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Abstract. Given a 1-tilting cotorsion pair over a commutative ring, we
characterise the rings over which the 1-tilting class is an enveloping class.
To do so, we consider the faithful finitely generated Gabriel topology G
associated to the 1-tilting class T over a commutative ring as illustrated
by Hrbek. We prove that a 1-tilting class T is enveloping if and only if G
is a perfect Gabriel topology (that is, it arises from a perfect localisation)
and R/J is a perfect ring for each J ∈ G, or equivalently G is a perfect
Gabriel topology and the discrete factor rings of the topological ring
R = End(RG/R) are perfect rings where RG denotes the ring of quotients
with respect to G. Moreover, if the above equivalent conditions hold it
follows that p. dimRG ≤ 1 and T arises from a flat ring epimorphism.

1. Introduction

The classification problem for classes of modules over arbitrary rings is
in general very difficult, or even hopeless. Nonetheless, approximation the-
ory was developed as a tool to approximate arbitrary modules by modules
in classes where the classification is more manageable. Left and right ap-
proximations were first studied for finite dimensional modules by Auslander,
Reiten, and Smalø and by Enochs and Xu for modules over arbitrary rings
using the terminology of preenvelopes and precovers.

An important problem in approximation theory is when minimal approx-
imations, that is covers or envelopes, over certain classes do exist. In other
words, for a certain class C, the aim is to characterise the rings over which
every module has a minimal approximation in C and furthermore to char-
acterise the class C itself. The most famous positive result of when minimal
approximations exist is the construction of an injective envelope for every
module. Instead, Bass proved in [Bas60] that projective covers rarely exist.
In his paper, Bass introduced and characterised the class of perfect rings
which are exactly the rings over which every module admits a projective
cover. Among the many characterisations of perfect rings, the most impor-
tant from the homological point of view is the closure under direct limits of
the class of projective modules.

A class C of modules is called covering, respectively enveloping, if every
module admits a C-cover, respectively a C-envelope. A cotorsion pair (A,B)
admits (special)A-precovers if and only if it admits (special) B-preenvelopes.
This observation lead to the notion of complete cotorsion pairs, that is co-
torsion pairs admitting approximations. Results by Enochs and Xu ([Xu96,
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Theorem 2.2.6 and 2.2.8]) show that a complete cotorsion pair (A,B) such
that A is closed under direct limits admits both A-covers and B-envelopes.

In this paper we are interested in the conditions under which a class C
is enveloping. We will deal with classes of modules over commutative rings
and in particular with 1-tilting classes.

An important starting point is the bijective correspondence between faith-
ful finitely generated Gabriel topologies G and 1-tilting classes over commu-
tative rings established by Hrbek in [Hrb16]. The tilting class can then be
characterised as the class DG of G-divisible modules, that is, the modules M
such that JM = M for every J ∈ G.

We prove in Section 5 that if a 1-tilting class is enveloping, then RG , the
ring of quotients with respect to the Gabriel topology G, is G-divisible, so
that R→ RG is a flat injective ring epimorphism.

It is well known that every flat ring epimorphism gives rise to a finitely
generated Gabriel topology. We will consider the case of a flat injective ring
epimorphism u : R → U between commutative rings and show that if the
module R has a DG-envelope, then U has projective dimension at most one.

From results by Angeleri Hügel and Sánchez [AHS11] and also [Hrb16,
Proposition 5.4], we infer that the module U ⊕K, where K is the cokernel
of u, is a 1-tilting module with DG the associated tilting class. Assuming
furthermore that the class DG is enveloping, we prove that all the factor
rings R/J , for J ∈ G are perfect rings and so are all the discrete factor
rings of the topological ring R = End(K) (Theorems 7.12 and 7.13). In
the terminology of Positselski and Bazzoni-Positselski (for example [BP19a])
this means that R is a pro-perfect topological ring. Moreover, the converse
holds, that is if R = End(K) is a pro-perfect topological ring then the class
of G-divisible modules is enveloping (Theorem 8.5).

Our conclusions are summarised in Theorem 8.7, which provides a partial
answer to Problem 1 of [GT12, Section 13.5] and generalises the result proved
in [Baz10] for the case of commutative domains and divisible modules.

Applying results from [BP19a, Section 15], we obtain that Add(K), the
class of direct summands of direct sums of copies of K, is closed under
direct limits. Since DG coincides with the right Ext-orthogonal of Add(K),
we have an instance of the necessity of the closure under direct limits of a
class whose right Ext-orthogonal admits envelopes.

Therefore in our situation we prove a converse of the result by Enochs
and Xu ([Xu96, Theorem 2.2.6]) which states that if a class C of modules
is closed under direct limits and extensions and whose right Ext-orthogonal
C⊥ admits special preenvelopes with cokernel in C, then C⊥ is enveloping.

The case of the right-hand class of a 1-tilting cotorsion pair providing
covers over a commutative ring is characterised in [BLG20]

The case of a non-injective flat ring epimorphism u : R → U is easily
reduced to the injective case, since the class of G-divisible modules is anni-
hilated by the kernel I of u, so all the results proved for R apply to the ring
R/I and to the cokernel K of u.

The paper is organised as follows. After the necessary preliminaries, in
Section 3 we state some general results concerning properties of envelopes
with respect to classes of modules.
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In Subsection 4.1 we recall the notion of a Gabriel topology and outline
the properties of the related ring of quotients. In Subsection 4.2 we provide
some of our own results for general Gabriel topologies which we will use in
the later sections. Next in Subsection 4.3 we review the relationship between
Gabriel topologies and 1-tilting classes as well as silting classes as done by
Hrbek. Finally in Subsection 4.4 we recall the classical notion of a Gabriel
topology arising from a perfect localisation, as well as a lemma.

In Section 5, we consider a 1-tilting class over a commutative ring and its
associated Gabriel topology using Hrbek’s results [Hrb16]. We prove that if
the 1-tilting class is enveloping, then the ring of quotients with respect to
the Gabriel topology G, RG , is G-divisible, hence G arises from a flat injective
ring epimorphism ψR : R→ RG .

In Section 6 we introduce the completion of a ring with respect to a
Gabriel topology and the endomorphism ring of a module as a topological
ring. Considering the particular case of a perfect localisation corresponding
to a flat injective ring epimorphism u : R→ U between commutative rings,
we show the isomorphism between the completion of R with respect to the
associated Gabriel topology and the topological ring R = End(K).

In the main Section 8, we prove a ring-theoretic and topological charac-
terisation of commutative rings for which the class of G-divisible modules is
enveloping where G is the Gabriel topology associated to a flat injective ring
epimorphism. Namely, the characterisation in terms of perfectness of the
factor rings R/J , for every J ∈ G and the pro-perfectness of the topological
ring R = End(K).

In Section 9 we extend the results proved in Sections 7 and 8 to the case
of a non-injective flat ring epimorphism

2. Preliminaries

The ring R will always be associative with a unit and Mod-R the category
of right R-modules. For an element x of a right R-module M , let Ann(x)
denote the annihilator ideal of x, that is Ann(x) := {r ∈ R | rx = 0}.

Let C be a class of right R-modules. The right Ext1
R-orthogonal and right

Ext∞R -orthogonal classes of C are defined as follows.

C⊥1 = {M ∈ Mod-R | Ext1
R(C,M) = 0 for all C ∈ C}

C⊥ = {M ∈ Mod-R | ExtiR(C,M) = 0 for all C ∈ C, for all i ≥ 1}
The left Ext-orthogonal classes ⊥1C and ⊥C are defined symmetrically.

If the class C has only one element, say C = {X}, we write X⊥1 instead
of {X}⊥1 , and similarly for the other Ext-orthogonal classes.

We will now recall the notions of C-preenvelope, special C-preenvelope
and C-envelope for a class C of R-modules.

Definition 2.1. Let C be a class of modules, N a right R-module and
C ∈ C. A homomorphism µ ∈ HomR(N,C) is called a C-preenvelope (or left
approximation) of N if for every homomorphism f ′ ∈ HomR(N,C ′) with
C ′ ∈ C there exists a homomorphism f : C → C ′ such that f ′ = fµ.

A C-preenvelope µ ∈ HomR(N,C) is called a C-envelope (or a minimal left
C-approximation) of N if for every endomorphism f of C such that fµ = µ,
f is an automorphism of C.
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A C-preenvelope µ of N is said to be special if it is a monomorphism and
Cokerµ ∈ ⊥1C.

The notions of C-precover (right approximation), special C-precover and
of C-cover (minimal right C-approximation) (see [Xu96]) are defined dually.

A class C of R-modules is called enveloping (covering) if every module
admits a C-envelope (C-cover).

A pair of classes of modules (A,B) is a cotorsion pair provided that
A = ⊥1B and B = A⊥1 .

We consider preenvelopes and envelopes for particular classes of modules,
that is the classes B which form the right-hand class of a cotorsion pair
(A,B).

A cotorsion pair (A,B) is complete provided that every R-module M
admits a special B-preenvelope or equivalently, every R-module M admits
a special A-precover. By [ET01, Theorem 10] or [GT12, Theorem 6.11] if
there exists a set of modules S such that B = S⊥1 , then (A,B) is complete.

Results by Enochs and Xu ([Xu96, Theorem 2.2.6 and 2.2.8]) show that
a complete cotorsion pair (A,B) such that A is closed under direct limits
admits both B-envelopes and A-covers.

A cotorsion pair (A,B) is hereditary if for every A ∈ A and B ∈ B,
ExtiR(A,B) = 0 for all i ≥ 1.

For an R-module C, we let Add(C) denote the class of R-modules which
are direct summands of direct sums of copies of C, and Gen(C) denote the
class of R-modules which are homomorphic images of direct sums of copies
of C.

We now define 1-tilting and silting modules.
A right R-module T is 1-tilting ([CT95]) if the following conditions hold.

(T1) p. dimT ≤ 1.

(T2) ExtiR(T, T (κ)) = 0 for every cardinal κ and every i > 0.
(T3) There exist T0, T1 in Add(T ) and an exact sequence

0→ R→ T0 → T1 → 0.

Equivalently, an R-module T is 1-tilting if and only if T⊥1 = Gen(T ) ([CT95,
Proposition 1.3]). The cotorsion pair (⊥(T⊥), T⊥) is called a 1-tilting co-
torsion pair and the torsion class T⊥ is called a 1-tilting class. Two 1-
tilting modules T and T ′ are equivalent if they define the same 1-tilting
class T⊥ = T ′⊥ (equivalently, if Add(T ) = Add(T ′)).

