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We propose a new method to calculate analytically higher-order perturbative corrections and we apply it
to the calculation of the two-loop virtual corrections to Higgs pair production through gluon fusion. The
method is based on the expansion of the amplitudes in terms of a small Higgs transverse momentum. This
approach gives a very good approximation (better than per mille) of the partonic cross section in the center-
of-mass energy region

ffiffiffî
s

p ≲ 750 GeV, where ∼95% of the total hadronic cross section is concentrated.
The presented method is general and can be applied in a straightforward way to the computation of virtual
higher-order corrections to other 2 → 2 processes, representing an improvement with respect to
calculations based on heavy mass expansions.
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Introduction.—The experimental exploration of the prop-
erties of the Higgs boson is one of the major targets of the
Large Hadron Collider (LHC). However the self-couplings
of the Higgs boson, which in the standard model are fully
determined in terms of the mass of the Higgs boson and the
Fermi constant, have not been probed yet. While the quartic
Higgs self-coupling is not directly accessible at the LHC
[1,2], the trilinear self-coupling might be measurable from
Higgs pair production processes [3–17].
Those processes, in particular Higgs pair production in

gluon fusion, are also sensitive to new physics, that can
greatly modify their rates [18–22]. Bounds on gg → HH
for different final states are reported in Refs. [23–28].
Therefore, a precise prediction of the gluon fusion

channel is essential to determine the Higgs trilinear self-
coupling and constrain new physics. At leading order (LO)
the gluon fusion process has been known since the 1980s
[29]. At next-to-leading order (NLO) this process is fully
known only numerically [30,31], while analytical results
are available in the heavy top mass (mt) limit [32–34] and
partially in the lightmt limit [35]. In Ref. [36] a method was
proposed for obtaining an analytical result combining large
top mass expansion and a threshold expansion by means of
Padé approximants.

The limits of Refs. [32–35] well describe the Higgs pair
production in the regions

ffiffiffî
s

p
<300GeV and

ffiffiffî
s

p
>750GeV,

respectively, where
ffiffiffî
s

p
is the partonic center-of-mass

energy, but fail to describe the intermediate region.
We propose a new approach for the analytical calculation

of the virtual NLO corrections to the Higgs pair production
through gluon fusion. The method is based on the expan-
sion of the amplitudes around a small Higgs transverse
momentum pT and Higgs mass mh. After properly expand-
ing, the resulting amplitudes are functions of only mt andffiffiffî
s

p
and can be calculated analytically without resorting to

further expansions. With this method we are able to
correctly describe the Higgs pair production in the regionffiffiffî
s

p ≲ 750 GeV, nicely complementing the present litera-
ture. It must also be noted that, due to the shape of the gluon
parton distribution functions, this region represents 95% of
the total hadronic cross section.
Our approach has the virtue of covering larger regions of

the phase space with respect to approaches based on heavy
mass expansions or high energy expansions and can be
easily implemented to other 2 → 2 processes.
In this Letter we describe the basics of the method,

and the main results of our calculation, while we will
reserve a more detailed discussion of the computation to
future works.
Notation and definitions.—In this section we introduce

the notation we will use in the rest of the Letter and
define a set of kinematical variables. The amplitude
gμaðp1Þgνbðp2Þ → Hðp3ÞHðp4Þ can be written as
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Aμν ¼ Gμffiffiffi
2

p αsðμRÞ
2π

δabTFŝ½Aμν
1 F1 þ Aμν

2 F2�; ð1Þ

where Gμ is the Fermi constant, αsðμRÞ is the strong
coupling defined at the renormalization scale μR, and TF ¼
1=2 is the normalization factor for the fundamental repre-
sentation of SUðNcÞ. In Eq. (1) Aμν

1;2 are the orthogonal
projectors onto the spin-0 and spin-2 states, respectively,
while the corresponding form factors F1;2 are functions of
mt, mh, and the partonic Mandelstam variables (all
momenta are assumed incoming)

ŝ ¼ ðp1 þ p2Þ2; t̂ ¼ ðp1 þ p3Þ2; û ¼ ðp2 þ p3Þ2;
ð2Þ

via

F1 ¼ F1ðŝ; û;m2
t ;m2

hÞ; F2 ¼ F2ðŝ; û;m2
t ;m2

hÞ: ð3Þ

We defined Aμν
1 and Aμν

2 as

Aμν
1 ¼ gμν −

pν
1p

μ
2

ðp1 · p2Þ
;

Aμν
2 ¼ −gμν þ m2

hp
ν
1p

μ
2

p2
Tðp1 · p2Þ

− 2
ðp3 · p2Þpν

1p
μ
3 þ ðp3 · p1Þpν

3p
μ
2 − ðp1 · p2Þpμ

3p
ν
3

p2
Tðp1 · p2Þ

;

