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ABSTRACT 

 

This paper focuses on flow-induced acoustic vibrations in piping with closed side branches. 

These self-sustained oscillations can be very violent, causing an unpleasant or harmful noise. 

In addition, serious mechanical damages to the pipe supports are possible, due to the 

consequent mechanical vibrations. Since it is often impossible to completely avoid the 

problem, it is necessary to resort to strategies in order to mitigate its effects, or by shifting 

the operating conditions in which they can occur towards different frequencies. 

This paper deals with the possible use of Helmholtz resonators applied to side branches in 

order to attenuate noise or to shift the dangerous conditions of resonance. A numerical model 

is used to study the response of the system in the frequency domain. Initially a side branch 

with a standard resonator is simulated to highlight the physical phenomena and to study the 

influence of the main parameters (geometry and position of the resonator). 

Then some modifications of the simple resonator are proposed in order to increase the 

dissipation effects in the neck and improve the attenuation of the acoustic vibrations. In 

particular, the effect of a helical shaped neck and of a composite neck made up of a bundle 

of narrow ducts is shown. Finally, the potentialities of a double resonator are investigated. 
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1 INTRODUCTION 

Flow-Induced Vibrations (FIV) frequently take place in 

many engineering systems characterized by piping. They can 

occur whenever there is the simultaneous presence in the 

piping of flow discontinuities and of specific acoustic 

resonances. A classic example is represented by junctions 

between the main pipe (in which the main fluid flux flows) 

and a side branch closed at the end.  

The mechanics underlying excitation has been studied by 

various authors considering both industrial and aeronautical 

applications. 

Ziada & Lafon [1], as well as Tonon et al. [2], provide an 

effective picture of the state of the art about this 

phenomenon. Figure 1 shows that the stable main flow can 

generate an unstable shear layer due to the presence of 

discontinuities in the piping. 
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Figure 1: Basic mechanism of the aero-acoustic interaction 

in a main pipe with a side branch leading to the generation 

of self-sustained acoustic oscillations. 

In particular, when the flow goes beyond the upstream edge 

of a branch, the dividing line or “shear layer”, that separates 

it from the stagnant fluid in the closed branch, results highly 

unstable and easily collapses generating vortices with a 

certain frequency 𝑓v. The number of vortices along the 

branch width defines the type of hydrodynamic mode (of the 
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shear layer) that takes place. These vortices can continue to 

move along the main pipe or can crash against the 

downstream edge, giving rise to intense pressure waves 

which can excite the acoustic resonances of the side branch. 

If the vortex shedding frequency 𝑓v is tuned to the natural 

frequencies of the acoustic modes of the side branch 𝑓𝑛 (with 

𝑛 = 1,2,3 …), large amplitude pressure waves in the branch 

can occur (Figure 2), with consequent noise and vibration 

problems. In particular vibrations cause additional loads on 

the pipe supports that may lead to possible mechanical 

damages. 

 

 

Figure 2: First three acoustic modes of a side branch of a T-

junction. 

Nowadays, owing to the powerful numerical calculation 

tools, the acoustic modes of complex pipe systems can be 

predicted. Conversely, the prediction of the pressure inputs 

caused by the vortices is still a complex problem, even in 

case of rather simple geometries. 

Given these difficulties, corrective actions must be 

considered in the piping design to limit the acoustic 

oscillations. Ziada & Shine [3] developed some design charts 

to predict the critical flow velocities which show the 

influence of different geometric parameters, expressed 

through dimensionless ratios. The oscillations are less 

intense in long and narrow branches. The effect of the edges 

in the joint is relevant as well [1]. It was found that rounded 

edges (the upstream one in particular) increase the instability 

of the shear layer. Conversely, sharp edges lead to a 

reduction in the amplitude of the acoustic oscillations. 

