
Rev. Mat. Iberoam. 35 (2019), no. 3, 643–692
doi 10.4171/rmi/1065

c© European Mathematical Society

Gaffney–Friedrichs inequality for differential
forms on Heisenberg groups

Bruno Franchi, Francescopaolo Montefalcone and Elena Serra

Abstract. In this paper, we will prove several generalized versions, depen-
dent on different boundary conditions, of the classical Gaffney–Friedrichs
inequality for differential forms on Heisenberg groups. In the first part of
the paper, we will consider horizontal differential forms and the horizontal
differential. In the second part, we shall prove the counterpart of these
results in the context of Rumin’s complex.
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1. Introduction

Let Mn be a smooth compact manifold of dimension n with boundary ∂Mn. If u
is a differential form of degree h on Mn, 0 ≤ h ≤ n, we set

ut := ν (ν ∧ u), uν := ν u,
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where ν denotes the (Riemannian) outward unit normal vector along ∂Mn. Thus,
one gets the orthogonal decomposition formula

u = ut + ν ∧ uν .

Denote now by W 1,2(Mn,
∧h

TMn) the Sobolev space of differential forms
on Mn of degree h. The classical Friedrichs–Gaffney inequality (see [26], [27], [36],
and [42]) states that there exists a geometric constant C > 0 such that

‖u‖W 1,2(Mn,
∧

h TMn) ≤ C
(
‖du‖L2(Mn,

∧
h+1 TMn)

+ ‖δu‖L2(Mn,
∧h−1 TMn) + ‖u‖L2(Mn,

∧h TMn)

)(1.1)

for every differential h-form u ∈ W 1,2(Mn,
∧h

TMn) with vanishing either the
tangential component ut or the normal component uν on ∂Mn. Here d and δ
denote, respectively, the differential and the codifferential of the de Rham complex
in Mn.

Let U be a bounded open set with smooth boundary. If �F : U → Rn is a vector
field, then (1.1) reduces to the inequality

‖∇�F‖L2(U)n2 ≤ C
(
‖div �F‖L2(U) + ‖curl �F‖L2(U)n + ‖ �F‖L2(U)n

)
,

under suitable boundary conditions.
Roughly speaking, the conditions ut = 0 or uν = 0 on ∂Mn imply the vanishing

of some geometric quantities living on the boundary; see, [14], [42]. We remark
that these conditions can be replaced by more complicated conditions, which can
be written as linear combinations of the previous ones; for more details, we refer
to Section 5.3.2 of [14].

Several generalizations of (1.1) can be found in the literature. We mention
among others the Gaffney–Friedrichs inequality for Lipschitz domains proved in [34]
and, above all, from our point of view, the recent papers by Tseng and Yau [44], [45]
(see also [46]) for generalizations of the Gaffney–Friedrichs inequality (associated
with symplectic Laplacians) in compact symplectic manifolds (thus of even dimen-
sion) with smooth boundaries of contact type.

The aim of the present paper is to prove a Gaffney–Friedrichs inequality for
differential forms in Heisenberg groups.

By Darboux’ theorem, Heisenberg groups can be seen as the prototype of con-
tact manifolds (necessarily of odd dimension). Therefore our results are in some
sense complementary to those in [44], [45].

Heisenberg groups will be presented in more detail in Section 2. Here we just
recall that the Heisenberg group Hn is the (2n + 1)-dimensional Lie group with
nilpotent, stratified Lie algebra h of step 2 given by

h = span {X1, . . . , Xn, Y1, . . . , Yn} ⊕ span {T } := h1 ⊕ h2,

where the only nontrivial commutation rules are [Xj , Yj ] = T for any j = 1, . . . , n.
It is well known that Hn can be identified with R2n+1 through the (Lie group)

exponential map. The stratification of the algebra induces a family of nonisotropic
dilations in the group, again via the exponential map.
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Since the Lie algebra h can be identified with the tangent space to Hn at the
identity e = 0 ∈ Hn, there is a natural left-invariant Riemannian metric in Hn

making the basis {X1, . . . , Xn, Y1, . . . , Yn, T } orthonormal.
In addition, by left translation of h1 one obtains a tangent subbundle of THn

still denoted by h1. We refer to h1 as to the horizontal layer, and to

X1, . . . , Xn, Y1, . . . , Yn,

as to the horizontal derivatives of Hn. Moreover, we write

∇Hu := (X1u, . . . , Xnu, Y1u, . . . , Ynu)

whenever u is any smooth real function on Hn.
If 0 ≤ h ≤ 2n, the sections of

∧
h h1 are called horizontal h-vectors, while the

sections of
∧h

h1 are called horizontal h-covectors.
Throughout this paper we shall denote by ΩhH , 0 ≤ h ≤ 2n, the space of all

horizontal h-forms, and by ϑ the 1-form on Hn such that kerϑ = exp(h1) and
ϑ(T ) = 1.

It is to mention that the horizontal differential dH := d− ϑ ∧ LT acts between
horizontal differential forms in the sense that dH : ΩhH → Ωh+1

H . Unfortunately, the
diagram (Ω∗

H , dH) defined by

0 −−−−→ Ω0
H

dH−−−−→ Ω1
H

dH−−−−→ Ω1
H

dH−−−−→ · · ·

is not a differential complex, since d2H does not vanish, in general, precisely because
of the lack of commutativity in h. This difficulty is overcome by introducing the
Rumin complex (E∗

0 , dc), which is a “natural” complex of differential forms, (chain)
homotopic to the de Rham complex. We refer to [38] for the original definition, as
well as to [4], [5], [6], [7]. Precise definitions of the complex (E∗

0 , dc) will be given
in Section 8.1.

Thought the construction of Rumin’s forms may appear very technical, we
will see in Section 8.1 that the complex (E∗

0 , dc) arises “naturally” in geometric
measure theory starting from the notion of intrinsic submanifolds of Hn (see [22])
and, above all, of linear submanifolds in Hn.

A further non-Euclidean feature arising typically from the geometry of Hn we
have to deal with is the following. Let U � Hn be a smooth, bounded open set.
We need to remark that in our paper we are dealing with different “boundary
measures” on ∂U . First, an intrinsic notion of perimeter measure |∂U|Hn has
been introduced in [28]; we refer the reader to [28], [18], [19], [20] for a detailed
presentation. For simplicity, we shall denote the Hn-perimeter measure by the
symbol dσH . However, beside the Hn-perimeter measure, we can actually consider
both the 2n-dimensional Euclidean Hausdorff measure dH2n and the Riemannian
measure dσ, defined in terms of the Riemannian structure in Hn induced by the
fixed inner product in h. As a matter of fact, our results will fail to be completely
analogous to the classical ones ultimately because dσ and dσH are not equivalent.
This problem will be discussed later in this introduction.
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We can now describe the content of this paper. Our aim is to prove Gaffney–
Friedrichs-type inequalities for both (Ω∗

H , dH) and (E∗
0 , dc) (remember we use the

notation (Ω∗
H , dH) even if d2H 	= 0). If U � Hn is a smooth, bounded open set we

are looking for estimates of the form

‖u‖W 1,2
H

(U ,
∧h h1)

≤ C
(
‖dHu‖L2(U ,

∧h h1)
+ ‖d∗Hu‖L2(U ,

∧h h1)
+ ‖u‖L2(U ,

∧h h1)

)
,

under suitable boundary conditions.

HereW 1,2
H

(U ,
∧h

h1) denotes the space of horizontal differential forms such that

all their coefficients with respect to some coordinate frame belong toW 1,2
H

(U) (that
is, they belong to L2(U) together with all their horizontal derivatives).

Analogously, when dealing with forms of Rumin’s complex, we are looking for
estimates of the form

(1.2) ‖u‖W 1,2
H

(U ,Eh
0 )

≤ C
(
‖dcu‖L2(U ,Eh+1

0 ) + ‖δcu‖L2(U ,Eh−1
0 ) + ‖u‖L2(U ,Eh

0 )

)
,

under suitable boundary conditions. If Ξh0 = {ξhi : 1 ≤ i ≤ dimEh0 } is a smooth
orthonormal basis of Eh0 , we denote by W

1,2
H

(U , Eh0 ) the space of differential forms
u =

∑
j uj ξ

h
j ∈ L2(U , Eh0 ) such that

‖∇Hu‖2 :=
∑
i,j

(
|Xiuj|2 + |Yiuj |2

)
∈ L1(U),

endowed with its associated norm. In this case we confine ourselves to degrees
h 	= n, n + 1, in order to deal only with both the intrinsic differential dc and
codifferential δc of order 1. The remaining cases will be considered in a future
paper. If U = Hn, inequality (1.2) is well known (see, e.g., [38]).

We can now state our main results, which correspond to the choice of different
boundary conditions. Our approach is largely inspired by that of Csató, Dacorogna
and Kneuss in [14]. In fact, several delicate algebraic manipulations we carry out
in this paper are the counterpart in our setting of those presented in [14].

Denoting by nH the horizontal normal to ∂U , that is, the orthogonal pro-
jection onto

∧
1 h1 of the Riemannian outward unit normal n along ∂U , we can

define a horizontal unit normal vector to ∂U by setting νH := nH/‖nH‖ at each
point p ∈ ∂U where nH(p) 	= 0. These points are the so-called “non-characteristic
points” of ∂U , and we write char (∂U) to indicate the set of all characteristic points
of the boundary, i.e., the set of points p ∈ ∂U where nH(p) = 0. We recall that
if ∂U is of class C2, then char (∂U) is “small” (see, for more details, Remark 2.12
below). It is not surprising that the presence of the characteristic set char (∂U)
is at the origin of most of the “pathologies”, at least from the Riemannian point
view, we are facing in the context of Heisenberg groups. Unfortunately, in general
char (∂U) 	= ∅; for instance, the characteristic set is always non-empty when U is
diffeomorphic to a ball. Outside char (∂U) we set

ut := νH (νH ∧ u), uνH := νH u,

and we obtain the decomposition formula

u = ut + νH ∧ uνH .



Gaffney–Friedrichs inequality in Heisenberg groups 647

As a first thing, we need a counterpart of the condition “either un = 0 or ut = 0”
of the Riemannian case. When dealing with horizontal forms, it becomes “either
uνH = 0 or ut = 0”, which will be called “condition (DN)” later on. This boundary
condition represents the natural generalization to the horizontal geometry of ∂U of
the classical Dirichlet–Neumann boundary conditions. On the other hand, when
dealing with the Rumin complex, if J represents the linear operator known as
almost complex structure of Hn (see Section 4), then it is possible to show that the
condition “(Ju)t = 0” implies that “uνH = 0”. Thus the condition “either un = 0
or ut = 0” becomes “either (Ju)t = 0 or ut = 0”.

Nevertheless, it is worth observing that these conditions are not sufficient in
order to prove our main results. In fact, we will need to introduce further boundary
conditions, obtaining three different statements.

In Propositions 5.16 and 5.20 we introduce conditions (JνH) and (J̃νH). We
define also the horizontal Dirichlet integral as

DH(u) = ‖dHu‖2L2(U ,Ωh+1
H )

+ ‖d∗Hu‖2L2(U ,Ωh−1
H )

.

With these preliminaries in hand, our first formulation of the Gaffney–Friedrichs
inequality for horizontal forms, which is stated in Theorem 6.1, reads basically as
follows.

Theorem 1.1. Let U � Hn be a domain (i.e., bounded, connected open set) with
boundary of class C2. If Ω∗

H(U) ⊗R C denotes the complexification of Ω∗
H(U), let

u ∈ ΩhH(U)⊗R C be a horizontal h-form, with 1 ≤ h < n, and assume that :

(i) u satisfies condition (DN) (see Proposition 5.11);

(ii) u satisfies either condition (JνH) (see Proposition 5.16) or condition (J̃νH)
(see Proposition 5.20).

Let V be an open neighborhood of char(∂U) (in the relative topology). Then, there
exist geometric constants C0, C1 and C2 (depending only on U , V, and on the
integers h and n) such that

(1.3) DH(u) + C0

∫
∂U∩V

‖u‖2 dσ ≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV.

Remark 1.2. If u ∈ ΩhH(U) ⊗R C is a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (1.3) still holds, provided that ∗Hu satisfies (i) and (ii); see Remark 8.13.

We stress that condition (ii) above can be dropped if u is “Kähler-symmetric”
on the boundary ∂U , i.e. if u =

∑
I,J uI,Jϑ

I ∧ ϑJ̄ satisfies uI,J = ±uJ,I on ∂U for
all I, J ; see Remark 5.18.

As a matter of fact, Theorem 1.1 is not completely satisfying because of the
presence of the boundary integral on the left-hand side of (1.3).

Roughly speaking, we had to cut-off a small region around char(∂U), and this
requires two comments. First, trivially, Theorem 1.1 yields the precise counter-
part of the Riemannian inequality when char(∂U) = ∅ (this happens, for instance,
when U is a thin torus; see, e.g., [13]). Second, and more importantly, we observe
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that the boundary integral on left-hand side of inequality (1.3) cannot be reab-
sorbed on the right-hand side, as we do classically using Ehrling’s inequality. This
is due to the presence in the boundary term of the Riemannian measure dσ.

To be more precise, we would like to stress the following points:

- Functions in W 1,2
H

(U) admit L2-continuous traces on the boundary ∂U with
respect to both measures dσH (see [15]) and dσ on ∂U (see [2], [3]). How-
ever, in the first case, the trace map is compact under mild assumptions
on ∂U (e.g., if ∂U is assumed sufficiently “flat” at characteristic points)
whereas compactness fails to hold, in the second case, near characteristic
points. Away from the characteristic set, the second result follows from the
first one.

- Both sides of (1.3) turn out to be continuous with respect to the convergence
inW 1,2

H
(U ,

∧∗ h1). The statement is trivial for the right-hand side, but is quite
delicate for the boundary term on the left-hand side, since it relies on the
trace theorems of [2], [3].

- Because of the lack of compactness of the trace operator from W 1,2
H

(U) to
L2(∂U , dσ), the L2-norm of the trace of u in the left-hand side of (1.3) cannot
be controlled with an arbitrary small constant δ > 0 times the L2-norm of
∇Hu, and hence cannot be reabsorbed in the right-hand side.

Thus, in order to obtain a statement closer to the classical Gaffney–Friedrichs
inequality, we have to make a geometric assumption on the characteristic set of
the boundary ∂U ; see “condition (H)” in Definition 3.4 below. In rough words,
condition (H) expresses the fact that characteristic points are isolated, and that ∂U
is sufficiently flat at these points. In fact, this assumption is somehow related to
the geometric conditions for trace theorems in [15], [2], [3] (see also [35]).

Subsequently, to avoid the presence of the boundary integral on the left-hand
side of (1.3), in Proposition 5.16 we introduce “condition (JνH)”, a geometric
condition used in a second formulation of the main inequality (see Theorem 6.3),
which reads essentially as follows.