A 1-tilting class can be generalised in the following way. For a homo-
morphism σ : P−1 → P0 between projective modules in Mod-R, consider the
class of modules

Dσ := {X ∈ Mod-R | HomR(σ,X) is surjective}.

An R-module T is said to be silting if it admits a projective presentation

P−1
σ→ P0 → T → 0
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such that Gen(T ) = Dσ. In the case that σ is a monomorphism, Gen(T ) is
a 1-tilting class.

A ring R is left perfect if every module in R-Mod has a projective cover.
By [Bas60], R is left perfect if and only if all flat modules in R-Mod are
projective.

An ideal I of R is said to be left T-nilpotent if for every sequence of
elements a1, a2, ..., ai, ... in I, there exists an n > 0 such that a1a2 · · · an = 0.
The following proposition for the case of commutative perfect rings is well
known.

Proposition 2.2. Suppose R is a commutative ring. The following state-
ments are equivalent for R.

(i) R is perfect
(ii) The Jacobson radical J(R) of R is T-nilpotent and R/J(R) is semi-

simple.
(iii) R is a finite product of local rings, each one with a T-nilpotent max-

imal ideal.

The following fact will be useful. Let RF be a left R-module and let

SGR be an S-R-bimodule such that TorR1 (G,F ) = 0. Then, for every left
S-module M there is an injective map of abelian groups

Ext1
R(F,HomS(G,M)) ↪→ Ext1

S(G⊗R F,M).

3. Envelopes

In this section we discuss some useful results in relation to envelopes.
The following result is crucial in connection with the existence of en-

velopes.

Proposition 3.1. [Xu96, Proposition 1.2.2] Let C be a class of modules
and assume that a module N admits a C-envelope. If µ : N → C is a C-
preenvelope of N , then C = C ′ ⊕ H for some submodules C ′ and H such
that the composition N → C → C ′ is a C-envelope of N .

We will consider C-envelopes where C is a class closed under direct sums,
and we will make use of the following result which is strongly connected
with the notion of T-nilpotency of an ideal.

Theorem 3.2. [Xu96, Theorem 1.4.4 and 1.4.6] Fix a class C and consider
a family of C-preenvelopes {µn : Mn → Cn}n∈Z>0 of the modules {Mn}n∈Z>0.

(i) Let C be a class closed under countable direct sums. Assume that for
every n ≥ 1, µn : Mn → Cn is a C-envelope of Mn and that ⊕nMn

admits a C-envelope. Then ⊕µn : ⊕n Mn → ⊕nCn is a C-envelope
of ⊕nMn.

(ii) Suppose that the µn are monomorphisms for each n, and let fn : Cn →
Cn+1 be a family of homomorphisms such that fn(µn(Mn)) = 0 for
each n. Then, ⊕µn : ⊕n Mn → ⊕nCn is a C-envelope of ⊕nMn

if and only if for every x ∈ C1 there is an integer m such that
fmfm−1 . . . f1(x) = 0.
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The following lemma and proposition will be useful when we investigate
B-envelopes.

Lemma 3.3. Let 0 → N
µ→ B

π→ A → 0 be an exact sequence. For every
endomorphism f of B, the following are equivalent

(i) µ = fµ.
(ii) The restriction of f to µ(N) is the identity of µ(N).
(iii) There is a homomorphism g ∈ HomR(A,B) such that f = idB − gπ.

Proof. (i) ⇔ (ii) This is clear.
(i) ⇔ (iii) µ = fµ if and only if (idB − f)µ = 0, that is if and only if

there exists g ∈ HomR(A,B) such that idB − f = gπ since π is the cokernel
of µ. �

Proposition 3.4. Let M
µ→ B is a B-envelope of the R-module M . Let α

be an automorphism of M and let β be any endomorphism of B such that
βµ = µα. Then β is an automorphism of B.

Proof. Since α is an automorphism of M , it is easy to show that µα : M → B
is a B-envelope of M . Let β be as assumed and consider an endomorphism γ
of B such that γµα = µ. Then γβµ = µ, so since µ is a B-envelope, γβ is an
automorphism of B and β is a split monomorphism and B = β(B)⊕Ker γ.
Since µ(M) ⊆ β(B), Ker γ = 0 by Proposition 3.1, as required.

�

4. Gabriel topologies

In this section we briefly introduce Gabriel topologies and discuss some
advancements that relate Gabriel topologies to 1-tilting classes and silting
classes over commutative rings as done in [Hrb16] and [AHH17]. Further-
more, we include some of our own results Subsection 4.2. For a more detailed
discussion on torsion pairs and Gabriel topologies, refer to [Ste75, Chapters
VI and IX].

4.1. Torsion pairs and Gabriel topologies. We will start by giving defi-
nitions in the case of a general ring with unit (not necessarily commutative).

Recall that a torsion pair (E ,F) in Mod-R is a pair of classes of modules
in Mod-R which are mutually orthogonal with respect to the Hom-functor
and maximal with respect to this property. The class E is called a torsion
class and F a torsion-free class. A torsion pair (E ,F) is called hereditary if
E is also closed under submodules.

A right Gabriel topology G on a ring R is a filter of open right ideals of
a right linear topology on R satisfying an extra condition. This condition
is such to guarantee that there is a bijective correspondence between right
Gabriel topologies G on R and hereditary torsion classes in Mod-R.{

right Gabriel topologies
on R

}
Φ //

{
hereditary torsion
classes in Mod-R

}
Ψ

oo

Φ: G � // EG = {M | Ann(x) ∈ G,∀x ∈M}

{J ≤ R | R/J ∈ E} E : Ψ�oo
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The classes EG and FG are referred to as the G-torsion and G-torsion-free
classes, respectively.

For a right R-module M let tG(M) denote the G-torsion submodule of M ,
or t(M) when the Gabriel topology is clear from context.

The module of quotients of the Gabriel topology G of a right R-module
M is the module

MG := lim−→
J∈G

HomR(J,M/tG(M)).

Furthermore, there is a canonical homomorphism

ψM : M ∼= HomR(R,M)→MG .

By substitutingM = R, the assignment gives a ring homomorphism ψR : R→
RG and furthermore, for each R-module M the module MG is both an R-
module and an RG-module. Both the kernel and cokernel of the map ψM
are G-torsion R-modules, and in fact Ker(ψM ) = tG(M).

Let q : Mod-R → Mod-RG denote the functor that maps each M to its
module of quotients. Let ψ∗ denote the right exact functor Mod-R →
Mod-RG where ψ∗(M) := M ⊗ RG . In general, there is a natural trans-
formation Θ: ψ∗ → q with ΘM : M⊗RG →MG which is defined as m⊗η 7→
ψM (m) · η. That is, for every M the following triangle commutes.

(?) M
ψ∗(M) //

ψM !!

M ⊗R RG

ΘMyy
MG

A right R-module is G-closed if the following natural homomorphisms are
all isomorphisms for every J ∈ G.

M ∼= HomR(R,M)→ HomR(J,M)

This amounts to saying that HomR(R/J,M) = 0 for every J ∈ G (i.e. M
is G-torsion-free) and Ext1

R(R/J,M) = 0 for every J ∈ G (i.e. M is G-
injective).

A left R-module N is called G-divisible if JN = N for every J ∈ G. We
denote the class of G-divisible modules by DG .

A right Gabriel topology is faithful if HomR(R/J,R) = 0 for every J ∈ G,
or equivalently if R is G-torsion-free, that is the natural map ψR : R → RG
is injective.

A right Gabriel topology is finitely generated if it has a basis consisting
of finitely generated right ideals. Equivalently, G is finitely generated if
the G-torsion radical preserves direct limits if and only if the G-torsion-free
modules are closed under direct limits, that is, the associated torsion pair
is of finite type, (see [Ste75, Proposition XIII.1.2] and the discussion before
[Hrb16, Lemma 2.4]).

4.2. More properties of Gabriel topologies. We note that in the fol-
lowing two lemmas, all statements hold in the non-commutative case except
for Lemma 4.1 (iii). Otherwise, recall that the right (left) Gabriel topology,
has an associated torsion pair (EG ,FG) classes of right (left) R-modules and
the G-divisible modules are left (right) R-modules.
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We will often refer to the following exact sequence where ψR is the ring of
quotients homomorphism in (1) as discussed in the previous subsection. We
often will denote tG(M) simply by t(M) and when clear from the context, ψ
instead of ψR and ψ̄ : R/t(R)→ RG the induced monomorphism from ψR.

0→ tG(R)→ R
ψR→ RG → RG/ψR(R)→ 0 (1)

Lemma 4.1 and Lemma 4.2 hold analogously for a left Gabriel topology.

Lemma 4.1. Suppose G is a right Gabriel topology. Then the following
statements hold.

(i) If M is a G-torsion right R-module and D is a G-divisible module
then M ⊗R D = 0.

(ii) If N is a G-torsion-free module then the natural map
idN ⊗RψR : N → N ⊗R RG is a monomorphism and N → N ⊗R
R/t(R) is an isomorphism.

(iii) Suppose R is commutative. If D is both G-divisible and G-torsion-
free, then D is a RG-module and D ∼= D⊗R RG via the natural map
idD ⊗RψR : D ⊗R R→ D ⊗R RG.

(iv) If X is an R-R-bimodule and is G-torsion, then M⊗RX is G-torsion
for every M ∈ Mod-R.

Proof. (i) This is [Ste75, Proposition VI.9.1].
(ii) Consider the following commuting triangle where N is G-torsion-free in
Mod-R.

N ∼= N ⊗R R
idN ⊗RψR //

ψN

��

N ⊗R RG

ΘN
uu

NG

Then ψN is a monomorphism and since ψN = ΘN ◦ (idN ⊗RψR), also
idN ⊗RψR is a monomorphism. Moreover, we know that idN ⊗RψR factors
as

N � N ⊗R R/t(R)→ N ⊗R RG ,
thus also N � N ⊗R R/t(R) is a monomorphism, and therefore is an iso-
morphism.

(iii) Consider the following commuting diagram where the horizontal se-
quence is exact by (ii) as D is G-torsion-free.