Chamfering the edges can be useful [1] [4], this effect 

increases the flow velocity at which a resonance may occur 

and slightly reduces the amplitude of the oscillations. Other 

suggested control strategies deal with the use of fins [1] [5] 

positioned in the main pipe in order to maintain the stability 

of the flow counteracting the flow separation. This solution 

can lead to a cancellation of the oscillations, but it introduces 

larger pressure drops. A slightly different strategy is the 

addition of anti-vortex inserts [1] or simple splitter-plates at 

the branch inlet [6]. 

This paper proposes a different approach for controlling FIV 

of side branches of piping. Since the flow rate, which is 

related to the main process occurring in the piping, cannot be 

modified, the acoustic modes of the side branch are de-tuned 

from the hydrodynamic modes by introducing Helmholtz 

resonators. 

The Helmholtz resonator is a lumped element acoustic 

device [7] [8] [9] that is successfully used for controlling 

acoustic oscillations in many machines such as jet engines, 

combustors, automobile engines, air conditioners and 

refrigerator compressors. 

In recent years the research in the field of Helmholtz 

resonators focused on devices with particular shape, such as 

resonators with long neck or deep cavity [10], resonators 

with extended neck [11] and resonators with helical neck 

[12]. Many studies on multiple resonators [13] [14] and on 

Helmholtz resonators liners were carried out as well [15] 

[16]. Nowadays the development of numerical methods 

makes it possible to numerically investigate the effect of 

higher order modes [17] and of geometric details on 

resonator performance [18]. 

The paper is organized as follows. In the next sub-section the 

concept of critical flow speed is introduced. Section 2 deals 

with the main properties and features of Helmholtz 

resonators. The numerical model developed in COMSOL is 

described in section 3. In Section 4 the effect of resonator 

design parameters on FIV is systematically analysed by 

means of numerical simulations. Section 5 deals with 

improved resonators, in which the resonator neck is modified 

in order to increase damping. The potentialities of a double 

resonator, which can be tuned to two modes of a side branch, 

are described in section 6. Finally, conclusions are drawn. 

1.1 Critical speed 

Experimental analyses carried out by some authors [1] [2] 

[4] [19] [20] [21] [22] [23] show that the aero-acoustic 

interaction can be summarized by means of specific 

diagrams, like the one of Figure 3.  

 

Figure 3: Diagram of aero-acoustic interaction. The red 

areas indicate the conditions in which large acoustic 

vibrations are detected. 

This kind of diagram synthesizes when the conditions of 

resonance can take place following more or less the same 

principle as the well-known Campbell diagram dealing with 

the critical speeds of rotating shafts [24]. 
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Actually, intense oscillations occur when the frequency of 

vortices generation (𝑓v) from the upstream edge of the side 

branch equals one of the natural acoustic frequencies of the 

branch itself (𝑓𝑛). In the diagram this coupling condition is 

indicated by the crossing between the oblique bands 

(representing the hydrodynamic modes of the shear layer) 

and the horizontal lines (representing the acoustic 

frequencies of the side branch). The latter depend on the type 

of fluid and on the branch geometry and therefore they can 

be calculated without difficulty. The simple analytical 

formula that holds true for a closed side branch is: 

𝑓𝑛 =
(2𝑛 − 1) ∙ 𝑐0

4 ∙ 𝑙𝑠𝑏

 (1) 

where 𝑐0 is the speed of sound in the gas and 𝑙𝑠𝑏 is the side 

branch length and 𝑛 = 1,2,3 … is a positive integer 

indicating the mode’s number. This equation is due to the 

fact that the acoustic modes (𝑛) of the closed side-branch 

consist of acoustic standing waves with a pressure node at 

the junction, a pressure antinode at the closed end and odd 

multiples of quarter wavelengths in the branch. 

The oblique bands in Figure 3, indicate the frequency ranges 

in which a certain type of hydrodynamic mode takes place 

(formation of a single vortex, two vortices, or even three 

vortices) Those ranges are not completely a priori known 

(since they depend on several factors, including pipeline 

geometry and operating conditions) however in the literature 

[3] it is reported that FIV generally occur in typical 

frequency ranges, which are identified by a dimensionless 

parameter called the Strouhal number1: 

𝑆𝑡𝑟 =
𝑓v ∙ 𝑑𝑠𝑏

𝑉𝑚

 (2) 

where 𝑓v is the vortex formation frequency, 𝑑𝑠𝑏 is the side 

branch diameter (or in general a characteristic length) and 𝑉𝑚 

is the mean flow velocity in main pipe.  

