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Abstract

Most living organisms rely on double-stranded DNA (dsDNA) to store their genetic information and perpetuate themselves.
This biological information has been considered as the main target of evolution. However, here we show that symmetries
and patterns in the dsDNA sequence can emerge from the physical peculiarities of the dsDNA molecule itself and the
maximum entropy principle alone, rather than from biological or environmental evolutionary pressure. The randomness
justifies the human codon biases and context-dependent mutation patterns in human populations. Thus, the DNA
‘exceptional symmetries,’ emerged from the randomness, have to be taken into account when looking for the DNA encoded
information. Our results suggest that the double helix energy constraints and, more generally, the physical properties of the
dsDNA are the hard drivers of the overall DNA sequence architecture, whereas the selective biological processes act as soft
drivers, which only under extraordinary circumstances overtake the overall entropy content of the genome.
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Introduction
The biological information contained within a dsDNA genome,
in terms of a linear sequence of nucleotides, has been tradi-
tionally considered as the main target of selective pressures
and neutral drift [1–3]. However, in this information-centered
perspective, certain emerging traits of the genetic code, such as
symmetries between nucleotides abundance [4–7], codon pref-
erences [8,9] and context-dependent mutation pattern [10], are
difficult to explain. In 1950, Erwin Chargaff made the important
observation that the four nucleotides composing a double helix
of DNA (adenine, A; cytosine, C; guanine, G and thymine, T) are

symmetrically abundant [11] (number of A = number of T and
number of C = number of G). This symmetry, named Chargaff’s
first parity rule, played a crucial role in the discovery, in 1953,
of the double helix structure of DNA [12–14]. In 1968, Chargaff
extended his original observation into the Chargaff’s second
parity rule [15–17], which states that the same sets of identities
found for a double helix DNA also hold on every single strand
of the same molecule. In other words, in every single strand of
a dsDNA genome, the number of adenines is almost equal to
the number of thymines and the number of guanines is almost
equal to the number of cytosines. This rule does not hold for
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Figure 1. Percentage of adenine (A) versus thymine (T) and cytosine (C) versus guanine (G) computed for different organism genomes. The frequencies are computed

on the reference strand for the dsDNA genomes and for the reported strand in case of ssDNA genomes. (a) Percentage scatterplot of adenine versus thymine. Archaea,

bacteria and human chromosomes have the highest Pearson correlation values (R2 = 0.99). Plastids, plasmids and dsDNA viruses have a Pearson correlation R2 greater

than 0.6. Mitochondria and ssDNA viruses do not show a significant correlation (R2 < 0.04). (b) A similar graph was obtained plotting the percentage of cytosine (C)

versus the percentage of guanine (G) using the same set of organism genomes. Archaea, bacteria and human chromosomes have the highest Pearson correlation values

(R2 = 0.99).

single-stranded DNA (ssDNA), and it has been found to be glob-
ally valid for all the dsDNA genomes with the exception of
mitochondria [18,19]. An updated confirmation of these previous
observations is reported in Figure 1 and in Supplementary Table
1S available online at https://academic.oup.com/bib, based on all
reference genomes downloaded from the NCBI repository (ftp://
ftp.ncbi.nlm.nih.gov/genomes/).

Chargaff’s second parity rule has previously been extended
to all the possible k-mers up to 10 bases [4,5] within a dsDNA
molecule and holds only for k-mers and their reverse com-
plements (here named ‘RC-pairs’), but not for any alternative
permutation of the reverse complement k-mers. This symmetry,
which holds for all the dsDNA genomes, has been recently
named as ‘exceptional symmetry’ [6]. As an example of this, here
we consider the complement pairs (‘C-pairs’). In this case for
example (Figure 2), the occurrences of the nucleotide sequence
5′TTACG3′ and its reverse complement sequence 5′CGTAA3′ (are
RC-pairs) in a single strand of a dsDNA genome are almost the
same. Conversely, the frequencies of the C-pairs 5′TTACG3′ and
5′AATGC3′ in the same strand may differ significantly. Notice that
the direction 5′ → 3′ is conserved between RC-pairs (Figure 1a),
whereas it is inverted in C-pairs (Figure 1b).

After 50 years from the discovery of Chargaff’s second parity
rule, there is not a generally accepted justification for its emer-
gence, although several explanations have been proposed based
on different models and hypothesis, such as statistical [5, 6, 7,
20, 21], stem-loops [22], tandem duplications [23], duplication
followed by inversions [24], inverted transpositions [25, 26] and
non-uniform substitutions [27].

