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Gaffney—Friedrichs inequality for differential
forms on Heisenberg groups

Bruno Franchi, Francescopaolo Montefalcone and Elena Serra

Abstract. In this paper, we will prove several generalized versions, depen-
dent on different boundary conditions, of the classical Gaffney—Friedrichs
inequality for differential forms on Heisenberg groups. In the first part of
the paper, we will consider horizontal differential forms and the horizontal
differential. In the second part, we shall prove the counterpart of these
results in the context of Rumin’s complex.
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1. Introduction

Let M™ be a smooth compact manifold of dimension n with boundary OM™. If u
is a differential form of degree h on M™, 0 < h < n, we set

ugr=vAdwAu), wu, :=vdu,
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where v denotes the (Riemannian) outward unit normal vector along OM™. Thus,
one gets the orthogonal decomposition formula

U="U, +VA\Uy.

Denote now by W1h2(M", \" TM™) the Sobolev space of differential forms
on M™ of degree h. The classical Friedrichs—Gaffney inequality (see [26], [27], [36],
and [42]) states that there exists a geometric constant C' > 0 such that

(1.1) HUHWL?(]VI",/\”TM"') < C(||duHL2(]\/I",/\h+1T]\/I")

+ H(suHLQ(Mn,/\’Hl TMny T ||U||L2(Mn,/\h TM"))

for every differential h-form u € Wh2(M", /\h TM™) with vanishing either the
tangential component wuy or the normal component u, on dM™. Here d and §
denote, respectively, the differential and the codifferential of the de Rham complex
in M™.

Let U be a bounded open set with smooth boundary. If F:U — R" is a vector
field, then (1.1) reduces to the inequality

IVE ooy < CIldiv Fl| 2@y + llewrl Fl| 2aye + 1 Fll L2,

under suitable boundary conditions.

Roughly speaking, the conditions uy = 0 or u,, = 0 on dM™ imply the vanishing
of some geometric quantities living on the boundary; see, [14], [42]. We remark
that these conditions can be replaced by more complicated conditions, which can
be written as linear combinations of the previous ones; for more details, we refer
to Section 5.3.2 of [14].

Several generalizations of (1.1) can be found in the literature. We mention
among others the Gaffney—Friedrichs inequality for Lipschitz domains proved in [34]
and, above all, from our point of view, the recent papers by Tseng and Yau [44], [45]
(see also [46]) for generalizations of the Gaffney-Friedrichs inequality (associated
with symplectic Laplacians) in compact symplectic manifolds (thus of even dimen-
sion) with smooth boundaries of contact type.

The aim of the present paper is to prove a Gaffney—Friedrichs inequality for
differential forms in Heisenberg groups.

By Darboux’ theorem, Heisenberg groups can be seen as the prototype of con-
tact manifolds (necessarily of odd dimension). Therefore our results are in some
sense complementary to those in [44], [45].

Heisenberg groups will be presented in more detail in Section 2. Here we just
recall that the Heisenberg group H" is the (2n + 1)-dimensional Lie group with
nilpotent, stratified Lie algebra b of step 2 given by

h=span{Xy,..., X, Y1,...,Y,} ®span{T} := h1 ® ho,

where the only nontrivial commutation rules are [X;,Y;] =T for any j = 1,...,n.

It is well known that H" can be identified with R?"*! through the (Lie group)
exponential map. The stratification of the algebra induces a family of nonisotropic
dilations in the group, again via the exponential map.
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Since the Lie algebra h can be identified with the tangent space to H™ at the
identity e = 0 € H"”, there is a natural left-invariant Riemannian metric in H"
making the basis {X1,...,X,,Y1,...,Y,, T} orthonormal.

In addition, by left translation of h; one obtains a tangent subbundle of TH™
still denoted by hy1. We refer to h; as to the horizontal layer, and to

Xl)"'axnayia"'ayna
as to the horizontal derivatives of H™. Moreover, we write
Vau:= (Xiu,..., Xpu, Yiu,...,You)

whenever u is any smooth real function on H".
If 0 < h < 2n, the sections of A, b1 are called horizontal h-vectors, while the

sections of /\h b1 are called horizontal h-covectors.

Throughout this paper we shall denote by Q%, 0 < h < 2n, the space of all
horizontal h-forms, and by 9 the 1-form on H™ such that ker? = exp(h;) and
HT) = 1.

It is to mention that the horizontal differential dg := d — 9 A L acts between
horizontal differential forms in the sense that dg : Qff, — Q. Unfortunately, the
diagram (2%;,dy) defined by

dm du dy

0 o, al, al,

is not a differential complex, since d%; does not vanish, in general, precisely because
of the lack of commutativity in h. This difficulty is overcome by introducing the
Rumin complex (E§, d.), which is a “natural” complex of differential forms, (chain)
homotopic to the de Rham complex. We refer to [38] for the original definition, as
well as to [4], [5], [6], [7]. Precise definitions of the complex (E{,d.) will be given
in Section 8.1.

Thought the construction of Rumin’s forms may appear very technical, we
will see in Section 8.1 that the complex (Ef,d.) arises “naturally” in geometric
measure theory starting from the notion of intrinsic submanifolds of H™ (see [22])
and, above all, of linear submanifolds in H".

A further non-Euclidean feature arising typically from the geometry of H" we
have to deal with is the following. Let &/ C H" be a smooth, bounded open set.
We need to remark that in our paper we are dealing with different “boundary
measures” on OU. First, an intrinsic notion of perimeter measure |OU|g» has
been introduced in [28]; we refer the reader to [28], [18], [19], [20] for a detailed
presentation. For simplicity, we shall denote the H™-perimeter measure by the
symbol dog. However, beside the H™-perimeter measure, we can actually consider
both the 2n-dimensional Euclidean Hausdorff measure dH?" and the Riemannian
measure do, defined in terms of the Riemannian structure in H" induced by the
fixed inner product in h. As a matter of fact, our results will fail to be completely
analogous to the classical ones ultimately because do and doy are not equivalent.
This problem will be discussed later in this introduction.
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We can now describe the content of this paper. Our aim is to prove Gaffney—
Friedrichs-type inequalities for both (Q7;,dy) and (E{,d.) (remember we use the
notation (Q%,dy) even if d4; # 0). If Y C H" is a smooth, bounded open set we
are looking for estimates of the form

HUHWH_?Q(Z,{,/\’L ) < C (||dH“HL2(u,/\h o) T lduull 2@ pr vy + 1l 2 pn hl))’

under suitable boundary conditions.

Here WH}I’Q U, /\h b1) denotes the space of horizontal differential forms such that
all their coefficients with respect to some coordinate frame belong to WH}I’Q (U) (that
is, they belong to L2(U) together with all their horizontal derivatives).

Analogously, when dealing with forms of Rumin’s complex, we are looking for
estimates of the form

(1.2) HuHWé’Q(ZLEg) <C (Hdc“HLz(u,EgH) + ||50“HL2(U,E3—1) + ||U||L2(u,Eg))a

under suitable boundary conditions. If 28 = {¢ : 1 <i < dim E}} is a smooth
orthonormal basis of E!, we denote by WH’2 (U, El) the space of differential forms
u=73; uj &l e L*(U, Ef) such that

IVaull? =" (1Xiwl® + [Yiu,[*) € L' @),
i.J
endowed with its associated norm. In this case we confine ourselves to degrees
h # n, n+ 1, in order to deal only with both the intrinsic differential d. and
codifferential d. of order 1. The remaining cases will be considered in a future
paper. If &/ = H", inequality (1.2) is well known (see, e.g., [38]).

We can now state our main results, which correspond to the choice of different
boundary conditions. Our approach is largely inspired by that of Csatd, Dacorogna
and Kneuss in [14]. In fact, several delicate algebraic manipulations we carry out
in this paper are the counterpart in our setting of those presented in [14].

Denoting by ngy the horizontal normal to OU, that is, the orthogonal pro-
jection onto A, b1 of the Riemannian outward unit normal n along oU, we can
define a horizontal unit normal vector to OU by setting vy := ngy/||ng|| at each
point p € OU where ng(p) # 0. These points are the so-called “non-characteristic
points” of OU, and we write char (OU) to indicate the set of all characteristic points
of the boundary, i.e., the set of points p € U where ng(p) = 0. We recall that
if DU is of class C?, then char (9) is “small” (see, for more details, Remark 2.12
below). It is not surprising that the presence of the characteristic set char (OU)
is at the origin of most of the “pathologies”, at least from the Riemannian point
view, we are facing in the context of Heisenberg groups. Unfortunately, in general
char (OU) # 0; for instance, the characteristic set is always non-empty when U is
diffeomorphic to a ball. Outside char (0U) we set

uy :=vyg Jd(vg Au), Uy, =vgJdu,
and we obtain the decomposition formula

U= Uy +VH N Uy -
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As a first thing, we need a counterpart of the condition “either u,, = 0 or uy = 0”
of the Riemannian case. When dealing with horizontal forms, it becomes “either
Uy, = 0 or uy =07, which will be called “condition (DN)” later on. This boundary
condition represents the natural generalization to the horizontal geometry of OU of
the classical Dirichlet—Neumann boundary conditions. On the other hand, when
dealing with the Rumin complex, if J represents the linear operator known as
almost complex structure of H™ (see Section 4), then it is possible to show that the
condition “(Ju); = 0” implies that “u,,, = 0”. Thus the condition “either u, =0
or u; = 0” becomes “either (Ju); =0 or uy = 0.

Nevertheless, it is worth observing that these conditions are not sufficient in
order to prove our main results. In fact, we will need to introduce further boundary
conditions, obtaining three different statements. -

In Propositions 5.16 and 5.20 we introduce conditions (Jvg) and (Jvg). We
define also the horizontal Dirichlet integral as

Dir(w) = sl qeny + Idirulz g

With these preliminaries in hand, our first formulation of the Gaffney—Friedrichs
inequality for horizontal forms, which is stated in Theorem 6.1, reads basically as
follows.

Theorem 1.1. Let U C H" be a domain (i.e., bounded, connected open seQ with
boundary of class C2. If Q% (U) ®r C denotes the complezification of Vi (U), let
u € Q% (U) ®@g C be a horizontal h-form, with 1 < h < n, and assume that:

(i) w satisfies condition (DN) (see Proposition 5.11);

(ii) w satisfies either condition (Jvg) (see Proposition 5.16) or condition (JT/E)
(see Proposition 5.20).

Let V be an open neighborhood of char(OU) (in the relative topology). Then, there
exist geometric constants Co,C1 and Co (depending only on U, V, and on the
integers h and n) such that

(1.3) DH(u)+C0/ HuHQdUZC’l/ HVHuHQdV—Cg/ |2 V.
ouny u u

Remark 1.2. If u € Q% (U) ®r C is a horizontal h-form with n+1 < h < 2n,
then (1.3) still holds, provided that *zu satisfies (i) and (ii); see Remark 8.13.

We stress that condition (ii) above can be dropped if u is “K&hler-symmetric”
on the boundary dU, i.e. if u = ZI,J uI,ﬂ?I A Y7 satisfies ur,y = tuy on OU for
all 1, J; see Remark 5.18.

As a matter of fact, Theorem 1.1 is not completely satisfying because of the
presence of the boundary integral on the left-hand side of (1.3).

Roughly speaking, we had to cut-off a small region around char(9l), and this
requires two comments. First, trivially, Theorem 1.1 yields the precise counter-
part of the Riemannian inequality when char(0U) = () (this happens, for instance,
when U is a thin torus; see, e.g., [13]). Second, and more importantly, we observe
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that the boundary integral on left-hand side of inequality (1.3) cannot be reab-
sorbed on the right-hand side, as we do classically using Ehrling’s inequality. This
is due to the presence in the boundary term of the Riemannian measure do.

To be more precise, we would like to stress the following points:

- Functions in WH}I’Q (U) admit L2-continuous traces on the boundary oU with
respect to both measures doy (see [15]) and do on OU (see [2], [3]). How-
ever, in the first case, the trace map is compact under mild assumptions
on U (e.g., if OU is assumed sufficiently “flat” at characteristic points)
whereas compactness fails to hold, in the second case, near characteristic
points. Away from the characteristic set, the second result follows from the
first one.

- Both sides of (1.3) turn out to be continuous with respect to the convergence
in Wﬁf(u ,\" b1). The statement is trivial for the right-hand side, but is quite
delicate for the boundary term on the left-hand side, since it relies on the
trace theorems of [2], [3].

- Because of the lack of compactness of the trace operator from W&’z U) to
L?(0U, do), the L2-norm of the trace of u in the left-hand side of (1.3) cannot
be controlled with an arbitrary small constant § > 0 times the L?-norm of
V ru, and hence cannot be reabsorbed in the right-hand side.