Ziada and Shine [3] found that the excitation related to the 

first hydrodynamic mode (one vortex) generally happens in 

a range 𝑆𝑡𝑟 = 0.3 ÷ 0.4. This result holds true considering 

the simplified case of a side branch sufficiently far from 

other discontinuities (for example, if the branch is close to an 

elbow, the range of Strouhal can markedly change). For the 

second hydrodynamic mode (two vortices) the Strouhal 

number takes values close to 1. 

Peaks of acoustic amplitude of different heights occur by 

changing the flow speed 𝑉𝑚, when the different resonance 

conditions due to the aero-acoustical couplings are 

encountered. Generally speaking, the resonances due to the 

second hydrodynamic mode are encountered first, because 

they have a larger Strouhal number. 

                                                           
1 More generally the Strouhal Number is a dimensionless 

number used in fluid dynamics to describe oscillating flow 

mechanisms. Its value is given by the ratio between the 

inertial forces due to the local acceleration of the fluid and 

the inertial forces due to the convective acceleration. 

2 NOISE CONTROL BY MEANS OF RESONATORS 

The Helmholtz resonator, which is schematically depicted in 

Figure 4, is a simple and well known resonating system. It is 

a lumped element acoustic device that is successfully used 

for controlling acoustic oscillations in many machines such 

as jet engines, combustors, automobile engines, air 

conditioners and refrigerator compressors 2 [8] [9]. In the 

standard configuration the Helmholtz resonator consists of a 

cylindrical tube, or neck, open at one end, and connected to 

a closed cavity at the other end. This simple geometry can be 

described by just three parameters: the diameter of the neck 

𝑑𝑛𝑒𝑐𝑘  , the length of the neck 𝑙𝑛𝑒𝑐𝑘  and the volume of the 

cavity 𝑉𝑐𝑎𝑣𝑖𝑡𝑦 . 

The shape of the neck and of the cavity usually do not 

influence the resonator’s behaviour, unless very extreme 

shapes are adopted [10]. 

 

Figure 4: Helmholtz resonator with the equivalent model 

based on the mechanical-acoustic analogy. 

The gas inside the resonator cavity behaves like an elastic 

element and compresses and extends due to the incoming 

pressure waves. Conversely, the gas in the neck acts as a 

rigid mass that moves back and forth. The resonator can be 

schematized through the mechanical-acoustic analogy (see 

Figure 4), and the resonance pulsation of the resonator is 

given by the square root of the ratio between the equivalent 

stiffness 𝑘𝑒𝑞  of the elastic element (the gas inside the cavity) 

and the equivalent mass 𝑚𝑒𝑞  of the inertial element (the gas 

in the neck). In formulas these terms are given by: 

 𝑚𝑒𝑞 = 𝜌0 ∙ 𝐴𝑛𝑒𝑐𝑘 ∙ 𝑙𝑛𝑒𝑐𝑘 𝑘𝑒𝑞 = 𝜌0 ∙ 𝑐0
2

𝐴𝑛𝑒𝑐𝑘
2

𝑉𝑐𝑎𝑣𝑖𝑡𝑦
 (3) 

where 𝑐0 is the speed of sound in the gas, 𝜌0 the density of 

the gas. Therefore, according to the mechanical-acoustic 

analogy the natural frequency of a Helmholtz resonator is: 

2 Their name derives from the German physicist Ferdinand 

von Helmholtz (1821-1894) even if the general principle of 

acoustic resonators goes back to the ancient Greeks. 
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𝑓𝑟𝑒𝑠 =
𝑐0

2𝜋
∙ √

𝐴𝑛𝑒𝑐𝑘

𝑉𝑐𝑎𝑣𝑖𝑡𝑦 ∙ 𝑙𝑛𝑒𝑐𝑘

 (4) 

The presence of viscous friction has a small effect on the 

resonance frequency, but affects damping and the quality 

factor, which describes the width of the resonance’s peak. 