0 // D
idD ⊗RψR //

ψD

��

D ⊗R RG

ΘDww

// D ⊗R RG/ψ(R) // 0

DG

Additionally, D ⊗R RG/ψ(R) = 0, since RG/ψ(R) is G-torsion. Therefore
idD ⊗RψR : D → D ⊗R RG is an isomorphism.

(iv) Fix X a G-torsion R-R-bimodule and M ∈ Mod-R. Take a free

presentation of M , R(α) → M → 0. Apply (− ⊗R X) to find the exact

sequence X(α) → M ⊗R X → 0. As X(α) is G-torsion and the G-torsion
modules are closed under quotients, also M ⊗R X is G-torsion. �
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Lemma 4.2. Suppose G is a Gabriel topology of right ideals. Then the
following hold.

(i) If p.dimMR ≤ 1, then TorR1 (M,RG) = 0.
(ii) If p.dimMR ≤ 1 and M is G-torsion-free, then

TorR1 (M,RG) = 0 = TorR1 (M,RG/ψ(R)).

If moreover G is a right Gabriel topology with a basis of finitely generated
ideals and p. dimMR ≤ 1, then MR ⊗R RG is G-torsion-free.

Proof. (i) By assumption p. dimMR ≤ 1, so there is the following projective
resolution of M , where P0, P1 are projective right R-modules.

0→ P1
γ→ P0 →M → 0 (2)

We will first show that TorR1 (M,R/t(R)) = 0. We first note that from the
following exact sequence (3), TorR1 (M,R/t(R)) is G-torsion, as it is contained
in the G-torsion module M ⊗R t(R) (see Lemma 4.1(iv)) and is itself a right
R-module as R/t(R) is an R-R-bimodule.

0→ TorR1 (M,R/t(R))→M ⊗R t(R)→M →M ⊗R R/t(R)→ 0 (3)

Next, we note that from the following exact sequence (4), TorR1 (M,RG) is
G-torsion-free as it is contained in the G-torsion-free module P1 ⊗R RG .

0→ TorR1 (M,RG)→ P1 ⊗R RG → P0 ⊗R RG →M ⊗R RG → 0 (4)

Thus from the following exact sequence (5), TorR1 (M,R/t(R)) is G-torsion-
free as by assumption TorR2 (M,RG/ψ(R)) = 0. Therefore we conclude that
TorR1 (M,R/t(R)) = 0 as it is both G-torsion and G-torsion-free.

0→ TorR1 (M,R/t(R))→ TorR1 (M,RG)→ TorR1 (M,RG/ψ(R)) (5)

Moreover, also TorR1 (M,RG/ψ(R)) is G-torsion by applying (−⊗RRG/ψ(R))
to the short exact sequence (2). Therefore TorR1 (M,RG) = 0 as it is both
G-torsion by (5) and G-torsion-free by (4).

(ii) By applying the functor (M⊗R−) to the exact sequence 0→ R/t(R)
ψ̄→

RG → RG/ψ(RG)→ 0, we have the following exact sequence.

0 = TorR1 (M,RG) // TorR1 (M,RG/ψ(R)) // M ∼= M ⊗R R/t(R)

By Lemma 4.1(ii), idM ⊗Rψ̄R : M ⊗R R/t(R) → M ⊗R RG is a monomor-
phism and by (i), TorR1 (M,RG) = 0 hence TorR1 (M,RG/ψ(R)) = 0.

For the final statement, first note that for any projective right R-module

PR, PR ⊗R RG ≤
⊕
R

(α)
G . By the assumption that G is finitely generated, by

[Ste75, Proposition XIII.1.2], we have that arbitrary direct sums of copies of
G-closed modules are G-closed, thus we conclude that PR⊗RRG is G-closed.
Now consider the presentation 0 → P1 → P0 → M → 0 of M with P0, P1

projective. Then 0 → P1 ⊗R RG → P0 ⊗R RG → M ⊗R RG → 0 is exact
as TorR1 (M,RG) = 0 by (i) of this lemma. As the middle term P0 ⊗R RG
is G-torsion-free and P1 ⊗R RG is G-closed, it follows that M ⊗R RG is G-
torsion-free. �
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4.3. Gabriel topologies and 1-tilting classes. In this paper, we will
only be concerned with Gabriel topologies over commutative rings. In this
setting, much useful research has already been done. Specifically, in [Hrb16],
Hrbek showed that over commutative rings the faithful finitely generated
Gabriel topologies are in bijective correspondence with 1-tilting classes, and
that the latter are exactly the classes of G-divisible modules for some faithful
finitely generated Gabriel topology G, as stated in the following theorem.

Theorem 4.3. [Hrb16, Theorem 3.16] Let R be a commutative ring. There
are bijections between the following collections.

(i) 1-tilting classes T in Mod-R.
(ii) faithful finitely generated Gabriel topologies G on R.
(iii) faithful hereditary torsion pairs (E ,F) of finite type in Mod-R.

Moreover, the tilting class T is the class of G-divisible modules with respect
to the Gabriel topology G.

When we refer to the Gabriel topology associated to the 1-tilting class T
we will always mean the Gabriel topology in the sense of the above theorem.
In addition we will often denote A to be the right Ext-orthogonal class to
DG = T in the situation just described, so (A,DG) will denote the 1-tilting
cotorsion pair. Note that every module in A has projective dimension at
most one.

In [AHH17] the correspondence between faithfully finitely generated Gabriel
topologies and 1-tilting classes over commutative rings was extended to
finitely generated Gabriel topologies which were shown to be in bijective
correspondence with silting classes. Thus in this case the class DG of G-
divisible modules coincides with the class GenT for some silting module
T .

4.4. Flat ring epimorphisms. There is a special class of Gabriel topolo-
gies which behave particularly well and are related to ring epimorphisms.
The majority of this paper will be restricted to looking at these Gabriel
topologies. The standard examples of these Gabriel topologies over R are
localisations of a commutative ring R with respect to a multiplicative subset
S, where the Gabriel topology has as a basis the principal ideals generated
by elements of S.

A ring epimorphism is a ring homomorphism R
u→ U such that u is an

epimorphism in the category of unital rings. This is equivalent to the natural
map U⊗RU → U induced by the multiplication in U being an isomorphism,
or equivalently that U ⊗R (U/u(R)) = 0 (see [Ste75, Chapter XI.1].

Two ring epimorphisms R
u→ U and R

u′→ U ′ are equivalent if there is a
ring isomorphism σ : U → U ′ such that σu = u′.

A ring epimorphism is called (left) flat if u makes U into a flat left R-
module. We will denote the cokernel of u by K and sometimes by U/R or
U/u(R).

A left flat ring epimorphism R
u→ U is called a perfect right localisation

of R. In this case, by [Ste75, Chapter XI.2, Theorem 2.1] the family of right
ideals G = {J ≤ R | JU = U} forms a right Gabriel topology. Moreover,
there is a ring isomorphism σ : U → RG such that σu : R → RG is the
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canonical isomorphism ψR : R → RG , or, in other words, u and ψR are
equivalent ring epimorphisms.

We will make use of the characterisations of perfect right localisations
from Proposition 3.4 in Chapter XI.3 of Stenström’s book [Ste75].

In particular, Proposition 3.4 states that the right Gabriel topology G
associated to a flat ring epimorphism R

u→ U , then ΘM in the diagram (?)
is an isomorphism for every right R-module M .

Remark 4.4. From the above observations and results in [Hrb16], when R is

commutative and R
u→ U is a flat injective epimorphism, one can associate

a 1-tilting class which is exactly the class of G-divisible modules. In the
case that additionally p.dimR U ≤ 1, one can apply a result from [AHS11]
which states that U ⊕ K is a 1-tilting module, so there is a 1-tilting class
denoted T := (U ⊕ K)⊥ = Gen(U). In fact, we claim that this is exactly
the 1-tilting class of G-divisible modules. Explicitly, the Gabriel topology
associated to T in the sense of Theorem 4.3 is exactly the collection of ideals
{J ≤ R | JM = M for every M ∈ T }. The Gabriel topology that arises
from the perfect localisation is the collection {J ≤ R | JU = U} and since
U ∈ T = GenU , the Gabriel topologies associated to these two 1-tilting
classes are the same. We conclude that the two 1-tilting classes coincide:
GenR(U) = DG .

In [Hrb16, Proposition 5.4] the converse is proved: If one starts with a
1-tilting class T with associated Gabriel topology G, so that T = DG , then
RG is a perfect localisation and p. dimRG ≤ 1 if and only if GenRG = DG .

The following lemma will be useful when working with a Gabriel topology
over a commutative ring that arises from a perfect localisation.

Lemma 4.5. Let R be a commutative ring, u : R → U a flat injective ring
epimorphism, and G the associated Gabriel topology. Then the annihilators
of the elements of U/R form a sub-basis for the Gabriel topology G. That
is, for every J ∈ G there exist z1, z2, . . . , zn ∈ U such that⋂

0≤i≤n
AnnR(zi +R) ⊆ J.

Proof. Every ideal of the form AnnR(z+R) is an ideal in G since K = U/R
is G-torsion.

Fix an ideal J ∈ G. Then, U = JU , so 1U =
∑

0≤i≤n aizi where ai ∈ J
and zi ∈ U . We claim that⋂

0≤i≤n
AnnR(zi +R) ⊆ J.

Take b ∈
⋂

0≤i≤n AnnR(zi +R). Then

b =
∑

0≤i≤n
baizi ∈ J

since each bzi ∈ R, hence baizi ∈ J , and it follows that b ∈ J . �
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5. Enveloping 1-tilting classes over commutative rings

For this section, R will always be a commutative ring and T a 1-tilting
class.

By Theorem 4.3 there is a faithful finitely generated Gabriel topology G
such that T is the class of G-divisible modules. We denote again by (EG ,FG)
the associated faithful hereditary torsion pair of finite type. We use DG and
T = GenT = T⊥ interchangeably to denote the 1-tilting class, and A to
denote the right orthogonal class ⊥DG .

The aim of this section is to show that if T is enveloping, then RG , the
ring of quotients with respect to G, is G-divisible and therefore ψR : R→ RG
is a perfect localisation of R.