Thus, in order to obtain a statement closer to the classical Gaffney—Friedrichs
inequality, we have to make a geometric assumption on the characteristic set of
the boundary OU; see “condition (H)” in Definition 3.4 below. In rough words,
condition (H) expresses the fact that characteristic points are isolated, and that ol
is sufficiently flat at these points. In fact, this assumption is somehow related to
the geometric conditions for trace theorems in [15], [2], [3] (see also [35]).

Subsequently, to avoid the presence of the boundary integral on the left-hand
side of (1.3), in Proposition 5.16 we introduce “condition (Jvy)”, a geometric
condition used in a second formulation of the main inequality (see Theorem 6.3),
which reads essentially as follows.

Theorem 1.3. Let U C H" be a domain with boundary of class C? satisfying
condition (H) (see Definition 3.4). Let u € Q" (U) @g C be a horizontal h-form
with 1 < h <n, and assume that:

(i) w satisfies condition (DN) (see Proposition 5.11);

(i) w satisfies condition (Jvy) (see Remark 5.18).

Then, there exist geometric constants C~'1 and 52, only dependent on U, and on
the integers h and n, such that

(1.4) DH(u)zél/ HvHuH?dV—@/ l|u||? dV.
u u

Remark 1.4. If u € Q}}{(Zj) ®r C is a horizontal h-form with n +1 < h < 2n,
then (1.4) still holds provided that *yu satisfies (i) and (ii), where *g denotes the
Hodge duality operator between horizontal forms.
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As above, hypothesis (ii) can be dropped if v is “Ké&hler-symmetric” on the
boundary.

In Section 7 we introduce two new conditions (see (7.2) and (7.3)). These are
then used in Theorem 7.1, which is our final formulation of the main inequality.

Theorem 1.5. Let U C H" be a domain with boundary of class C? satisfying
condition (H) (see Definition 3.4). Let u € Q" (U) @g C be a horizontal h-form
with 1 < h < n, and assume that either

(i) uy, =0,

(ii) w satisfies the condition (7.2),
or

(4) w =0,

(jj) u satisfies the condition (7.3).

Then, there exist geometric constants C, and 6’2, only dependent on U, and on
the integers h and n, such that

(1.5) DH(u)zél/ HvHuH?dv—@/ [|w|?dV.
u u

Remark 1.6. If u € Q}}{(Zj) ®r C is a horizontal h-form with n + 1 < h < 2n,
then (1.5) still holds, provided that *gyu satisfies (i) and (ii) or (j) and (jj).

As above, conditions (ii) and (jj) can be dropped if u is “Kéhler-symmetric”
on the boundary.

Finally, for the counterpart of Theorems 1.1, 1.3, 1.5 in the case h = n we refer
the reader to Theorem 6.7 (see Section 6).

Theorems 1.1, 1.3, and 1.5 have a natural counterpart in the setting of Rumin’s
complex; see Theorems 8.21, 8.23, and 8.24.

The three different boundary conditions just discussed naturally arise as a
consequence of an integration by parts that involves the (intrinsically 2nd order)
differential operator T. When performing this computation, we carry out some
elementary, but not trivial, algebraic manipulations that, in a sense, are modeled
on the standard Kéhlerian structures of H".

It is worth observing that the first and third conditions cannot be easily related
one to another and that the second condition turns out to be stronger than the
other two.

Let us give an overview of the organization of this paper.

In Section 2 we gather the basic notions concerning Heisenberg groups and
differential forms. We also state some more or less known preliminary results.

Section 3 is devoted to prove some trace theorems in H™.

In Section 4 we collect some standard results of Kéhler geometry in the context
of Heisenberg groups.

Section 5 contains the technical core of the paper, with explicit estimates of
the boundary terms that occur by integrating by parts the so-called horizontal
Dirichlet integral Dy.
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As a consequence of these estimates, in Sections 6 and 7, we state and prove
our Gaffney—Friedrichs-type inequalities in (2%, dp).

Finally, in Section 8, after providing a basic introduction to Rumin’s complex,
we state our Gaffney—Friedrichs-type inequalities in (Ef, d.).

Last but not least, the authors express their gratitude to the referee for his
deep and thoughtful advices and his invaluable help.

2. Preliminaries on horizontal forms

2.1. Heisenberg groups and horizontal forms

In this section we give a quick overview of Heisenberg groups and we fix our
notation. For more details, the reader is referred to [11], [22], [29], [43]. Let H™ be
the n-th Heisenberg group, identified with R?"*! through exponential coordinates
of the first kind. A point p € H" is written as a triple p = (z,y,t), where z,y € R"
and t € R.

If p=(x,y,t), p’ = (¢, y/,t') € H", then the Lie group operation is defined as

1 n
;. / /
p-p-—(x+:c,y+y,t+t+§z_: x5y — ))-

If p~! denotes the inverse of p € H", then p~t = (—z, —y, —t). Moreover, if ¢ € H"

and r > 0, then left translations and intrinsic dilations are defined by setting

TP :=q-D, Orp:= (rm,ry,er).

We endow H™ with the homogeneous norm

o(p) = ((ll=]

which is (up to a constant) the so-called Koranyi norm. The associated gauge-
distance is defined as d,(p,q) := o(p~! - q); see, e.g., [43]. The homogeneous
dimension of (H",d,) (w.r.t. the dilations J,) is the integer @ := 2n + 2, which
coincides with its Hausdorff dimension with respect to the metric d,. We notice
that @ is strictly greater than the topological dimension of H", which is 2n + 1.

Let b denote the Lie algebra of all left invariant vector fields of H". We assume
that the basis of § is given by

)1/4

2.+ ||y|]§n) + 2

Xi::axi—%at, }fi;:ayi+%at Vi=1,...,n; T:=29,

The only non-trivial commutation relations are [X;,Y;] = T for any i = 1,...,n.
The subspace b1 of h generated by the vector fields {X1,Y1,...,X,,Y,} is called
horizontal subspace. Denoting by hs the linear span of T', we have

h =51 Dho,

which simply means that the Lie algebra is stratified.
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Throughout this paper, we endow h with the inner product (-,-) that makes
the basis {X1,Y1,..., Xy, Y, T} orthonormal. We refer to (-, -) as the Riemannian
metric in h and we denote by || - || its associated norm. For later use, we set

ngfl = Xi, WQi :Y; Vizl,...,n; W2n+1 =1T.

For any f: H" — R of class C! we denote by Vi f the horizontal gradient
of f (ie., Vuf = Zf”l(Wif)Wi) and by Vf the Riemannian gradient of f (i.e.,
V=0 (WihWi = (Vuf, T1)):

Furthermore, for any C! horizontal vector field ® = Zz 1 ¢iW; we denote by

divg ¢ := Zz 1 Wi, the horizontal divergence of ® and by Ax the non-negative
horizontal sub-Laplacian (i.e., the Kohn Laplacian) defined, for any function f of
class C?, by setting

Agf:=—divyg (Vuf)= ZWQ

The dual space of § is denoted by /\1 bh. The basis of /\1 b, which is dual to the
standard basis {X1,Y1,...,X,,Y,, T}, is the family of covectors

{dmladyla .. 'admnadynaﬂ}a

where 9 denotes the contact form of H" given by o :=dt — 1 3" | (z;dy; — yida;).
The inner product on § gives rise to an inner product on /\ h, denoted in the same
way. In particular, (-, -) makes the basis {dz1,dy1, ..., dz,, dy,, 9} an orthonormal
basis. In accordance with our previous notation, we set

Yoi—1 i=dxs, Yoii=dy; Vi=1,...,n; Youq1 :=7.

We clearly have ¢;(W,,,) = 0] for every [,m =1,...,2n+1, where 6] denotes the
Kronecker delta function. The volume form of H" is the left-invariant (2n+1)-form

AV =1 A Aoy,
Set A\gh:=A’h =R and

/\kh::span{Wil/\~-~/\Wik:1§i1<~-~<ik§2n+1}::span\11k,
k
/\ bh:=span{;, A--- Ay, :1§i1<-~-<ik§2n+1}::span‘l/k,

forany k=1,...,2n+ 1.
If the degree k of the form is fixed and I = (i1, ...,%x) is a multi-index, then
we write

wI:: fl/\.../\fll)fk
The action of a k-covector 1 on a k-vector v is denoted by (u|v).
We observe that the inner product (:,-) can be canonically extended to A, b
and /\]C h in a way that ¥; and ¥* are both orthonormal bases.
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The above definitions can be reformulated by replacing b with the horizontal
subspace h; and by setting

/\khl s=span{W;, A AW; 1 1<i3 <-- <ip<2n},
k
/\ b i=span{; A Ay, 1 <iyp < - <ip <2n},

for any £ = 1,...,2n. By definition, the symplectic 2-form of H™ is given by
49 = =30 da; Ady; € N2 by

If 1 <k <2n+1, the “Hodge star operator” and its dual operator (denoted
in the same way), i.e.,

s\ b b oand < A\ be AT,
k 2n+1—k

are the isomorphisms defined, for any v,w € A\, h and ¢, € /\]C b, by
vAsw:= (v, w) Wi A+ AWappr and @ Axth = (o, ) b1 A+ Athapy.

For any v € /\, h we define v* € A" b via the identity (v*lw) = (v,w) for any
w € A\, b. The inverse operator on covectors is denoted as o — a.

It is well known that the Lie algebra b can always be identified with the tangent
space at the identity e = 0 € H", ie.,, h = T, H". In particular, h; can be
identified with a subspace of T.H", denoted by A, bhi. Moreover, A, by defines
by left translation a smooth subbundle of the tangent bundle TH"™ which, with
a slight abuse of notation, is still denoted by A;bhi. By definition, the sections
of /\1 by are called horizontal vector fields.

Analogously, if 0 < h < 2n + 1, then /\hh defines by left translation a vector
bundle still denoted by /\h h and if 0 < h < 2n, then /\h b1 defines (again by left
translation) a vector bundle still denoted by /\h by.

If 0 < h < 2n+1, we denote by Q" the vector space of differential h-forms on H"
(ie., the vector space of all smooth sections of A" h). Furthermore, if 0 < h < 2n,
we denote by Q% the vector space of horizontal differential h-forms on H" (i.e.,

the vector space of all smooth sections of A" by).

Definition 2.1. Let o € Qf}{ Throughout this paper, we shall set
dya:=da—9NLra,
where the symbol L stands for “Lie derivative” along the vector field T

Roughly speaking, the operator dy represents the exterior differential along
the horizontal distribution and is only defined for any h-form o € Q" such that
ir(a) = 0, where the symbol ip stands for “interior product” of o with 7', which
is defined by the formula

(iz(a)[v) = (alT A )

for all v € A\, _; b; see, for example, [33], p. 235.
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We recall the following useful identity: If XY are vector fields, then

[Lx,iy] =ix,v];

see Corollary 6.4.12 in [1].
Moreover, we define the “horizontal Hodge star operator” and its dual operator
(again denoted in the same way), i.e.,

*H /\]C b1 — /\27171C by and g : /\]c b1 < /\27171C b1,

as v Axgw = (v,w) Wy A -+ AWa, and oy A xgth := (p, )1 A -+ A by, for

every v,w € N\, b1 and every ¢, € /\]c b1

We notice that, under our current assumptions, we have (d:!)n = U1 A Aoy
see, e.g., [31], p. 44, Remark 1.2.22.

The next identities follow from [38], p. 292.

Lemma 2.2. Ifk>n and § € /\k b1, withn <k < 2n, then
xpfB =0 A B).
If0<k<n andae/\kbl, then
sa = (—1)F9 A xga.

For the sake of completeness, we recall some standard results concerning wedge
product and interior multiplication; see Definition 2.11 and Propositions 2.14
and 2.16 in [14].

Definition 2.3. If a € QF and e Qf with 1 < ¢ < k<2n+1, we set
pda= (=1 % (uA (x)).
Lemma 2.4. If1<k<2n+1,acQF e QF ! and n e Q', then
nwla=i

#bOé.

Moreover, we have
(1, B) = (@, u A B).

By using Lemma 2.2 we obtain the following.

Lemma 2.5. If a € QF and p € Q%, with 1 <0 <k <n, then
pda=xg(pAxga).

In addition, we need to recall a useful result.

Lemma 2.6. Ifa € QF, 3 € Q% and v € Oy, with 0 < k+ £ <r < 2n, then
(@A B)dy = (=) ad(Bd).
Moreover, if k +{ =r, then
(@A B,y) = (=D *DBady) = (-1)¥a,817).
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We also define the horizontal codifferential 0 Q};I‘H — QF by setting

5H Z:—*HdH*H.

