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Abstract  

 

Hailstorms and strong winds represent a threat to crops, causing defoliation, lodging and 

in turn yield losses. Crop damages are nowadays assessed by field inspectors, which im-

plies time demanding assessment and difficulties in deriving estimates over large areas. 

Hailstones and strong wind damage plants through stem breaking, defoliation and lodg-

ing, thus leaf area index (LAI) can be a viable tool to detect and quantify the damage 

level. Here, hailstorm and strong wind damage was artificially caused in a maize field 

and compared with NDVI-derived LAI from proximal and remote sensing techniques. 

Estimated LAI was obtained by a NDVI-derived fractional vegetation cover and cali-

brated light extinction coefficient. Results showed that estimated LAI from remote sens-

ing was able to identify crop damage, with a clear differentiation between leaf damage 

levels immediately after the event. Following surveys showed a strong recovering capa-

bility of maize leading LAI values of damaged treatments to align to those of the control 

after about 20 days. Remote sensing techniques, coupled with ground measurements, can 

become a reference tool to assess site-specific hailstorm and strong wind damage over 

large areas. 
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Introduction 

 

In recent years, extreme weather events such as hailstorms and strong winds are showing 

an increase in their intensity in Europe, possibly related to temperature changes caused 

by climate change (Hov et al., 2013). In Central Europe, and particularly in Northern Italy 

(Po Valley), thunderstorms associated with hailstorms and strong winds are a common 

phenomenon (Punge et al., 2014), posing a threat to cultivated crops. In maize, hailstones 

and lodging cause leaf damage as well as plant stem breaking (Vescovo et al., 2016), thus 

damaging reproductive organs and physiology and in turn affecting yields (Shekoofa et 

al., 2012). Traditional techniques of hailstorm damage estimation are nowadays ques-

tioned, since damage across large fields is hardly quantified. Its estimation by field in-

spectors is complex and sometimes subjective. Particular attention has been put forth to 

damage predictions through leaf area index (LAI) and the chlorophyll content (CC) as-

sessments. Their site-specific estimates from remote sensing data might help overcome 

biased measures from local surveys. The NDVI has been proved effective to detect hail 

damage (Zhao et al., 2012). In fact, hailstone-related crop defoliation decreases LAI and 

CC and makes leaf necrosis and large parts of soil visible from sensors (Ali et al., 2015; 



Zhao et al., 2012). However, NDVI detection efficacy was questioned by Zhou et al. 

(2016), who pointed out that plant recovery capabilities could mask the damage signs and 

symptoms after a certain period of time after the hailstorm event. This study aimed to 

assess a) whether NDVI from remote sensing could predict maize LAI and detect differ-

ent levels of hailstorm and strong wind damages, and b) the maize recovery capability in 

early developing stages and its masking effects. 

 

Materials and methods 

 

Experimental design and treatments 

The study was conducted on maize in 2020 at Ca’ Tron farm in the Veneto region (Quarto 

d’Altino, NE Italy, 45°33'21.2"N 12°25'50.6"E). In a 13 ha field, hailstorm and strong 

wind damage was compared on 18 squared plots of 60×60 m, with two replicates (Figure 

1). Hailstorm damage (expected leaf inefficiency –LI– of 20%, 50%, 80%, i.e., leaf area 

damaged per leaf) and lodging were caused at two plant growing stages, that is 7th leaf (8 

plots) and dough stages (8 plots), respectively V7 and R4 stages in the BBCH scale 

(Bleiholder et al., 2001). Two control plots were included in the experimentation where 

no damage was caused. The field was managed uniformly throughout the experiment. 

Maize was sown on May 14th after conventional ploughing and harrowing and fertilized 

with 280 kg ha-1 of mineral 18-46 NP on March 16th and 230 kg N ha-1 of urea on May 

26th.  

 
 

            Figure 1. Experimental site location and design. Legend reports treatments. 

 

Simulation of hailstorm damage was caused using two prototype machines, according to 

maize height. The two prototypes, built at the University of Padova, conceptually work 

as rotating poles with metal wires attached, which are designed to shred maize leaves at 

increasing speed. The speed of the rotating poles was adjusted to reach the desired leaf 

inefficiencies with the support of an insurance field inspector. Conversely, wind damage 

was caused using a tractor with a front bar adjusted to lodge plants while passing. Damage 

was caused on June 17th for V7 and on September 9th, 10th and 11th for R4 plant stages. 

In this study, only damage done at the V7 stage is reported. 