For an actual resonator the previous formula can be 

improved, to take into account that a portion of the gas 

outside the neck moves with the gas inside the neck 

increasing in this way the inertial component and causing a 

significant variation in the resonance frequency. A more 

accurate expression considering this effect is: 

𝑓𝑟𝑒𝑠 =
𝑐𝑎𝑖𝑟

2𝜋
∙ √

𝜋 (
𝑑𝑛𝑒𝑐𝑘

2
)

2

𝑉𝑐𝑎𝑣𝑖𝑡𝑦 ∙ (𝑙𝑛𝑒𝑐𝑘 + 𝛼 ∙ 𝑑𝑛𝑒𝑐𝑘)
 

(5) 

In which, the length of the neck is increased according to the 

end-correction  𝛼, equal to 0.725 for necks with un-flanged 

free end, and to 0.85 for necks with flanged end [25]. 

 

Figure 5: Relationship between the design parameters of 

Helmholtz resonators with the same frequency. 

When the natural frequency of the Helmholtz resonator is 

assigned, there are ∞2 combinations of resonator parameters 

that make it possible to achieve the desired tuning. In 

geometric terms equation (5) defines a surface in the space 

that gives one resonator parameter (e.g. 𝑉𝑐𝑎𝑣𝑖𝑡𝑦) as a function 

of the others (e.g 𝑑𝑛𝑒𝑐𝑘   and 𝑙𝑛𝑒𝑐𝑘), see Figure 5. 

3 NUMERICAL MODEL 

The potentialities of Helmholtz resonators in terms of 

pressure waves attenuation and resonance de-tuning were 

studied by means of numerical simulations carried out using 

the software COMSOL. 

In order to study the response of the branch as a function of 

the frequency, a harmonic pressure signal with amplitude 1 

Pa and variable frequency was applied at the open end of the 

side branch. Geometrical models were discretized by means 

of free tetrahedral elements, an example of mesh is shown in 

Figure 6. Air at room temperature was considered as the 

operating fluid. 

 

Figure 6: Mesh of the numerical model. 

In order to simplify the analysis and identify some 

tendencies, only one type of junction was chosen. It is a T-

junction with sharp edges (see Figure 7) and circular pipes 

with the side branch having the sizes reported in  

Table I. 

 

 

Figure 7: Scheme and characteristic quantities of a T-

junction with the applied Helmholtz resonator. 

 

Table I: Reference T-junction sizes. 

𝐷𝑚𝑝  [𝑚] 𝑑𝑠𝑏  [𝑚] 𝑙𝑠𝑏 [𝑚] 

0.03 0.025 0.2 

 

This side branch has the first three resonances at the 

frequencies of 429, 1287 and 2145 Hz respectively. 

4 SIMPLE RESONATOR 

4.1 Side branch with Helmholtz resonator 

Numerical simulations and experimental observations show 

that, if a Helmholtz resonator tuned to one of the acoustic 

resonances of a side branch is introduced, the corresponding 

resonance peak disappears in the response spectrum. At the 
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same time two new peaks appear, the first at a lower 

frequency and the second at a higher frequency. The heights 

of the new peaks are lower than the original one due to the 

friction of the air in the neck of the resonator. 

 

 

 
𝑓 = 258 𝐻𝑧 

 
𝑓 = 584 𝐻𝑧 

Figure 8: Effect of the application of a Helmholtz resonator 

(Res1) on the side-branch of the T-junction with the 

pressure contour plots at the new resonances (red maximum 

positive pressure, blue maximum negative pressure). 

 

This behaviour is represented in Figure 8, in which the 

disappearance of the original peak and the appearance of two 

new lower peaks at different frequencies are evident. 

It is worth noticing that the first peak is related to an acoustic 

mode in which the pressure oscillations in the side branch 

and in the resonator are in phase. Conversely, the second 

peak is related to an acoustic mode in which the pressure 

oscillations in the side branch and in the resonator are in 

opposition. 