All these explanations share a bottom-up approach and
use the relations found in the data to build a model. Some
models proposed statistical distributions of the data and showed
that simple Markov models could not explain the symmetries
found in dsDNA genomes [4,5,7]. Among the most relevant
achievement is the fact that the maximum k-mer length for
which the extended Chargaff’s second parity rule is significantly
detectable, is a logarithmic function of the dsDNA sequence
length [4,5]. In particular, Shporer and co-workers [5], found a
very precise estimation of the slope for the maximum length for
the k-mer (kmax) as a function of the genome size (L), which is
kmax ∼= 0.73 ln(L).

Other approaches assume that the sequence symmetries
might have originated by biological mechanisms, such as stem-
loops (as in the secondary structure of the RNA) [22], which
account for local symmetries. Alternative models include inver-
sions (by cutting a dsDNA and connecting it again but inverting
the strands) [24], or tandem duplications before inversion rear-
rangements [23]. In this particular case, the authors have shown
that a computational model, based on sequence generation that
creates reverse complement tandem duplications, could satisfy
Chargaff’s second parity rule ‘even when the duplication lengths
are very small when compared to the length of sequences’
[23]. In line with these recent models, Albrecht-Buehler [25, 26]
was among the first in proposing the hypothesis of inversions
followed by transpositions. He also showed that the random flip-
ping of the bases between the two strands leads to the Chargaff’
second parity rule. Unfortunately, this illuminating idea does not
extend to reverse complement pairs longer than one nucleotide.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/2/2172/5817481 by U

niversità di Padova - D
ipartim

ento di Scienze dell'Educazione user on 21 Septem
ber 2021

ftp://ftp.ncbi.nlm.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/


2174 Fariselli et al.

Figure 2. Energy symmetry of dsDNA. Scheme describing the interaction energy in RC- versus C-pairs. (a) The interaction energybetween the sequence X

(5
′
. . . TTACG . . . 3′ ) on plus strand and the sequence (3

′
. . . AATGC . . . 5′ )X on the minus strand is the same of its reverse complement sequence X (5

′
. . . CGTAA . . . 3′ )

on the plus strand when interacting with the sequence X (3
′

. . . GCATT . . . 5′ ) on the minus strand. Thus, in RC-pairs, this implies that H(X, X) = H(X, X). (b) The energy

equality does not hold when taking into account the interaction energy between the complement, Xc (5
′
. . . AATGC . . . 3′ ), of the original sequence X on the plus strand,

with its reverse complement X
c

(3
′
. . . TTACG . . . 5′ ) on the minus strand, that is H(X, X) �= H(XC, X

C
). Thus, this energy symmetry leads to the prediction that the

probability of finding a specific k-mer on a strand is the same of finding its reverse complement k-mer on the same strand when we apply the energy constraint to

a maximum entropy approach. In particular, this leads to Chargaff’s second parity rule because of the sequences X and X contain the same number of A–T and C–G.

Note that in RC-pairs (a) that direction 5′ → 3′ is conserved between the sequences TTACG and GCATT (the same is true for AATGC and CGTAA), whereas in C-pairs (b),

the directions of the same sequences are inverted. In other words, the sequences in (a) are the same, while in (b) are specular.

Notably, these explanations, although very promising, do not
have predictive power, i.e. from them it is difficult to deduce
testable predictions. Here, we propose a deductive approach: we
start with a minimal hypothesis (maximum randomness with
the average energy constraint), and from that, we derive several
predictions.

We hypothesize that the leading force shaping the DNA
sequence in the genomes is the entropy and that the major cause
of all these symmetries is the randomness. However, random-
ness does not imply uniformity and equality. As an example,
the ‘random’ process of blindly throwing stones in a rugged
landscape generates a higher probability of finding the stones
in the valleys than on top of the hills.

Materials and methods
Genomic data

We accessed the NCBI database (https://www.ncbi.nlm.nih.gov/
genome/) and downloaded all the reference and representative
genomes for archaea, bacteria, dsDNA and ssDNA viruses,

mitochondria, plasmids, plastids and the following eukaryotes:
Homo sapiens, Pan troglodytes, Mus musculus and Taklfugu rubripes.
We also downloaded freely accessible human population
data from the 1000 Genomes Project database (https://www.
internationalgenome.org).

Maximum entropy principle and the constraint of the DNA double
helix interactions

We assume that the dsDNA of most of the current organisms
achieved the equilibrium, and we define P(X) as the probability
of seeing the genome X. We postulate that and one signifi-
cant contribution to P(X), besides the evolutionary pressure is
the thermodynamic stability of the DNA. Thus, we estimate
the probability of a sequence P(X) using a maximum entropy
approach considering that the ‘average energy’ of the interac-
tions is constant (canonical ensemble). For the sake of com-
pactness, we introduce the following notation. We define a
DNA sequence of length N the string X = a1 . . . aN, where ai

is one of the possible four nucleotides {A, C, G, T}. We define
two functions of a DNA sequence X: (1) the reverse sequence
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Xr = aNaN−1 . . . a1, and (2) the complement Xc = ac
1ac

2 . . . ac
N, where

ac
i represents the complement bases, such as Ac = T and Cc = G.

