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A
bstract. We solve a family of fractional Riccati equations with constant (possibly
complex) coefficients. These equations arise, for example, in fractional Heston stochastic vol-
atility models, which have received great attention in the recent financial literature because of
their ability to reproduce a rough volatility behavior. We first consider the case of a zero initial
value corresponding to the characteristic function of the log-price. Then we investigate the case
of a general starting value associated to a transform also involving the volatility process. The
solution to the fractional Riccati equation takes the form of power series, whose convergence
domain is typically finite. This naturally suggests a hybrid numerical algorithm to explicitly
obtain the solution also beyond the convergence domain of the power series. Numerical tests
show that the hybrid algorithm is extremely fast and stable. When applied to option pricing,
our method largely outperforms the only available alternative, based on the Adams method.
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1. Introduction and Motivation
Stochastic volatility models have received great attention in the last decades in the financial community. The
most celebrated model is probably the one introduced by Heston [13], where the asset price S has a diffusive
dynamics with a stochastic volatility following a square root process driven by a Brownian motion partially
correlated with the one driving the underlying. This correlation is important to capture the leverage effect, a
stylized feature observed in the option market that translates into a skewed implied volatility surface. The
Heston model is also able to reproduce other stylized facts, as fat tails for the distribution of the underlying
and time-varying volatility. What is more, the characteristic function of the asset price can be computed in
closed form, so that the Heston model turns out to be highly tractable insofar option pricing, as well as
calibration can be efficiently performed through Fourier methods. This analytical tractability is probably the
main reason behind the success of the Heston model among practitioners.

Recently, there has been an increasing attention in the literature to some roughness phenomena observed in
the volatility behaviour of high frequency data, which suggest that the log-volatility is very well modeled by a
fractional Brownian motion with Hurst parameter of order 0.1 (El Euch and Rosenbaum [8], Gatheral and
Radoicic [10], Jaisson and Rosenbaum [16]). From a practitioner’s perspective, rough volatility models would
in principle allow for a good fit of the whole volatility surface, in a parsimonious way. Nevertheless, with the
fractional Brownian motion being non-Markovian, mathematical tractability might be a challenge. The idea of
introducing fractional Brownian motion in the volatility noise is not new, and it goes back, to the best of our
knowledge, to Comte and Renault [5], where the authors extend the stochastic volatility model of Hull and
White [15] to the case where the volatility displays long memory to capture the empirical evidence of
persistence of the stochastic feature of the Black Scholes implied volatilities, when time to maturity increases.
Long memory is associated with a Hurst index greater than 0.5, whereas the classic Brownian motion case
corresponds to a Hurst parameter equal to 0.5. As the debate on the empirical value for the Hurst index is still
controversial in the literature, in our paper, we will consider settings that include the complete range of the
Hurst coefficient, namely H ∈ (0, 1).

A fractional adaptation of the classical Heston model has come under the spotlight (El Euch and Rosenbaum [8],
Gatheral et al. [10], Jaisson and Rosenbaum [16]), because, in this case, pricing of European options is
1
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still feasible, and hedging portfolios for vanilla options are explicit. In addition, the fractional version of the
Heston model is able to reproduce the slope of the skew for short-term expiring options without the need for
introducing jumps as in the classical Heston model.

When extending the Heston model to the case where the volatility process is driven by a fractional
Brownian motion, one faces some challenges because the model is no longer Markovian, due to the presence of
memory in the volatility process. On the one hand, the model keeps the affine structure, so that the com-
putation of the characteristic function of the log-price is still associated to the solution of a quadratic ordinary
differential equation (ODE) as in the classic Heston case. On the other hand, such a Riccati ODE involves
fractional derivatives, and their solution is no longer available in closed form. The Adams discretization
scheme (Diethelm et al. [6],[7]) is the standard numerical method to deal with fractional ODEs. As an
alternative, a rational approximation, based on Padé approximants, has been recently proposed in Gatheral
and Radoicic [9], where the authors started from the short time expansion of the solution as developed in Alòs
et al. [2]. Unfortunately, thus far, only a specific set of parameters (and one value for the argument of the
Fourier transform) is considered, no mathematical analysis of the error is proposed, and computational times
are not provided, so it seems difficult to benchmark our approach to their results.

From a numerical viewpoint, algorithms based on the Adams method, which is basically a Euler scheme of
the equation, are not well performing because of the presence of a discrete time convolution induced by the
fact that the fractional derivative is not a local operator. In this respect, Runge-Kutta schemes do not seem to
be appropriate. On the contrary, the Richardson-Romberg (RR) extrapolation method is easy to implement
because it consists of a linear combination of solutions of Euler schemes with coarse and refined steps, so that
the same accuracy can be obtained with a dramatic reduction of the computation time (see Pagès [18] and
Talay and Tubaro [21], who developed and popularized the same paradigm in a stochastic environment). One
can reach and even outperform in the multistep case the rate obtained by Euler schemes for regular ODEs,
which is known to be proportional to the inverse of the complexity.

In this paper, we study the efficient computation of the solution of the fractional Riccati ODEs arising from
the (fractional) Heston model with constant coefficients for a general Hurst index H ranging in (0, 1). It is also
worth mentioning Gerhold et al. [11, theorems 7.5 and 7.6], where the authors independently exploited the
Volterra integral representation for the solution to the Riccati ODE, with a null initial condition, to find upper
and lower bounds for its explosion time. In the specific case of the rough Heston model, they tried a fractional
power series ansatz for the solution to the Riccati, and they proposed an approximation of the explosion time.

We show that it is possible to represent the solution as a power series in a neigbourhood of 0, and we
determine upper and lower bounds for its convergence domain. Our results mainly rely on Kershaw’s in-
equalities (see Kershaw [17] and Equation (A.3) in Appendix A.2). It is important to notice that the existence
domain of the solution does not always coincide with the convergence domain of the power series (we will see
that this typically happens when the coefficients of the fractional Riccati ODE have different signs), in analogy
with the fact that the function x/(x + 1) is well defined on (−1,+∞), despite the convergence domain of its
power series expansion is only defined for |x| < 1. From a computational point of view, the expansion we
propose is extremely efficient compared with the RR extrapolation method on its domain of existence. If the
solution is needed at a date that is beyond the convergence interval, we propose a hybrid numerical scheme
that combines our series expansion together with the RR machinery. The resulting algorithm turns out to be
flexible and still very fast compared with the benchmark available in the literature, based on the Adams method.

The fractional Riccati ODE associated to the characteristic function of the log-asset price is very special insofar as it
starts from zero. More general transforms (including the characteristic function of the volatility process) lead to
nonzero initial conditions (Abi Jaber [1]), where the authors extend the results of El Euch and Rosenbaum [8] to
the case where the volatility is a Volterra process, which includes the (classic and) fractional Heston model for some
particular choice of the kernel. The extension of our results to the case of a general (nonnull) initial condition is not
straightforward and requires additional care. Nevertheless, we will show that it is still possible to provide bounds
for the convergence domain of the corresponding power series expansion, at the additional cost of extending the
implementation of the algorithm to a doubly indexed series, in the spirit of Guennon et al. [12].

1.1. Notation
• |z| denotes the modulus of the complex number z∈ C and Re(z) and Jm(z) its real and imaginary part,

respectively.
• x± � max(±x, 0), x∈ R.
• Γ(a) � ∫ +∞

0 ua−1e−udu, a > 0 and B(a, b) � ∫ 1
0 ua−1(1 − u)b−1du, a, b > 0. We will use extensively the classical

identities Γ(a + 1) � aΓ(a) and B(a, b) � Γ(a)Γ(b)
Γ(a+b) .
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• Lp([a, b]) denotes the set of all Lebesgue measurable functions f such that
∫
[a,b] | f (x)|pdx<+∞, for 1 ≤ p < ∞.

• AC([a, b]) for −∞ ≤ a < b ≤ +∞, denotes the space of absolutely continuous functions on [a, b]. A function f
is absolutely continuous if for any ε > 0 there exists a δ > 0 such that for any finite set of pairwise nonin-
tersecting intervals [ak, bk] ⊂ [a, b], k � 1, 2 . . ., such that

∑n
k�1(bk − ak) < δ, we have

∑n
k�1 | f (bk) − f (ak)| < ε.

• ACn([a, b]), for n � 1, 2, . . . and for −∞ ≤ a < b ≤ +∞, denotes the space of continuous functions f that have
continuous derivatives up to order (n − 1) on [a, b], with f (n−1) ∈ AC([a, b]).

2. The Problem
We start by recalling the fractional version of the Heston model, where the pair (S,V) of the stock (forward)
price and its instantaneous variance has the dynamics

dSt � St
̅̅̅̅
Vt

√
dWt, S0 � s0 ∈ R+

Vt � V0 + 1
Γ α( )

∫ t

0
t − s( )α−1η m − Vs( )ds + 1

Γ α( )

∫ t

0
t − s( )α−1ηζ ̅̅̅̅

Vs
√

dBs,V0 ∈ R+,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where η,m, ζ are positive real numbers, and the correlation between the two Brownian motions W and B is
ρ ∈ (−1, 1). The parameter α ∈ (0, 2) plays a crucial role (see Remark 1 below). Notice that the classical model
(Heston [13]) corresponds to the case α � 1.

Remark 1. The smoothness of the volatility trajectories is governed by α. Recall that the fractional Brownian
motionWH , whereH ∈ (0, 1) is the Hurst exponent, admits, for example, the Manderlbrot-Van Ness representation

WH
t � 1

Γ H + 1
2

( ) ∫ 0

−∞
t − s( )H−1

2 − −s( )H−1
2

( )
dWs + 1

Γ H + 1
2

( ) ∫ t

0
t − s( )H−1

2dWs

where the Hurst parameter plays a crucial role in the path’s regularity of the kernel (t − s)H−1
2. In particular,

when H < 1
2, the Brownian integral has Holder regularity, and it allows for a rough behavior (see El Euch and

Rosenbaum [8]). Therefore, defining α � H + 1
2 and taking α < 1 in the dynamics (1) leads to a rough behavior

of the trajectories of V.

The starting point of our work is the key theorem in El Euch and Rosenbaum [8, theorem 4.1], which has
been extended by Abi Jaber et al. [1, theorem 4.3 and example 7.2] to the class of affine Volterra processes.
More precisely, El Euch and Rosenbaum [8] showed that the characteristic function of the log-price XT :�
log(ST/S0), for T > 0 and u1∈ ıR, reads

E eu1XT
( ) � exp φ1 T( ) + V0 φ2 T( )[ ]

, (2)
where

φ1 T( ) � m η

∫ T

0
ψ s( )ds, φ2 T( ) � I1−αψ T( ), (3)

and ψ solves the fractional Riccati equation for t ∈ [0,T]

Dαψ t( ) � 1
2

u21 − u1
( ) + η u1ρζ − 1

( )
ψ t( ) + ηζ

( )2
2

ψ2 t( ), I1−αψ 0( ) � 0, (4)

where Dα and I1−α denote, respectively, the Riemann-Liouville fractional derivative of order α and the Riemann-
Liouville integral of order (1 − α).

Here we briefly recall both definitions, inspired by Samko et al. [19, chapter 2]. For any α > 0 and f :
(0,+∞) → R in L1([0,T]), the Riemann-Liouville fractional integral of order α is defined as follows:

Iαf t( ) � 1
Γ α( )

∫ t

0
t − s( )α−1f s( )ds. (5)

Note that we skip 0 in the above fractional integral, thus avoiding the classical notation Iα,0+.
For α∈ (0, 1), we now define the Riemann-Liouville fractional derivative of order α of f as follows:

Dαf t( ) � 1
Γ 1 − α( )

d
dt

∫ t

0
t − s( )−αf s( )ds. (6)
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A sufficient condition for its existence is f ∈ AC([0,T]). In the case when α∈ [1, 2), we have

Dαf t( ) � 1
Γ 2 − α( )

d2

dt2

∫ t

0
t − s( )1−αf s( )ds. (7)

A sufficient condition for its existence is f ∈ AC1([0,T]).
Remark 2.

a. When α � 1, Dα obviously coincides with the regular differentiation operator and the above Riccati equation
reduces to the classic one.

b. Notice that the fractional derivative is also defined for a general α ≥ 1 as follows:

Dαf t( ) � 1
Γ n − α( )

dn

dtn

∫ t

0
t − s( )n−1−αf s( )ds where n � 
α� + 1. (8)

A sufficient condition for its existence is f ∈ AC
α�([0,T]).
More generally, Abi Jaber et al. [1, example 7.2] proved that for Re(u1) ∈ [0, 1],Re(u2) ≤ 0,

E eu1XT+u2VT
( ) � exp φ1 T( ) + V0 φ2 T( )[ ]

, (9)
where φ1,φ2 are defined as before, and ψ solves the same fractional Riccati Equation (4) with a different
initial condition:

I1−αψ 0( ) � u2. (10)
This transform can be useful in view of pricing volatility products, as it involves the joint distribution of the
asset price and the volatility. Obviously, once the characteristic function is known, option pricing can be easily
performed through standard Fourier techniques.

Our first aim in this paper is to solve the fractional Riccati ODE (4) with constant coefficients when α∈ (0, 2].
From now on, we relabel the coefficients as follows:

%u,v
λ,μ,ν

( )
≡ Dαψ � λψ2 + μψ + ν,

I1−αψ 0( ) � u if α∈ 0, 1( ]
I1−αψ 0( ) � u and I2−αψ 0( ) � v if α∈ 1, 2( ],

{
(11)

where λ, μ, ν, and u, v are complex numbers (when α∈ (0, 1] we use (%u
λ,μ,ν)).

We will propose an efficient numerical method to compute the solution, with a special emphasis on the case
where α∈ (0, 1) and the initial condition u is equal to zero, corresponding to the characteristic function of the
log-asset price.

Remark 3.
a. Being the Hurst coefficient H � α − 1

2, the case α∈ (0, 1) contains the rough volatility modeling, whereas the
case α∈ (1, 2) contains the long memory modeling and corresponds to the framework of Comte and Renault [5].

b.We refer, respectively, to El Euch and Rosenbaum [8] andAbi Jaber et al. [1] for existence and uniqueness of the
solution to the Riccati Equation (4), respectively, with a null initial condition and with an initial condition (10). Our
approach will prove the existence of a solution in a (right) neighborhood of 0.

One checks that, under appropriate integrability conditions on the function f , (Dα ◦ Iα)f � f , so that the
fractional Riccati equation (%u

λ,μ,ν) can be rewritten equivalently in a fractional integral form as follows:

ψ t( ) � u
Γ α( ) t

α−1 + Iα λψ2 + μψ + ν
( )

when α∈ 0, 1( ], (12)

with u∈ C, and

ψ t( ) � u
Γ α( ) t

α−1 + v
Γ α − 1( ) t

α−2 + Iα λψ2 + μψ + ν
( )

when α∈ 1, 2( ], (13)

with u, v∈C. The consistency of such initial conditions follows in both cases from the fact that Iβ(t−β) �
Γ(1 + 
β� − β), for 0 < β ≤ 2.