Ground monitoring 

Ground based measurements were performed on June 19th, July 14th, August 6th and Sep-

tember 16th. Ground surveys were performed on three sampling points per plot, consisting 

of leaf area index (Accupar LP-80 ceptometer, Meter Group, Pullman, WA, USA), leaf 

chlorophyll content (Dualex leaf-clip sensor, Force-A, Orsay, France), plant height, fresh 

and dry biomass and hyperspectral reflectivity. Plant height and biomass were measured 

on a 1 m2 area of standing plants while hyperspectral reflectivity was collected with a 

Fieldspec4 spectroradiometer (Malvern Panalytical, Malvern, UK). The sensing probe 

allowed approximately for a 0.002 m2 round area of view.  

 

Remote sensing monitoring 

Remote sensing measurements were acquired from both drone-borne sensors and satellite 

imagery, matching the same dates as the ground monitoring. A preliminary topographic 

survey was conducted using an RGB Zenmuse X3 camera (DJI, Shenzhen, China) 

mounted on a Matrice 200 drone (DJI, Shenzhen, China). Known topographic points were 

detected and used as a reference for NDVI image ortho-rectification, conducted using 

Metashape software (Agisoft, St. Petersburg, Russia). Multispectral measurements were 

taken using a Parrot Sequoia sensor (Parrot, USA), mounted on a Matrice 100 drone (DJI, 

Shenzhen, China). The sensor has a resolution of 1280×960 pixels, working on four spec-

tral regions: green (530-570 nm), red (640-680 nm), far red (730-740 nm) and near infra-

red (770-810 nm). A 43 flight lines scheme was adopted for all dates, with a side overlay 

of 85%, a flying height of 55 m and a flight speed of 2.6 m s-1. Sentinel-2 data were used 

for NDVI calculations as well, including acquisitions available in between the field mon-

itoring dates. NIR (band 8, 785-900 nm) and red (band 4, 650-680 nm) bands have been 

downloaded and processed.  

 

Data processing and analysis 

Proximal and remote sensed NDVI was calculated as follow:  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅− 𝑉𝐼𝑆

𝑁𝐼𝑅+𝑉𝐼𝑆
                                      (1) 

 

where NIR and VIS stand for the spectral reflectance measurements acquired in the near-

infrared and red (visible) regions, respectively.  

After that, remote sensing NDVI imagery was also used to estimate LAI according to Ali 

et al. (2015):  

 

𝐿𝐴𝐼𝑁𝐷𝑉𝐼 =
−log (1−𝐹𝑉𝐶𝑁𝐷𝑉𝐼)

𝑘(𝜃)
                                                                                       (2) 

 

where 𝑘(𝜃) is the extinction light coefficient for a given solar zenith angle, depending 

also on crop canopy structure, and 𝐹𝑉𝐶𝑁𝐷𝑉𝐼 is the fractional vegetation cover: 

 

𝐹𝑉𝐶𝑁𝐷𝑉𝐼 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
              (3) 

 

where 𝑁𝐷𝑉𝐼𝑠 and 𝑁𝐷𝑉𝐼𝑣 refer to bare soil (here -0.05) and fully vegetated NDVI (here 

0.97) respectively, obtained from NDVI image analysis. In the extreme case in which 

NDVI would get close to, or equal to, NDVIv, LAI would get close to or reach infinite. 



Thus, obtained LAI values were capped to 7. A homogenous 𝑘(𝜃), equal to 0.37, was 

calibrated using ground measured LAI and estimated FVC in Eq. (2) by aggregating 

measured data from all monitoring dates and minimizing the RMSE between measured 

(LAImeasured) and simulated (LAIsimulated) LAI. 

 

Results 

 

Simulated leaf inefficiency (LI) reflected real hailstorm effects by ripping and shredding 

leaves. Its magnitude, as assessed by field inspectors, was lower than the expected one 

especially at medium and high intensity (actual LI=20%, 35%, 51%), maintaining though 

the treatments differentiation. Ground-based surveys (Table 1) after V7 damage showed 

a slight reduction in the chlorophyll content on June 19th between LI80% (40.2 µg cm-2) 

and the other treatments (43.5 µg cm-2). Similar results were also detected for dry biomass 

(1.9 Mg ha-1 vs 2.5 Mg ha-1 on average). Proximal sensed NDVI, calculated on single 

leaves and not over canopy, did not show significant differences between treatments. Val-

ues were influenced only by plant growth stage and therefore proximal NDVI was not 

reported nor used for deriving LAI. NDVI from remote sensing varied according to dam-

age. On June 19th (2 days after damage), both drone and satellite highlighted a NDVI 

gradient mirroring the LI gradient. On this date, drone camera (5x5 cm ground resolution) 

showed an average value of 0.45 in LI20%, 0.36 in LI50% and 0.27 in LI80% compared 

to 0.49 in control treatment and 0.48 in lodging (standard errors in table 1). Differences 

in NDVI became negligible in the following dates (14th July, 6th August) with both sen-

sors. Satellite NDVI values (ground resolution of 10x10 m) were higher than drone ones, 

