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ABSTRACT

We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both
temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used
for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the
spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/dln k = �0.003 ± 0.007 when
combined with the Planck lensing likelihood. When the Planck high-` polarization data are included, the results are consistent and uncertainties are
further reduced. The upper bound on the tensor-to-scalar ratio is r0.002 < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization
constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(�) / �2 and
natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several
physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of
the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model
comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum
consistently recover a featureless and smooth PR(k) over the range of scales 0.008 Mpc�1 <⇠ k <⇠ 0.1 Mpc�1. At large scales, each method finds
deviations from a power law, connected to a deficit at multipoles ` ⇡ 20�40 in the temperature power spectrum, but at an uncompelling statistical
significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we
constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with
adiabatic primordial perturbations, and the estimated values for the parameters of the base ⇤ cold dark matter (⇤CDM) model are not significantly
altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the
non-adiabatic contribution to the observed CMB temperature variance is |↵non-adi| < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino
velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature
power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at
a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results
are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as
expected from the increased precision of Planck data using the full set of observations.
Key words. cosmic background radiation – cosmology: theory – early Universe – inflation
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1. Introduction

The precise measurements by Planck1 of the cosmic microwave
background (CMB) anisotropies covering the entire sky and over
a broad range of scales, from the largest visible down to a reso-
lution of approximately 50, provide a powerful probe of cosmic
inflation, as detailed in the Planck 2013 inflation paper (Planck
Collaboration XXII 2014, hereafter PCI13). In the 2013 results,
the robust detection of the departure of the scalar spectral in-
dex from exact scale invariance, i.e., ns < 1, at more than 5�
confidence, as well as the lack of the observation of any statis-
tically significant running of the spectral index, were found to
be consistent with simple slow-roll models of inflation. Single-
field inflationary models with a standard kinetic term were
also found to be compatible with the new tight upper bounds
on the primordial non-Gaussianity parameters fNL reported in
Planck Collaboration XXVI (2014). No evidence of isocurva-
ture perturbations as generated in multi-field inflationary mod-
els (PCI13) or by cosmic strings or topological defects was
found (Planck Collaboration XXV 2014). The Planck 2013 re-
sults overall favoured the simplest inflationary models. However,
we noted an amplitude deficit for multipoles ` <⇠ 40 whose sta-
tistical significance relative to the six-parameter base ⇤ cold
dark matter (⇤CDM) model is only about 2�, as well as other
anomalies on large angular scales but also without compelling
statistical significance (Planck Collaboration XXIII 2014). The
constraint on the tensor-to-scalar ratio, r < 0.12 at 95% CL, in-
ferred from the temperature power spectrum alone, combined
with the determination of ns, suggested models with concave
potentials.

This paper updates the implications for inflation in the light
of the Planck full mission temperature and polarization data. The
Planck 2013 cosmology results included only the nominal mis-
sion, comprising the first 14 months of the data taken, and used
only the temperature data. However, the full mission includes
the full 29 months of scientific data taken by the cryogenically
cooled high frequency instrument (HFI; which ended when the
3He/4He supply for the final stage of the cooling chain ran out)
and the approximately four years of data taken by the low fre-
quency instrument (LFI), which covered a longer period than the
HFI because the LFI did not rely on cooling down to 100 mK for
its operation. For a detailed discussion of the new likelihood and
a comparison with the 2013 likelihood, we refer the reader to
Planck Collaboration XI (2016) and Planck Collaboration XIII
(2016), but we mention here some highlights of the di↵erences
between the 2013 and 2015 data processing and likelihoods:
(1) improvements in the data processing such as beam charac-
terization and absolute calibration at each frequency result in a
better removal of systematic e↵ects and (2) the 2015 temper-
ature high-` likelihood uses half-mission cross-power spectra
over more of the sky, owing to less aggressive Galactic cuts. The
use of polarization information in the 2015 likelihood release
contributes to the constraining power of Planck in two principal
ways: (1) the measurement of the E-mode polarization at large
angular scales (presently based on the 70 GHz channel) con-
strains the reionization optical depth, ⌧, independently of other
estimates using ancillary data; and (2) the measurement of the

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).

TE and EE spectra at ` � 30 at the same frequencies used for
the TT spectra (100, 143, and 217 GHz) helps break parame-
ter degeneracies, particularly for extended cosmological models
(beyond the baseline six-parameter model). A full analysis of
the Planck low-` polarization is still in progress and will be the
subject of another forthcoming set of Planck publications.

The Planck 2013 results have sparked a revival of interest in
several aspects of inflationary models. We mention here a few
examples without the ambition to be exhaustive. A lively de-
bate arose on the conceptual problems of some of the inflationary
models favoured by the Planck 2013 data (Ijjas et al. 2013, 2014;
Guth et al. 2014; Linde 2014). The interest in the R2 inflation-
ary model originally proposed by Starobinsky (1980) increased,
since its predictions for cosmological fluctuations (Mukhanov
& Chibisov 1981; Starobinsky 1983) are compatible with the
Planck 2013 results (PCI13). It has been shown that supergrav-
ity motivates a potential similar to the Einstein gravity conformal
representation of the R2 inflationary model in di↵erent contexts
(Ellis et al. 2013a,b; Buchmüller et al. 2013; Farakos et al. 2013;
Ferrara et al. 2013b). A similar potential can also be generated by
spontaneous breaking of conformal symmetry (Kallosh & Linde
2013b).

The constraining power of Planck also motivated a com-
parison between large numbers of inflationary models (Martin
et al. 2014) and stimulated di↵erent perspectives on how best
to compare theoretical inflationary predictions with observations
based on the parameterized dependence of the Hubble parameter
on the scale factor during inflation (Mukhanov 2013; Binétruy
et al. 2015; Garcia-Bellido & Roest 2014). The interpretation of
the asymmetries on large angular scales (Planck Collaboration
XXIII 2014) also prompted a reanalysis of the primordial dipole
modulation (Lyth 2013; Liddle & Cortês 2013; Kanno et al.
2013) of curvature perturbations during inflation.

Another recent development has been the renewed interest in
possible tensor modes generated during inflation, sparked by the
BICEP2 results (BICEP2 Collaboration 2014a,b). The BICEP2
team suggested that the B-mode polarization signal detected at
50 < ` < 150 at a single frequency (150 GHz) might be of
primordial origin. However, a crucial step in this possible in-
terpretation was excluding an explanation based on polarized
thermal dust emission from our Galaxy. The BICEP2 team put
forward a number of models to estimate the likely contribution
from dust, but at the time relevant observational data were lack-
ing, and this modelling involved a high degree of extrapola-
tion. If dust polarization were negligible in the observed patch
of 380 deg2, this interpretation would lead to a tensor-to-scalar
ratio of r = 0.2+0.07

�0.05 for a scale-invariant spectrum. A value of
r ⇡ 0.2, as suggested by BICEP2 Collaboration (2014b), would
have obviously changed the Planck 2013 perspective according
to which slow-roll inflationary models are favoured, and such
a high value of r would also have required a strong running of
the scalar spectral index, or some other modification from a sim-
ple power-law spectrum, to reconcile the contribution of gravita-
tional waves to temperature anisotropies at low multipoles with
the observed TT spectrum.

The interpretation of the B-mode signal in terms of gravita-
tional waves alone presented in BICEP2 Collaboration (2014b)
was later cast in doubt by Planck measurements of dust po-
larization at 353 GHz (Planck Collaboration Int. XIX 2015;
Planck Collaboration Int. XX 2015; Planck Collaboration Int.
XXI 2015; Planck Collaboration Int. XXII 2015). The Planck
measurements characterized the frequency dependence of inten-
sity and polarization of the Galactic dust emission, and more-
over showed that the polarization fraction is higher than expected
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in regions of low dust emission. With the help of the Planck
measurements of Galactic dust properties (Planck Collaboration
Int. XIX 2015), it was shown that the interpretation of the B-
mode polarization signal in terms of a primordial tensor signal
plus a lensing contribution was not statistically preferred to an
explanation based on the expected dust signal at 150 GHz plus
a lensing contribution (see also Flauger et al. 2014a; Mortonson
& Seljak 2014). Subsequently, Planck Collaboration Int. XXX
(2016) extrapolated the Planck B-mode power spectrum of dust
polarization at 353 GHz over the multipole range 40 < ` < 120
to 150 GHz, showing that the B-mode polarization signal de-
tected by BICEP2 could be entirely due to dust.

More recently, a BICEP2/Keck Array-Planck (BKP) joint
analysis (BICEP2/Keck Array and Planck Collaborations 2015,
herafter BKP) combined the high-sensitivity B-mode maps from
BICEP2 and Keck Array with the Planck maps at higher fre-
quencies where dust emission dominates. A study of the cross-
correlations of all these maps in the BICEP2 field found the
absence of any statistically significant evidence for primordial
gravitational waves, setting an upper limit of r < 0.12 at
95% CL (BKP). Although this upper limit is numerically al-
most identical to the Planck 2013 result obtained combining
the nominal mission temperature data with WMAP polarization
to remove parameter degeneracies (Planck Collaboration XVI
2014; Planck Collaboration XXII 2014), the BKP upper bound
is much more robust against modifications of the inflationary
model, since B modes are insensitive to the shape of the pre-
dicted scalar anisotropy pattern. In Sect. 13 we explore how the
recent BKP analysis constrains inflationary models.

This paper is organized as follows. Section 2 briefly re-
views the additional information on the primordial cosmologi-
cal fluctuations encoded in the polarization angular power spec-
trum. Section 3 describes the statistical methodology as well
as the Planck and other likelihoods used throughout the pa-
per. Sections 4 and 5 discuss the Planck 2015 constraints on
scalar and tensor fluctuations, respectively. Section 6 is dedi-
cated to constraints on the slow-roll parameters and provides a
Bayesian comparison of selected slow-roll inflationary models.
In Sect. 7 we reconstruct the inflaton potential and the Hubble
parameter as a Taylor expansion of the inflaton in the observ-
able range without relying on the slow-roll approximation. The
reconstruction of the curvature perturbation power spectrum is
presented in Sect. 8. The search for parameterized features is
presented in Sect. 9, and combined constraints from the Planck
2015 power spectrum and primordial non-Gaussianity derived in
Planck Collaboration XVII (2016) are presented in Sect. 10. The
analysis of isocurvature perturbations combined and correlated
with curvature perturbations is presented in Sect. 11. In Sect. 12
we study the implications of relaxing the assumption of statisti-
cal isotropy of the primordial fluctuations. We discuss two exam-
ples of anisotropic inflation in light of the tests of isotropy per-
formed in Planck Collaboration XVI (2016). Section 14 presents
some concluding remarks.

2. What new information does polarization provide?

This section provides a short theoretical overview of the extra
information provided by polarization data over that of temper-
ature alone. (More details can be found in White et al. 1994;
Ma & Bertschinger 1995; Bucher 2015, and references therein.)
In Sect. 2 of the Planck 2013 inflation paper (PCI13), we gave
an overview of the relation between the inflationary potential
and the three-dimensional primordial scalar and tensor power
spectra, denoted as PR(k) and Pt(k), respectively. (The scalar

variable R is defined precisely in Sect. 3.) We shall not repeat
the discussion there, instead referring the reader to PCI13 and
references therein.

Under the assumption of statistical isotropy, which is pre-
dicted in all simple models of inflation, the two-point corre-
lations of the CMB anisotropies are described by the angular
power spectra CTT

` , C
TE
` , C

EE
` , and CBB

` , where ` is the multipole
number. (See Kamionkowski et al. 1997; Zaldarriaga & Seljak
1997; Seljak & Zaldarriaga 1997; Hu & White 1997; Hu et al.
1998 and references therein for early discussions elucidating the
role of polarization.) In principle, one could also envisage mea-
suring CBT

` and CBE
` , but in theories where parity symmetry is

not explicitly or spontaneously broken, the expectation values
for these cross spectra (i.e., the theoretical cross spectra) vanish,
although the observed realizations of the cross spectra are not
exactly zero because of cosmic variance.

The CMB angular power spectra are related to the three-
dimensional scalar and tensor power spectra via the transfer
functions �s

`,A(k) and �t
`,A(k), so that the contributions from

scalar and tensor perturbations are

CAB,s` =

Z
1

0

dk
k
�s
`,A(k) �s

`,B(k) PR(k) (1)

and

CAB,t` =

Z
1

0

dk
k
�t
`,A(k) �t

`,B(k) Pt(k), (2)

respectively, where A,B = T, E, B. The scalar and tensor pri-
mordial perturbations are uncorrelated in the simplest models,
so the scalar and tensor power spectra add in quadrature, mean-
ing that

CAB,tot
` = CAB,s` +CAB,t` . (3)

Roughly speaking, the form of the linear transformations encap-
sulated in the transfer functions �s

`,A(k) and �t
`,A(k) probe the

late time physics, whereas the primordial power spectra PR(k)
and Pt(k) are solely determined by the primordial Universe, per-
haps not so far below the Planck scale if large-field inflation turns
out to be correct.

To better understand this connection, it is useful to plot and
compare the shapes of the transfer functions for representative
values of ` and characterize their qualitative behavior. Referring
to Fig. 1, we emphasize the following qualitative features:

1. For the scalar mode transfer functions, of which only �s
`,T (k)

and �s
`,E(k) are non-vanishing (because to linear order,

a three-dimensional scalar mode cannot contribute to the
B mode of the polarization), both transfer functions start to
rise at more or less the same small values of k (due to the
centrifugal barrier in the Bessel di↵erential equation), but
�s
`,E(k) falls o↵much faster at large k and thus smooths sharp

features in PR(k) to a lesser extent than �s
`,T (k). This means

that polarization is more powerful than temperature for re-
constructing possible sharp features in the scalar primordial
power spectrum provided that the required signal-to-noise is
available.

2. For the tensor modes, �t
`,T (k) starts rising at about the same

small k as �s
`,T (k) and �s

`,E(k) but falls o↵ faster with increas-
ing k than �s

`,T (k). On the other hand, the polarization com-
ponents, �t

`,E(k) and �t
`,B(k), have a shape completely di↵er-

ent from any of the other transfer functions. The shape of
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Fig. 1. Comparison of transfer functions for the scalar and tensor modes.
The CMB transfer functions �s

`,A(k) and �t
`,A(k), where A = T, E, B,

define the linear transformations mapping the primordial scalar and ten-
sor cosmological perturbations to the CMB anisotropies as seen by us
on the sky today. These functions are plotted for two representative val-
ues of the multipole number: ` = 2 (in black) and ` = 65 (in red).

�t
`,E(k) and �t

`,B(k) is much wider in ln(k) than the scalar po-
larization transfer function, with a variance ranging from 0.5
to 1.0 decades. These functions exhibit several oscillations
with a period smaller than that for scalar transfer functions,
due to the di↵erence between the sound velocity for scalar
fluctuations and the light velocity for gravitational waves
(Polarski & Starobinsky 1996; Lesgourgues et al. 2000).

Regarding the scalar primordial cosmological perturbations, the
power spectrum of the E-mode polarization provides an impor-
tant consistency check. As we explore in Sects. 8 and 9, to some
extent the fit of the temperature power spectrum can be improved
by allowing a complicated form for the primordial power spec-
trum (relative to a simple power law), but the CTE

` and CEE
` power

spectra provide independent information. Moreover, in multi-
field inflationary models, in which isocurvature modes may have
been excited (possibly correlated amongst themselves as well
as with the adiabatic mode), polarization information provides
a powerful way to break degeneracies (see, e.g., Bucher et al.
2001).

The inability of scalar modes to generate B-mode polariza-
tion (apart from the e↵ects of lensing) has an important conse-
quence. For the primordial tensor modes, polarization informa-
tion, especially information concerning the B-mode polarization,
o↵ers powerful potential for discovery or for establishing upper
bounds. Planck 2013 and WMAP established upper bounds on

a possible tensor mode contribution using CTT
` alone, but these

bounds crucially relied on assuming a simple form for the scalar
primordial power spectrum. For example, as reported in PCI13,
when a simple power law was generalized to allow for running,
the bound on the tensor contribution degraded by approximately
a factor of two. The new joint BICEP2/Keck Array-Planck upper
bound (see Sect. 13), however, is much more robust and cannot
be avoided by postulating baroque models that alter the scale
dependence of the scalar power spectrum.