The starting strategy of our approach is to establish the existence of formal solutions to (%u,v
λ,μ,ν) as fractional

power series expansions and then prove by a propagation method of upper/lower bounds that the convergence
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radius of such series is nonzero (and possibly finite). Indeed, this is strongly suggested by the elementary
computation of the fractional derivative of a power function tr, r ∈ R:

Dαtr � Γ r + 1( )
Γ r + 1 − α( ) t

r−α if r > α − 1 and Dαtα−1 � 0. (14)
Similarly

Iαtr � Γ r + 1( )
Γ r + α + 1( ) t

α+r if r �� −1. (15)

In particular, note that this last property justifies why a natural starting value for (%u
λ,μ,ν) is of the form u

Γ(α) t
α−1

because its α derivative is 0, and its (1 − α) integral antiderivative is u owing to the above formulas. On the
other hand, the fractional derivative of a constant is not zero and reads

Dαc � c
Γ 1 − α( ) t

−α. (16)

Remark 4. When α � 1, Dα obviously coincides with the regular differentiation operator, and the above Riccati
equation is simply the regular Riccati equation with a quadratic righthand side, for which a closed form solution
is available.

In the first part of this paper, we will mostly distinguish two cases:
• The case u � 0 and α∈ (0, 1], which is closely connected with the pricing of options in a rough stochastic

volatility model (see El Euch and Rosenbaum [8] and Jaisson and Rosenbaum [16]).
• The case u � v � 0 and α∈ (1, 2], which can be seen as a special case of the more general results presented

in Abi Jaber et al. [1], and in a second part, we well investigate the more general case where u �� 0, which
requires more care.

The property (14) shows that the α fractional differentiation preserves the fractional monomials trα, r∈ Z.
This property strongly suggests to solve the above equation as fractional power series, at least in the
neighborhood of 0. Usually the fractional power series has a finite convergence radius, but this does not mean
that the solution does not exist outside the interval defined by this radius. This will lead us to design a hybrid
numerical scheme to solve this equation.

3. Solving (%0
λ,μ,ν) as a Power Series

As preliminary remarks before getting onto technicalities, note that
• if ν � 0, then the solution to the equation is clearly 0 by a uniqueness argument; and
• if λ � 0, the equation (%0

λ,μ,ν) becomes linear, and, as we will see on the way, the unique solution is
expandable in a fractional power series with an infinite convergence radius.

As a consequence, we will work, except by specific mention, under the following.

Assumption 1. We assume that λν �� 0.

3.1. The Algorithm
The starting idea is to proceed by verification: We search for a solution as a fractional power series.

ψ t( ) � ψλ,μ,ν t( ) :� ∑
k≥0

aktkα, (17)

where the coefficients ak, k ≥ 1 are complex numbers. We will show that the coefficients ak are uniquely
defined, and we will establish that the convergence radius Rψ of ψ is nonzero.

Assume that Rψ > 0. First note that, for 0 < t < Rψ,

ψ2 t( ) � ∑
k≥0

a∗k
2 tkα,
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with the Cauchy coefficients of the discrete time convolution given by

a∗k
2 � ∑k

��0
a�ak−�, k ≥ 0.

It follows from (14) that

Dαψ t( ) � ∑
k≥0

ak
Γ αk + 1( )

Γ αk + 1 − α( ) t
α k−1( ) � ∑

�≥−1
a�+1

Γ α � + 1( ) + 1( )
Γ α � + 1( ) + 1 − α( ) t

α�.

On the other hand, from the Riccati equation, we have

Dαψ t( ) � ∑
k≥0

λa∗k
2 + μak

( )
tαk + ν, (18)

so that the sequence (ak)k≥0 satisfies (by identification of the two expansions for Dαψ) the discrete time con-
volution equation:

Aλ,μ,ν

( ) ≡ ak+1 � λa∗k 2 + μak
( ) Γ αk + 1( )

Γ αk + α + 1( ) , k ≥ 1, a1 � ν

Γ α + 1( ) , a0 � 0. (19)

Remark 5. As a consequence of a0 � 0, note that the discrete convolution a∗2k reads

a∗12 � 0 and a∗k 2 �
∑k−1
��1

a�ak−�, k ≥ 2. (20)
3.2. The Convergence Radius
Let us recall that the convergence radius Rψ of the fractional power series (17) is given by Hada-
mard’s formula:

Rψ � lim inf
k

⃒⃒
ak
⃒⃒− 1

αk ∈ 0,+∞[ ]. (21)

The fractional power series is absolutely converging for every t∈ [0,Rψ) and diverges outside [0,Rψ]. (We will
not discuss the possible extension on the negative real line of the equation.) It may also be semiconvergent at
Rψ if the ak are real numbers with an alternate sign and decreasing in absolute value.

The maximal solution of the equation may exist beyond this interval: We will see that this occurs, for
example, when the parameters λ, μ, ν satisfy λν > 0 and μ < 0. A typical example is the function t �→ t

t+1, which
solves the ODE ψ′ � ψ2 − 2ψ + 1, with ψ(0) � 0. This function is defined on (−1,+∞), but its expansion at 0 is
only converging at 0 on (−1, 1]. This has to do with the existence of poles on the complex plane of the
meromorphic extension of the function.

However, if the ak, k ≥ 1 are all nonnegative, at least one being nonzero, then the domain of existence of the
maximal solution is exactly [0,Rψ).

The theorem below, whose proof is found in Appendix B, is the first key result of this paper, and it provides
explicit bounds for the convergence radius Rψ for the equation (%0

λ,μ,ν). (The proof of this theorem, found in
Appendix B, is split into two separate subsections, for the cases α ∈ [0, 1] and α ∈ (1, 2] and in the first case it
needs Proposition B.1.)

Theorem 1. Let α∈ [0, 2] and let λ, μ, ν∈ C, λ �� 0.We denote byψλ,μ,ν the function defined by (17)where the coefficients ak
satisfy (Aλ,μ,ν).

a. [General lower bound for the radius] We have

Rψλ,μ,ν >
2

1
α− 1

α−2( )+α
|μ| +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2 + cα |λ||ν|

Γ α( )
√( )1

α

:� τ∗ > 0, (22)

where cα � 22−(1−2α)+−2(α−1)+αα−1B(α ∧ 1, α ∧ 1) > 0.
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b. [Upper-bound for the radius] If λ, ν > 0 and μ ≥ 0 (respectively, λ, ν < 0 and μ ≤ 0), then

Rψλ,μ,ν ≤ Rψ|λ|,0,|ν| ≤ Cα
Γ α + 1( )

λν

( ) 1
2α

where Cα �
3.5α−1
( ) 1

2α
̅̅
α

√
if α∈ 0, 1( ],̅̅̅̅

2α
√

B̃ α( ) if α∈ 1, 2( ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
with B̃(α) � B(α, α) − 21−2α > 0. Moreover, ψλ,μ,ν is increasing (respectively, decreasing) and limt→+Rψλ,μ,ν

ψλ,μ,ν(t) �
sign(λ).∞ so that the existence domain of ψλ,μ,ν is [0,Rψλ,μ,ν).

c. If λ, ν > 0 and μ ≤ 0, then (with obvious notations) a(λ,μ,ν)k � (−1)ka(λ,−μ,ν)k , k ≥ 1, so that Rψλ,μ,ν � Rψλ,−μ,ν .
Moreover if the sequence a(λ,−μ,ν)k decreases for k large enough, then the expansion of ψλ,μ,ν converges at Rψλ,−μ,ν .

d. If μ � 0, then a2k � 0 for every k ≥ 1 and the sequence bk � a02k−1, k ≥ 1, is solution to the recursive equation

b1 � ν

Γ α + 1( ) and bk+1 � λ
Γ 2αk + 1( )

Γ 2k + 1( )α + 1( ) b
∗2
k+1, k ≥ 1, (23)

where the squared convolution is still defined by (20) (the equation is consistent because b∗2k+1 only involves terms
b�, � ≤ k).

Remark 6.
a. The lower bound is not optimal because if λ � 0 and μ �� 0, it is straightforward that

ak+1
ak

∼ Γ αk + 1( )
Γ αk + α + 1( )μ → 0 as k → +∞ so that Rψ0,μ,ν � +∞.

b. In particular the theorem shows that, if λ, ν > 0, there exist real constants 0 < K1(α) < K2(α), only depending on
α, such that

K1 α( )
λν( ) 1

2α
≤ Rψλ,0,ν ≤ K2 α( )

λν( ) 1
2α
.

c. When λ, ν > 0, and μ ≤ 0, the maximal solution of (%0
λ,μ,ν) lives on the whole positive real line, even if its

expansion only converges for t∈ [0,Rψλ,μ,ν].
d. In Section 5.1 we will provide the values of the convergence domain in some realistic scenarios.

As already mentioned in the introduction, the domain of existence of the solution to (%0
λ,μ,ν) may be strictly

wider than that of the fractional power series. Hence, it is not possible to rely exclusively on this expansion of
the solution to propose a fast numerical method for solving the equation. The aim is to take optimally
advantage of this expansion to devise a hybrid numerical scheme that works to approximate the solution of the
equation everywhere on its domain of existence.

3.3. Controlling the Remainder Term
To control the error induced by truncating the fractional series expansion (17) at any order n0, we need some
errors bounds. In practice, we do not know the exact value of the radius Rψ. However, we can rely on our
theoretical lower bound τ∗ given by the righthand side of (22).

An alternative to this theoretical choice is to compute R(n) :� |an|− 1
αn for n large enough where (an) satisfies

(Aλ,μ,ν). The value turns out to be a good approximation of Rψ, but may, of course, overestimate it, which
suggests consideration of τψ � pR(n) with p∈ [0, 0.90].

In both cases, in what follows, we assume that t∈ (0, τ∗).
For the proof of Theorem 1(a), in Appendix B, we will show by induction that the sequence (an)n≥1 satisfies

|ak | ≤ C∗ ρ∗( )kkα−1, k ≥ 1.

where ρ∗ � (τ∗)−α or, equivalently, τ∗ � (ρ∗)−1
α and C∗ is given by C∗ � |ν|

Γ(α+1)ρ∗.
Then

∀ t∈ 0, τ∗( ), ψλ,μ,ν t( ) −∑n0
k�1

aktkα
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ ∑

k≥n0+1
|ak |tkα ≤ C∗

∑
k≥n0+1

kα−1 ρ∗tα( )k
� C∗

∑
k≥n0+1

kα−1 t/τ∗( )αk,
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owing to (B.8) (and its counterpart for 1 < α ≤ 2 with ρ∗ given by (B.10)), where θ � ρ∗tα � (t/τ∗)α∈ (0, 1).
Case α∈ (0, 1]. The function ξ �→ ξα−1θξ is decreasing on the positive real line.∑

k≥n0+1
kα−1θk ≤

∫ +∞

n0
ξα−1θξ dξ � log 1/θ( )( )−α∫ +∞

n0 log 1/θ( )
uα−1e−udu. (24)

Note that uα−1 ≤ xα−1 for every u ≥ x because 0 < α ≤ 1 so that
∫ +∞
x uα−1e−audu ≤ xα−1

∫ +∞
x e−audu � xα−1e−ax

a . Hence,
we deduce that

∀ t∈ 0, τ∗( ), ψλ,μ,ν t( ) −∑n0
k�1

aktkα
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ C∗

α log τ∗/t( )
t/τ∗( )n0α
n1−α0

.

Case α∈ [1, 2]. Note that the function ξ �→ ξα−1θξ is now only decreasing over [ α − 1
log(ϑ) ,+∞) so that (24) only

holds for n0 ≥ α − 1
log(1/θ) (which can be very large if θ � (t/τ∗)α is close to 1). In practice, this means that to

compute ψ, one should at least consider n0 terms!
To get an upper bound, we perform an integration by part that shows that∫ +∞

x
uα−1e−udu � xα−1e−x + α − 1( )

∫ +∞

x
uα−2e−udu

≤ xα−1e−x + α − 1( )xα−2e−x � xα−1e−x 1 + α − 1
x

( )
,

where in the second line, we used uα−2 ≤ xα−2 because u ≥ x and 1 ≤ α ≤ 2. Plugging this in (24) with x �
n0 log(1/θ) and θ � t/τ∗ yields the following formula, which holds true for every α∈ (0, 2]:

∀ t∈ 0, τ∗( ), ψλ,μ,ν t( ) −∑n0
k�1

aktkα
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ C∗nα−10

α log τ∗/t( ) t/τ∗( )n0α 1 + α − 1( )+
α n0 log τ∗/t( )

( )
.

If τ∗ is estimated empirically, the propagation property can be no longer used. Similar bounds, although less
precise, can be obtained using that τ∗ < Rψλ,μ,ν .

In practice, we will favor this second approach over the use of ρ∗, as ρ∗ provides a too conservative lower
estimate of Rψλ,μ,ν .

4. Hybrid Numerical Scheme for (%0
λ,μ,ν), 0 < α ≤1

The idea now is to mix two approaches to solve the above fractional Riccati Equations (11) on an interval [0,T],
T > 0, that should be included in the domain Dψ on which ψ is defined. We will focus on the first equation
(with 0 as initial value) for convenience.

The aim here is to describe a hybrid algorithm to compute the triplet

Ψ t( ) � ψ t( ), I1 ψ
( )

t( ), I1−α ψ
( )

t( )( )
at a given time t � T where ψ � ψλ,μ,ν is a solution to (%0

λ,μ,ν) (see Equation (11)). By hybrid we mean that we
will mix (and merge) two methods: one based on the fractional power series expansion of ψ and its
two (fractional) antiderivatives and one based on a time discretization of the equation satisfied by ψ and the
integral operators.

We will also introduce a RR extrapolation method based on a conjecture on the existence of an expansion of
the time discretization error. We refer to Talay and Tubaro [21] and Pagès [18] for a full explanation of the RR
extrapolation method and its multistep refinements.

As established in Section 3, the solution ψ can be expanded as a (fractional) power series on [−Rψ,Rψ],
Rψ > 0. Namely, for every t∈ (−Rψ,Rψ),

ψ t( ) � ∑
r≥1

artαr. (25)

As a consequence, it is straightforward that

I1 ψ
( )

t( ) �
∫ t

0
ψ s( )ds � t

∑
r≥1

ar
αr + 1

tαr (26)



Callegaro, Grasselli, and Pagès: Hybrid Schemes for Fractional Riccati Equations
Mathematics of Operations Research, Articles in Advance, pp. 1–34, © 2020 INFORMS 9

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

and, using (15), that

I1−α ψ
( )

t( ) � ∑
r≥1

ar
Γ αr + 1( )

Γ α r − 1( ) + 1( )
trα+1−α

αr + 1 − α

� t1−α νtα +∑
r≥2

ar 1 − 1
r

( )−1 Γ αr( )
Γ α r − 1( )( )

trα

αr + 1 − α

( )
. (27)

We will now proceed in four steps.
4.1. Step 1: Radius of the Power Series Expansion
A preliminary step consists in computing enough coefficients ar of the fractional power extension of ψ, say
rmax, and estimating its convergence radius by

Rψ � lim inf
r

|ar|− 1
αr � Rψ,rmax :� |armax |− 1

αrmax .

The radius Rψ is also that of the two other components of Ψ(T), so a more conservative approach in practice is
to estimate Rψ using the larger coefficients a′r :� ar

Γ(αr+1)
Γ(α(r−1)+1)

1
αr+1−α, r ≥ 2, appearing in (27), that is, consider

Rψ � R̂ψ :� |a′rmax
|− 1

αrmax .

This estimate of the radius is lower than what would be obtained with the sequence (ar), which is in favor of a
better accuracy of the scheme.