The insertion of a standard resonator leads to a decrease in 

the amplitude of resonance peaks. Moreover, it moves the 

resonance to different frequencies, moving the dangerous 

conditions of FIV to different flow speeds. This effect is 

clear highlighted by the Campbell-like diagram, which is 

shown in Figure 9. If the two new resonance frequencies 

(258 and 584 Hz) are considered, the points where they meet 

the line at Strouhal equal to 0.4 correspond to flow velocities 

of 16.2 and 36.5 m/s respectively. This means that is possible 

to operate the pipeline at the velocity of 27 m/s, which 

initially was considered risky. The danger of FIV is shifted 

to quite different flow speeds. 

In order to exploit in the best way the de-tuning and damping 

properties of the Helmholtz resonator, parametric analyses 

are carried out in the next sections. 

The position of the axis of the resonator was always set at a 

distance of 0.01m from the bottom of the side branch. 

 

 

Figure 9: Detuning of the original junction’s 429 Hz 

resonance by applying a resonator, with the new associated 

flow velocities. 

4.2 Resonators with constant neck diameter 

The standard configuration of a T-junction with a resonator 

is shown in Figure 7. Four different Helmholtz resonators, 

each one resonating at the same frequency, corresponding to 

the first branch-specific resonance (429 Hz) were modelled 

and simulated. Their features are reported in Table II. 

Neck diameter is constant and moving from resonator 

“Res1” to “Res4” the neck is shortened and the cavity 

volume is increased according to (5). 

The results of this analysis are shown in Figure 10, which 

represents the transfer function between the acoustic 

pressure at the closed end of the side branch and the input 

pressure. The resonator volume influences the height of the 

first resonance peak but has a very small effect on its 

frequency. The opposite occurs for the second peak, which 

can vary a lot in frequency but not in amplitude. 

 

Table II: Sizes of the four Helmholtz resonators used in the 

simulations and critical speeds. 

 𝑑𝑛𝑒𝑐𝑘  
 [𝑚] 

𝑙𝑛𝑒𝑐𝑘  
 [𝑚] 

𝑉𝑐𝑎𝑣𝑖𝑡𝑦  

[𝑚3] 

𝑉𝑚,1 

 [
𝑚

𝑠
] 

𝑉𝑚,2 

[
𝑚

𝑠
] 

Res1 0.015 0.088821 2.87 ∙ 10−5 16.2 36.5 

Res2 0.015 0.07460 3.35 ∙ 10−5 16.1 37.5 

Res3 0.015 0.06296 3.88 ∙ 10−5 15.8 38.3 

Res4 0.015 0.04915 4.77 ∙ 10−5 15.5 39.7 
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Figure 10: Resonators with constant neck diameter. Effect 

of cavity volume on the transfer function at the end of the 

side branch. 

The increase in cavity volume leads to an increase in the 

frequency interval between the two new resonance 

frequencies. The corresponding critical speeds are reported 

in Table II. 

4.3 Resonators with constant neck length 

Four different resonators having the same neck length, but 

different neck diameters were considered. According to 

Figure 5 a reduction in neck diameter leads to a reduction in 

cavity volume as well. 

 

 

Figure 11: Resonators with constant neck length. Effect of 

neck diameter on the transfer function at the end of the side 

branch. 

Figure 11 shows that resonators with a very narrow neck and 

a small cavity generate close and well damped resonance 

peaks. The small interval between the peaks is due to the 

small cavity volume. The reduced amplitude in resonance is 

related to the large friction losses that takes place in a narrow 

duct. Since the frequency interval between the two new 

peaks is rather small, a resonator of this type works well if 

the operating speed (𝑉𝑚) always remains constant, 

generating a constant frequency of vortices generation (𝑓𝑣) at 

a fixed value between the two resonance peaks. 

The critical velocities that correspond to the resonance peaks 

of Figure 11 are reported in Table III. 

 

Table III: Critical speeds corresponding to the resonance 

peaks in Figure 11. 