3. Methodology

This section describes updates to the formalism used to describe
cosmological models and the likelihoods used with respect to the
Planck 2013 inflation paper (PCI13).

3.1. Cosmological model

The cosmological models that predict observables such as the
CMB anisotropies rely on inputs specifying the conditions and
physics at play during di↵erent epochs of the history of the
Universe. The primordial inputs describe the power spectrum of
the cosmological perturbations at a time when all the observable
modes were situated outside the Hubble radius. The inputs from
this epoch consist of the primordial power spectra, which may
include scalar curvature perturbations, tensor perturbations, and
possibly also isocurvature modes and their correlations. The late
time (i.e., z <⇠ 104) cosmological inputs include parameters such
as !b, !c, ⌦⇤, and ⌧, which determine the conditions when the
primordial perturbations become imprinted on the CMB and also
the evolution of the Universe between last scattering and today,
a↵ecting primarily the angular diameter distance. Finally, there
is a so-called “nuisance” component, consisting of parameters
that determine how the measured CMB spectra are contaminated
by unsubtracted Galactic and extragalactic foreground contam-
ination. The focus of this paper is on the primordial inputs and
how they are constrained by the observed CMB anisotropy, but
we cannot completely ignore the other non-primordial parame-
ters because their presence and uncertainties must be dealt with
in order to correctly extract the primordial information of inter-
est here.

As in PCI13, we adopt the minimal six-parameter spatially
flat base ⇤CDM cosmological model as our baseline for the late
time cosmology, mainly altering the primordial inputs, i.e., the
simple power-law spectrum parameterized by the scalar ampli-
tude and spectral index for the adiabatic growing mode, which
in this minimal model is the only late time mode excited. This
model has four free non-primordial cosmological parameters
(!b,!c, ✓MC, ⌧; for a more detailed account of this model, we re-
fer the reader to Planck Collaboration XIII 2016). On occasion,
this assumption will be relaxed in order to consider the impact of
more complex alternative late time cosmologies on our conclu-
sions about inflation. Some of the commonly used cosmological
parameters are defined in Table 1.

3.2. Primordial spectra of cosmological fluctuations

In inflationary models, comoving curvature (R) and tensor
(h) fluctuations are amplified by the nearly exponential ex-
pansion from quantum vacuum fluctuations to become highly
squeezed states resembling classical states. Formally, this quan-
tum mechanical phenomenon is most simply described by the
evolution in conformal time, ⌘, of the mode functions for
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Table 1. Primordial, baseline, and optional late-time cosmological parameters.

Parameter Definition

As . . . . . . . . . . . . Scalar power spectrum amplitude (at k⇤ = 0.05 Mpc�1)
ns . . . . . . . . . . . . Scalar spectral index (at k⇤ = 0.05 Mpc�1 unless otherwise stated)
dns/dln k . . . . . . . Running of scalar spectral index (at k⇤ = 0.05 Mpc�1 unless otherwise stated)
d2ns/dln k2 . . . . . . Running of running of scalar spectral index (at k⇤ = 0.05 Mpc�1)
r . . . . . . . . . . . . . Tensor-to-scalar power ratio (at k⇤ = 0.05 Mpc�1 unless otherwise stated)
nt . . . . . . . . . . . . Tensor spectrum spectral index (at k⇤ = 0.05 Mpc�1)
!b ⌘ ⌦b h2 . . . . . Baryon density today
!c ⌘ ⌦c h2 . . . . . . Cold dark matter density today
✓MC . . . . . . . . . . . Approximation to the angular size of sound horizon at last scattering
⌧ . . . . . . . . . . . . . Thomson scattering optical depth of reionized intergalactic medium
Ne↵ . . . . . . . . . . . E↵ective number of massive and massless neutrinos
⌃m⌫ . . . . . . . . . . Sum of neutrino masses
YP . . . . . . . . . . . . Fraction of baryonic mass in primordial helium
⌦K . . . . . . . . . . . Spatial curvature parameter
wde . . . . . . . . . . . Dark energy equation of state parameter (i.e., pde/⇢de) (assumed constant)

the gauge-invariant inflaton fluctuation, ��, and for the tensor
fluctuation, h:

(ayk)00 +
 
k2
�

x00

x

!
ayk = 0, (4)

with (x, y) = (a�̇/H, ��) for scalars and (x, y) = (a, h) for ten-
sors. Here a is the scale factor, primes indicate derivatives with
respect to ⌘, and �̇ and H = ȧ/a are the proper time derivative
of the inflaton and the Hubble parameter, respectively. The cur-
vature fluctuation, R, and the inflaton fluctuation, ��, are related
via R = H��/�̇. Analytic and numerical calculations of the pre-
dictions for the primordial spectra of cosmological fluctuations
generated during inflation have reached high standards of pre-
cision, which are more than adequate for our purposes, and the
largest uncertainty in testing specific inflationary models arises
from our lack of knowledge of the history of the Universe be-
tween the end of inflation and the present time, during the so-
called “epoch of entropy generation”.

This paper uses three di↵erent methods to compare inflation-
ary predictions with Planck data. The first method consists of a
phenomenological parameterization of the primordial spectra of
scalar and tensor perturbations according to:

PR(k) =
k3

2⇡2 |Rk |
2

= As

 
k
k⇤

!ns�1+ 1
2 dns/dln k ln(k/k⇤)+ 1

6
d2ns
dln k2 (ln(k/k⇤))2+...

, (5)

Pt(k) =
k3

2⇡2

⇣
|h+k |

2 + |h⇥k |
2
⌘
= At

 
k
k⇤

!nt+
1
2 dnt/dln k ln(k/k⇤)+...

, (6)

where As (At) is the scalar (tensor) amplitude and ns (nt),
dns/dln k (dnt/dln k), and d2ns/dln k2 are the scalar (tensor) spec-
tral index, the running of the scalar (tensor) spectral index, and
the running of the running of the scalar spectral index, respec-
tively. h+,⇥ denotes the amplitude of the two polarization states
(+,⇥) of gravitational waves and k⇤ is the pivot scale. Unless
otherwise stated, the tensor-to-scalar ratio,

r =
Pt(k⇤)
PR(k⇤)

, (7)

is fixed to �8nt, which is the relation that holds when inflation is
driven by a single slow-rolling scalar field with a standard kinetic

term2. We will use a parameterization analogous to Eq. (5) with
no running for the power spectra of isocurvature modes and their
correlations in Sect. 11.

The second method exploits the analytic dependence of the
slow-roll power spectra of primordial perturbations in Eqs. (5)
and (6) on the values of the Hubble parameter and the hier-
archy of its time derivatives, known as the Hubble flow func-
tions (HFF): ✏1 = �Ḣ/H2, ✏i+1 ⌘ ✏̇i/(H✏i), with i � 1. We will
use the analytic power spectra calculated up to second order us-
ing the Green’s function method (Gong & Stewart 2001; Leach
et al. 2002; see Habib et al. 2002; Martin & Schwarz 2003; and
Casadio et al. 2006 for alternative derivations). The spectral in-
dices and the relative scale dependence in Eqs. (5) and (6) are
given in terms of the HFFs by:

ns � 1 = �2✏1 � ✏2 � 2✏21 � (2 C + 3) ✏1 ✏2 �C✏2✏3, (8)
dns/dln k = �2✏1✏2 � ✏2✏3, (9)

nt = �2✏1 � 2✏21 � 2 (C + 1) ✏1 ✏2, (10)
dnt/dln k = �2✏1✏2, (11)

where C ⌘ ln 2 + �E � 2 ⇡ �0.7296 (�E is the Euler-
Mascheroni constant). See the Appendix of PCI13 for more de-
tails. Primordial spectra as functions of the ✏i will be employed
in Sect. 6, and the expressions generalizing Eqs. (8) to (11) for
a general Lagrangian p(�, X), where X ⌘ �gµ⌫@µ�@⌫�/2, will be
used in Sect. 10. The good agreement between the first and sec-
ond method as well as with alternative approximations of slow-
roll spectra is illustrated in the Appendix of PCI13.

The third method is fully numerical, suitable for models
where the slow-roll conditions are not well satisfied and an-
alytical approximations for the primordial fluctuations are not
available. Two di↵erent numerical codes, the inflation module
of Lesgourgues & Valkenburg (2007) as implemented in CLASS
(Lesgourgues 2011; Blas et al. 2011) and ModeCode (Adams
et al. 2001; Peiris et al. 2003; Mortonson et al. 2009; Easther
& Peiris 2012), are used in Sects. 7 and 10, respectively.3

Conventions for the functions and symbols used to describe
inflationary physics are defined in Table 2.

2 When running is considered, we fix nt = �r(2 � r/8 � ns)/8 and
dnt/dln k = r(r/8 + ns � 1)/8.
3
http://class-code.net, http://modecode.org
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Table 2. Conventions and definitions for inflation physics.

Parameter Definition

� . . . . . . . . . . . . . . . . Inflaton
V(�) . . . . . . . . . . . . . Inflaton potential
a . . . . . . . . . . . . . . . . Scale factor
t . . . . . . . . . . . . . . . . Cosmic (proper) time
�X . . . . . . . . . . . . . . Fluctuation of X
Ẋ = dX/dt . . . . . . . . . Derivative with respect to proper time
X0 = dX/d⌘ . . . . . . . . Derivative with respect to conformal time
X� = @X/@� . . . . . . . . Partial derivative with respect to �
Mpl . . . . . . . . . . . . . . Reduced Planck mass (=2.435 ⇥ 1018 GeV)
R . . . . . . . . . . . . . . . Comoving curvature perturbation
h+,⇥ . . . . . . . . . . . . . . Gravitational wave amplitude of (+,⇥)-polarization component
X⇤ . . . . . . . . . . . . . . . X evaluated at Hubble exit during inflation of mode with wavenumber k⇤
Xe . . . . . . . . . . . . . . . X evaluated at end of inflation
✏V = M2

plV
2
�/(2V2) . . . First slow-roll parameter for V(�)

⌘V = M2
plV��/V . . . . . Second slow-roll parameter for V(�)

⇠2
V = M4

plV�V���/V
2 . . Third slow-roll parameter for V(�)

$3
V = M6

plV
2
�V����/V

3 . Fourth slow-roll parameter for V(�)
✏1 = �Ḣ/H2 . . . . . . . First Hubble hierarchy parameter
✏n+1 = ✏̇n/(H✏n) . . . . . (n + 1)st Hubble hierarchy parameter (where n � 1)
N(t) =

R te
t dt H . . . . . . Number of e-folds to end of inflation

3.3. Planck data

The Planck data processing proceeding from time-ordered data
to maps has been improved for this 2015 release in various as-
pects (Planck Collaboration II 2016; Planck Collaboration VII
2016). We refer the interested reader to Planck Collaboration
II (2016) and Planck Collaboration VII (2016) for details, and
we describe here two of these improvements. The absolute cal-
ibration has been improved using the orbital dipole and more
accurate characterization of the Planck beams. The calibration
discrepancy between Planck and WMAP described in Planck
Collaboration XXXI (2014) for the 2013 release has now been
greatly reduced. At the time of that release, a blind analysis for
primordial power spectrum reconstruction described a broad fea-
ture at ` ⇡ 1800 in the temperature power spectrum, which was
most prominent in the 217 ⇥ 217 GHz auto-spectra (PCI13). In
work done after the Planck 2013 data release, this feature was
shown to be associated with imperfectly subtracted systematic
e↵ects associated with the 4 K cooler lines, which were particu-
larly strong in the first survey. This systematic e↵ect was shown
to potentially lead to 0.5� shifts in the cosmological parame-
ters, slightly increasing ns and H0, similarly to the case in which
the 217 ⇥ 217 channel was excised from the likelihood (Planck
Collaboration XV 2014; Planck Collaboration XVI 2014). The
Planck likelihood (Planck Collaboration XI 2016) is based on
the full mission data and comprises temperature and polarization
data (see Fig. 2).

Planck low-` likelihood

The Planck low-` temperature-polarization likelihood uses
foreground-cleaned LFI 70 GHz polarization maps together with
the temperature map obtained from the Planck 30 to 353 GHz
channels by the Commander component separation algorithm
over 94% of the sky (see Planck Collaboration IX 2016 for fur-
ther details). The Planck polarization map uses the LFI 70 GHz
(excluding Surveys 2 and 4) low-resolution maps of Q and U
polarization from which polarized synchrotron and thermal dust

emission components have been removed using the LFI 30 GHz
and HFI 353 GHz maps as templates, respectively. (See Planck
Collaboration XI 2016 for more details.) The polarization map
covers the 46% of the sky outside the lowP polarization mask.

The low-` likelihood is pixel-based and treats the tempera-
ture and polarization at the same resolution of 3.�6, or HEALpix
(Górski et al. 2005) Nside = 16. Its multipole range extends from
` = 2 to ` = 29 in TT, TE, EE, and BB. In the 2015 Planck papers
the polarization part of this likelihood is denoted as “lowP”.4
This Planck low-` likelihood replaces the Planck temperature
low-` Gibbs module combined with the WMAP 9-yr low-` po-
larization module used in the Planck 2013 cosmology papers
(denoted by WP), which used lower resolution polarization maps
at Nside = 8 (about 7.�3). With this Planck-only low-` likelihood
module, the basic Planck results presented in this release are
completely independent of external information.

The Planck low-multipole likelihood alone implies ⌧ =
0.067 ± 0.022 (Planck Collaboration XI 2016), a value smaller
than the value inferred using the WP polarization likelihood,
⌧ = 0.089 ± 0.013, used in the Planck 2013 papers (Planck
Collaboration XV 2014). See Planck Collaboration XIII (2016)
for the important implications of this decrease in ⌧ for reioniza-
tion. However, the LFI 70 GHz and WMAP polarization maps
are in very good agreement when both are foreground-cleaned

4 In this paper we use the conventions introduced in Planck
Collaboration XIII (2016). We adopt the following labels for likeli-
hoods: (i) Planck TT denotes the combination of the TT likelihood at
multipoles ` � 30 and a low-` temperature-only likelihood based on the
CMB map recovered with Commander; (ii) Planck TT–lowT denotes the
TT likelihood at multipoles ` � 30; (iii) Planck TT+lowP further in-
cludes the Planck polarization data in the low-` likelihood, as described
in the main text; (iv) Planck TE denotes the likelihood at ` � 30 using
the TE spectrum; and (v) Planck TT, TE, EE+lowP denotes the com-
bination of the likelihood at ` � 30 using TT, TE, and EE spectra and
the low-` multipole likelihood. The label “⌧ prior” denotes the use of a
Gaussian prior ⌧ = 0.07 ± 0.02. The labels “lowT, P” and “lowEB” de-
note the low-` multipole likelihood and the Q,U pixel likelihood only,
respectively.
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Fig. 2. Planck TT (top), high-` TE (centre), and high-` EE (bottom)
angular power spectra. HereD` ⌘ `(` + 1)C`/(2⇡).

using the HFI 353 GHz map as a polarized dust template (see
Planck Collaboration XI 2016 for further details). Therefore, it
is useful to construct a noise-weighted combination to obtain a
joint Planck/WMAP low resolution polarization data set, also
described in Planck Collaboration XI (2016), using as a polariza-
tion mask the union of the WMAP P06 and Planck lowP polar-
ization masks and keeping 74% of the sky. The polarization part
of the combined low multipole likelihood is called lowP+WP.
This combined low multipole likelihood gives ⌧ = 0.071+0.011

�0.013
(Planck Collaboration XI 2016).