Finally, the reverse complement of a sequence X is defined as
X = (Xr)

c = (Xc)
r = ac

Nac
N−1 . . . ac

1 = aNaN−1...a1. The last equality
comes from the fact that the reverse complement of a single
nucleotide is just its complement. When we consider a double-
stranded DNA (dsDNA), the two paired DNA X and X interact
with an energy Ĥ(X) = H(X, X). H(X, X) includes both the intra-
chain (single-strand) interactions HS(X) (and HS(X)), and the
inter-chain (double strand) interactions HD(X, X), resulting in
H(X, X) = HD(X, X) + HS(X) +HS(X). Although its complete form
is not computable, we can recognize that it is symmetric under
the exchange of X with X, i.e. Ĥ(X) = H(X, X) = H(X, X) = Ĥ(X),
since the force exerted by X on X is the same as the force that
X exerts on X, and its strength depends on the specific DNA
sequence X. On the other hand, with the exception of specific
cases, in general, Ĥ(X) = H(X, X) �= H(Xc, Xc) = Ĥ(Xc). To obtain
the inequality is sufficient to consider the directionality of the
covalent bonds between each nucleotide in the single strands.
Formally, the average energy is expressed as:

〈E〉 =
∑

X

Ĥ(X)P(X) =
∑

X

H
(
X, X

)
P(X) (1)

where P(X) is the probability of occurrence of the DNA strand
X, and the sum is over all possible DNA sequences (all possible
genomes of this size). Our purpose is to find the most probable
and less informative distribution among the ones satisfying
the constraint in Eq. (1). This is achieved by maximizing the
information entropy [28] S:

S = −
∑

X

P(X) ln (P(X)) (2)

with respect to P(X) with the constraints given by equation (1)
and by the normalization condition

∑
X P(X) = 1. By introducing

the appropriate Lagrange multipliers, λ and β, the function to
maximize is:

F = −
∑

X

P(X) ln (P(X)) − λ
∑

X

P(X) − β
∑

X

Ĥ(X)P(X) (3)

After maximizing F, the probability can be written as:

P(X) = e−βĤ(X)

Z
= e−βH(X,X)

Z
(4)

Where the constant Z is the partition function:

Z =
∑

X

exp
{
−βĤ(X)

}
(5)

The Lagrange multiplier β is related to E in eq. (1) by the
equation:

E = − ∂lnZ
∂β

(6)

From the symmetry of the interaction energy (Ĥ(X) =
H(X, X) = H(X, X) = Ĥ(X)),it follows that:

P(X) = 1
Z

e−βĤ(X) = 1
Z

e−βĤ(X) = P
(
X

)
(7)

This indicates that the probability of the existence of a
genome is equal to the probability of its reverse complement.
The energy constraint forces the two strands to have the same
probability of occurring within a given genome.

Chargaff’s second parity rule from maximum entropy principle

We will now show that the symmetry of the energy and the dou-
ble helix interaction jointly with the maximum entropy principle
is the origin of generalized Chargaff’s theory (GCT), newly intro-
duced here, that we enunciate as: in a long-enough duplex DNA,
the occurrences of a k-mer and that of its reverse complement,
are almost equal. Our assumption is that the counts obtained
over a single strand of a dsDNA sequence (but long enough,
theoretically infinite) are the same as of the summation over all
possible sequences (weighted by their probabilities).

GCT can be made more formal, as follows: the expected
number of a DNA segment (k-mer) of length k, w = (a1 . . . ak),
indicated as 〈n(w)〉, and the expected number of its reverse
complement 〈n(w)〉, w = (ak, ak−1, . . . , a1) are equal. Let N be the
total length of the duplex DNA. By definition of the expectation
value, we have that:

〈n(w)〉 = 〈n (a1, . . . ak)〉 =
N−k+1∑

i=1

P (Xi = w) =
N−k+1∑

i=1

P (ai . . . ai+k−1) (8)

where Xi = (ai . . . ai+k−1) indicates the segment of the DNA
sequence X from position i to position i + k − 1. The equality
of〈n(w)〉 and 〈n(w)〉 is a consequence of the equality of the
probabilities P(Xi = w) = P(XN−i−k+2 = w). This follows by
computing the average of the occurrence of the event Xi = w
with the probability distribution (7) for a generic positioni in the
DNA sequence as:

P (Xi = w) = 1
Z

∑
X′

δ
(
X′

i, w
)

e−βĤ(X′) (9)

where δ(X′
i, w) = 1(0) if X′

i = w (X′
i �= w). Since we sum over all

possible sequences X′, for a generic function f(Xi), we have that
the identity

∑
X, f(X′) = ∑

X, f(X′) holds. Thus, we have:

P (Xi = w) = 1
Z

∑
X′

δ
(
X′

i, w
)

e−βĤ
(
X

′)
= 1

Z

∑
X′

δ
(
X′

N−1−k+2, w
)

e−βĤ(X′)

= P
(
XN−i−k+2 = w

)
(10)

Using equation (8), we finally obtain the desired result:

〈n(w)〉 = 〈
n

(
w

)〉
(11)

which is exact if the average is computed over all the possible
duplex DNA sequences. However, for a single duplex DNA of
finite length N, corresponding to the analyzed cases, equation
(11) is only approximate and becomes exact in the N → ∞ limit.
This result proves the GCT. Furthermore, this also furnishes the
explanation of the original Chargaff’s second parity rule, such as:

〈n(a)〉 = 〈
n

(
a
)〉 ∀a ε {A, C, G, T} (12)

According to our derivation, the ‘exceptional symmetry’
found in the same strand of natural duplex DNA [6] is the most
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probable outcome that we can predict by chance. Of course, this
does not mean that it must always be the case, but only that the
Chargaff’s second parity rule is the most probable solution that
we should expect when no other relevant things happen such
as new constraints, besides to equation (1).

GCT also predicts that equation (11) is valid also for any kind
of marginal probabilities, even the one obtained using ‘gapped’,
k-mers, such as k-mers that contain wild characters. For
examples, the expected number of occurrences of the sequence
5′ tcNtNNNga3′ should be equal to the expected number of
5′ tcNNNaNga3′ , where ‘N’ stands for any possible nucleotides.

It is worth noticing that our theory deals with a whole dsDNA
sequence and it is not suitable to explain local frequency varia-
tion of specific DNA fragments.

Symmetry predictions for k-mers of arbitrary length using the
maximum entropy principle

From the application of the maximum entropy principle, we pre-
dict that at equilibrium, in a long-enough dsDNA, the numbers
of k-mers and their reverse complements tend to be the same.
However, other kinds of sequence symmetries, such as k-mers
and their simple complement k-mers, are predicted not to hold.
Here, we study two completely different cases: (i) the C-pairs of
k-mers, w = (a1, a2, . . . ak) and their complements wc = (a1, a2,
. . . ak), (ii) RC-pairs of k-mers, w and their reverse complements,
w = ( ak, ak−1, . . . a1). We can compute the conditional probability
to find the k-mer w at position j given that there is a k-mer w at
position i and the conditional probability to find the k-mer wc at
position j given that there is a k-mer w at position i:

P
(
Xj = w|Xi = w

) =
∑

X P(X)δ (Xi, w) δ
(
Xj, w

)
∑

X P (X) δ (Xi, w)
(13)

and

P
(
Xj = wc|Xi = w

) =
∑

X P(X)δ (Xi, w) δ
(
Xj, wc

)
∑

X P (X) δ (Xi, w)
(14)

By summing over i and j in the equations (13) and (14), we
obtain the expected number of C-pairs (〈n(w, wc, k)〉) and RC-
pairs (〈n(w, w, k)〉):

〈
n

(
w, w, k

)〉 ≡ 1
2

n(k)∑
i,j=1

P
(
Xj = wi|Xi = wi

)
;

〈
n

(
w, wc, k

)〉 ≡ 1
2

n(k)∑
i,j=1

P
(
Xj = wC

i|Xi = wi
)

(15)

where n(k) is the number of possible k-mers of size k, n(k) =
N − k + 1. We can estimate the two sums introduced above by
evaluating the expected value of the pairs of k-mers along a
naturally duplex genome sequence of length N. Concerning the
evaluation of 〈n(w, wc, k)〉, the maximum entropy solution does
not pose constraints to the C-pairs, thus assuming that the four
bases occur in a completely uncorrelated way, the probability
P(Xj = wc|Xi = w) simplifies as P(Xj = wc|Xi = w) = P(Xj = wc) �∏

afn(a)
a , where fa is the frequency on the base ain the DNA strand

and n(a) is the number of time the base a appears in the k-mer wc.
With this assumption, the probability decreases exponentially
with the length k. If we assume equal probability for all the
bases, the probability of the k-mer becomes P(wc) � 4−k, and the

expectation can be estimated as:

〈
n

(
w, wc, k

)〉 � 1
2

n(k)
24−k (16)