We then decide the accuracy level we wish for the approximation of these series: Let ε0 denote this level,
typically ε0 � 0.01 or 0.001. If we consider some t close to Rψ (or at least its estimate), we will need to compute
too many terms of the series to achieve the prescribed accuracy, so we define a threshold ϑ∈ (0, 1), and we
decide that the above triplet will be computed by their series expansion only on [0, ϑR̂ψ]. Then, the prescribed
accuracy is satisfied if the above fractional power series expansions are truncated into sums from r � 1 up to
r0 with

r0 � r0 ε0, ϑ( ) � log ε0 1 − ϑ( )( )
α log ϑ( ) − 1

⌈ ⌉
,

provided r0 ≤ rmax. If r0 > rmax, it suffices to invert the above formula where r0 is replaced by rmax to determine
the resulting accuracy of the computation.
4.2. Step 2: Hybrid Expansion-Euler Discretization Scheme
We assume in what follows that ϑRrmax

ψ < Rψ to preserve the accuracy of the computations of the values of ψ by
the fractional power expansion.

Case T < ϑRrmax
ψ . One computes the triplet Ψ(T) by truncating the three fractional power extensions as

explained above.
Case T > ϑRrmax

ψ . This is the case where we need to introduce the hybrid feature of the method.

4.2.1. Phase I: Power Series Computation. We will use the power series expansion until ϑRψ and then a Euler
scheme with memory (of course) of the equation in its integral form

%0
λ,μ,ν

( )
≡ ψ � Iα ν + μψ + λψ2( )

.

First we consider a time step of the form h � T
n where n ≥ 1 is an integer (usually a power of 2). We denote by

ψ̄n the Euler discretization scheme with step h. Set

tk � tnk � kT
n
, k � 0 : n and let k0 � nϑR̂ψ

T

⌊ ⌋
,

so that tk0 ≤ ϑR̂ψ < tk0+1. Note that tk0 may be equal to 0.
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Remark 7. The values ψ̄n(tk) k � 0, . . . , k0 are not computed as a Euler scheme (in spite of the notations) but using
the fractional power expansion (25) truncated at r0.

4.2.2. Phase II: Plain Euler Discretization. Then, given the definition (5) of the fractional integral operator Iα, one
has, for every t∈ [0,T]

ψ t( ) � νtα

Γ α + 1( ) +
1

Γ α( )
∫ t

0
ψ s( ) μ + λψ s( )( )

t − s( )α−1ds

so that the values of ψ̄n(tk) for k � k0 + 1, . . . ,n are computed by induction for every k ≥ k0 + 1 by

ψ̄n tk( ) � ν tαk
Γ α + 1( ) +

1
Γ α( )

∑k−1
��1

ψ̄n t�( ) λψ̄n t�( ) + μ
( ) ∫ t�+1

t�
tk − s( )α−1ds

� 1
Γ α + 1( )

T
n

( )α
νkα +∑k−1

��1
c α( )
k−�−1ψ̄

n t�( ) λψ̄n t�( ) + μ
( )( ) , (28)

where

c α( )
0 � 1 and c α( )

� � � + 1( )α−�α, � � 1 : k − 2.

To approximate the other two components I1(ψ)(tk) �
∫ tk
0 ψ(s)ds and I1−α(ψ)(tk) of Ψ(tk), we proceed as follows:

• For the regular antiderivative I1(ψ): We first decompose the integral into two parts by additivity of
regular integral

I1 ψ
( )

tk( ) � I1 ψ
( )

tk0
( ) + ∫ tk

tk0

ψ s( ) ds.

The first integral is computed by integrating the fractional power series expansion (25) i.e.

I1 ψ
( )

tk0
( ) � ∫ tk0

0
ψ s( )ds � t

∑r0
r�1

ar
α r + 1

tαrk0 ,

whereas the second one is computed using a classical trapezoid method, namely

I1 ψ
( )

tk( ) �
∫ tk0

0
ψ s( )ds + T

n

∑k−1
��k0

ψ̄n t�( ) + T
2n

ψ̄n tk( ) − ψ̄n tk0
( )( )

.

• For the fractional antiderivative I1−α(ψ): First note that we could take advantage of the fact that I1−α ◦ Iα � I1
leading to

I1−α ψ
( ) � I1 ν + μψ + λψ2( )

so that, for every t,

I1−α ψ
( )

t( ) � ν t +
∫ t

0
ψ s( ) μ + λψ s( )( )

ds.

This reduces the problem to the numerical computation of a standard integral, but with an integrand
containing the square of the function ψ.

However, numerical experiments (not reproduced here) showed that a direct approach is much faster,
especially when the ratio ν/λ is large. This led us to conclude that a standard Euler discretization of the
integral would be more satisfactory. Consequently, we have

∀ k∈ 0, . . . , n{ }, I1−α ψ
( )

tk( ) � Īn1−α ψ
( )

tk( ) � 1
Γ 2 − α( )

T
n

( )1−α∑k−1
��1

c 1−α( )
k−�−1ψ̄

n t�( ), (29)

where c(1−α)0 � 1 and c(1−α)� � (� + 1)1−α − �1−α, � � 1 : n.
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Remark 8. The rate of convergence of the Euler scheme of the fractional Riccati equation with our quadratic
righthand side is not a consequence of standard theorems on ODEs, even in the regular setting α � 1, because the
standard Lipschitz condition is not satisfied by the polynomial function u �→ λu2 + μu + ν.

4.3. Step 3: Extrapolated Hybrid Method
Let Ψ(t) � (ψ̄(t), I1(ψ), I1−α(ψ)(t)) and

Ψ̄n tk( ) � ψ̄n, Īn1 ψ
( )

, Īn1−α ψ
( )( )

tk( ), k � 0 : n,

with an obvious (abuse of) notation. Numerical experiments—not yet confirmed by a theoretical ana-
lysis—strongly suggest (see Example 4.5) that the first component of the vector Ψ, that is, the solution to the
Riccati equation itself, satisfies

ψ̄n T( ) − ψ T( ) � c1
n
+ o n−1

( )
. (30)

Taking advantage of this error expansion (30), one considers, for n even, the approximator, known as RR
extrapolation, defined by

ψ̄n
RR,2

T( ) :� 2 ψ̄n T( ) − ψ̄n/2 T( ),
which satisfies

ψ̄n
RR,2

T( ) − ψ T( ) � 2 ψ̄n T( ) − ψ T( )
( )

− ψ̄n/2 T( ) − ψ T( )
( )

� 2
c1
n
+ o n−1

( )( )
− 2 c1

n
+ o n−1

( )( )
� o n−1

( )
.

We analogously perform the same extrapolation with the two other components Īn1−α(ψ)(T) and Īn1 (ψ)(T) of
Ψ(T), and we may reasonably guess that

Ψ̄n
RR,2

T( ) −Ψ T( ) � o n−1
( )

where Ψ̄n
RR,2

T( ) :� 2 Ψ̄n T( ) − Ψ̄n/2 T( ).
Note that if o(n−1) � O(n−2), then Ψ̄n

RR,2
(T) −Ψ(T) � O(n−2), which dramatically reduces the complexity and

makes the scheme rate of decay (inverse-)linear in the complexity.
4.4. Step 4: Multistep Extrapolated Hybrid Method
Here we make the additional assumption that the following second-order expansion holds on the triplet:

Ψ̄n T( ) −Ψ T( ) � c1
n
+ c2
n2

+ o n−2
( )

.

We define the weights (wi)i�1,2,3 by (Pagès [18])

w1 � 1
3
, w2 � −2, w3 � 8

3
.

and taking n as a multiple of 4 and set

n1 � n
4
, n2 � n

2
, n3 � n.

So, we define the multistep extrapolation

Ψ̄n
RR,3

T( ) � 1
3
Ψ̄n/4 T( ) − 2 Ψ̄n/2 T( ) + 8

3
Ψ̄n T( ). (31)

An easy computation shows that Ψ̄n
RR,3

(T) satisfies
Ψ̄n

RR,3
T( ) −Ψ T( ) � o n−2

( )
.
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4.5. Example
Testing the convergence rate. Here we test on an example whether our guess on the rate of convergence is
true. We take the fractional Riccati Equation (11) with α � 0.64 (i.e., Hurst coefficient H � 0.14), with null initial
condition I1−αψ(0) � 0 and (real valued) parameters (these parameters are in line with the one in Section 5,
which were calibrated in El Euch and Rosenbaum [8] using a real data set; here, we humped the parameter λ
to gain convexity in the quadratic term of the Riccati, which is more challenging from the numerical point
of view):

λ � 0.045, μ � −64.938, ν � 44 850.

We focus on short maturities, which are supposed to be numerically more demanding, and we set T � 1/252
(corresponding to one trading day). Numerically speaking, one may proceed as follows (with the notations
introduced for the RR extrapolation): If the rate (30) is true, it becomes clear that the sequence

n � −→ c̄n1 � 2n ψ̄n T( ) − ψ̄2n T( )
( )

(32)

converges to c1 as n → +∞.
In Table 1, we display the values of the constant coefficient c1 � c̄n1 appearing in (30) for different values of n

ranging in [8, 131,072].
We take c1 � c̄nmax

1 � 100.5652 � cref1 in Equation (30) as a reference value, obtained with an accuracy level
ε0 � 0.005 and nmax � 217 � 131,072.

Figure 1, lefthand side, strongly supports the existence of a first-order expansion of type (30), whereas
Figure 1, righthand side, is quite consistent with the existence of a second-order expansion. Unfortunately,
Figure 1, righthand side, suggests that the higher-order expansion does exist but rather of the form

Ψ̄n T( ) −Ψ T( ) � c1
n
+ c2
n2−β

+ o nβ−2
( )

with β∈ 0, 1( ),

where β seems to depend on the value of the parameters λ, μ, and ν. When we consider the regression
coefficient in the log-log plot of c̄n1 − cref1 versus n, we find a slope of −0.5999 � −0.6. Hence, we do not find an
expansion of the form c2n−2 + o(n−2), because log(c̄n1 − c̄nmax

1 ) � −0.6. logn + b, which suggests a second term
c2n−1.52 + o(n−1.52). The numerical test seems to suggest that the exponent of this second term of the expansion
varies as n increases. To avoid the calibration of this additional parameter, we set β � 0, which numerically
yields by far the most stable and accurate results (see Section 5). Hence, in all our numerical tests, we use the
regular extrapolation formula of order 3 (31).

Testing the efficiency of the RR meta-schemes. Let us now turn our attention to the convergence of the hybrid
scheme. To evaluate its efficiency, we proceed as follows: We artificially introduce the hybrid scheme
by setting

k0 � 0.5 × nϑR̂ψ

T

⌊ ⌋
,

which differs from the original k0 by the 0.5 factor. As a consequence, the series expansion is only used
approximately between 0 and 0.5.ϑR̂ψ, and the time discretization scheme is used between tk0 and T. This
artificial switch is applied to each of the three scales T/n, T/(2n), and T/(4n) of the extrapolated meta-scheme
implemented.
Table 1. Values of c̄n1 in Formula (30) for n ranging from 8 to 217 � 131,072. The last value, obtained for n � nmax � 131,072, is
taken as reference value.

[n : 2n] c̄n1 [n : 2n] c̄n1 [n : 2n] c̄n1

[8–16] 123.8478 [256–512] 103.8532 [8,192–16,384] 101.1105
[16–32] 118.0696 [512–1,024] 102.9883 [16,384–32,768] 100.9268
[32–64] 113.9827 [1,024–2,048] 102.5672 [32,768–65,536] 100.8097
[64–128] 108.7523 [2,048–4,096] 101.8524 [65,536–131,072] 100.6396
[128–256] 104.8304 [4,096–8,192] 101.3989 [131,072–262,144] 100.5652



Figure 1. Empirical illustration/confirmation of the first order expansion. (Left) Plot c̄n1 versus n. (Right) log-log plot of c̄n1 − cref1
versus n.
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As a benchmark for the triplet, we use the value obtained via the fractional power series expansion with
r0 � 200, namely

Ψ T( ) � ψ T( ), I1 ψ
( )

T( ), I1−α ψ
( )

T( )( ) � 165.7590, 21.2394, 0.4409( ).
In the numerical test reproduced in Figure 2, the convergence of both the RR2 and the regular (namely,
associated to error expansion in the scale n−k, k � 0, 1, 2) RR3 RR meta-schemes (which were introduced,
respectively, in Sections 4.3 and 4.4) is tested, by plotting Ψ̄n

RR,2
and Ψ̄n

RR,3
as functions of n and of the

computational time.
Although we could not exhibit through numerical experiments the existence of a third-order expansion of

the error at rate c2n−2, corresponding to β � 0, as mentioned above, it turns out that the weights resulting from
this null value of β, that is, the regular extrapolation Equation (31) in the third-order RR extrapolation (RR3)
yields by far the most stable and accurate results (see also Section 5).

Remark 9. When t < ϑR̂ψ, the computation is performed exclusively via the series expansion and is extremely faster
than that involving the meta-schemes.

We end this subsection by highlighting that in all numerical experiments that follow, we will adopt, in our
hybrid algorithm, the regular third-order extrapolation meta-scheme (31).

We provide in the short section that follows further technical specifications of the hybrid scheme.
Figure 2. (Color online) Function ψ: RR2 (–o–) and RR3 (–∗–) meta-schemes versus log n (left) and log(CPU time) (right),
n � 25, . . . , 216.



Callegaro, Grasselli, and Pagès: Hybrid Schemes for Fractional Riccati Equations
14 Mathematics of Operations Research, Articles in Advance, pp. 1–34, © 2020 INFORMS

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

4.6. Practitioner’s Corner
Complexity reduction. To significantly reduce the complexity of the computations, one may note that if φ is
solution to (%0

1, μ,ν/λ), then ψ � φ
λ is solution to (%0

λ,μ,ν). Solving directly (%0
1, μ, ν/λ) allows to cancel all multi-

plications by λ throughout the numerical scheme, at the price of a unique division by λ at the end.

Calibration of ϑ. Numerical experiments carried out with T � 1/252 (one trading day) suggest that, at least for
small values of t, the optimal threshold ϑ � ϑ(h) is a function of the time discretization step h. The coarser h is,
the lower ϑ should be to minimize the execution time. It seems that for h � T/16, ϑ(h) � 0.5, whereas for
h � T/4,096, ϑ(h) � 0.925. This leads us to set, when h � T

n,

ϑ h( ) � min 0.65 + 0.3
n − 32
4064

( )0.25
, 0.925

( )
, 32 ≤ n ≤ 4,096.
5. Numerical Performance in the Rough Heston Model
In this section, we test the performance of our results in solving the homogeneous fractional Riccati equation
(%0

λ,μ,ν) in (11) that we recall for the reader’s convenience:

Dαψ t( ) � λψ2 t( ) + μψ t( ) + ν, I1−αψ 0( ) � 0.

We apply our methodology to the fractional Riccati equation arising in the rough Heston pricing model
considered in El Euch and Rosenbaum [8].

We test the series approximation and the hybrid procedure we introduced in two steps: First we consider
the power series solution to the Riccati solution, which is shown to be extremely fast. Then we consider the
hybrid method, that is, the series combined with the RR extrapolation method, to allow for horizons beyond
the convergence radius of the power series representation. Remarkably, we find that also the hybrid method is
very fast and stable compared with the classical competitor in the literature, represented by the Adams
method. All the tests have been performed in C++ using a standard laptop with a 3.4-GHz processor.