Theorem 1.3. Let U � Hn be a domain with boundary of class C2 satisfying
condition (H) (see Definition 3.4). Let u ∈ ΩhH(U) ⊗R C be a horizontal h-form
with 1 ≤ h < n, and assume that :

(i) u satisfies condition (DN) (see Proposition 5.11);

(ii) u satisfies condition (Jν∗H) (see Remark 5.18).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U , and on
the integers h and n, such that

(1.4) DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.

Remark 1.4. If u ∈ ΩhH(U) ⊗R C is a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (1.4) still holds provided that ∗Hu satisfies (i) and (ii), where ∗H denotes the
Hodge duality operator between horizontal forms.
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As above, hypothesis (ii) can be dropped if u is “Kähler-symmetric” on the
boundary.

In Section 7 we introduce two new conditions (see (7.2) and (7.3)). These are
then used in Theorem 7.1, which is our final formulation of the main inequality.

Theorem 1.5. Let U � Hn be a domain with boundary of class C2 satisfying
condition (H) (see Definition 3.4). Let u ∈ ΩhH(U) ⊗R C be a horizontal h-form
with 1 ≤ h < n, and assume that either

(i) uνH = 0,

(ii) u satisfies the condition (7.2),

or

(j) ut = 0,

(jj) u satisfies the condition (7.3).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U , and on
the integers h and n, such that

(1.5) DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.

Remark 1.6. If u ∈ ΩhH(U) ⊗R C is a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (1.5) still holds, provided that ∗Hu satisfies (i) and (ii) or (j) and (jj).

As above, conditions (ii) and (jj) can be dropped if u is “Kähler-symmetric”
on the boundary.

Finally, for the counterpart of Theorems 1.1, 1.3, 1.5 in the case h = n we refer
the reader to Theorem 6.7 (see Section 6).

Theorems 1.1, 1.3, and 1.5 have a natural counterpart in the setting of Rumin’s
complex; see Theorems 8.21, 8.23, and 8.24.

The three different boundary conditions just discussed naturally arise as a
consequence of an integration by parts that involves the (intrinsically 2nd order)
differential operator T . When performing this computation, we carry out some
elementary, but not trivial, algebraic manipulations that, in a sense, are modeled
on the standard Kählerian structures of Hn.

It is worth observing that the first and third conditions cannot be easily related
one to another and that the second condition turns out to be stronger than the
other two.

Let us give an overview of the organization of this paper.
In Section 2 we gather the basic notions concerning Heisenberg groups and

differential forms. We also state some more or less known preliminary results.
Section 3 is devoted to prove some trace theorems in Hn.
In Section 4 we collect some standard results of Kähler geometry in the context

of Heisenberg groups.
Section 5 contains the technical core of the paper, with explicit estimates of

the boundary terms that occur by integrating by parts the so-called horizontal
Dirichlet integral DH .
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As a consequence of these estimates, in Sections 6 and 7, we state and prove
our Gaffney–Friedrichs-type inequalities in (Ω∗

H , dH).
Finally, in Section 8, after providing a basic introduction to Rumin’s complex,

we state our Gaffney–Friedrichs-type inequalities in (E∗
0 , dc).

Last but not least, the authors express their gratitude to the referee for his
deep and thoughtful advices and his invaluable help.

2. Preliminaries on horizontal forms

2.1. Heisenberg groups and horizontal forms

In this section we give a quick overview of Heisenberg groups and we fix our
notation. For more details, the reader is referred to [11], [22], [29], [43]. Let Hn be
the n-th Heisenberg group, identified with R2n+1 through exponential coordinates
of the first kind. A point p ∈ Hn is written as a triple p = (x, y, t), where x, y ∈ Rn

and t ∈ R.
If p = (x, y, t), p′ = (x′, y′, t′) ∈ Hn, then the Lie group operation is defined as

p · p′ :=
(
x+ x′, y + y′, t+ t+

1

2

n∑
j=1

(
xjy

′
j − yjx

′
j

) )
.

If p−1 denotes the inverse of p ∈ Hn, then p−1 = (−x,−y,−t). Moreover, if q ∈ Hn

and r > 0, then left translations and intrinsic dilations are defined by setting

τqp := q · p, δrp := (rx, ry, r2t).

We endow Hn with the homogeneous norm


(p) :=
((
‖x‖2Rn + ‖y‖2Rn

)2
+ t2

)1/4
,

which is (up to a constant) the so-called Koranyi norm. The associated gauge-
distance is defined as d�(p, q) := 
(p−1 · q); see, e.g., [43]. The homogeneous
dimension of (Hn, d�) (w.r.t. the dilations δr) is the integer Q := 2n + 2, which
coincides with its Hausdorff dimension with respect to the metric d�. We notice
that Q is strictly greater than the topological dimension of Hn, which is 2n+ 1.

Let h denote the Lie algebra of all left invariant vector fields of Hn. We assume
that the basis of h is given by

Xi := ∂xi −
yi
2
∂t, Yi := ∂yi +

xi
2
∂t ∀ i = 1, . . . , n; T := ∂t.

The only non-trivial commutation relations are [Xi, Yi] = T for any i = 1, . . . , n.
The subspace h1 of h generated by the vector fields {X1, Y1, . . . , Xn, Yn} is called
horizontal subspace. Denoting by h2 the linear span of T , we have

h = h1 ⊕ h2,

which simply means that the Lie algebra is stratified.
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Throughout this paper, we endow h with the inner product 〈·, ·〉 that makes
the basis {X1, Y1, . . . , Xn, Yn, T } orthonormal. We refer to 〈·, ·〉 as the Riemannian
metric in h and we denote by ‖ · ‖ its associated norm. For later use, we set

W2i−1 := Xi, W2i := Yi ∀ i = 1, . . . , n; W2n+1 := T.

For any f : Hn −→ R of class C1 we denote by ∇Hf the horizontal gradient
of f (i.e., ∇Hf :=

∑2n
i=1(Wif)Wi) and by ∇f the Riemannian gradient of f (i.e.,

∇f :=
∑2n+1
i=1 (Wif)Wi ≡ (∇Hf, T f)).

Furthermore, for any C1 horizontal vector field Φ =
∑2n

i=1 ϕiWi we denote by

divH Φ :=
∑2n
i=1Wiϕi the horizontal divergence of Φ and by ΔK the non-negative

horizontal sub-Laplacian (i.e., the Kohn Laplacian) defined, for any function f of
class C2, by setting

ΔKf := −divH (∇Hf) = −
2n∑
i=1

W 2
i f.

The dual space of h is denoted by
∧1

h. The basis of
∧1

h, which is dual to the
standard basis {X1, Y1, . . . , Xn, Yn, T }, is the family of covectors

{dx1, dy1, . . . , dxn, dyn, ϑ},

where ϑ denotes the contact form of Hn given by ϑ := dt− 1
2

∑n
i=1(xidyi− yidxi).

The inner product on h gives rise to an inner product on
∧1 h, denoted in the same

way. In particular, 〈·, ·〉 makes the basis {dx1, dy1, . . . , dxn, dyn, ϑ} an orthonormal
basis. In accordance with our previous notation, we set

ψ2i−1 := dxi, ψ2i := dyi ∀ i = 1, . . . , n; ψ2n+1 := ϑ.

We clearly have ψl(Wm) = δml for every l,m = 1, . . . , 2n+1, where δml denotes the
Kronecker delta function. The volume form of Hn is the left-invariant (2n+1)-form
dV := ψ1 ∧ · · · ∧ ψ2n+1.

Set
∧

0 h :=
∧0 h = R and

∧
k
h := span {Wi1 ∧ · · · ∧Wik : 1 ≤ i1 < · · · < ik ≤ 2n+ 1} =: spanΨk,∧k
h := span {ψi1 ∧ · · · ∧ ψik : 1 ≤ i1 < · · · < ik ≤ 2n+ 1} =: spanΨk,

for any k = 1, . . . , 2n+ 1.
If the degree k of the form is fixed and I = (i1, . . . , ik) is a multi-index, then

we write
ψI := ψki1 ∧ · · · ∧ ψkik .

The action of a k-covector ψ on a k-vector v is denoted by 〈ψ|v〉.
We observe that the inner product 〈·, ·〉 can be canonically extended to

∧
k h

and
∧k

h in a way that Ψk and Ψk are both orthonormal bases.



652 B. Franchi, F. Montefalcone and E. Serra

The above definitions can be reformulated by replacing h with the horizontal
subspace h1 and by setting∧

k
h1 := span {Wi1 ∧ · · · ∧Wik : 1 ≤ i1 < · · · < ik ≤ 2n} ,∧k
h1 := span {ψi1 ∧ · · · ∧ ψik : 1 ≤ i1 < · · · < ik ≤ 2n} ,

for any k = 1, . . . , 2n. By definition, the symplectic 2-form of Hn is given by
dϑ = −

∑n
i=1 dxi ∧ dyi ∈

∧2
h1.

If 1 ≤ k ≤ 2n + 1, the “Hodge star operator” and its dual operator (denoted
in the same way), i.e.,

∗ :
∧

k
h ↔

∧
2n+1−k

h and ∗ :
∧k

h ↔
∧2n+1−k

h,

are the isomorphisms defined, for any v, w ∈
∧
k h and ϕ, ψ ∈

∧k h, by

v ∧ ∗w := 〈v, w〉W1 ∧ · · · ∧W2n+1 and ϕ ∧ ∗ψ := 〈ϕ, ψ〉ψ1 ∧ · · · ∧ ψ2n+1.

For any v ∈
∧
k h we define v� ∈

∧k
h via the identity

〈
v�|w

〉
= 〈v, w〉 for any

w ∈
∧
k h. The inverse operator on covectors is denoted as α �→ α�.

It is well known that the Lie algebra h can always be identified with the tangent
space at the identity e = 0 ∈ Hn, i.e., h ∼= TeHn. In particular, h1 can be
identified with a subspace of TeHn, denoted by

∧
1 h1. Moreover,

∧
1 h1 defines

by left translation a smooth subbundle of the tangent bundle THn which, with
a slight abuse of notation, is still denoted by

∧
1 h1. By definition, the sections

of
∧

1 h1 are called horizontal vector fields.

Analogously, if 0 ≤ h ≤ 2n+ 1, then
∧h

h defines by left translation a vector

bundle still denoted by
∧h

h and if 0 ≤ h ≤ 2n, then
∧h

h1 defines (again by left

translation) a vector bundle still denoted by
∧h

h1.
If 0 ≤ h ≤ 2n+1, we denote by Ωh the vector space of differential h-forms onHn

(i.e., the vector space of all smooth sections of
∧h h). Furthermore, if 0 ≤ h ≤ 2n,

we denote by ΩhH the vector space of horizontal differential h-forms on Hn (i.e.,

the vector space of all smooth sections of
∧h h1).

Definition 2.1. Let α ∈ ΩhH . Throughout this paper, we shall set

dHα := dα− ϑ ∧ LT α,

where the symbol LT stands for “Lie derivative” along the vector field T .

Roughly speaking, the operator dH represents the exterior differential along
the horizontal distribution and is only defined for any h-form α ∈ Ωh such that
iT (α) = 0, where the symbol iT stands for “interior product” of α with T , which
is defined by the formula

〈iT (α)|v〉 := 〈α|T ∧ v〉
for all v ∈

∧
h−1 h; see, for example, [33], p. 235.
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We recall the following useful identity: If X,Y are vector fields, then

[LX , iY ] = i[X,Y ];

see Corollary 6.4.12 in [1].
Moreover, we define the “horizontal Hodge star operator” and its dual operator

(again denoted in the same way), i.e.,

∗H :
∧

k
h1 →

∧
2n−k

h1 and ∗H :
∧

k
h1 ↔

∧
2n−k

h1,

as v ∧ ∗Hw := 〈v, w〉W1 ∧ · · · ∧W2n and ϕH ∧ ∗Hψ := 〈ϕ, ψ〉ψ1 ∧ · · · ∧ ψ2n for

every v, w ∈
∧
k h1 and every ϕ, ψ ∈

∧k h1.

We notice that, under our current assumptions, we have (dϑ)n

n! = ψ1∧· · ·∧ψ2n;
see, e.g., [31], p. 44, Remark 1.2.22.

The next identities follow from [38], p. 292.

Lemma 2.2. If k ≥ n and β ∈
∧k

h1, with n ≤ k ≤ 2n, then

∗Hβ = ∗(ϑ ∧ β).

If 0 ≤ k ≤ n and α ∈
∧k h1, then

∗α = (−1)kϑ ∧ ∗Hα.

For the sake of completeness, we recall some standard results concerning wedge
product and interior multiplication; see Definition 2.11 and Propositions 2.14
and 2.16 in [14].

Definition 2.3. If α ∈ Ωk and μ ∈ Ω�, with 1 ≤ � < k ≤ 2n+ 1, we set

μ α := (−1)k−� ∗ (μ ∧ (∗α)) .

Lemma 2.4. If 1 ≤ k ≤ 2n+ 1, α ∈ Ωk, β ∈ Ωk−1 and μ ∈ Ω1, then

μ α = iμ�α.

Moreover, we have
〈μ α, β〉 = 〈α, μ ∧ β〉.

By using Lemma 2.2 we obtain the following.

Lemma 2.5. If α ∈ ΩkH and μ ∈ Ω�H , with 1 ≤ � < k ≤ n, then

μ α = ∗H(μ ∧ ∗Hα).

In addition, we need to recall a useful result.

Lemma 2.6. If α ∈ ΩkH , β ∈ Ω�H and γ ∈ ΩrH , with 0 ≤ k + � ≤ r ≤ 2n, then

(α ∧ β) γ = (−1)k+�α (β γ).

Moreover, if k + � = r, then

〈α ∧ β, γ〉 = (−1)�(k+1)〈β, α γ〉 = (−1)k〈α, β γ〉.
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We also define the horizontal codifferential δH : Ωh+1
H → ΩhH by setting

δH := − ∗H dH ∗H .

Observe that ∫
Hn

〈δHα, β〉 dV =

∫
Hn

〈α, dHβ〉 dV

for all β ∈ Ωh−1 with compact support. Finally, let ΔH : ΩhH → ΩhH be the
horizontal sub-Laplacian operator defined as

ΔH := dH δH + δH dH .

Definition 2.7 (The operators L and Λ). From now on, we shall set

Lα := −dϑ ∧ α, Λ := L∗,

(i.e., L∗ denotes the adjoint of L w.r.t. the inner product 〈·, ·〉).

The following identity can be found in [38]; see also [44].

Lemma 2.8. If α ∈
∧h

h1, then we have [Λ, L]α = (n− h)α.

Note that
〈iZα, β〉 =

〈
α,Z# ∧ β

〉
for every α ∈

∧h+1
h1, β ∈

∧h
h1 and Z ∈

∧
1 h1. Hence, it follows that

Λ =

n∑
k=1

iYk
iXk

.

2.2. Decomposition of forms on the boundary of a domain I

We begin with the definition of horizontal normal to the boundary of a domain
(i.e., bounded, connected open set).