Planck high-` likelihood

Following Planck Collaboration XV (2014), and Planck
Collaboration XI 2016 for polarization, we use a Gaussian

approximation for the high-` part of the likelihood (30 < ` <
2500), so that

�logL
⇣
Ĉ|C(✓)

⌘
=

1
2

⇣
Ĉ �C(✓)

⌘T
M
�1

⇣
Ĉ �C(✓)

⌘
, (12)

where a constant o↵set has been discarded. Here Ĉ is the data
vector, C(✓) is the model prediction for the parameter value vec-
tor ✓, and M is the covariance matrix. For the data vector, we
use 100 GHz, 143 GHz, and 217 GHz half-mission cross-power
spectra, avoiding the Galactic plane as well as the brightest point
sources and the regions where the CO emission is the strongest.
We retain 66% of the sky for 100 GHz, 57% for 143 GHz, and
47% for 217 GHz for the T masks, and respectively 70%, 50%,
and 41% for the Q, U masks. Following Planck Collaboration
XXX (2014), we do not mask for any other Galactic polarized
emission. All the spectra are corrected for the beam and pixel
window functions using the same beam for temperature and po-
larization. (For details see Planck Collaboration XI 2016.)

The model for the cross-spectra can be written as

Cµ,⌫(✓) =
Ccmb(✓) +Cfg

µ,⌫(✓)
pcµc⌫

, (13)

where Ccmb(✓) is the CMB power spectrum, which is indepen-
dent of the frequency, Cfg

µ,⌫(✓) is the foreground model contribu-
tion for the cross-frequency spectrum µ ⇥ ⌫, and cµ is the cal-
ibration factor for the µ ⇥ µ spectrum. The model for the fore-
ground residuals includes the following components: Galactic
dust, clustered cosmic infrared background (CIB), thermal and
kinetic Sunyaev-Zeldovich (tSZ and kSZ) e↵ect, tSZ corre-
lations with CIB, and point sources, for the TT foreground
modeling; and for polarization, only dust is included. All the
components are modelled by smooth C` templates with free am-
plitudes, which are determined along with the cosmological pa-
rameters as the likelihood is explored. The tSZ and kSZ models
are the same as in 2013 (see Planck Collaboration XV 2014),
although with di↵erent priors (Planck Collaboration XI 2016;
Planck Collaboration XIII 2016), while the CIB and tSZ-CIB
correlation models use the updated CIB models described in
Planck Collaboration XXX (2014). The point source contami-
nation is modelled as Poisson noise with an independent ampli-
tude for each frequency pair. Finally, the dust contribution uses
an e↵ective smooth model measured from high frequency maps.
Details of our dust and noise modelling can be found in Planck
Collaboration XI (2016). The dust is the dominant foreground
component for TT at ` < 500, while the point source com-
ponent, and for 217 ⇥ 217 also the CIB component, dominate
at high `. The other foreground components are poorly deter-
mined by Planck. Finally, our treatment of the calibration factors
and beam uncertainties and mismatch are described in Planck
Collaboration XI (2016).

The covariance matrix accounts for the correlation due to
the mask and is computed following the equations in Planck
Collaboration XV (2014), extended to polarization in Planck
Collaboration XI (2016) and references therein. The fiducial
model used to compute the covariance is based on a joint fit of
base ⇤CDM and nuisance parameters obtained with a previous
version of the matrix. We iterate the process until the parame-
ters stop changing. For more details, see Planck Collaboration
XI (2016).

The joint unbinned covariance matrix is approximately of
size 23 000⇥ 23 000. The memory and speed requirements for
dealing with such a huge matrix are significant, so to reduce its
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size, we bin the data and the covariance matrix to compress the
data vector size by a factor of 10. The binning uses varying bin
width with �` = 5 for 29 < ` < 100, �` = 9 for 99 < ` < 1504,
�` = 17 for 1503 < ` < 2014, and �` = 33 for 2013 < ` < 2509,
and a weighting in `(`+1) to flatten the spectrum. Where a higher
resolution is desirable, we also use a more finely binned version
(“bin3”, unbinned up to ` = 80 and �` = 3 beyond that) as
well as a completely unbinned version (“bin1”). We use odd bin
sizes, since for an azimuthally symmetric mask, the correlation
between a multipole and its neighbours is symmetric, oscillat-
ing between positive and negative values. Using the base⇤CDM
model and single-parameter classical extensions, we confirmed
that the cosmological and nuisance parameter fits with or with-
out binning are indistinguishable.

As discussed in Planck Collaboration XI (2016) and Planck
Collaboration XIII (2016), the TE and EE high-` data are not free
of small systematic e↵ects, such as leakage from temperature to
polarization. Although the propagated e↵ects of these residual
systematics on cosmological parameters are small and do not
alter the conclusions of this paper, we mainly refer to Planck
TT+lowP in combination with the Planck lensing or additional
data sets as the most reliable results for this release.

Planck CMB bispectrum

We use measurements of the non-Gaussianity amplitude fNL
from the CMB bispectrum presented in Planck Collaboration
XVII (2016). Non-Gaussianity constraints have been obtained
using three optimal bispectrum estimators: separable template
fitting (also known as “KSW”), binned, and modal. The maps
analysed are the Planck 2015 full mission sky maps, both in tem-
perature and in E polarization, as cleaned with the four compo-
nent separation methods SMICA, SEVEM, NILC, and Commander.
The map is masked to remove the brightest parts of the Galaxy
as well as the brightest point sources and covers approximately
70% of the sky. In this paper we mainly exploit the joint con-
straints on equilateral and orthogonal non-Gaussianity (after re-
moving the integrated Sachs-Wolfe e↵ect-lensing bias), f equil

NL =

�16± 70, f ortho
NL = �34± 33 from T only, and f equil

NL = �3.7± 43,
f ortho
NL = �26 ± 21 from T and E (68% CL). For reference, the

constraints on local non-Gaussianity are f local
NL = 2.5 ± 5.7 from

T only, and f local
NL = 0.8 ± 5.0 from T and E (68% CL). Starting

from a Gaussian fNL-likelihood, which is an accurate assump-
tion in the regime of small primordial non-Gaussianity, we use
these constraints to derive limits on the sound speed of the infla-
ton fluctuations (or other microscopic parameters of inflationary
models; Planck Collaboration XXIV 2014). The bounds on the
sound speed for various models are then used in combination
with Planck power spectrum data.

Planck CMB lensing data

Some of our analysis includes the Planck 2015 lensing
likelihood, presented in Planck Collaboration XV (2016), which
utilizes the non-Gaussian trispectrum induced by lensing to
estimate the power spectrum of the lensing potential, C��` .
This signal is extracted using a full set of temperature- and
polarization-based quadratic lensing estimators (Okamoto & Hu
2003) applied to the SMICA CMB map over approximately 70%
of the sky, as described in Planck Collaboration IX (2016).
We have used the conservative bandpower likelihood, covering
multipoles 40  `  400. This provides a measurement of the

lensing potential power at the 40� level, giving a 2.5%-accurate
constraint on the overall lensing power in this multipole range.
The measurement of the lensing power spectrum used here is
approximately twice as powerful as the measurement used in
our previous 2013 analysis (Planck Collaboration XXII 2014;
Planck Collaboration XVII 2014), which used temperature-only
data from the Planck nominal mission data set.

3.4. Non-Planck data

BAO data

Baryon acoustic oscillations (BAO) are the counterpart in the
late time matter power spectrum of the acoustic oscillations seen
in the CMB multipole spectrum (Eisenstein et al. 2005). Both
originate from coherent oscillations of the photon-baryon plasma
before these two components become decoupled at recombina-
tion. Measuring the position of these oscillations in the matter
power spectra at di↵erent redshifts constrains the expansion his-
tory of the universe after decoupling, thus removing degenera-
cies in the interpretation of the CMB anisotropies.

In this paper, we combine constraints on DV (z̄)/rs (the ra-
tio between the spherically-averaged distance scale DV to the
e↵ective survey redshift, z̄, and the sound horizon, rs) inferred
from 6dFGRS data (Beutler et al. 2011) at z̄ = 0.106, the SDSS-
MGS data (Ross et al. 2015) at z̄ = 0.15, and the SDSS-DR11
CMASS and LOWZ data (Anderson et al. 2014) at redshifts
z̄ = 0.57 and 0.32. For details see Planck Collaboration XIII
(2016).

Joint BICEP2/Keck Array and Planck constraint on r

Since the Planck temperature constraints on the tensor-to-scalar
ratio are close to the cosmic variance limit, the inclusion of data
sets sensitive to the expected B-mode signal of primordial gravi-
tational waves is particularly useful. In this paper, we provide re-
sults including the joint analysis cross-correlating BICEP2/Keck
Array observations and Planck (BKP). Combining the more sen-
sitive BICEP2/Keck Array B-mode polarization maps in the ap-
proximately 400 deg2 BICEP2 field with the Planck maps at
higher frequencies where dust dominates allows a statistical
analysis taking into account foreground contamination. Using
BB auto- and cross-frequency spectra between BICEP2/Keck
Array (150 GHz) and Planck (217 and 353 GHz), BKP find a
95% upper limit of r0.05 < 0.12.

3.5. Parameter estimation and model comparison

Much of this paper uses a Bayesian approach to parameter
estimation, and unless otherwise specified, we assign broad top-
hat prior probability distributions to the cosmological parame-
ters listed in Table 1. We generate posterior probability distri-
butions for the parameters using either the Metropolis-Hastings
algorithm implemented in CosmoMC (Lewis & Bridle 2002) or
MontePython (Audren et al. 2013), the nested sampling algo-
rithm MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2013), or PolyChord, which combines nested sampling with
slice sampling (Handley et al. 2015). The latter two also
compute the Bayesian evidence needed for model compari-
son. Nevertheless, �2 values are often provided as well (using
CosmoMC’s implementation of the BOBYQA algorithm (Powell
2009) for maximizing the likelihood), and other parts of the pa-
per employ frequentist methods when appropriate.
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Table 3. Confidence limits on the parameters of the base ⇤CDM model, for various combinations of Planck 2015 data, at the 68% confidence
level.

Parameter TT+lowP TT+lowP+lensing TT+lowP+BAO TT, TE, EE+lowP
⌦bh2 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02226 ± 0.00020 0.02225 ± 0.00016
⌦ch2 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1190 ± 0.0013 0.1198 ± 0.0015

100✓MC 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04095 ± 0.00041 1.04077 ± 0.00032
⌧ 0.078 ± 0.019 0.066 ± 0.016 0.080 ± 0.017 0.079 ± 0.017

ln(1010As) 3.089 ± 0.036 3.062 ± 0.029 3.093 ± 0.034 3.094 ± 0.034
ns 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9673 ± 0.0045 0.9645 ± 0.0049
H0 67.31 ± 0.96 67.81 ± 0.92 67.63 ± 0.57 67.27 ± 0.66
⌦m 0.315 ± 0.013 0.308 ± 0.012 0.3104 ± 0.0076 0.3156 ± 0.0091

4. Constraints on the primordial spectrum
of curvature perturbations

One of the most important results of the Planck nominal mis-
sion was the determination of the departure from scale invariance
for the spectrum of scalar perturbations at high statistical signif-
icance (Planck Collaboration XVI 2014; Planck Collaboration
XXII 2014). We now update these measurements with the Planck
full mission data in temperature and polarization.

4.1. Tilt of the curvature power spectrum

For the base ⇤CDM model with a power-law power spectrum
of curvature perturbations, the constraint on the scalar spectral
index, ns, with the Planck full mission temperature data is

ns = 0.9655 ± 0.0062 (68% CL, Planck TT+lowP). (14)

This result is compatible with the Planck 2013 constraint,
ns = 0.9603 ± 0.0073 (Planck Collaboration XV 2014; Planck
Collaboration XVI 2014). See Fig. 3 for the accompanying
changes in ⌧, ⌦bh2, and ✓MC. The shift towards higher values
for ns with respect to the nominal mission results is due to sev-
eral improvements in the data processing and likelihood which
are discussed in Sect. 3, including the removal of the 4 K cooler
systematics. For the values of other cosmological parameters in

the base ⇤CDM model, see Table 3. We also provide the results
for the base ⇤CDM model and extended models online.5

When the Planck high-` polarization is combined with tem-
perature, we obtain

ns = 0.9645 ± 0.0049 (68% CL, Planck TT, TE, EE+lowP),
(15)

together with ⌧ = 0.079 ± 0.017 (68% CL), which is consistent
with the TT+lowP results. The Planck high-` polarization pulls
⌧ up to a slightly higher value. When the Planck lensing mea-
surement is added to the temperature data, we obtain

ns = 0.9677 ± 0.0060 (68% CL, Planck TT+lowP+lensing),
(16)

with ⌧ = 0.066 ± 0.016 (68% CL). The shift towards slightly
smaller values of the optical depth is driven by a marginal pref-
erence for a smaller primordial amplitude, As, in the Planck
lensing data (Planck Collaboration XV 2016). Given that the
temperature data provide a sharp constraint on the combination
e�2⌧As, a slightly lower As requires a smaller optical depth to
reionization.

4.2. Viability of the Harrison-Zeldovich spectrum

Even though the estimated scalar spectral index has risen slightly
with respect to the Planck 2013 release, the assumption of
5
http://www.cosmos.esa.int/web/planck/pla
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a Harrison-Zeldovich (HZ) scale-invariant spectrum (Harrison
1970; Peebles & Yu 1970; Zeldovich 1972) continues to be dis-
favoured (with a modest increase in significance, from 5.1� in
2013 to 5.6� today), because the error bar on ns has decreased.
The value of ns inferred from the Planck 2015 temperature plus
large-scale polarization data lies 5.6 standard deviations away
from unity (with a corresponding ��2 = 29.9), if one assumes
the base ⇤CDM late-time cosmological model. If we consider
more general reionization models, parameterized by a principal
component analysis (Mortonson & Hu 2008) instead of ⌧ (where
reionization is assumed to have occurred instantaneously), we
find ��2 = 14.9 for ns = 1. Previously, simple one-parameter
extensions of the base model, such as⇤CDM+Ne↵ (where Ne↵ is
the e↵ective number of neutrino flavours) or ⇤CDM+YP (where
YP is the primordial value of the helium mass fraction), could
nearly reconcile the Planck temperature data with ns = 1. They
now lead to ��2 = 7.6 and 9.3, respectively. For any of the cos-
mological models that we have considered, the ��2 by which
the HZ model is penalized with respect to the tilted model has
increased since the 2013 analysis (PCI13) thanks to the con-
straining power of the full mission temperature data. Adding
Planck high-` polarization data further disfavours the HZ model:
in ⇤CDM, the �2 increases by 57.8, for general reionization we
obtain ��2 = 41.3, and for ⇤CDM+Ne↵ and ⇤CDM+YP we find
��2 = 22.5 and 24.0, respectively.

4.3. Running of the spectral index

The running of the scalar spectral index is constrained by the
Planck 2015 full mission temperature data to

dns

dln k
= �0.0084 ± 0.0082 (68% CL, Planck TT+lowP). (17)

The combined constraint including high-` polarization is

dns

dln k
= �0.0057±0.0071 (68% CL, Planck TT, TE, EE+lowP).

(18)

Adding the Planck CMB lensing data to the temperature data
further reduces the central value for the running, i.e., dns/dln k =
�0.0033 ± 0.0074 (68% CL, Planck TT+lowP+lensing).

The central value for the running has decreased in magni-
tude with respect to the Planck 2013 nominal mission (Planck
Collaboration XVI 2014 found dns/dln k = �0.013 ± 0.009;
see Fig. 4), and the improvement of the maximum likelihood
with respect to a power-law spectrum is smaller, ��2

⇡ �0.8.
Among the di↵erent e↵ects contributing to the decrease in the
central value of the running with respect to the Planck 2013 re-
sult, we mention a change in HFI beams at ` <⇠ 200 (Planck
Collaboration XIII 2016). Nevertheless, the deficit of power at
low multipoles in the Planck 2015 temperature power spectrum
contributes to a preference for slightly negative values of the run-
ning, but with low statistical significance.