ð4Þ

with pT the transverse momentum of the Higgs particle,
which can be expressed in terms of the Mandelstam
variables as

p2
T ¼ t̂ û−m4

h

ŝ
: ð5Þ

The Born cross section, then, is

σð0ÞðŝÞ ¼ Gμα
2
sðμRÞ

512ð2πÞ3
Z

t̂þ

t̂−

dt̂ðjTFF1j2 þ jTFF2j2Þ; ð6Þ

with t̂� ¼ −ŝ=2ð1 − 2m2
h=ŝ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

h=ŝ
p

Þ. For our pur-
pose, it is particularly convenient to introduce the prime
Mandelstam variables:

s0 ¼ p1 · p2 ¼
ŝ
2
; t0 ¼ p1 · p3 ¼

t̂ −m2
h

2
;

u0 ¼ p2 · p3 ¼
û −m2

h

2
; ð7Þ

for which s0 þ t0 þ u0 ¼ 0. In these variables the Higgs
transverse momentum becomes

p2
T ¼ 2

t0u0

s0
−m2

h: ð8Þ

Our ultimate goal is to make an expansion for smallffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

h

p
∼ pT . Since the final result is symmetrical in

t0 ↔ u0, the latter can be achieved expanding for t0 ∼ 0,
u0 ∼ −s0 (expanding only in t0 ∼ 0 would not be correct if
the final result were not symmetrical in t0 ↔ u0). This is
going to restrict F1 and F2 in Eq. (3) to a forward
kinematic, namely to be a function of ŝ=m2

t only, reducing
the computational difficulty from a three scales problem to
a single scale one. To perform the expansion we need to
express the momenta in terms of the parallel and transverse
components with respect to the beam axis. For this purpose
we define the combination of momenta:

r ¼ p1 þ p3 and r̄ ¼ p2 þ p3: ð9Þ

It is easy to show that

r2 ¼ t̂; r̄2 ¼ û;

p1 · r ¼ −p2 · r ¼ t0; p2 · r̄ ¼ −p1 · r̄ ¼ u0; ð10Þ

and that

rμ ¼ t0

s0
ð−pμ

1 þ pμ
2Þ þ rμ⊥; r̄μ ¼

u0

s0
ðpμ

1 − pμ
2Þ þ r̄μ⊥; ð11Þ

where rμ⊥ ¼ r̄μ⊥ is perpendicular to p1 and p2 and, as
expected,

r2⊥ ¼ m2
h þ 2t0 þ 2

t02

s0
¼ −p2

T: ð12Þ

Finally, in this reparametrization, Aμ
1;2 assume particularly

simple forms:

Aμν
1 ¼ gμν −

pν
1p

μ
2

s0
; Aμν

2 ¼ Aμν
1 þ 2

rμ⊥rν⊥
p2
T

: ð13Þ

Expansion.—From Eq. (5), assuming real valued t̂ and û,
we obtain the condition

p2
T þm2

h ≤
ŝ
4
; ð14Þ

which allows us to expand for p2
T=s

0 ≪ 1 and m2
h=s

0 ≪ 1.
Although our program is clear, it is hindered by the fact

that pT does not appear directly at the amplitude level.
However, it is possible to show that an expansion for
rμ ∼ 0μ is equivalent to an expansion in p2

T ∼ 0. Using
Eqs. (11) and (12), and noticing that r⊥ is purely spacelike,
we can exchange the expansion in p2

T ∼ 0 with an expan-
sion in rμ ∼ 0μ or, equivalently, pμ

3 ∼ −pμ
1.
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This observation is one of the main results of this Letter,
and it allows us to proceed. We can then rewrite the form
factors in Eq. (1) as

F1;2 ¼ F1;2jp3¼−p1
þ rμ

∂F1;2

∂pμ
3

����
p3¼−p1

þ 1

2
rμrν

∂2F1;2

∂pμ
3∂pν

3

����
p3¼−p1

þ � � � : ð15Þ

Although Eq. (14) is always valid, the expansion
proposed in Eq. (15) requires a hierarchy between r2

and m2
t . We are going to estimate the range of validity

of the small pT expansion by comparing at the LO the
result obtained via Eq. (15) with the exact LO result (see
next section).
We conclude this section with an important remark on

how to correctly truncate the series in Eq. (15). Since the
final result should be symmetrical for p1 ↔ p2 and
∂F1;2=∂pμ

3 is a rank 1 tensor, the second term in the rhs
of Eq. (15) can be rewritten as rμF 1;2ðpμ

1 þ pμ
2Þ ¼

F 1;2ðt̂þ ûÞ, with F 1;2 a function of s0 and m2
t . For similar

arguments, the third term should instead be proportional to
rμrνðgμν þ � � �Þ ¼ p2

T þ � � �. It is clear, then, that to expand
to the first order in p2

T , one has to expand to the second
order in pμ

3, or, more in generally, an order n expansion in
p2
T needs the order 2n expansion in pμ

3.
Computation and results.—We generated the relevant

amplitudes for the virtual NLO corrections to gg → HH
with FEYNARTS [37]. The amplitudes were contracted with
the two orthogonal projectors in Eq. (4), using FEYNCALC

[38], and reduced to a combination of scalar integrals. The
integrals were then Taylor expanded, as described in the
previous section. Subsequently, the resulting integrals were
reduced in terms of a basis of master integrals using FIRE