Recall that if T is 1-tilting, T ∩⊥T = Add(T ) (see [GT12, Lemma 13.10]).
By the definition of a 1-tilting module we have the short exact sequence

0 → R
ε→ T0 → T1 → 0 where T0, T1 ∈ Add(T ). In fact, this short exact

sequence is a special DG-preenvelope of R, and T0⊕T1 is a 1-tilting module
which generates T by [GT12, Theorem 13.18 and Remark 13.19].

Furthermore, assuming that R has a DG-envelope, we can suppose without
loss of generality that the sequence (T3) is the DG-envelope of R, since
an envelope is extracted from a special preenvelope by passing to direct
summands (Proposition 3.1). For the rest of the section we will denote the
DG-envelope of R by ε.

Recall from Section 4 that for every M ∈ Mod-R there is the commuting
diagram (?). Since G is faithful we have the following short exact sequence
where ψR is a ring homomorphism and RG/R is G-torsion.

(†) 0→ R
ψR→ RG → RG/R→ 0

We now show two lemmas about the 1-tilting module T0 ⊕ T1 and the
class Add(T0 ⊕ T1) assuming that R has a DG-envelope.

Lemma 5.1. Let the following short exact sequence be a DG-envelope of R.

0→ R
ε→ T0 → T1 → 0

Then T0 is G-torsion-free and T0
∼= T0 ⊗R RG.

Proof. We will show that for every J ∈ G, T0[J ], the set of elements of T0

annihilated by J is zero. Set w := ε(1R) and fix a J ∈ G. As T0 = JT0,
w =

∑
1≤i≤n aizi where ai ∈ J and zi ∈ T0. This sum is finite, so we can

define the following maps.

z : R //
⊕

1≤i≤n T0 a :
⊕

1≤i≤n T0
// T0

1R
� / (z1, ..., zn) (x1, ..., xn) � /

∑
i aixi

As
⊕

n T0 is also G-divisible, by the preenvelope property of ε there exists a
map f : T0 →

⊕
n T0 such that fε = z. Also, az(1R) =

∑
1≤i≤n aizi = w, so
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az = ε and the following diagram commutes.

0 // R

z

$$

ε

��

ε // T0
β //

f

��

T1
// 0

⊕
n T0

a

��
T0

By the envelope property of ε, af is an automorphism of T0. The restriction
of the automorphism af to T0[J ] is an automorphism of T0[J ], and factors
through the module

⊕
n T0[J ]. However a(

⊕
n T0[J ]) = 0, so af(T0[J ]) = 0,

but af restricted to T0[J ] is an automorphism, thus T0[J ] = 0.
From (iii) of Lemma 4.1 it follows that T0

∼= T0 ⊗R RG since T0 is G-
divisible. �

We look at DG-envelopes of G-torsion modules in Mod-R, and find that
they are also G-torsion.

Lemma 5.2. Suppose DG is enveloping in Mod-R and M is a G-torsion
R-module. Then the DG-envelope of M is G-torsion.

Proof. To begin with, fix a finitely generated J ∈ G with a set {a1, . . . , at} of
generators and consider a DG-envelope D(J) of the cyclic G-torsion module
R/J , denoted as follows.

0→ R/J ↪→ D(J)→ A(J)→ 0

We will show that D(J) is G-torsion. Consider the following countable direct
sum of envelopes of R/J which is itself an envelope, by Theorem 3.2 (i).

0→
⊕
n

(R/J)n ↪→
⊕
n

D(J)n →
⊕
n

A(J)n → 0.

Choose an element a ∈ J and for each n set fn : D(J)n → D(J)n+1 to be
the multiplication by a. Then clearly (R/J)n vanishes under the action of
fn, hence we can apply Theorem 3.2 (ii). Thus, for every d ∈ D(J), there
exists an m such that

fm ◦ · · · ◦ f2 ◦ f1(d) = 0 ∈ D(J)(m+1).

Hence for every d ∈ D there is an integer m for which amd = 0.
Fix d ∈ D and let mi be the minimal natural number for which (ai)

mid =
0 and set m := sup{mi : 1 ≤ i ≤ t}. Then for a large enough integer k
we have that Jkd = 0 (for example set k = tm), and Jk ∈ G. Thus every
element of D(J) is annihilated by an ideal contained in G, therefore D(J)
is G-torsion.

Now consider an arbitrary G-torsion module M . Then M has a presenta-

tion
⊕

α∈ΛR/Jα
p→ M → 0 for a family {Jα}α∈Λ of ideals of G. Since G is

of finite type, we may assume that each Jα is finitely generated.
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Take the push-out of the map p with the DG-envelope of
⊕

αR/Jα.

0 //
⊕

α∈ΛR/Jα
//

p
����

⊕
α∈ΛD(Jα) //

����

⊕
α∈ΛA(Jα) // 0

0 // M // Z //
⊕

α∈ΛA(Jα) // 0

The bottom short exact sequence forms a DG-preenvelope of M . We have
shown above that for every α in Λ, the module D(Jα) is G-torsion, so also Z
is G-torsion. Therefore, as the DG-envelope of M must be a direct summand
of Z by Proposition 3.1, also the DG-envelope of M is G-torsion. �

The following is a corollary to the final statement of Lemma 4.2 and
Lemma 5.2.

Corollary 5.3. Suppose DG is enveloping in Mod-R and suppose M is a
G-torsion R-module. Then M ⊗R RG is G-divisible.

Proof. Let the following be a DG-envelope of a G-torsion module M , where
both D and A are G-torsion by Lemma 5.2.

0→M → D → A→ 0

The module A is G-divisible and RG/R is G-torsion so A ⊗R RG/R = 0,
hence A→ A⊗RRG is surjective. In particular, A⊗RRG is G-torsion. Also
as p.dimA ≤ 1, A ⊗R RG is G-torsion-free by Lemma 4.2. It follows that
A⊗RRG is both G-torsion and G-torsion-free so A⊗RRG = 0. Additionally
TorR1 (A,RG) = 0 by Lemma 4.2(i), so the functor (−⊗R RG) applied to the
envelope of M reduces to the following isomorphism.

0 = TorR1 (A,RG)→M ⊗R RG
∼=→ D ⊗R RG → A⊗R RG = 0

Hence as D⊗RRG is G-divisible, also M⊗RRG is G-divisible, as required. �

Proposition 5.4. Suppose DG is enveloping in Mod-R. Then RG is G-
divisible.

Proof. We will show that for each J ∈ G, R/J ⊗R RG = 0. Fix a J ∈ G. By
Corollary 5.3, R/J⊗RRG is G-divisible, thus we have R/J⊗R(R/J⊗RRG) =
0. However

0 = R/J ⊗R (R/J ⊗R RG) ∼= (R/J ⊗R R/J)⊗R RG ∼= R/J ⊗R RG ,

since R→ R/J is a ring epimorphism, so RG is G-divisible. �

Using the characterisation of a perfect localisation of [Ste75, Chapter
XI.3, Proposition 3.4], we can state the main result of this section.

Proposition 5.5. Assume that T is a 1-tilting class over a commutative
ring R such that the class T is enveloping. Then the associated Gabriel
topology G of T arises from a perfect localisation.

Proof. By Proposition 5.4, RG is G-divisible, hence by [Ste75, Proposition
3.4 (g)], ψ : R→ RG is flat ring epimorphism and moreover it is injective. �
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6. The G-completion of R and the endomorphism ring of K

The aim of this section is to prove that if R
u→ U is a commutative flat

injective ring epimorphism with associated Gabriel topology G and coker-
nel K := U/u(R), then there is a natural ring isomorphism between the
following two rings.

Λ(R) := lim←−
J∈G

R/J and R := EndR(K)

This was mentioned in [Pos18, Section 3] in the case that the Gabriel topol-
ogy is generated by a multiplicative system in R. Also, it follows from this
ring isomorphism that R is a commutative ring.

For completeness, we will give an explicit description of the isomorphism
between the two rings.

We will begin by briefly recalling some useful definitions about topological
rings specifically referring to Gabriel topologies. Our reference is [Ste75,
Chapter VI.4]. Next we will continue by introducing u-contramodules in
an analogous way to Positselski in [Pos18]. To finish, we show the ring
isomorphism as well as a lemma and a proposition which relate the G-torsion
R-modules R/J to the discrete factor rings of R.

6.1. Topological rings. A ring R is a topological ring if it has a topology
such that the ring operations are continuous.

A topological ring R is right linearly topological if it has a topology with
a basis of neighbourhoods of zero consisting of right ideals of R. The ring
R with a right Gabriel topology is an example of a right linearly topological
ring.

If R is a right linearly topological ring with basis B, then the completion
of R is the module

ΛB(R) := lim←−
J∈B

R/J.

There is a canonical map λ : R→ ΛB(R) which sends the element r ∈ R to
(r+J)J∈B. If the homomorphism λR is injective, then R is called separated,
which is equivalent to

⋂
J∈B J = 0. If the map λ is surjective, R is called

complete.
The projective limit topology on ΛB(R) is the topology induced by the

product of the discrete topologies on
∏
J∈BR/J . If the ideals in B are two-

sided in R, then the module ΛB(R) is a ring. Furthermore, it is a linearly
topological ring with respect to the projective limit topology. In this case,
the ring ΛB(R) is both separated and complete with this topology. We will
simply write Λ(R) when the basis B is clear from context.

Remark 6.1. If W (J) is the kernel of the projection πJ : ΛB(R) → R/J ,
then clearly W (J) ⊇ Λ(R)J .

Let R be a linearly topological ring. A right R-module N is discrete if for
every x ∈ N , the annihilator ideal AnnR(x) = {r ∈ R | xr = 0} is open in
the topology of R.

A linearly topological ring is left pro-perfect ([Pos19]) if it is separated,
complete, and with a base of neighbourhoods of zero formed by two-sided
ideals such that all of its discrete factor rings are perfect.
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For the rest of this subsection, we will be considering a flat injective ring

epimorphism of commutative rings denoted 0→ R
u→ U , and we will denote

the cokernel U/R of u by K.
Take a finitely generated submodule F of K, and consider the ideals

formed by the elements of R := EndR(K) which annihilate F . The ideals of
this form are a basis of neighbourhoods of zero of R. Note that this is the
same as considering EndR(K) with the subspace topology of the product
topology on KK where the topology on K is the discrete topology. We
will consider R endowed with this topology, which is also called the finite
topology.