The Planck constraints on ns and dns/dln k are remarkably
stable against the addition of the BAO likelihood. The combina-
tion with BAO shifts ns to slighly higher values and shrinks its
uncertainty by about 30% when only high-` temperature is con-
sidered, and by only about 15% when high-` temperature and
polarization are combined. In slow-roll inflation, the running of
the scalar spectral index is connected to the third derivative of
the potential (Kosowsky & Turner 1995). As was the case for
the nominal mission results, values of the running compatible
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Fig. 4. Marginalized joint 68% and 95% CL for (ns, dns/dln k) using
Planck TT+lowP and Planck TT, TE, EE+lowP. Constraints from the
Planck 2013 data release are also shown for comparison. For compari-
son, the thin black stripe shows the prediction for single-field monomial
chaotic inflationary models with 50 < N⇤ < 60.

with the Planck 2015 constraints can be obtained in viable infla-
tionary models (Kobayashi & Takahashi 2011).

When the running of the running is allowed to float, the
Planck TT+lowP (Planck TT, TE, EE+lowP) data give:

ns = 0.9569 ± 0.0077 (0.9586 ± 0.0056),

dns/dln k = 0.011+0.014
�0.013 (0.009 ± 0.010), (68% CL) (19)

d2ns/dln k2 = 0.029+0.015
�0.016 (0.025 ± 0.013),

at the pivot scale k⇤ = 0.05 Mpc�1. Allowing for running of
the running provides a better fit to the temperature spectrum at
low multipoles, such that ��2

⇡ �4.8 (�4.9) for TT+lowP (TT,
TE, EE+lowP), but is not statistically preferred over the simplest
⇤CDM model.

Note that the inclusion of small-scale data such as Ly↵might
further constrain the running of the spectral index and its deriva-
tive. The recent analysis of the BOSS one-dimensional Ly↵ flux
power spectrum presented in Palanque-Delabrouille et al. (2015)
and Rossi et al. (2015) was optimized for measuring the neutrino
mass. It does not include constraints on the spectral index run-
ning, which would require new dedicated N-body simulations.
Hence we do not include Ly↵ constraints here.

In Sect. 7 on inflaton potential reconstruction we will show
that the data cannot accomodate a significant running but are
compatible with a larger running of the running.

4.4. Suppression of power on the largest scales

Although not statistically significant, the trend for a negative
running or positive running of the running observed in the last
subsection was driven by the lack of power in the Planck tem-
perature power spectrum at low multipoles, already mentioned
in the Planck 2013 release. This deficit could potentially be ex-
plained by a primordial spectrum featuring a depletion of power
only at large wavelengths. Here we investigate two examples of
such models.
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Table 4. Constraints on the primordial perturbation parameters for ⇤CDM+r and ⇤CDM+r+dns/dln k models from Planck.

Model Parameter Planck TT+lowP Planck TT+lowP+lensing Planck TT+lowP+BAO Planck TT, TE, EE+lowP
ns 0.9666 ± 0.0062 0.9688 ± 0.0061 0.9680 ± 0.0045 0.9652 ± 0.0047

⇤CDM+r r0.002 <0.103 <0.114 <0.113 <0.099
�2� lnLmax 0 0 0 0

+dns/dln k

ns 0.9667 ± 0.0066 0.9690 ± 0.0063 0.9673 ± 0.0043 0.9644 ± 0.0049

⇤CDM+r r0.002 <0.180 <0.186 <0.176 <0.152
r <0.168 <0.176 <0.166 <0.149

dns/dln k �0.0126+0.0098
�0.0087 �0.0076+0.0092

�0.0080 �0.0125 ± 0.0091 �0.0085 ± 0.0076
�2� lnLmax �0.81 �0.08 �0.87 �0.38

Notes. Constraints on the spectral index and its dependence on the wavelength are given at the pivot scale of k⇤ = 0.05 Mpc�1.

We first update the analysis (already presented in PCI13) of
a power-law spectrum multiplied by an exponential cuto↵:

PR(k) = P0(k)

8>><
>>:1 � exp

2
66664�

 
k
kc

!�c
3
77775

9>>=
>>; . (20)

This simple parameterization is motivated by models with a short
inflationary stage in which the onset of the slow-roll phase co-
incides with the time when the largest observable scales exited
the Hubble radius during inflation. The curvature spectrum is
then strongly suppressed on those scales. We apply top-hat pri-
ors on the parameter �c, controlling the steepness of the cut-
o↵, and on the logarithm of the cuto↵ scale, kc. We choose
prior ranges �c 2 [0, 10] and ln(kc/Mpc�1) 2 [�12,�3]. For
Planck TT+lowP (Planck TT, TE, EE+lowP), the best-fit model
has �c = 0.50 (0.53), ln(kc/Mpc�1) = �7.98 (�7.98), ns =
0.9647 (0.9649), and improves the e↵ective �2 by a modest
amount, ��2

⇡ �3.4 (�3.4).
As a second model, we consider a broken power-law spec-

trum for curvature perturbations:

PR(k) =

8>>><
>>>:

Alow
⇣

k
k⇤

⌘ns�1+�
if k  kb,

As
⇣

k
k⇤

⌘ns�1
if k � kb,

(21)

with Alow = As(kb/k⇤)�� to ensure continuity at k = kb. Hence
this model, like the previous one, has two parameters, and also
suppresses power at large wavelengths when � > 0. We as-
sume top-hat priors � 2 [0, 2] and ln(kb/Mpc�1) 2 [�12,�3],
and standard uniform priors for ln(1010As) and ns. The best fit
to Planck TT+lowP (Planck TT, TE, EE+lowP) is found for
ns = 0.9658 (0.9647), � = 1.14 (1.14), and ln(kb/Mpc�1) =
�7.55 (�7.57), with a very small �2 improvement of ��2

⇡

�1.9 (�1.6).
We conclude that neither of these two models with two extra

parameters is preferred over the base ⇤CDM model. (See also
the discussion of a step inflationary potential in Sect. 9.1.1.)

5. Constraints on tensor modes

In this section, we focus on the Planck 2015 constraints on ten-
sor perturbations. Unless otherwise stated, we consider that the
tensor spectral index satisfies the standard inflationary consis-
tency condition to lowest order in slow roll, nt = �r/8. We recall
that r is defined at the pivot scale k⇤ = 0.05 Mpc�1. However,
for comparison with other studies, we also report our bounds in
terms of the tensor-to-scalar ratio r0.002 at k⇤ = 0.002 Mpc�1.

5.1. Planck 2015 upper bound on r

The constraints on the tensor-to-scalar ratio inferred from the
Planck full mission data for the ⇤CDM+r model are:

r0.002 < 0.10 (95% CL, Planck TT+lowP), (22)
r0.002 < 0.11 (95% CL, Planck TT+lowP+lensing), (23)
r0.002 < 0.11 (95% CL, Planck TT+lowP+BAO), (24)
r0.002 < 0.10 (95% CL, Planck TT, TE, EE+lowP). (25)

Table 4 also shows the bounds on ns in each of these cases.
These results slightly improve over the constraint r0.002 <

0.12 (95% CL) derived from the Planck 2013 temperature data in
combination with WMAP large-scale polarization data (Planck
Collaboration XVI 2014; Planck Collaboration XXII 2014). The
constraint obtained by Planck temperature and polarization on
large scales is tighter than the Planck B-mode 95% CL upper
limit from the 100 and 143 GHz HFI channels, r < 0.27 (Planck
Collaboration XI 2016). The constraints on r reported in Table 4
can be translated into upper bounds on the energy scale of in-
flation at the time when the pivot scale exits the Hubble radius
using

V⇤ =
3⇡2As

2
r M4

pl = (1.88 ⇥ 1016 GeV)4 r
0.10
· (26)

This gives an upper bound on the Hubble parameter during in-
flation of H⇤/Mpl < 3.6 ⇥ 10�5 (95% CL) for Planck TT+lowP.

These bounds are relaxed when allowing for a scale depen-
dence of the scalar and tensor spectral indices. In that case, we
assume that the tensor spectral index and its running are fixed by
the standard inflationary consistency condition at second order
in slow roll. We obtain

r0.002 < 0.18 (95% CL, Planck TT+lowP), (27)
dns

dln k
= �0.013+0.010

�0.009 (68% CL, Planck TT+lowP), (28)

with ns = 0.9667±0.0066 (68% CL). At the standard pivot scale,
k⇤ = 0.05 Mpc�1, the bound is stronger (r < 0.17 at 95% CL),
because k⇤ is closer to the scale at which ns and r decorrelate.
The constraint on r0.002 in Eq. (27) is 21% tighter than the corre-
sponding Planck 2013 constraint. The mean value of the running
in Eq. (28) is higher (lower in absolute value) than with Planck
2013 by 45%. Figures 5 and 6 clearly illustrate this significant
improvement with respect to the previous Planck data release.
Table 4 shows how bounds on (r, ns, dns/dln k) are a↵ected by
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Fig. 5. Marginalized joint confidence contours for (ns, dns/dln k), at the
68% and 95% CL, in the presence of a non-zero tensor contribution,
and using Planck TT+lowP or Planck TT, TE, EE+lowP. Constraints
from the Planck 2013 data release are also shown for comparison. The
thin black stripe shows the prediction of single-field monomial inflation
models with 50 < N⇤ < 60.
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Fig. 6. Marginalized joint confidence contours for (ns, r), at the 68%
and 95% CL, in the presence of running of the spectral indices, and for
the same data combinations as in the previous figure.

the lensing reconstruction, BAO, or high-` polarization data. The
tightest bounds are obtained in combination with polarization:

r0.002 < 0.15
(95% CL, Planck TT, TE, EE+lowP), (29)

dns

dln k
= �0.009 ± 0.008

(68% CL, Planck TT, TE, EE+lowP), (30)

with ns = 0.9644 ± 0.0049 (68% CL).
Neither the Planck full mission constraints in Eqs. (22)�(25)

nor those including a running in Eqs. (27) and (29) are com-
patible with the interpretation of the BICEP2 B-mode polariza-
tion data in terms of primordial gravitational waves (BICEP2
Collaboration 2014b). Instead they are in excellent agree-
ment with the results of the BICEP2/Keck Array-Planck cross-
correlation analysis, as discussed in Sect. 13.

5.2. Dependence of the r constraints on the low-` likelihood

The constraints on r discussed above are further tightened by
adding WMAP polarization information on large angular scales.
The Planck measurement of CMB polarization on large angular
scales at 70 GHz is consistent with the WMAP 9-year one, based
on the K, Q, and V-bands (at 30, 40, and 60 GHz, respectively),
once the Planck 353 GHz channel is used to remove the dust
contamination, instead of the theoretical dust model used by the
WMAP team (Page et al. 2007). (For a detailed discussion, see
Planck Collaboration XI 2016.) By combining Planck TT data
with LFI 70 GHz and WMAP polarization data on large angular
scales, we obtain a 35% reduction of uncertainty, giving ⌧ =
0.074 ± 0.012 (68% CL) and ns = 0.9660 ± 0.060 (68% CL)
for the base ⇤CDM model. When tensors are added, the bounds
become

r0.002 < 0.09 (95% CL, Planck TT+lowP+WP), (31)
ns = 0.9655 ± 0.058 (68% CL, Planck TT+lowP+WP), (32)

⌧ = 0.073+0.011
�0.013 (68% CL, Planck TT+lowP+WP). (33)

When tensors and running are both varied, we obtain r0.002 <
0.14 (95% CL) and dns/dln k = �0.010 ± 0.008 (68% CL)
for Planck TT+lowP+WP. These constraints are all tighter than
those based on Planck TT+lowP only.

5.3. The tensor-to-scalar ratio and the low-` deficit

in temperature

As noted previously (Planck Collaboration XV 2014; Planck
Collaboration XVI 2014; Planck Collaboration XXII 2014), the
low-` temperature data display a slight lack of power compared
to the expectation of the best-fit tensor-free base ⇤CDM model.
Since tensor fluctuations add power on small scales, the e↵ect
will be exacerbated in models allowing r > 0.

In order to quantify this tension, we compare the observed
constraint on r to that inferred from simulated Planck data. In
the simulations, we assume the underlying fiducial model to be
tensor-free, with parameters close to the base⇤CDM best-fit val-
ues. We limit the simulations to mock temperature power spec-
tra only and fit these spectra with an exact low-` likelihood for
2  `  29 (see Perotto et al. 2006), and a high-` Gaussian like-
lihood for 30  `  2508 based on the frequency-combined,
foreground-marginalized, unbinned Planck temperature power
spectrum covariance matrix. Additionally, we impose a Gaussian
prior of ⌧ = 0.07 ± 0.02.

Based on 100 simulated data sets, we find a 95% CL upper
limit on the tensor-to-scalar ratio of r̄2� ⇡ 0.260. The corre-
sponding constraint from real data (using low-` Commander
temperature data, the frequency-combined, foreground-
marginalized, unbinned Planck high-` TT power spectrum,
and the same prior on ⌧ as above) reads r < 0.123, confirming
that the actual constraint is tighter than what one would have
expected. However, the actual constraint is not excessively
unusual: out of the 100 simulations, 4 lead to an even tighter
bound, corresponding to a significance of about 2�. Thus, under
the hypothesis of the base ⇤CDM cosmology, the upper limit
on r that we get from the data is not implausible as a chance
fluctuation of the low multipole power.

To illustrate the contribution of the low-` temperature power
deficit to the estimates of cosmological parameters, we show as
an example in Fig. 7 how ns shifts towards lower values when
the ` < 30 temperature information is discarded (we will refer to
this case as “Planck TT�lowT”). The shift in ns is approximately
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Fig. 7. One-dimensional posterior probabilities for ns for the base
⇤CDM model obtained by excluding temperature multipoles for ` < 30
(“TT�lowT”), while either keeping low-` polarization data, or in addi-
tion replacing them with a Gaussian prior on ⌧.

�0.005 (or �0.003 when the lowP likelihood is replaced by a
Gaussian prior ⌧ = 0.07±0.02). These shifts exceed those found
in Sect. 4.4, where a primordial power spectrum suppressed on
large scales was fitted to the data.

Figure 8 displays the posterior probability for r for various
combinations of data sets, some of which exclude the ` < 30 TT
data. This leads to the very conservative bounds r <⇠ 0.24 and
r <⇠ 0.23 at 95% CL when combined with the lowP likelihood or
with the Gaussian prior ⌧ = 0.07 ± 0.020, respectively.

5.4. Relaxing assumptions on the late-time cosmological

evolution

As in the Planck 2013 release (PCI13), we now ask how robust
the Planck results on the tensor-to-scalar ratio are against as-
sumptions on the late-time cosmological evolution. The results
are summarized in Table 5, and some particular cases are illus-
trated in Fig. 9. Constraints on r turn out to be remarkably stable
for one-parameter extensions of the ⇤CDM+r model, with the
only exception the ⇤CDM+r+⌦K case in the absence of the late
time information from Planck lensing or BAO data. The weak
trend towards ⌦K < 0, i.e., towards a positively curved (closed)
universe from the temperature and polarization data alone, and
the well-known degeneracy between ⌦K and H0/⌦m lead to a
slight suppression of the Sachs-Wolfe plateau in the scalar tem-
perature spectrum. This leaves more room for a tensor compo-
nent.

This further degeneracy when r is added builds on the neg-
ative values for the curvature allowed by Planck TT+lowP,
⌦K = �0.052+0.049

�0.055 at 95% CL (Planck Collaboration XIII 2016).
The exploitation of the information contained in the Planck lens-
ing likelihood leads to a tighter constraint, ⌦K = �0.005+0.016

�0.017
at 95% CL, which improves on the Planck 2013 results
(⌦K = �0.007+0.018

�0.019 at 95% CL). However, due to the remain-
ing degeneracies left by the uncertainties in polarization on large
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Fig. 8. One-dimensional posterior probabilities for r for various data
combinations, either including or not including temperature multipoles
for ` < 30, and compared with the baseline choice (Planck TT+lowP,
black curve).

angular scales, a full appreciation of the improvement due to the
full mission temperature and lensing data can be obtained by us-
ing lowP+WP, which leads to ⌦K = �0.003+0.012

�0.014 at 95% CL.
Note that the negative values allowed for the curvature are de-
creased in magnitude when the running is allowed, suggesting
that the low-` temperature deficit is contributing to the estimate
of the spatial curvature.

The trend found for⇤CDM+r+⌦K is even clearer when spa-
tial curvature and the running of the spectral index are varied
at the same time. In this case, the Planck temperature plus po-
larization data are compatible with r values as large as 0.19
(95% CL), at the cost of an almost 4� deviation from spatial flat-
ness (which, however, disappears as soon as lensing or BAO data
are considered).

