnKF) [Evensen, 2009] solves the combined parameter and state estimation problem
by means of a Monte Carlo approach, under the assumptions that the dynamical model is a Markov process
and measurement errors are independent in time.

In this study we use the EnKF as an inversion tool to estimate the distribution of the hydraulic log-
conductivity Y given a set of measurements of the solute evolution.

At time t0, NMC realizations of the log-transformed hydraulic conductivity field are generated from a prior
guess of the geostatistical parameters hYi; r2

Y , lx, and lz. Starting with the same initial concentration C0 for
each Y field, the solute plume is propagated forward to the first measurement time t1, using the Lagrangian
transport model described in section 2.1. At time t1, each distribution of Y is collected in a vector yj5

Figure 1. Flowcharts illustrating (a) the fully coupled and (b) the uncoupled inversion algorithms.
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½Y1; . . . ; Yn�j (where j51; . . . ;NMC and n is the number of elements of the mesh) and updated through the
equation

yj
upd5yj1PeHT ðHPeHT 1ReÞ21ðz2HyjÞ; (8)

where yj
upd is the jth realization of the updated Y distribution, Pe is the prior estimate of the system state

error covariance matrix, computed from the ensemble of realizations, z is the vector of observations, Re is
the measurement error covariance matrix, and H is the operator that maps model results at measurement
locations to actual measurements. Here the EnKF is applied recursively, according to a scheme that is also
known as restart EnKF [Wen and Chen, 2006; Hendricks Franssen and Kinzelbach, 2008; Camporese et al.,
2011; Crestani et al., 2013]: (i) a propagation step, where the groundwater model is resolved from t0 onward
until new measurement data (that were not used for assimilation before) become available, followed by (ii)
an update step of the log-transformed hydraulic conductivity values at each measurement time ti. The pro-
cedure (Figure 1) is repeated until the last time ttm when measurements are available. Note that update of C
is not necessary, as, after each assimilation, the forward simulation is restarted, with the new Y distribution,
from t 5 t0. The update scheme adopted in this study follows the implementation described by Sakov et al.
[2010].

The main difference between the fully coupled and the uncoupled approaches lies in the measurements
assimilated, as discussed in the following sections.

2.3.2. Fully Coupled Approach
Figure 1a reports the flowchart of the fully coupled inversion approach. Starting with an ensemble of
hydraulic conductivity fields generated by a standard sequential Gaussian simulator, in each field we simu-
late the evolution of a saline tracer by means of the Lagrangian approach described in section 2.1. Assum-
ing that the parameters of the petrophysical relationship that links concentrations and electrical
conductivities (Archie’s law) are known, the distribution of r is computed for each realization. The forward
electrical model described in section 2.2 is then run for each field of electrical conductivity in order to com-
pute the transfer resistance data forming the vectors Hyj in equation (8), while z contains the resistance
data measured in a reference synthetic experiment.

In the coupled approach, the matrix Re is diagonal, i.e., we assume that the resistance measurement errors
are independent from each other. Therefore, off-diagonal elements are set to zero, while the diagonal ele-
ments are computed by assigning a desired level of error to the measurements.

2.3.3. Uncoupled Approach
Figure 1b reports the flowchart of the uncoupled inversion approach. The algorithm follows the same steps
as the fully coupled approach until the computation of the electrical conductivity fields, but in the
uncoupled approach an electrical inversion is performed before running the hydrological inverse model, so
that in the EnKF the vectors Hyj contain the simulated electrical conductivities, while zj is formed by the r
distributions derived from the inversion.

The matrix Re, in this case, is calculated through the procedure mentioned in section 2.2 and described with
more details in Camporese et al. [2011]. This has two main implications: first, the uncertainty assigned to the
measurements is typically much larger than the one assigned in the coupled case to the raw resistance
data, because the latter are not affected by the electrical inversion; second, the off-diagonal elements are
now different from zero, as the errors on the inverted r data are not independent from each other.