We will now state the above in terms of a Gabriel topology that arises
from a perfect localisation. Let G be the Gabriel topology associated to
the flat ring epimorphism u. Recall that K is G-torsion, or equivalently
a discrete module. Thus there is a natural well-defined action of Λ(R) on
K. In other words, K is a Λ(R)-module where for every element (rJ +
J)J∈G ∈ Λ(R) and every element z ∈ U , the scalar multiplication is defined
by (rJ + J)J∈G · (z + R) := rJzz + R where Jz := AnnR(z + R). As well
as the natural map λ : R → Λ(R), there is also a natural map ν : R → R
where each element of R is mapped to the endomorphism of K which is
multiplication by that element.

If R
u→ U is a flat injective ring epimorphism, then there is a homomor-

phism

α : Λ(R) = lim←−
J∈G

R/J → R,

where α is induced by the action of Λ(R) on K. It follows that the following
triangle commutes.

(∗) R

ν

��

λ // Λ(R)

α
||

R

The rest of this section is dedicated to showing that α is a ring isomor-
phism. We will first show that α is injective, but before that we recall some
terminology.

A module M is u-h-divisible if M is an epimorphic image of U (α) for some
cardinal α. An R-module M has a unique u-h-divisible submodule denoted
hu(M), and it is the image of the map HomR(U,M) → HomR(R,M) ∼=
M . Hence for an R-module M , by applying the contravariant functor

HomR(−,M) to the short exact sequence 0 → R
u→ U → K → 0 we

have the following short exact sequences.

0→ HomR(K,M)→ HomR(U,M)→ hu(M)→ 0 (6)

0→M/hu(M)→ Ext1
R(K,M)→ Ext1

R(U,M)→ 0 (7)

We claim that HomR(K,K) is isomorphic to Ext1
R(K,R) via the differ-

ential δ. First note that Ext1
R(K,U) vanishes since by the flatness of the

ring U , there is an isomorphism Ext1
R(K,U) ∼= Ext1

U (K ⊗R U,U) = 0 since
K ⊗R U = 0. Next, by applying the covariant functor HomR(K,−) to the
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short exact sequence of u, we have that

0 = HomR(K,U)→ HomR(K,K)
δ→ Ext1

R(K,R)→ Ext1
R(K,U) = 0. (8)

Recall from Lemma 4.5 that the ideals AnnR(z +R) for z +R ∈ K form
a sub-basis of the topology G. Let S ⊂ G denote the set of ideals of G of the
form AnnR(z + R) for z + R ∈ K. Clearly, the following two intersections
of ideals coincide. ⋂

J∈G
J =

⋂
J∈S

J

We begin with some facts about Λ(R) and R.

Lemma 6.2. Let u : R → U be a flat injective ring epimorphism of com-
mutative rings. Then the following hold.

(i) The kernel of ν : R→ R is the intersection
⋂
J∈S J .

(ii) The kernel of λ : R→ Λ(R) is the intersection
⋂
J∈G J .

(iii) The ideal
⋂
J∈G J is the maximal u-h-divisible submodule of R.

(iv) The homomorphism α : Λ(R)→ R is injective.

Proof. (i) For r ∈ R, ν(r) = 0 if and only if rK = 0 if and only if r ∈
AnnR(z +R) for every z ∈ U .

(ii) By the definition of λ it is clear that λ(r) = 0 if and only if r ∈ J for
every J ∈ G.

(iii) First we show that
⋂
J∈G J ⊆ hu(R). Take a ∈

⋂
J∈G J . We want to

see that multiplication by a, ȧ : R → R extends to a map f : U → R (that
is ȧ is in the image of the map u∗ : HomR(U,R) → HomR(R,R)). By part
(i) and its proof, az ∈ R for every z ∈ U , so we have a well-defined map
ȧ : U → R, which makes the following triangle commute as desired.

R

ȧ
��

u // U

ȧ��
R

Now take a ∈ hu(R). Since hu(R) is a G-divisible submodule of R, a ∈
J(hu(R)) ≤ J for each J ∈ G, as required.

(iv) Take η = (rJ + J)J∈G ∈ Λ(R) such that α(η) = 0 or η(z + R) = 0
for each z ∈ U . Then rIz ∈ R where I = AnnR(z + R). By Lemma 4.5,
for each J ∈ G there exists z0, . . . , zn such that J ⊇

⋂
n AnnR(zi +R) =: I0.

Thus rJ − rI0 ∈ J and rI0zi ∈ R for each 0 ≤ i ≤ n, so rI0 ∈ J . This implies
rJ ∈ J for each J ∈ S, so η = 0. �

6.2. u-contramodules. We will continue by discussing a general commu-
tative ring epimorphism u before moving onto a flat injective ring epimor-
phisms.

Definition 6.3. Let u : R → U be a ring epimorphism of commutative
rings. A u-contramodule is an R-module M such that

HomR(U,M) = 0 = Ext1
R(U,M).

Lemma 6.4. [GL91, Proposition 1.1] The category of u-contramodules is
closed under kernels of morphisms, extensions, infinite products and projec-
tive limits in R-Mod.
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The following two lemmas are proved in [Pos18] for the case of the locali-
sation of R at a multiplicative subset. The proofs follow analogously for the
case of a commutative injective ring epimorphism u : R→ U .

Lemma 6.5. [Pos18, Lemma 1.2] Let u : R→ U be a ring epimorphism and
let M be an R-module.

(i) If HomR(U,M) = 0, then HomR(Z,M) = 0 for any u-h-divisible
module Z.

(ii) If M is a u-contramodule, then Ext1
R(Z,M) = 0 = HomR(Z,M) for

any U -module Z.

Lemma 6.6. [Pos18, Lemma 1.10] Let b : A → B and c : A → C be two
R-module homomorphisms such that C is a u-contramodule while Ker(b) is
a u-h-divisible R-module and Coker(b) is a U -module. Then there exists a
unique homomorphism f : B → C such that c = fb.

From now on, u : R→ U will always be a commutative flat injective ring
epimorphism.

Lemma 6.7. [BP20, Lemma 1.4(a)] Let u : R → U be a flat injective ring
epimorphism of commutative rings. Then R is a u-contramodule and is
G-torsion-free.

The following lemma and corollary are a generalisation of [Pos18, Lemma
1.6(b)] and [Pos18, Lemma 2.1(a)].

Lemma 6.8. Let u : R→ U be a flat injective ring epimorphism with asso-
ciated Gabriel topology G. Then for every J ∈ G, every R/J-module M is a
u-contramodule.

Proof. To see that HomR(U,M) = 0, take f : U → M . Then f(U) =
f(JU) = Jf(U) = 0 as J annihilates M .

As TorRi (R/J,U) = 0 and R → R/J is a ring epimorphism, one has the
isomorphism

Ext1
R(U,M) ∼= Ext1

R/J(R/J ⊗R U,M) = 0.

�

Corollary 6.9. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings. Then Λ(R) is a u-contramodule.

Proof. This follows immediately by Lemma 6.8 and by the closure properties
of u-contramodules in Lemma 6.4. �

Lemma 6.10. Let u : R → U be a flat injective ring epimorphism of com-
mutative rings. Then the cokernel of ν : R→ R is naturally a U -module.

Proof. Recall that hu(R) is the u-h-divisible submodule of R and δ is as in
sequence (8). Consider the following commuting diagram.

0 // R/hu(R)
ν // R //

∼=δ
��

Coker(ν) //

��

0

0 // R/hu(R) // Ext1
R(K,R) // Ext1

R(U,R) // 0
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By the five-lemma, the last vertical arrow is an isomorphism, so Coker(ν) ∼=
Ext1

R(U,R) which is a U -module since UUR is a U -R-bimodule, as required.
�

6.3. The isomorphism between the G-completion of R and End(K).
We now prove the main result of this section.

Proposition 6.11. Let u : R → U be a flat injective ring epimorphism of
commutative rings. Using the notation of Subsection 6.1, the homomorphism
α : Λ(R)→ R is a ring isomorphism.

Proof. From (∗) we have the following commuting triangle:

R

ν

��

λ // Λ(R)

α
||

R

From sequences (ii) and (iii) we have the following exact sequence.

0→ hu(R)→ R
ν→ R→ Coker(ν)→ 0

where hu(R) is u-h-divisible and Coker(ν) is a U -module by Lemma 6.10.
Both Λ(R) and R are u-contramodules so one can apply Lemma 6.6 to
the two triangles below. That is, firstly, there exists a unique map β such
that βν = λ, and secondly by uniqueness, the identity on R is the only
homomorphism that makes the triangle on the right below commute.

R

λ
��

ν // R

β||

R

ν

��

ν // R

idR��
Λ(R) R

It follows that since αβν = αλ = ν, by uniqueness αβ = idR. Therefore, α
is surjective. It was shown in Lemma 6.2 that α is injective, hence α is an
isomorphism.

It is straightforward to see that α is a ring homomorphism using the
Λ(R)-module structure of K, as described in Subsection 6.1. �

The following lemma will be useful when passing from the ring R to the
complete and separated topological ring R.

Lemma 6.12. Let u : R → U be a flat injective ring epimorphism of com-
mutative rings with associated Gabriel topology G. Then R/J is isomorphic
to R/JR and to Λ(R)/JΛ(R), for every J ∈ G.

Proof. R/JR and Λ(R)/JΛ(R) are isomorphic by Proposition 6.11. Both
R/J and R/JR are R/J-modules, hence are u-contramodules by Lemma 6.8
and we can imply Lemma 6.6 to ν : R→ R to find that there exists a unique
f such that the left triangle below commutes. The map f induces f̄ since
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JR ⊆ Ker f , so the right triangle below also commutes.

R

p

��

ν // R

f~~

R

f
��

π // R/JR

f̄{{
R/J R/J

Let ν̄ be the map induced by ν as in the following commuting diagram. We
will show that f̄ and ν̄ are mutually inverse.

R
ν //

p

��

R

π
��

R/J
ν̄ // R/JR

We have that πν = ν̄p, and so using the above commuting triangles it follows
that f̄ ν̄p = f̄πν = fν = p. As p is surjective, f̄ ν̄ = idR/J . We now show

that ν̄f̄ = idR/JR.

R

πν
��

ν // R

h||
R/JR

By uniqueness, π is the unique map that fits into the triangle above, that is
πν = hν implies that h = π. So,

πν = ν̄p = ν̄fν = ν̄f̄πν.