5.1. Testing the Fractional Power Series Approximation
Let us consider the fractional power series expansion representation (17) ψλ,μ,ν(t) � ∑

k≥0 aktkα.
We would like to use the calibrated parameters in El Euch and Rosenbaum [8]; namely, we would like to

work in the following setting (for clarity, we add a subscript R in the parameters below):

dSt � St
̅̅̅̅
Vt

√
dWt, S0 � s0 ∈ R+

Vt � V0 + 1
Γ α( )

∫ t

0
t − s( )α−1γR θR − Vs( )ds + 1

Γ α( )

∫ t

0
t − s( )α−1γRνR

̅̅̅̅
Vs

√
dBs,V0 ∈ R+,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (33)

where γR, θR, νR are positive real numbers. We take the following values:

α � 0.62 γR � 0.1 ρ � −0.681 V0 � 0.0392 νR � 0.331 θR � 0.3156, (34)
where ρ denotes the correlation between the two Brownian motions W and B.

The fractional Riccati equation to be solved in the setting of El Euch and Rosenbaum [8] is

Dαψ t( ) � 1
2

u21 − u1
( ) + γR u1ρνR − 1

( )
ψ t( ) + γRνR

( )2
2

ψ2 t( ), I1−αψ 0( ) � 0, (35)

so that the correspondence for the fractional Riccati coefficients is as follows in Table 2:
Table 2. Correspondence between values taken by the fractional Riccati coefficients in Equation (11) and those in El Euch and
Rosenbaum [8] and in our setting.

Riccati (11) El Euch and Rosenbaum [8] Our Equation (4) Value

λ (γRνR)2
2

ηζ
( )2
2

0.000547805

μ γR u1ρνR − 1
( )

η u1ρζ − 1
( )

0.1(−u1 0.225411 − 1)
ν 1

2
u21 − u1
( ) 1

2
u21 − u1
( ) 1

2
u21 − u1
( )



Table 3. Values of the convergence radius τ∗ for different values of u1.

u1 0.5 5 10 50 100 500
τ∗ 21.0481 5.6586 2.3846 0.2201 0.0739 0.0056
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Of course, the parameters for the fractional Riccati will depend on the frequency u1 ∈ C of the Fourier-
Laplace transform. To provide more insight into the convergence domain of the series solution studied in
Section 3.2, we display in Table 3 the value τ∗, introduced in Equation (22), for the specified parameters and
for different values of u1 (recall that this bound is conservative, in that it is not optimal).

To give an idea of the computational time required by the fractional power series solution, we set Re(u1) �
100 (in the pricing procedure, we will consider several values for Re(u1), as we shall integrate over this
parameter to compute the inverse Fourier transform), and we fix the dampening factor Jm(u1) � −2.1, in line
with the Fourier approach of Carr and Madan [4]. Finally, we focus on short-term maturities (namely T ≤ 1
months) to test the pure series expansion.

In Figure 3, we plot the computational time required to obtain the solution ψλ,μ,ν(T) when T ∈
{1 day, 2 days, 3 days, 4 days, 1 week, 2 weeks, 3 weeks, 1 month}. We stress the fact that this time is
expressed in microseconds, that is, in 10−6 seconds. The corresponding convergence radius is equal to
0.198036, which is beyond T. Namely, with the notation of Section 4, T < ϑRrmax

ψ and therefore ψλ,μ,ν(T) is
approximated via the fractional power series (25) truncated into sums from r � 1 to r � 250. Figure 3 confirms
that the power series representation is extremely fast, and the computational time is basically constant with
respect to small maturities T.

5.2. The Hybrid Algorithm at Work
We now test the performance of our hybrid method presented in Section 4 when applied to the option pricing
problem. We consider a book of European call options on S, in a Heston-like stochastic volatility framework,
where the volatility exhibits a rough behavior (the so-called fractional Heston model) as in El Euch and
Rosenbaum [8], with maturities ranging from one day to two years and strikes in the interval [80%; 120%] in
the moneyness. The model parameters are those specified in Section 5.1, that is, the same parameters
Table 4. Call option pricing with the hybrid and Adams methods. The parameters are as in El Euch and Rosenbaum [8].
Maturities range from one day to two years and strikes range 80% − 120% of the moneyness. The computational time (CT) is in
milliseconds (i.e., 10−3 s). For the hybrid method, we fix n � 128, whereas for the Adams method, the discretization step is
chosen to satisfy |σIMP(hybrid) − σIMP(Adams)| ≤ 10−2. When this is not possible for any discretization step, we put (∗) besides
the values, whereas (∗∗) are associated to prices that lead to arbitrage opportunities.

Strike

Price(CT)

Algorithm type One day One week One month Six months One year Two years

80% Hybrid 20(180) 20(154) 20.0005(410) 20.6112(672) 22.1366(553) 25.4301(667)
Adams 19.9988(108)∗∗ 20(108) 20.0005(108) 20.6095(16095) 22.1331(37768) 25.4258(244381)

85% Hybrid 15(170) 15(164) 15.0108(421) 16.2807(689) 18.3529(553) 22.2091(596)
Adams 15(107) 15(108) 15.0108(9282) 16.2783(16658) 18.3486(39557)∗ 22.2044(244056)

90% Hybrid 10(155) 10.0002(155) 10.1144(423) 12.3948(671) 14.9672(549) 19.2898(594)
Adams 9.9985(109)∗∗ 10.0002(109) 10.1141(9598) 12.3924(38252) 14.9623(38236) 19.2847(248059)

95% Hybrid 5.0003(156) 5.0491(156) 5.6723(410) 9.0636(676) 12.0059(557) 16.6676(594)
Adams 4.9967(112)∗∗ 5.0489(2178) 5.6712(2359) 9.0609(37826) 12.0006(38672) 16.6622(248779)

100% Hybrid 0.5012(154) 1.1347(156) 2.3896(416) 6.3497(672) 9.4737(548) 14.3319(596)
Adams 0.5071(108)∗ 1.1339(108) 2.3885(112) 6.3461(16076) 9.4683(38909) 14.3264(249641)

105% Hybrid 6.39E-05(159) 0.04113(125) 0.6809(416) 4.2550(666) 7.3563(551) 12.2676(601)
Adams 6.33E-04(121)∗ 0.04118(108) 0.6804(2141) 4.2516(16539) 7.3510(38256) 12.2621(258262)

110% Hybrid 2.37E-05(163) 9.22E-05(125) 0.1205(414) 2.7251(681) 5.6234(562) 10.4562(599)
Adams 2.06E-03(109)∗ 9.28E-05(71309)∗ 0.01205(2259) 2.7223(16670) 5.6195(73084) 10.4508(248696)

115% Hybrid 1.51E-05(155) 6.82E-09(155) 0.0124(410) 1.6680(683) 4.2343(582) 8.8773(593)
Adams 1.49E-03(107)∗ 8.85E-07(70685)∗ 0.0125(2194) 1.6658(16302) 4.2307(73086) 8.8720(248391)

120% Hybrid 1.14E-05(196) 1.80E-13(156) 7.32E-04(414) 0.9761(667) 3.1424(577) 7.5093(593)
Adams 1.08E-03(110)∗ 3.70E-7(108)∗ 7.37E-04(2316) 0.9674(16269) 3.1393(73184) 7.5042(245999)



Figure 3. (Color online) Computational time, in microseconds, required to obtain ψλ,μ,ν(T) varying as a function of T. Here
λ � 0.000547805;μ � 0.1(−u1 0.225411 − 1); ν � 1

2 (u21 − u1) with Re(u1) � 100,Jm(u1) � −2.1.
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calibrated by El Euch and Rosenbaum [8]. To obtain the prices, we use the Carr-Madan inversion technique,
namely the one presented in Carr and Maden [4, section 3], with a dampening factor of αCM � 1.1. In the
numerical inversion of the Fourier transform in Equation (2), we integrate with respect to the real part of the
frequency parameter u1. Here, we consider u1 varying as follows (the choice of 250 turns out to be a good
tradeoff between the stability of the results and the computational time):

Re u1( ) ∈ 0.1, 0.2, . . . , 249.9, 250{ } and Jm u1( ) � −2.1.
That is, we compute a Fourier transform 2,500 times. Notice that, in general, the maturities of the options can
go beyond the convergence radius of the power series representation. In other words, when computing
the triplet

Ψ T( ) � ψ T( ), I1 ψ
( )

T( ), I1−α ψ
( )

T( )( )
,

one can be forced to switch to the hybrid method to get the solution of the fractional Riccati, because
T > ϑRrmax

ψ . In this case, we set n � 128 (recall Step 2, Phase I), which turns out to be a value leading to stable
results, in the sense that, for larger values of n, the prices do not change.

In Table 4, we display the prices together with the computational times (in milliseconds) obtained by our
hybrid method for the entire book of options. A quick look at the Table 4 shows that our method is extremely
fast. In fact, all prices are computed in less than one second. Moreover, one can easily verify that using a larger
value for n (which here is set to n � 128) does not change the prices. Therefore, our hybrid method is also very
stable and can be used as the benchmark.

Now we compare the performance of our hybrid algorithm with the (only) other competitor present in the
literature, namely the fractional Adams method, which is a numerical discretization procedure described, for
example, in El Euch and Rosenbaum [8, section 5.1]. As for any discretization algorithm, also for the Adams
method, one should select the discretization step, and according to this choice, the corresponding price can be
different. Of course, the smaller the time step in the discretization procedure, the longer the pricing procedure
will take. Because we consider our hybrid method as the benchmark, we now look for the discretization step
for the Adams method that leads to prices that are close enough to ours, according to a given tolerance. Here,
the error is measured in terms of the difference of the corresponding implied volatilities associated to the
prices generated by the two methods. We fix, for example, a maximal difference of 1%. Notice that this
maximal error is very large, because for the calibration of the classic Heston model, one can typically reach an
average for the RESNORM (sum of the squares of the differences) around E−05 � 10−5.

First, let us focus our attention on the very-short-term maturities in Table 4, namely one day and one week.
It turns out that, apart from a couple of situations for one week, the Adams method is also very fast. However,
we notice that Adams prices can lead to some arbitrage opportunities. In fact, for example, for the maturity of
one day and strike 80%, the Adams method leads to a price smaller than the intrinsic value of the call (recall
that the interest rate here is set to be zero). We put (∗∗) in the table when this situation occurs. Also, one can check
that in many cases, it is not possible to find the discretization step for the Adams method to generate a price within
the tolerance. We put (∗) for the cases where the error is greater than the tolerance, regardless of the choice
of the discretization step (we pushed the discretization to 150 steps without observing any relevant change).
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The reason for this phenomenon is quite intuitive: If the maturity is very short, adding discretization steps in
the procedure does not necessarily produce different prices because the process has not enough time to move.
On the other hand, our hybrid method takes benefit of the fractional power series expansion that works
extremely well mostly for very short maturities. In conclusion, our method is very fast, stable, and accurate in
short maturities compared with the Adams method.

Now let us consider the other maturities to two years. Here, to get prices close to our benchmark, we are
forced to choose an ad hoc discretization grid for the Adams method, including a number of steps ranging
from 10 to 150, depending on the particular maturity and strike. As a consequence, the corresponding
computational time turns out to be much higher than ours, to the point that for two years, the computation of
prices for the Adams method require about four minutes with 150 discretization steps, whereas our hybrid
algorithm still takes less than one second. In conclusion, we can state that our hybrid algorithm dominates the
Adams method for all maturities.

We end this subsection by reproducing the analogue of El Euch and Rosenbaum [8, figure 5.2], namely the
term structure of the at-the-money skew, which is the derivative of the implied volatility with respect to the
log-strike for at-the-money calls. Figure 4 confirms the results in El Euch and Rosenbaum [8]: In particular, for
the rough Heston model, we see that the skew explodes for short maturities, whereas it remains quite flat for
the classic Heston model, which is well known to be unable to reproduce the slope of the skew for short-
maturity options.

Remark 10. Very recently, deep neural networks (DNNs)-based algorithms have been massively tested when
applied to finance to solve long-standing problems such as robust calibration and hedging of large portfolios (see
Bayer and Stemper [3], Horvath et al. [14], and Stone [20], and references therein). As soon as these algorithms are
up and running, they are flexible and fast. Nevertheless, any DNN requires a learning phase, which typically
takes a lot of time and needs the pricing technology to feed the network. Our methodology, in view of pricing, is
useful to speed up the learning phase. In this sense, our results should not be seen in competition with DNN
because, on the contrary, they are a useful and efficient ingredient to feed the DNN with. Therefore, our work is a
prerequisite for any DNN-based algorithm.

6. The Nonhomogeneous Fractional Riccati Equation
In this section, we consider the more general case where the fractional Riccati equation has a nonzero starting
point. The fractional Riccati ODE arising in finance and associated with the characteristic function of the log-
asset price is very special insofar it starts from zero. Recently, Abi Jaber et al. [1] extended the results of El
Euch and Rosenbaum [8] to the case where the volatility is a Volterra process, which includes the (classic and)
fractional Heston model for some particular choice of the kernel. Such extension leads to a fractional Riccati
ODE but with a general (nonzero) initial condition. This case is mathematically more challenging and requires
Figure 4. (Color online) At-the-money skew as a function of the maturity, ranging from one day to one year, for α � 1
(corresponding to the classic Heston model with H � 0, 5) and α � 0, 62 (rough Heston model with H � 0, 12). The other
parameters of the model are as in El Euch and Rosenbaum [8].
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additional care. Nevertheless, in this section, we prove that it is still possible to provide bounds for the
convergence domain of the corresponding power series expansion, at the additional cost of extending the
implementation of the algorithm to a doubly indexed series, in the spirit of Guennon et al. [12].

For the reader’s convenience, first we recall the general Riccati equation (see (11))

%u,v
λ,μ,ν

( )
≡ Dαψ � λψ2 + μψ + ν and I1−αψ 0( ) � u if α∈ 0, 1( ]

I1−αψ 0( ) � u, I2−αψ 0( ) � v if α∈ 1, 2( ],
{

where λ, μ, ν, and u, v are complex numbers. Our aim is to find a solution as a fractional power series as we did
in Section 3 in the case α ∈ (0, 1], u � 0, and α ∈ (1, 2], u � v � 0. This leads us to deal with the integral form (13)
of this equation. However, the solution will be in this more general setting a doubly index series based on the
fractional monomial functions tαk−�. Of course, we will again take advantage of the fact that for every α > 0 and
every r > −α,

Iα tr( ) � Γ r + 1( )
Γ r + α + 1( ) t

r+α, t ≥ 0.

We now state the result of this section, which represents the main mathematical contribution of the paper.

Theorem 2. Equation (%u,v
λ,μ,ν) admits a solution expandable on a nontrivial interval [0,Rψ), Rψ > 0, as follows:

ψ t( ) � ∑
�≥0

ψ� t( ) �
∑
�≥0

∑
k≥k �( )

ak,�tαk−�, t∈ 0,Rψ

( )
, (36)

where the coefficients ak,� ∈ C, and, for every � ≥ 0, k(�) � min{k ≥ 1 : ak,� �� 0} denotes the valuation of (ak,�)k≥1.
Moreover, the above doubly indexed series is normally convergent on any compact interval of (0,Rψ).

a. Case α∈ (12 , 1): we have k(�) � (2� − 1) ∨ 1 if ν, u �� 0, k(0) � +∞ if ν � 0, and k(�) � +∞ for � ≥ 1 if u � 0. In
particular, one always has k(�) ≥ (2� − 1) ∨ 1.