Observe that
[ Guas) av = [ (a.dns) av

Hn

for all € Q"1 with compact support. Finally, let Ap: Qf}{ — Q}}{ be the
horizontal sub-Laplacian operator defined as

Apg :=dydg +dupdpy.
Definition 2.7 (The operators L and A). From now on, we shall set
La:=—ddNa, AN:=L7,
(i.e., L* denotes the adjoint of L w.r.t. the inner product (-,)).
The following identity can be found in [38]; see also [44].
Lemma 2.8. If « € \" b1, then we have [A, Lja = (n — h)a.

Note that
(iza, B) = (a, Z% A )

for every a € /\h+1 by, B € /\h b1 and Z € A\, 1. Hence, it follows that
A=) iy ix,.
k=1

2.2. Decomposition of forms on the boundary of a domain I

We begin with the definition of horizontal normal to the boundary of a domain
(i.e., bounded, connected open set).

Definition 2.9. Let £ C H" be an open set with boundary F of class C'. We
denote by ng the (non-unit) horizontal normal to OF defined as follows: ng is
the Riemannian orthogonal projection on A; h; of the Riemannian outward unit
normal n to 0F. Thus we have n = ng + npT.

In particular, if (locally) OFE = {f = 0}, where f: H® — R is a C! function
with non-vanishing horizontal gradient, then ng = ||V f||~'V g f, where Vf is the
Riemannian gradient of f and ||V f|| denotes its norm.

We define a horizontal unit normal vector to OF by setting vy = ng/||ngl|
at each point p € OF where ng(p) # 0. These points are the so-called non-
characteristic points of OE and we usually write char (OF) to indicate the charac-
teristic set of OF (i.e., the set of points p € OF where ng(p) = 0). We explicitly
note that vy = 21221(’/H)1Ww where (vy)i := (v, W).

To avoid cumbersome notation, in the sequel we will still denote by n, ng

and vy, their dual 1-forms n#, nﬁ and Z/I#I.
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Besides, we adapt to our framework a standard notation; see, e.g., [14] or [42].
More precisely, we shall set

a=vgdve ANa), a,, =vgda Yae Q).
We thus obtain the useful decomposition formula
a=a+vgAay, YaeQhWU).
The next result will be needed later.
Lemma 2.10. If a € Q% then
(2.1) v ANay, =0 if and only if oy, = 0.
Proof. Suppose that vy A o, = 0. By Lemma 2.4 one has
0= (vg ANayy,,a) =g Alvg da),a) = (vg Ja,vg Ja) = |, |*
The reverse implication is trivial. O

We conclude this section by recalling the horizontal Green’s formulas valid in
our setting; for similar statements, see Theorem 4.9 in [7].
Here and elsewhere, we make use of the standard notation D = Cg°.

Definition 2.11. Let & C H" be a domain with boundary of class C?2. For every
o, € Q" U) == DU, \"b), we set
<a7/8>L2(Z,{) = /Z,{ <Oé,ﬂ> dv

In addition, if o € Q& 1(U) := DU, \" "' b1) and 8 € Qi U) := DU, \" b1)
are intrinsic forms, it follows that

(2.2) (dre, B) 2@y = (@, 0uB) L2y + /8u (nAa,f) do.

These formulas also hold when o € C*(U, /\hi1 h), B € CL(U, /\h by).

Note that the outward unit normal n(p) at any point p € U is given by
n(p) = ng(p) + nr(p)T, where ny(p) is the (orthogonal) projection of n(p) onto
the horizontal subspace A; b1 at p € OU. Thus, after the natural identification

n = n¥, we get (nAa,B) = (ng Aa,B), since both a and 3 are horizontal.
Eventually, we obtain the formula

/ (nAa,p) dU:/ (ng Ao, B) daz/ (vg Na, ) dop,
ou ou ou

where o denotes the intrinsic perimeter measure in H”.

2.3. Perimeter measure in H"™

We briefly recall the notion of intrinsic perimeter measure in Heisenberg groups
and some related facts.
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As already said in the introduction, if £ C H" is a measurable set, an intrinsic
notion of H-perimeter measure |0F|g» has been introduced in [28]; we refer the
reader to [28], [18], [19], [20] for a detailed presentation. Here, we just have to
recall that, if E has locally finite H"-perimeter (i.e., E is a H-Caccioppoli set), then
|OF|m» is a Radon measure in H", which is left-invariant and (2n+1)-homogeneous
(with respect to the dilations ;).

By definition, the 2n-dimensional Riemannian measure of OF, later denoted
as o, is obtained by wedging together the elements of an oriented orthonormal
coframe for JF and, because of its role in integration, we adopt the notation do,
when it appears under the integral sign.

Remark 2.12. If 9F is of class C?, the characteristic set char (OF) turns out to
be “small” since both its H"™-perimeter measure and its 2n-dimensional Euclidean
Hausdorff measure vanish. For later purposes, we recall that the Riemannian
measure o is equivalent (in the measure theoretic sense) to the Euclidean mea-
sure H2". Hence, under our assumptions, o(char (OF)) = 0. For further properties
of char (OF), see, e.g., [17], [25], [16], [9], [10].

We also need the following representation formula; see [12].

Proposition 2.13. Let U C H" be a bounded open set with boundary OU of
class CL. Then U is a H"-Caccioppoli set. Furthermore, the H"-perimeter measure
s absolutely continuous with respect to the Euclidean 2n-dimensional Hausdorff

measure H*". More precisely, if A C H" is an open set, then
n

1/2
el = [ (S (e + Oinida)) = [ s do
oUNA ainA

i=1

ou

where n is the Euclidean outward unit normal and do denotes the 2n-dimensional
Riemannian measure along OU.

Definition 2.14. Let 4 C H"™ be a bounded open set with boundary oU of
class C!. For the sake of simplicity, throughout the paper we write

om = |0U|mn.

3. Boundary terms and the trace map

3.1. Trace theorems in H™

From now on we shall assume that I/ is a domain with boundary Ol of class C2.
Firstly we state a trace theorem away from characteristic points.

Theorem 3.1. Let Y C H" be a bounded open set with boundary of class C?. Let
YV C OU be a neighborhood of char(OU). Then, there exists a geometric constant
Cy,u > 0 such that for any 0 < § < 1 one has

(3.1) / lu|? dog < Cv,u,g/ |u|2dV+5/ |V grul|® dV,
U\V u u

for any u € CY(U), where Cy 15 := Cy y + 012,7“/5,
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Proof. Let ¢ € C}(0U) be such that ¢ =1 on dU\V and ¢ = 0 on V' CC V. Now
let vy denote the extension of vy to OU defined as vy := ry. This extension
is a horizontal vector field of class C' on dU coinciding with vy out of V. With
a slight abuse of notation, we denote by vz any C' horizontal extension of vg
to the closure of U, i.e., vy € C1(U). Tt follows that both ||vg|| and divy (vg)
are continuous functions on U and hence they are both bounded by some positive
constant Cy i, only dependent on V and U. By the previous assumptions we get

/ |U|2dO'H = / |’LL|2 <I/H,Z/H> dO'H
AUN\Y AUV
_ / (2 (Ve — 771 + 72, vat) dos
aU\Y

= / lul*(ve — vm) ,ve) dog +/ lul? (Ve ve) don
ou\v PIANY

=0

< / |u|2 (vm,vy) dog (since (v, vh) = @ on VN OU)
ou

_ /au (ul?75) ,vir) dow.

By the divergence theorem for C? hypersurfaces and the very definition of the
H"-perimeter measure oy, we can make the following calculations:

| Qo) v dow = [ diva (u7i) dv
ou u
:/ luf2 div g (VT{)dV+/2|u| (Vlul, 771 AV
u u

<Cyu (/ |U|2dv+/ 2|“|||VH|“|||‘”/)'
u u

Finally, since

C\%,Zx[ 2 2 C\Q),U 2 2
20y y |ul ||V lul]| < 5 [ul® +6[| Vg ul]|” < 5 [l +6||Vaul,

the claim easily follows. O

Notice that (3.1) contains the “error term” [, . |u|®do, which depends on
the choice of V. This is a novelty with respect to the classical trace theorems. The
error is actually related to the presence of characteristic points on 0U, as will be
shown in Example 3.10 below.

Remark 3.2. In the Riemannian setting, a “global inequality” akin to (3.1) follows
by Ehrling’s theorem (see, e.g., [42], Lemma 1.5.3), provided that the trace operator
T: WE3(U) — L*(0U,do) is compact. Later on, in Definition 3.4, we introduce
a geometric assumption on U that is called “condition (H)” implying that an
Ehrling-type inequality still holds for the norm in L?(0U, dog) (see Theorem 3.9).
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Thus, to get rid of the “error term” in Theorem 3.1, we need an assumption on
the domain U, ensuring that its characteristic set char(0lf) contains only isolated
points and a certain amount of “flatness” at the boundary, near char(ol).

Remark 3.3. Locally near any point py € char(0lf), the boundary is a t-graph
(i.e., Euclidean graph with respect to the hyperplane ¢ = 0). Hence (locally
around pg) there is a C? defining function g: H* — R, g(z,y,t) = t — f(z,y),
such that

Nu = Vag = Valt = f(z.y) = (=5 = Vaf. 5 = Vuf),

where we recall that ny = Ny /||Vyg|| and vy = Ny /||Ng||. By compactness, there
must exist a finite set {V; : 4 =1,..., N} made of open subsets V; C OU such that
char(0U) C Uf\il V;. Shrinking these sets, if necessary, we can assume that each V;
is a t-graph of class C2. Note that any characteristic point py € V; N char(dlU) can
be thought of as standing at 0 € H". This second claim follows by left translating
the set V; by —pg. Thus, if f;: V; € R?™ — R is a C? function such that

Vi={p=(z,y,t) eH" : t = fi(x,y) V(z,9) € Vi},

we can always suppose f;(0,0) = 0 and Vpes f;(0,0) = 0. In this way, the point pg
corresponds to 0 € H™ (here and elsewhere, (0,0) denotes the null element in
R™ x R™ = R?"),

We introduce a condition prescribing the behavior of OU near char(oU).

Definition 3.4 (Condition (H)). We say that the domain U satisfies condition (H)
if there exists a finite family {V; : i = 1,..., N} of open subsets of Ol such that
char(0U) C Uf\; V; and V; NOU is the t-graph of some function f;: V; C R?" — R
of class C?, i.e

Vinou ={p=(z,y,t) eH" : t = fi(w,y) V(z,y) € Vi}

and )
[Hessgen fi]] = O(INS )

for any i = 1,..., N, where N(i) = (—y/2—=Vafi,x/2 =V fi).

Below we shall set ||(z,y)| = \/||z]|2. + [[y]2. for any (z,y) € R*".

Lemma 3.5. If condition (H) holds, then char(OU) is discrete.

Proof. Without loss of generality, by Remark 3.3, let 0 € H" be a characteristic
point of U N'V;. In particular, we have f;(0,0) = 0 and V gz. f;(0,0) = 0. Hence
IN (@, 9)lll < Cll(z,y)] and

|Hessgen fil| = O(||(x,y)||) near (0,0) € R?".
Again, by the mean value theorem,

IV gen fill = O(ll(z,9)[I*)  near (0,0) € R*".
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Then, at each point (z,y) # (0,0) we have

ING @) = |5(~3.2) = Tao £ 2 5 @) = Cll)IP] > 0

2

near (0,0) € R?". This means that the characteristic point 0 € oU NV is an
isolated point of char(9U). O

In order to better illustrate the above condition (H), we consider a special case
of domains in H" satisfying it.

Remark 3.6. Suppose that, in a neighborhood of 0 € U, the boundary Ol is
the t-graph of the function f(z,y) = ||(z,y)]|*® for some a > 3/2. One checks that
INg| = O(||(z,y)|]) and that ||Hessgen f|| = O (||(z,y)||*@~V). Taken together,
these facts show that condition (H) holds.

Next, we state a useful compactness criterion.

Theorem 3.7. Let U C H" be a bounded open set of class C?. Let X be a Banach
space and let L: W}{’z(U) — X be a continuous linear map. Then L is compact if,
and only if, the following property holds:

For any 6 > 0 there exists C(§) > 0 such that
[Lullx < 6[|Vaullr2@y + CO)l|ullL2w)-

Proof. The “only if” part is the well-known Ehrling’s inequality (see, e.g., [42],
Lemma 1.5.3). Thus we prove the “if” part by showing that L is completely
continuous. Let (un)nen be a sequence in W}ll’z(U) that weakly converges to 0.
Then there exists C' > 0 such that ”u””W}{’?(L{) < C for all n € N. Moreover, by

Rellich’s theorem (see, e.g., [28], Theorem 1.27) u,, — 0 strongly in L?(U/). Take
now ¢ > 0 and set 0. := ¢/(2C). In addition, choose n. € N such that

lunllL2@y < %(55) for all n > n..