6. Implications for single-field slow-roll inflation

In this section we study the implications of Planck 2015 con-
straints on standard slow-roll single-field inflationary models.

6.1. Constraints on slow-roll parameters

We first present the Planck 2015 constraints on slow-roll pa-
rameters obtained through the analytic perturbative expansion
in terms of the HFFs ✏i for the primordial spectra of cosmologi-
cal fluctuations during slow-roll inflation (Stewart & Lyth 1993;
Gong & Stewart 2001; Leach et al. 2002). When restricting to
first order in ✏i, we obtain

✏1 < 0.0068 (95% CL, Planck TT+lowP), (34)

✏2 = 0.029+0.008
�0.007 (68% CL, Planck TT+lowP). (35)

When high-` polarization is included we obtain ✏1 < 0.0066 at
95% CL and ✏2 = 0.030+0.007

�0.006 at 68% CL. When second-order
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Table 5. Constraints on extensions of the ⇤CDM+r cosmological model for Planck TT+lowP+lensing, Planck TT+lowP+BAO, and Planck TT,
TE, EE+lowP.

Extended model, Parameter Planck TT+lowP Planck TT+lowP Planck TT, TE, EE
⇤CDM+r+ +lensing +BAO +lowP

+general reionization r < 0.11 < 0.10 < 0.10
ns 0.975 ± 0.006 0.971 ± 0.005 0.968 ± 0.005
r < 0.14 < 0.12 < 0.11

+Ne↵ ns 0.977+0.016
�0.017 0.972 ± 0.009 0.964 ± 0.010

Ne↵ 3.24+0.30
�0.35 3.19 ± 0.24 3.02+0.20

�0.21

r < 0.14 < 0.12 < 0.12
+YHe ns 0.975 ± 0.007 0.973 ± 0.009 0.969 ± 0.008

YHe 0.258 ± 0.022 0.257 ± 0.022 0.252 ± 0.014
r < 0.11 < 0.11 < 0.11

+
P

m⌫ ns 0.963 ± 0.007 0.967 ± 0.005 0.962 ± 0.005P
m⌫ [eV] < 0.67 < 0.21 < 0.58

r < 0.15 < 0.11 < 0.15
+⌦K ns 0.971 ± 0.007 0.971 ± 0.007 0.969 ± 0.005

⌦K �0.008+0.010
�0.008 �0.001 ± 0.003 �0.045+0.016

�0.020

r < 0.14 < 0.11 < 0.12
+w ns 0.969 ± 0.006 0.967 ± 0.006 0.966 ± 0.005

w �1.46+0.20
�0.40 �1.02+0.08

�0.07 �1.57+0.17
�0.37

+⌦K+dns/dln k

r < 0.20 < 0.18 < 0.19
ns 0.971 ± 0.007 0.969 ± 0.007 0.969 ± 0.005

dns/dln k �0.006 ± 0.009 �0.013 ± 0.009 �0.004 ± 0.008
⌦K �0.006+0.010

�0.009 �0.001 ± 0.003 �0.043+0.011
�0.020

+Ne↵+me↵
⌫ ,sterile

r < 0.14 < 0.13 < 0.12
ns 0.980+0.010

�0.014 0.978+0.008
�0.011 0.968+0.006

�0.008
me↵
⌫ ,sterile [eV] < 0.59 < 0.55 < 0.83

Ne↵ < 3.80 < 3.73 < 3.47

Notes. For each model we quote 68% CL, unless 95% CL upper bounds are reported.

contributions in the HFFs are included, we obtain

✏1 < 0.012 (95% CL, Planck TT+lowP), (36)

✏2 = 0.031+0.013
�0.011 (68% CL, Planck TT+lowP), (37)

� 0.41 < ✏3 < 1.38 (95% CL, Planck TT+lowP).
(38)

When high-` polarization is included we obtain ✏1 < 0.011 at
95% CL, ✏2 = 0.032+0.011

�0.009 at 68% CL, and �0.32 < ✏3 < 0.89 at
95% CL.

The potential slow-roll parameters are obtained as derived
parameters by using their exact expressions as function of ✏i
(Leach et al. 2002; Finelli et al. 2010):

✏V =
V2
�M2

pl

2V2 = ✏1

⇣
1 � ✏13 +

✏2
6

⌘2

⇣
1 � ✏13

⌘2 , (39)

⌘V =
V��M2

pl

V
=

2✏1 � ✏22 �
2✏21
3 +

5✏1✏2
6 �

✏22
12 �

✏2✏3
6

1 � ✏13
, (40)

⇠2V =
V���V�M4

pl

V2 =
1 � ✏13 +

✏2
6⇣

1 � ✏13
⌘2

0
BBBB@4✏21 � 3✏1✏2 +

✏2✏3

2
� ✏1✏

2
2

+ 3✏21✏2 �
4
3
✏31 �

7
6
✏1✏2✏3 +

✏22✏3

6
+
✏2✏23

6
+
✏2✏3✏4

6

1
CCCCA , (41)

where V(�) is the inflaton potential, the subscript � denotes the
derivative with respect to �, and Mpl = (8⇡G)�1/2 is the reduced
Planck mass (see also Table 2).

By using Eqs. (39) and (40) with ✏3 = 0 and the primor-
dial power spectra to lowest order in the HFFs, the derived con-
straints for the first two slow-roll potential parameters are:

✏V < 0.0068 (95% CL, Planck TT+lowP), (42)

⌘V = �0.010+0.005
�0.009 (68% CL, Planck TT+lowP). (43)

When high-` polarization is included we obtain ✏V < 0.0067
at 95% CL and ⌘V = �0.010+0.004

�0.009 at 68% CL. By using
Eqs. (39)�(41) with ✏4 = 0 and the primordial power spectra to
second order in the HFFs, the derived constraints for the slow-
roll potential parameters are:

✏V < 0.012 (95% CL, Planck TT+lowP), (44)

⌘V = �0.0080+0.0088
�0.0146 (68% CL, Planck TT+lowP), (45)

⇠2V = 0.0070+0.0045
�0.0069 (68 % CL, Planck TT+lowP). (46)

When high-` polarization is included we obtain ✏V < 0.011 at
95% CL, and ⌘V = �0.0092+0.0074

�0.0127 and ⇠2V = 0.0044+0.0037
�0.0050, both

at 68% CL.
In Figs. 10 and 11 we show the 68% CL and 95% CL of the

HFFs and the derived potential slow-roll parameters with and
without the high-` polarization and compare these values with
the Planck 2013 results.
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Fig. 9. Marginalized joint 68% and 95% CL for (ns, r0.002) using Planck
TT+lowP+BAO (upper panel) and Planck TT, TE, EE+lowP (lower
panel).

6.2. Implications for selected inflationary models

The predictions to lowest order in the slow-roll approximation
for (ns, r) at k = 0.002 Mpc�1 of a few inflationary models with a
representative uncertainty for the entropy generation stage (50 <
N⇤ < 60) are shown in Fig. 12. Figure 12 updates Fig. 1 of PCI13
with the same notation.

In the following we discuss the implications of
Planck TT+lowP+BAO data for selected slow-roll infla-
tionary models by taking into account the uncertainties in the
entropy generation stage. We model these uncertainties by
two parameters, as in PCI13: the energy scale ⇢th by which
the Universe has thermalized, and the parameter wint which
characterizes the e↵ective equation of state between the end
of inflation and the energy scale specified by ⇢th. We use the
primordial power spectra of cosmological fluctuations generated
during slow-roll inflation parameterized by the HFFs, ✏i, to
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Fig. 10. Marginalized joint 68% and 95% CL regions for (✏1, ✏2) (top
panel) and (✏V , ⌘V ) (bottom panel) for Planck TT+lowP (red contours),
Planck TT, TE, EE+lowP (blue contours), and compared with the
Planck 2013 results (grey contours).

Table 6. Priors for cosmological parameters used in the Bayesian com-
parison of inflationary models.

Parameter range Prior type

0.019 < ⌦bh2 < 0.025 uniform
0.095 < ⌦ch2 < 0.145 uniform
1.03 < 100✓MC < 1.05 uniform

0.01 < ⌧ < 0.4 uniform

second order, which can be expressed in terms of the number
of e-folds to the end of inflation, N⇤, and the parameters of the
considered inflationary model, using modified routines of the
public code ASPIC6 (Martin et al. 2014). For the number of
e-folds to the end of inflation (Liddle & Leach 2003; Martin &
Ringeval 2010) we use the expression (PCI13)

N⇤ ⇡ 67 � ln
 

k⇤
a0H0

!
+

1
4

ln
0
BBBBB@

V2
⇤

M4
pl⇢end

1
CCCCCA

+
1 � 3wint

12(1 + wint)
ln

 
⇢th

⇢end

!
�

1
12

ln(gth),

(47)

where ⇢end is the energy density at the end of inflation, a0H0 is
the present Hubble scale, V⇤ is the potential energy when k⇤ left
the Hubble radius during inflation, wint characterizes the e↵ective
equation of state between the end of inflation and the thermaliza-
tion energy scale ⇢th, and gth is the number of e↵ective bosonic
degrees of freedom at the energy scale ⇢th. We consider the pivot
scale k⇤ = 0.002 Mpc�1, gth = 103, and ✏end = 1. We consider the
uniform priors for the cosmological parameters listed in Table 6.
We also consider a logarithmic prior on 1010As (over the interval
[(e2.5, e3.7]) and ⇢th (over the interval [(1 TeV)4, ⇢end]). We con-
sider both the case in which wint is kept fixed at zero and the case
in which it is allowed to vary with a uniform prior in the range
�1/3 < wint < 1/3.

6
http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html
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Table 7. Results of the inflationary model comparison.

Inflationary model ��2 ln B
wint = 0 wint , 0 wint = 0 wint , 0

R + R2/(6M2) +0.8 +0.3 . . . +0.7
n = 2/3 +6.5 +3.5 �2.4 �2.3
n = 1 +6.2 +5.5 �2.1 �1.9
n = 4/3 +6.4 +5.5 �2.6 �2.4
n = 2 +8.6 +8.1 �4.7 �4.6
n = 3 +22.8 +21.7 �11.6 �11.4
n = 4 +43.3 +41.7 �23.3 �22.7
Natural +7.2 +6.5 �2.4 �2.3
Hilltop (p = 2) +4.4 +3.9 �2.6 �2.4
Hilltop (p = 4) +3.7 +3.3 �2.8 �2.6
Double well +5.5 +5.3 �3.1 �2.3
Brane inflation (p = 2) +3.0 +2.3 �0.7 �0.9
Brane inflation (p = 4) +2.8 +2.3 �0.4 �0.6
Exponential tails +0.8 +0.3 �0.7 �0.9
SB SUSY +0.7 +0.4 �2.2 �1.7
Supersymmetric ↵-model +0.7 +0.1 �1.8 �2.0
Superconformal (m = 1) +0.9 +0.8 �2.3 �2.2
Superconformal (m , 1) +0.7 +0.5 �2.4 �2.6

Notes. We provide ��2 with respect to base ⇤CDM and Bayes factors
with respect to R2 inflation.

We have validated the slow-roll approach by cross-checking
the Bayes factor computations against the fully numerical in-
flationary mode equation solver ModeCode coupled to the
PolyChord sampler. For each inflationary model we provide in
Table 7 and in the main text the ��2 value with respect to the
base ⇤CDM model, computed with the CosmoMC implementa-
tion of the BOBYQA algorithm for maximizing the likelihood,
and the Bayesian evidence with respect to the R2 inflationary
model (Starobinsky 1980), computed by CosmoMC connected to
CAMB, using MultiNest as the sampler.

Power law potentials

We first investigate the class of inflationary models with a single
monomial potential (Linde 1983):

V(�) = �M4
pl

 
�

Mpl

!n

, (48)

in which inflation occurs for large values of the inflaton, � > Mpl.
The predictions for the scalar spectral index and the tensor-
to-scalar ratio at first order in the slow-roll approximation are
ns � 1 ⇡ �2(n + 2)/(4N⇤ + n) and r ⇡ 16n/(4N⇤ + n), respec-
tively. By assuming a dust equation of state (i.e., wint = 0) prior
to thermalization, the cubic and quartic potentials are strongly
disfavoured by ln B = �11.6 and ln B = �23.3, respectively. The
quadratic potential is moderately disfavoured by ln B = �4.7.
Other values, such as n = 4/3, 1, and 2/3, motivated by ax-
ion monodromy (Silverstein & Westphal 2008; McAllister et al.
2010), are compatible with Planck data with wint = 0.

Small modifications occur when considering the e↵ective
equation of state parameter, wint = (n � 2)/(n + 2), defined by
averaging over the coherent oscillation regime which follows in-
flation (Turner 1983). The Bayes factors are slightly modified
when wint is allowed to float, as shown in Table 7.

Hilltop models

In hilltop models (Boubekeur & Lyth 2005), with potential

V(�) ⇡ ⇤4
 
1 �
�p

µp + ...

!
, (49)

the inflaton rolls away from an unstable equilibrium. The
predictions to first order in the slow-roll approximation are
r ⇡ 8p2(Mpl/µ)2x2p�2/(1 � xp)2 and ns � 1 ⇡ �2p(p �
1)(Mpl/µ)2xp�2/(1 � xp) � 3r/8, where x = �⇤/µ. As in PCI13,
the ellipsis in Eq. (49) and in what follows indicates higher-order
terms that are negligible during inflation but ensure positiveness
of the potential.

By sampling log10(µ/Mpl) within the prior [0.30, 4.85] for
p = 2, we obtain log10(µ/Mpl) > 1.02 (1.05) at 95% CL and
ln B = �2.6 (�2.4) for wint = 0 (allowing wint to float).

An exact potential which could also apply after inflation, in-
stead of the approximated one in Eq. (49), might be needed for
a better comparison among di↵erent models. For µ/Mpl � 1,
hilltop models as defined in Eq. (49) by neglecting the addi-
tional terms denoted by the ellipsis lead to ns � 1 ⇡ �3r/8,
the same prediction as for the previously discussed linear po-
tential, V(�) / �. By considering a double well potential,
V(�) = ⇤4[1 � �2/(2µ2)]2, instead, we obtain a slightly worse
Bayes factor than the hilltop p = 2 model, ln B = �3.1 (�2.3)
for wint = 0 (wint allowed to vary). This di↵erent result can be
easily understood. Although the double well potential is equal
to the hilltop model for � ⌧ µ, it approximates V(�) / �2 for
µ/Mpl � 1. Since a linear potential is a better fit to Planck than
�2, the fit of the double well potential is therefore worse than the
hilltop p = 2 case for µ/Mpl � 1, and this partially explains the
slightly di↵erent Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95% CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al. 1990; Adams et al. 1993) a
nonperturbative shift symmetry is invoked to suppress radiative
corrections leading to the periodic potential

V(�) = ⇤4
"
1 + cos

 
�

f

!#
, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (>0.83) at 95% CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an e↵ective single-field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al. 2005). In such a setting, the super-Planckian
value of the e↵ective scale f required by observations can be
obtained even if the original scales satisfy fi ⌧ Mpl (Kim et al.
2005).

D-brane inflation

Inflation can arise from physics involving extra dimensions.
If the standard model of particle physics is confined to our
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Fig. 11. Marginalized joint 68% and 95% CL regions for (✏1, ✏2, ✏3) (top panels) and (✏V , ⌘V , ⇠2
V ) (bottom panels) for Planck TT+lowP (red

contours), Planck TT, TE, EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

3-dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the e↵ective potential driving inflation:

V(�) = ⇤4
 
1 �
µp

�p + ...

!
. (51)

Sampling log10(µ/Mpl) using a uniform prior over [�6, 0.3], we
consider p = 4 (Kachru et al. 2003; Dvali et al. 2001) and p = 2
(Garcia-Bellido et al. 2002). The predictions for r and ns can be
obtained from the hilltop case with the substitution p ! �p.
These models agree with the Planck data with a Bayes factor of
ln B = �0.4 (�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2,
respectively, for wint = 0 (allowing wint to vary).