The coefficients ak,� are recursively defined as follows: a1,0 � ν
Γ(α+1), a1,1 � u

Γ(α), and, for every � ≥ 0 and every k ≥ k(�) ∨ 2,

ak,� � μak−1,� + λa∗2k−1,�
( )Γ α k − 1( ) − � + 1( )

Γ αk − � + 1( ) , (37)

where

a∗2k,� �
∑

k1+k2�k, ki≥k �i( )
�1+�2��, �i≥0,i�1,2

ak1,�1ak2,�2 . (38)

Note that a1,� � 0, � ≥ 2, and a∗21,� � 0, � ≥ 0.
b. Case α∈ (1, 2]: we have k(�) ≥ 1 + (� − 1)1{�≥3} with equality if ν, u, v �� 0. The coefficients ak,� still satisfy (37)

with a1,0 � ν
Γ(α+1), a1,1 � u

Γ(α), a1,2 � v
Γ(α−1) (and a1,� � 0, � ≥ 3).

The constructive proof of this result is divided into several steps and is provided in full details in Appendix C. In
particular, the proof of Theorem 2 is given in Appendix C.1 for the case α ∈ (1/2, 1) and in Appendix C.2 for
α ∈ (1, 2) and it exploits Proposition C.1 and Lemma C.1. A full numerical illustration of the general case is
beyond the scope of our paper. Here, we just mention that the computation of the solution through the doubly
index fractional power series representation turns out to be still extremely fast as in the previous single-index
case. In practice very few � layers are needed to compute ψ(t) for a standard accuracy, such as 10−3 or 10−4.

Also, a hybrid algorithm based on RR extrapolation can also be devised to allow for maturities longer than
the convergence radius of the above double index series. We skip the details for sake of brevity.

7. Conclusion
In this paper, motivated by recent advances in mathematical finance, we solved a family of fractional Riccati
differential equations, with constant (and possibly complex) coefficients, whose solution is the main ingredient
of the characteristic function of the log-spot price in the fractional Heston stochastic volatility model. We first
considered the case of a zero initial condition, and we then analyzed the case of a general starting value, which
is closely related to the theory of affine Volterra processes.

The solution to the fractional Riccati equation with a null initial condition takes the form of power series,
whose coefficients satisfy a convolution equation. We showed that this solution has a positive convergence
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domain, which is typically finite. To allow for maturities that are longer than the convergence domain of the
fractional power series representation, we provide a hybrid algorithm based on an RR extrapolation method
that is shown to be very powerful. Our theoretical results naturally suggest an efficient numerical procedure to
price vanilla options in the rough Heston model that is quite encouraging in terms of computational per-
formance compared with the usual benchmark, represented by the Adams method.

In the case of a non-null initial condition, the solution takes the form of a double indexed series, and,
working with additional technical care, we provided error bounds for its convergence domain.

Acknowledgments
The authors thank O. El Euch and M. Rosenbaum for useful discussions on the first part of the paper and E. Smaniotto
and G. Pegorer for valuable comments.

Appendix A. Toolbox: Riemann Sums, Convexity, and Kershaw’s Inequalities
A.1. Riemann Sums, Convexity
We will extensively need the following elementary lemma on Riemann sums.

Lemma A.1. Let f : (0, 1) → R+ be a function, nonincreasing on (0, 1/2] and symmetric, that is, such that f (1 − x) � f (x), x∈ (0, 1),
and hence convex. Assume that

∫ 1
0 f (u)du < +∞. Then, infx∈(0,1) f (x) � f (12) and

1 − 1
k

( )
f
1
2

( )
≤ 1
k

∑k−1
��1

f
�

k

( )
≤

∫ 1

0
f u( )du − 1 k even{ }

∫ 1/2+1/k

1/2
f u( )du − 1 k odd{ }

∫ k+1( )/2k

k−1( )/2k
f u( )du. (A.1)

In particular, it follows that, for every k ≥ 2,

1
2
f
1
2

( )
≤ 1
k

∑k−1
��1

f
�

k

( )
≤

∫ 1

0
f u( )du and lim

k

1
k

∑k−1
��1

f
�

k

( )
�

∫ 1

0
f u( )du

so that

sup
k≥1

1
k

∑k−1
��1

f
�

k

( )
�

∫ 1

0
f u( )du and min

k≥2
1
k

∑k−1
��1

f
�

k

( )
� 1
2
f
1
2

( )
. (A.2)

The lower bound is a straightforward consequence of the convexity of the function f because for every k ≥ 2,

1
k

∑k−1
��1

f
�

k

( )
� 1 − 1

k

( )
1

k − 1

∑k−1
��1

f
�

k

( )
≥ 1 − 1

k

( )
f

1
k − 1

k k − 1( )
2k

( )
� 1 − 1

k

( )
f
1
2

( )
≥ 1
2
f
1
2

( )
with equality if and only if k � 2. Let us consider now the upper bounds.

Case k even. We consider separately the half sums from 1 to k
2 and from k

2 + 1 to k − 1.
For � ∈ {1, . . . , k2}, f (�k) ≤ f (u) for u ∈ (�−1k , �k), whereas for � ∈ {1, . . . , k2 − 1}, f (�k) ≥ f (u) for u ∈ (�k , �+1k ). Therefore.

1
k

∑k
2

��1
f
�

k

( )
≤

∫ 1/2

0
f u( )du.

On the other hand, for the second half sum, if � ∈ {k2 + 1, . . . , k − 1}, f (�k) ≤ f (u) for u ∈ (�k , �+1k ), whereas for � ∈ {k2 +
1, . . . , k − 1}, f (�k) ≥ f (u) for u ∈ (�−1k , �k).

Therefore,

1
k

∑k−1
��k

2+1
f
�

k

( )
≤

∫ 1

1/2+1/k
f u( )du.

Summing up both sums yields even part of (A.1).
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Case k odd. One shows likewise that

1
k

∑k−1( )/2

��1
f
�

k

( )
≤

∫ 1/2−1/2k

0
f u( )du

for the first half sum, whereas

1
k

∑k−1
�� k+1( )/2

f
�

k

( )
≤

∫ 1

k+1( )/2k
f u( )du

for the second one. Summing up gives the odd part of (A.1).

A.2. Kershaw Inequalities
We also rely on these inequalities (see Kershaw [17]) controlling “ratios of close terms” of the gamma function. For x > 0,
and every s∈ (0, 1),

x + s
2

( )1−s
<
Γ x + 1( )
Γ x + s( ) < x − 1

2
+

̅̅̅̅̅̅̅
s + 1

4

√( )1−s
. (A.3)

For s � 1, this double inequality becomes an equality.

Appendix B. Proof of Theorem 1
B.1. Proof when α∈ (0, 1]
B.1.1. Lower Bound for the Radius by Upper Bound Propagation (Claim (a)) We first want to prove by induction the
following upper-bound of the coefficients ak, namely

∀ k ≥ 1, |ak | ≤ Ckα−1ρk (B.1)
for some C and ρ > 0 (note that α − 1∈ (−1, 0]). We assume the |a1| ≤ Cρ (with a1 � |ν|

Γ(α+1): this condition will be double-
checked later), and we want to propagate this inequality by induction. Assume that (B.1) holds for some k ≥ 1. Plugging
this bound in (19) yields

|ak+1| ≤ Γ αk + 1( )
Γ αk + α + 1( ) λ a∗k 2

⃒⃒⃒ ⃒⃒⃒
+

⃒⃒⃒
μ
⃒⃒⃒⃒⃒⃒
ak
⃒⃒⃒( )
. (B.2)

As a∗k 2 � ∑k−1
��1 a�ak−� (see (20)), we have

a∗k 2
⃒⃒⃒ ⃒⃒⃒

≤ C2ρk
∑k−1
��1

�α−1 k − �( )α−1� C2ρkk2α−2
∑k−1
��1

�

k

( )α−1
1 − �

k

( )α−1
.

Applying Inequality (40) from Lemma A.1 to the function fα defined by fα(x) � xα−1(1 − x)α−1, α∈ (0, 1], yields for
every k ≥ 1,

a∗k 2
⃒⃒⃒ ⃒⃒⃒

≤ C2ρkk2α−1
∫ 1

0
uα−1 1 − u( )α−1du � C2ρkk2α−1B α, α( ), (B.3)

where B(a, b) denotes the beta function (note that a∗21 � 0).
From the Kershaw Inequality (B.4), we obtain in particular that, for every x > 0 and every s∈ (0, 1),

Γ x + s( )
Γ x + 1( ) < x + s

2

( )s−1
. (B.4)

Now set x � α(k + 1) and s � 1 − α. We get

Γ αk + 1( )
Γ αk + α + 1( ) < α k + 1( ) + 1 − α

2

( )−α
� k + 1( )−αα−α 1 + 1 − α

2α k + 1( )
( )−α

< k + 1( )−αα−α

because (1 + 1−α
2α(k+1))−α < 1. Plugging successively this Inequality and (B.3) into (B.2) yields for every k ≥ 1,

ak+1| | ≤ Γ αk + 1( )
Γ αk + α + 1( ) λ| | a∗k 2

⃒⃒⃒ ⃒⃒⃒
+ μ

⃒⃒ ⃒⃒
ak| |

( )
< k + 1( )−αα−α λ| | a∗k 2

⃒⃒⃒ ⃒⃒⃒
+ μ

⃒⃒ ⃒⃒
ak| |

( )
≤ k + 1( )−αα−α |λ|C2ρkk2α−1B α, α( ) + C|μ|ρkkα−1

( )
≤ Cα−α k + 1( )−αρk+1 |λ|Ck2α−1B α, α( ) + |μ|kα−1

ρ
. (B.5)
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Having in mind that we want to get |ak+1| ≤ C(k + 1)α−1ρk+1, we rearrange the terms as follows:

|ak+1| ≤ C k + 1( )α−1ρk+1 k
k + 1

( )2α−1
α−α |λ|CB α, α( ) + |μ|k−α

ρ

≤ C k + 1( )α−1ρk+12 1−2α( )+α−α |λ|CB α, α( ) + |μ|
ρ

, (B.6)

where we used that ( k
k+1)2α−1 ≤ 2(1−2α)+ and we recall the notation x+ � max{x, 0}.

Finally, the propagation of Inequality (B.1) is satisfied for every k ≥ 1 by any couple (C, ρ) satisfying

|a1| � ν

Γ α + 1( )
⃒⃒⃒⃒ ⃒⃒⃒⃒

≤ Cρ and 2 1−2α( )+α−α |λ|CB α, α( ) + |μ|( ) ≤ ρ.

It is clear that that the lower ρ is, the higher our lower bound for the convergence radius of the series will be. Con-
sequently, we need to saturate both inequalities, which leads to the system

ρ � |ν|
Γ α + 1( )C and ρ � 2 1−2α( )+α−α |λ‖ν|

Γ α + 1( )ρB α, α( ) + |μ|
( )

,

or, equivalently, using both identities B(α, α) � Γ(α)2
Γ(2α) and Γ(α + 1) � αΓ(α),

C � |ν|
Γ α + 1( )ρ and 2− 1−2α( )+ααρ2 − |μ|ρ − |λ||ν|Γ α( )

αΓ 2α( ) � 0.

The positive solution ρ∗ � ρ∗(α, |λ|, μ, ν) of the above quadratic equation in ρ is given by

ρ∗ �
⃒⃒
μ
⃒⃒ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μ2 + 22− 1−2α( )+ αα−1Γ α( )
Γ 2α( ) |λ||ν|

√
21− 1−2α( )+αα

. (B.7)

Consequently, setting C∗ � |ν|
Γ(α+1)ρ∗ �

|ν|
αΓ(α)ρ∗, we finally find that

∀ k ≥ 1, |ak | ≤ C∗kα−1ρk∗ (B.8)
so that the convergence radius Rψ � lim infk |ak |− 1

αk of the function ψ satisfies

Rψλ,λ,ν ≥ ρ
−1
α∗ � 2

1
α− 1

α−2( )+α⃒⃒
μ
⃒⃒ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μ2 + 22− 1−2α( )+ αα−1Γ α( )
Γ 2α( ) |λ||ν|

√( )1
α

.

Remark B.1.
a. Note that, when λ �� 0, one deduces from (B.7)

ρ∗ ≥ 2 1−2α( )+α−α max
⃒⃒
μ
⃒⃒
, α

α−1
2 2−

1
2−α( )+ B α, α( )

Γ α( )
( )1

2|λ||ν|
( )

.

b. A slight improvement of the theoretical lower bound is possible by imposing the constraints |a1| ≤ Cρ and |a2| ≤ Cρ22α−1 and
using that k−α ≤ 2−α when k ≥ 2 in (B.6).

B.1.2. Upper Bound for the Radius via Lower Bound Propagation, λ, μ, ν∈ R+,(Claims (b), (c), and (d)). In this section, we
assume that the parameters λ, μ, and ν are real numbers. We will prove a comparison result between the case μ ≥ 0
and μ � 0.

The case of μ ≤ 0 can be reduced to the case μ ≥ 0 as shown in the proof of Proposition B.1 below: We will see that the
triplets (λ, μ, ν) (μ ≥ 0), and (λ,−μ, ν) lead to solutions as fractional power series having the same convergence radius.

Proposition B.1. Let α > 0. Let (ak)k≥0 and (a0k)k≥0 be solutions to (Aλ,μ,ν) and (Aλ,0,ν), respectively, where λ,μ, ν are real numbers.
a. For every k ≥ 1, a02k � 0 and (a0)∗22k−1 � 0. Moreover, the sequence defined for every k ≥ 1 by bk � a02k−1 is solution of the recur-

sive equation

b1 � ν

Γ α + 1( ) and bk+1 � λ
Γ 2αk + 1( )

Γ 2k + 1( )α + 1( ) b
∗2
k+1, k ≥ 1, (B.9)

where the squared convolution is still defined by (20) (the equation is consistent because b∗2k+1 only involves terms b�, � ≤ k).
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b. Assume α∈ (0, 2] and λ, μ, ν ≥ 0. Then for every k ≥ 1, ak ≥ a0k ≥ 0, so that Rψλ,μ,ν ≤ Rψλ,0,ν .
c. Assume α∈ (0, 2]. If λ, ν ≥ 0 and μ ≤ 0, then (with obvious notations) a(λ,μ,ν)k � (−1)ka(λ,−μ,ν)k , k ≥ 1 so that Rψλ,μ,ν � Rψλ,−μ,ν .

Moreover if the non-negative sequence a(λ,−μ,ν)k decreases for large enough k, then the expansion of ψλ,μ,ν converges at Rψλ,−μ,ν .
Note that claim (c ) is that of Theorem 1 and claim (a) is claim (d).

Proof.
a. We proceed again by induction on k. If k � 1, (a0)∗21 � 0 and a02 � νμ

Γ(2α+1)
Γ(α+1)
Γ(2α+1) � 0. Assume a02� � 0, 1 ≤ � ≤ k − 1, then

a0
( )∗2

2k+1
� ∑2k

��1
a0�a

0
2k+1−�.

It is clear that either � or 2k + 1 − � is even. Consequently, a�a2k+1−� � 0 so that (a0)∗22k+1 � 0 and

a02 k+1( ) � a02k+1+1 � λ
Γ α 2k + 1( ) + 1( )
Γ 2α k + 1( ) + 1( ) a0

( )∗2
2k+1� 0.

Let us look first at the convolution at an odd even index. As a0� � 0 for even index �, one has

a0
( )∗2

2k�
∑2k−1
��1

a0�a
0
2k−� �

∑k
r�1

a02r−1a
0
2 k−r+1( )−1 �

∑k
r�1

brbk+1−r � b∗2k+1.