Definition 2.9. Let E ⊂ Hn be an open set with boundary ∂E of class C1. We
denote by nH the (non-unit) horizontal normal to ∂E defined as follows: nH is
the Riemannian orthogonal projection on

∧
1 h1 of the Riemannian outward unit

normal n to ∂E. Thus we have n = nH + nTT .
In particular, if (locally) ∂E = {f = 0}, where f : Hn → R is a C1 function

with non-vanishing horizontal gradient, then nH = ‖∇f‖−1∇Hf , where ∇f is the
Riemannian gradient of f and ‖∇f‖ denotes its norm.

We define a horizontal unit normal vector to ∂E by setting νH := nH/‖nH‖
at each point p ∈ ∂E where nH(p) 	= 0. These points are the so-called non-
characteristic points of ∂E and we usually write char (∂E) to indicate the charac-
teristic set of ∂E (i.e., the set of points p ∈ ∂E where nH(p) = 0). We explicitly

note that νH =
∑2n

i=1(νH)iWi, where (νH)i := 〈νH ,Wi〉.
To avoid cumbersome notation, in the sequel we will still denote by n, nH

and νH , their dual 1-forms n#, n#H and ν#H .
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Besides, we adapt to our framework a standard notation; see, e.g., [14] or [42].
More precisely, we shall set

αt := νH (νH ∧ α), ανH := νH α ∀α ∈ ΩhH(U).

We thus obtain the useful decomposition formula

α = αt + νH ∧ ανH ∀α ∈ ΩhH(U).

The next result will be needed later.

Lemma 2.10. If α ∈ ΩhH , then

(2.1) νH ∧ ανH = 0 if and only if ανH = 0.

Proof. Suppose that νH ∧ ανH = 0. By Lemma 2.4 one has

0 = 〈νH ∧ ανH , α〉 = 〈νH ∧ (νH α), α〉 = 〈νH α, νH α〉 = |ανH |2.

The reverse implication is trivial. �

We conclude this section by recalling the horizontal Green’s formulas valid in
our setting; for similar statements, see Theorem 4.9 in [7].

Here and elsewhere, we make use of the standard notation D ≡ C∞
0 .

Definition 2.11. Let U � Hn be a domain with boundary of class C2. For every
α, β ∈ Ωh(U) := D(U ,

∧h
h), we set

〈α, β〉L2(U) :=

∫
U
〈α, β〉 dV.

In addition, if α ∈ Ωh−1
H (U) := D(U ,

∧h−1
h1) and β ∈ ΩhH(U) := D(U ,

∧h
h1)

are intrinsic forms, it follows that

(2.2) 〈dHα, β〉L2(U) = 〈α, δHβ〉L2(U) +

∫
∂U

〈n ∧ α, β〉 dσ.

These formulas also hold when α ∈ C1(U ,
∧h−1 h1), β ∈ C1(U ,

∧h h1).
Note that the outward unit normal n(p) at any point p ∈ ∂U is given by

n(p) = nH(p) + nT (p)T , where nH(p) is the (orthogonal) projection of n(p) onto
the horizontal subspace

∧
1 h1 at p ∈ ∂U . Thus, after the natural identification

n ∼= n#, we get 〈n ∧ α, β〉 = 〈nH ∧ α, β〉 , since both α and β are horizontal.
Eventually, we obtain the formula∫

∂U
〈n ∧ α, β〉 dσ =

∫
∂U

〈nH ∧ α, β〉 dσ =

∫
∂U

〈νH ∧ α, β〉 dσH ,

where σH denotes the intrinsic perimeter measure in Hn.

2.3. Perimeter measure in Hn

We briefly recall the notion of intrinsic perimeter measure in Heisenberg groups
and some related facts.
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As already said in the introduction, if E ⊂ Hn is a measurable set, an intrinsic
notion of H-perimeter measure |∂E|Hn has been introduced in [28]; we refer the
reader to [28], [18], [19], [20] for a detailed presentation. Here, we just have to
recall that, if E has locally finite Hn-perimeter (i.e., E is a H-Caccioppoli set), then
|∂E|Hn is a Radon measure in Hn, which is left-invariant and (2n+1)-homogeneous
(with respect to the dilations δr).

By definition, the 2n-dimensional Riemannian measure of ∂E, later denoted
as σ, is obtained by wedging together the elements of an oriented orthonormal
coframe for ∂E and, because of its role in integration, we adopt the notation dσ,
when it appears under the integral sign.

Remark 2.12. If ∂E is of class C2, the characteristic set char (∂E) turns out to
be “small” since both its Hn-perimeter measure and its 2n-dimensional Euclidean
Hausdorff measure vanish. For later purposes, we recall that the Riemannian
measure σ is equivalent (in the measure theoretic sense) to the Euclidean mea-
sure H2n. Hence, under our assumptions, σ(char (∂E)) = 0. For further properties
of char (∂E), see, e.g., [17], [25], [16], [9], [10].

We also need the following representation formula; see [12].

Proposition 2.13. Let U � Hn be a bounded open set with boundary ∂U of
class C1. Then U is a Hn-Caccioppoli set. Furthermore, the Hn-perimeter measure
is absolutely continuous with respect to the Euclidean 2n-dimensional Hausdorff
measure H2n. More precisely, if A ⊆ Hn is an open set, then

|∂U|Hn(A) =

∫
∂U∩A

( n∑
i=1

(
〈Xi, n〉2R2n+1 +〈Yi, n〉2R2n+1

))1/2

dH2n =

∫
∂U∩A

‖nH‖ dσ,

where n is the Euclidean outward unit normal and dσ denotes the 2n-dimensional
Riemannian measure along ∂U .

Definition 2.14. Let U � Hn be a bounded open set with boundary ∂U of
class C1. For the sake of simplicity, throughout the paper we write

σH := |∂U|Hn .

3. Boundary terms and the trace map

3.1. Trace theorems in Hn

From now on we shall assume that U is a domain with boundary ∂U of class C2.
Firstly we state a trace theorem away from characteristic points.

Theorem 3.1. Let U � Hn be a bounded open set with boundary of class C2. Let
V ⊂ ∂U be a neighborhood of char(∂U). Then, there exists a geometric constant
CV,U > 0 such that for any 0 < δ < 1 one has

(3.1)

∫
∂U\V

|u|2 dσH ≤ CV,U ,δ

∫
U
|u|2 dV + δ

∫
U
‖∇Hu‖2 dV,

for any u ∈ C1(U), where CV,U ,δ := CV,U + C2
V,U/δ.
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Proof. Let ϕ ∈ C1
0(∂U) be such that ϕ = 1 on ∂U \V and ϕ = 0 on V ′ ⊂⊂ V . Now

let ν̃H denote the extension of νH to ∂U defined as ν̃H := ϕνH . This extension
is a horizontal vector field of class C1 on ∂U coinciding with νH out of V . With
a slight abuse of notation, we denote by ν̃H any C1 horizontal extension of ν̃H
to the closure of U , i.e., ν̃H ∈ C1(U). It follows that both ‖ν̃H‖ and divH (ν̃H)
are continuous functions on U and hence they are both bounded by some positive
constant CV,U , only dependent on V and U . By the previous assumptions we get∫

∂U\V
|u|2 dσH =

∫
∂U\V

|u|2 〈νH , νH〉 dσH

=

∫
∂U\V

|u|2 〈(νH − ν̃H + ν̃H) , νH〉 dσH

=

∫
∂U\V

|u|2 〈(νH − ν̃H) , νH〉 dσH︸ ︷︷ ︸
=0

+

∫
∂U\V

|u|2 〈ν̃H , νH〉 dσH

≤
∫
∂U

|u|2 〈ν̃H , νH〉 dσH (since 〈ν̃H , νH〉 = ϕ on V ∩ ∂U)

=

∫
∂U

〈(
|u|2ν̃H

)
, νH

〉
dσH .

By the divergence theorem for C2 hypersurfaces and the very definition of the
Hn-perimeter measure σH , we can make the following calculations:∫

∂U

〈
(|u|2ν̃H), νH

〉
dσH =

∫
U
divH (|u|2ν̃H) dV

=

∫
U
|u|2 divH (ν̃H) dV +

∫
U
2 |u| 〈∇H |u|, ν̃H〉 dV

≤ CV,U
( ∫

U
|u|2 dV +

∫
U
2|u|

∥∥∇H |u|
∥∥dV )

.

Finally, since

2CV,U |u|
∥∥∇H |u|

∥∥ ≤
C2

V,U
δ

|u|2 + δ
∥∥∇H |u|

∥∥2 ≤
C2

V,U
δ

|u|2 + δ
∥∥∇Hu

∥∥2,
the claim easily follows. �

Notice that (3.1) contains the “error term”
∫
∂U∩V |u|2 dσ, which depends on

the choice of V . This is a novelty with respect to the classical trace theorems. The
error is actually related to the presence of characteristic points on ∂U , as will be
shown in Example 3.10 below.

Remark 3.2. In the Riemannian setting, a “global inequality” akin to (3.1) follows
by Ehrling’s theorem (see, e.g., [42], Lemma 1.5.3), provided that the trace operator
T : W 1,2(U) → L2(∂U , dσ) is compact. Later on, in Definition 3.4, we introduce
a geometric assumption on ∂U that is called “condition (H)” implying that an
Ehrling-type inequality still holds for the norm in L2(∂U , dσH) (see Theorem 3.9).
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Thus, to get rid of the “error term” in Theorem 3.1, we need an assumption on
the domain U , ensuring that its characteristic set char(∂U) contains only isolated
points and a certain amount of “flatness” at the boundary, near char(∂U).

Remark 3.3. Locally near any point p0 ∈ char(∂U), the boundary is a t-graph
(i.e., Euclidean graph with respect to the hyperplane t = 0). Hence (locally
around p0) there is a C2 defining function g : Hn → R, g(x, y, t) = t − f(x, y),
such that

NH := ∇Hg = ∇H(t− f(x, y)) =
(
−y
2
−∇xf,

x

2
−∇yf

)
,

where we recall that nH = NH/‖∇g‖ and νH = NH/‖NH‖. By compactness, there
must exist a finite set {Vi : i = 1, . . . , N} made of open subsets Vi ⊂ ∂U such that

char(∂U) ⊂
⋃N
i=1 Vi. Shrinking these sets, if necessary, we can assume that each Vi

is a t-graph of class C2. Note that any characteristic point p0 ∈ Vi ∩ char(∂U) can
be thought of as standing at 0 ∈ Hn. This second claim follows by left translating
the set Vi by −p0. Thus, if fi : Vi ⊂ R2n → R is a C2 function such that

Vi = {p = (x, y, t) ∈ Hn : t = fi(x, y) ∀ (x, y) ∈ V i},

we can always suppose fi(0, 0) = 0 and ∇R2nfi(0, 0) = 0. In this way, the point p0
corresponds to 0 ∈ Hn (here and elsewhere, (0, 0) denotes the null element in
Rn × Rn ∼= R2n).

We introduce a condition prescribing the behavior of ∂U near char(∂U).

Definition 3.4 (Condition (H)). We say that the domain U satisfies condition (H)
if there exists a finite family {Vi : i = 1, . . . , N} of open subsets of ∂U such that

char(∂U) ⊂
⋃N
i=1 Vi and Vi∩∂U is the t-graph of some function fi : Vi ⊂ R2n → R

of class C2, i.e.,

Vi ∩ ∂U = {p = (x, y, t) ∈ Hn : t = fi(x, y) ∀ (x, y) ∈ V i}

and
‖HessR2nfi‖ = O(‖N(i)

H ‖)

for any i = 1, . . . , N , where N
(i)
H := (−y/2−∇xfi, x/2−∇yfi).

Below we shall set ‖(x, y)‖ :=
√
‖x‖2

Rn + ‖y‖2
Rn for any (x, y) ∈ R2n.

Lemma 3.5. If condition (H) holds, then char(∂U) is discrete.

Proof. Without loss of generality, by Remark 3.3, let 0 ∈ Hn be a characteristic
point of ∂U ∩ Vi. In particular, we have fi(0, 0) = 0 and ∇R2nfi(0, 0) = 0. Hence

‖N(i)
H (x, y)‖| ≤ C‖(x, y)‖ and

‖HessR2nfi‖ = O(‖(x, y)‖) near (0, 0) ∈ R2n.

Again, by the mean value theorem,

‖∇R2nfi‖ = O(‖(x, y)‖2) near (0, 0) ∈ R2n.
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Then, at each point (x, y) 	= (0, 0) we have

‖N(i)
H (x, y)‖ =

∥∥∥1
2
(−y, x)−∇R2nfi

∥∥∥ ≥ 1

2

∣∣‖(x, y)‖ − C‖(x, y)‖2
∣∣ > 0

near (0, 0) ∈ R2n. This means that the characteristic point 0 ∈ ∂U ∩ V is an
isolated point of char(∂U). �

In order to better illustrate the above condition (H), we consider a special case
of domains in Hn satisfying it.

Remark 3.6. Suppose that, in a neighborhood of 0 ∈ ∂U , the boundary ∂U is
the t-graph of the function f(x, y) = ‖(x, y)‖2α for some α ≥ 3/2. One checks that
‖NH‖ = O (‖(x, y)‖) and that ‖HessR2nf‖ = O

(
‖(x, y)‖2(α−1)

)
. Taken together,

these facts show that condition (H) holds.

Next, we state a useful compactness criterion.

Theorem 3.7. Let U � Hn be a bounded open set of class C2. Let X be a Banach
space and let L : W 1,2

H (U) → X be a continuous linear map. Then L is compact if,
and only if, the following property holds :

For any δ > 0 there exists C(δ) > 0 such that

‖Lu‖X ≤ δ‖∇Hu‖L2(U) + C(δ)‖u‖L2(U).

Proof. The “only if” part is the well-known Ehrling’s inequality (see, e.g., [42],
Lemma 1.5.3). Thus we prove the “if” part by showing that L is completely
continuous. Let (un)n∈N be a sequence in W 1,2

H (U) that weakly converges to 0.
Then there exists C > 0 such that ‖un‖W 1,2

H (U) ≤ C for all n ∈ N. Moreover, by

Rellich’s theorem (see, e.g., [28], Theorem 1.27) un → 0 strongly in L2(U). Take
now ε > 0 and set δε := ε/(2C). In addition, choose nε ∈ N such that

‖un‖L2(U) <
ε

2C(δε)
for all n > nε.