 𝑙𝑛𝑒𝑐𝑘   
[𝑚] 

𝑑𝑛𝑒𝑐𝑘   
[𝑚] 

𝑉𝑐𝑎𝑣𝑖𝑡𝑦   

[𝑚3] 

𝑉𝑚,1 

 [
𝑚

𝑠
] 

𝑉𝑚,2 

 [
𝑚

𝑠
] 

Res5 0.0745 0.004 2.62E-6 22.2 29.0 

Res6 0.0745 0.0065 6.78E-6 20.7 31.1 

Res7 0.0745 0.01 1.55E-5 18.5 33.5 

Res2 0.0745 0.015 3.35E-5 16.1 37.5 

 

4.4 Resonators with constant cavity volume 

The parametric analysis was completed considering a set of 

resonators with constant volumes and different neck lengths. 

A decrease in neck length required a contemporary decrease 

in neck diameter to keep constant the resonance frequency. 

 

 

Figure 12: Resonators with constant cavity volume. Effect 

of neck length on the transfer function at the end of the side 

branch. 

Results, which are represented in Figure 12, show that a 

decrease in neck length causes a shift of both resonance 

frequencies towards higher values. This result is in 

agreement with physical intuition, since a decrease in the 

sizes of the neck decreases the equivalent mass (equation (3)) 

and may lead to an increase in the natural frequencies of the 

coupled system.  

The effect of neck geometry on the height of the resonance 

peaks is less clear. On the one hand the decrease in neck 

length decreases friction losses, on the other hand the 

decrease in neck diameter increases friction losses. 

Also in this case the corresponding critical velocities are 

shown in Table IV. 
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Table IV: Critical speeds corresponding to the resonance 

peaks in Figure 12. 

 𝑉𝑐𝑎𝑣𝑖𝑡𝑦  

[𝑚3] 

𝑙𝑛𝑒𝑐𝑘   
[𝑚] 

𝑑𝑛𝑒𝑐𝑘   
[𝑚] 

𝑉𝑚,1 

 [𝑚/𝑠] 

𝑉𝑚,2 

 [𝑚/𝑠] 

Res8 3.35E-5 0.1842 0.023 12.1 34.5 
Res9 3.35E-5 0.1354 0.02 13.8 36.1 
Res2 3.35E-5 0.0746 0.015 16 37.4 
Res10 3.35E-5 0.0307 0.01 17.2 37.7 

4.5 Effect of resonator position 

Possible effects of the position of the resonator (considered 

as the distance of the axis of the neck from the closed end of 

the branch) on the acoustic oscillations were also 

investigated. 

 

 

Figure 13: Effect of resonator position. 

Five different simulations were carried out in which the 

resonator “Res1” was considered. Its initial position was at a 

distance of 0.01m from the closed end of the branch and was 

then varied each time by 0.01m, up to 0.05 m. Figure 13 

shows that the position has a very small influence on 

oscillations amplitude. 

Also the frequencies vary only slightly, the first more 

regularly, increasing when the distance increases. 

These results can be understood considering that the 

simulated displacements do not strongly modify the coupling 

between the resonator and the side branch mode, which is the 

1/4 wave-length mode. 

5 MODIFIED RESONATORS 

In this section the study is extended considering non-

standard resonators with modified geometry, in order to 

improve their performance. To obtain highly damped peaks 

it is necessary to increase the friction in the neck. A resonator 

with helical neck (Figure 14) can achieve this result [26]. 

The effect of this shape was studied considering two 

resonators, the former with a standard straight neck, the latter 

with an equivalent neck that makes a helix turn (and having 

the same diameter of the neck and the same cavity volume). 

The resonator with helical neck considered in this simulation 

is described in Table V. 

 

 

Figure 14: Model of the resonator with helical neck. 

Table V: Dimensions of the resonator with helical neck. 