On the contrary, in naturally duplex DNA, the maximum
entropy solution implies that the number RC-pairs has the same
chance to appear since the double helix constraint imposes that
〈n(w)〉 � 〈n(w)〉, form equation (11). To find an analytical solution
for 〈n(w, w, k)〉, we observe that the frequencies of the k-mers and
their reverse complements are predicted to be the same for long
sequences ( n(k) = N − k + 1 � 1). Thus, we can assume that
the square of the difference of the frequencies (f(w) = n(w)/n(k))

goes to zero for long DNA sequences (large n(k)), as:

1
2

∑
w

(
f(w) − f

(
w

))2 � 1
n(k)

(17)

From equation (17) and the definition of the frequency, we
obtain a simple formula for the number of RC-pairs given in
equation (15), that is:

〈
n

(
w, w, k

)〉 � 1
2

(∑
w

n(w)n
(
w

)) � 1
2

(∑
w

n(w)2 − n(k)

)

= 1
2

(
n(k)∑
i=1

n (wi) − n(k)

)
(18)

Maximum entropy principle in single-stranded DNA

In the case of ssDNA, the interaction energy depends only in the
single chain HS(X), so that the average energy is:

〈E〉 =
∑

X

HS(X)P(X) (19)

Notice that in general HS(X) �= HS(X). Similarly, to what
computed above we obtain:

P(X) = e−βHS(X)

Z
�= e−βHS(X)

Z
= P

(
X

)
(20)

Since in ssDNA P(X) �= P(X), there are no constraints appli-
cable as in the dsDNA so that the compositions and sequence
regularities depend on the type of single-stranded energy HS(X)

and the ‘temperature’ factor β. However, we can predict that
there is not a reason to expect that ssDNA genomes follow GCT.

Codon usage analysis

Each codon in the human genome has a reported frequency
(codon usage frequency). We evaluated the Pearson correlation
between the frequencies of each codon with respect to the
frequencies of the corresponding reverse-complement codons
(or complement codons). This is done by creating a list V, whose
elements are the frequency of the alphabetically ordered codons.
Then we generated two other lists VRC and VC, whose elements
are the frequencies of the reverse complement codons and
complement codons of V, respectively. Then, we computed the
Pearson correlation between V and VRC, and between V and
VC. Furthermore, we generated 107 different random codon list
R, by shuffling the original frequencies in V (by shuffling the
elements Vi of V). However, in order to keep the same amino acid
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Figure 3. Plot of C-pair and RC-pair rescaled frequencies in gapped k-mers. (A) Escherichia coli genome, (B) human chromosome 22. The x-axis indicates the k-mer

rescaled frequency and the y-axis the corresponding values for the complement (C-) or reverse complement (RC-) pairs. In the figure, we report k-mers of the form

a∗b, ab∗c, ab∗cd and abc∗de, where a, b, c, d and e are the specific nucleotides, while ∗ represents a gap. For each type of k-mer, we evaluated gaps of size 5, 10, 20, 50,

100, 500, 1000, 5000 and 10 000 bases. To show the different k-mers in the same plot, we rescaled each k-mer frequency, by dividing it for the corresponding uniform

distribution 1/N (N is the number of possible gapped pairs, which is 16, 64, 256 and 1024, for the four types of gapped k-mer used). The best fit with the R2 value is also

reported.

frequency, and avoiding improbable amino acid frequencies in
the genome, the shuffling is performed only inside the groups of
the codons that code for the same residue (or stop codons). The
number of possibilities is still extremely high, due to the degen-
eracy of the code. For each new random codon R, we computed as
before, the Pearson correlation between R and the corresponding
reverse-complement RRC and Complement RC lists. At the same
time, we measured the Euclidean distance D(V,R) between the
original V and the new random shuffled R as:

D (V, R) =
√∑

i

(Vi − Ri)
2 (21)

In Figure 4, we plot the Pearson correlation between R and RRC

(or RC) as a function of D(V,R).

Results
DNA symmetries from randomness

To find the probability distribution of the dsDNA sequences, we
applied the maximum entropy approach [28], taking into account
the energy constraints dictated by the DNA double helix struc-
ture. This is equivalent to finding DNA sequence arrangements
corresponding to the minimum free-energy [29]. According to
this principle, the distribution maximizing the entropy is the
least biased, among the ones satisfying the energy constraints.
By using the probability distribution with the highest entropy,
we are choosing the model that needs the smallest amount of
information to be explained.