3. Numerical Experiments

3.1. Setup of the Reference Scenarios
Two reference scenarios are considered, both consisting of a two-dimensional vertical cross section of an
aquifer with dimensions 30 3 15 m2, discretized into 60 3 30 5 1800 square elements of side 0.5 m. Bound-
ary conditions consist of hydraulic head imposed (Dirichlet) at x 5 0 m (H 5 100 m) and at x 5 30 m
(H 5 99 m), resulting in a mean gradient of 3.3% along the main flow direction. No flow boundary condi-
tions (Neumann) are imposed along the upper and lower sides of the domain. Both reference hydraulic log-
conductivity (Y) fields were generated using a fast Fourier transform method [Gutjahr et al., 1997] with
mean hYi50:0 log(m/h) (corresponding to a geometric mean of the saturated hydraulic conductivity equal
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to KG51:0 m/h) and variance r2
Y 51:0 log2 (m/h). The first reference field has an isotropic exponential corre-

lation structure with integral scale lx5lz51:0 m, while the second is characterized by an anisotropic expo-
nential correlation structure with lx54:0 m and lz51:0 m (Figure 2).

In both cases, a slug of saline tracer is assumed to be instantaneously and uniformly injected in a source
area of dimensions 1.25 3 11.00 m2 (centered at x 5 1.625 m and from z 5 2.0 m to z 5 13.00 m). This may
represent a stylized injection well partially screened in a confined aquifer; even though the conceptualiza-
tion lacks the complexities related to a real well injection (such as density effects, three-dimensionality, and
skin effects), it is ideal for the purpose of comparing the two inversion approaches in a perfectly controlled
setting. The injection is simulated by 2112 particles, corresponding to a density of 153.6 particles/m2, i.e.,
approximately 40 particles per element.

3.2. ERT Data
The synthetic model is completed by assuming that four boreholes are available, each equipped with 16
electrodes, for a 2-D time-lapse ERT acquisition. The borehole electrodes are 1 m vertically spaced and con-
nected to an additional line of surface electrodes (also 1 m spaced), forming a surface/cross-borehole con-
figuration with a total of 91 electrodes. ERT data are collected every 60 h, from t 5 60 h to t 5 480 h, for a
total of eight observation vectors available for assimilation.

In order to map values of concentration C into bulk electrical conductivity r, we applied Archie’s law (4) for
fully saturated media, with a porosity / equal to 30% and a cementation exponent m 5 1.3. We decided
not to introduce uncertainty with respect to the Archie’s law parameters because we wanted to compare
the performance of the proposed approaches highlighting their essential features, with no interference of
other uncertainty issues. It must be noted that the information content of the data lies practically only in
the tracer travel times. Given that for any value of the cementation index the relationship between bulk
electrical conductivity and water electrical conductivity is always monotonic, an exact knowledge of the
cementation index value has practically no influence on the determination of the tracer travel time, and
thus it bears little to no consequence in the data assimilation procedure here discussed. Water electrical
conductivity rw in equation (4) is obtained from concentrations C assuming that the maximum dimension-
less concentration corresponds to the maximum dimensional concentration of 6 g/L, considered to be the
maximum solute concentration for which gravimetric sinking is not observed [Kemna et al., 2002; Cassiani
et al., 2006; Monego et al., 2010; Perri et al., 2012]. We further assume that the dissolved solute is NaCl, and
we use the relationship between molar concentration and water electrical conductivity established by Sam-
buelli and Comina [2010] and partially based on the theoretical derivation by Atkins and de Paula [2006].

Figure 3 reports, for both the isotropic and anisotropic reference fields, a snapshot of the solute concentra-
tion at the end of the experiment, after 480 h from the injection, along with the corresponding electrical
resistivity tomography. Despite some oversmoothing, which is typical of electrical inversions obtained with
methods such as the one described in section 2.2, the data capture well the dynamics of the saline tracer.
Electrical conductivity data such as those shown in the figure are assimilated in the uncoupled approach,
while the fully coupled approach uses the raw resistance data that were used to obtain the ERT images.