Then

e g
I Lnllx < 0 [Virullizan + CO)lullzen < €55 + C0) 3555

:57

which shows that Lu, — 0 strongly in X, as wished. O

Lemma 3.8. Let U C H"™ be a bounded open set with boundary of cla55_02 and
suppose that condition (H) holds. Then there exists a C! function tiy: U — R?"
such that:

(i) Hg—gl = vy on OU \ char (OU);
(ii) divgng = O(|nx|);

(iif) (i, Vrliml?) = O(0m|?).
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Proof. First of all, we notice that the problem can be localized near the boundary
by introducing a cut-off function supported near OU. Indeed, if iy satisfies (i)—(iii)
in a neighborhood M of dU, and if ¢ is a cut-off function supported in M such
that v = 1 on a neighborhood of 9U, then yny is a C' function on U/ that trivially
satisfies (i). In addition

divg (Y1ig) = Ydivg (Mg) + (Ve in),
which is still O(||ng||). Analogously,
(Yiig, Vi |[yig|*) = |8u @, Vae) + 0> @u, Valial?) = O(|5u|?)

when |1y || — 0. Therefore also (iii) holds.

Now we have to define ngy away from the characteristic points and in each set V;
(i =1,...,N). Then the global extension ny is obtained by gluing up the local
extensions by means of a partition of unity.

Clearly, away from characteristic points we can take ng := vy, since vy is a
continuously differentiable function. Since Ny never vanishes, (ii) and (iii) can be
replaced by divy iy = O(1) and (g, Vg |[iig||?) = O(1), respectively.

We are left with the case of one of the V;’s. Let ¢ € {1,...,N} be fixed
and, for simplicity, we omit the index ¢ in this proof. For any point in V we put
ng(z,y,t) := Vg(f(z,y) —t). Since ng(x,y,t) # 0 for (z,y,t) # 0 (recall that
0 € H™ is an isolated characteristic point of dUf), it follows that at any point in
V \ char(0U) one has

ﬁH(xvyvt)

)= .
vi (7, y,t) |te(z,y,t)l

This proves (i). Moreover, up to the sign, divyny equals the trace of the Hessian
of f;, hence it is locally bounded and (ii) follows.
Finally, we prove (iii). For any j,k =1,...,n, one has

(% o, 5) (% - 22,7)

1 Zj

Tp
(5 = 00 f)02, = 50,0 + 2

la;chﬁHﬂz _ Z (y?k + &Ckf)@ﬁjxkf +

>
k=1
zn: (%k 0 f )02 0 f —

~ 1 €T
= Olinl?) - 50, +

M+ I14-

=~
Il
—
=~
Il
—

Here we used that the sum of the two first terms in the second line above is nothing

but the inner product between Vg (f(x,y) —t) = ng(x,y,t) and the j-th column

of the Hessian matrix Hess gz~ f, which can be estimated by using condition (H).
Analogously, it turns out that

1 - - 1 Yi
5 0 |* = O |*) + 500, f + 5
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Therefore, we get

o i, Vil ) = i, O (i) -X R (o) + 2R (T o)

J
SR B SE CN)
J
= <nH78(IlnHH )) = O(|[au|?),
as wished. O

We conclude this subsection with the following Ehrling-type inequality.

Theorem 3.9. Suppose that U C H" is a bounded open set of class C? satisfying
condition (H). Then, for any 6 > 0 there exists C(§) > 0 such that

I TullL2ou,dow) < 0NV aU] L2000 + CO) l|ullL2@)
for any w € CY(U). In particular, the map
T W5 U) — L*(0U, dog)
18 compact.

Proof. Let vy :=1npg/\/7% + ||igl|?, where 7 € R. By Lemma 3.8 we have

/ |u|2d0H:/ |u|2<—EH ,I/H>d0H
ou ou ||nH||

= lim |u|2 <l/}r{,l/H> dog = lim / dlvH(|u|21/IT{)dV
T—0 u

7—0 ou

On the other hand,
/ divg (Jul®vy) dV = 2/ (uV gu,viy) dV +/ lu|2divey (V) dV =: I + L.

u u u

By using (ii), (iii) and Lemma 3.8, we get that
d1anH / VHHHHH /
2 2
u = —5 [ |ul*(n2a, = av < C [ |ul”dV.

o= o a8 G ) 4 <

Moreover,
C2
I < 20/ |uV gru| dV < 5/ |V grul® dV + —/ lu|? dV,
u u 0 Ju

completing the proof of the first part of the theorem. The second part follows from
Theorem 3.7. O
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Example 3.10. We already pointed out that an Ehrling-type inequality for the
norm in L?(0U, do) is true for general C? open sets U away from characteristic
points, as we can see using Theorem 3.9 and keeping in mind that do and doy are
equivalent away from char(0U/). However, the example below shows that Ehrling’s
inequality (and hence compactness of the trace, which is still continuous by [2],
[3]) fails to hold for the norm in L2(0U, do), even for sets satisfying condition (H).

Let o(p) be the Kordnyi norm, let By(1) := {p = (z,y,t) € H" : o(p) < 1}
and set U = {t > 0} N By(1). The hyperplane {t = 0} has a unique isolated
characteristic point at 0 € H". In particular, let S := oUN{t = 0}, u € D(By(1)),
and denote by Tu the trace of u along the boundary.

Now, let us analyze the (possible) validity of the following statement:

(32) Ve>03C.: / (Tu)Qdage/ IV sl 2dV +C. / W2V .
So u u
::HT“H2L2(SO) =:HVHUH22(W =5H“H2LQ(W

By a homogeneity argument, we show that (3.2) cannot hold. To this aim, set
ug = K"u(Kz, Ky, K*t)

for some K € Ry, and suppose that u # 0 along Sy. It is elementary to check the
following identities:

¢ HTUKH%?(SO) = HTUH%%SO),
° HVHUK||2L2(1,{) = ”vHUH%%u)a
¢ K2||UKH%2(M) = H“H%?(u)'
By assuming the validity of (3.2), with u replaced by ug, we get
Ve>03C: |[Tuk|zs,) < ellVaurlizgy + Celluxlizqy-
Hence
Ve>03C: Tullas, < <IVaulbae + palulloe).

By the arbitrariness of e, K € R (and since the L2-norm of u can be assumed to be
fixed) one readily obtains that the trace of u must be zero, which is a contradiction.

Remark 3.11. When there is no possibility of misunderstanding we shall write u
instead of Tu.

4. Kahler geometry in Heisenberg groups

4.1. Basic notions of Kdhler geometry in H"

We now introduce the Kéahlerian structures of H", in order to make some explicit
computations, and recall some lemmata from [38], which will be used in sequel.
Firstly, we note that the base manifold of the n-th Heisenberg group H" can al-
ways be identified with C™ xR, so that any point p = (z,y,t) € H" is seen as a cou-
ple (z,t), where z=(z1,..., 2k, ..., 2n)EC™ and z, = x + iy for any k=1,...,n.



GAFFNEY—FRIEDRICHS INEQUALITY IN HEISENBERG GROUPS 663

Let J be the unique endomorphism of h; (“almost complex structure”) such that
J? = —Id, d¥(Zy,JZ) = —dI(JZ1, Za)

for all horizontal vector fields Z1, Z> € A, b1 (in particular, one has Y; = JX; and
X;=-JY; foranyi=1,...,n).

It is not difficult to check that the inner product (-,-) in by is precisely the
Riemannian metric compatible with both the almost complex structure J and the
symplectic form di}, since

dd(Z1, Zs) = (Z1,J Z3) .

One has J* = —J, and hence (JZ1, JZs) = (Z1, Z3) for any Z1,Z> € A\, b1.

It is a standard fact that an almost complex structure J induces a bigrading
on A\; b1 ®r C (i.e., the complexified horizontal subspace); see [31], p. 27.

Thus, we have A, h1 ®@rC = /\1,0 b1 EB/\O’1 b1. This bigrading naturally extends
to the complex of horizontal differential forms; see [38]. In particular, we have
Qf ©r C = 3, ., 57, where we recall that Q7 = Q}F. The (real) inner
product on A; b1 extends in the obvious way to a (complex valued) Hermitian
inner product on the complexification /\; b1 ®g C, still denoted as (-,-). Clearly,
one has (av, bw) = ab(v, w) for every v,w € A; b1 and every a,b € C. We now set

X, — iV Xp+iVy |
Zy, = M, Zg = M(: Zk) Vk=1,...,n.
V2 V2
The family of horizontal vector fields {Z1, Z7, ..., Z,,, Z} is an orthonormal basis
of A;bh1 ®r C (w.r.t. the Hermitian inner product induced on the complexified

horizontal subspace). For each k, let 9% := Z ;jé , ok = Z%’é . By duality, we get that

{01, 9%, ..., 9", 9"} is an orthonormal basis of A" h; ®r C = A" h & A" h1. We
notice explicitly that

%:d:ck-i—idyk and ﬁgzzgzdﬁ:dmk—idyk.

V2 V2 V2 V2

It is easy to see that JZ, = iZy and JZ; = —iZ;. Denoting still by J the
operator induced by J on differential forms, we have

_ g#
ok =27 =

Ja=i""a YaeQ?erC,
and if I179: QO @r C — Q57 denotes the natural projection, we get
J= % @t on
p+q=h
see [31], Definition 1.2.10.

Definition 4.1. Let 0 = Zj, and Op:=Zpforany k=1,...,n.
Ifu=5", uI,ﬂ?I A7, we will set:

o Jpu:= ZI,J(Z]QU[,J)&I A ﬂj and 8Eu = ZI’J(ZE’LL[’J)ﬁI A ﬁj,
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e cpu=19"Au and e;u:ﬁ‘z/\u,
e igu:=izu and it =iz,
for any kK =1,...,n. In Kédhler coordinates, it turns out that

n n
L:iZekeE and A:iZikiE;
k=1 k=1
see Definition 2.7.

Just as in [38], p. 294, we can prove the following result.

Proposition 4.2. Let 1 < p,q <n. We have

n n
g ety =pIld on Q%Y and g erip=qld on QL%
k=1 k=1
As a consequence,

n

zn:ekik = zn:pﬂp’q and zn:e,;i;; = Zqﬂp’q.
k=1

p=1 k=1 q=1
Again, one has A = L* (w.r.t. the Hermitian inner product). We use the
decomposition
(4.1) dy = dy’ +d%',

where d};,oz bt — Q%H’q and d%’lz oyt — Qﬁqﬂ. Moreover, for notational
simplicity, we write 0 := d}i’o and 0 := d%’,l, so that (4.1) reads as

dg =0+0.
We stress that if u € Q°, then
(4.2) 1ull? + 10ull® = |V srul%.
Furthermore, we have
Ok =10 and O := izg for every k=1,...,n.

In the sequel, we shall need the multi-index notation. More precisely, let I, .J
be multi-indices such that p; := |I| and ¢y := |J| (with pr,q; < n), so that we can
assume that I = (i1,...,ip,) and J = (j1,...,7q,). Set now 9 := 9 A .. AYier
and 97 := ¥t A - AWas. We observe that if h = p; + ¢, the elements 9! A 97
form a basis of Q% ®gr C. Hence, using Kiihler coordinates, any u € Q% ®g C can
be uniquely written as u = >, ur 9 A9, |I| = pr, |J| = q, with b = pr + q.
Finally, we set

dfy == J YdyJ, 6% = J 1ol
It is not difficult to see that the following identities hold:

*

dfy = J Yy J = —i(0—9), 0f =J touJ =i(0* -9,

where 9* and @' are the L2-formal adjoints of 0 and 0, respectively.
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The calculation below can be found, for instance, in [38].
Lemma 4.3. The following chain of identities holds:
n n n
inT =" 00— 00 = — (Y Opind) — (= Y Ouigd) =00 - 37D,
k=1 k=1 k=1
We recall the Kdhler identities; see, e.g., Proposition 3.1.12 in [31].

Lemma 4.4. We have [A,0] = i0" and [N, 9] = —i&*. These identities in turn
imply that [0*, L] = —i0.

For the next proposition, see, for instance, either formula (8) in [38], or [47],
pp. 41-43.

Proposition 4.5. With the previous notation, the following identities hold:
(i) [A,dr] = —o7;
(i) [A,dff] = 0n;

(iii) [A,6%] =0.