Therefore π = ν̄f̄π, and as π is surjective, ν̄f̄ = idR/JR as required. �

Proposition 6.13. If V is an open ideal in the topology of R = EndR(K),
then there is J ∈ G and a surjective ring homomorphism R/J → R/V .

Proof. By the definition of the topology on R, if V is an open ideal, then
by Proposition 6.11, W = α−1(V ) is an open ideal in the projective limit
topology of Λ(R). Hence by Remark 6.1, there is J ∈ G such that W ⊇
Λ(R)J . By Lemma 6.12 there is a surjective ring homomorphism R/J →
R/V. �

7. When a G-divisible class is enveloping

For this section, R will always be a commutative ring. Fix a flat injective
ring epimorphism u and an exact sequence

0→ R
u→ U → K → 0.

Denote by G the Gabriel topology arising from the flat ring epimorphism u.
We let mSpecR denote the collection of maximal ideals of R.

The aim of this section is to show that if DG is enveloping then for each
J ∈ G the ring R/J is perfect. It will follow from Theorem 7.13 that also R
is pro-perfect.

We begin by showing that for a local ring R the rings R/J are perfect,
before extending the result to all commutative rings by showing that all
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G-torsion modules (specifically the R/J for J ∈ G) are isomorphic to the
direct sum of their localisations.

In Lemma 5.1, it was shown that if ε : R → D is a DG-envelope of R
in Mod-R, then D must be G-torsion-free. Furthermore, if G arises from a
perfect localisation u : R→ U and R has a DG-envelope, then the following
proposition allows us to work in the setting that DG = GenU , thus (A,DG)
is the 1-tilting cotorsion pair associated to the 1-tilting module U ⊕K (see
Remark 4.4).

Combined with [Hrb16, Proposition 5.4], the following proposition pro-
vides a generalisation of [AHHT05, Theorem 1.1]. More precisely, the propo-
sitions show that conditions (1),(4), and (6) in [AHHT05, Theorem 1.1] hold
also in our more general context. The equivalence of (1),(2), and (3) of
[AHHT05, Theorem 1.1] was already shown in more generality in [AHS11].

Proposition 7.1. Let u : R → U be a (non-trivial) flat injective ring epi-
morphism of commutative rings and suppose R has a DG-envelope. Then
p.dimR U ≤ 1.

Proof. Let

0→ R
ε→ D → D/R→ 0 (∗∗)

denote the DG-envelope of R. Since the cotorsion pair (A,DG) is complete,
(∗∗) is a special preenvelope, hence D/R ∈ A and thus p.dimRD ≤ 1.
First note that since D is G-divisible and G-torsion-free by Lemma 5.1, by
Lemma 4.1(iii), D ∼= D ⊗R U and D is a U -module.

Consider the following short exact sequence of U -modules

0→ U → D ⊗R U ∼= D → D/R⊗R U → 0

We now claim that D/R ⊗R U is U -projective. Take any Z ∈ U -Mod
and note that Z ∈ DG . Then 0 = Ext1

R(D/R,Z) ∼= Ext1
U (D/R ⊗R U,Z).

Therefore the short exact sequence above splits in Mod-U and so U is a
direct summand of D also as an R-module. Hence p. dimR U ≤ 1. �

Corollary 7.2. Let u : R→ U be a (non-trivial) flat injective ring epimor-
phism of commutative rings and suppose R has a DG-envelope. Then

0→ R
u→ U → K → 0

is a DG-envelope of R.

Proof. By Proposition 7.1 p.dimU ≤ 1, so from the discussion in Section 4,
U⊕K is a 1-tilting module such that (U⊕K)⊥ = DG . Thus K ∈ A and so u
is a DG-preenvelope. To see that u is an envelope, note that HomR(K,U) =
0, so by Lemma 3.3, if u = fu, then f = idU is an automorphism of U , thus
u is a DG-envelope as required. �

Later in Example 8.9 we give an example of a ringR and 1-tilting cotorsion
class T where R has a T -envelope, but T is not enveloping. This result uses
our characterisation of the rings over which a 1-tilting class T is enveloping
in Theorem 8.5.

We now begin by showing that when R is a commutative local ring, if DG
is enveloping in Mod-R then for each J ∈ G, R/J is a perfect ring. We will
use the ring isomorphism α : Λ(R) ∼= R of Proposition 6.11.
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Lemma 7.3. Let R be a commutative local ring and u : R→ U a flat injec-
tive ring epimorphism and let K denote U/R. Then K is indecomposable.

Proof. It is enough to show that every idempotent of EndR(K) is either
the zero homomorphism or the identity on K. Let m denote the maximal
ideal of R. Take a non-zero idempotent e ∈ EndR(K). Then there is
an associated element α−1(e) = r̃ := (rJ + J)J∈G ∈ Λ(R) via the ring
isomorphism α : Λ(R) ∼= R of Proposition 6.11. Clearly r̃ is also non-zero
and an idempotent in Λ(R). We will show this element is the identity in
Λ(R).

As r̃ is non-zero, there exists a J0 ∈ G such that rJ0 /∈ J0. Also, r̃·r̃−r̃ = 0,
hence

rJ0rJ0 − rJ0 = rJ0(rJ0 − 1R) ∈ J0.

We claim that rJ0 is a unit in R. Suppose not, then rJ0 ∈ m, hence rJ0 − 1R
is a unit, which implies that rJ0 ∈ J0, a contradiction.

Consider some other J ∈ G such that J 6= R. We have that rJ∩J0 − rJ0 ∈
J0, hence rJ∩J0 /∈ J0. Therefore, by a similar argument as above, rJ∩J0 is a
unit in R. As rJ∩J0 − rJ ∈ J and rJ∩J0 is a unit, rJ /∈ J . Therefore by a
similar argument as above rJ is a unit in R for each J ∈ G and we conclude
that r̃ is a unit in Λ(R).

Finally, as rJ(rJ − 1R) ∈ J for every J , and r̃ := (rJ + J)J∈G is a unit,
it follows that rJ − 1R ∈ J for each J , implying that r̃ is the identity in
Λ(R). �

Proposition 7.4. Let R be a commutative local ring and consider the 1-
tilting cotorsion pair (A,DG) induced by the (non-trivial) flat injective ring
epimorphism u : R → U . If DG is enveloping in R-Mod, then R/J is a
perfect ring for every J ∈ G.

Proof. Let m denote the maximal ideal of R. As R is local, to show that
R/J is perfect it is enough to show that for every sequence of elements
{a1, a2, . . . , ai, . . . } with ai ∈ m \ J , there exists an m > 0 such that the
product a1a2 · · · am ∈ J (that is m/J is T-nilpotent) by Proposition 2.2.

Fix a J ∈ G and take {a1, a2, . . . , ai, . . . } as above. Consider the preen-
velope

0→ R/aiR ↪→ U/aiR→ K → 0 (9)

of R/aiR. First note that R/aiR is not G-divisible, since otherwise R/m ∼=
R/m⊗RR/aiR = 0, as m is contained in the Gabriel topology which is non-
trivial by assumption. As R is local, by Lemma 7.3, K is indecomposable,
so it follows that (9) is an envelope of R/aiR.

We will use the T-nilpotency of direct sums of envelopes from Theo-
rem 3.2. Consider the following countable direct sum of envelopes of R/aiR
which is itself an envelope by Theorem 3.2 (i).

0→
⊕
i>0

R/aiR ↪→
⊕
i>0

U/aiR→
⊕
i>0

K → 0

For each i > 0, we define a homomorphism fi : U/aiR → U/ai+1R between
the direct summands to be the multiplication by the element ai+1. Then
clearly R/aiR ⊆ U/aiR vanishes under the action of fi, hence we can apply
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Theorem 3.2 (ii) to the homomorphisms {fi}i>0. So, for every z + a1R ∈
U/a1R, there exists an n > 0 such that

fn · · · f2f1(z + a1R) = 0 ∈ U/an+1R,

which can be rewritten as

an+1 · · · a3a2(z) ∈ an+1R.

By Lemma 4.5, there exist z1, z2, . . . , zt ∈ U such that⋂
0≤j≤t

AnnR(zj +R) ⊆ J.

For each 1 ≤ j ≤ t, there exists an nj such that anj+1 · · · a3a2 annihilates
zj . That is,

anj+1 · · · a3a2(zj) ∈ anj+1R ⊆ R.

We now choose an integer m such that am · · · a3a2 annihilates all the zj for
1 ≤ j ≤ t. Set m = max{nj | j = 1, 2 . . . , t}. Then this m satisfies

amam−1 · · · a3a2 ∈
⋂

0≤j≤t
AnnR(zj +R) ⊆ J,

which finishes the proof. �

Now we extend the result to general commutative rings. Our assumption
is that the Gabriel topology G is arises from a perfect localisation u : R→ U
and that the associated 1-tilting class DG is enveloping in R-Mod.

Notation 7.5. For each maximal ideal m of R, there is a DG-preenvelope
of the following form induced by the map u.

0→ R/m→ U/m→ K → 0

Let the following sequence denote an envelope of R/m.

0→ R/m→ D(m)→ X(m)→ 0

By Proposition 3.1, D(m) and X(m) are direct summands of U/m and K =
U/R respectively. For convenience we will consider R/m as a submodule of
D(m) and X(m) as a submodule of K.

Remark 7.6.

(i) Note that for every maximal ideal m of R, R/m is G-divisible if and
only if, for every J ∈ G, J + m = R if and only if for every J ∈ G,
J * m if and only if m /∈ G. Therefore, we will only consider the
envelopes of R/m where m ∈ G. The modules D(m) and X(m) will
always refer to the components of the envelope of some R/m where
m ∈ G. Additionally, as R/m is also an Rm-module, it follows by
Proposition 3.4 that D(m) and X(m) are also Rm-modules.

(ii) For every J ∈ G, (R/J)m = 0 if and only if J * m.
(iii) If M is a G-torsion R-module, then Mm = 0 for every m /∈ G, which

follows by (ii).



24 S. BAZZONI AND G. LE GROS

The following lemma allows us to use Proposition 7.4 to show that if DG
is enveloping in R, all localisations Rm/Jm are perfect rings where m is a
maximal ideal in G and J ∈ G.

If R is a commutative ring with a maximal ideal m and C a class of R-
modules, we define Cm to be the class consisting of localisations of modules
in C. That is, Cm = {Cm | C ∈ C}.