In order for the coupled approach to be consistent with the uncoupled, the same error value has been
assigned to the resistance data. Therefore, in the coupled approach, the diagonal elements in Re were

Figure 2. Reference distribution of hydraulic conductivity in the synthetic (a) isotropic and (b) anisotropic aquifers, with electrodes indicated by black dots. The color bar indicates
hydraulic log-conductivity in log10[m/h].
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computed by assigning a standard deviation of 2% of the observed resistance data and the off-diagonal ele-
ments were set to zero. Consistently, the electrical inversions used in the uncoupled approach were run to a
goal of 2% error.

3.3. Inversion Results
For each reference field, we tested the two inverse approaches in six scenarios, where the prior ensemble of
hydraulic log-conductivity distributions was generated by using geostatistical parameters intentionally dif-
ferent from the ones used to generate the true hydraulic conductivity field. The scenarios are summarized
in Table 1. In scenario 1 the prior ensemble of Y fields was generated with an overestimated variance, in sce-
nario 2 with a biased mean and overestimated variance, in scenarios 3 and 4 with wrong prior correlation
lengths, and in scenarios 5 and 6 all the above errors are combined.

A preliminary sensitivity analysis showed that increasing the ensemble size from 2500 to 5000 did not
improve significantly the performance of the inversion; therefore, an ensemble size of NMC 5 2500 was
used for all the scenarios. Such ensemble size is very large compared to applications of EnKF for the estima-
tion of homogeneous parameters, where it typically does not exceed Oð102Þ. However, in this case the
problem is characterized by a large number of unknowns (specifically 1800); therefore, a large number of
realizations is needed to sufficiently explore the whole range of Y variability.

3.3.1. Isotropic Scenarios
Table 2 summarizes the results of all the isotropic scenarios in terms of average absolute error of the
retrieved hydraulic conductivity fields (AAEY) and concentration distributions (AAEC) computed ‘‘ex post’’ by
running the transport model using the retrieved K fields. The errors are computed as

Figure 3. Solute concentration (dimensionless) in the (a) isotropic and (b) anisotropic reference fields, along with (c, d) the corresponding electrical conductivity (S/m) distributions
obtained at time t 5 480 h by the hydrogeophysical inversion described in section 2.2.

Table 1. Prior Statistics of Investigated Scenarios

Scenario

Isotropic Anisotropic

hYi r2
Y lx lz hYi r2

Y lx lz

Reference 0.0 1.0 1.0 1.0 0.0 1.0 4.0 1.0
1 0.0 1.5 1.0 1.0 0.0 1.5 4.0 1.0
2 20.5 1.5 1.0 1.0 20.5 1.5 4.0 1.0
3 0.0 1.0 2.0 2.0 0.0 1.0 8.0 2.0
4 0.0 1.0 0.5 0.5 0.0 1.0 2.0 0.5
5 20.5 1.5 2.0 2.0 20.5 1.5 8.0 2.0
6 20.5 1.5 0.5 0.5 20.5 1.5 2.0 0.5
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AAEY 5
1

NMC
1
n

XNMC

i51

Xn

j51

jY i
j 2Ytrue

j j;

AAEC5
1

NMC
1
n

XNMC

i51

Xn

j51

jCi
j 2Ctrue

j j;

(9)

where NMC is the number of realizations and n is the number of elements, i.e., the number of Y and C values
to estimate. The table also reports the ‘‘open loop’’ results, i.e., the AAEY and AAEC computed using the prior
ensemble of hydraulic log-conductivity fields.