+15% on average, showing the greatest difference on June 19th (+28%). Both ground-

measured and simulated LAI (Figure 2) reflected a gradient that was clearly visible just 

after damage (19th June). Higher LAI values were found in the control (1.41 measured 

and 2.37 average simulated from drone and satellite) compared to damaged plots (1.31, 

1.21, 0.82 measured; 1.96, 1.64, 1.26 average simulated from drone and satellite, respec-

tively on LI20%, 50%, 80%). Estimated LAI, both drone and satellite, was on average 

higher than measured LAI. Nonetheless, a good regression was found between measured 

and both drone-estimated (R2=0.94, RMSE=0.54) and satellite-estimated (R2=0.95, 

RMSE=1.39) LAI. Treatments did not show significant differences between measured 

LAI, while they did for drone-estimated (p<0.01) and satellite-estimated (p<0.01) LAI. 

Ground-measured LAI showed less damage gradient than estimated LAI. On June 17th, 

prior to damage –image was acquired a few hours before damage– estimated LAI from 

satellite (Figure 2C) had similar LAI levels in all treatments. On June 19th, after the dam-

age, a differentiation was visible both from drone and satellite (Figure 2B-C): LAI slightly 

increased in the control while decreased in the other plots according to the damage level. 

This differentiation was clearly visible until July 7th. Afterward, no clear differences were 

detectable among treatments. Notably, lodged treatment did not show an overall esti-

mated LAI reduction just after the damage, but did only later with lower values compared 

to hail and control treatments. The spatial visualization of drone-borne derived LAI is 

reported in Figure 3. On 19th June, damaged plots were visibly distinguishable from con-

trol plot, lodged plots and those only later subjected to damage in R4 stage. On the fol-

lowing dates, the pattern of recovery previously highlighted is clearly visible, showing a 

slight reduction in crop yield, being 8.89 Mg ha-1 in the control compared to an average 

yield loss of -1.58 Mg ha-1 with damage.  

 



Table 1. Average±standard error values for ground measured chlorophyll 

content, dry biomass and NDVI from drone-borne camera and satellite after 

V7 simulated damage.  

 

  Chlorophyll (µg cm-2) Dry biomass (Mg ha-1) 

 19th Jun 14th Jul 6th Aug 16th Sep 19th Jun 14th Jul 6th Aug 16th Sep 

LI 20% 42.5±2.1 44.6±1.9 41.4±2.2 38.1±1.7 2.6±0.2 16.6±0.4 15.4±0.6 19.3±1.3 

LI 50% 44.0±2.1 43.3±1.3 45.4±1.0 41.7±1.3 2.1±0.1 15.8±0.3 15.1±1.1 18.2±0.9 

LI 80% 40.2±2.2 43.1±1.4 43.6±1.9 39.6±2.0 1.9±0.1 15.6±0.4 13.9±0.4 18.6±0.7 

Lodging 44.1±1.3 43.7±1.0 42.5±2.7 37.0±2.8 2.4±0.2 19.5±1.0 16.2±0.5 17.3±0.8 

Control 43.5±1.9 42.6±1.0 43.8±2.3 38.3±2.9 1.9±0.1 16.0±0.2 14.4±0.6 16.6±1.3 

 NDVI (drone) NDVI (satellite) 
 19th Jun 14th Jul 6th Aug 16th Sep 19th Jun 14th Jul 6th Aug 16th Sep 

LI 20% 0.45±0.02 0.81±0.01 0.81±0.00 - 0.58±0.02 0.88±0.00 0.89±0.00 0.53±0.03 

LI 50% 0.36±0.01 0.80±0.01 0.80±0.00 - 0.50±0.01 0.88±0.00 0.89±0.00 0.57±0.02 

LI 80% 0.27±0.02 0.79±0.01 0.79±0.00 - 0.41±0.02 0.86±0.01 0.88±0.00 0.56±0.02 

Lodging 0.48±0.02 0.81±0.00 0.77±0.00 - 0.60±0.01 0.85±0.00 0.86±0.00 0.45±0.02 

Control 0.49±0.02 0.83±0.01 0.80±0.01 - 0.62±0.01 0.88±0.01 0.89±0.00 0.53±0.03 

        

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (A) ground measured LAI average values; (B) drone-borne 

simulated LAI average values; (C) Sentinel-2 simulated LAI average 

values after V7 simulated damage 
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Figure 3. Drone-borne NDVI-derived LAI images from the surveys conducted 

on June 19th, July 14th and August 6th, 2020, after V7 simulated hailstorm dam-

age. 20%, 50% and 80% represent the leaf inefficiency levels. 