Potentials with exponential tails

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde
1984; Stewart 1995; Dvali & Tye 1999; Burgess et al. 2002;
Cicoli et al. 2009). We restrict ourselves to analysing the fol-
lowing class of potentials:

V(�) = ⇤4
⇣
1 � e�q�/Mpl + ...

⌘
. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 with a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx

� qx)/q2.
By sampling log10(q/Mpl) with a uniform prior over [�3, 3], we
obtain a Bayes factor of �0.6 for wint = 0 (�0.9 when wint is
allowed to vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al. 1994; Linde 1994) predicting
ns > 1 are strongly disfavoured by the Planck data, as for the first
cosmological release (PCI13). An example of a hybrid model
predicting ns < 1 is the case in which slow-roll inflation is
driven by loop corrections in spontaneously broken supersym-
metric (SUSY) grand unified theories (Dvali et al. 1994) de-
scribed by the potential

V(�) = ⇤4
h
1 + ↵h log

⇣
�/Mpl

⌘i
, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R
2 inflation

The first inflationary model proposed (Starobinsky 1980), with
action

S =
Z

d4x
p
�g

M2
pl

2

 
R +

R2

6M2

!
, (54)

still lies within the Planck 68% CL constraints, as for the Planck
2013 release (PCI13). This model corresponds to the potential

V(�) = ⇤4
⇣
1 � e�

p
2/3�/Mpl

⌘2
(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Mukhanov & Chibisov 1981;
Starobinsky 1983).

After the Planck 2013 release, several theoretical devel-
opments supported the model in Eq. (54) beyond the orig-
inal motivation of including quantum e↵ects at one-loop
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Fig. 12. Marginalized joint 68% and 95% CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical predictions of
selected inflationary models. Note that the marginalized joint 68% and 95% CL regions have been obtained by assuming dns/dln k = 0.

(Starobinsky 1980). No-scale supergravity (Ellis et al. 2013a),
the large-field regime of superconformal D-term inflation
(Buchmüller et al. 2013), or recent developments in minimal su-
pergravity (Farakos et al. 2013; Ferrara et al. 2013b) can lead
to a generalization of the potential in Eq. (55) (see Ketov &
Starobinsky 2011 for a previous embedding of R2 inflation in
F(R) supergravity). The potential in Eq. (55) can also be gener-
ated by spontaneous breaking of conformal symmetry (Kallosh
& Linde 2013b). This inflationary model has ��2

⇡ 0.8 (0.3)
larger than the base ⇤CDM model with no tensors for wint = 0
(for wint allowed to vary). We obtain 54 < N⇤ < 62 (53 < N⇤ <
64) at 95% CL for wint = 0 (for wint allowed to vary), compati-
ble with the theoretical prediction, N⇤ = 54 (Starobinsky 1980;
Vilenkin 1985; Gorbunov & Panin 2011).

↵ attractors

We now study two classes of inflationary models motivated by
recent developments in conformal symmetry and supergravity
(Kallosh et al. 2013). The first class has been motivated by con-
sidering a vector rather than a chiral multiplet for the inflaton in
supergravity (Ferrara et al. 2013a) and corresponds to the poten-
tial (Kallosh et al. 2013)

V(�) = ⇤4
✓
1 � e�

p
2�/

⇣p
3↵Mpl

⌘◆2
. (56)

To lowest order in the slow-roll approximation, these models
predict r ⇡ 64/[3↵(1 � e

p
2�/(
p

3↵Mpl))2] and ns � 1 ⇡ �8(1 +
e
p

2�/(
p

3↵Mpl))/[3↵(1 � e
p

2�/(
p

3↵Mpl))2] based on an inflationary
trajectory characterized by N ⇡ g(�/Mpl) � g(�end/Mpl) with
g(x) = (3↵4e

p
2x/
p

3↵
�
p

6↵x)/4. The relation between N and �
can be inverted through the use of the Lambert functions, as car-
ried out for other potentials (Martin et al. 2014). By sampling

log10(↵2) with a flat prior over [0, 4], we obtain log10(↵2) < 1.7
(2.0) at 95% CL and a Bayes factor of �1.8 (�2) for wint = 0 (for
wint allowed to vary).

The second class of models has been called super-conformal
↵ attractors (Kallosh et al. 2013) and can be understood as orig-
inating from a di↵erent generating function with respect to the
first class. This second class is described by the following poten-
tial (Kallosh et al. 2013):

V(�) = ⇤4 tanh2m

0
BBBBB@
�

p
6↵Mpl

1
CCCCCA · (57)

This is the simplest class of models with spontaneous breaking
of conformal symmetry, and for ↵ = m = 1 reduces to the origi-
nal model introduced by Kallosh & Linde (2013b). The potential
in Eq. (57) leads to the following slow-roll predictions (Kallosh
et al. 2013):

r ⇡
48↵m

4mN2 + 2Ng(↵,m) + 3↵m
, (58)

ns � 1 ⇡ �
8mN + 6↵m + 2g(↵,m)

4mN2 + 2Ng(↵,m) + 3↵m
, (59)

where g(↵,m) =
p

3↵(4m2 + 3↵). The predictions of this second
class of models interpolate between those of a large-field chaotic
model, V(�) / �2m, for ↵ � 1 and the R2 model for ↵ ⌧ 1.

For ↵ we adopt the same priors as for the previous class in
Eq. (56). By fixing m = 1, we obtain log10(↵2) < 2.3 (2.5) at
95% CL and a Bayes factor of �2.3 (�2.2) for wint = 0 (when
wint is allowed to vary). When m is allowed to vary as well with
a flat prior in the range [0, 2], we obtain 0.02 < m < 1 (m < 1)
at 95% CL for wint = 0 (when wint is allowed to vary).
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Non-minimally coupled inflaton

Inflationary predictions are quite sensitive to a non-minimal cou-
pling ⇠R�2 of the inflaton to the Ricci scalar. One of the most in-
teresting e↵ects due to ⇠ , 0 is to reconcile the quartic potential
V(�) = ��4/4 with Planck observations, even for ⇠ ⌧ 1. Non-
minimal coupling leads as well to attractor behaviour towards
predictions similar to those in R2 inflation (Kaiser & Sfakianakis
2014; Kallosh & Linde 2013a).

The Higgs inflation model (Bezrukov & Shaposhnikov
2008), in which inflation occurs with V(�) = �(�2

� �2
0)2/4 and

⇠ � 1 for � � �0, leads to the same predictions as the R2 model
to lowest order in the slow-roll approximation at tree level (see
Barvinsky et al. 2008; and Bezrukov & Shaposhnikov 2009 for
the inclusion of loop corrections). It is therefore in agreement
with the Planck constraints, as for the first cosmological data
release (PCI13).

We summarize below our findings for Planck lowP+BAO.

– Monomial potentials with integral n > 2 are strongly dis-
favoured with respect to R2.

– The Bayes factor prefers R2 over chaotic inflation with
monomial quadratic potential by odds of 110:1 under the as-
sumption of a dust equation of state during the entropy gen-
eration stage.

– R2 inflation has the strongest evidence (i.e., the greatest
Bayes factor) among the models considered here. However,
care must be taken not to overinterpret small di↵erences in
likelihood lacking statistical significance.

– The models closest to R2 in terms of evidence are brane infla-
tion and exponential inflation, which have one more param-
eter than R2. Both brane inflation considered in Eq. (51) and
exponential inflation in Eq. (52) approximate the linear po-
tential for a large portion of parameter space (for µ/Mpl � 1
and q � 1, respectively). For this reason these models have
a higher Bayesian evidence (although not at a statistically
significant level) than those that approximate a quadratic po-
tential, as do ↵-attractors, for instance.

– In the models considered here, the ��2 obtained by allowing
w to vary is modest (i.e., less than approximately 1.6 with
respect to wint = 0). The gain in the logarithm of the Bayesian
evidence is even smaller, since an extra parameter is added.

7. Reconstruction of the potential and analysis
beyond slow-roll approximation

7.1. Introdution

In the previous section, we derived constraints on several types
of inflationary potentials assumed to account for the inflaton dy-
namics between the time at which the largest observable scales
crossed the Hubble radius during inflation and the end of infla-
tion. The full shape of the potential was used in order to identify
when inflation ends, and thus the field value �⇤ when the pivot
scale crosses the Hubble radius.

In Sect. 6 of PCI13, we explored another approach, consist-
ing of reconstructing the inflationary potential within its observ-
able range without making any assumptions concerning the in-
flationary dynamics outside that range. Indeed, given that the
number of e-folds between the observable range and the end of
inflation can always be adjusted to take a realistic value, any po-
tential shape giving a primordial spectrum of scalar and tensor
perturbations in agreement with observations is a valid candi-
date. Inflation can end abruptly by a phase transition, or can last

a long time if the potential becomes very flat after the observ-
able region has been crossed. Moreover, there could be a short
inflationary stage responsible for the origin of observable cos-
mological perturbations, and another inflationary stage later on
(but before nucleosynthesis), thus contributing to the total N⇤.

In Sect. 6 of PCI13, we performed this analysis with a full
integration of the inflaton and metric perturbation modes, so that
no slow-roll approximation was made. The only assumption was
that primordial scalar perturbations are generated by the fluctu-
ations of a single inflaton field with a canonical kinetic term.
Since in this approach one is only interested in the potential over
a narrow range of observable scales (centred around the field
value �⇤ when the pivot scale crosses the Hubble radius), it is
reasonable to test relatively simple potential shapes described by
a small number of free parameters.

This approach gave very similar results to calculations based
on the standard slow-roll analysis. This agreement can be ex-
plained by the fact that the Planck 2013 data already preferred a
primordial spectrum very close to a power law, at least over most
of the observable range. Hence the 2013 data excluded strong
deviations from slow-roll inflation, which would either produce
a large running of the spectral index or imprint more compli-
cated features on the primordial spectrum. However, this con-
clusion did not apply to the largest scales observable by Planck,
for which cosmic variance and slightly anomalous data points
remained compatible with significant deviations from a simple
power law spectrum. The most striking result in Sect. 6 of PCI13
was that a less restricted functional form for the inflaton poten-
tial gave results compatible with a rather steep potential at the
beginning of the observable window, leading to a “not-so-slow”
roll stage during the first few observable e-folds. This explains
the shape of the potential in Fig. 14 of PCI13 for a Taylor ex-
pansion at order n = 4 and in the region where � � �⇤  �0.2.
However, such features were only partially explored because the
method used for potential reconstruction did not allow for an ar-
bitrary value of the inflation velocity �̇ at the beginning of the
observable window. Instead, our code imposed that the infla-
ton already tracked the inflationary attractor solution when the
largest observable modes crossed the Hubble scale.

Given that the Planck 2015 data establish even stronger
constraints on the primordial power spectrum than the 2013 re-
sults, it is of interest to revisit the reconstruction of the potential
V(�). Section 7.2 presents some new results following the same
approach as in PCI13 (explained previously in Lesgourgues &
Valkenburg 2007; and Mortonson et al. 2011). But in the present
work, we also present some more general results, independent of
any assumption concerning the initial field velocity �̇ when the
inflaton enters the observable window. Following previous stud-
ies (Kinney 2002; Kinney et al. 2006; Peiris & Easther 2006a,b,
2008; Easther & Peiris 2006; Lesgourgues et al. 2008; Powell &
Kinney 2007; Hamann et al. 2008; Norena et al. 2012), we re-
construct the Hubble function H(�), which determines both the
potential V(�) through

V(�) = 3M2
Pl H2(�) � 2M4

Pl
⇥
H0(�)

⇤2, (60)

and the solution �(t) through

�̇ = �2M2
PlH

0(�), (61)

with H0(�) = @H/@�. Note that these two relations are exact. In
Sect. 7.3, we fit H(�) directly to the data, implicitly including
all canonical single-field models in which the inflaton is rolling
not very slowly (✏ not much smaller than unity) just before en-
tering the observable window, and the issue of having to start
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Table 8. Numerical reconstruction of the potential slow-roll parame-
ters beyond any slow-roll approximation when the potential is Taylor
expanded to nth order, using Planck TT+lowP+BAO.

n 2 3 4

✏V <0.0074 <0.010 0.0072+0.0093
�0.0069

⌘V �0.007+0.014
�0.012 �0.020+0.021

�0.018 0.021+0.044
�0.042

⇠2V . . . 0.006+0.010
�0.010 �0.018+0.028

�0.027

$3
V . . . . . . 0.015+0.016

�0.017

⌧ 0.083+0.036
�0.036 0.096+0.046

�0.044 0.102+0.046
�0.045

ns 0.9692+0.0094
�0.0093 0.9689+0.0097

�0.0097 0.964+0.011
�0.011

dns/dln k �0.00034+0.00055
�0.00059 �0.013+0.019

�0.019 0.003+0.026
�0.026

r0.002 <0.11 <0.16 0.11+0.16
�0.11

��2 . . . ��2
3/2 = �1.2 ��2

4/3 = �2.1

�ln B . . . �ln B3/2 = �4.3 �ln B4/3 = �2.9

Notes. We also show the corresponding bounds on the derived param-
eters (here ns, dns/dln k, and r0.002 are derived from the numerically
computed primordial spectra). All error bars are at the 95% CL. The
e↵ective �2 value and Bayesian evidence logarithm (ln B) of model n
are given relative to the model of next lowest order (n � 1) (assuming
flat priors for ⇠2

V and $3
V in the range [�1, 1]).

su�ciently early in order to allow the initial transient to decay
is avoided. The only drawback in reconstructing H(�) is that
one cannot systematically test the simplest analytic forms for
V(�) in the observable range (for instance, polynomials of or-
der n = 1, 3, 5, . . . in (� � �⇤)). But our goal in this section is
to explore how much one can deviate from slow-roll inflation in
general, independently of the shape of the underlying inflaton
potential.

7.2. Reconstruction of a smooth inflaton potential

Following the approach of PCI13, we Taylor expand the inflaton
potential around � = �⇤ to order n = 2, 3, 4. To obtain faster-
converging Markov chains, instead of imposing flat priors on
the Taylor coe�cients {V,V�, . . . ,V����}, we sample the potential
slow-roll (PSR) parameters {✏V , ⌘V , ⇠2V ,$

3
V } related to the former

as indicated in Table 2. We stress that this is just a choice of
prior and does not imply any kind of slow-roll approximation in
the calculation of the primordial spectra.

The results are given in Table 8 (for Planck TT+lowP+BAO)
and Fig. 13 (for the same data set and also for Planck TT, TE,
EE+lowP). The second part of Table 8 shows the corresponding
values of the spectral parameters ns, dns/dln k, and r0.002 as mea-
sured for each numerical primordial spectrum (at the pivot scales
k = 0.05 Mpc�1 for the scalar and 0.002 Mpc�1 for the tensor
spectra), as well as the reionization optical depth. We also show
in Fig. 14 the derived distribution of each coe�cient Vi (with a
non-flat prior) and in Fig. 15 the reconstructed shape of the best-
fit inflation potentials in the observable window. Finally, the pos-
terior distribution of the derived parameters r0.002 and dns/dln k
is displayed in Fig. 16.

Figure 13 shows that bounds are very similar when temper-
ature data are combined with either high-` polarization data or
BAO data. This gives a hint of the robustness of these results. For
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Fig. 13. Posterior distributions for the first four potential slow-roll pa-
rameters when the potential is Taylor expanded to nth order using
Planck TT+lowP+BAO (filled contours) or TT, TE, EE+lowP (dashed
contours). The primordial spectra are computed beyond the slow-roll
approximation.
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Fig. 14. Posterior distributions for the coe�cients of the inflation po-
tential Taylor expanded to nth order (in natural units where

p
8⇡Mpl =

1) reconstructed beyond the slow-roll approximation using Planck
TT+lowP+BAO (filled contours) or TT, TE, EE+lowP (dashed con-
tours). The plot shows only half of the results; the other half is sym-
metric, with opposite signs for V� and V���. Note that, unlike Fig. 13,
the parameters shown here do not have flat priors, since they are mapped
from the slow-roll parameters.

both data sets, the error bars on the PSR parameters are typically
smaller by a factor of 1.5 than in PCI13.