First of all, it can be noted that in all scenarios both inversion methods provide significant improvements
with respect to the open loop. Even when the AAEY of the inverted field is larger than the one of the open

Table 2. Performance of the Isotropic Scenarios in Terms of Average Absolute Error of the Retrieved Hydraulic Log Conductivity Fields
and Concentration Distributions Computed With ‘‘Ex Post’’ Simulations Run in the Inverted Y Fieldsa

Scenario

Coupled Uncoupled Open Loop

AAEY AAEC AAEY AAEC AAEY AAEC

1 0.39 0.00057 0.50 0.00076 0.52 0.00094
2 0.48 0.00058 0.48 0.00070 0.56 0.00101
3 0.45 0.00060 0.44 0.00073 0.36 0.00095
4 0.39 0.00052 0.47 0.00069 0.47 0.00089
5 0.87 0.00078 0.47 0.00071 0.44 0.00103
6 0.72 0.00079 0.53 0.00071 0.56 0.00099

aOpen loop (i.e., simulations with prior Y fields) results are reported for comparison.

Figure 4. (top) Reference Y distribution and corresponding saline tracer concentration at t 5 480 h; (middle) Y distribution estimated in scenario 4 by the coupled inversion and corre-
sponding saline tracer concentration at t 5 480 h; (bottom) Y distribution estimated in scenario 4 by the uncoupled inversion and corresponding saline tracer concentration at t 5 480 h.
The fields in the middle and bottom row figures are ensemble means over 2500 realizations. Color bars on the left and right indicate hydraulic log-conductivity in log10[m/h] and dimen-
sionless concentration, respectively.
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loop, the values of AAEC show that the tracer evolution is better reproduced using the updated Y distribu-
tions. Regarding the comparison between the two methods, on one hand, the coupled approach performs
better than the uncoupled one when the geostatistical parameters are close to the true ones, i.e., in scenar-
ios 1–4. For instance, even in scenario 3, where AAEY of the coupled inversion is slightly larger than in the
uncoupled one (0.45 versus 0.44), the concentration distribution at the end of the simulated period is repro-
duced much better by the Y field estimated with the fully coupled approach (6:031024 versus 7:331024).
On the other hand, results of scenarios 5 and 6 show that while the uncoupled approach performs consis-
tently with scenarios 1–4, the coupled approach is subject to an apparent deterioration of the final solution,
in terms of both hydraulic conductivity and tracer concentration.

The reason for this behavior can be explained by looking in more detail at the inversion results. For brevity,
we show detailed results of only two scenarios (4 and 6), which are nevertheless representative of the gen-
eral behavior of the two inverse approaches.

In scenario 4, where prior mean and variance are correct, but correlation length is underestimated, both the
coupled and uncoupled inversions obtain a good representation of the true hydraulic conductivity field, as
can be seen in Figure 4. In particular, the coupled approach outperforms the uncoupled one in the predic-
tion of the saline tracer plume, which in the uncoupled approach is affected by more uncertainty, as a result
of the oversmoothing affecting the assimilated data.

In scenario 6 (Figure 5), where the prior ensemble is generated with a biased mean, the coupled approach
fails to recover the true field and, as a consequence, the concentration distribution, while the uncoupled
approach performs better, even though with the same uncertainty and oversmoothing effects observed in
the previous scenarios.

Figure 5. (top) Reference Y distribution and corresponding saline tracer concentration at t 5 480 h; (middle) Y distribution estimated in scenario 6 by the coupled inversion and corre-
sponding saline tracer concentration at t 5 480 h; (bottom) Y distribution estimated in scenario 6 by the uncoupled inversion and corresponding saline tracer concentration at t 5 480 h.
The fields in the middle and bottom row figures are ensemble means over 2500 realizations. Color bars on the left and right indicate hydraulic log-conductivity in log10[m/h] and dimen-
sionless concentration, respectively.
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The results can also be investigated by comparing the cumulative distribution functions (CDFs) of the
hydraulic log-conductivity for the prior and the final ensembles, reported in Figure 6, with the CDF of the
reference Y field. In scenario 4, despite the underestimated correlation length, the prior ensemble, which is
the same for the two approaches, incorporates the variability of the true field; for this reason, the coupled
approach rapidly reduces the uncertainty around the true solution, due to the small uncertainty of the
resistance measurements. The uncoupled approach is affected by the larger uncertainty of the electrical
conductivity observations; as a result, more uncertainty affects the tails of the estimated distribution and
this is finally reflected on the prediction of the tracer plume. The median instead is captured with a small
uncertainty in both cases.