4.2. Kahler geometry of domains in H"

In Kéhler coordinates, we have

n —
ny Enﬁ = Z (nkﬂk—l—ngﬁk) :n};O+n?1’,1,

k=1
where np” == S"7_, np 0, and n%" = 37 np 9. Accordingly, we set
L0 01
1,0 H 0,1 H
vy o= and ;o= .
7 gl 7 gl

The operators 0 and 0, and their adjoints 0* and 9, satisfy the integration by
parts formulas below:

/u<aa,5>dvz/u<a,a*ﬂ> dv+/ (0’ A, B) do

ou

(4.3) :/u<oz,8*6> dV+/ <V}{’O/\a,ﬁ> doy

ou

for every o € Q’I’;l’q,ﬁ e Q7. and
/<3a,ﬂ>dV:/ <a,5*5>dv+/ (n}' Aa, B)do
u u au
(4.4) _ / (0, 8)dV + / (O Ao, B) doy
u au
for every o € Q’I’{’qfl,ﬁ e Q% see, e.g., [37], Chap. 3. More generally, all these

formulas hold when a and /3 are horizontal differential forms of class C' on U (i.e.,
o e CHU, N8 @r C) and 8 € CY U, A" by @r C)).
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5. Boundary conditions and estimates of the boundary terms

5.1. Horizontal Dirichlet integral

Let U C H" be a domain with smooth boundary of class C2. Below, we introduce
the notion of horizontal Dirichlet integral.

Definition 5.1. Let u be a horizontal differential form, either in Q" (U) or in
Q}I’{(U) ®r C, with 0 < h < 2n. We define the horizontal Dirichlet integral as

Furthermore, if 1 < h < n, we set

1

Dil(u) :=Dpy(u) — T

The main purpose of this section is to write the horizontal Dirichlet integral
of u as the L?-norm of Vyu up to an error term that will be estimated later in
Sections 5.2 and 5.3.

Proposition 5.2 (see [38], Proposition 2). We have
n
Ay =Ag —1 Z (ekik — e,;i,;) L.
k=1
In particular, if u = ZLJULJW AT e QO (U) @r C, with |I| = pr, |J| = q7, and
h=pr+qs, then

Agu = Z(AH“LJ) 9 A 19‘7,
1,7

where
Agury = Agury—i(pr —q7)Tur, .

Proposition 5.3. Let u € Q}}I(Zj) ®r C, with 0 < h < 2n. Then
(5.1)  Du(u) = / (A, u)dV + / (dagw,n A ) — (g, ng u)) do.
u au

In addition, if u = ZLJ’UJ,J'ﬁI A7, then
/ (A, u) dV = / IV sul]2 dV
u u

- Z/ (dgur,g,npg)ur,ydo — iZ(pI - QJ)/ ur, g Tur, s dV.
77 Jou u

I.J

(5.2)

Proof. Assertion (5.1) is just an integration by parts. We have to prove (5.2).
Keeping in mind that if v € C*(if) is a (real or complex) 0-form we have

/{AKU,v>dV:/(de,de>dV—/ v{dgv,ngy),
u u ou
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we compute

/(AHu,u> dVZZ/ ur gjAgur,gdV
u 1,074

= Z/<dHUI,JdHUI,J>dV_/ (duur,j,ng)ur, jdo —iZ(pI—QJ)/ wr,gTur,;dV
—Ju ou I u

= Z/ IV aur,||*dV —/ (dgur,y,nmg)ar, g do —iZ(PI—(JJ)/ tr,gTur, ydV
T Ju au u

1,J

:/ ||VHUH2dV—Z/ <dHuI,J,nH>’U],JdU—’L'Z(p]—QJ)/’E],JTUI,JCZV.
u 77 Jou u

I.J
O

Remark 5.4. Let us consider the following boundary integral:

/ f(u,VHU,nH) dO',
ou

where u € Q% (U) ®g C and f is a (real-valued) continuous function that is linear
in the third argument ngy. Let V. C 0U be a family of open neighborhoods of
char(OU) shrinking around char(0lf) as long as e — 0; in particular, we assume
that Ve, € V., if €1 < €2 and that o(Ve) — 0 as ¢ — 0 (by Remark 2.12 we already
know that o(char(olU)) = 0 = op(char(oU)).

By remembering that dogy = ||ng|/do and that outside char(dlU) we have set
vy =ng/|nul, we get

/ f(u,VHu,nH) do = lim f(u,VHu,nH) do
au =0 Jou\v.
= lim f(u, Vau, Z/H) dog =: / f(u, Vrau, VH) dog.
=0 Jou\v. AU\ char(dU)

Combining Proposition 5.3 and Remark 5.4, we get the following corollary.

Corollary 5.5. Let u € Q% (U) ®g C, with 0 < h < 2n, and let us set

A= — Y (dgur,y,vy)ur,g
OU\char(0U) Iz;

+ ((dHu,l/H Au) — (0gu, vy u))) dog,

and

n

B = iZ(p[ — (JJ) /u ’l_l,],JT’U,[,J dV = ’i<£TU, Z(ek i — 6];1']})U>.
7

k=1

Then, we have

(5.3) DH(u):/ HVHuHQdV—i—A—B:/ IV ul2dV + Re A — Re B.
u u
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5.2. Estimate of the term A in (5.3)

The aim of this subsection is to show that we can write
A= —/ ((dauy,,ut) + (pgug, uy, ) dog + “error term”,
OU \char(0U)

and to provide sufficient conditions on the traces of u on the boundary U to
guarantee that

/ (At ) + (St ) dorsy = 0;
OU\char(oU)

see Proposition 5.11 below.

Definition 5.6 (The maps Ry, R2). Let U C H" be a domain of class C2, let
WH € Cl(ﬁ,/\1 h1 ®r (C), with 0 < h < 2n. We define the maps

Ru, Ry € (T N\ by @n.C) — (@ N\ b1 @2 C)

by setting

(5.4) Ri(u) = RY™ (u) =Y ur g dpg (g A (07 A07)),
I,J

(5.5) Ro(u) = RE™ (u) := Y ur,y o (um A (9" A7),
I,J

where u = ZLJuLﬂ?I/\ﬂj, lI| = pr1, |J| = qs, and h = p; + q;. We also set
R (u) =0if h =0 and R" (u) =0 if h = 2n.

Note that the maps R} (u) and R4 (u) are both linear in u and pg. The
preceding definition is inspired by [14]; see Definition 5.1, p. 103. As a matter of
fact, these maps turn out to be very useful because of well-known properties of the
Lie derivative and, in particular, of Cartan’s formula and of its dual version.

Remark 5.7. Let u = ZI,J uy g9 A 9. By using Cartan’s formula and its dual
version we get:

(1) Ly (u) =prtdpu+dy(pn Ju);
() Lyugy () = (=)= sy £, (kpru) = —ppr A e — Spr(porr A ).

In particular, one has RS (u) = (—1)"Z"=1) sy R (xgru).

In addition, the following hold:
(i) Lo () = X (drurs, pa)d" AT + RE (u);

(iV) Loy (0) = X fAduur,g, pe)0" A9 + RE™ ().
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Hence we obtain the identities:

> duug g, pa)d" A 07 = g Jdpu+ dp (p - u) — RE (u)
1,J
(5.6) = —pug ANopgu—dp(pr Au) — RE™ (u).

All these formulas can be checked by direct computations, as in the Euclidean case
for which we refer the reader to Chap. 5 in [14].

If in Remark 5.7 we take pg = vy, we obtain the following result.
Lemma 5.8. Let u = ZLJuI’ﬂS‘I AYT. Then

> arg(drur, g, ve) + (R (w),ue) + (RS (u), vg Ay,
1,J

(5.7 ={vgddpgu,ut) — Opu,uy,) + (dgty,,w) — (0g (Ve Au) ,ve Ay, )
at each point of OU \ char(0U).
Proof. Using Remark 5.7 yields

(5.8) (Loyu,ut) = (v du,ug) + (duy, ,ue) = (vg Jddgu, ue) + (dguy, , ut) -
Analogously, one has

<Z;;u,1/H Ay ) = — (Ve ASuu,ve ANuyy) + (0m (Ve Aw) Ve Aty,,))
(5.9) = — ((Ogu,uy, ) + (0m (Ve Au) , v Auyy)) .

Adding together the left-hand sides of (5.8) and (5.9) and then using Remark 5.7
(see, in particular, formula (5.6)) yields

<LuHuaut> + <Z:1-/1u) VH A UVH>
= ZQI,J<dHUI,Ja vi) + (RY" (u), ue) + (Ry™ (w), vE Aty ).
17

Hence, by using (5.8) and (5.9), we deduce (5.7). O
We also need the following result (see [14], Lemma 5.5).
Lemma 5.9. Let u, uy, RI"™ and RSY™ be as in Definition 5.6. Then

1 '
R (pg AN u) = du ([l lI?) Aw+ pe AR (u),

. 1
Ry (pg Ju) = 5dn ([l l?) S w + ppr 1 RE™ (u).

The above formulas greatly simplify if we take ||ug| = 1 and this can always
be done, at least if both these quantities are restricted to the non-characteristic
part of the boundary and we take pgy = vy (i.e., g is the horizontal unit normal

to OU \ char(oU)).
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Remark 5.10. For any a € Q% (U) @ C the following holds on 9U \ char(0U):
o If vy AN =0, then vy Adga = 0.
o If vg la=0, then vy 1 dga = 0.

These properties can be proved just as in the classical case, for which we refer to
Theorem 3.23 in [14]. Thus, at each point of OU \ char(0U), we deduce that:

e If u,,, = vy Jdu =0, then it follows that vy A (vg - u) = 0. Thus we get
vy Ndg(vyg du) =0 and (dgu,,,,u) = 0.

e Ifvy Au=0, then uy = vy J(vy Au) = 0. Hence vy 1 dy(vy Au) =0 and
(Om (v ANug) , v Aty ) =0.

We summarize the above discussion in the next proposition.

Proposition 5.11. Let u € Q (U) ®g C, with 1 < h < 2n. Then

A — _/ (A, us) + (OrU, Uy ) dog
OU\char(0U)

- / <]§(u),u> dop,
AU\ char(OU)

<ﬁ(u), u) := (R (u), ug) + (R (u), Ve Aty ).
Remark 5.12. The first boundary integral in (5.10) vanishes if
either uy =0 or u,,, =0on OU \ char(dU) (condition (DN))

(5.10)

where

and, in this case, we get

(5.11) Re A = —Re / (R(u),u)dog.
AU\ char(OU)

Remark 5.13. Obviously, when uy = 0, it follows that (R(u),u) = (Rs™ (u), u).
Finally, if u,, = 0, then (R(u),u) = (R{" (u), u).

Proof of Proposition 5.11. Let us start from the identity in Corollary 5.5. For what
concerns the term A, by using (5.7) and Remark 5.4, we get

A= _/ Zﬂl,J@HUI,J, vir) = (v J dru, ue) + (0mu, ty) ) don
OU \char(OU) 1,7

:—/ ((dauy,y,ut) — (0g (Ve Aug) ,vg Ay, )) dog
OU\char(oU)
+/ ((R1(u),ut) + (Ra(w), vy Auyy,)) dog.
AU\ char(OU)

Then (5.10) follows since 0y (vg Aug) = —Z:,I: (uy) — v A dgug and

<Z,;(ut),1/H A u,,H> =0.

Thus, Remark 5.10 yields (5.11), and the remaining claims easily follow. O
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Remark 5.14. If we look at identity (5.3) we see that ReA does not depend
on the coordinates. In fact, by its very definition, ReB is independent of the
coordinates and, in addition, a straightforward computation shows that the same
assertion holds for the quantity Dy (u) and for the L?-norm of Vyu. Now, if
condition (DN) holds, then both quantities R} and R5" are independent of the
coordinates. In particular, their expressions in Kahler coordinates (5.4) and (5.5)
can be replaced, when convenient, by their counterpart in a different system of
coordinates.

Remark 5.15. We point out that from Lemma 5.9 it follows that
(Ra(u),vir Ny ) = (Ro(ty ), uvy)  and - (Ry(u), ue) = (Ry(uy), u).