Plugging this in (Aλ,0,ν) at index 2k + 1 yields (B.9).
Notice that, by induction, ak ≥ 0 for every k ≥ 1 if λ, μ, and ν ≥ 0 (in particular, a0k ≥ 0 as well).
b. We proceed by induction on k. It holds as an equality for k � 1: a1 � a01 � ν

Γ(α+1). Assume a� ≥ a0� ≥ 0, 1 ≤ � ≤ k. Then,
using (20),

a∗2k � ∑k−1
��1

a�ak−� ≥
∑k−1
��1

a0�a
0
k−� � a0

( )∗2
k ,

so that, using that μ ≥ 0,

ak+1 � Γ αk + 1( )
Γ α k + 1( ) + 1( ) λa∗2k + μak

( ) ≥ λ
Γ αk + 1( )

Γ α k + 1( ) + 1( ) a
∗2
k ≥ λ

Γ αk + 1( )
Γ α k + 1( ) + 1( ) a0

( )∗2
k � a0k+1.

c. Let ãk � (−1)k−1ak. It is clear that

ã∗2k � ∑k−1
��1

−1( )�−1a� −1( )k−�−1ak−� � −1( )ka∗2k

(also obvious by setting ρ � −1 and replacing α − 1 by 0 in former computations). Consequently, ã1 � a1 � ν
Γ(α+1) and

ãk+1 � Γ αk + 1( )
Γ α k + 1( ) + 1( ) −1( )k λa∗2k + μak

( ) � Γ αk + 1( )
Γ α k + 1( ) + 1( ) λã∗2k − μãk

( )
,

so that (ãk)k≥1 is the solution to (Aλ,−μ,ν). In particular, if we set formally

ψ̃λ,μ,ν u( ) � ∑
k≥1

akuk,

then

ψλ,μ,ν t( ) � ψ̃λ,μ,ν tα( ) and ψλ,−μ,ν t( ) � −ψ̃λ,μ,ν −tα( )
so that both expansions of ψλ,μ,ν and ψλ,−μ,ν have the same convergence radius Rλ,μ,ν � Rλ,−μ,ν. See also the comments fur-
ther on. □

Remark B.2. Note that when λ, μ, ν > 0, the coefficients ak > 0 so that limt→Rλ,μ,ν (t) � +∞. As a consequence, the definition
domain of the solution ψλ,μ,ν of the Riccati equation on the positive real line is [0,Rλ,μ,ν).

By contrast, the series with terms (−1)kRk
λ,μ,νak is most likely alternate (i.e., the absolute value of the generic term

decreases toward 0 for k large enough). This implies that the series will still converge at t � Rψλ,0,ν , that is,

lim
t→Rλ,−μ,ν t( )

ψλ,−μ,ν t( ) � ∑
k≥1

−1( )k−1Rk
λ,−μ,νak ∈ R.
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This explains the highly unstable numerical behavior observed near the explosion time compared with the case where all
ak > 0, but also that the solution of the Riccati equation may be defined beyond Rψλ,0,ν , as already mentioned in Section 1.

Now, we are in position to prove claim (b) (lower bound of the radius). In the same manner as we proceed for the upper
bound, we aim this time at propagating a lower bound for the nonzero subsequence of (a0k)k≥0, that is, the sequence
(bk)k≥1, namely

bk ≥ c ρkkα−1, k ≥ 1.

Keep in mind that the function fα(x) � (x(1 − x))α−1 is convex because 0 < α ≤ 1,

b∗2k+1 �
∑k
��1

b�bk+1−� ≥ c2ρk+1 ∑k
��1

�α−1 k + 1 − �( )α−1� c2ρk+1 k + 1( )2 α−1( )∑k
��1

f
�

k + 1

( )
≥ c2ρk+1 k + 1( )2 α−1( )k fα

∑
1≤�≤k

�

k k + 1( )

( )

� c2ρk+1 k + 1( )2α−1 k
k + 1

fα
1
2

( )
� c2ρk+1 k + 1( )2α−1 1 + 1

k

( )−1
2−2 α−1( ).

Using Kershaw’s inequality with x � 2αk and s � α:

Γ 2αk + 1( )
Γ 2k + 1( )α + 1( ) �

1
α 2k + 1( )

Γ 2αk + 1( )
Γ 2αk + α( ) ≥

1
α 2k + 1( ) 2αk + α

2

( )1−α
� 2αk( )−α 1 + 1

2k

( )−1
1 + 1

4k

( )1−α
� 2α( )−α k + 1( )−α 1 + 1

k

( )α
1 + 1

2k

( )−1
1 + 1

4k

( )1−α
.

Plugging the above two lower bounds for b∗2k+1 and Γ(2αk+1)
Γ((2k+1)α+1) into (B.9) yields

bk+1 ≥ λc2ρk+1 k + 1( )α−1 2α( )−α2−2 α−1( )̃bk,

where

b̃k � 1 + 1
k

( )α−1
1 + 1

2k

( )−1
1 + 1

4k

( )1−α
, k ≥ 1.

Consequently, the propagation holds if

b1 � ν

Γ α + 1( ) ≥ cρ and 2α( )−α2−2 α−1( )λ c b̃k ≥ 1, k ≥ 1.

If we saturate the left inequality by setting c � ν
ραΓ(α), then the right condition boils down to ρ ≤ 22−3α α−(1+α)

Γ(α) λν b̃k, k ≥ 1. One
checks that mink≥1 b̃k � b̃1 �2

3(58)1−α � 23α−2 51−α
3 , which yields

ρ∗ � 51−α

3
α−α

Γ α + 1( )λν and c∗ � ν

ρ∗αΓ α( ) .

Now,

R−1
ψλ,0,ν

� lim sup
k

ak| | 1αk ≥ lim sup
k

a0k
⃒⃒ ⃒⃒ 1

αk � lim sup
k

a02k+1
⃒⃒ ⃒⃒ 1

2k+1( )α since a02k � 0, k ≥ 0,

� lim sup
k

bk| | 1
2k+1( )α � lim sup

k
bk| |1k

( ) 1
2α≥ lim sup

k
c∗kα−1 ρ∗( )k( )1

k

( ) 1
2α� ρ∗( ) 1

2α,

which finally leads to the announced upper bound

Rψλ,μ,ν ≤ Rψλ,0,ν ≤ 3
51−α

( ) 1
2α α

1
2+ 1

2αΓ α( ) 1
2α

λν( ) 1
2α

.
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Remark B.3. From the upper bound result, we know that

Rψλ,0,ν ≥ α
1
2+ 1

2αΓ 2α( ) 1
2α

2
1
2α−1( )+ Γ α( )|λ||ν|( ) 1

2α

.

In particular, we established that, if λ and ν > 0, there exist real constants 0 < c1(α) < c2(α), only depending on α, such that

c1 α( )
λν( ) 1

2α
≤ Rψλ,0,ν ≤ c2 α( )

λν( ) 1
2α
,

with c1(α) � α
1
2+ 1

2αΓ(2α) 12α
2(

1
2α−1)+Γ(α) 12α

and c2(α) � ( 3
51−α)

1
2αα

1
2+ 1

2αΓ(α) 1
2α.

B.2. Proof when α∈ (1, 2]
B.2.1. Upper Bound of the Radius by Lower Bound Propagation (Claim (a)). We start from the same the equation (Eλ,μ,ν)
(see (19)). If α∈ (1, 2], then we may write

Γ αk + 1( )
Γ αk + α + 1( ) �

Γ αk + 1( )
Γ α k + 1( )( )

1
α k + 1( ) .

By Kershaw’s inequality, we have, by setting x � α(k + 1) − 1 and s � 2 − α∈ [0, 1),
Γ αk + 1( )
Γ α k + 1( )( ) ≤ α k + 1( ) − α

2

( )1−α� α k + 1/2( )( )1−α,

so that

Γ αk + 1( )
Γ αk + α + 1( ) ≤

1
α k( )α

k
k + 1

2k
2k + 1

( )α−1
≤ 1

α k( )α ,

because (α − 1) ≥ 0. Now, using the concavity of the function f (x) � xα−1(1 − x)α−1 over [0, 1] because α ≥ 1, we derive by
Jensen’s inequality that

∑k−1
��1

�α−1 k − �( )α−1 � k2 α−1( ) ∑k−1
��1

fα
�

k

( )
≤ k2 α−1( ) k − 1( )fα 1

k − 1

∑k−1
��1

�

k

( )

� k2α−1 1 − 1
k

( )
fα 1/2( ) � k2α−1 1 − 1

k

( )
2−2 α−1( )

≤ k2α−12−2 α−1( ).

Consequently, assuming that a� ≤ Cρ��α−1 for every � � 1, . . . , k, we derive that

|ak+1| ≤ Cρkα−α |λ|Ckα−12−2 α−1( ) +
⃒⃒
μ
⃒⃒

k

[ ]
� Cρk+1kα−1

α−α

ρ
|λ|C2−2 α−1( ) +

⃒⃒
μ
⃒⃒

kα

[ ]
≤ Cρk+1 k + 1( )α−1α

−α

ρ
|λ|C2−2 α−1( ) + ⃒⃒

μ
⃒⃒[ ]
,

where we used that α and α − 1 ≥ 0. Hence, the propagation of the upper bound holds if and only if

|ν|
Γ α + 1( ) ≤ Cρ and |λ|C2−2 α−1( ) + ⃒⃒

μ
⃒⃒ ≤ ααρ.

Following the lines of the case α∈ (0, 1], we derive that the propagation does hold when

ρ � ρ∗ �
|μ| +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2 + 22 2−α( )αα−1 |λ‖ν|

Γ α( )
√

2αα
and C � C∗ � |ν|

Γ α + 1( )ρ∗ , (B.10)

so that the convergence radius of ψ satisfies Rψ ≥ (ρ∗)−1
α.

Remark B.4. It is the same formula as (B.7) except for the term 22(2−α), which replaces 4B(α, α) beause 22(2−α) �
4 · 22(1−α) � 4f (1/2). This is because of the inversion of the convexity of the function fα when α switches from (0, 1] to [1, 2).
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B.2.2. Upper Bound of the Radius by Lower Bound Propagation (Claim (b)). As a preliminary task, we note that the
function fα(x) � (x(1 − x))α−1 defined on [0, 1] is strictly concave when α ≥ 1, is symmetric with respect to 1

2 and attains its
maximum at 1/2. Hence, f̃α(x) � fα(1/2) − fα(x) satisfies the assumptions of Lemma A.1, so that

1
k

∑k−1
��1

f̃α
�

k

( )
≥

∫ 1

0
f̃α u( )du,

which finally yields, after easy manipulations, that, for every k ≥ 2,

1
k

∑k−1
��1

fα
�

k

( )
≥ B̃ α( ) :�

∫ 1

0
fα u( )du − 1

2
fα

1
2

( )
� B α, α( ) − 21−2α > 0. (B.11)

Notice that the positivity of B̃(α) simply follows from the strict concavity of fα.
We assume that λ, ν > 0, μ ≥ 0 and that, for � � 1, . . . , k, ak ≥ cρkkα−1 for some real constant c > 0.
As in the case α∈ (12 , 1], we will focus on the sequence (bk) because Lemma A.1 still applies.
As for the factor Γ(2αk+1)

Γ(α(2k+1)+1), we may proceed as follows, still using Kershaw’s inequality, this time with x � 2αk
and s � α − 1∈ [0, 1]:

Γ 2αk + 1( )
Γ α 2k + 1( ) + 1( ) �

1
α 2k + 1( ) α 2k + 1( ) − 1( )

Γ 2αk + 1( )
Γ α 2k + 1( ) − 1( )

≥ 1
α 2k + 1( ) α 2k + 1( ) − 1( ) 2αk + α − 1

2

( )2−α
≥ 2α( )−α

kα
2k

2k + 1
2αk

2αk + α − 1
1 + α − 1

4αk

( )2−α
� 2α( )−α k + 1( )−α b̃k

with

b̃k � 1 + 1
k

( )α
1 + 1

2k

( )−1
1 + α − 1

2αk

( )−1
1 + α − 1

4αk

( )2−α
, k ≥ 1.

One checks that this sequence decreases toward 1, so that infk≥1 b̃k ≥ 1. Following the lines of the case α∈ (0, 1] yields

bk+1 ≥ c2λ 2α( )−αB̃ α( )ρk+1 k + 1( )α−1, k ≥ 0,

whereas b1 � ν

Γ(α + 1). Hence, the propagation of the lower bound is satisfied if

ν

Γ α + 1( ) ≥ cρ and cλ 2α( )−αB̃ α( ) ≥ 1.

Finally, the lowest solution ρ to this system is ρ∗ � λν (2α)−αB̃(α)
Γ(α+1) , corresponding to C∗ � (2α)α

λB̃(α).

Appendix C. Proof of Theorem 2
We now focus on the two separate cases on the next two subsections.

C.1. Proof of Theorem 2(a) (Case α∈ (12 , 1))
Step 1. Induction Formula and Propagation Principle.
Let ψ be formally defined by (36) and let k(�) be the valuation of the sequences a.�.
The induction Equation (37) is obvious by identification. Note that (ak,0)k≥1 satisfies the recursion (19) of the case u � 0, so

that k(0) � +∞ if ν � 0, and k(0) � 1 otherwise. The main point is to determine the valuation k(�) when ν �� 0.
We start with the fact that k(0) � 1 (corresponding to the expansion when u � 0) and k(1) � 1 because of the presence of

the fractional monomial u
Γ(α) t

α−1.
Let � ≥ 1. A term tαk−� comes in (36) for the α fractional integration of a term t(k−1)α−�, which itself comes either directly

from the expansion at the same level � of μψ or from a product tαk1−�1 · tαk2−�2 with �1 + �2 � � and k1 + k2 � k − 1 induced by
the convolution term. Hence, k(0) � 1 and, for every � ≥ 1,

k �( ) � min min
�1+�2��

k �1( ) + k �2( )[ ], k � − 1( )
[ ]

+ 1.

It is clear that this minimum cannot be attained at �1 or �2 � 0, because it leads to a nonsense. Then we can check that
the formula

k �( ) � 2� − 1, � ≥ 1,
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is solution to the above minimization problem. Finally, k(�) � (2� − 1) ∨ 1, � ≥ 0. This justifies the definition of (36) and the
double index discrete convolution (37).

To show the existence of a positive convergence radius Rψ shared by all the fractional series at all the levels, we will
prove that the coefficients ak,� satisfy the following upper bound for every level � and every k ≥ k(�):

|ak,� | ≤ Cθ�ρk k − k �( ) + 1( )α2−1 � ∨ 1( )α2−1, k ≥ k �( ), � ≥ 0 (C.1)
(with k(�) � (2� − 1) ∨ 1). The method of proof consists in propagating this bound by a nested induction on the index k and
through the levels �.

Step 2. Propagation of the Initial Value across the Levels � ≥ 0.
Following (C.1), we want to propagate by induction the bound

|ak �( ),� | ≤ Cρk �( )θ� � ∨ 1( )α2−1, � ≥ 0, (C.2)
keeping in mind that k(�) � (2� − 1) ∨ 1, a1,0 � ν

Γ(α+1), and a1,1 � u
Γ(α). The levels � � 0, 1 yield direct conditions to be used later.