Since potentials with n = 2 cannot generate a significant
running, the bounds on the scalar spectral index and the tensor-
to-scalar ratio and the best-fit models are very similar to those
obtained with the ⇤CDM+r model in Sect. 5 and Table 4. On
the other hand, in the n = 3 model, results follow the trend of
the previous ⇤CDM+r+dns/dln k analysis. The data prefer po-
tentials with V� and V��� of the same sign, generating a signif-
icant negative running (as can be seen in Fig. 16). This trend
for V��� occurs because a scalar spectrum with negative running
reduces the power on large scales, and provides a better fit to
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Fig. 15. Observable range of the best-fit inflaton potentials, when V(�)
is Taylor expanded to the nth order around the pivot value �⇤ in natural
units (where

p
8⇡Mpl = 1) assuming a flat prior on ✏V , ⌘V , ⇠2

V , and
$3

V and using Planck TT+lowP+BAO. Potentials obtained under the
transformation (�� �⇤)! (�⇤ � �) leave the same observable signature
and are also allowed. The sparsity of potentials with a small V0 = V(�⇤)
is due to our use of a flat prior on ✏V rather than on ln(V0); in fact, V0 is
unbounded from below in the n = 2 and 3 results. The axis ranges are
identical to those in Fig. 20, to make the comparison easier.
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Fig. 16. Posterior distribution for the tensor-to-scalar ratio (at k =
0.002 Mpc�1) and for the running parameter dns/dln k (at k =
0.05 Mpc�1), for the potential reconstructions in Sects. 7.2 and 7.3. The
V(�) reconstruction gives the solid curves for Planck TT+lowP+BAO,
or dashed for TT, TE, EE+lowP. The H(�) reconstruction gives the dot-
ted curves for Planck TT+lowP+BAO, or dashed-dotted for TT, TE,
EE+lowP. The tensor-to-scalar ratio appears as a derived parameter, but
by taking a flat prior on either ✏V or ✏H, we implicitly also take a nearly
flat prior on r. The same applies to dns/dln k.

low-` temperature multipoles. However, such a running also sup-
presses power on small scales, so ⇠2V cannot be too large.

The n = 4 case possesses a new feature. The potential
has more freedom to generate complicated shapes which would
roughly correspond to a running of the running of the tilt (as
studied in Sect. 4). The best-fit models now have V� and V���
of opposite sign, and a large positive V����. The preferred
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Fig. 17. Primordial spectra (scalar and tensor) of the best-fit V(�) model
with n = 4, for the Planck TT, TE, EE+lowP data set, compared
to the primordial spectrum (scalar only) of the best-fit base ⇤CDM
model. The best-fit potential is initially very steep, as can be seen in
Fig. 15 (note the typical shape of the green curves). The transition from
“marginal slow roll” (✏V (�) between 0.01 and 1) to “full slow roll”
(✏V (�) of order 0.01 or smaller) is responsible for the suppression of
the large-scale scalar spectrum.
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Fig. 18. Temperature and polarization spectra (total, scalar contribution,
tensor contribution) of the best-fit V(�) model with n = 4, for the Planck
TT, TE, EE+lowP data set, compared to the spectra (scalar contribution
only) of the best-fit base model. We also show the Planck low-` tem-
perature data, which is driving the small di↵erences between the two
best-fit models.

combination of these parameters allows for even more suppres-
sion of power on large scales, while leaving small scales nearly
unchanged. This can be seen clearly from the shape of the
scalar primordial spectrum corresponding to the best-fit mod-
els, for both data sets Planck TT+lowP+BAO and Planck TT,
TE, EE+lowP. These two best-fit models are very similar, but in
Fig. 17 we show the one for Planck TT, TE, EE+lowP, for which
the trend is even more pronounced. Interestingly, the preferred
models are such that power on large scales is suppressed in the
scalar spectrum and balanced by a small tensor contribution, of
roughly r0.002 ⇠ 0.05. This particular combination gives the best
fit to the low-` data, shown in Fig. 18, while leaving the high-`
temperature spectrum identical to the best fit base⇤CDM model.
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Inflation produces such primordial perturbations with the fam-
ily of green potentials displayed in Fig. 15. At the beginning of
the observable range, the potential is very steep [✏V (�) decreases
from O(1) to O(10�2)], and produces a low amplitude of curva-
ture perturbations (allowing a rather large tensor contribution, up
to r0.002 ⇠ 0.3). Then there is a transition towards a second re-
gion with a much smaller slope, leading to a nearly power-law
curvature spectrum with the usual tilt value ns ⇡ 0.96. In Fig. 15,
one can check that the height of the n = 4 potentials varies in a
definite range, while the n = 2 and 3 potentials can have arbitrar-
ily small amplitude at the pivot scale, reflecting the posteriors on
✏V or r.

However, the improvement in �2 between the base ⇤CDM
and n = 4 models is only 2.2 (for Planck TT+lowP+BAO) or
4.3 (for Planck TT, TE, EE+lowP). This is marginal and o↵ers
no statistically significant evidence in favour of these compli-
cated models. This conclusion is also supported by the calcula-
tion of the Bayesian evidence ratios, shown in the last line of
Table 8 (under the assumption of flat priors in the range [�1, 1]
for ⇠2V and$3

V ): the evidence decreases each time that a new free
parameter is added to the potential. At the 95% CL, r0.002 is still
compatible with zero, and so are the higher order PSR param-
eters ⇠2V and $3

V . More freedom in the inflaton potential allows
fitting the data better, but under the assumption of a smooth po-
tential in the observable range, a simple quadratic form provides
the best explanation of the Planck observations.

With the Planck TT+lowP+BAO and TT, TE, EE+lowP data
sets, models with a large running or running of the running can
be compatible with an unusually large value of the optical depth,
as can be seen in Table 8. Including lensing information helps to
break the degeneracy between the optical depth and the primor-
dial amplitude of scalar perturbations. Hence the Planck lensing
data could be used to strengthen the conclusions of this section.

Since in the n = 4 model, slow roll is marginally satisfied at
the beginning of observable inflation, the reconstruction is very
sensitive to the condition that there is an attractor solution at that
time. Hence this case can in principle be investigated in a more
conservative way using the H(�) reconstruction method of the
next section.

7.3. Reconstruction of a smooth Hubble function

In this section, we assume that the shape of the function H(�)
is well captured within the observable window by a polynomial
of order n (corresponding to a polynomial inflaton potential of
order 2n):

H(�) =
nX

i=0

Hi
�i

i!
· (62)

We vary n between 2 and 4. To avoid parameter degeneracies, as
in the previous section we assume flat priors not on the Taylor
coe�cient Hi, but on the Hubble slow-roll (HSR) parameters,
which are related according to

✏H = 2M2
pl

 
H1

H0

!2

, ⌘H = 2M2
pl

H2

H0
, (63)

⇠2H =
⇣
2M2

pl

⌘2 H1H3

H2
0
, $3

H =
⇣
2M2

pl

⌘3 H2
1 H4

H3
0

. (64)

This is just a choice of prior. This analysis does not rely on the
slow-roll approximation.

Table 9 and Fig. 19 show our results for the reconstructed
HSR parameters. Figure 20 shows a representative sample of
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Fig. 19. Posterior distributions for the first four Hubble slow-roll pa-
rameters, when H(�) is Taylor expanded to nth order, using Planck
TT+lowP+BAO (filled contours) or TT, TE, EE+lowP (dashed con-
tours). The primordial spectra are computed beyond the slow-roll
approximation.

Table 9. Numerical reconstruction of the Hubble slow-roll parameters
beyond the slow-roll approximation, using Planck TT+lowP+BAO.

n 2 3 4
✏H <0.0073 <0.011 <0.020

⌘H �0.010+0.011
�0.009 �0.012+0.015

�0.013 �0.001+0.033
�0.027

⇠2H . . . 0.08+0.12
�0.12 �0.01+0.19

�0.19

$3
H . . . . . . 1.0+2.3

�1.8

⌧ 0.082+0.038
�0.036 0.096+0.042

�0.043 0.096+0.042
�0.042

ns 0.9693+0.0094
�0.0093 0.9680+0.0096

�0.0096 0.967+0.010
�0.010

103dns/dln k �0.251+0.41
�0.41 �13+18

�19 �8+21
�21

r0.002 <0.11 <0.16 <0.32

��2 . . . ��2
3/2 = �0.6 ��2

4/3 = �2.3

Notes. We also show the corresponding bounds on some related pa-
rameters (here ns, dns/dln k, and r0.002 are derived from the numerically
computed primordial spectra). All error bars are at the 95% CL. The
e↵ective �2 value of model n is given relative to model n � 1.

potential shapes V(� � �⇤) derived using Eq. (60), for a sample
of models drawn randomly from the chains, for the three cases
n = 2, 3, 4.

Most of the discussion of Sect. 7.2 also applies to
this section, and so will not be repeated. Results for
Planck TT+lowP+BAO and TT, TE, EE+lowP are still very sim-
ilar. The n = 2 case still gives results close to ⇤CDM+r, and the
n = 3 case to ⇤CDM+r+dns/dln k. The type of potential pre-
ferred in the n = 4 case is very similar to the n = 4 analysis of
the previous section, for the reasons explained in Sect. 7.2. There
are, however, small di↵erences, because the range of parametric
forms for the potential explored by the two analyses di↵er. In
the H(�) reconstruction, the underlying potentials V(�) are not
polynomials. In the first approximation, they are close to poly-
nomials of order 2n, but with constraints between the various
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Fig. 20. Same as Fig. 15, when the Taylor expansion to nth order is
performed on H(�) instead of V(�), and the potential is inferred from
Eq. (60).

coe�cients. The main two di↵erences with respect to the results
of Sect. 7.2 are as follows:

– The reconstructed potential shapes for n = 4 at the begin-
ning of the observable window di↵er. Figure 20 shows that
even steeper potentials are allowed than for the V(�) method,
with an even greater excursion of the inflaton field between
Hubble crossing for the largest observable wavelengths and
the pivot scale. This is because the H(�) reconstruction does
not rely on attractor solutions and automatically explores all
valid potentials regardless of their initial field velocity.

– The best-fit models are di↵erent, since they do not explore
the same parametric families of potentials. In particular, for
n = 4, the best-fit models have a negligible tensor contribu-
tion, but the distributions still have thick tails towards large
tensor-to-scalar ratios, so that the upper bound on r0.002 is as
high as in the previous n = 4 models, r0.002 < 0.32.

Note that $3
H can be significantly larger than unity for n = 4.

This does not imply violation of slow roll within the observable
range. By assumption, for all accepted models, ✏H must remain
smaller than unity over that range. In fact, for most of the green
potentials visible in Fig. 20, we checked that ✏H either has a max-
imum very close to unity near the beginning of the observable
range or starts from unity. So the best-fit models (maximizing
the power suppression at low multipoles) correspond either to
inflation of short duration, or to models nearly violating slow
roll just before the observable window. However, such peculiar
models are not necessary for a good fit. Table 9 shows that the
improvement in �2 as n increases is negligible.

In summary, this section further establishes the robustness of
our potential reconstruction and two main conclusions. Firstly,
under the assumption that the inflaton potential is smooth over
the observable range, we showed that the simplest parametric
forms (involving only three free parameters including the am-
plitude V(�⇤), no deviation from slow roll, and nearly power
law primordial spectra) are su�cient to explain the data. No
high-order derivatives or deviations from slow roll are required.
Secondly, if one allows more freedom in the potential – typically,
two more parameters – it is easy to decrease the large-scale pri-
mordial spectrum amplitude with an initial stage of “marginal
slow roll” along a steep branch of the potential followed by a

transition to a less steep branch. This type of model can accom-
modate a large tensor-to-scalar ratio, as high as r0.002 ⇡ 0.3.

8. P(k) reconstruction

In PCI13 (Sect. 7) we presented the results of a penalized like-
lihood reconstruction, seeking to detect any possible deviations
from a homogeneous power-law form (i.e., PR(k) / kns�1) for
the primordial power spectrum (PPS) for various values of a
smoothing parameter, �. (For an extensive set of references to
the prior literature concerning the methodology for reconstruct-
ing the power spectrum, see PCI13.) In the initial March 2013
preprint version of that paper, we reported evidence for a fea-
ture at moderate statistical significance around k ⇡ 0.15 Mpc�1.
However, in the November 2013 revision we retracted this find-
ing, because subsequent tests indicated that the feature was no
longer statistically significant when more aggressive cuts were
made to exclude sky survey rings where contamination from
electromagnetic interference from the 4 K cooler was largest, as
indicated in the November 2013 “Note Added.”

In this section we report on results using the 2015 CTT
` like-

lihood (Sect. 8.1) using essentially the same methodology as de-
scribed in PCI13. (See Gauthier & Bucher 2012, and references
therein for more technical details.) This method is also extended
to include the EE and TE likelihoods in Sect. 8.1.2. As part of
this 2015 release, we include the results of two other methods
(see Sects. 8.2 and 8.3) to search for features. We find that all
three methods yield broadly consistent reconstructions and reach
the following main conclusion: there is no statistically significant
evidence for any features departing from a simple power-law
(i.e., PR(k) / kns�1) PPS. Given the substantial di↵erences be-
tween these methods, it is satisfying to observe this convergence.

8.1. Method I: penalized likelihood

8.1.1. Update with 2015 temperature likelihood

We repeated the same maximum likelihood analysis used to re-
construct the PPS in PCI13 using the updated Planck TT+lowP
likelihood. Since we are interested in deviations from the nearly
scale-invariant model currently favoured by the parametric ap-
proach, we replaced the true PPS PR(k) by a fiducial power-law
spectrum P(0)

R
(k) = As(k/k⇤)ns�1, modulated by a small deviation

function f (k):

PR(k) = P(0)
R

(k) exp
⇥
f (k)

⇤
. (65)

The deviation function f (k)7 was represented by B-spline ba-
sis functions parameterized by nknot control points f = { fi}nknot

i=1 ,
which are the values of f (k) along a grid of knot points i = ln ki.

Naively maximizing the Planck TT+lowP likelihood with re-
spect to f results in over-fitting to cosmic variance and noise in
the data. Furthermore, due to the limited range of scales over
which Planck measures the anisotropy power spectrum, the like-
lihood is very weakly dependent on f (k) at extremely small and
large scales. To address these issues, the following two penalty
functions were added to the Planck likelihood:

f TR(�,↵) f ⌘ �
Z

d
 
@2 f ()
@2

!2

+ ↵

Z min

�1

d f 2() + ↵
Z +1

max

d f 2().
(66)

7 The definition of f (k) used here di↵ers from that of PCI13 in that
exp( f ) is used in place of 1 + f to ensure that the reconstructed primor-
dial power spectrum is always non-negative.
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The first term on the right-hand side of Eq. (66) is a roughness
penalty, which disfavours f () that “wiggle” too much. The last
two terms drive f () to zero for scales below min and above
max. The values of � and ↵ represent the strengths of the re-
spective penalties. The exact value of ↵ is unimportant as long
as it is large enough to drive f () close to zero on scales outside
[min, max]. However, the magnitude of the roughness penalty �
controls the smoothness of the reconstruction.

Since the anisotropy spectrum depends linearly on the PPS,
the Newton-Raphson method is well suited to optimizing with
respect to f . However, a maximum likelihood analysis also
has to take into account the cosmological parameters, ⇥ ⌘
{H0,⌦bh2,⌦ch2

}
8. These additional parameters are not easy to

include in the Newton-Raphson method since it is di�cult to
evaluate the derivatives @C`/@⇥, @2C`/@⇥2, etc., to the accuracy
required by the method. Therefore a non-derivative method, such
as the downhill simplex algorithm, is best suited to optimiza-
tion over these parameters. Unfortunately the downhill simplex
method is ine�cient given the large number of control points in
our parameter space. Since each method has its drawbacks, we
combined the two methods to draw on their respective strengths.
We define the functionM as

M(⇥) = min
fi2[�1,1]

n
�2 lnL(⇥, f ) + f T R(�,↵) f

o
. (67)

Given a set of non-PPS cosmological parameters ⇥, M is the
value of the penalized log likelihood, minimized with respect
to f using the Newton-Raphson method. The function M is in
turn minimized with respect to ⇥ using the downhill simplex
method. In contrast to the analysis done in PCI13, the Planck
low-` likelihood has been modified so that it can be included
in the Newton-Raphson minimization. Thus the reconstructions
presented here extend to larger scales than were considered in
2013.