5.3. Estimate of the term B in (5.3)

The aim of this subsection is to prove that

1 —
fte B = n > (pr—as) /u(Haul,JHZ — [|0ur 411?) dV

1,J
1 n

- —Sm/ <£J,,Hu, Z(ekik —ex z,;)u> dop + “error term”,
n OU \char(dU) 1

where the “error term” depends only on the trace of u on the boundary (not on its
derivatives) and will be estimated below under different assumptions. At the same
time, we provide sufficient conditions on the traces of u on OU that guarantee that

Sm <LJVHU, Z(ekik —ef z,;)u> =0.
k=1

OU \char(0U)

Proposition 5.16. Let u € Q% (U) @ C, with 1 < h < 2n. Then

1 _
B =3~ a) | (I0urs|* = |0urs|*) av
1,J u

. n
2
5.12 + —/ <£]l, u, » (exir —ej z*)u> dog
( ) v Jou\char(aU) v kz:l ok

. n
i

- —/ <R‘1]VHu, g eriy — €5 if)u >doH.
T J o\ char(aU) 1

Proof. Let v € CY(U) be a (complex-valued) 0-form and recall that

inT = (0k 0 — O Ok)-

k=1
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By (4.3) and (4.4), we have

1
—i/ vTvdV =
u

0 (g0 — Ok0) vdV
u

\

k=1
7 (~0*0+8"d) vdV

\

u

S|I= 3 3|

I
S|= 3
Q\Q\\

(HOUHQ — ||ov||?) dV — %/au( {0, n01> (0w, nt 0>) do
1 - 1
g K R T N O

(100l ~ 00l aV + = [ o (div. ui) o
nJou
where we have used the identity Jng = 1(n}{0 - n%l)

From these computations, by arguing as in Remark 5.4 and by applying (iii) of
Remark 5.7, we get that the term B can be rewritten as follows:

B=—i Z(pz — qJ)/ tr,gTur ydV
1,J u

1 _
= 15— / (1Bur oI — |Dur o] dV
s u

)

1
+ - pr —q) lim ar.g{duur,y, Jvg) dog
n ; e—0 AU\V.
1 _
=S s =) [ (1Bursl = our.s|) v
1,0 u
7
+=> (pr - QJ)/ ur,g(duur,s, Jvg) dog
n I.J oU \char(dU)
1 _
=S s =) [ (1Bursl = our.s|?) v
1,0 u
4 i/ <LJVHU’Z(6kik —e,;i,;)u> doy
T J oud\char(8U) —1
- / <R1J"Hu, (exir — eg z,;)u> doy.
T Jou\char(0U) —1
This achieves the proof. O

The following assertion is a straightforward consequence of the identity (5.12).

Corollary 5.17. Suppose that the following “condition (Jvg)” holds:

%m<£JVHu, zn:ekiku> = Sm<£JVHu, z": er i,;u> (condition (Jvg)).

k=1 k=1
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Then we have

1 —
ReB = —> (pr— ) / (19ur |2 = |0ur s ?) dV
u
(5.13) "

1 n
+ Qm — <R1‘]"Hu, Z(ekik —eg z,;)u> dop.
nJau\char(dU) e

=

Remark 5.18. From Proposition 4.2 it follows that

n

Z(ekik —eplp) = Z(p —q) 1P,

k=1 p.q

Therefore, we see that condition (Jrg) is a compatibility condition on the bidegree
components of the trace of w in the (tangent) direction Jvy.

In addition, we stress that condition (Jvg) is written in a “geometric” form
on OU and it could be replaced by the following condition (Jv};), which is written
“in coordinates”:

(514) Z(p[ —(JJ) jm(ﬂ]“] <dH’LL[’J,JI/H>) =0
7

at every point of OU \ char(0U). The last condition is perhaps less “elegant” but
has the advantage of not introducing an error term. B

Typically, identity (5.14) holds, if the form u = ZLJuI’ﬂS‘I A 97 is “Kéhler-
symmetric” on U, i.e., if

ur,g =xuy; forall I, J with |I| 4+ |J| = h.

We also observe that if u is Kahler-symmetric on all of ¢/, then B = 0, and the
main inequality still holds under condition (DN).

Let us analyze the meaning of condition (Jvg ) in the case of horizontal 1-forms.

Example 5.19 (1-forms). Let u = Y1 | (u0" + u;ﬁ‘{) be a 1-form, where we

assume that u; := f; +1ig; for any ¢ = 1,...,n. Also recall that if u is real, then
u; = 4, for any i = 1,...,n. Note that Jvy = i(l/}io — V%l) and that, in this case,

we have p; =1, ¢; =0 and p; =0, ¢; = 1,7 =1,...,n. With these preliminaries,
we may reformulate condition (Jvy) as follows:

NE

(5.15) ((fiVugi = 9:Vufi), Jva) = ) ((fiVugi—9Vufi),Jva).

n
i=1

1

=
Il

The proof of (5.15) is an elementary exercise. In addition, we observe that if u is
real, then (5.15) becomes

Z (fiVugi—9iVufi),Jva) =0

i=1

or, equivalently, 1 | (fiLyvy 9i — i Lyvy fi) = 0.
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By using (iv) in Remark 5.7 we obtain the following dual result.

Proposition 5.20. Let u € Q% (U) ®@g C, with 1 < h < 2n. Then

1 _
B~ S (=) [ (10urs|* = s, o1 av

1,J

. n

i o~ , .

+ - / <£]VH'LL, Z(ekzk —ex z,;)u> dom
v J ou\char(dU) =1

n

- / <R‘27VHu, (exir — ef z,;)u> dog.
T J 6u4\ char(8U) k=1

In addition, suppose the following “condition (Jfl;;{) 7 holds:
%m<£J,,Hu, Zekiku> = Sm<LJVHu, Z ej i,;u> (condition (Jvg)).
k=1 k=1
Then

1 —
ReB = n Z(PI - (JJ)/U (||8UI,JH2 - ||c')u1,JH2) av

1,J

. n
i

——/ <R‘27VHu, E (exin — ef ip)u >doH.
T J o4\ char(aU) —1

Remark 5.21. Just as in Remark 5.18, we observe that condition (m) is written
in a “geometric” form and that it could be replaced by condition (Jvj;). Again,
this alternative condition has the advantage of not introducing an error term.

6. Gaffney—Friedrichs-type inequalities for horizontal forms

The first version of our main result reads as follows.

Theorem 6.1 (Gaffney—Friedrichs inequality) Let U C H" be a domain with
smooth boundary of class C2. Let u € Q% (U) ®@g C be a horzzontal h-form with
1 < h <n, and assume that:

(i) w satisfies condition (DN) (see Proposition 5.11);
(ii) w satisfies either condition (Jvg) (see Proposition 5.16) or condition (JT/E)
(see Proposition 5.20).

Let {Vc}eso be a family of open neighborhoods of char(0U) (in the relative topology)
shrinking around char(OU) when ¢ — 0. In addition, assume that o(Ve) — 0 as
€ — 0. Then, there exist geometric constants Cy, C1 and Co such that

(6.1) DH(u)+Co/

HuHQdUZC'l/ HVHuHQdV—CQ/ l|u||? dV.
oUNV. u u

The constants Cy, C1,Co depend only on U, € and on the integers h and n.
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Furthermore, if u € Q% (U) ®g Cis a horizontal h-form with n+1 < h < 2n,
then (6.1) still holds promded that xgu satisfies (1) and (ii).

Remark 6.2. The constant C, may blow up as € tends to 0*. Indeed, let us define
two constants:

o Cie:=2nmax; -1, 20 SWayny, IWimm)i — (vu)iWj|na|ll,

o Coci=supgyy, | Jacuvm|,
where Jacgva = [W;(Va)ilij=1,..2n denotes the horizontal Jacobian matrix of
the unit horizontal normal vg. Since ny is of class C!, the constant C,c turns out
to be globally bounded along 0U. On the other hand, we have Cs . = O(1/|ngl|),
and hence C5 . may diverge when € — 0" (since |[ng|| — 07 as e — 01). Below,
we shall prove the result with the constants

1
C10 = C1clim . Cl,ea C = 5 - C(dim : CQ,e : 6a Cy = C1clim . CQ,E . C\&,Zx[,éa

where

1
0<d<mi {1, 7},
e n Cdimc2,e

the constant Cy_ys,s was defined in Theorem 3.1, and Cyin, is a fixed dimensional
constant that only depends on n.

Proof. Combining (5.3), (5.11) and (5.13) we obtain

Di) = [ 1l aV = =51 =a) [ (10wl = [our. o) av
1,J u
- %e/ (R u,u) dog
OU\char(OU)
1 n
— Sm — R7Hu, (epix — ez iz)u ) dog,
OU \char(0U) < / kzz:l b >

where 4, j = 1,2. On the other hand, keeping in mind (4.2) and the fact that

|PI—QJ|§h<n»

we get
LIl av = 5 s = a0) [ (1w =102 av
1,7 u
so that
1
Dy (u) > —/ |V gul|? dV — §Re/ (RY"u,u)doy
nJu OU \char(OU )
(6.2)

1 n
—Qm — <RJVHu, Z eriy — € if)u >doH.
OU \char(OU) =1
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By arguing as in [14], Chapter 5, Section 2, it is not difficult to check that R (u)
and Ry (u) satisfy the estimates

IR (W)l < Cim | Tacavm|llull - (i =1,2),

where thm := C(h,n) is a positive constant, dependent only on the integers h
and n. Analogously, we have

IR ()| < Cli | Tacrvillull - (i = 1,2).

Moreover, a straightforward computation shows that || Jacgvg|| is of class C! out
of char(0U) and that ||Jacgv| = O(1/|ngl||) near char(oU).
Hence, keeping in mind Theorem 3.1, we make the following computations:

1
Dar(u) >~ / IVl AV — Com / | Fac v ||jul? dox
n Juy OU \char(0U)

Y

1
1 / IV sl dV — Caim / | Facrva||ul? don
n u OUNY .

— Cuim / | Tac v |||l do
ou\

€

1
—/ HvHuH?dv—co/
oUNYV.

/ IV ul?dv - C / Jul? do
oUNV.
= CoinCoc (Cuvaas [ Nl dV +5 [ |V mul?av),

I V

lul]? do — CaimCa.c / lul]? dos
ou

€

\ \/

and the assertion (6.1) follows, where the constant Cy, 11 s was introduced in The-
orem 3.1. O

Theorem 6.3 (Gaffney—Friedrichs inequality (2nd version)). Let U C H™ be a
domain with boundary of class C? satisfying condition (H) (see Definition 3.4).
Let u € Qb (U) @r C be a horizontal h-form with 1 < h < n, and assume that:

(i) w satisfies condition (DN) (see Proposition 5.11);
(ii) w satisfies condition (Jvy) (see Remark 5.18).

Then, there exist geometric constants Cy and 6’2, only dependent on U and on
the integers h and n, such that

(6.3) D) 261/ ||vHu||2dv—62/ a2 av.
u U

Furthermore, if u € Qi (U) ®@g C is a horizontal h-form with n +1 < h < 2n,
then (6.3) still holds provided that *gu satisfies (i) and (ii).

For the case h = n we refer the reader to Theorem 6.7 below.
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We start from the estimate (6.2) in the proof of Theorem 6.1, by proving a
more effective estimate of the remaining terms. By Remarks 5.18 and 5.21, we are
reduced to

1
(6.4) Dy (u) > —/ IV grul|® dV — %e/ (R"u,u)dog.
nJu AU \char(dU)

To this end, let us study the quantities R;* (u,u), i = 1,2.

Remark 6.4. Let py € C*(aU \ char(3U)), A" b1 @ C) such that |[pug| = 1.
Let ¢: 0U \ char(0U) — R be a smooth function. We want to estimate R7"" (u),
1 = 1,2, for a horizontal h-form u. As pointed out in Remark 5.14, these estimates
do not depend on the reference frame used. Therefore we write u with respect to
the basis ¥". We have

REM (y) = 5"(2“16[}1 (MHJwI)) +Zu1dH<,0/\ (MHJ wf) )
I T

= @R (u)+dge A (pa du),

and
REM () = o (D widm (nm A0") ) = D ur (dirpd (s A0"))

=Ry (u) —dued (g ANu).

By condition (H), near the characteristic set, the boundary of U is a t-graph (i.e.,
OU is a BEuclidean graph w.r.t. the hyperplane ¢ = 0) and so there exists a C?
defining function ¢g: H" — R of the form g(z,y,t) =t — f(z,y). Hence

x
Nu = Vig =Vt = f@.) = (= 5 = Vaf. 5 = Vuf).
Accordingly, we assume that vy = Ny /||Ng||, where Ny := Vgg. Thus we get

_ R ()

(6.5) R (u) = INal ) A (NgJu),

1
d -
* H(IINHH

where the second term vanishes on U \ char(oU) when u,,, = vy |u = 0.
Similarly we get

vy Ry (u) 1
(66) R () = T = () e ),

and the second term vanishes on OU \ char(0U) when uy = vy |(vg Au) =0.

As we shall see below, formulas (6.5) and (6.6) are very important for our
purposes. In particular, under the hypothesis u,, = 0 on OU \ char(0U), we find
that RY"(u) = RY¥(u)/||Ng]||. Furthermore, if u; = 0 on 8U \ char(dU), then
the quantity R5™ (u) can be obtained by duality (via the horizontal Hodge star
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operator) from the computation of Ry" (u). Thus, let u be a horizontal h-form and
let us compute
dg (Ng JdoT),07)

N

R (u,u) :== (R (u),u) = Zujﬂj {
1.J

B - (dg (Ng), r d0T) 47
‘;ZIJ N

S W (Na),) gy A W L0 07

LJ rk [Ngl
1
— o { W (), i A (0, d ) )
rk
1

[N <Z Wi (Ng),) tbr S, o u>
rk

By condition (H) we have
1
Jacy(Ng) = 3 J — Hessgzn f.