Let � ≥ 2.
Applying the induction formula (37) with k � k(�) � 2� − 1, we obtain

a2�−1,� � μ a2 �−1( ),� + λa∗22 �−1( ),�
( ) Γ 2α − 1( ) � − 1( )( )

Γ 2α − 1( ) � − 1( ) + α( ) .

First note that a2(�−1),� � 0 because 2(� − 1) ≤ 2� − 1 and � ≥ 2. Moreover,

a∗22 �−1( ),� � ã∗22 �−1( ),� �
∑

k1+k2�2 �−1( )�1+�2��ki≥2�i−1, �i≥1
ak1 ,�1ak2 ,�2 �

∑�−1
�′�1

a2�′−1,�′a2 �−�′( )−1,�−�′ ,

so that we get the following induction formula for the starting values a2�−1,� and � ≥ 1:

a2�−1,� � λ
∑�−1
�′�1

a2�′−1,�′a2 �−�′( )−1,�−�′
( )

Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( ) � − 1( ) + α( ) , � ≥ 2, a1,1 � u

Γ α( ) .

Let � ≥ 2. Assume that (C.2) is satisfied by ak(�′),�′ for every lower level �′ ∈ {0, 1, . . . , � − 1}. Then

|a2�−1,� | ≤ λ
∑�−1
�′�1

C2ρ2�′−1θ�′ �′( )α2−1 ρ2 �−�′( )−1θ�−�′ � − �′( )α2−1
[ ]

Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( ) � − 1( ) + α( )

≤ λC2ρ2 �−1( )θ�
∑�−1
�′�1

�′( )α2−1 � − �′( )α2−1
[ ]

Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( ) � − 1( ) + α( )

≤ Cρ2�−1θ� λC
ρ

B
α

2
,
α

2

( )
�α−1

Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( ) � − 1( ) + α( ) .

It follows from Kershaw’s Inequality (B.4), applied with x � (2α − 1)(� − 1) + α and s � 1 − α, and the elementary identity
Γ(z + 1) � zΓ(z) that

Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( ) � − 1( ) + α( ) �

2α − 1( ) � − 1( ) + α

2α − 1( ) � − 1( )
Γ 2α − 1( ) � − 1( ) + 1( )

Γ 2α − 1( ) � − 1( ) + α + 1( )
≤ 1 + α

2α − 1( ) � − 1( )
( )

2α − 1( ) � − 1( ) + α + 1 − α

2

( )−α
� �−α 2α − 1( )−α 1 + α

2α − 1( ) � − 1( )
( )

1 + 3 1 − α( )
2 2α − 1( )�

( )−α
.

Hence,

|a2�−1,� | ≤ Cρ2�−1θ��
α
2−1 λC

ρ
κ 1( )
α B

α

2
,
α

2

( )
(C.3)

where κ 1( )
α � 2α − 1( )−αsup

�≥2
1 + α

2α − 1( ) � − 1( )
( )

1 + 3 1 − α( )
2 2α − 1( )�

( )−α
�−

α
2

[ ]
� 1 + α

2α − 1

( )
2−

α
2 2α − 1( )−α 1 + 3 1 − α( )

4 2α − 1( )
( )−α
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because one easily checks (e.g., with the use of Mathematica) that the maximum is achieved at � � 2. The condition on ρ
and θ for propagation hence reads

|ν|
Γ α + 1( ) ≤ Cρ,

|u|
Γ α( ) ≤ Cρθ and

λC
ρ

κ 1( )
α B

α

2
,
α

2

( )
≤ 1, (C.4)

where the first two inequalities come from the initial values at levels � � 0, 1 and the third one ensures the propagation of
the upper-bound in (C.3). These three inequalities are in particular satisfied if

λ|u|
ρ2θΓ α( )κ

1( )
α B

α

2
,
α

2

( )
≤ 1 and C � C0

ρ
,

where

C0 � C0 α, θ( ) � |ν|
Γ α + 1( ) ∨

|u|
θΓ α( )

[ ]
, (C.5)

so that

ρ ≥ ρ1 � ρ1 θ( ) �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ|u|B α

2 ,
α
2

( )
κ 1( )
α

θΓ α( )

√
and C ≥ |u|

Γ α( )ρθ . (C.6)

Step 3. Propagation through a Level � ≥ 0.
Let k ≥ k(�) + 1.
Assume that the above bound holds for every couple (k′, �′) such that level �′ < � and k′ ≥ 2�′ −1 or �′ � �

and 2� − 1 ≤ k′ ≤ k − 1:⃒⃒⃒
a∗2k−1,�

⃒⃒⃒
≤ C2

∑
k1+k2�k−1�1+�2��ki≥k �i( ), �i≥0

⃒⃒⃒
ak1 ,�1

⃒⃒⃒⃒⃒⃒
ak2 ,�2

⃒⃒⃒
� C2θ�ρk−1 ∑

�1+�2���i≥0
�1 ∨ 1( ) �2 ∨ 1( )( )α2−1 ∑

k1+k2�k−1ki≥k �i( )
k1 − k �1( ) + 1( )α2−1 k2 − k �2( ) + 1( )α2−1

� C2θ�ρk−1 ∑
�1+�2���i≥0

�1 ∨ 1( ) �2 ∨ 1( )( )α2−1 ∑
k1+k2�k− k �1( )+k �2( )( )+1ki≥1

k
α
2−1
1 k

α
2−1
2

≤ C2θ�ρk−1 ∑
�1+�2���i≥0

�1 ∨ 1( ) �2 ∨ 1( )( )α2−1B α

2
,
α

2

( )
k − k �1( ) + k �2( )( ) + 1( )2 α

2−1( )+1

,

owing (twice) to Lemma A.1(a) because α/2 − 1 < 0. Now, as k(�1) + k(�2) ≥ k(�) by defintion of the valuation, we de-
duce that

k − k �1( ) + k �2( )( ) + 2( )2 α
2−1( )+1≤ k − k �( ) + 1( )2 α

2−1( )+1≤ k − 1 − k �( ) + 1( )2 α
2−1( ),

so that ⃒⃒⃒
a∗2k−1,�

⃒⃒⃒
≤ C2θ�ρk−1B

α

2
,
α

2

( )
k − 1 − k �( ) + 1( )2 α

2−1( )+1 ∑
�1+�2���i≥0

�1 ∨ 1( ) �2 ∨ 1( )( )α2−1.

Now note that, if � ≥ 1,

∑
�1+�2���i≥0

�1 ∨ 1( )α2−1 �2 ∨ 1( )α2−1≤ �
α
2−1 + ∑�−1

�1�1
�
α
2−1
1 � − �1( )α2−1≤ �

α
2−1 + B

α

2
,
α

2

( )
�α−1

owing to Lemma A.1(a).
If � � 0,

∑
�1+�2���i≥0(�1 ∨ 1)α2−1(�2 ∨ 1)α2−1 � 1 so that the above right inequality still holds by replacing � by � ∨ 1. Now,

combining these inequalities yields

⃒⃒⃒
a∗2k−1,�

⃒⃒⃒
≤ C2θ�ρk−1B

α

2
,
α

2

( )
k − k �( ) + 1( )α−1 �

α
2−1 + B

α

2
,
α

2

( )
�α−1

( )
.

As for the ratio of gamma functions, one has, using Γ(x + 1) � xΓ(x) and Kershaw’s Inequality (B.4):

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) � αk − � + 1

αk − � + 1 − α

Γ αk − � + 2 − α( )
Γ αk − � + 2( )

≤ αk − � + 1
αk − � + 1 − α

αk − � + 1 + 1 − α

2

( )−α
.
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For every � ≥ 1 and k ≥ k(�) + 1 ≥ 2�,

αk − � + 1
αk − � + 1 − α

� 1 + α

αk − � + 1 − α
≤ 1 + α

2α − 1( )� + 1 − α
≤ 2.

Now, we note that

αk − � + 1 + 1 − α

2
� α k − 2 � − 1( )( ) + 2α − 1( ) � − 1( ) + 1 − α

2
.

Combining the above inequality with this identity and the elementary inequality between non-negative real numbers

a + b( )−α≤ 2ab( )−α
2 , a, b ≥ 0, (C.7)

we obtain (once noted that 2(� − 1) � k(�) − 1)

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) ≤ α

3α − 1
2α 2α − 1( )( )−α

2⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
�:κ 1( )

α

k − k �( ) + 1( )−α
2 � − 1 + 1 − α

2 2α − 1( )
( )−α

2

.

Now, still using that � ≥ 1,

� − 1 + 1 − α

2 2α − 1( )
( )−α

2� �−
α
2

�

� − 1 + 1−α
2 2α−1( )

( )α
2

≤ 2 2α − 1( )
1 − α

∨ 1
( )α

2

�−
α
2 .

However, if � � α � 1, this bound is infinite. Coming back to the original ratio yields, for every k ≥ k(1) + 1 � 2,

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) � Γ k − 1( )

Γ k( ) � 1
k − 1

�
̅̅
k

√
k − 1

k−
1
2 ≤ ̅̅

2
√

k−
1
2.

If � � 0, Kershaw’s Inequality (B.4) yields

Γ α k − 1( ) + 1( )
Γ αk + 1( ) ≤ αk + 1 − α

2

( )−α
.

This implies,

Γ α k − 1( ) + 1( )
Γ αk + 1( ) ≤ α

̅̅
k

√ + 1 − α

2

( )−α
≤ α−αk−

α
2 � α−α k − k 0( ) + 1( )−α

2 0 ∨ 1( )−α
2 .

Finally, collecting the above ienqualities, we obtained that, for every � ≥ 0 and every k ≥ k(�) + 1,

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) ≤ κ 2( )

α k − k �( ) + 1( )−α
2�−

α
2 ,

with κ(2)
α � α

3α−1 (2α(2α − 1))−α
2[(2(2α−1)1−α ∨ 1)α2 1{α��1} +

̅̅
2

√
1{α�1}].

Collecting all these partial results and plugging them in (38) yields

|ak,� | ≤ Cθ�ρk k − k �( ) + 1( )α2−1�α
2−1 κ

2( )
α

ρ
|λ|CB α

2
,
α

2

( )2 + |λ|CB α

2
,
α

2

( )
+ 21−

α
2 |μ|

( )
,

where we used �−α
2 ≤ 1 and ( k−k(�)

k−k(�)+1)
α
2−1 ≤ 21−α

2 .
Consequently, propagation inside a level boils down to

κ 2( )
α |λ|CB α

2
,
α

2

( )
B

α

2
,
α

2

( )
+ 1

[ ]
+ 21−

α
2 |μ|

( )
≤ ρ. (C.8)

We combine now this constraint on ρ with those on C and ρ coming the propagation across initial values, that is, (C.6),
C � C0(α,θ)

ρ , where C0(α, θ) is given by (C.5) and (C.6). The constraint (C.8) reads

ρ2 − 21−
α
2κ 2( )

α |μ|ρ − κ 2( )
α C0 α, θ( )B̄ α/2( )|λ| ≥ 0, (C.9)

where

B̄ α/2( ) � B
α

2
,
α

2

( )
B

α

2
,
α

2

( )
+ 1

[ ]
. (C.10)
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Then all the constraints are fulfilled by parameters (ρ,C) satisfying

ρ ≥ ρ∗ α, θ( ) � ρ2 θ( ) ∨ ρ1 θ( ) and C � C0 α, θ( )
ρ

,

where ρ1(θ) is given by (C.6), and

ρ2 θ( ) � 2−
α
2κ 2( )

α |μ| +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|μ|2 + 2α−2|λ|C0 α, θ( )B̄ α/2( )

κ 2( )
α

√( )
is the positive solution of the equation associated to Inequation (C.9). In what follows, we consider the admissible pair
(ρ,C) � (ρ∗(α, θ), C0(α,θ)

ρ∗(α,θ)). We derive that the convergence radii Rψ�
of the functions ψ� all satisfy

Rψ�
≥ ρ∗ α, θ( )−1

α.

Now we have to ensure the summability of the functions ψ�. It suffices to consider the levels � ≥ 1, so that k(�) � 2� − 1. Let
t∈ I∗ � [0, ρ−1

α∗ ), where ρ∗ � ρ∗(α, θ). Elementary computations using the upper bound (C.1) for the coefficients ak,� and a
change of index k − 2(� − 1) → k show that

|ψ� t( )| ≤ C∗θ��
α
2−1ρ2 �−1( )∗ t 2α−1( )�−2αψ̃ t( ),

where ψ̃(t) � ∑
k≥1 ρk∗kα

2−1tαk < +∞ does not depend neither on � nor on θ and is uniformly bounded on any compact interval
of I∗.

To ensure the summability of the functions ψ� for every t∈ [0, ρ−1
α), we note that∑

�≥1
θ��

α
2−1ρ2 �−1( )∗ t 2α−1( )�−2α < t−2α

∑
�≥1

θ��
α
2−1ρ2 �−1( )∗ ρ

− 2α−1( )�−1
α∗ � t−2αρ−2−1

α∗
∑
�≥1

θρ
1
α∗

( )�
�
α
2−1.

Because ρ∗(α, θ) � O(θ−1
2) as θ → 0, it is clear that limθ→0 θρ∗(α, θ) � 0, so there exists θ > 0 such that 0 < θρ∗(α, θ) < 1.

Hence

θ∗ � min θ : θρ∗ α, θ( ) ≥ 1
{ }

< +∞ and θ∗ρ∗ α, θ∗( ) � 1,

owing to the continuity of θ �→ θρ∗(α, θ). Because ρ∗(α, θ) is nonincreasing in θ, θ∗ yields the highest admissible value for
ρ∗(α, θ) so that

Rψ ≥ ρ∗ α, θ∗( )−1
α,

in the sense that the doubly indexed series (36) that defines the function ψ is normally converging on any compact interval
of (0,Rψ).

The following proposition establishes a semiclosed form for the starting values ak(�),� � a2�−1,� at each level � ≥ 1.

Proposition C.1. (Closed form for the starting values) For every � ≥ 1,

a2�−1,� � λ�−1 u
Γ α( )

( )�
c�,

with c1 � 1 and for � ≥ 2,

c� � Γ 2α − 1( ) � − 1( )( )
Γ 2α − 1( )� + 1 − α( )

∑�−1
j�1

cjc�−j. (C.11)

We prove the identity by induction: For � � 1, it is obvious. Assume now it holds for � ≥ 1. Then

a2 �+1( )−1,�+1 � λa∗22�,�+1
Γ � 2α − 1( )( )

Γ � + 1( ) 2α − 1( ) + 1 − α( ) ,

because a2�,�+1 � 0 (keep in mind that 2� < k(� + 1) � 2� + 1). Now, we rely on (38). First note that ki(�i) � 2�i − 1, i � 1, 2 if
both �i ≥ 1. Hence ki ≥ ki(�i) implies k1 + k2 ≥ 2(�1 + �2) − 1 � 2� + 1 and consequently ki � 2�i − 1, i � 1, 2. If �1 � 0, �2 � � + 1
so that k2 ≥ k2(�2) � 2(� + 1) − 1, which implies k1 � 0. Because a0,0 is always 0 by construction, we finally obtain

a∗22�,�+1 �
∑�
j�1

a2j−1,ja2 �+1−j( )−1,�+1−j � λ�−1 u
Γ α( )

( )�+1∑�
j�1

cjc�+1−j.
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Therefore,

a2 �+1( )−1,�+1 � λ� u
Γ α( )

( )�+1
c�+1,

where c�+1 is given by (C.11) (at level � + 1). The conclusion follows by induction.