Figure 21 shows the best-fit PPS reconstruction using the
Planck TT+lowP likelihood. The penalties in Eq. (66) introduce
a bias in the reconstruction by smoothing and otherwise deform-
ing potential features in the power spectrum. To assess this bias,
we define the “minimum reconstructible width” (MRW) to be
the minimum width of a Gaussian feature needed so that the in-
tegrated squared di↵erence between the feature and its recon-
struction is less than 1% of the integrated square of the input
Gaussian, which is equivalent to 10% rms. Due to the combi-
nation of the roughness and fixing penalties, it is impossible to
satisfy the MRW criterion too close to min and max. Wherever
the MRW is undefined, the reconstruction is substantially bi-
ased and therefore suspect. An MRW cannot be defined too
close to the endpoints min and max for two reasons: (1) lack
of data; and (2) if a feature is too close to where the fixing
penalty has been applied, the fixing penalty distorts the recon-
struction. Consequently a larger roughness penalty decreases the
range over which an MRW is well defined. The grey shaded ar-
eas in Fig. 21 show where the MRW is undefined and thus the
reconstruction cannot be trusted. The cuto↵s min and max have
been chosen to maximize the range over which an MRW is de-
fined for a given value of �. The 1� and 2� error bars in Fig. 21
are estimated using the Hessian of the log-likelihood evaluated
at the best-fit PPS reconstruction. More detailed MC investiga-
tions suggest that the nonlinear corrections to these error bars are
small.

8 Due to the high correlation between ⌧ and As, ⌧ is not included as a
free parameter. Any change in ⌧ can be almost exactly compensated for
by a change in As. We fix ⌧ to its best-fit fiducial model value.

For the � = 105 and 106 cases of the TT reconstruction, no
deviation exceeds 2�, so we do not comment on the probability
of obtaining a worse fit. For the other cases, we use the maxi-
mum of the deviation, expressed in �, of the plotted points as a
metric of the quality of fit. Then using Monte Carlo simulations,
we compute the p-value, or the probability to obtain a worse
fit, according to this metric. For � = 103 and 104, we obtain
p-values of 0.304 and 0.142, respectively, corresponding to 1.03
and 1.47�. We thus conclude that the observed deviations are
not statistically significant.

8.1.2. Penalized likelihood results with polarization

In Fig. 22 the best-fit reconstruction of the PPS from the
Planck TT, TE, EE+lowP likelihood is shown. We observe that
the reconstruction including polarization broadly agrees with
the reconstruction obtained using temperature only. For the
Planck TT, TE, EE+lowP likelihood, we obtain for � = 103, 104,
and 105 the p-values 0.166, 0.107, and 0.045, respectively, cor-
responding to 1.38, 1.61, and 2.00�, and likewise conclude the
absence of any statistically significant evidence for deviations
from a simple power-law scalar primordial power spectrum.

8.2. Method II: Bayesian model comparison

In this section we model the PPS PR(k) using a nested family of
models where PR(k) is piecewise linear in the ln(P)-ln(k) plane
between a number of knots, Nknots, that is allowed to vary. The
question arises as to how many knots one should use, and we ad-
dress this question using Bayesian model comparison. A family
of priors is chosen where both the horizontal and vertical posi-
tions of the knots are allowed to vary. We examine the “Bayes
factor” or “Bayesian evidence” as a function of Nknots to decide
how many knots are statistically justified. A similar analysis has
been performed by Vázquez et al. (2012) and Aslanyan et al.
(2014). In addition, we marginalize over all possible numbers of
knots to obtain an averaged reconstruction weighted according
to the Bayesian evidence.

The generic prescription is illustrated in Fig. 23. Nknots knots
{(ki,Pi) : i = 1, . . . ,Nknots} are placed in the (k,PR) plane and
the function PR(k) is constructed by logarithmic interpolation (a
linear interpolation in log-log space) between adjacent points.
Outside the horizontal range [k1, kN] the function is extrapolated
using the outermost interval.

Within this framework, base ⇤CDM arises when Nknots = 2
– in other words, when there are two boundary knots and no in-
ternal knots, and the parameters P1 and P2 (in place of As and
ns) parameterize the simple power-law PPS. There are also, of
course, the four standard cosmological parameters (⌦bh2, ⌦ch2,
100✓MC, and ⌧), as well as the numerous foreground parameters
associated with the Planck high-` likelihood, all of which are
unrelated to the PPS. This simplest model can be extended itera-
tively by successively inserting an additional internal knot, thus
requiring with each iteration two more variables to parameterize
the new knot position.

We run models for a variety of numbers of internal knots,
Nint = Nknots � 2, evaluating the evidence for Nint. Under the
assumption that the prior is justified, the most likely, or pre-
ferred, model is the one with the highest evidence. Evidences are
evaluated using the PolyChord sampler (Handley et al. 2015) in
CAMB and CosmoMC. The use of PolyChord is essential, as the
posteriors in this parameterization are often multi-modal. Also,
the ordered log-uniform priors on the ki are easy to implement
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Fig. 21. Planck TT+lowP likelihood primordial power spectrum (PPS) reconstruction results. Top four panels: reconstruction of the deviation f (k)
using four di↵erent roughness penalties. The red curves represent the best-fit deviation f (k) using the Planck TT+lowP likelihood. f (k) = 0 would
represent a perfectly featureless spectrum with respect to the fiducial PPS model, which is obtained from the best-fit base ⇤CDM model with a
power-law PPS. The vertical extent of the dark and light green error bars indicates the ±1� and ±2� errors, respectively. The width of the error bars
represents the minimum reconstructible width (the minimum width for a Gaussian feature so that the mean square deviation of the reconstruction
is less than 10%). The grey regions indicate where the minimum reconstructible width is undefined, indicating that the reconstruction in these
regions is untrustworthy. The hatched region in the � = 106 plot shows where the fixing penalty has been applied. These hashed regions are not
visible in the other three reconstructions, for which min lies outside the range shown in the plots. For all values of the roughness penalty, all data
points are within 2� of the fiducial PPS except for the deviations around k ⇡ 0.002 Mpc�1 in the � = 103 and � = 104 reconstructions. Lower
three panels: ±1� error bars of the three non-PPS cosmological parameters included in the maximum likelihood reconstruction. All values are
consistent with their respective best-fit fiducial model values indicated by the dashed lines.
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Fig. 22. Planck TT, TE, EE+lowP likelihood primordial power spectrum reconstruction results. Top four panels: reconstruction of the deviation
f (k) using four di↵erent roughness penalties. As in Fig. 21, the red curves represent the best-fit deviation f (k) and the height and width of the
green error bars represent the error and minimum reconstructible width, respectively. For all values of the roughness penalty, the deviations are
consistent with a featureless spectrum. Lower three panels: ±1� error bars of the three non-PPS cosmological parameters included in the maximum
likelihood reconstruction. All values are consistent with their respective best-fit fiducial model values (indicated by the dashed lines).

within the PolyChord framework. All runs were performed with
1000 live points, oversampling the semi-slow and fast parame-
ters by a factor of 5 and 100, respectively.

Priors for the reconstruction parameters are detailed in
Table 10. We report evidence ratios with respect to the base
⇤CDM case. The cosmological priors remain the same for all

models, and this part of the prior has almost no impact on the
evidence ratios. The choice of prior on the reconstruction pa-
rameters {Pi} does a↵ect the Bayes factor. CosmoMC, however,
puts an implicit prior on all models by excluding parameter
choices that render the internal computational approximations in
CAMB invalid. The baseline prior for the vertical position of the
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Fig. 23. Linear spline reconstruction. The primordial power spec-
trum is reconstructed using Nknots interpolation points {(ki,Pi) : i =
1, 2, . . . ,Nknots}. The end knots are fixed in k but allowed to vary
in P, whereas the internal knots can vary subject to the constraint
that k1 < k2 < · · · < kNknots . The function PR(k) is constructed within
the range [k1, kNknots ] by interpolating logarithmically between adjacent
knots (i.e., linearly in log-log space). Outside this range the function
is extrapolated logarithmically. The function PR(k; {ki,Pi}) thus has
2Nknots � 2 parameters.

Table 10. Prior for moveable knot positions.

Parameter range Prior type

10�4 Mpc�1 = k1 < k2 < . . . < kNknots = 0.3 Mpc�1 log uniform (sorted)
2 < ln

⇣
1010
P1

⌘
, . . . , ln

⇣
1010
PNknots

⌘
< 4 log uniform

2  Nknots  10 integer uniform

Notes. The PR positions are distributed in a log-uniform manner
across a wide range. The k positions are also log-uniformly distributed
across the entire range needed by CosmoMC and are sorted so that
k1 < . . . < kNknots . When we marginalize over the number of knots,
Nknots, we assume a uniform prior between 2 and 10.

knots includes all of the range allowed by CosmoMC, so slighly
increasing this prior range will not a↵ect the evidence ratios. If
one were to reduce the prior widths significantly, the evidence ra-
tios would be increased. The allowed horizontal range includes
all k-scales accessible to Planck. Thus, altering this width would
be unphysical.

After completion of an evidence calculation, PolyChord
generates a representative set of samples of the posterior for each
model, P(⇥) ⌘ P(⇥|data,Nint). We may use this to calculate a
marginalized probability distribution for the PPS:

P(logPR|k,Nint) =
Z
�
�
logPR � logPR(k;⇥)

�
P(⇥) d⇥. (68)

This expression encapsulates our knowledge of PR at each value
of k for a given number of knots. Plots of this PPS posterior are
shown in Fig. 24 using Planck TT data.

If one considers the Bayesian evidence of each model,
Fig. 25 shows that although no model is preferred over base
⇤CDM, the case Nint = 1 is competitive. This model is anal-
ogous to the broken-power-law spectrum of Sect. 4.4, although
the models di↵er significantly in terms of the priors used. In
this case, the additional freedom of one knot allows a recon-
struction of the suppression of power at low `. Adding polar-
ization data does not alter the evidences significantly, although
Nint = 1 is strengthened. We also plot a Planck TT run, but with
the reduced vertical priors 2.5 < ln

⇣
1010
Pi

⌘
< 3.5. As expected,

this increases the evidence ratios, but does not alter the above
conclusion.

For increasing numbers of internal knots, the Bayesian evi-
dence monotonically decreases. Occam’s razor dictates, there-
fore, that these models should not be preferred, due to their
higher complexity. However, there is an intriguing stable oscilla-
tory feature, at 20 <⇠ ` <⇠ 50, that appears once there are enough
knots to reconstruct it. This is a qualitative feature predicted by
several inflationary models (discussed in Sect. 9), and a possible
hint of new physics, although its statistical significance is not
compelling.

A full Bayesian analysis marginalizes over all models
weighted according to the normalized evidence ZNint , so that

P(logPR|k) =
X

Nint

P(logPR|k,Nint)ZNint , (69)

as indicated in Fig. 26. This reconstruction is sensitive to how
model complexity is penalized in the prior distribution.

8.3. Method III: cubic spline reconstruction

In this section we investigate another reconstruction algorithm
based on cubic splines in the ln(k)-lnPR plane, where (unlike
for the approach of the previous subsection) the horizontal po-
sitions of the knots are uniformly spaced in ln(k) and fixed. A
prior on the vertical positions (described in detail below) is cho-
sen and the reconstructed power spectrum is calculated using
CosmoMC for various numbers of knots. This method di↵ers from
the method in Sect. 8.1 in that the smoothness is controlled by
the number of discrete knots rather than by a continuous param-
eter of a statistical model having a well-defined continuum limit.
With respect to the Bayesian model comparison of Sect. 8.2, the
assessment of model complexity di↵ers because here the knots
are not movable.

Let the horizontal positions of the n knots be given by kb,
where b = 1, . . . , n, spaced so that kb+1/kb is independent of b.
We single out a “pivot knot” b= p, so that kp = k⇤ = 0.05 Mpc�1,
which is the standard scalar power spectrum pivot scale. For
a given number of knots n we choose k1 and kn so that the
interval of relevant cosmological scales, taken to extend from
10�4 Mpc�1 to O(1) Mpc�1, is included. We now define the prior
on the vertical knot coordinates. For the pivot point, we de-
fine ln As = lnPR(k⇤), where ln As has a uniformly distributed
prior, and for the other points with b , p, we define the derived
variable

qb ⌘ ln
 
PR(kb)
PR,fid(kb)

!
, (70)

where PR,fid(k) ⌘ As(k/k⇤)ns,fid�1. Here the spectral index ns,fid is
fixed. A uniform prior is imposed on each variable qb (b , p)
and the constraint �1  qb  1 is also imposed to force the re-
construction to behave reasonably near the endpoints, where it is
hardly constrained by the data. The quantity lnPR(k) is interpo-
lated between the knots using cubic splines with natural bound-
ary conditions (i.e., the second derivatives vanish at the first and
the last knots). Outside [k1, kn] we set PR(k) = eq1PR,fid(k) (for
k < k1) and PR(k) = eqnPR,fid(k) (for k > kn). For most knots, we
found that the upper and lower bounds of the qb prior hardly
a↵ect the reconstruction, since the data sharpen the allowed
range significantly. However, for super-Hubble scales (i.e., k <⇠
10�4 Mpc�1) and very small scales (i.e., k >⇠ 0.2 Mpc�1), which
are only weakly constrained by the cosmological data, the prior
dominates the reconstruction. For the results here, a fiducial
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Fig. 24. Bayesian movable knot reconstructions of the primordial power spectrum PR(k) using Planck TT data. The plots indicate our knowledge
of the PPS P(PR(k)|k,Nint) for a given number of knots. The number of internal knots Nint increases (left to right and top to bottom) from 0 to 8. For
each k-slice, equal colours have equal probabilities. The colour scale is chosen so that darker regions correspond to lower-� confidence intervals.
1� and 2� confidence intervals are also indicated (black curves). The upper horizontal axes give the approximate corresponding multipoles via
` ⇡ kDrec, where Drec is the comoving distance to recombination.

spectral index ns,fid = 0.967 for PR,fid was chosen, which is close
to the estimate from Planck TT+lowP+BAO. A di↵erent choice
of ns,fid leads to a trivial linear shift in the qb.

The possible presence of tensor modes (see Sect. 5) has
the potential to bias and introduce additional uncertainty in the
reconstruction of the primordial scalar power spectrum as pa-
rameterized above. Obviously, in the absence of a detection
of tensors at high statistical significance, it is not sensible to
model a possible tensor contribution with more than a few de-
grees of freedom. A complicated model would lead to prior
dominated results. We therefore use the power law parame-
terization, Pt(k) = rAs(k/k⇤)nt , where the consistency relation
nt = �r/8 is enforced as a constraint.

Primordial tensor fluctuations contribute to CMB tempera-
ture and polarization angular power spectra, in particular at spa-
tial scales larger than the recombination Hubble length, k <⇠
(aH)rec ⇡ 0.005 Mpc�1. If a large number of knots in lnPR(k)
is included over that range, then a modified PR can mimic a ten-
sor contribution, leading to a near-degeneracy. This can lead to
large uncertainty in the tensor amplitude, r. Once r is measured
or tightly constrained in B-mode experiments, this near degener-
acy will be broken. As examples here, we do allow r to float, but
also show what happens when r is constrained to take the values
r = 0.1 and r = 0.01 in the reconstruction.
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Fig. 25. Bayes factor (relative to the base ⇤CDM model) as a function
of the number of knots for three separate runs. Solid line: Planck TT.
Dashed line: Planck TT, TE, EE. Dotted line: Planck TT, with priors on
the Pi parameters reduced in width by a factor of 2 (2.5 < ln(1010

Pi) <
3.5).

Figure 27 shows the reconstruction obtained using the 2015
Planck TT+lowP likelihood, BAO, SNIa, HST, and a zre > 6
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