Then

‖Lun‖X ≤ δε ‖∇Hu‖L2(U) + C(δε)‖u‖L2(U) < C
ε

2C
+ C(δε)

ε

2C(δε)
= ε,

which shows that Lun → 0 strongly in X , as wished. �

Lemma 3.8. Let U � Hn be a bounded open set with boundary of class C2 and
suppose that condition (H) holds. Then there exists a C1 function ñH : Ū → R2n

such that :

(i) ñH

‖ñH‖ ≡ νH on ∂U \ char (∂U);

(ii) divH ñH = O(‖ñH‖);
(iii) 〈ñH ,∇H‖ñH‖2〉 = O(‖ñH‖3).
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Proof. First of all, we notice that the problem can be localized near the boundary
by introducing a cut-off function supported near ∂U . Indeed, if ñH satisfies (i)–(iii)
in a neighborhood M of ∂U , and if ψ is a cut-off function supported in M such
that ψ ≡ 1 on a neighborhood of ∂U , then ψñH is a C1 function on U that trivially
satisfies (i). In addition

divH(ψñH) = ψdivH(ñH) + 〈∇Hψ, ñH〉,

which is still O(‖ñH‖). Analogously,

〈ψñH ,∇H‖ψñH‖2〉 = ψ‖ñH‖2〈ñH ,∇Hψ〉+ ψ2〈ñH ,∇H‖ñH‖2〉 = O(‖ñH‖3)

when ‖ñH‖ → 0. Therefore also (iii) holds.

Now we have to define ñH away from the characteristic points and in each set Vi
(i = 1, . . . , N). Then the global extension ñH is obtained by gluing up the local
extensions by means of a partition of unity.

Clearly, away from characteristic points we can take ñH := νH , since νH is a
continuously differentiable function. Since ñH never vanishes, (ii) and (iii) can be
replaced by divH ñH = O(1) and 〈ñH ,∇H‖ñH‖2〉 = O(1), respectively.

We are left with the case of one of the Vi’s. Let i ∈ {1, . . . , N} be fixed
and, for simplicity, we omit the index i in this proof. For any point in V we put
ñH(x, y, t) := ∇H(f(x, y) − t). Since ñH(x, y, t) 	= 0 for (x, y, t) 	= 0 (recall that
0 ∈ Hn is an isolated characteristic point of ∂U), it follows that at any point in
V \ char(∂U) one has

νH(x, y, t) =
ñH(x, y, t)

‖ñH(x, y, t)‖
.

This proves (i). Moreover, up to the sign, divH ñH equals the trace of the Hessian
of fi, hence it is locally bounded and (ii) follows.

Finally, we prove (iii). For any j, k = 1, . . . , n, one has

1

2
∂xj‖ñH‖2 =

n∑
k=1

(yk
2

+ ∂xk
f
)
∂2xjxk

f +

n∑
k=1

(xk
2

− ∂ykf
)(δjk

2
− ∂2xjykf

)

=

n∑
k=1

(yk
2

+ ∂xk
f
)
∂2xjxk

f −
n∑
k=1

(xk
2

− ∂ykf
)
∂2xjykf − 1

2
∂yjf +

xj
4

= O(‖ñH‖2)− 1

2
∂yjf +

xj
4
.

Here we used that the sum of the two first terms in the second line above is nothing
but the inner product between ∇H(f(x, y) − t) = ñH(x, y, t) and the j-th column
of the Hessian matrix HessR2nf , which can be estimated by using condition (H).

Analogously, it turns out that

1

2
∂yj‖ñH‖2 = O(‖ñH‖2) + 1

2
∂xjf +

yj
4
.
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Therefore, we get

1

2
〈ñH ,∇H‖ñH‖2〉 = 〈ñH ,

−→
O (‖ñH‖2)〉 −

∑
j

xj
4

(yj
2

+ ∂xjf
)
+
∑
j

yj
4

(xj
2

− ∂yjf
)

+
∑
j

1

2
∂yjf

(yj
2

+ ∂xjf
)
+
∑
j

1

2
∂xjf

(xj
2

− ∂yjf
)

= 〈ñH ,
−→
O (‖ñH‖2)〉 = O(‖ñH‖3),

as wished. �

We conclude this subsection with the following Ehrling-type inequality.

Theorem 3.9. Suppose that U � Hn is a bounded open set of class C2 satisfying
condition (H). Then, for any δ > 0 there exists C(δ) > 0 such that

‖T u‖L2(∂U ,dσH) ≤ δ‖∇Hu‖L2(U) + C(δ)‖u‖L2(U)

for any u ∈ C1(U). In particular, the map

T :W 1,2
H (U) → L2(∂U , dσH)

is compact.

Proof. Let ντH := ñH/
√
τ2 + ‖ñH‖2, where τ ∈ R. By Lemma 3.8 we have∫

∂U
|u|2 dσH =

∫
∂U

|u|2
〈 ñH
‖ñH‖

, νH

〉
dσH

= lim
τ→0

∫
∂U

|u|2 〈ντH , νH〉 dσH = lim
τ→0

∫
U
divH(|u|2ντH) dV.

On the other hand,∫
U
divH(|u|2ντH) dV = 2

∫
U
〈u∇Hu, ν

τ
H〉 dV +

∫
U
|u|2divH(ντH) dV =: I1 + I2.

By using (ii), (iii) and Lemma 3.8, we get that

I2 =

∫
U
|u|2 divH ñH√

τ2 + ‖ñH‖2
dV −1

2

∫
U
|u|2

〈
ñH ,

∇H‖ñH‖2
(τ2 + ‖ñH‖2)3/2

〉
dV ≤ C

∫
U
|u|2 dV.

Moreover,

I1 ≤ 2C

∫
U
|u∇Hu| dV ≤ δ

∫
U
|∇Hu|2 dV +

C2

δ

∫
U
|u|2 dV,

completing the proof of the first part of the theorem. The second part follows from
Theorem 3.7. �
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Example 3.10. We already pointed out that an Ehrling-type inequality for the
norm in L2(∂U , dσ) is true for general C2 open sets U away from characteristic
points, as we can see using Theorem 3.9 and keeping in mind that dσ and dσH are
equivalent away from char(∂U). However, the example below shows that Ehrling’s
inequality (and hence compactness of the trace, which is still continuous by [2],
[3]) fails to hold for the norm in L2(∂U , dσ), even for sets satisfying condition (H).

Let 
(p) be the Korányi norm, let B0(1) := {p = (x, y, t) ∈ Hn : 
(p) ≤ 1}
and set U := {t ≥ 0} ∩ B0(1). The hyperplane {t = 0} has a unique isolated
characteristic point at 0 ∈ Hn. In particular, let S0 := ∂U ∩{t = 0}, u ∈ D(B0(1)),
and denote by T u the trace of u along the boundary.

Now, let us analyze the (possible) validity of the following statement:

(3.2) ∀ ε > 0 ∃Cε :
∫
S0

(T u)2 dσ︸ ︷︷ ︸
=:‖T u‖2

L2(S0)

≤ ε

∫
U
‖∇Hu‖2 dV︸ ︷︷ ︸

=:‖∇Hu‖2
L2(U)

+Cε

∫
U
u2 dV︸ ︷︷ ︸

=:‖u‖2
L2(U)

.

By a homogeneity argument, we show that (3.2) cannot hold. To this aim, set

uK := Knu(Kx,Ky,K2t)

for some K ∈ R+, and suppose that u 	= 0 along S0. It is elementary to check the
following identities:

• ‖T uK‖2L2(S0)
= ‖T u‖2L2(S0)

,

• ‖∇HuK‖2L2(U) = ‖∇Hu‖2L2(U),

• K2‖uK‖2L2(U) = ‖u‖2L2(U).

By assuming the validity of (3.2), with u replaced by uK , we get

∀ ε > 0 ∃Cε : ‖T uK‖2L2(S0)
≤ ε‖∇HuK‖2L2(U) + Cε‖uK‖2L2(U).

Hence

∀ ε > 0 ∃Cε : ‖T u‖2L2(S0)
≤ ε‖∇Hu‖2L2(U) +

Cε
K2

‖u‖2L2(U).

By the arbitrariness of ε, K ∈ R+ (and since the L2-norm of u can be assumed to be
fixed) one readily obtains that the trace of umust be zero, which is a contradiction.

Remark 3.11. When there is no possibility of misunderstanding we shall write u
instead of T u.

4. Kähler geometry in Heisenberg groups

4.1. Basic notions of Kähler geometry in Hn

We now introduce the Kählerian structures of Hn, in order to make some explicit
computations, and recall some lemmata from [38], which will be used in sequel.

Firstly, we note that the base manifold of the n-th Heisenberg group Hn can al-
ways be identified with Cn×R, so that any point p = (x, y, t) ∈ Hn is seen as a cou-
ple (z, t), where z=(z1, ..., zk, ..., zn)∈Cn and zk = xk + iyk for any k = 1, . . . , n.
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Let J be the unique endomorphism of h1 (“almost complex structure”) such that

J2 = −Id, dϑ(Z1, JZ2) = −dϑ(JZ1, Z2)

for all horizontal vector fields Z1, Z2 ∈
∧

1 h1 (in particular, one has Yi = JXi and
Xi = −JYi for any i = 1, . . . , n).

It is not difficult to check that the inner product 〈·, ·〉 in h1 is precisely the
Riemannian metric compatible with both the almost complex structure J and the
symplectic form dϑ, since

dϑ(Z1, Z2) = 〈Z1, JZ2〉 .

One has J∗ = −J , and hence 〈JZ1, JZ2〉 = 〈Z1, Z2〉 for any Z1, Z2 ∈
∧

1 h1.
It is a standard fact that an almost complex structure J induces a bigrading

on
∧

1 h1 ⊗R C (i.e., the complexified horizontal subspace); see [31], p. 27.
Thus, we have

∧
1 h1⊗RC =

∧
1,0 h1⊕

∧
0,1 h1. This bigrading naturally extends

to the complex of horizontal differential forms; see [38]. In particular, we have

ΩhH ⊗R C =
∑

p+q=h Ω
p,q
H , where we recall that Ωp,qH = Ωq,pH . The (real) inner

product on
∧

1 h1 extends in the obvious way to a (complex valued) Hermitian
inner product on the complexification

∧
1 h1 ⊗R C, still denoted as 〈·, ·〉. Clearly,

one has 〈av, bw〉 = ab〈v, w〉 for every v, w ∈
∧

1 h1 and every a, b ∈ C. We now set

Zk :=
Xk − iYk√

2
, Zk :=

Xk + iYk√
2

(
= Zk

)
∀ k = 1, . . . , n.

The family of horizontal vector fields {Z1, Z1, . . . , Zn, Zn} is an orthonormal basis
of

∧
1 h1 ⊗R C (w.r.t. the Hermitian inner product induced on the complexified

horizontal subspace). For each k, let ϑk := Z#
k , ϑk := Z#

k
. By duality, we get that

{ϑ1, ϑ1, . . . , ϑn, ϑn} is an orthonormal basis of
∧1

h1⊗RC =
∧1,0

h1⊕
∧0,1

h1. We
notice explicitly that

ϑk = Z#
k =

dzk√
2
=
dxk + idyk√

2
and ϑk = Z#

k
=
dzk√
2
=
dxk − idyk√

2
.

It is easy to see that JZk = iZk and JZk = −iZk. Denoting still by J the
operator induced by J on differential forms, we have

Jα = ip−qα ∀α ∈ Ωp,qH ⊗R C,

and if Πp,q : ΩhH ⊗R C → Ωp,qH denotes the natural projection, we get

J =
∑

p+q=h

ip−q Πp,q on ΩhH ;

see [31], Definition 1.2.10.

Definition 4.1. Let ∂k := Zk and ∂k := Zk for any k = 1, . . . , n.

If u =
∑
I uI,Jϑ

I ∧ ϑJ̄ , we will set:

• ∂ku :=
∑
I,J (ZkuI,J)ϑ

I ∧ ϑJ̄ and ∂ku :=
∑

I,J(ZkuI,J)ϑ
I ∧ ϑJ̄ ,
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• eku = ϑk ∧ u and eku = ϑk ∧ u,
• iku := iZk

u and ik := iZk
u,

for any k = 1, . . . , n. In Kähler coordinates, it turns out that

L = i

n∑
k=1

ek ek and Λ = i

n∑
k=1

ik ik;

see Definition 2.7.

Just as in [38], p. 294, we can prove the following result.

Proposition 4.2. Let 1 ≤ p, q ≤ n. We have

n∑
k=1

ek ik = p Id on Ωp,qH and
n∑
k=1

ek̄ ik̄ = q Id on Ωp,qH .

As a consequence,

n∑
k=1

ek ik =
n∑
p=1

pΠp,q and
n∑
k=1

ek̄ ik̄ =
n∑
q=1

qΠp,q.

Again, one has Λ = L∗ (w.r.t. the Hermitian inner product). We use the
decomposition

(4.1) dH := d1,0H + d0,1H ,

where d1,0H : Ωp,qH → Ωp+1,q
H and d0,1H : Ωp,qH → Ωp,q+1

H . Moreover, for notational

simplicity, we write ∂ := d1,0H and ∂ := d0,1H , so that (4.1) reads as

dH = ∂ + ∂.

We stress that if u ∈ Ω0, then

(4.2) ‖∂̄u‖2 + ‖∂u‖2 = ‖∇Hu‖2.

Furthermore, we have

∂k := ik∂ and ∂k := ik ∂ for every k = 1, . . . , n.

In the sequel, we shall need the multi-index notation. More precisely, let I, J
be multi-indices such that pI := |I| and qJ := |J | (with pI , qJ ≤ n), so that we can
assume that I = (i1, . . . , ipI ) and J = (j1, . . . , jqJ ). Set now ϑI := ϑi1 ∧ · · · ∧ ϑipI
and ϑJ̄ := ϑj̄1 ∧ · · · ∧ ϑj̄qJ . We observe that if h = pI + qJ , the elements ϑI ∧ ϑJ̄
form a basis of ΩhH ⊗R C. Hence, using Kähler coordinates, any u ∈ ΩhH ⊗R C can

be uniquely written as u =
∑

I uI,Jϑ
I ∧ ϑJ̄ , |I| = pI , |J | = qJ , with h = pI + qJ .

Finally, we set
dJH := J−1dHJ, δJH := J−1δHJ.

It is not difficult to see that the following identities hold:

dJH = J−1dHJ = −i(∂ − ∂), δJH = J−1δHJ = i(∂∗ − ∂
∗
),

where ∂∗ and ∂
∗
are the L2-formal adjoints of ∂ and ∂, respectively.
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The calculation below can be found, for instance, in [38].

Lemma 4.3. The following chain of identities holds :

inT =

n∑
k=1

∂k∂k − ∂k ∂k = −
( n∑
k=1

∂k ik∂
)
−
(
−

n∑
k=1

∂kik ∂
)
= ∂∗∂ − ∂

∗
∂.

We recall the Kähler identities; see, e.g., Proposition 3.1.12 in [31].

Lemma 4.4. We have [Λ, ∂] = i∂
∗
and [Λ, ∂] = −i ∂∗. These identities in turn

imply that [∂∗, L] = −i∂.

For the next proposition, see, for instance, either formula (8) in [38], or [47],
pp. 41-43.

Proposition 4.5. With the previous notation, the following identities hold :

(i) [Λ, dH ] = −δJH ;

(ii) [Λ, dJH ] = δH ;

(iii) [Λ, δJH ] = 0.