Thus, using the skew-symmetry of the linear operator J, we get

vn Hesspen f
(6.7) Re R (u, u) :o('u\lii'”)mﬁ

and applying condition (H) yields O(||Hessgzx f|/||[Ng]|) = O(1).

Remark 6.5. More generally, let v be such that Jrvg v = 0. Now, arguing as
above we obtain

R/NH (v)
Jvyg _ 1
B0 = " Img)

Thus, as above we get

1
Jacy(JNg) = —5 Id — JHess gan f,

and therefore

[|[Hess gzn f||

om 17 (v,0) = o L2

Yol = o)l

Eventually, we resume the above discussion in the following.

Lemma 6.6. Let U C H" be a domain (bounded and open) with boundary of
class C? satisfying condition (H). Let u,v be horizontal h-forms defined on U,
with 1 < h <n. Then, we have the following:

(i) If uy, =0 on U, then Re RY" (u,u) = O(||ul]?).
(i) If uy = 0 on U, then Re RyY (u,u) = O(||ul|?).
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In addition, we have:
(i) If (Jv)yy = 0 on OU, then Sm R (v,v) = O(||v]?).
(iv) If (Jv), = 0 on OU, then Sm Ry (v,v) = O(||v]|?).
In particular, it follows from definitions that Re (R(u),u) = O(||ul|?).
Proof. The proof of (i) follows by using (6.7). Then (ii) follows from (i) by duality
(using the horizontal Hodge star operator); see Remark 5.7. The last claim it is

an immediate consequence of (i), (ii) and of the very definition of R(u). Keeping
in mind Remark 6.5, the assertions (iii) and (iv) follow in the same way. O

Proof of Theorem 6.3. From (6.4) we know that

1
Dy (u) > —/ IV grul|® dV — me/ (RY"u,u) dog.
n Ju oU \char(dU)
By applying Lemma 6.6 and Theorem 3.9, it follows that
1 1
Duw)=7 [ |Vaulfav-c JulPdon > o [ [ mulPav=Cullul ooy
nJy AU\ char(oU) 2n Jy
The proof easily follows. O

Theorem 6.7. Suppose the assumptions of either Theorem 6.1 or Theorem 6.3
are satisfied, where the condition 1 < h < n is replaced by

h=n and TI"% =0 = I%"4.

Then, the conclusions of Theorems 6.1 and 6.3 hold.
Moreover, if u € Q° UQS™ then estimates like (6.1) or (6.3) fail to hold.

Proof. The first assertion follows by noticing that, during the proof of Theorems 6.1
and 6.3, the assumption h < n has been used only in deriving inequality (6.2),
where we used that if u € Q%7 then [p—q| < n. But, trivially, the same conclusion
holds if h = n and II"u = 0 = I1%"u.

As for the second assertion, we take, for instance, v = f9(2 ") with f €
D(U). In such a case the estimates (6.1) and (6.3) coincide and represent nothing
but a maximal subelliptic estimate for the operator Ag +inT. But then A +inT
would be hypoelliptic (see, e.g., [8], Theorem 4.1), contradicting the fact that the
values £n are “forbidden values” for the Kohn Laplacian in H" (see, e.g., [43],
Chap. XIII, section 2.3). O

7. Further Gaffney—Friedrichs inequalities for horizontal dif-
ferential forms

As pointed out in Remark 5.18, the condition (Jvj;) of Theorem 6.3 is written
“in coordinates”. Therefore, we may replace it by a slightly different “geometric”
condition.
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To this end, we first observe that, in the proof of Theorem 6.3, condition (Jvj;)
can be replaced by the following weaker one:

(7.1) \sm<aJVHu,;(em—e,;i,;) DS E-xe] vy

Let us still suppose that both conditions (DN) and (H) hold. If u,,, = 0, we
can argue as follows. By applying Remarks 5.7 and 5.18, we compute

<81,,Hu,zn:(ekik — e,;i,;)u> = <81,,H Ju, zn:(ekik — e,;i,;)Ju>
k=1

k=1

= <(£JVHJU—R1J”HJU ,zn: (exin — eg iy Ju>
k=1

n n

= <LJVHJU, Z(ekik - e,;i,;)Ju> - <R‘1]VH Ju, Z(ekik — e,;i,;)Ju>
k=1 k=1
= <LJVHJ'U/, Jzn:(ekik - e,;i,;)u> - <R‘1]VH Ju, zn:(ekik - e,;i,;)Ju>
k=1 k=1
= <J_1EJVHJu,zn:(ekik - e,;i,;)u> - <R1J”HJU,§:(ekik - e,;i,;)Ju>.
k=1 k=1

Now suppose that the following geometric condition holds:

n

(7.2) Sm<J_1£J,,H Ju, Z(ekik - e,;i,;)u> =0.

k=1

Under this assumption, let us show that (7.1) holds. We have

n n
%m< R Ju, g (exir — e,;i,;)Ju> = Sm<R‘1’VHv, E ekl — €iE)v >
k=1 k=1

n
= \ym||NH||_1<R1JNHv, Z(ekik - e,;i,—c)v>
k=1
n

:%m||NH||*1<( hId J (Hessgzn f) )v,z eriy — epif)v >
k=1
= —SmﬁHNH||*1<v z": (erin — eg i v>
2 7k:1 k %k

— S| Nir |~ (Hessan o, 3 (exin — egi)o)

M- 1-

= —%mHNHH_l<J(Hesstnf)v, (exir — e,;i,;)v>,

=~
Il
—
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since . .
(0.3 (ewin = eginv) = > (liwvl® = lligell?)
k=1 k=1
is a real number. Thus keeping in mind that ||v|| = ||Ju|| = |Ju| yields (7.1).

Analogously, if in condition (DN) one has u; = 0, then we can argue in a similar
way by assuming that:
n
(7.3) $m<J_1EJVHJu,Z(ekik - el_cll_c)u> =0.
k=1
We summarize the previous arguments in the following.

Theorem 7.1 (Gaffney-Friedrichs inequality (3rd version)). Let U C H™ be a
domain with boundary of class C? satisfying condition (H) (see Definition 3.4).
Let u € Q}}{(U) ®r C be a horizontal h-form with 1 < h < n, and assume that
either

(i) uy, =0,

(ii) w satisfies the condition (7.2),
or

() ue =0,

(jj) u satisfies the condition (7.3).

Then, there exist geometric constants C~'1 and 52, only dependent on U and on
the integers h and n, such that

(7.4) DH(u)zél/ HvHuH?dv—@/ a2 dv.
U u

Furthermore, if u € Q}}{(ﬁ) ®r C is a horizontal h-form with n +1 < h < 2n,
then (7.4) still holds provided that xgu satisfies either (i) and (ii), or (j) and (jj).
Finally, the conclusions of Theorem 6.7 still hold in this case if h = n.

8. Rumin’s complex in Heisenberg groups

8.1. Rumin’s complex

In this section we briefly sketch the main ideas in Rumin’s construction of the
intrinsic complex of differential forms in Heisenberg groups; see [38]. For a more
general approach we refer the reader, for instance, to [40], [41], and [4].

First, we would like to discuss how Rumin’s complex appears naturally in the
geometric measure theory of Heisenberg groups. The starting point is the question
“what is counterpart of a linear manifold in Heisenberg groups”. As shown in [21],
[23], this role is played by the homogeneous subgroups of H", that is, in exponen-
tial coordinates, by the homogeneous subalgebras of h. It is well known that, in
Euclidean spaces, linear submanifolds are the annihilators of homogeneous simple
covectors, which are invariant under translations. Thus, is it natural to look for
left-invariant homogeneous differential forms whose annihilator is a subalgebra of h.
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By the Frobenius theorem, the annihilator of a left invariant differential form w
is a Lie subalgebra of § if and only if dw = 0. On the other hand, when acting on
left-invariant forms, the exterior differential d is nothing but its “algebraic” part,
which in the sequel will be denoted as dy; see Definition 8.2 below.

A natural choice for a class of intrinsic differential forms in H" would be to
take ker dy as the ambient space. Nevertheless, this choice is not totally satisfying,
since it fails to take into account a crucial algebraic property of linear manifolds in
Euclidean spaces, which resides in the fact that they are complemented. Indeed,
also complementary subspaces of a fixed subspace V' can be viewed as annihilators
of differential forms in the following sense:

If V is the annihilator of a simple form w, then a complementary subspace W is
the annihilator of the Hodge-dual form *w, where the Hodge duality must be taken
with respect to an inner product making V and W orthogonal. Thus in order to
obtain a satisfying notion of intrinsic h-covector in b, we have to choose once for
all an inner product in h and take

El = ker dy Nker(do*).
Recall that b is endowed with the inner product that makes the basis
{X1,...,. X, Y1,...,Y,, T}

orthonormal.
The family of vector spaces (E})o<n<n can be equipped with an “exterior

differential operator”

de: E) — B}
making (Ef,d.) a complex, which is chain homotopic to the de Rham complex.
The definition of d. is rather technical and will be given by Theorem 8.6 below.
Essentially, d. is defined as

dc = HEO dHE,
where Ilg is the projection onto a second complex (E*, d), again homotopic to the
de Rham complex, which is meant to take into account the lack of commutativity
of h, and where Il is the orthogonal projection on Ej that minimizes the number
of compatibility conditions for a differential form to be exact. We stress that d. is

an operator of order 1 in the horizontal derivatives, when acts on EJ with h # n,
but of order 2 on Ej.

Definition 8.1. If o € /\1 b1, a # 0, then we say that o has weight 1, and write
w(a) = 1. If a =9, then we say that a has weight 2, and write w(a) = 2. More
generally, we say that a € /\hb has pure weight k when « is a linear combination
of covectors 1, A -+ A, such that w(y, ) + -+ w(ty, ) = k.

Note that, if o, 8 € A" b and w(e) # w(B), then (a,8) = 0. Moreover, we
have (see, e.g., formula (13) in [4]):
h,ht1

Ab=A"pa A",

where A™”h denotes the linear span of U"? := {a € U" : w(a) = p}.
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The ordinary exterior differential operator d splits into the sum of its weighted
components. More precisely, we give the following definition.

Definition 8.2. Let a = ZWE\IJM a;T be a smooth (simple) h-form of pure
weight p. Then we shall write

do=dopa+dya+ daa,

where dpa has pure weight p, dia has pure weight p + 1, and daa has pure weight
p+2.

When acting on left-invariant forms, one has d = dy, since d preserves the
weight. Notice also that dy = dp.

Using Cartan’s identity (see, for example, [30], formula (9) p.21) and the left-
invariance of the forms ! € U7 it follows that

doa= Y opdy’.

Plewhp

Analogously, we have

da= Y Wile)v; A, daa= Y T()d A

pleTh.p Yl eTh.p

We stress that dy is an algebraic operator, and therefore can be identified with
an operator acting on covectors.
The following important notion due to Rumin can be found in [39], [40].

Definition 8.3. For any 0 < h < 2n + 1 we set El! := Kerdy N R(dp)*, where
R(dp) denotes the range of dy. The elements of E} are called intrinsic h-forms
on H".

It is not difficult to see that *F}l = E3" "'~ Observe that, since this notion is
invariant under left translations, the space EJ can be seen as the space of sections
of a fiber subbundle of /\h b, generated by left translation and still denoted as Ef.
Since dy is algebraic, there is no ambiguity if we denote by Ej both the space of
covectors and the spaces of the sections of the associated linear bundle. We also
note that E! inherits from A" b the inner product (-,-) on the fibers.

Theorem 8.4 (See [39]). With the notation of Definition 2.7, we have:
© Bj=N\'bu
o If 2<h<n, then El' = A" by Nker A.
e If n<h<2n+1, then B} =9 ANker L.

We remark that an h-form in EP has either weight h, if 1 < h < n, or weight
h+1,ifn<h<2n+1. Let Zf = {¢!: 1 < i < N,} be an orthonormal basis
of El, where N, := dim E. Notice that we can always assume that ¢! = 1; for
any ¢t =1,...,2n.

We have to define an “inverse” of the algebraic operator dy and this can be
done as follows (see, e.g., Lemma 2.11 in [4]).
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Lemma 8.5. For any 8 € /\h+1 b there exists a unique o € /\h h N (ker clo)L such
that doov — B € (R(do))J‘, In the sequel, with a slight abuse of notation, we shall
set dy ' = av.

By construction, the operator dg is weight-preserving.
In the next theorem we summarize the main features of the intrinsic exterior
differential d.. For more details, we refer the reader to [39]; see also [40] and [4].

Theorem 8.6. The de Rham complex (Q*,d) splits into the direct sum of two
sub-complexes (E*,d) and (F*,d), where we have set
E:=kerdy ' Nker (dy'd), F:=R(dy")+R(ddy").