In scenario 6, in contrast, the initial hydraulic log-conductivity ensemble does not incorporate the variability
of the true field. The coupled approach, being characterized by a high confidence on the measurements,
i.e., small observation errors, reduces too quickly the uncertainty of the ensemble around the wrong solu-
tion. This is a manifestation of the filter divergence or inbreeding [Hendricks Franssen and Kinzelbach, 2008;
Evensen, 2009], which is an effect of variance reduction usually caused by sampling errors resulting from the
use of a finite ensemble. These sampling errors are seen as spurious correlations over long spatial distances
or between variables that are supposed to be uncorrelated, leading to small unphysical updates of the vari-
ables in each ensemble member, and eventually to a strongly underestimated variance. In this case, the fil-
ter inbreeding occurs early in the simulation and further assimilations have no physical meaning, gradually
leading to the divergence of the inverted Y field. This effect is prevented in the uncoupled case, due to the
larger uncertainty of the assimilated measurements. The uncoupled approach is thus able to gradually
adjust the solution, as evidenced by the better approximation of the distribution tails. Again, the median
tends to be correctly matched by both approaches.

3.3.2. Anisotropic Scenarios
Table 3 summarizes the performance of the anisotropic scenarios. The results are broadly consistent with
those of the isotropic runs: except for the coupled approach in scenario 6, all the inverted hydraulic log-
conductivity fields show an improved description of the saline tracer evolution compared with the prior Y

Figure 6. Cumulative distribution function (CDF) of the prior ensemble of Y fields, the final ensemble of retrieved Y fields in the coupled approach, and the final ensemble of retrieved Y
fields in the uncoupled approach for (top) scenario 4 and (bottom) scenario 6. Green lines indicate the CDF ensembles, while the black lines denote the true Y CDF.
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distributions. The coupled approach performs better than the uncoupled one, both in terms of hydraulic
conductivity and concentrations, in scenarios 1 and 4, where the prior mean hYi is correct. In scenarios 2
and 5, despite a larger AAEY, the tracer dynamics is still better captured by the coupled method, whereas in
scenarios 3 and 6 the uncoupled approach provides the best results. In particular, the combination of wrong
prior mean and underestimated correlation lengths (scenario 6) leads to the divergence of the coupled
method with AAEC and, especially, AAEY values much larger than in the open loop.

These results confirm that the coupled method is more prone to the filter inbreeding than the uncoupled
one and lead to the question on whether the coupled approach can benefit more than the uncoupled one
from the use of some countermeasures. We then rerun the anisotropic scenario 6, the most affected, with
both the coupled and uncoupled approaches, using covariance inflation with a constant inflation factor
equal to 1.01 [Evensen, 2009]. The results of this analysis are shown in Figure 7 in terms of AAEY. It is clear
how the coupled method is affected by the filter divergence when no inflation is used, as evidenced by the
progressive increase of the error and by the fact that after t 5 360 h no further updates are performed by
EnKF, sign that the system state error covariance matrix collapsed to zero. The use of covariance inflation
significantly improves the performance of the coupled approach, with a final value of AAEY much smaller
than in the case without inflation. However, the performance of the coupled approach is still poorer than
the one of the uncoupled method, which is not affected by the inflation and in both cases exhibits a con-
stantly decreasing AAEY. Analogous conclusions can be drawn from the analysis of the AAEC behavior (not
shown). This is a further confirmation of the robustness of the uncoupled inversion approach.