The double-energy interaction and its intrinsic symmetry
(due to Newton’s third law) shift the probability away from
the uniform distribution. Given a dsDNA with the two strands
X (the plus strand) and X (the minus strand), the interaction
energy H(X, X) is equal to H(X, X). This implies that the
energy does not change if X and X are interchanged, that is

H(X, X) = H(X, X)(Figure 2a). As a consequence, the probabilities
of a sequence and its reverse complement are equal, P(X) = P(X)

(equation (7)). Notably, the energy symmetry does not hold
when comparing the interaction energy H(X, X) with that of the
complement sequence Xc (its C-pair) on plus strand and its base-
pairing sequence on minus strand H(X, X) �= H(Xc, X

c
) (Figure 2b).

This implies that, in general, P(X) �= P(Xc) and the directionality
of the covalent bond of a single DNA strand is sufficient to break
the symmetry (P(X) = P(X) �= P(Xc)).

The main prediction which is deducible from the equality
P(X)=P(X) (equation (7)) is that the expected numbers of RC-
pairs are equally balanced. This is only technically correct for
infinitely long dsDNA sequences, and we can foresee deviations
when the genome size decreases (as in the case of the DNA of
viruses and organelles).

The maximum entropy solution predicts that the maximum
length of RC-pairs in a genome is not constrained to any spe-
cific length of a k-mer and depends only on the range of the
energy interaction, which could span the whole dsDNA genome.
Therefore, our framework represents a generalization of the
preliminary observations of an ‘exceptional symmetry’ [6] to a
more general principle that here we call ‘Generalized Chargaff’s
Theory’ and which is built only upon a physical approach.

In this context, Chargaff’s second parity rule is deduced from
the maximum entropy and represents just a special case of GCT
corresponding to k = 1 (k-mer of length equal to 1). On the other
hand, inequality P(X) �= P(Xc) predicts that the frequencies of a
k-mer and its complement are not correlated.

A second prediction of the model is that the Chargaff’s second
parity rule can be extended to ‘gapped’ k-mers, such as k-mers
that contain ‘wildcards’ in different positions inside the k-mers,
such as the RC-pairs 5′actNNNgNa3′ and 5′ tNcNNNagt3′ , where
‘N’ stands for any possible nucleotides, while it is not necessarily
found for the corresponding gapped C-pairs (5′actNNNgNa3′ and
5′ tgaNNNcNt3′ ). This prediction is verified in both the Escherichia
coli genome and in the Human chromosome 22 (Figure 3).
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Figure 4. Predictions of the number of RC- and C-pairs in prokaryotic and eukaryotic genomes. The logarithm of the number of RC- and C-pairs is plotted as a function

of the k-mer length. The plot shows that RC-pairs are much more frequent compared to C-pairs. Moreover, the predicted and observed number of RC-pairs (blue and red

dots, respectively) decreases sub-linearly, whereas the predicted and observed number of C-pairs (gray and black dots, respectively) decreases exponentially (linearly in

the graph). (a) The predicted number of RC- and C-pairs perfectly matches the observed data in Escherichia coli K12 genome. (b) Human chromosome 22. The predicted

number of RC and C-pairs is in agreement with the empirical data, but not at the same degree as for Escherichia coli (a). (c) Human chromosome 22 with removed repeated

regions. Now the match between our predictions and empirical data is of the same quality as for prokaryotes (a).

When the maximum entropy is applied to ssDNA, in the
absence of any other known single-stranded energy interaction
constraints, no correlation between the abundances of A and
T (and between C and G, or of any other RC-pair) in ssDNA is
expected (equation (20)). This third prediction of the model is
consistent with the ssDNA virus data (Figure 1).

A fourth prediction of our physical formulation of GCT
(equation 11) is the freedom for relative positions of RC-
pairs in the dsDNA sequences, unlike alternative biological
models that imply duplications with inversions and other local
phenomena of DNA rearrangements, where relative positions
of the two sequence of a RC-pairs may be constrained by
the duplication mechanisms. According to our maximum
entropy solution, the probability of finding a RC-pair in a
double helix sequence is determined by the range of the
interaction energy H(X, X), and not necessary nearby within a
dsDNA genome. This is confirmed by analyzing a set of dsDNA
genomes of several species, where the data show that the
energy interactions span very distant sequence positions (see
Supplementary data and Figures 1S and 2S available online at
https://academic.oup.com/bib).

A fifth prediction of GCT concerns the empirical observa-
tion that RC-pairs are extremely frequent in dsDNA genomes
(Figure 4 and Supplementary Figures 5S–10S available online at
https://academic.oup.com/bib), while any other kind of pairs,
such as C-pairs, are expected to decrease exponentially with
their length. This prediction is very important in light of the
statistical limit derived for the maximal k-mer length by Shporer
and coworkers [5]. According to their derivation, there is a limit
for the k-mer length in a dsDNA after which significant deviation
can be found in the Chargaff’s second parity rule [4,5]. This limit,
which is proportional to the natural logarithm of the sequence
length, assigns maximum k-mer lengths of 6, 8 and 10 for
genome sizes of about 1, 10 and 200 M bases, respectively [5].