4.2. Kähler geometry of domains in Hn

In Kähler coordinates, we have

nH ≡ n#H =

n∑
k=1

(
nkϑ

k + nk ϑ
k
)
= n1,0H + n0,1H ,

where n1,0H :=
∑n

k=1 nkϑk and n0,1H :=
∑n

k=1 nk ϑk. Accordingly, we set

ν1,0H :=
n1,0H
‖nH‖

and ν0,1H :=
n0,1H
‖nH‖ .

The operators ∂ and ∂, and their adjoints ∂∗ and ∂
∗
, satisfy the integration by

parts formulas below:

∫
U
〈∂α, β〉 dV =

∫
U
〈α, ∂∗β〉 dV +

∫
∂U

〈
n1,0H ∧ α, β

〉
dσ

=

∫
U
〈α, ∂∗β〉 dV +

∫
∂U

〈
ν1,0H ∧ α, β

〉
dσH(4.3)

for every α ∈ Ωp−1,q
H , β ∈ Ωp,qH , and∫

U

〈
∂α, β

〉
dV =

∫
U

〈
α, ∂

∗
β
〉
dV +

∫
∂U

〈
n0,1H ∧ α, β

〉
dσ

=

∫
U

〈
α, ∂

∗
β
〉
dV +

∫
∂U

〈
ν0,1H ∧ α, β

〉
dσH(4.4)

for every α ∈ Ωp,q−1
H , β ∈ Ωp,qH ; see, e.g., [37], Chap. 3. More generally, all these

formulas hold when α and β are horizontal differential forms of class C1 on U (i.e.,

α ∈ C1(U ,
∧p−1,q

h1 ⊗R C) and β ∈ C1(U ,
∧p,q

h1 ⊗R C)).
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5. Boundary conditions and estimates of the boundary terms

5.1. Horizontal Dirichlet integral

Let U � Hn be a domain with smooth boundary of class C2. Below, we introduce
the notion of horizontal Dirichlet integral.

Definition 5.1. Let u be a horizontal differential form, either in ΩhH(U) or in
ΩhH(U)⊗R C, with 0 ≤ h ≤ 2n. We define the horizontal Dirichlet integral as

DH(u) :=

∫
U
(〈dHu, dHu〉+ 〈δHu, δHu〉) dV.

Furthermore, if 1 ≤ h < n, we set

DJ
H(u) := DH(u)−

1

n− h+ 1
DH(Ju).

The main purpose of this section is to write the horizontal Dirichlet integral
of u as the L2-norm of ∇Hu up to an error term that will be estimated later in
Sections 5.2 and 5.3.

Proposition 5.2 (see [38], Proposition 2). We have

ΔH = ΔK − i

n∑
k=1

(
ekik − ek̄ ik̄

)
LT .

In particular, if u =
∑
I,J uI,Jϑ

I ∧ ϑJ̄ ∈ ΩhH(U)⊗R C, with |I| = pI , |J | = qJ , and
h = pI + qJ , then

ΔHu =
∑
I,J

(ΔHuI,J)ϑ
I ∧ ϑJ̄ ,

where
ΔHuI,J = ΔKuI,J − i(pI − qJ )TuI,J .

Proposition 5.3. Let u ∈ ΩhH(U)⊗R C, with 0 ≤ h ≤ 2n. Then

(5.1) DH(u) =

∫
U
〈ΔHu, u〉 dV +

∫
∂U

(〈dHu, nH ∧ u〉 − 〈δHu, nH u〉) dσ.

In addition, if u =
∑

I,J uI,Jϑ
I ∧ ϑJ̄ , then∫

U
〈ΔHu, u〉 dV =

∫
U
‖∇Hu‖2 dV

−
∑
I,J

∫
∂U

〈dHuI,J , nH〉ūI,J dσ − i
∑
I,J

(pI − qJ )

∫
U
ūI,JTuI,J dV.

(5.2)

Proof. Assertion (5.1) is just an integration by parts. We have to prove (5.2).
Keeping in mind that if v ∈ C1(U) is a (real or complex) 0-form we have∫

U
〈ΔKv, v〉 dV =

∫
U
〈dHv, dHv〉 dV −

∫
∂U
v̄〈dHv, nH〉,
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we compute∫
U
〈ΔHu, u〉 dV =

∑
I,J

∫
U
ūI,JΔHuI,J dV

=
∑
I,J

∫
U
〈dHuI,JdHuI,J〉dV−

∫
∂U
〈dHuI,J , nH〉ūI,Jdσ −i

∑
I,J

(pI−qJ )
∫
U
uI,JTuI,JdV

=
∑
I,J

∫
U
‖∇HuI,J‖2 dV −

∫
∂U
〈dHuI,J , nH〉ūI,J dσ − i

∑
I,J

(pI−qJ )
∫
U
ūI,JTuI,J dV

=

∫
U
‖∇Hu‖2 dV −

∑
I,J

∫
∂U

〈dHuI,J , nH〉ūI,J dσ − i
∑
I,J

(pI − qJ )

∫
U
ūI,JTuI,J dV.

�

Remark 5.4. Let us consider the following boundary integral:∫
∂U
f
(
u,∇Hu, nH

)
dσ,

where u ∈ ΩhH(U)⊗R C and f is a (real-valued) continuous function that is linear
in the third argument nH . Let Vε ⊂ ∂U be a family of open neighborhoods of
char(∂U) shrinking around char(∂U) as long as ε → 0; in particular, we assume
that Vε1 � Vε2 if ε1 < ε2 and that σ(Vε) → 0 as ε→ 0 (by Remark 2.12 we already
know that σ(char(∂U)) = 0 = σH(char(∂U)).

By remembering that dσH = ‖nH‖dσ and that outside char(∂U) we have set
νH = nH/‖nH‖, we get∫

∂U
f
(
u,∇Hu, nH

)
dσ = lim

ε→0

∫
∂U\Vε

f
(
u,∇Hu, nH

)
dσ

= lim
ε→0

∫
∂U\Vε

f
(
u,∇Hu, νH

)
dσH =:

∫
∂U\char(∂U)

f
(
u,∇Hu, νH

)
dσH .

Combining Proposition 5.3 and Remark 5.4, we get the following corollary.

Corollary 5.5. Let u ∈ ΩhH(U)⊗R C, with 0 ≤ h ≤ 2n, and let us set

A :=

∫
∂U\char(∂U)

(
−
∑
I,J

〈dHuI,J , νH〉ūI,J

+
(
〈dHu, νH ∧ u〉 − 〈δHu, νH u〉

))
dσH ,

and

B := i
∑
I,J

(pI − qJ )

∫
U
ūI,JTuI,J dV = i

〈
LTu,

n∑
k=1

(ek ik − ek̄ ik̄)u
〉
.

Then, we have

(5.3) DH(u) =

∫
U
‖∇Hu‖2 dV +A−B =

∫
U
‖∇Hu‖2 dV + �eA−�eB.
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5.2. Estimate of the term A in (5.3)

The aim of this subsection is to show that we can write

A = −
∫
∂U\char(∂U)

(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH + “error term”,

and to provide sufficient conditions on the traces of u on the boundary ∂U to
guarantee that ∫

∂U\char(∂U)

(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH = 0;

see Proposition 5.11 below.

Definition 5.6 (The maps R1, R2). Let U � Hn be a domain of class C2, let

μH ∈ C1
(
U ,

∧1
h1 ⊗R C

)
, with 0 ≤ h ≤ 2n. We define the maps

R1, R2 : C0
(
U ,

∧h
h1 ⊗R C

)
−→ C0

(
U ,

∧h
h1 ⊗R C

)

by setting

R1(u) ≡ RμH

1 (u) :=
∑
I,J

uI,J dH
(
μH (ϑI ∧ ϑJ̄)

)
,(5.4)

R2(u) ≡ RμH

2 (u) :=
∑
I,J

uI,J δH
(
μH ∧ (ϑI ∧ ϑJ̄)

)
,(5.5)

where u =
∑

I,J uI,Jϑ
I ∧ ϑJ̄ , |I| = pI , |J | = qJ , and h = pI + qJ . We also set

RμH

1 (u) = 0 if h = 0 and RμH

2 (u) = 0 if h = 2n.

Note that the maps RμH

1 (u) and RμH

2 (u) are both linear in u and μH . The
preceding definition is inspired by [14]; see Definition 5.1, p. 103. As a matter of
fact, these maps turn out to be very useful because of well-known properties of the
Lie derivative and, in particular, of Cartan’s formula and of its dual version.

Remark 5.7. Let u =
∑

I,J uI,Jϑ
I ∧ ϑJ̄ . By using Cartan’s formula and its dual

version we get:

(i) LμH (u) = μH dHu+ dH(μH u);

(ii) L̃μH (u) := (−1)h(2n−h) ∗H LμH (∗Hu) = −μH ∧ δHu− δH(μH ∧ u).

In particular, one has RμH

2 (u) = (−1)h(2n−h) ∗H RμH

1 (∗Hu).
In addition, the following hold:

(iii) LμH (u) =
∑
I,J〈dHuI,J , μH〉ϑI ∧ ϑJ̄ +RμH

1 (u);

(iv) L̃μH (u) =
∑
I,J〈dHuI,J , μH〉ϑI ∧ ϑJ̄ +RμH

2 (u).
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Hence we obtain the identities:∑
I,J

〈dHuI,J , μH〉ϑI ∧ ϑJ̄ = μH dHu+ dH(μH u)−RμH

1 (u)

= −μH ∧ δHu− δH(μH ∧ u)−RμH

2 (u).(5.6)

All these formulas can be checked by direct computations, as in the Euclidean case
for which we refer the reader to Chap. 5 in [14].

If in Remark 5.7 we take μH = νH , we obtain the following result.

Lemma 5.8. Let u =
∑

I,J uI,Jϑ
I ∧ ϑJ̄ . Then

∑
I,J

ūI,J〈dHuI,J , νH〉+ 〈RνH1 (u), ut〉+ 〈RνH2 (u), νH ∧ uνH 〉

= 〈νH dHu, ut〉 − 〈δHu, uνH 〉+ 〈dHuνH , ut〉 − 〈δH (νH ∧ ut) , νH ∧ uνH 〉(5.7)

at each point of ∂U \ char(∂U).

Proof. Using Remark 5.7 yields

〈LνHu, ut〉 = 〈νH du, ut〉+ 〈duνH , ut〉 = 〈νH dHu, ut〉+ 〈dHuνH , ut〉 .(5.8)

Analogously, one has〈
L̃νHu, νH ∧ uνH

〉
= − (〈νH ∧ δHu, νH ∧ uνH 〉+ 〈δH (νH ∧ u) , νH ∧ uνH 〉)
= − (〈δHu, uνH 〉+ 〈δH (νH ∧ ut) , νH ∧ uνH 〉) .(5.9)

Adding together the left-hand sides of (5.8) and (5.9) and then using Remark 5.7
(see, in particular, formula (5.6)) yields

〈LνHu, ut〉+
〈
L̃νHu, νH ∧ uνH

〉
=

∑
I,J

ūI,J〈dHuI,J , νH〉+ 〈RνH1 (u), ut〉+ 〈RνH2 (u), νH ∧ uνH 〉.

Hence, by using (5.8) and (5.9), we deduce (5.7). �

We also need the following result (see [14], Lemma 5.5).

Lemma 5.9. Let u, μH , RμH

1 and RμH

2 be as in Definition 5.6. Then

RμH

1 (μH ∧ u) = 1

2
dH

(
‖μH‖2

)
∧ u+ μH ∧RμH

1 (u),

RμH

2 (μH u) =
1

2
dH

(
‖μH‖2

)
u+ μH RμH

2 (u).

The above formulas greatly simplify if we take ‖μH‖ = 1 and this can always
be done, at least if both these quantities are restricted to the non-characteristic
part of the boundary and we take μH = νH (i.e., μH is the horizontal unit normal
to ∂U \ char(∂U)).
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Remark 5.10. For any α ∈ ΩhH(U)⊗R C the following holds on ∂U \ char(∂U):
• If νH ∧ α = 0, then νH ∧ dHα = 0.

• If νH α = 0, then νH δHα = 0.

These properties can be proved just as in the classical case, for which we refer to
Theorem 3.23 in [14]. Thus, at each point of ∂U \ char(∂U), we deduce that:

• If uνH = νH u = 0, then it follows that νH ∧ (νH u) = 0. Thus we get
νH ∧ dH(νH u) = 0 and 〈dHuνH , ut〉 = 0.

• If νH ∧ u = 0, then ut = νH (νH ∧ u) = 0. Hence νH δH(νH ∧ u) = 0 and
〈δH (νH ∧ ut) , νH ∧ uνH 〉 = 0.

We summarize the above discussion in the next proposition.

Proposition 5.11. Let u ∈ ΩhH(U)⊗R C, with 1 ≤ h ≤ 2n. Then

A = −
∫
∂U\char(∂U)

(〈dHuνH , ut〉+ 〈δHut, uνH 〉) dσH

−
∫
∂U\char(∂U)

〈
R̃(u), u

〉
dσH ,

(5.10)

where 〈
R̃(u), u

〉
:=

〈
RνH1 (u), ut

〉
+
〈
RνH2 (u), νH ∧ uνH

〉
.

Remark 5.12. The first boundary integral in (5.10) vanishes if

either ut = 0 or uνH = 0 on ∂U \ char(∂U) (condition (DN))

and, in this case, we get

�eA = −�e
∫
∂U\char(∂U)

〈
R̃(u), u

〉
dσH .(5.11)

Remark 5.13. Obviously, when ut = 0, it follows that 〈R̃(u), u〉 = 〈RνH2 (u), u〉.
Finally, if uνH = 0, then 〈R̃(u), u〉 = 〈RνH1 (u), u〉.

Proof of Proposition 5.11. Let us start from the identity in Corollary 5.5. For what
concerns the term A, by using (5.7) and Remark 5.4, we get

A = −
∫
∂U\char(∂U)

(∑
I,J

ūI,J〈dHuI,J , νH〉 − 〈νH dHu, ut〉+ 〈δHu, uνH 〉
)
dσH

= −
∫
∂U\char(∂U)

(〈dHuνH , ut〉 − 〈δH (νH ∧ ut) , νH ∧ uνH 〉) dσH

+

∫
∂U\char(∂U)

(〈R1(u), ut〉+ 〈R2(u), νH ∧ uνH 〉) dσH .

Then (5.10) follows since δH (νH ∧ ut) = −L̃νH (ut)− νH ∧ δHut and〈
L̃νH (ut), νH ∧ uνH

〉
= 0.

Thus, Remark 5.10 yields (5.11), and the remaining claims easily follow. �
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Remark 5.14. If we look at identity (5.3) we see that �eA does not depend
on the coordinates. In fact, by its very definition, �eB is independent of the
coordinates and, in addition, a straightforward computation shows that the same
assertion holds for the quantity DH(u) and for the L2-norm of ∇Hu. Now, if
condition (DN) holds, then both quantities RνH1 and RνH2 are independent of the
coordinates. In particular, their expressions in Kähler coordinates (5.4) and (5.5)
can be replaced, when convenient, by their counterpart in a different system of
coordinates.