3.4. Numerical Performance
A detailed investigation about the numerical performance of the two inversion methods was not carried
out, as different computers were used for the various scenarios. However, an approximate analysis of the
computational effort required by the two methods reveals that the fully coupled approach needs about 10
times as much CPU time as the uncoupled approach. In both cases, the main fraction of the total CPU time
is required by the forward electrical model, but the uncoupled approach requires much fewer calls (approxi-

mately 2:53105, including the
computation of Re) than the
fully coupled, which needs a
forward electrical model run
for each electrode, realization,
and time step (i.e., approxi-
mately 1:83106 in this
application).

4. Discussion and
Conclusions

We carried out a comparison
analysis between a coupled
and an uncoupled approach
for hydrogeophysical inverse
modeling based on the

Table 3. Performance of the Anisotropic Scenarios in Terms of Average Absolute Error of the Retrieved Hydraulic Log Conductivity
Fields and Concentration Distributions Computed With ‘‘Ex Post’’ Simulations Run in the Inverted Y Fieldsa

Scenario

Coupled Uncoupled Open loop

AAEY AAEC AAEY AAEC AAEY AAEC

1 0.17 0.00039 0.23 0.00066 0.26 0.00095
2 0.35 0.00066 0.22 0.00072 0.35 0.00102
3 0.48 0.00086 0.28 0.00077 0.18 0.00097
4 0.17 0.00038 0.22 0.00068 0.23 0.00094
5 0.54 0.00078 0.25 0.00084 0.30 0.00104
6 1.99 0.00111 0.26 0.00067 0.35 0.00101

aOpen loop (i.e., simulations with prior Y fields) results are reported for comparison.

Figure 7. Average absolute error of the hydraulic log-conductivity fields obtained in the
coupled and uncoupled anisotropic scenario 6 with and without covariance inflation.
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assimilation via ensemble Kalman filter (EnKF) of electrical resistivity tomography (ERT) data into a Lagran-
gian model of groundwater transport. The two approaches were evaluated in terms of their capability of
retrieving the hydraulic conductivity (K) spatial distribution of two synthetic heterogeneous aquifers, one
isotropic and one anisotropic, in a number of scenarios where the assumed prior geostatistical parameters
deviate from the reference.

The results show that the coupled approach outperforms the uncoupled one when the prior geostatistical
parameters are close to the true ones. This happens because the coupled approach (i) is not affected by
overdispersion resulting from the regularization term typically used in electrical inversions and (ii) gives
more confidence to the measurements than the uncoupled method does, due to the smaller errors affect-
ing the raw resistance data compared with the uncertainty associated to the electrical images. However,
lack of regularization and overconfidence in the measurements can become a problem when the initial
ensemble of K distributions is biased: in this case the coupled approach is heavily affected by filter inbreed-
ing, an undesired effect of variance reduction typical of EnKF applications, and, as a consequence, fails to
retrieve the reference K field.

The issue of filter divergence in the uncoupled approach is significantly alleviated by the larger uncertainty
on the observations and the measurement error correlation terms (off-diagonal elements in matrix Re)
resulting from the previous electrical inversion. For this reason, the uncoupled approach is more robust
than the coupled one with respect to prior information on the initial ensemble, despite the presence of
overdispersion due to the regularization used in the preliminary electrical inversion. The use of covariance
inflation, one of the most common countermeasures to reduce or prevent filter inbreeding, in the scenario
where the coupled approach performed worst, improved the inversion performance. However, the
uncoupled approach, which proved to be insensitive to the inflation, still outperformed the coupled one.