Here, we extend beyond the k-mer statistics, without con-
tradicting it, by predicting to find very long and more frequent
RC-pairs in a genome (we may expect violations for short-sized
dsDNAs). A prediction of the expected number of RC-pairs and
C-pairs, as a function of k (length of a k-mer), can be analytically

derived (equations 16 and 18) and tested against experimental
observations. Figure 4a shows an almost perfect, k-independent
match between the predicted and observed DNA sequences in
the Escherichia coli genome, taken as a representative genome for
prokaryotes (results for other genomes are reported as supple-
mentary materials).

When an eukaryotic genome is considered, here represented
by the human chromosome 22 (the smallest in terms of
nucleotides abundance), we find that the predictions of our
equations (equations 4 and 5, see methods) are still in good
agreement with the empirical data (Figure 4b), but not at the
same degree as for prokaryotes. However, when repeated regions
(transposons, tandem repeats, low complexity regions, etc.)
are removed, we found an optimal improvement between
predictions and observations (Figure 4c).

This finding suggests the actual presence of two distinct
portions within eukaryotic genomes: (a) a stable core genome,
similar to the prokaryotic DNA, which is at the GCT equilibrium,
(b) regions originated from recent rearrangements events, that
are either still evolving towards the equilibrium or are kept
away from it by biological selective pressures. In evolution-
ary terms, we can imagine that, among all the chromosomal
rearrangements affecting a genome, the ones that maintain or
facilitate the emergence of RC-pairs are those that help the
dsDNA genome to reach the equilibrium (maximum entropy
or minimum free energy) and are hence positively selected in
light of their energy balance rather than just for their biological
information content.

Among the previously hypothesized mechanisms, the dupli-
cations followed by inversions [25–26], which create reverse com-
plement sequences and led to GCT, are the most probable out-
come in terms of genomic thermodynamic equilibrium. In this
energetic view, the observed difference in abundance of various
k-mers can be interpreted as a result of the difference of free
energy of the relative nucleotide sequences.

Codon usage and evolutionary patterns in the human population

In virtue of GCT, we can also observe how biological events (such
as duplications contained in the repeated tracts of the human
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Figure 5. Pearson correlation of the codon frequency as a function of the distance

between the observed human codon usage and the random permutations. The

correlation is computed for the pairs of different codon frequency that are the

reverse complement (RC-pairs) and simple complement (C-pairs). We generated

107 random samples by shuffling the codon frequencies inside the group coding

for the same amino acid, to keep constant the natural amino acid abundance.

The R2 between the computed Pearson (y-axis) and the distance (x-axis) for the

RC-pairs is 0.65 (R2 = 0 for the C-pairs). This indicates that there is a tendency to

lose the Chargaff’s second parity rule fingerprinting moving away from the true

codon usage.

genome) might generate detectable deviations from the max-
imum entropy solution. We focused on coding regions, which
sequences are constrained by the fact that, under certain reading
frames, tri-nucleotides are translated into amino acids following
a species-specific code. Here, we investigate whether, even in
a given codon bias system, the GCT is still detectable as an
entropic tendency. Through the human codon usage, we found
a significantly positive correlation between the frequency of
the codons and the frequency of the corresponding reverse-
complement codons (Pearson correlation = 0.5 with a P-value
< 10−4). On the contrary, there is no correlation between the
codon frequency and those of their complement codons (Pearson
correlation R2 = 0.0 with a P-value = 1). This indicates that, despite
selective biological pressures, there is a significant GCT trace
in the human codon bias. We went further on this path, and
we generated 107 random permutations of the observed codon
usage frequencies to evaluate the stability of the GCT signal
in the human codon usage. The 107 random codon frequen-
cies preserve the amino acid abundance to maintain the same
protein composition for each randomly generated codon usage
(see ‘Methods’). We then evaluate the Pearson correlation of
the codon frequency as a function of the distance between
the ‘true’ human codon usage and the corresponding random
permutations. The results, reported in Figure 5, show that the
more the simulated codon usage is distant from the true one,
the less (on average) the RC-pairs correlate. Conversely, this does
not happen for the C-pairs. The result confirms that the GCT
signal in the human codon bias is robust. In broader terms,
assuming ‘perfect GCT compliance’ as the energy equilibrium,
we could tentatively see the energy needed to deviate from the
equilibrium while keeping a certain level of GCT ‘unbalance’ (i.e.
and R2 of 0.5) within the adopted codon usage, as an upper limit

for the evolutionary ‘energy gain’ represented by the usage of
alternative codon usage.