Remark 5.15. We point out that from Lemma 5.9 it follows that

〈R2(u), νH ∧ uνH 〉 = 〈R2(uνH ), uνH 〉 and 〈R1(u), ut〉 = 〈R1(ut), ut〉.

5.3. Estimate of the term B in (5.3)

The aim of this subsection is to prove that

�eB =
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

− 1

n
�m

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH + “error term”,

where the “error term” depends only on the trace of u on the boundary (not on its
derivatives) and will be estimated below under different assumptions. At the same
time, we provide sufficient conditions on the traces of u on ∂U that guarantee that

�m
∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
= 0.

Proposition 5.16. Let u ∈ ΩhH(U)⊗R C, with 1 ≤ h ≤ 2n. Then

B =
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ek ik − ek̄ ik̄)u
〉
dσH

− i

n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ek ik − ek̄ ik̄)u
〉
dσH .

(5.12)

Proof. Let v ∈ C1(U) be a (complex-valued) 0-form and recall that

inT =

n∑
k=1

(∂k ∂k̄ − ∂k̄ ∂k).
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By (4.3) and (4.4), we have

−i
∫
U
v̄ T v dV =

1

n

∫
U
v̄

n∑
k=1

(∂k̄∂k − ∂k∂k̄) v dV

=
1

n

∫
U
v̄
(
−∂∗∂ + ∂̄∗∂̄

)
v dV

=
1

n

∫
U
(‖∂̄v‖2 − ‖∂v‖2) dV − 1

n

∫
∂U

(
v̄〈∂̄v, n0,1H 〉 − v̄〈∂v, n1,0H 〉

)
dσ

=
1

n

∫
U
(‖∂̄v‖2 − ‖∂v‖2) dV +

1

n

∫
∂U
v̄
〈
dHv,

(
n1,0H − n0,1H

)〉
dσ

=
1

n

∫
U
(‖∂̄v‖2 − ‖∂v‖2) dV +

i

n

∫
∂U
v̄ 〈dHv, JnH〉 dσ,

where we have used the identity JnH = i(n1,0H − n0,1H ).

From these computations, by arguing as in Remark 5.4 and by applying (iii) of
Remark 5.7, we get that the term B can be rewritten as follows:

B = −i
∑
I,J

(pI − qJ)

∫
U
ūI,JTuI,J dV

=
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∑
I,J

(pI − qJ) lim
ε→0

∫
∂U\Vε

ūI,J 〈dHuI,J , JνH〉 dσH

=
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∑
I,J

(pI − qJ)

∫
∂U\char(∂U)

ūI,J 〈dHuI,J , JνH〉 dσH

=
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
LJνHu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH

− i

n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH .

This achieves the proof. �

The following assertion is a straightforward consequence of the identity (5.12).

Corollary 5.17. Suppose that the following “condition (JνH)” holds :

�m
〈
LJνHu,

n∑
k=1

ekiku
〉
= �m

〈
LJνHu,

n∑
k=1

ek̄ ik̄u
〉

(condition (JνH)).
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Then we have

�eB =
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+ �m 1

n

∫
∂U\char(∂U)

〈
RJνH1 u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH .

(5.13)

Remark 5.18. From Proposition 4.2 it follows that

n∑
k=1

(ekik − ek̄ ik̄) =
∑
p,q

(p− q)Πp,q.

Therefore, we see that condition (JνH) is a compatibility condition on the bidegree
components of the trace of u in the (tangent) direction JνH .

In addition, we stress that condition (JνH) is written in a “geometric” form
on ∂U and it could be replaced by the following condition (Jν∗H), which is written
“in coordinates”:

(5.14)
∑
I,J

(pI − qJ)Im(ūI,J 〈dH uI,J , JνH〉) = 0

at every point of ∂U \ char(∂U). The last condition is perhaps less “elegant” but
has the advantage of not introducing an error term.

Typically, identity (5.14) holds, if the form u =
∑

I,J uI,Jϑ
I ∧ ϑJ̄ is “Kähler-

symmetric” on ∂U , i.e., if

uI,J = ±uJ,I for all I, J with |I|+ |J | = h.

We also observe that if u is Kähler-symmetric on all of U , then B = 0, and the
main inequality still holds under condition (DN).

Let us analyze the meaning of condition (JνH) in the case of horizontal 1-forms.

Example 5.19 (1-forms). Let u =
∑n

i=1

(
uiϑ

i + uīϑ
ī
)
be a 1-form, where we

assume that ui := fi + igi for any i = 1, . . . , n. Also recall that if u is real, then
uī = ūi for any i = 1, . . . , n. Note that JνH = i(ν1,0H − ν0,1H ) and that, in this case,
we have pi = 1, qi = 0 and pī = 0, qī = 1, i = 1, . . . , n. With these preliminaries,
we may reformulate condition (JνH) as follows:

n∑
i=1

〈(fi∇Hgi − gi∇Hfi) , JνH〉 =
n∑
ī=1

〈(fī∇Hgī − gī∇Hfī) , JνH〉 .(5.15)

The proof of (5.15) is an elementary exercise. In addition, we observe that if u is
real, then (5.15) becomes

n∑
i=1

〈(fi∇Hgi − gi∇Hfi) , JνH〉 = 0

or, equivalently,
∑n

i=1 (fiLJνH gi − giLJνH fi) = 0.
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By using (iv) in Remark 5.7 we obtain the following dual result.

Proposition 5.20. Let u ∈ ΩhH(U)⊗R C, with 1 ≤ h ≤ 2n. Then

B =
1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

+
i

n

∫
∂U\char(∂U)

〈
L̃JνHu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH

− i

n

∫
∂U\char(∂U)

〈
RJνH2 u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH .

In addition, suppose the following “condition (J̃νH)” holds :

�m
〈
L̃JνHu,

n∑
k=1

ekiku
〉
= �m

〈
L̃JνHu,

n∑
k=1

ek̄ ik̄u
〉

(condition (J̃νH)).

Then

�eB =
1

n

∑
I,J

(pI − qJ )

∫
U

(
‖∂̄uI,J‖2 − ‖∂uI,J‖2

)
dV

− i

n

∫
∂U\char(∂U)

〈
RJνH2 u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH .

Remark 5.21. Just as in Remark 5.18, we observe that condition (J̃νH) is written
in a “geometric” form and that it could be replaced by condition (Jν∗H). Again,
this alternative condition has the advantage of not introducing an error term.

6. Gaffney–Friedrichs-type inequalities for horizontal forms

The first version of our main result reads as follows.

Theorem 6.1 (Gaffney–Friedrichs inequality). Let U � Hn be a domain with
smooth boundary of class C2. Let u ∈ ΩhH(U) ⊗R C be a horizontal h-form with
1 ≤ h < n, and assume that :

(i) u satisfies condition (DN) (see Proposition 5.11);

(ii) u satisfies either condition (JνH) (see Proposition 5.16) or condition (J̃νH)
(see Proposition 5.20).

Let {Vε}ε>0 be a family of open neighborhoods of char(∂U) (in the relative topology)
shrinking around char(∂U) when ε → 0. In addition, assume that σ(Vε) → 0 as
ε→ 0. Then, there exist geometric constants C0, C1 and C2 such that

(6.1) DH(u) + C0

∫
∂U∩Vε

‖u‖2 dσ ≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV.

The constants C0, C1, C2 depend only on U , ε and on the integers h and n.
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Furthermore, if u ∈ ΩhH(U) ⊗R Cis a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (6.1) still holds provided that ∗Hu satisfies (i) and (ii).

Remark 6.2. The constant C2 may blow up as ε tends to 0+. Indeed, let us define
two constants:

• C1,ε := 2n maxi,j=1,...,2n sup∂U∩Vε
|Wj(nH)i − (νH)iWj‖nH‖|,

• C2,ε := sup∂U\Vε
‖JacHνH‖,

where JacHνH = [Wj(νH)i]i,j=1,...,2n denotes the horizontal Jacobian matrix of
the unit horizontal normal νH . Since nH is of class C1, the constant C1,ε turns out
to be globally bounded along ∂U . On the other hand, we have C2,ε = O(1/‖nH‖),
and hence C2,ε may diverge when ε → 0+ (since ‖nH‖ → 0+ as ε → 0+). Below,
we shall prove the result with the constants

C0 := Cdim · C1,ε, C1 :=
1

n
− Cdim · C2,ε · δ, C2 := Cdim · C2,ε · CVε,U ,δ,

where

0 < δ < min
{
1,

1

nCdimC2,ε

}
,

the constant CVε,U ,δ was defined in Theorem 3.1, and Cdim is a fixed dimensional
constant that only depends on n.

Proof. Combining (5.3), (5.11) and (5.13) we obtain

DH(u) =

∫
U
‖∇Hu‖2 dV − 1

n

∑
I,J

(pI − qJ )

∫
U
(‖∂̄uI,J‖2 − ‖∂uI,J‖2) dV

−�e
∫
∂U\char(∂U)

〈RνHi u, u〉 dσH

−�m 1

n

∫
∂U\char(∂U)

〈
RJνHj u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH ,

where i, j = 1, 2. On the other hand, keeping in mind (4.2) and the fact that

|pI − qJ | ≤ h < n,

we get∫
U
‖∇Hu‖2 dV − 1

n

∑
I,J

(pI − qJ)

∫
U
(‖∂̄uI,J‖2−‖∂uI,J‖2) dV

≥ n− h

n

∫
U
‖∇Hu‖2 dV,

so that

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −�e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH

−�m 1

n

∫
∂U\char(∂U)

〈
RJνHj u,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
dσH .

(6.2)
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By arguing as in [14], Chapter 5, Section 2, it is not difficult to check that RνH1 (u)
and RνH2 (u) satisfy the estimates

‖RνHi (u)‖ ≤ Cidim ‖JacHνH‖‖u‖ (i = 1, 2),

where Cidim := Ci(h, n) is a positive constant, dependent only on the integers h
and n. Analogously, we have

‖RJνHi (u)‖ ≤ Cidim ‖JacHνH‖‖u‖ (i = 1, 2).

Moreover, a straightforward computation shows that ‖JacHνH‖ is of class C1 out
of char(∂U) and that ‖JacHνH‖ = O(1/‖nH‖) near char(∂U).

Hence, keeping in mind Theorem 3.1, we make the following computations:

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV − Cdim

∫
∂U\char(∂U)

‖JacHνH‖‖u‖2 dσH

≥ 1

n

∫
U
‖∇Hu‖2 dV − Cdim

∫
∂U∩Vε

‖JacHνH‖‖u‖2 dσH

− Cdim

∫
∂U\Vε

‖JacHνH‖‖u‖2 dσH

≥ 1

n

∫
U
‖∇Hu‖2 dV − C0

∫
∂U∩Vε

‖u‖2 dσ − CdimC2,ε

∫
∂U\Vε

‖u‖2 dσH

≥ 1

n

∫
U
‖∇Hu‖2 dV − C0

∫
∂U∩Vε

‖u‖2 dσ

− CdimC2,ε

(
CVε,U ,δ

∫
U
‖u‖2 dV + δ

∫
U
‖∇Hu‖2 dV

)
,

and the assertion (6.1) follows, where the constant CVε,U ,δ was introduced in The-
orem 3.1. �

Theorem 6.3 (Gaffney–Friedrichs inequality (2nd version)). Let U � Hn be a
domain with boundary of class C2 satisfying condition (H) (see Definition 3.4).
Let u ∈ ΩhH(U)⊗R C be a horizontal h-form with 1 ≤ h < n, and assume that :

(i) u satisfies condition (DN) (see Proposition 5.11);

(ii) u satisfies condition (Jν∗H) (see Remark 5.18).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U and on
the integers h and n, such that

DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(6.3)

Furthermore, if u ∈ ΩhH(U) ⊗R C is a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (6.3) still holds provided that ∗Hu satisfies (i) and (ii).

For the case h = n we refer the reader to Theorem 6.7 below.
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We start from the estimate (6.2) in the proof of Theorem 6.1, by proving a
more effective estimate of the remaining terms. By Remarks 5.18 and 5.21, we are
reduced to

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −�e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH .(6.4)

To this end, let us study the quantities RνHi (u, u), i = 1, 2.

Remark 6.4. Let μH ∈ C1
(
∂U \ char(∂U)),

∧1
h1 ⊗R C

)
such that ‖μH‖ = 1.

Let ϕ : ∂U \ char(∂U) → R be a smooth function. We want to estimate RϕμH

i (u),
i = 1, 2, for a horizontal h-form u. As pointed out in Remark 5.14, these estimates
do not depend on the reference frame used. Therefore we write u with respect to
the basis Ψh. We have

RϕμH

1 (u) = ϕ
(∑

I

uIdH
(
μH ψI

))
+
∑
I

uIdHϕ ∧
(
μH ψI

)
,

= ϕRμH

1 (u) + dHϕ ∧ (μH u) ,

and

RϕμH

2 (u) = ϕ
(∑

I

uIδH
(
μH ∧ ψI

) )
−
∑
I

uI
(
dHϕ

(
μH ∧ ψI

))
= ϕRμH

2 (u)− dHϕ (μH ∧ u) .

By condition (H), near the characteristic set, the boundary of U is a t-graph (i.e.,
∂U is a Euclidean graph w.r.t. the hyperplane t = 0) and so there exists a C2

defining function g : Hn → R of the form g(x, y, t) = t− f(x, y). Hence

NH = ∇Hg = ∇H(t− f(x, y)) =
(
− y

2
−∇xf,

x

2
−∇yf

)
.

Accordingly, we assume that νH = NH/‖NH‖, where NH := ∇Hg. Thus we get

RνH1 (u) =
RNH

1 (u)

‖NH‖ + dH

( 1

‖NH‖

)
∧ (NH u) ,(6.5)

where the second term vanishes on ∂U \ char(∂U) when uνH = νH u = 0.
Similarly we get

RνH2 (u) =
RNH

2 (u)

‖NH‖ − dH

( 1

‖NH‖

)
(NH ∧ u) ,(6.6)

and the second term vanishes on ∂U \ char(∂U) when ut = νH (νH ∧ u) = 0.

As we shall see below, formulas (6.5) and (6.6) are very important for our
purposes. In particular, under the hypothesis uνH = 0 on ∂U \ char(∂U), we find
that RνH1 (u) = RNH

1 (u)/‖NH‖. Furthermore, if ut = 0 on ∂U \ char(∂U), then
the quantity RνH2 (u) can be obtained by duality (via the horizontal Hodge star
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operator) from the computation of RνH1 (u). Thus, let u be a horizontal h-form and
let us compute

RνH1 (u, u) := 〈RνH1 (u), u〉 =
∑
I,J

uIuJ

〈
dH

(
NH ψI

)
, ψJ

〉
‖NH‖

=
∑
I,J

∑
r

uIuJ

〈
dH

(
(NH)r ψr ψI

)
, ψJ

〉
‖NH‖

=
∑
I,J

∑
r,k

Wk ((NH)r)uIuJ

〈
ψk ∧

(
ψr ψI

)
, ψJ

〉
‖NH‖

=
1

‖NH‖

〈∑
r,k

Wk ((NH)r)ψk ∧ (ψr u) , u
〉

=
1

‖NH‖

〈∑
r,k

Wk ((NH)r)ψr u, ψk u
〉
.