 𝑑𝑛𝑒𝑐𝑘  
[𝑚] 

𝐷𝑐𝑎𝑣𝑖𝑡𝑦 
[𝑚] 

Pitch 𝑝 
[𝑚] 

Radius 𝑅 
[𝑚] 

𝑉𝑚,1 

 [
𝑚

𝑠
] 

𝑉𝑚,2 

  [
𝑚

𝑠
] 

ResH 0.02 0.04 0.03 0.016 14.1 37.4 

 

Numerical results, which are depicted in Figure 15, show that 

the helical resonator has the resonance peak related to the 

second mode moved to higher frequencies compared with 

the standard resonator. Moreover, the amplitude of the 

resonance peaks decreases, especially for the first mode. 

This effect is due to the increased losses in the neck caused 

by the helical geometry. Finally, this solution makes it 

possible to realize more compact resonators requiring less 

space despite having the same desired frequency. 

 

 

Figure 15: Effect of the adoption of a resonator with helical 

neck. 

A further solution was conceived dividing the neck into a 

series of parallel necks globally having the same cross 

section of the standard neck. This solution leads to an 

increase in the friction of the air in the neck due to the larger 

contact surface on which the air slips at each oscillation. 

To analyse the potentialities of this concept, some 

simulations were carried out by dividing the neck into four 

(Figure 16) and eight smaller tubes. 
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Figure 16: Standard resonator (a) and equivalent resonator 

obtained by substituting the neck with a bundle of tubes (b). 

The results are shown in Figure 17. The division of the neck 

into several parts generates larger losses and there is a 

significant reduction in the height of the resonance peaks. 

The resonance frequencies remain basically the same. Slight 

and random shifts, especially of the second peak, may be due 

to the different “packaging” of the tubes. 

The constructive difficulty in making such small tubes can 

be overcome with similar remedies, such as the addiction of 

grid inserts inside the neck. 

 

Figure 17: Effect of resonators with neck divided in a 

bundle of multiple tubes. 

6 DOUBLE RESONATORS 

Further developments in the use of resonators in piping are 

related to the tuning of multiple resonators for the 

elimination of many resonance peaks [27]. 

Figure 18 shows a scheme of a double resonator with two 

spherical cavities mounted in series at the end of the 

reference branch. Figure 19 shows the results that can be 

obtained with this device, the sizes of the double resonator 

are reported in Table VI. The previously described damping 

and de-tuning effects take place for the two resonance peaks 

of the side branch, occurring at 429 and 1287 Hz 

respectively.  

Table VI: Dimensions of the double resonator. 

𝑙1  
[𝑚] 

𝑑1  
[𝑚] 

𝑉1  
[𝑚3] 

𝑙2  
[𝑚] 

𝑑2  
[𝑚] 

𝑉2  
[𝑚3] 

0.0745 0.015 3.35E-5 0.008 0.015 1.67E-5 

 

Figure 18: Scheme of a double resonator applied to the 

branch. 

 

 
𝑓 = 222 𝐻𝑧 

 
𝑓 =564 Hz 

 
𝑓 =1242 Hz 

 
𝑓 = 1458 𝐻𝑧 

Figure 19: Effect of a double resonator with the pressure 

contour plots at the new resonances (red maximum positive 

pressure, blue maximum negative pressure). 

The first mode of the side branch, which is the 1/4 wave-

length mode, is substituted by a mode at 222 Hz showing the 

largest pressure oscillations inside the double resonator, and 
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by a mode at 564 Hz with the side branch and the double 

resonator oscillating in opposition. 

In both these modes the pressure oscillations inside the two 

cavities of the double resonator are in phase. 

The second mode of the side branch, which is the 3/4 wave-

length mode, is substituted by a mode at 1242 Hz with the 

end of the side branch and the second resonator oscillating in 

opposition, and by a mode at 1458 Hz chiefly involving the 

resonator with pressure oscillations of the two cavities in 

opposition. According to the diagram in Figure 3 the four 

new peaks correspond to flow velocities of 14, 36, 77 and 85 

m/s. Therefore, there is a smaller distance between the 

critical speeds related to the second mode of the branch than 

between the critical speeds related to the first mode. 