[39] and LITERED [40]. All of the master integrals, of which
nearly the totality can be expressed in terms of multiple
polylogarithms, were already known in the literature
[41–47]. However, we evaluated them again directly in
the phase space region of interest. We cross-checked our
results using SECDEC [48]. The details of the calculation
presented here, as well as a detailed study of the validity of
our approximation at the hadronic level, will be the topic of
a second paper on this argument [49], while in this Letter
we will focus on the final result.
In order to show that our method correctly describes the

partonic cross section for
ffiffiffî
s

p
< 750 GeV, we will start

applying it to the LO.
In Fig. 1 we report our calculation for the partonic cross

section using Eq. (15). As discussed in the Introduction,
while the heavymt expansion describes well only the rangeffiffiffî
s

p
< 2mt, with our method we are able to correctly

describe a wider range. It is also interesting to note that
an expansion up to order Oðp4

TÞ is already sufficient to
describe the complete result with enough precision.

The range of validity of the small pT expansion can be
estimated comparing the partonic cross section calculated
with our method with the one from the full LO calculation.
In Table I, we show

Δσ ¼
���� 2ðσfull − σapproxÞ
ðσfull þ σapproxÞ

����; ð16Þ

where σfull is the cross section calculated without expan-
sion, and σapprox is the one calculated in this Letter. Table I
indicates that Δσ is small and very well under control up to
values of the partonic c.m. energy of about ∼750 GeV.
Moreover, in the region of interest, the approximation
rapidly improves as one considers higher order in the
expansion in p2

T and m2
h. The range of validity of our

formulas is complementary to the one present in the
literature, and represents 95% of the total hadronic cross
section.
This behavior is confirmed (and even improved) in the

comparison with the full numerical result at NLO. It is well
known that the NLO virtual corrections are IR divergent
and these divergences cancel against the ones that come

FIG. 1. Partonic cross section of gg → HH as a function of the
partonic center-of-mass energy. The black continuous line is the
full result [29]. The dotted lines represent the line of Higgs
effective theory (HEFT) corresponding to the zero order in the
heavymt limit and the 4th order in the heavymt limit. The dashed
lines are the result of the small p2

T approximation presented in this
Letter.

TABLE I. Relative difference between the approximated and
the exact LO cross sections, for different orders of expansion, at
various ŝ.

Δσ − ŝ 4m2
t 6m2

t 8m2
t 12m2

t 16m2
t 32m2

t

p0
T × 10−1 6.2 4.4 3.2 1.8 1.0 0.3

p2
T × 10−2 8.5 4.4 1.1 2.4 5.1 33.2

p4
T × 10−2 1.3 0.1 0.4 0.2 0.9 2.8

p6
T × 10−3 2.3 0.9 1.0 0.1 3.5 450
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from real corrections [32–34]. Following Ref. [34], we
cancel the IR divergences by adding the counterterm
1=ð2ϵ2ÞFLO

1;2ðϵ2ÞðŝÞ−ϵ, where FLO
1;2ðϵÞ are the LO form

factors with the inclusion of the Oðϵ; ϵ2Þ terms. In
Fig. 2 we compare our result to the numerical results from
Ref. [30], at the partonic level, using the grid and the
interpolation function for the finite part of the virtual
corrections Vfin provided in Ref. [50]. As can be inferred
from the figure, our expansion perfectly agrees with the full
result when the first correction in pT and mh is included. It
can clearly be seen that our lines smooth out the error on the
full result stemming from the interpolation. Furthermore,
we compare the numerical results of the authors of
Ref. [30] with ours in several points of the grid provided
by the same authors. For pT ≲ 200 GeV, we find agree-
ment between the two computations within the error quoted
for each point of the grid from the numerical integration.
For larger pT the agreement is still quite good (for pT ≲
300 GeV is within twice the numerical error quoted),
showing a degradation with the increase of pT .
Conclusion.—In this Letter we have proposed a novel

approach for the analytical computation of the NLO virtual
corrections to Higgs pair production through gluon fusion.
This method, based on an expansion for small p2

T , allows us
to describe accurately the region ŝ≲ 750 GeV that until
now has been explored only numerically. In particular, we
showed that a few terms in the expansion already reproduce
the full LO within 10−3, in the region of interest. At NLO
we find excellent agreement already at Oðp2

T þm2
hÞ com-

paring to the full result of Ref. [30]. To judge the usefulness
of our analytic method, we compare the CPU time needed
to produce a phase-space point in our approach with that

needed in the numerical calculation of Ref. [30]. In order to
compute one single phase-space point, Ref. [30] quotes an
average of 2 h per node using 16 Dual NVDIA TESLA
K20X GPU nodes, while in our approach the computation
of one single phase-space point took∼4 sec on a MacBook
Air. We remark that this method is general and can be
useful for the analytic computation of radiative corrections
to other fundamental processes for the physics program of
the LHC. In particular, the application of this method to the
computation of the NLO virtual corrections to the top
contribution in theHZ, ZZ, and γγ gluon fusion production
processes is expected to be straightforward, while proc-
esses where the top and bottom contribution cannot be
separate, like, e.g., in the WW gluon fusion production,
deserve a more detailed investigation.
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