Lemma 7.7. Let R be a commutative ring and consider the 1-tilting cotor-
sion pair (A,DG) induced from the flat injective ring epimorphism u : R →
U . Fix a maximal ideal m of R and let um : Rm → Um be the corresponding
flat injective ring epimorphism in Mod-Rm. Then the following hold.

(i) Km = 0 if and only if m /∈ G.
(ii) The induced Gabriel topology of um denoted

G(m) = {L ≤ Rm | LUm = Um}
contains the localisations Gm = {Jm ≤ Rm | J ∈ G}.

(iii) Suppose p.dimU ≤ 1. Then (DG)m is the 1-tilting class associated to
the flat injective ring epimorphism um : Rm → Um. That is, (DG)m =
DG(m).

(iv) If DG is enveloping in Mod-R, then DG(m) is enveloping in Mod-Rm.

Proof. (i) SinceK is G-torsion, m /∈ G impliesKm = 0 by Remark 7.6 (iii).
For the converse, suppose Km = 0. If m ∈ G then Rm

∼= Um =
mmUm

∼= mmRm, a contradiction. Note that if m /∈ G the rest of the
lemma follows trivially.

(ii) Take Jm ∈ Gm. Then Rm/Jm ⊗R Um
∼= (R/J ⊗R U) ⊗R Rm = 0, so

Jm ∈ G(m).
(iii) If p. dimU ≤ 1, U ⊕ K is a 1-tilting module for DG by [Hrb16,

Theorem 5.4]. That (DG)m is the 1-tilting class associated to the
1-tilting module (U ⊕ K)m is [GT12, Proposition 13.50], therefore
Gen(Um) = (DG)m in Mod-Rm. As um : Rm → Um is a flat injective
ring epimorphism and p. dimRm

Um ≤ 1, the 1-tilting classes Gen(Um)
and DG(m) coincide in Mod-Rm again by [Hrb16, Theorem 5.4]. Thus
(DG)m = DG(m).

(iv) Assume thatDG is enveloping in Mod-R and take someM ∈ Mod-Rm

with the following DG-envelope.

0→M → D → X → 0

We claim that M has a DG(m)-envelope in Mod-Rm. Since M ∈
Mod-Rm, D and X are Rm-modules by Proposition 3.4. By Propo-
sition 7.1, p. dimU ≤ 1. By (iii), (DG)m = DG(m) so D ∈ DG(m).

Moreover, X ∈ ⊥DG(m) as X ∈ Add(U ⊕ K) ∩ Mod-Rm so X ∈
Add(Um ⊕ Km). Since R → Rm is a ring epimorphism, any direct
summand of D which contains M in Mod-Rm would also be a direct
summand in Mod-R. Thus we conclude that 0→M → D → X → 0
is a DG(m)-envelope of M in Mod-Rm.

�

By the above lemma, if DG is enveloping in Mod-R, then DG(m) is envelop-
ing in Mod-Rm. Next we show that, under our enveloping assumption, all
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G-torsion modules are isomorphic to the direct sums of their localisations at
maximal ideals.

The proof of the following lemma uses an almost identical argument to
the proof of Lemma 5.2.

Lemma 7.8. Let u : R → U be a commutative flat injective ring epimor-
phism, G the associated Gabriel topology and suppose that DG is enveloping.
Let D(m) and X(m) be as in Notation 7.5 and fix a maximal ideal m ∈ G.
For every element d ∈ D(m) and every element a ∈ m, there is a natural
number n > 0 such that and = 0. Moreover, for every element x ∈ X(m)
and every element a ∈ m, there is a natural number n > 0 such that anx = 0.

Proof. We will use the T-nilpotency of direct sums of envelopes as in The-
orem 3.2 (ii). Consider the following countable direct sum of envelopes of
R/m which is itself an envelope by Theorem 3.2 (i).

0→
⊕
i>0

(R/m)i →
⊕
i>0

D(m)i →
⊕
i>0

X(m)i → 0

For a fixed element a ∈ m, we choose the homomorphisms fi : D(m)i →
D(m)i+1 between the direct summands to be multiplication by a. Then
clearly R/m ⊆ D(m) vanishes under the action of fi, hence we can apply
Xu’s Theorem: For every d ∈ D(m), there exists an n such that

fn · · · f2f1(d) = 0 ∈ D(m)n+1.

Since each fi acts as multiplication by a, for every d ∈ D there is an integer
n for which and = 0, as required.

It is straightforward to see that X(m) has the same property as X(m) is
an epimorphic image of D(m). �

Corollary 7.9. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping. Let m ∈ G and let X(m) be as in Notation 7.5.
The support of X(m) is exactly {m}, and X(m) = Km for each maximal
ideal m. Moreover, the sum of the submodules X(m) in K is a direct sum,
that is ∑

m∈G
X(m) =

⊕
m∈G

X(m).

Proof. We claim that X(m) is non-zero. Otherwise, X(m) = 0 would imply
that R/m is G-divisible, so R/m = m(R/m) = 0, a contradiction.

Consider a maximal ideal n 6= m. Take an element a ∈ m \ n. Then for
any x ∈ X(m), anx = 0 for some n > 0, by Lemma 7.8 and since a is an
invertible element in Rn, x is zero in the localisation with respect to n. This
holds for any element x ∈ X(m), hence X(m)n = 0.

As mentioned in Remark 7.6, X(m) is anRm-module, soX(m) = X(m)m is
non-zero. Since X(m) is a direct summand of K, X(m) is a direct summand
of Km which is indecomposable by Lemma 7.3. Therefore X(m) = Km is
non-zero.

To see that the sum of the submodules X(m) in K is a direct sum, consider
the module

Y := X(m) ∩
∑
n6=m
n∈G

X(n).
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Then, as shown above, Y localised at each maximal ideal of R is zero as
localisation commutes with intersections and sums. Thus Y = 0 for each
maximal ideal m, as required. �

Proposition 7.10. Let u : R→ U be a flat injective ring epimorphism and
suppose DG is enveloping. The module K can be written as a direct sum of
its localisations Km, that is

K ∼=
⊕
m∈G

Km =
⊕

m∈mSpecR

Km.

Proof. From Corollary 7.9, we have the following inclusion.⊕
m∈G

X(m) ≤ K

To see that this is an equality we show that these two modules have the
same localisation with respect to every m maximal in R. Recall that by
Lemma 7.7(i) if n is maximal, then Kn = 0 if and only if n /∈ G and by
Corollary 7.9, Supp(X(m)) = {m}. Using these facts, it follows that for
n /∈ G, Kn = 0 = (

⊕
m∈G X(m))n. Similarly, if m ∈ G, then Km = X(m)m.

Hence, ⊕
m∈G

X(m) = K,

and X(m) = X(m)m from Remark 7.6. �

Corollary 7.11. Let u : R → U be a flat injective ring epimorphism and
suppose DG is enveloping. Then for every G-torsion module M , the following
isomorphism holds.

M ∼=
⊕
m∈G

Mm =
⊕

m∈mSpecR

Mm

Furthermore, it follows that for every J ∈ G, J is contained in only finitely
many maximal ideals of R.

Proof. For the first isomorphism, recall that if an R-module M is G-torsion,
then M ∼= TorR1 (M,K). Also, note that in this case, Mm

∼= TorR1 (M,K)m ∼=
TorRm

1 (Mm,Km) ∼= TorR1 (M,Km). Hence we have the following isomor-
phisms.

M ∼= TorR1 (M,K) ∼= TorR1 (M,
⊕
m∈G

Km) ∼=
⊕
m∈G

TorR1 (M,Km) ∼=
⊕
m∈G

Mm

The fact that ⊕
m∈G

Mm =
⊕

m∈mSpecR

Mm

follows from Remark 7.6 (iii).
For the final statement of the proposition, one only has to replace M with

the G-torsion module R/J where J ∈ G. Hence as R/J is cyclic, it cannot
be isomorphic to an infinite direct sum. Therefore, (R/J)m is non-zero only
for finitely many maximal ideals and the conclusion follows. �

We now can state the main results of this section.
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Theorem 7.12. Let u : R → U be a flat injective ring epimorphism of
commutative rings and suppose DG is enveloping. Then R/J is a perfect
ring for every J ∈ G.

Proof. By Corollary 7.11, every R/J is a finite product of local rings Rm/Jm.
Additionally as (DG)m is enveloping in Mod-Rm by Lemma 7.7, each Rm/Jm
is a perfect ring by Proposition 7.4. Therefore, by Proposition 2.2, R/J
itself is perfect. �

Theorem 7.13. Let u : R→ U be a flat injective ring epimorphism of com-
mutative rings and suppose DG is enveloping in Mod-R. Then the topological
ring R = End(K) is pro-perfect.

Proof. Recall that the topology of R is given by the annihilators of finitely
generated submodules of K, so that R = EndR(K) is separated and com-
plete in its topology. Let V be an open ideal in the topology of R. By Propo-
sition 6.13 there is J ∈ G and a surjective ring homomorphism R/J → R/V .
By Theorem 7.12 R/J is a perfect ring and thus so are the factor rings
R/V . �

8. DG is enveloping if and only if R is pro-perfect

Suppose that u : R→ U is a commutative flat injective ring epimorphism
where p. dimR U ≤ 1 and denote K = U/R. In this section we show that if
the endomorphism ring R = EndR(K) is pro-perfect, then DG is enveloping
in Mod-R. So combining with the results in the Section 7 we obtain that
DG is enveloping if and only if p.dimU ≤ 1 and R is pro-perfect.

Recall that if p.dimU ≤ 1, (A,DG) denotes the 1-tilting cotorsion pair
associated to the 1-tilting module U ⊕K. A theorem of Positselski is vital
for this section, which we can apply since R is commutative.

Theorem 8.1. ([BP19a, Theorem 15.2 and 15.3]) Suppose R is a commuta-
tive ring and u : R→ U a flat injective ring epimorphism with p. dimR U ≤
1. Then the topological ring R = End(K) is pro-perfect if and only if
lim−→Add(K) = Add(K).

A second crucial result that we will use is the following.

Theorem 8.2. ([Xu96, Theorem 2.2.6]) Assume that C is a class of modules
closed under direct limits and extensions. If a module M admits a special
C⊥1-preenvelope with cokernel in C, then M admits a C⊥1-envelope.