It is worth noticing that the interval between the first two 

critical speeds generated by the double resonator is similar to 

the one caused by a simple resonator with the same neck and 

cavity. 

7 DISCUSSION AND CONCLUSIVE REMARKS 

The aero-acoustic coupling mechanism that leads to FIV was 

presented by means of the critical speed chart. Several 

numerical simulations were then carried out in order to 

evaluate possible advantages of applying Helmholtz 

resonators to T-junctions with resonant side-branches. First, 

a sensitivity analysis was carried out to analyse the influence 

of the geometry and position of the resonator on the acoustic 

modes and critical speeds of the side branch. By modifying 

the geometry of the resonator it is possible to find both 

design solutions that cause large shifts of the critical speeds 

of FIV, and design solutions that generates smaller shifts of 

the critical speeds of FIV, but lead to large increases in 

damping. 

The position of the resonator has a small influence on the 

amplitude and on the frequency of the resonance peaks as 

long as the resonator is located near the closed end of the side 

branch. 

The results presented in this paper refer to a small size side 

branch, but in actual industrial applications the size of 

components may be rather larger. On the one hand, the 

coupling parameter of the resonator with an acoustic mode 

[8] depends on the modal shape and on the ratio between 

resonator volume and pipe volume, hence, the results can be 

extended to larger size systems with different natural 

frequencies provided that the modal shape does not change 

and that the ratio between volumes is kept constant. On the 

other hand, the losses in the piping system and in the 

resonator depends on many phenomena (e.g. radiation and 

viscous-thermal losses) which are influenced by the size of 

components and by frequency. Therefore, a careful analysis 

of these phenomena has to be carried out to extend results to 

different size systems. 

The possibility of developing resonators with modified neck 

in order to improve damping was numerically analysed. 

Results show that both resonators with helical neck and 

resonators with the neck made up of a bundle of narrow ducts 

are able to significantly increase damping. 

Numerical simulations also showed the potentialities of a 

double resonator that is able to dampen and de-tune two 

acoustic modes of a side branch. 

 

 

Figure 20: The testing rig (a) and experimental results (b). 

In order to validate numerical results, a testing rig for 

resonators is being developed, see Figure 20. It is composed 

of a pipe (diameter 0.102 m, length 0.78 m) open at one end 

and closed at the other end and of a resonator with adjustable 

sizes. Excitation is performed by means of a loudspeaker 

placed outside the pipe and sound pressure is measured by 

means of microphones. Some preliminary results showed the 

appearance of minor resonance peaks that substitute for the 

original resonance peak of the pipe and the effect of the 

resonator’s cavity volume on tuning. 

NOMENCLATURE 

𝑐0 [𝑚/𝑠] Speed of sound in the medium 

𝑉𝑚 [𝑚/𝑠] Mean velocity in main pipe 

𝐷𝑚𝑝 [𝑚] Diameter of main pipe 

𝑑𝑠𝑏 [𝑚] diameter of side branch 

𝑙𝑠𝑏 [𝑚] length of side branch 

𝑆𝑡𝑟 [−] Strouhal number 

𝑓v [𝐻𝑧] Vortex shedding frequency 
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𝑓𝑛 [𝐻𝑧] Natural acoustic frequencies of a side 

branch 

𝑑𝑛𝑒𝑐𝑘 [𝑚] Diameter of the neck of a Helmholtz 

resonator 

𝑙𝑛𝑒𝑐𝑘 [𝑚] Length of the neck of a Helmholtz 

resonator 

𝐷𝑐𝑎𝑣𝑖𝑡𝑦  [𝑚] Diameter of the cavity of a Helmholtz 

resonator 

𝐴𝑛𝑒𝑐𝑘 [𝑚2] Neck section Area of a Helmholtz 

resonator 

𝑉𝑐𝑎𝑣𝑖𝑡𝑦 [𝑚3] Cavity volume of a Helmholtz 

resonator 

𝑓𝑟𝑒𝑠 [𝐻𝑧] Natural acoustic frequency of a 

Helmholtz resonator 
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