Furthermore, the following assertions hold:
(i) Let g be the (non-orthogonal) projection on E along F. For any o € E}
one has either llpa = o — daldla, if 1 <h<mn, orllgpa=aqa, if h >n.
(ii) Ig 4s a chain map, i.e., dllg = Ilgd.
(iii) Let Ilg, denote the orthogonal projection from N\* b onto Ej. Then, we have
Ng, =1d — dy'dy — dody " and Ty = dydo — dody
(iV) We have HEO = HEOHEHEO and HE = HEHEOHE~
Let 0 < h < 2n and set d. := g, dllg : E{f — Eg“. Then, we have:
(v) d*>=0.
(vi) The differential complex (Ef,d.) is exact.
(vii) If h # n, then d.: E} — E{f‘“ is a homogeneous differential operator in the
horizontal derivatives of order 1. Moreover, d.: Ef — E(’}H s a homoge-
neous differential operator of order 2.

Notice that for any smooth function f € EJ we have
n
dof = (Va )" = (Xifdw; +Yifdy:).
1=1

We can also define a codifferential d., by taking the formal adjoint of d. in
L?(H", E}). More precisely, we set . := dz.

Proposition 8.7. On E}} we have §, = (—1)" x d.x.

For a proof, see, e.g., [24], Proposition 3.15.
Explicit calculations and further examples concerning Rumin’s complex in
Heisenberg groups can be found in [5].

Definition 8.8 (Sub-Laplacians on forms; see [38]). We define the operator A,
on EP by setting
dcde + 0cd,. if h#n,n+1,
Acp =1 (d.6:)*+0d.d. if h=n,
dede + (0cdc)? if h=n+1.

Notice that A. o = Ak is the usual sub-Laplacian on H".
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Proposition 8.9 (see Proposition 4 in [38]). Let 1 < h <n, and a € E}'. Then
(i) dcx = dpa;
1
ii) dea = dpu — ——
(ii) dea HU A

The next lemma follows from the Kéahler identities in Proposition 4.5.

LA(dHa)

Lemma 8.10. For any u € El, with 0 < h < n, we have A(dgu) = —(51‘]{u.
Furthermore A?(dgu) = 0.

Proof. Keeping in mind that Au = 0, and using (i) of Proposition 4.5, yields
Adpu) = dgAu — 6fu = —6u.
Moreover, by applying (iii) of Proposition 4.5 we obtain
A?(dgru) = ASfu = 64 Au = 0. O
Lemma 8.11. Let u € Eél, with 0 < h < n. Then

1 J

Moreover, the following identity holds:

2 J o2 2
el + — 67l = dzull®.
Proof. By Proposition 8.9 and Lemma 8.10 we get
1
deu =dgu — ———LA(d =d — L&
R n—h+1 (dnu) Hu+n—h+1 H

In order to prove the second assertion, we note that by definition d.u is orthogonal
to the range of L. Now since Léf;u = —LA(dgu) we get

|Z6%ul® = |LA(dsu) | = (LA(dgru), LAdiw) = (A(diu), ALA(dgru))
= (A(dgu), LA*(dgu)) + (n — h 4+ 1) (A(dgu), A(dgu))  (by Lemma 2.8)
=n—-—h+1)(A(dgu),A(dgu)) (by Lemma 8.10)
= (n—h+1)65u],
and the thesis follows. O

2. Decomposition of forms on the boundary of a domain II

This section is the counterpart of Section 2.2 and, roughly speaking, the idea here
is to replace horizontal forms with intrinsic forms in Ej.

Recall that &/ C H" is a domain with boundary of class C2.

With the notation of Section 2.2, if a € E, if n < h < 2n + 1, we have

a=9ANag with age€e Q}}{l.
Now, writing ag = (ag)t + v A (am )y, , where we have set

(ag)e =vegd(vg ANag) and (ag)y, =ve Jdag,
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we obtain the decomposition formula
a=9NA(ag)+9IANvyg A(ag),-
Thus if o € Eéb, with n < h < 2n + 1, we can set
ay =9 A (ag)y and oy, = =9 A (am)u,,
and again we obtain the identity
o=y + Vg N\ Q.

Clearly, it turns out that ay L v Ay, .
The above definition is motivated by the following lemma.

Lemma 8.12. Ifa € El, withn < h < 2n+ 1, then

xay = v A (%), and  x (vg Aay,) = (xa);.
Proof. By Lemma 2.2 we have

xay = xg(ag)y = vy N (xgag)u, =ve A (xa),, .
On the other hand,

(ve ANayy,)=—x (g NIA (ap)uy) =« Ave A(ag)uy)
=sxg(vg Nam)v,) = (xgag)y = (xa)t. O
In particular, if « € Q%, 1 < h < 2n, we can always write
ap i =vpdlvg Na), a,, =vegda,
and, as above, we have the decomposition formula
a =0y +VHEH Aoy, VaeE{}.

Remark 8.13. We stress that combining (2.1) and Lemma 8.12, we obtain a very
useful result: If 1 <h<2n+1, and o € Eg, then

oy = 0 if and only if (xa),, =0 and «,, =0 if and only if (xa), = 0.

Definition 8.14. From now on, we denote by Eg(U) the space of smooth sections
of Ef over U. With a slight abuse of notation, we also denote by Eg(U) ®@g C the
corresponding space of complex forms I'(U, Ef ®r C).

We conclude this section by formulating a Green-type identity for the Rumin
differential d. (compare with formula (2.2)).

Theorem 8.15 (Green identity in (Ej,d.)). Suppose that U C H" is a domain
with boundary of class C2. If a € Ey " (U) @& C, and 8 € E}U) @r C, with
h#n,n+1, then

<dc0475>L2(u) = <a75cﬁ>L2(u) + /81/{ nAa,B) do

= <aaécﬁ>L2(u) + /au <Z/H /\Oé,ﬁ> dog.
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8.3. Gaffney—Friedrichs-type inequalities: Technical preliminaries

Let 4 C H" be a domain with smooth boundary of class C2. Below, we generalize
to E§ a classical definition which can be found in [36]; see, e.g., Definition 7.2.6 in
p. 291 (also compare with Definition 5.1).

Definition 8.16. Let u € E!'(U) ®g C be an intrinsic differential h-form, with
0 < h <2n+4 1. We define the C'C-Dirichlet integral by setting

Do) = /u (e, dous) + (o, 5o1)) AV

It is clear from the definition that this quantity is a non-negative real number.
Moreover, we remind the reader that D.(u) = D.(*u).

Finally, it is worth observing that our main results for the complex (E(, d.) (see,
more precisely, Theorems 8.21, 8.23, and 8.24) only concern the case h # n,n + 1.

Proposition 8.17. Let u € E}(U) ®@r C, with 1 < h < n. Then

1
1

Proof. By applying together Definition 8.16, identity (8.1) in Lemma 8.11, and
Proposition 8.9, we get

(dew, deu) + (Oeu, 6eu)y = (dgu, dHu> -

%h“ (64u, 51‘]{u> + (0 u, dpgu)

6Hu,5}§u>
J g Ju, J g Ju)
5HJU, 5HJU> 5

n— h+1

= <dHu,dHu> <5Hu 5Hu

(
n— h+1 <
= (dHu,dHu> <5HU 5HU> P h+1 <

where we have used that J2 = —Id. Now since
/ (GurJu, 51 Ju) AV < Dyt (Ju),
u

the proof follows. O
Lemma 8.18. Let u € E}(U)@r C be an intrinsic h-form, with 1 < h < n. Then,
at every point of OU \ char(0U), the following implications hold:

(i) uy =0= (Ju),, =0;

(i) (Ju)y =0=u,, =0.

Proof. We just prove (i), since the proof of (ii) is similar. Let g: H" — R be a
defining function for U of class C?. We are assuming that:

e U={xeH":g(x) <0};
e g(z) =0 if and only if x € o,
e Vg #0 for all x € o,
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see, e.g., Chap. 2 in [32]. Now observe that dyg is parallel to vy, and that the
hypothesis u; = 0 is equivalent to dg(gu) = 0 on OU. Indeed, if uy = 0, then
u=vyg A (vg du). On the other hand,

d(gu) =dgghNu=dggAvyg N (vg Ju) =0.

Moreover, if dy(gu) = 0, then dgg A u = 0, and so vg A u = 0. This implies
u, = vy Jd(vg Au) =0.
On the other hand, by Lemma 8.10, if uy = 0, then

0= —Adg(gu) = 64 (gu) = J 265 J(gu),
which implies
O (gJu) = dgJ(gu) = 0.

From this we get dy(gJu) = 0 on OU, and since oy (gJu) = — (dggJ Ju), the
proof of (i) follows. O

By applying Proposition 5.11 to Ju, and by keeping into account that the first
two integrals in (5.10) remain unchanged if we replace u with Ju, we find the
following identity.

Proposition 8.19. Let u € Q% (U) ®g C, and assume that either (Ju), = 0 or
(Ju)y, =0 on OU \ char(0U). Then

Dy (Ju) :/ ||VHuH2dV—i Z(p]—QJ)/a]7JTU],JdV— <EJ(U),U> dom,
u 1,7 u OU\char(oU)
where we have set Ry(u) :== J - R(Ju).

Combining now Propositions 8.17, 5.11, 8.19 together with Lemma 8.18, and
formula (5.3) in Corollary 5.5, we obtain the next proposition.

Proposition 8.20. Let u € E}NU) ®r C, with 1 < h < n, and suppose that either
uy =0 or (Ju), =0 on OU \ char(OU). Then

D}y (u) = Durl) ~ ——=D(Ju)

= (Tl o a ) av - [ wwdon
= nn—;h—lll—lDH(u) - nn—;h:l—lg%eA - aZ/{\Chm((w)<R(u), uydon

_ %DH(“) _ n%]mme /8 M\Char(w)«ﬁ _ RBy)u,u) don,

where R(u) := E(u) — %ﬁj(u)
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8.4. Gaffney—Friedrichs inequalities for Rumin’s complex: Main results

At this point, by using the estimates of the “error terms” proved in the preceding
sections, Theorem 6.1 can be stated in (E§, d.) as follows.

Theorem 8.21 (Gaffney—Friedrichs inequality in (Ef) (1st version)). LetU C H"
be a domain with boundary of class C?. Let u € ESL(U) Qr C, with 1 < h <n, and
assume that:

(i) wu satisfies either ug =0 or Ju; = 0;
(ii) w satisfies either condition (Jvg) (see Proposition 5.16) or condition (JT/E)
(see Proposition 5.20).

Let {Vc}eso be a family of open neighborhoods of char(0U) (in the relative topology)
shrinking around char(OU) when ¢ — 0. In addition, assume that o(Ve) — 0 as
€ — 0. Then, there exist geometric constants Cy, Cq, and Co such that

82) Do)+ Co /

HuHQdaZC’l/ HVHuHQdV—Cg/ |2 V.
OUNY . u U

The constants Co, C1, Cy depend only onlU, €, and on the integers h and n. Finally,
if u € E}U) ®r C with n + 1 < h < 2n, then (8.2) still holds, provided that *u
satisfies (1) and (ii).

Remark 8.22. Just as in Remark 6.2, the constant C; may blow up as € tends
to 0.

We conclude by stating two alternative versions of the main inequality, for the
Rumin’s complex.

Theorem 8.23 (Gaffney—Friedrichs inequality in (Ef, d.) (2nd version)). Suppose
that U C H" is a domain with boundary of class C? satisfying condition (H) (see
Definition 3.4). Let u € E}(U) @r C, with 1 < h < n, and assume that:

(i) either uy =0 or Ju; = 0;
(i) w satisfies condition (Jvi;) (see Remark 5.18).

Then, there exist geometric constants C~’1 and C~’2, depending only on U, and on
the integers h and n, such that

(8.3) Dc(u)z&/ ||VHuH2dV—6'2/ a2 V.
U u

Furthermore, if u € EMNU) @g C with n + 1 < h < 2n, then (8.3) still holds
provided that xu satisfies (i) and (ii).

Theorem 8.24 (Gaffney-Friedrichs inequality in (Ef, d.) (3rd version)). Suppose
that U C H" is a domain with boundary of class C? satisfying condition (H) (see
Definition 3.4). Let u € E}(U) @r C with 1 < h < n, and assume that either

(l) J’LLt = 0,
(ii) w satisfies the condition (7.2),
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or
(.]) Ut = 07
(jj) u satisfies the condition (7.3).

Then, there exist geometric constants Cy and 6’2, depending only on U, and on
the integers h and n, such that

(8.4) Dc(u)251/ HVHu||2dV—52/ |2 V.
U U

Furthermore, if u € EMNU) @g C with n +1 < h < 2n, then (8.4) still holds
provided that xu satisfies either (i) and (ii), or (j) and (jj).
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