We now show that if R is pro-perfect, then Add(K) satisfies the conditions
of Theorem 8.2. By Theorem 8.1, Add(K) is closed under direct limits.
Moreover, Add(K) is closed under extensions as any short exact sequence
0→ L→M → N → 0 with L,N ∈ Add(K) splits.

As the cotorsion pair (A,DG) is complete, every R-module M has a spe-
cial DG-preenvelope, and as DG = K⊥ = (Add(K))⊥, M has an (Add(K))⊥-
preenvelope. It remains to be seen that everyM has a specialDG-preenvelope
ν such that Coker ν ∈ Add(K), which we will now show.

Lemma 8.3. Suppose u : R → U is a commutative flat injective ring epi-
morphism where p. dimR U ≤ 1. Let (A,DG) be the 1-tilting cotorsion pair
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associated to the 1-tilting module U ⊕K. Then every module has a special
DG-preenvelope ν such that Coker ν ∈ Add(K).

Proof. Take an R-module M and consider the canonical surjection R(α) p→
M → 0. For every cardinal α the short exact sequence 0→ R(α) → U (α) →
K(α) → 0 is a DG-preenvelope and is of the desired form. Consider the
following pushout Z of M ← R(α) → U (α).

0

��

0

��
ker p

��

ker p

��
0 // R(α) //

p

��

U (α) //

��

K(α) // 0

0 // M //

��

Z //

��

K(α) // 0

0 0

The module Z is in GenU = DG , and so the bottom row of the above
diagram is a DG-preenvelope of M of the desired form. �

The following theorem follows easily from the above discussion.

Theorem 8.4. Suppose u : R → U is a commutative flat injective ring
epimorphism with p. dimR U ≤ 1. If the topological ring R is pro-perfect,
then DG is enveloping in R-Mod.

Proof. From Theorem 8.1 and Lemma 8.3, Add(K) does satisfy the condi-
tions of Theorem 8.2. Thus the conclusion follows, since DG = Add(K)⊥.

�

Finally combining the above theorem with the results in Section 5 and
Section 7 we obtain the two main results of this paper.

Theorem 8.5. Suppose u : R → U is a commutative flat injective ring
epimorphism, G the associated Gabriel topology and R the topological ring
EndR(K). Then the following are equivalent.

(i) DG is enveloping.
(ii) R/J is a perfect ring for every J ∈ G.
(iii) R is pro-perfect.

It follows that p.dimU ≤ 1. If DG is enveloping then the class Add(K) is
closed under direct limits.

Proof. (i)⇒(ii) Follows by Proposition 7.1 and Theorem 7.12.
(ii)⇔(iii) Follows from Lemma 6.12 and Proposition 6.13.
(iii)⇒(i) Follows from Theorem 8.4.
That (i) implies p.dimU ≤ 1 is Proposition 7.1.
That (ii) implies p. dimU ≤ 1 is proved by Leonid Positselski in [Pos20].

�
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Remark 8.6. In the original version of this paper, the assumption that
p.dimRG ≤ 1 was included on the right hand side of the equivalence in
Theorem 8.7. This has been removed thanks to Leonid Positselski who proved
in [Pos20] that if the R/J are perfect rings for J ∈ G and G is a perfect
Gabriel topology, it follows that p. dimRG ≤ 1. His proof is a generalisation
of [BP19b, Theorem 6.13].

Theorem 8.7. Assume that T is a 1-tilting module over a commutative ring
R such that the class T⊥ is enveloping, and let G be the associated Gabriel
topology of T . Then we have the following equivalence.

T is enveloping⇔

{
R/J is a perfect ring for each J ∈ G
G is a perfect Gabriel topology

That is, there is a flat injective ring epimorphism u : R → U such that
p.dimU ≤ 1 and U ⊕ U/R is a tilting module equivalent to T .

Proof. (⇒) By Proposition 5.5, the Gabriel topology G associated to T⊥

arises from a perfect localisation. Moreover, ψ : R → RG is injective so by
setting U = RG we can apply Theorem 8.5 to conclude.

(⇐) One applies Theorem 8.5 to conclude that T is enveloping.
The last statements follow by Remark 4.4 and Remark 8.6. �

The following is an application of Theorem 8.7, which allows us to char-
acterise all the 1-tilting cotorsion pairs over a commutative semihereditary
ring (for example, for the category of abelian groups).

Example 8.8. Let R be a semihereditary ring and (A, T ) a 1-tilting cotor-
sion pair in Mod-R with associated Gabriel topology G. Then by [Hrb16,
Theorem 5.2], G is a perfect Gabriel topology. Moreover, R/J is a coher-
ent ring for J ∈ G, so R/J is a perfect ring if and only if it is artinian
[Cha60, Theorem 3.3 and 3.4]. As R/J is artinian, it has only finitely many
(finitely generated) maximal ideals and the Jacobson radical of R/J is a
nilpotent ideal. Therefore in this case, G has a subbasis of ideals of the form
{mk | m ∈ mSpecR ∩ G, k ∈ N} and moreover all the maximal ideals of R
contained in G are finitely generated.

In particular, in the case of R = Z, every 1-tilting class T is enveloping
as Z is semihereditary and for any proper ideal aZ of Z, Z/aZ is artinian.

The following is an example of a ring R and 1-tilting class T such that R
has a T -envelope but T is not enveloping.

Example 8.9. Let R be a valuation domain with valuation v and valuation
group Γ(R) = R, and an idempotent maximal ideal m =< rn ∈ R | v(rn) =
1/n, n ∈ Z>0 > (see [FS18, Section II.3] for details on valuation rings). Then
as Q is generated by a−1

n with v(an) = n, it follows that the field of quotients
Q of R is countably generated and therefore of projective dimension at most
one. Thus Q⊕Q/R is a 1-tilting module and the associated Gabriel topology
is made up of the principal ideals generated by the non-zero elements of R.
Moreover, the following is a T -envelope of R.

0→ R→ Q→ Q/R→ 0
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However, we claim that T is not enveloping. If T is enveloping, then by
Theorem 8.5 R/sR is a perfect ring for each regular element s in R. By
[BS02, Theorem 4.4 and Proposition 4.5], R must be a discrete valuation
domain. However, by assumption R is not noetherian as m is countably
generated, a contradiction.

9. The case of a non-injective flat ring epimorphism

Now we extend the results of the previous section to the case of a non-
injective flat ring epimorphism u : R→ U with K = Cokeru.

As before, the Gabriel topology Gu = {J ≤ R | JU = U} associated to u
is finitely generated, U is isomorphic as a ring to RGū , and the class

DGu = {M ∈ Mod-R | JM = M for every J ∈ Gu}
of Gu-divisible modules is a torsion class. Moreover, by [AHH17] it is a
silting class, that is there is a silting module T such that Gen(T ) = DGu .

The ideal I will denote the kernel of u and R the ring R/I. We claim
that the Gabriel topology in Mod-R associated to the flat injective ring
epimorphism u : R → U is induced from Gu. That is, to u, one associates
the Gabriel topology Gu = {L/I ≤ R | LU = U, I ⊆ L} on R, so by [Ste75,
Theorem XI.2.1], U is isomorphic as a ring to RGū .

That is, we have that if J ∈ Gu, then J + I/I ∈ Gu, and conversely if
L/I ∈ Gu, L ∈ Gu.

Furthermore, there is the following class of Gū-divisible R-modules.

DGu = {M ∈ Mod-R | (L/I)M = M, for every L/I ∈ Gu}
We first note the following.

Lemma 9.1. Every module in DGu is annihilated by I, thus DGu = DGu.

Proof. Note that Keru = I is the Gu-torsion submodule of R. Hence for
every b ∈ I there is J ∈ Gu such that bJ = 0. Let M ∈ DGu , then bM =
bJM = 0, thus IM = 0. We conclude that DGu can be considered a class in
Mod-R and coincides with DGu . �

Proposition 9.2. The class DGu is enveloping in Mod-R if and only if DGu
is enveloping in Mod-R.

Proof. Assume that DGu is enveloping in Mod-R and let M ∈ Mod-R. Con-
sider a DGu-envelope µ : M → D in Mod-R. Since R → R/I is a ring
epimorphism and D is annihilated by I by Lemma 9.1, it is immediate to
conclude that µ is also a DGu-envelope of M .

Conversely, assume that DGu is enveloping in Mod-R. Take M ∈ Mod-R
and let µ : M/IM → D be aDGu-envelope ofM/IM in Mod-R. Let π : M →
M/IM be the canonical projection. We claim that µ = µπ is a DGu-envelope
of M in Mod-R. Indeed, if f : D → D satisfies fµ = µ, then fµπ = µπ. As
π is a surjection, fµ = µ and so f is an automorphism of D. �

Note that EndR(K) coincides with EndR(K) both as a ring and as a
topological ring. It will be still denoted by R. Thus, since DGu is enveloping
in Mod-R if and only if DGu is enveloping in Mod-R, we can apply the results
of the previous sections, in particular Theorem 8.5, to the ring R and the
flat injective ring epimorphism ū : R̄→ U to obtain:
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Theorem 9.3. Let u : R→ U be a commutative flat ring epimorphism with
kernel I. Let Gu be the associated Gabriel topology and R the topological
ring EndR(K). The following are equivalent.

(i) DGu is enveloping.
(ii) R/L is a perfect ring for every L ∈ Gu such that L ⊇ I.
(iii) R is pro-perfect with open basis LR for L ∈ Gu such that L ⊇ I.

In particular, p. dimR U ≤ 1 and U ⊕K is a 1-tilting module over the ring

R and since Gen(U) is contained in Mod-R, DGu = Gen(U).

As already noted, results from [AHH17] imply that Gen(U) is a silting
class in Mod-R. Since we have that U ⊕K is a 1-tilting module in Mod-R
inducing the silting class Gen(U), it is natural to ask the following question.

Question 9.4. Is U ⊕K a silting module in Mod-R?

A positive answer was given in case U has a presilting presentation (see
[AHMV19, Proposition 1.3]). In particular, this occurs when R is a perfect
ring or p. dimR U ≤ 1, (see [AHMV19],[BŽ18]).
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sità di Padova, Via Trieste 63, 35121 Padova (Italy)

E-mail address: bazzoni@math.unipd.it

(Giovanna Le Gros) Dipartimento di Matematica “Tullio Levi-Civita”, Univer-
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