Discussion 

 

Chlorophyll content did not show a strong gradient within damage treatments and com-

pared to control. It was hypothesized that proximal sensing did not catch the leaf ineffi-

ciency because surveys were conducted close to the simulated damage. Moreover, on the 

successive dates, new leaves had grown and damaged leaves aged. Chlorophyll damage 

evolution was therefore not detected. Similarly, NDVI retrieved from field sensor did not 

show differences between damaged and undamaged plots, likely due to the sensor intrin-

sic operation. A 0.002 m2 circular area was visible to the instrument probe, which was 

almost entirely occupied by plant green organs that did not represent the full crop canopy. 

As also suggest by Raper et al., (2013), differences in NDVI are seen between near leaf 

and full canopy measurements, with proximal sensors saturating earlier than wider field 

of view sensors (full canopy). As a result, any leaf necrosis was observed using proximal 

sensing, which in turn suggests the importance of NDVI measures done over the whole 

canopy and not only at the leaf scale for detecting hail damage. In contrast, remote sensing 

surveys revealed differences between damaged and undamaged plots just after the simu-

lated hailstorm event. The maize fractional vegetation cover (FVC) was reduced by leaf 

breaking and removal, following the damage gradient, and the maize canopy structure 

was modified. NDVI from remote sensors appeared to be more sensitive to these changes, 

likely due to the influence of more bare soil visible to the sensor after damage. This would 

explain the better performance in damage detection of wide-area viewing sensors such as 

satellites or drone-borne ones when compared to proximal (leaf and stem level) NDVI 



retrieval techniques. In this study, a homogeneous light extinction coefficient k(θ) was 

used for estimating LAI. While k(θ) is likely to change mainly due to canopy structure 

over maize cropping season, a single average value was here used, obtained by averaging 

single k(θ) calculated for each monitoring date. This allowed to obtain standardized LAI 

estimates throughout the season, similarly to Brogi et al., (2020) and in line with average 

values by Flénet et al., (1996). Thus, using equation 2 allowed to calibrate a single k(θ) 

crop-specific value and evaluate whether its application would lead to reliable LAI esti-

mates. A coherent differentiation between damage is visible on June 19th both in meas-

ured and estimated LAI. Notably, ground measured LAI showed a differentiation in the 

post damage surveys (July 14th, August 6th) which appeared to be weakly related to dam-

age, thus highlighting the point-dependent sampling measurements. Estimated LAI (Fig-

ure 3) detected a spatial variability within plots, thus possibly explaining the difficulties 

of ground measured LAI to account for consistent differences between treatments. In both 

drone and satellite estimated LAI, the distinction between damage levels progressively 

decreased moving forth from the date of the damage. Notably, LI80% showed a slower 

recovery capability compared to LI20% and LI50%, in accordance with the higher defo-

liation level. Nonetheless, maize at all damage levels showed a recovery behavior, which 

was caused by the development of new leaves (damage was done at the 7th leaf stage) 

which gradually covered the damaged ones, therefore preventing remote sensing detec-

tion. This behavior would also explain the lack of LAI differences in drone imaging on 

July 14th and following survey. Wide-area simulated LAI will prove helpful for obtaining 

input values for crop simulation models, overcoming limited sampling point capability 

over large fields.  

 

Conclusions 

 

It was observed that NDVI retrieved from multispectral remote sensors can be an effec-

tive index for deriving wide-area LAI estimates using a NDVI-LAI calibrated model. The 

model is based solely on the light extinction coefficient and measured NDVI. This might 

help in detecting hail damaged areas quickly and on large portions of land, integrating 

and sustaining field monitoring by insurance inspectors. The estimated LAI was related 

to different hail damage levels in maize. A gradient of LAI index response was high-

lighted when compared to damage levels. This is due to the increasing defoliation follow-

ing different levels of damage, that can be detected by the NDVI index used for calcula-

tion. Use of a proximal NDVI sensor did not prove effective for the purpose of this study, 

since it was not able to detect the full canopy effects of wide-area defoliation or leaf 

necrosis just after damage nor in the following dates due to emission of new leaves. Use 

of remote sensors proved effective in detecting and differentiating damage, highlighting 

though an important issue of this method, that is the time span. LAI values appeared to 

follow a plant recovery period (14-20 days) after which damage was not anymore detect-

able. Further research at different plant stages is needed to assess temporal dynamics of 

LAI recovery, thus detecting the specific time span in which LAI index can be efficiently 

used to identify and eventually quantify the damage. 
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