By condition (H) we have

JacH(NH) =
1

2
J −HessR2nf.

Thus, using the skew-symmetry of the linear operator J , we get

(6.7) �e RνH1 (u, u) = O
(‖HessR2nf‖

‖NH‖

)
‖u‖2,

and applying condition (H) yields O(‖HessR2nf‖/‖NH‖) = O(1).

Remark 6.5. More generally, let v be such that JνH v = 0. Now, arguing as
above we obtain

RJνH1 (v) =
RJNH

1 (v)

‖NH‖ .

Thus, as above we get

JacH(JNH) = −1

2
Id− JHessR2nf,

and therefore

�m RJνH
1 (v, v) = O

(‖HessR2nf‖
‖NH‖

)
‖v‖2 = O(1)‖v‖2.

Eventually, we resume the above discussion in the following.

Lemma 6.6. Let U � Hn be a domain (bounded and open) with boundary of
class C2 satisfying condition (H). Let u, v be horizontal h-forms defined on U ,
with 1 ≤ h ≤ n. Then, we have the following :

(i) If uνH = 0 on ∂U , then �e RνH1 (u, u) = O(‖u‖2).
(ii) If ut = 0 on ∂U , then �e RνH2 (u, u) = O(‖u‖2).
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In addition, we have :

(iii) If (Jv)νH = 0 on ∂U , then �m RJνH1 (v, v) = O(‖v‖2).
(iv) If (Jv)t = 0 on ∂U , then �m RJνH2 (v, v) = O(‖v‖2).
In particular, it follows from definitions that �e 〈R(u), u〉 = O(‖u‖2).

Proof. The proof of (i) follows by using (6.7). Then (ii) follows from (i) by duality
(using the horizontal Hodge star operator); see Remark 5.7. The last claim it is
an immediate consequence of (i), (ii) and of the very definition of R(u). Keeping
in mind Remark 6.5, the assertions (iii) and (iv) follow in the same way. �

Proof of Theorem 6.3. From (6.4) we know that

DH(u) ≥ 1

n

∫
U
‖∇Hu‖2 dV −�e

∫
∂U\char(∂U)

〈RνHi u, u〉 dσH .

By applying Lemma 6.6 and Theorem 3.9, it follows that

DH(u)≥ 1

n

∫
U
‖∇Hu‖2dV−C

∫
∂U\char(∂U)

‖u‖2dσH≥ 1

2n

∫
U
‖∇Hu‖2dV −Cn‖u‖L2(U).

The proof easily follows. �

Theorem 6.7. Suppose the assumptions of either Theorem 6.1 or Theorem 6.3
are satisfied, where the condition 1 ≤ h < n is replaced by

h = n and Πn,0u = 0 = Π0,nu.

Then, the conclusions of Theorems 6.1 and 6.3 hold.

Moreover, if u ∈ Ωn,0H ∪ Ω0,n
H , then estimates like (6.1) or (6.3) fail to hold.

Proof. The first assertion follows by noticing that, during the proof of Theorems 6.1
and 6.3, the assumption h < n has been used only in deriving inequality (6.2),
where we used that if u ∈ Ωp,qH , then |p−q| < n. But, trivially, the same conclusion
holds if h = n and Πn,0u = 0 = Π0,nu.

As for the second assertion, we take, for instance, u = f ϑ(1,2,...,n), with f ∈
D(U). In such a case the estimates (6.1) and (6.3) coincide and represent nothing
but a maximal subelliptic estimate for the operator ΔK±in T . But then ΔK±in T
would be hypoelliptic (see, e.g., [8], Theorem 4.1), contradicting the fact that the
values ±n are “forbidden values” for the Kohn Laplacian in Hn (see, e.g., [43],
Chap. XIII, section 2.3). �

7. Further Gaffney–Friedrichs inequalities for horizontal dif-
ferential forms

As pointed out in Remark 5.18, the condition (Jν∗H) of Theorem 6.3 is written
“in coordinates”. Therefore, we may replace it by a slightly different “geometric”
condition.
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To this end, we first observe that, in the proof of Theorem 6.3, condition (Jν∗H)
can be replaced by the following weaker one:

(7.1)
∣∣∣�m〈

∂JνHu,
n∑
k=1

(ekik − ek̄ ik̄)u
〉
L2(∂U ,dσH)

∣∣∣ ≤ C ‖u‖2L2(∂U ,dσH).

Let us still suppose that both conditions (DN) and (H) hold. If uνH = 0, we
can argue as follows. By applying Remarks 5.7 and 5.18, we compute

〈
∂JνHu ,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
=

〈
∂JνHJu,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉

=
〈(

LJνHJu−RJνH1 Ju
)
,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉

=
〈
LJνHJu,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉
−
〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉

=
〈
LJνHJu, J

n∑
k=1

(ekik − ek̄ ik̄)u
〉
−
〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉

=
〈
J−1LJνHJu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
−
〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉
.

Now suppose that the following geometric condition holds:

(7.2) �m
〈
J−1LJνHJu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
= 0.

Under this assumption, let us show that (7.1) holds. We have

�m
〈
RJνH1 Ju,

n∑
k=1

(ekik − ek̄ ik̄)Ju
〉
= �m

〈
RJνH1 v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉

= �m‖NH‖−1
〈
RJNH

1 v,
n∑
k=1

(ekik − ek̄ ik̄)v
〉

= �m‖NH‖−1
〈(

− h

2
Id− J(HessR2nf)

)
v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉

= −�mh

2
‖NH‖−1

〈
v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉

−�m‖NH‖−1
〈
J(HessR2nf)v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉

= −�m‖NH‖−1
〈
J(HessR2nf)v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉
,
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since 〈
v,

n∑
k=1

(ekik − ek̄ ik̄)v
〉
=

n∑
k=1

(
‖ikv‖2 − ‖ik̄v‖2

)
is a real number. Thus keeping in mind that ‖v‖ = ‖Ju‖ = ‖u‖ yields (7.1).

Analogously, if in condition (DN) one has ut = 0, then we can argue in a similar
way by assuming that:

(7.3) �m
〈
J−1L̃JνHJu,

n∑
k=1

(ekik − ek̄ ik̄)u
〉
= 0.

We summarize the previous arguments in the following.

Theorem 7.1 (Gaffney–Friedrichs inequality (3rd version)). Let U � Hn be a
domain with boundary of class C2 satisfying condition (H) (see Definition 3.4).
Let u ∈ ΩhH(U) ⊗R C be a horizontal h-form with 1 ≤ h < n, and assume that
either

(i) uνH = 0,

(ii) u satisfies the condition (7.2),

or

(j) ut = 0,

(jj) u satisfies the condition (7.3).

Then, there exist geometric constants C̃1 and C̃2, only dependent on U and on
the integers h and n, such that

(7.4) DH(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.

Furthermore, if u ∈ ΩhH(U) ⊗R C is a horizontal h-form with n + 1 ≤ h ≤ 2n,
then (7.4) still holds provided that ∗Hu satisfies either (i) and (ii), or (j) and (jj).
Finally, the conclusions of Theorem 6.7 still hold in this case if h = n.

8. Rumin’s complex in Heisenberg groups

8.1. Rumin’s complex

In this section we briefly sketch the main ideas in Rumin’s construction of the
intrinsic complex of differential forms in Heisenberg groups; see [38]. For a more
general approach we refer the reader, for instance, to [40], [41], and [4].

First, we would like to discuss how Rumin’s complex appears naturally in the
geometric measure theory of Heisenberg groups. The starting point is the question
“what is counterpart of a linear manifold in Heisenberg groups”. As shown in [21],
[23], this role is played by the homogeneous subgroups of Hn, that is, in exponen-
tial coordinates, by the homogeneous subalgebras of h. It is well known that, in
Euclidean spaces, linear submanifolds are the annihilators of homogeneous simple
covectors, which are invariant under translations. Thus, is it natural to look for
left-invariant homogeneous differential forms whose annihilator is a subalgebra of h.
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By the Frobenius theorem, the annihilator of a left invariant differential form ω
is a Lie subalgebra of h if and only if dω = 0. On the other hand, when acting on
left-invariant forms, the exterior differential d is nothing but its “algebraic” part,
which in the sequel will be denoted as d0; see Definition 8.2 below.

A natural choice for a class of intrinsic differential forms in Hn would be to
take kerd0 as the ambient space. Nevertheless, this choice is not totally satisfying,
since it fails to take into account a crucial algebraic property of linear manifolds in
Euclidean spaces, which resides in the fact that they are complemented. Indeed,
also complementary subspaces of a fixed subspace V can be viewed as annihilators
of differential forms in the following sense:

If V is the annihilator of a simple form ω, then a complementary subspaceW is
the annihilator of the Hodge-dual form ∗ω, where the Hodge duality must be taken
with respect to an inner product making V and W orthogonal. Thus in order to
obtain a satisfying notion of intrinsic h-covector in h, we have to choose once for
all an inner product in h and take

Eh0 = ker d0 ∩ ker(d0∗).

Recall that h is endowed with the inner product that makes the basis

{X1, . . . , Xn, Y1, . . . , Yn, T }

orthonormal.
The family of vector spaces (Eh0 )0≤h≤n can be equipped with an “exterior

differential operator”
dc : E

h
0 → Eh+1

0

making (E∗
0 , dc) a complex, which is chain homotopic to the de Rham complex.

The definition of dc is rather technical and will be given by Theorem 8.6 below.
Essentially, dc is defined as

dc := ΠE0dΠE ,

where ΠE is the projection onto a second complex (E∗, d), again homotopic to the
de Rham complex, which is meant to take into account the lack of commutativity
of h, and where ΠE0 is the orthogonal projection on E∗

0 that minimizes the number
of compatibility conditions for a differential form to be exact. We stress that dc is
an operator of order 1 in the horizontal derivatives, when acts on Eh0 with h 	= n,
but of order 2 on En0 .

Definition 8.1. If α ∈
∧1

h1, α 	= 0, then we say that α has weight 1, and write
w(α) = 1. If α = ϑ, then we say that α has weight 2, and write w(α) = 2. More

generally, we say that α ∈
∧h h has pure weight k when α is a linear combination

of covectors ψi1 ∧ · · · ∧ ψih such that w(ψi1 ) + · · ·+ w(ψih ) = k.

Note that, if α, β ∈
∧h

h and w(α) 	= w(β), then 〈α, β〉 = 0. Moreover, we
have (see, e.g., formula (13) in [4]):∧h

h =
∧h,h

h⊕
∧h,h+1

h,

where
∧h,p

h denotes the linear span of Ψh,p := {α ∈ Ψh : w(α) = p}.
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The ordinary exterior differential operator d splits into the sum of its weighted
components. More precisely, we give the following definition.

Definition 8.2. Let α =
∑
ψI∈Ψh,p αiψ

I be a smooth (simple) h-form of pure
weight p. Then we shall write

dα = d0α+ d1α+ d2α,

where d0α has pure weight p, d1α has pure weight p+1, and d2α has pure weight
p+ 2.

When acting on left-invariant forms, one has d = d0, since d preserves the
weight. Notice also that d1 = dH .

Using Cartan’s identity (see, for example, [30], formula (9) p. 21) and the left-
invariance of the forms ψI ∈ Ψh,p, it follows that

d0α =
∑

ψI∈Ψh,p

αidψ
I .

Analogously, we have

d1α =
∑

ψI∈Ψh,p

Wj(αi)ψj ∧ ψI , d2α =
∑

ψI∈Ψh,p

T (αi)ϑ ∧ ψI .

We stress that d0 is an algebraic operator, and therefore can be identified with
an operator acting on covectors.

The following important notion due to Rumin can be found in [39], [40].

Definition 8.3. For any 0 ≤ h ≤ 2n + 1 we set Eh0 := Kerd0 ∩ R(d0)
⊥, where

R(d0) denotes the range of d0. The elements of Eh0 are called intrinsic h-forms
on Hn.

It is not difficult to see that ∗Eh0 = E2n+1−h
0 . Observe that, since this notion is

invariant under left translations, the space Eh0 can be seen as the space of sections

of a fiber subbundle of
∧h h, generated by left translation and still denoted as Eh0 .

Since d0 is algebraic, there is no ambiguity if we denote by E∗
0 both the space of

covectors and the spaces of the sections of the associated linear bundle. We also
note that Eh0 inherits from

∧h h the inner product 〈·, ·〉 on the fibers.

Theorem 8.4 (See [39]). With the notation of Definition 2.7, we have :

• E1
0 =

∧1 h1.

• If 2 ≤ h ≤ n, then Eh0 =
∧h

h1 ∩ kerΛ.

• If n < h ≤ 2n+ 1, then Eh0 = ϑ ∧ kerL.

We remark that an h-form in Eh0 has either weight h, if 1 ≤ h ≤ n, or weight
h + 1, if n < h ≤ 2n + 1. Let Ξh0 = {ξhi : 1 ≤ i ≤ Nh} be an orthonormal basis
of Eh0 , where Nh := dimEh0 . Notice that we can always assume that ξ1i = ψi for
any i = 1, . . . , 2n.

We have to define an “inverse” of the algebraic operator d0 and this can be
done as follows (see, e.g., Lemma 2.11 in [4]).
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Lemma 8.5. For any β ∈
∧h+1

h there exists a unique α ∈
∧h

h∩ (ker d0)
⊥

such

that d0α − β ∈ (R(d0))
⊥
. In the sequel, with a slight abuse of notation, we shall

set d−1
0 β := α.

By construction, the operator d−1
0 is weight-preserving.

In the next theorem we summarize the main features of the intrinsic exterior
differential dc. For more details, we refer the reader to [39]; see also [40] and [4].

Theorem 8.6. The de Rham complex (Ω∗, d) splits into the direct sum of two
sub-complexes (E∗, d) and (F ∗, d), where we have set

E := ker d−1
0 ∩ ker

(
d−1
0 d

)
, F := R(d−1

0 ) +R(dd−1
0 ).

Furthermore, the following assertions hold :

(i) Let ΠE be the (non-orthogonal) projection on E along F . For any α ∈ Eh0
one has either ΠEα = α− d−1

0 d1α, if 1 ≤ h ≤ n, or ΠEα = α, if h > n.

(ii) ΠE is a chain map, i.e., dΠE = ΠEd.

(iii) Let ΠE0 denote the orthogonal projection from
∧∗

h onto E∗
0 . Then, we have

ΠE0 = Id− d−1
0 d0 − d0d

−1
0 and ΠE⊥

0
= d−1

0 d0 − d0d
−1
0 .