Overall, it seems that the coupled approach is more affected by the problem of filter inbreeding due to a
combined effect of overconfidence on the assimilated raw data and the absence of a ‘‘preprocessing’’ step
like the one represented by the preliminary geophysical inversion in the uncoupled scheme. In other words,
filter inbreeding is probably a manifestation of the fact that in the coupled approach the assumed error
level is smaller than it should be. At a first glance this seems to be a self-contradiction. As in the coupled
approach we use the resistance data per se, we reasonably assumed for the error level the same value used
in the geophysical inversion embedded in the uncoupled approach. Along the same line of reasoning we
also deemed acceptable the assumption of resistance measurement errors independent of each other, i.e.,
the assumption of a diagonal observation error matrix. However, on second thought, it would be reasonable
to expect that the errors affecting measured resistances are indeed correlated through the structure of the
resistivity distribution itself, which however is unknown at the stage where errors need to be estimated.
This error correlation is instead explicitly computed, using a standard approach, in the electrical inversion
used in the uncoupled approach, whereby the correlation between estimated resistivities is assessed given
the resistance values. Symmetrically, in the coupled approach, one should compute the correlation between
the measured resistances given the underlying resistivity distribution, a task that would require further the-
oretical developments, warranting a study on its own.

Based on the results of this study, we argue that the relative merit of the coupled approach versus the
uncoupled one cannot be assumed a priori and should be assessed case by case. As the information con-
tent of the geophysical data remains the same in both the coupled and uncoupled methods, the main dif-
ference is the approach taken in order to complement the information content and construct an ‘‘image’’ of
the process. In the uncoupled approach the regularization is given by smoothness constraints, while in the
coupled approach a sort of regularization is provided by the hydrological model itself, which may be as
erroneous (e.g., errors in modeling conceptualization, boundary conditions, etc.) as assuming that the resis-
tivity distribution is smooth. It is in fact true that the uncoupled approach may be adversely affected by arti-
facts caused by geophysical inversion—the most common being the well-known mass balance problems—
but in some cases the artifacts do not (or only slightly) impact the information content of the inverted
images. This is the case of the tracer tests in the saturated zone discussed in this paper, where the informa-
tion is mainly contained in the travel time of the tracer and not in its overall mass. For other cases the
uncoupled approach may indeed suffer more, e.g., in the case of infiltration in the unsaturated zone, where
mass balance issues are of utmost importance [e.g., Manoli et al., 2015]. On the other hand, it may be argued
that the coupled approach may be more risky, as strong unjustified assumptions can be made on the nature
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of the transport process and thus on its modeling approach. Although this is not the case in this study,
where modeling is conceptually correct (being it all a synthetic exercise), the assumption of prior informa-
tion too far from the reference K field ultimately results in a coupled inversion scheme that, relying exclu-
sively on the capability of the EnKF with underestimated measurement errors, is too rigidly constrained and
thus unable to correct initial deviations of the prior guess from the true solution.

In light of the above discussion, and given that the uncoupled approach requires a small computational
effort (about 1/10 of CPU time) compared to the coupled one, we conclude that running both types of
inversion is recommended in most cases (if the total computational cost is still affordable). As the
uncoupled approach is more robust but also more uncertain, it may be used as a preliminary inversion
before refining the results with a fully coupled approach. It may also give a good indication on whether the
results from the corresponding coupled inversion are reliable or are affected by numerical artifacts due to
filter inbreeding. Once sufficiently accurate prior information has been obtained, coupled approaches have
the undoubted advantage that the numerical models for the geophysical and hydrological processes are
linked together such that the geophysical data are inverted directly for the hydrological properties of inter-
est, avoiding artifacts related to more traditional geophysical inversions.

Note that although the conclusions of this study are strictly applicable only to the inversion tool we used,
i.e., the ensemble Kalman filter, analogous issues related to the definition of the measurement uncertainty
level might affect other methods of coupled inversions, potentially manifesting themselves in different
ways. For this reason we urge similar comparison studies to be carried out with other inversion methods, in
order to further advance our knowledge on hydrogeophysical inversions.
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