Chargaff’s signature can also found in pieces of the genomes,
such as coding sequences (CDS) and long non-coding RNA
regions (lncRNA). In these cases, Chargaff’s scores are 0.96
and 0.98 for CDS lncRNA, respectively (see Supplementary
data available online at https://academic.oup.com/bib). The
corresponding Chargaff’s score for the whole chromosomes is
close to 1.

Remembering that in the human genome the abundance of
trimers is not uniform and follows the GCT (see Supplementary
Figure 3S available online at https://academic.oup.com/bib),
another validation of the role played by the dsDNA energy
constraints is provided by the observation of context-dependent
mutations within the human genomes of the human 1000
Genomes Project [30]. As recently reported [10], when stratifying
the occurrences of a given mutation A → B within a human
population by considering the 5′ and 3′ context nucleotides, the
relative abundance of the various NAN → NBN trimers (k = 3)
is not uniformly distributed (N can be any of the four DNA
nucleotides for two fixed nucleotides A and B). We can assume
that, among other causes, GCT as a major driver toward the
equilibrium of the genome, maybe one of the reasons for the
observed non-uniformity of the mutation NAN → NBN. If this
is the case, we expect that at population level, the evolutionary
success of a given mutation type, approximated by its average
population frequency, should match the average population
frequency of the mutation type substituting the RC of NAN
into the RC of NBN, hence ensuring compliance with GCT
(see Supplementary Information available online at https://
academic.oup.com/bib). This is what we observe from empirical
data (see Supplementary Figure 4Sb available online at https://
academic.oup.com/bib).

Discussion
Here, we showed that the intra-strand symmetries in the dsDNA
emerge from the double-helix structure and the randomness. In
this respect, we defined the principle of the GCT, which expands
the unexpected ‘exceptional symmetry’ found in double-helix
DNA as just the most likely and simplest probability distribution
attainable for a duplex DNA. It should be emphasized that we
obtained this result by solely imposing the base-pairing energy
constraint, due by the symmetrical nature of the DNA double
helix, and using the entropy maximization without specifying an
energy form at a quantitative level. These two simple physical
ingredients, rather than biological events, seem to be able to
explain most of the observed genome-wide patterns that gener-
alize the discovery made by Chargaff in 1968 (Chargaff’s second
parity rule).

It is worth noticing that a simple model that generates
random sequences with the same dsDNA frequency, such as
P(A) = P(T) and P(C) = P(G), by construction, satisfy Chargaff’s
second parity rule for the single bases (without explaining it).
However, this process does not create the asymmetry between
RC and C-pairs found in the genomes. Moreover, the numbers of
RC-pairs would decrease exponentially with the k-mer length,
which disagrees with both our predictions and the experimental
observations.

GCT makes predictions that have been confirmed in empir-
ical data, including dsDNA viruses and intracellular organelles,
with the exception of mitochondria. Future work will be needed
to further address the sequence length and biochemical pecu-
liarities of these organelles.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/2/2172/5817481 by U

niversità di Padova - D
ipartim

ento di Scienze dell'Educazione user on 21 Septem
ber 2021

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib


2180 Fariselli et al.

Overall, our results show that processes that increase the
entropy of a dsDNA molecule (such as inverted duplications
and other such biological events [22,25,26]) are favored, and
we speculate that exceptions to this trend may provide future
opportunities to measure the energetic content of the biologi-
cal information embedded in dsDNA sequences shaped by the
natural selection.

Furthermore, deciphering the mechanisms that favor the
long-term survival of a random DNA sequence over another will
provide crucial insights to research fields focused on the under-
standing the basic structure and evolution of dsDNA genomes,
or with designing synthetic DNA constructs.
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Key Points
• We introduce a new paradigm where the DNA free-

energy equilibrium, rather than the biological informa-
tion it encodes, is the first target of evolutionary forces.
In a metaphorical way, the genome is often referred to
as of a book, where the ink represents the biological
information it encodes. With our work, we are shifting
the focus to include also the paper of which the book is
made, and which constitutes the bulk of it, within the
broader picture.

• Most of the intra-strand symmetries and unexpected
patterns are simply due to the randomness under the
double-helix constraint. This solves the puzzle of the
Chargaff’s second parity rule after more than 50 years
of its first enunciation.

• Computational analyses of the model reveal that the
‘Chargaff’s second parity rule’ is a strong signature in the
selection of the codon bias in the human genome.

• Mutational frequency in the human population appears
influenced by the underlying most probable k-mer fre-
quency in the genome, thus related to the k-mer equi-
librium distribution in the genome.
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