(iv) We have ΠE0 = ΠE0ΠEΠE0 and ΠE = ΠEΠE0ΠE.

Let 0 ≤ h ≤ 2n and set dc := ΠE0dΠE : Eh0 → Eh+1
0 . Then, we have :

(v) d2c = 0.

(vi) The differential complex (E∗
0 , dc) is exact.

(vii) If h 	= n, then dc : E
h
0 → Eh+1

0 is a homogeneous differential operator in the
horizontal derivatives of order 1. Moreover, dc : E

n
0 → En+1

0 is a homoge-
neous differential operator of order 2.

Notice that for any smooth function f ∈ E0
0 we have

dcf = (∇Hf)
# =

n∑
1=1

(Xifdxi + Yifdyi) .

We can also define a codifferential δc, by taking the formal adjoint of dc in
L2(Hn, E∗

0 ). More precisely, we set δc := d∗c .

Proposition 8.7. On Eh0 we have δc = (−1)h ∗ dc∗.

For a proof, see, e.g., [24], Proposition 3.15.
Explicit calculations and further examples concerning Rumin’s complex in

Heisenberg groups can be found in [5].

Definition 8.8 (Sub-Laplacians on forms; see [38]). We define the operator Δc,h

on Eh0 by setting

Δc,h :=

⎧⎨
⎩

dc δc + δc dc if h 	= n, n+ 1,
(dc δc)

2 + δcdc if h = n,
dc δc + (δc dc)

2 if h = n+ 1.

Notice that Δc,0 = ΔK is the usual sub-Laplacian on Hn.
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Proposition 8.9 (see Proposition 4 in [38]). Let 1 ≤ h < n, and α ∈ Eh0 . Then

(i) δcα = δHα ;

(ii) dcα = dHu− 1

n− h+ 1
LΛ(dHα).

The next lemma follows from the Kähler identities in Proposition 4.5.

Lemma 8.10. For any u ∈ Eh0 , with 0 ≤ h ≤ n, we have Λ(dHu) = −δJHu.
Furthermore Λ2(dHu) = 0.

Proof. Keeping in mind that Λu = 0, and using (i) of Proposition 4.5, yields

Λ(dHu) = dHΛu− δJHu = −δJHu.
Moreover, by applying (iii) of Proposition 4.5 we obtain

Λ2(dHu) = ΛδJHu = δJHΛu = 0. �

Lemma 8.11. Let u ∈ Eh0 , with 0 ≤ h < n. Then

(8.1) dcu = dHu+
1

n− h+ 1
LδJHu.

Moreover, the following identity holds :

‖dcu‖2 +
1

n− h+ 1
‖δJHu‖2 = ‖dHu‖2.

Proof. By Proposition 8.9 and Lemma 8.10 we get

dcu = dHu− 1

n− h+ 1
LΛ(dHu) = dHu+

1

n− h+ 1
LδJHu.

In order to prove the second assertion, we note that by definition dcu is orthogonal
to the range of L. Now since LδJHu = −LΛ(dHu) we get

‖LδJHu‖2 = ‖LΛ(dHu)‖2 = 〈LΛ(dHu), LΛ(dHu)〉 = 〈Λ(dHu),ΛLΛ(dHu)〉
=

〈
Λ(dHu), LΛ

2(dHu)
〉
+ (n− h+ 1) 〈Λ(dHu),Λ(dHu)〉 (by Lemma 2.8)

= (n− h+ 1) 〈Λ(dHu),Λ(dHu)〉 (by Lemma 8.10)

= (n− h+ 1)‖δJHu‖2,
and the thesis follows. �

8.2. Decomposition of forms on the boundary of a domain II

This section is the counterpart of Section 2.2 and, roughly speaking, the idea here
is to replace horizontal forms with intrinsic forms in E∗

0 .
Recall that U � Hn is a domain with boundary of class C2.
With the notation of Section 2.2, if α ∈ Eh0 , if n < h ≤ 2n+ 1, we have

α = ϑ ∧ αH with αH ∈ Ωh−1
H .

Now, writing αH = (αH)t + νH ∧ (αH)νH , where we have set

(αH)t := νH (νH ∧ αH) and (αH)νH := νH αH ,
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we obtain the decomposition formula

α = ϑ ∧ (αH)t + ϑ ∧ νH ∧ (αH)νH .

Thus if α ∈ Eh0 , with n < h ≤ 2n+ 1, we can set

αt := ϑ ∧ (αH)t and ανH := −ϑ ∧ (αH)νH ,

and again we obtain the identity

α = αt + νH ∧ ανH .

Clearly, it turns out that αt ⊥ νH ∧ ανH .

The above definition is motivated by the following lemma.

Lemma 8.12. If α ∈ Eh0 , with n < h ≤ 2n+ 1, then

∗αt = νH ∧ (∗α)νH and ∗ (νH ∧ ανH ) = (∗α)t.

Proof. By Lemma 2.2 we have

∗αt = ∗H(αH)t = νH ∧ (∗HαH)νH = νH ∧ (∗α)νH .

On the other hand,

(νH ∧ ανH ) = − ∗ (νH ∧ ϑ ∧ (αH)νH ) = ∗(ϑ ∧ νH ∧ (αH)νH )

= ∗H(νH ∧ (αH)νH ) = (∗HαH)t = (∗α)t. �

In particular, if α ∈ ΩhH , 1 ≤ h ≤ 2n, we can always write

αt := νH (νH ∧ α), ανH := νH α,

and, as above, we have the decomposition formula

α = αt + νH ∧ ανH ∀α ∈ Eh0 .

Remark 8.13. We stress that combining (2.1) and Lemma 8.12, we obtain a very
useful result: If 1 ≤ h ≤ 2n+ 1, and α ∈ Eh0 , then

αt = 0 if and only if (∗α)νH = 0 and ανH = 0 if and only if (∗α)t = 0.

Definition 8.14. From now on, we denote by E∗
0 (U) the space of smooth sections

of E∗
0 over U . With a slight abuse of notation, we also denote by E∗

0 (U)⊗R C the
corresponding space of complex forms Γ(U , E∗

0 ⊗R C).

We conclude this section by formulating a Green-type identity for the Rumin
differential dc (compare with formula (2.2)).

Theorem 8.15 (Green identity in (E∗
0 , dc)). Suppose that U � Hn is a domain

with boundary of class C2. If α ∈ Eh−1
0 (U) ⊗R C, and β ∈ Eh0 (U) ⊗R C, with

h 	= n, n+ 1, then

〈dcα, β〉L2(U) = 〈α, δcβ〉L2(U) +

∫
∂U

〈n ∧ α, β〉 dσ

= 〈α, δcβ〉L2(U) +

∫
∂U

〈νH ∧ α, β〉 dσH .
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8.3. Gaffney–Friedrichs-type inequalities: Technical preliminaries

Let U � Hn be a domain with smooth boundary of class C2. Below, we generalize
to E∗

0 a classical definition which can be found in [36]; see, e.g., Definition 7.2.6 in
p. 291 (also compare with Definition 5.1).

Definition 8.16. Let u ∈ Eh0 (U) ⊗R C be an intrinsic differential h-form, with
0 ≤ h ≤ 2n+ 1. We define the CC-Dirichlet integral by setting

Dc(u) :=

∫
U
(〈dcu, dcu〉+ 〈δcu, δcu〉) dV.

It is clear from the definition that this quantity is a non-negative real number.
Moreover, we remind the reader that Dc(u) = Dc(∗u).

Finally, it is worth observing that our main results for the complex (E∗
0 , dc) (see,

more precisely, Theorems 8.21, 8.23, and 8.24) only concern the case h 	= n, n+1.

Proposition 8.17. Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n. Then

Dc(u) = DH(u)− 1

n− h+ 1

∫
U

〈
δJHu, δ

J
Hu

〉
dV

≥ DH(u)− 1

n− h+ 1
DH(Ju) = DJ

H(u).

Proof. By applying together Definition 8.16, identity (8.1) in Lemma 8.11, and
Proposition 8.9, we get

〈dcu, dcu〉+ 〈δcu, δcu〉 = 〈dHu, dHu〉 − 1
n−h+1 〈δ

J
Hu, δ

J
Hu〉+ 〈δHu, δHu〉

= 〈dHu, dHu〉+ 〈δHu, δHu〉 − 1
n−h+1

〈
δJHu, δ

J
Hu

〉
= 〈dHu, dHu〉+ 〈δHu, δHu〉 − 1

n−h+1

〈
J−1δHJu, J

−1δHJu
〉

= 〈dHu, dHu〉+ 〈δHu, δHu〉 − 1
n−h+1 〈δHJu, δHJu〉 ,

where we have used that J2 = −Id. Now since∫
U
〈δHJu, δHJu〉 dV ≤ DH(Ju),

the proof follows. �

Lemma 8.18. Let u ∈ Eh0 (U)⊗RC be an intrinsic h-form, with 1 ≤ h ≤ n. Then,
at every point of ∂U \ char(∂U), the following implications hold :

(i) ut = 0 ⇒ (Ju)νH = 0;

(ii) (Ju)t = 0 ⇒ uνH = 0.

Proof. We just prove (i), since the proof of (ii) is similar. Let g : Hn → R be a
defining function for U of class C2. We are assuming that:

• U = {x ∈ Hn : g(x) < 0};
• g(x) = 0 if and only if x ∈ ∂U ;
• ∇g 	= 0 for all x ∈ ∂U ;
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see, e.g., Chap. 2 in [32]. Now observe that dHg is parallel to νH , and that the
hypothesis ut = 0 is equivalent to dH(gu) = 0 on ∂U . Indeed, if ut = 0, then
u = νH ∧ (νH u). On the other hand,

dH(gu) = dHg ∧ u = dHg ∧ νH ∧ (νH u) = 0.

Moreover, if dH(gu) = 0, then dHg ∧ u = 0, and so νH ∧ u = 0. This implies
ut = νH (νH ∧ u) = 0.

On the other hand, by Lemma 8.10, if ut = 0, then

0 = −ΛdH(gu) = δJH(gu) = J−1δHJ(gu),

which implies

δH(gJu) = δHJ(gu) = 0.

From this we get δH(gJu) = 0 on ∂U , and since δH(gJu) = − (dHg Ju), the
proof of (i) follows. �

By applying Proposition 5.11 to Ju, and by keeping into account that the first
two integrals in (5.10) remain unchanged if we replace u with Ju, we find the
following identity.

Proposition 8.19. Let u ∈ ΩhH(U) ⊗R C, and assume that either (Ju)t = 0 or
(Ju)νH = 0 on ∂U \ char(∂U). Then

DH(Ju)=

∫
U
‖∇Hu‖2dV−i

∑
I,J

(pI−qJ)
∫
U
ūI,JTuI,J dV−

∫
∂U\char(∂U)

〈
R̃J(u), u

〉
dσH ,

where we have set R̃J(u) := J−1R̃(Ju).

Combining now Propositions 8.17, 5.11, 8.19 together with Lemma 8.18, and
formula (5.3) in Corollary 5.5, we obtain the next proposition.

Proposition 8.20. Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n, and suppose that either
ut = 0 or (Ju)t = 0 on ∂U \ char(∂U). Then

DJ
H(u) = DH(u)−

1

n− h+ 1
DH(Ju)

=
n− h

n−h+1

∫
U

(
‖∇Hu‖2 − i

∑
I,J

(pI−qJ)ūI,JTuI,J
)
dV −

∫
∂U\char(∂U)

〈R(u), u〉dσH

=
n− h

n− h+ 1
DH(u)− n− h

n− h+ 1
�eA−

∫
∂U\char(∂U)

〈R(u), u〉 dσH

=
n− h

n− h+ 1
DH(u)− 1

n− h+ 1
�e

∫
∂U\char(∂U)

〈(R̃ − R̃J )u, u〉 dσH ,

where R(u) := R̃(u)− 1
n−h+1 R̃J (u).
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8.4. Gaffney–Friedrichs inequalities for Rumin’s complex: Main results

At this point, by using the estimates of the “error terms” proved in the preceding
sections, Theorem 6.1 can be stated in (E∗

0 , dc) as follows.

Theorem 8.21 (Gaffney–Friedrichs inequality in (E∗
0 ) (1st version)). Let U � Hn

be a domain with boundary of class C2. Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n, and
assume that :

(i) u satisfies either ut = 0 or Jut = 0;

(ii) u satisfies either condition (JνH) (see Proposition 5.16) or condition (J̃νH)
(see Proposition 5.20).

Let {Vε}ε>0 be a family of open neighborhoods of char(∂U) (in the relative topology)
shrinking around char(∂U) when ε → 0. In addition, assume that σ(Vε) → 0 as
ε→ 0. Then, there exist geometric constants C0, C1, and C2 such that

(8.2) Dc(u) + C0

∫
∂U∩Vε

‖u‖2 dσ ≥ C1

∫
U
‖∇Hu‖2 dV − C2

∫
U
‖u‖2 dV.

The constants C0, C1, C2 depend only on U , ε, and on the integers h and n. Finally,
if u ∈ Eh0 (U) ⊗R C with n + 1 < h ≤ 2n, then (8.2) still holds, provided that ∗u
satisfies (i) and (ii).

Remark 8.22. Just as in Remark 6.2, the constant C2 may blow up as ε tends
to 0+.

We conclude by stating two alternative versions of the main inequality, for the
Rumin’s complex.

Theorem 8.23 (Gaffney–Friedrichs inequality in (E∗
0 , dc) (2nd version)). Suppose

that U � Hn is a domain with boundary of class C2 satisfying condition (H) (see
Definition 3.4). Let u ∈ Eh0 (U)⊗R C, with 1 ≤ h < n, and assume that :

(i) either ut = 0 or Jut = 0;

(ii) u satisfies condition (Jν∗H) (see Remark 5.18).

Then, there exist geometric constants C̃1 and C̃2, depending only on U , and on
the integers h and n, such that

Dc(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.(8.3)

Furthermore, if u ∈ Eh0 (U) ⊗R C with n + 1 < h ≤ 2n, then (8.3) still holds
provided that ∗u satisfies (i) and (ii).

Theorem 8.24 (Gaffney–Friedrichs inequality in (E∗
0 , dc) (3rd version)). Suppose

that U � Hn is a domain with boundary of class C2 satisfying condition (H) (see
Definition 3.4). Let u ∈ Eh0 (U)⊗R C with 1 ≤ h < n, and assume that either

(i) Jut = 0,

(ii) u satisfies the condition (7.2),
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or

(j) ut = 0,

(jj) u satisfies the condition (7.3).

Then, there exist geometric constants C̃1 and C̃2, depending only on U , and on
the integers h and n, such that

(8.4) Dc(u) ≥ C̃1

∫
U
‖∇Hu‖2 dV − C̃2

∫
U
‖u‖2 dV.

Furthermore, if u ∈ Eh0 (U) ⊗R C with n + 1 < h ≤ 2n, then (8.4) still holds
provided that ∗u satisfies either (i) and (ii), or (j) and (jj).
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