C.2. Proof of Claim (b) of Theorem 2 (Case α∈ (1, 2])
We still search for a function of the form (36), more precisely

ψ t( ) � ∑
�≥0

ψ� t( ) � ∑
�≥0

∑
k≥k �( )

ak,�tαk−�,

where the valuation k(�) is specified in Lemma C.1. We set for convenience ak,� � 0 for k < k(�).
Lemma C.1.

a. Valuation. When ν, u, v �� 0, then k(�) :� min{k ≥ 1 : ak,� �� 0} satisfies

k �( ) � 1, � � 0, 1, 2 and k �( ) � �, � ≥ 3.

If ν, u, or v � 0, k(�) as defined above is still admissible as a lower bound in the above sum.
b. Induction formula. The coefficients ak,� still satisfy the doubly indexed recursion (37), this time with a1,0 � ν

Γ(α+1), a1,1 � u
Γ(α),

a1,2 � v
Γ(α−1), and a1,� � 0, � ≥ 3. Note that a∗21,� � 0 for every � ≥ 0.

c. Closed form for the starting values. For every � ≥ 1,

a2�,2� � μ

2λ
2λv

Γ α − 1( )
( )�∏�

j�1

Γ 2j − 1
( )

α − 1( )( )
Γ 2j − 1

( )
α − 1( ) + α

( ) , (C.12)

a2�+1,2�+1 � u
Γ α( )

2λv
Γ α − 1( )

( )�∏�
j�1

Γ 2j α − 1( )( )
Γ 2j α − 1( ) + α
( ) . (C.13)

Remark C.1 (Case u � v � 0). When u � v � 0, one checks that a1,1 � a1,2 � 0, a2,2 � μa1,2
Γ(α)
Γ(2α) � 0 and, then, by induction, that

a�,� � 0 for every � ≥ 1. As a second step, one shows by induction that, actually, for every level � ≥ 1, ak,� � 0 and k ≥ 1 so that, like
in the former case, the solution appears in the much simpler form

ψ t( ) � ψ0 t( ) � ∑
k≥1

ak,0tαk.

Proof.
a. The fact that k(�) � 1 for � � 0, 1, 2 is obvious. For � ≥ 3, it is clear by adapting the analogous proof in Step 1 of the former

case α∈ (0, 1] that k(�) is solution to the same recursive optimization problem

k �( ) � min min
�1+�2��

k �1( ) + k �2( )[ ], k � − 1( )
[ ]

+ 1, (C.14)

with the former initial values (keeping in mind that a2,1 � a2,3 � 0). This time the only admissible solution is k(�) � �.
b. This is straightforward.
c. We proceed by induction. First, it follows from Equation (37) that

a2,2 � μ

2λ
2λv

Γ α − 1( )
( )

Γ α − 1( )
Γ α( ) , (C.15)

which agrees with Formula (C.12). Assume now the formula valid for � and let us check for � + 1. One checks by inspecting
successively the cases � � 2, � � 3, and � ≥ 4 that

a∗2�,�+1 � 2a1,2a�−1,�−1, � ≥ 2,

whereas a∗21,2 � a∗20,1 � 0. Likewise

a3,3 � λa∗22,3
Γ 2 α − 1( )( )

Γ 2 α − 1( ) + α( ) �
2λv

Γ α − 1( )
u

Γ α( )
Γ 2 α − 1( )( )

Γ 2 α − 1( ) + α( ) ,
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which agrees with (C.13). Therefore, we get

a2 �+1( ),2 �+1( ) � λa∗22�+1,2 �+1( )
Γ 2� + 1( ) α − 1( )( )

Γ 2� + 1( ) α − 1( ) + α( ) � 2λa1,2a2�,2�
Γ 2� + 1( ) α − 1( )( )

Γ 2� + 1( ) α − 1( ) + α( )
� 2λv
Γ α − 1( )

μ

2λ
2λv

Γ α − 1( )
( )� Γ 2� + 1( ) α − 1( )( )

Γ 2� + 1( ) α − 1( ) + α( )
∏�
j�1

Γ 2j − 1
( )

α − 1( )( )
Γ 2j − 1

( )
α − 1( ) + α

( ) ,
which also agrees with Formula (C.12). One proceeds likewise for a2(�+1)+1,2(�+1)+1. □

Now we are in position to prove Theorem 2. Our aim in this proof is to propagate an upper bound of the form

|ak,� | ≤ Cθ�ρk k − k �( ) + 1( )α2−1 � ∨ 1( )α2−1, k ≥ k �( ), � ≥ 0. (C.16)
Step 1. Propagation for the initial value across the levels � ≥ 1.
On checks by inspecting successively the cases � � 2, � � 3, and � ≥ 4 that

a∗2�,�+1 � 2a1,2a�−1,�−1, � ≥ 2,

whereas a∗21,2 � a∗20,1 � 0. Consequently, it follows from (38) and the fact that a�,�+1 � 0, that, for every � ≥ 2:

a�+1,�+1 � λa∗2�,�+1
Γ α − 1( )�( )

Γ α − 1( )� + α( ) � 2λa1,2a�−1,�−1
Γ α − 1( )� + 1( )
Γ α − 1( )� + α( )

1
α − 1( )�

� 2λa1,2a�−1,�−1
Γ α − 1( ) � + 1( ) + 2 − α( )
Γ α − 1( ) � + 1( ) + 1( )

1
α − 1( )� .

By Kershaw’s Inequality (B.4) used with x � (α − 1)(� + 1) > 0 and s � 2 − α∈ (0, 1), we deduce that

|a�+1,�+1| ≤ 2λ|a1,2||a�−1,�−1| 1
α − 1( )� α − 1( ) � + 1( ) + 2 − α

2

( )1−α
� 2λ|a1,2||a�−1,�−1| 1

α − 1( )� α − 1( )� + α

2

( )1−α
≤ 2λ|a1,2||a�−1,�−1| α − 1( )−α�−α,

because α > 1. We assume now that (C.16) is satisfied at levels 1 ≤ �′ ≤ �, in particular for �′ � � − 1, � ≥ 2. Then

|a�+1,�+1| ≤ 2λ|a1,2|C ρθ
( )�−1 � − 1 − k � − 1( ) + 1( )α2−1 � − 1( )α2−1 α − 1( )−α�−α.

One checks that, for every � ≥ 2, � − 1 − k(� − 1) + 1 ≥ 1 � � + 1 − k(� + 1) + 1 and �−1
�+1 ≥ 1

3. Consequently, if we set

κ 5( )
α � 31−

α
2 α − 1( )−α,

we obtain

|a�+1,�+1| ≤ C ρθ
( )�+1 � + 1 − k � + 1( ) + 1( )α2−1 � + 1( )α2−12κ

5( )
α λ|a1,2|
ρθ
( )2 .

Consequently, keeping in mind that a1,2 � v
Γ(α−1), the propagation condition on the initial values reads

|a1,0| � |ν|
Γ α + 1( ) ≤ Cρ,

|u|
Γ α( ) ≤ ρθ and 2κ 5( )

α λ
|v|

Γ α − 1( ) ≤ ρθ
( )2

or, equivalently,

Cρ ≥ |ν|
Γ α + 1( ) and ρθ ≥ C1 :� max

|u|
Γ α( ) ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2κ 5( )

α λ
|v|

Γ α − 1( )

√( )
. (C.17)

Step 2. Propagation across the levels � ≥ 0.
We assume that the bound to be propagated holds for every couple (k′, �′) such that level �′ < � and k′ ≥ k(�′) or �′ � �

and k(�) ≤ k′ ≤ k − 1.
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We first focus on the discrete time convolution. Let k ≥ k(�) + 1:

a∗2k−1,�
⃒⃒⃒ ⃒⃒⃒

≤ C2
∑

k1+k2�k−1�1+�2��ki≥k �i( ), �i≥0
ak1 ,�1
⃒⃒ ⃒⃒

ak2 ,�2
⃒⃒ ⃒⃒

≤ C2θ�ρk−1 ∑
�1+�2���i≥0

∑
k1+k2�k−1ki≥k �i( )

k1 − k �1( ) + 1( )α2−1 �1 ∨ 1( )α2−1 k2 − k �2( ) + 1( )α2−1 �2 ∨ 1( )α2−1

� C2θ�ρk−1 ∑
�1+�2���i≥0

�1 ∨ 1( )α2−1 �2 ∨ 1( )α2−1 ∑
k′1+k′2�k− k �1( )+k �2( )( )+1k′i≥1

k′1
( )α

2−1 k′2
( )α

2−1

� C2θ�ρk−1 ∑
�1+�2���i≥0

�1 ∨ 1( )α2−1 �2 ∨ 1( )α2−1B α

2
,
α

2

( )
k − k �1( ) + k �1( )( )( )α−1

≤ C2θ�ρk−1B
α

2
,
α

2

( )
k − k �( ) + 1( )α−1 ∑

�1+�2���i≥0
�1 ∨ 1( )α2−1 �2 ∨ 1( )α2−1,

where we used Lemma A.1 in the penultimate line and k(�1) + k(�1) ≥ k(�) − 1 (see (C.15)). Now note that, if � ≥ 1,

∑
�1+�2���i≥0

�1 ∨ 1( )α2−1 �2 ∨ 1( )α2−1≤ �
α
2−1 + ∑�−1

�1�1
�
α
2−1
1 � − �1( )α2−1≤ �

α
2−1 + B

α

2
,
α

2

( )
�α−1,

owing to Lemma A.1. If � � 0, the above inequality still holds because
∑

�1+�2���i≥0(�1 ∨ 1)α2−1(�2 ∨ 1)α2−1 � 1.
Now, combining these inequalities yields

a∗2k−1,�
⃒⃒⃒ ⃒⃒⃒

≤ C2θ�ρk−1B
α

2
,
α

2

( )
k − k �( ) + 1( )α−1 � ∨ 1( )α−1 B

α

2
,
α

2

( )
+ � ∨ 1( )−α

2

( )
≤ C2θ�ρk−1B̄

α

2

( )
k − k �( ) + 1( )α−1 � ∨ 1( )α−1, (C.18)

where B̄(α/2) is defined in (C.10).
First note, by inspecting the four cases � � 0, 1, 2 and � ≥ 3, that

∀ � ≥ 0, αk − � ≥ α k �( ) + 1( ) − � > � ∨ 2( ) α − 1( ) > 0.

Now, using Γ(z + 1) � zΓ(z) and Kershaw’s Inequality (B.4) with x�αk−�≥α(k(�)+1)−� > 2(α−1) and s � 2 − α∈ [0, 1),
we obtain

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) � 1

αk − � + 1 − α

Γ αk − � + 2 − α( )
Γ αk − � + 1( )

≤ 1
αk − � + 1 − α

αk − � + 2 − α

2

( )1−α
≤ αk − � + 1 − α

2

αk − � + 1 − α
αk − � + 1 − α

2

( )−α
. (C.19)

Because αk − � + 1 − α ≥ α(k(�) + 1) − � + 1 − α ≥ α − 1 > 0 for every � ≥ 0, we deduce that

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) ≤ α

2 α − 1( )
( )

αk − � + 1 − α

2

( )−α
.

Now note that

αk − � + 1 − α

2
� α k − k �( )( ) + αk �( ) − � + 1 − α

2

and that

αk �( ) − � + 1 − α

2
≥ α − 1( ) � ∨ 2( ) + 1 − α

2
≥ α − 1( ) � ∨ 1( ) for every � ≥ 0.

Hence, using (C.7), we deduce

αk − � + 1 − α

2

( )−α≤ 2α α − 1( )( )−α
2 k − k �( )( )−α

2 � ∨ 1( )−α
2 .

Finally, one notes that (k−k(�)+1k−k(�) )
α
2 ≤ 2

α
2 to deduce

Γ α k − 1( ) − � + 1( )
Γ αk − � + 1( ) ≤ κ 6( )

α k − k �( ) + 1( )−α
2 � ∨ 1( )−α

2 ,
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where

κ 6( )
α � α

2 α − 1( ) α α − 1( )( )−α
2 .

Plugging Inequalities (C.18), (C.19), and the estimate for ak−1,� into (37) yields

ak,�
⃒⃒ ⃒⃒ ≤ Cρk−1θ� � ∨ 1( )α2−1 k − k �( ) + 1( )α2−12−α

2κ 6( )
α

× |μ| k − k �( ) + 1
k − k �( )

( )1−α
2 + C|λ| k − k �( ) + 1

k − k �( )
( )α

2

� ∨ 1( )α2B̄ α

2

( )[ ]
≤ Cρkθ� � ∨ 1( )α2−1 k − k �( ) + 1( )α2−1κ

6( )
α

ρ
2|μ| + C|λ|B̄ α

2

( )[ ]
,

where we used that supk≥k(�)+1
k−k(�)+1
k−k(�) � 2. We deduce that the propagation of the bound holds as soon as

κ 6( )
α 2|μ| + |λ|CB̄ α

2

( )[ ]
≤ ρ. (C.20)

Step 3. Synthesis.
If we saturate the lefthand side of Inequality (C.17) and plug it in (C.20), we obtain the inequality

ρ2 − 2κ 6( )|μ|ρ − |λ‖ν|
Γ α + 1( )κ

6( )B̄
α

2

( )
≥ 0.

The minimal solution is given by

ρ∗ � ρ∗ α, θ( ) � max κ 6( ) |μ| +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|μ|2 + |λ||ν|B̄ α/2( )

Γ α + 1( )κ 6( )

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,C1

θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where C1 � C1(u, v) is given by the right-hand side of Inequality (C.17) and

C∗ � C∗ α, θ( ) � |ν|
Γ α + 1( )ρ∗ α, θ( ) .

Now, we focus on the convergence of the series ψ(t) � ∑
�≥0 ψ�(t) (keeping in mind that the first three levels � � 0, 1, 2

have no influence on the result) so that we may use that k(�) � �, � ≥ 3. Set C∗ � C∗(α, θ), and ρ∗ � ρ∗(α, θ). One checks that
for every t∈ I∗ � (0, ρ−1

α∗ ),
ψ� t( )⃒⃒ ⃒⃒ ≤ ∑

k≥�
ak,�
⃒⃒ ⃒⃒

tαk ≤ C∗θ��
α
2−1

∑
k≥�

k − � + 1( )α2−1ρk∗tαk−�

� C∗θ��
α
2−1ρ�−1∗ t α−1( )�−αψ̃ t( ),

where ψ̃2(t) � ∑
k≥1 k

α
2−1ρk∗tαk is normally convergent on every compact interval K of the open interval I∗. Then, for ev-

ery t∈ K, ∑
�≥3

|ψ� t( )| ≤ C∗ sup
t∈K

t−αψ̃2 t( )
[ ]∑

�≥3
θρ∗( )��α

2−1t α−1( )� < C∗ t−αψ̃2 t( )
[ ]∑

�≥3
θρ∗( )��α

2−1ρ−α−1
α �∗

� C∗ t−αψ̃2 t( )
[ ]∑

�≥3
θρ

1
α∗

( )�
�
α
2−1.

Hence, the series is absolutely convergent if θρ
1
α∗(α, θ) < 1.

Because α > 1, one shows that the function θ �→ θρ
1
α∗(α, θ) satisfies limθ→0 θρ

1
α∗(α, θ) � 0 so that we may set

θ∗ � inf θ > 0 : θρ
1
α∗ α, θ( ) ≥ 1

{ }
< +∞ which satisfies θ∗ρ

1
α∗ α, θ∗( ) � 1.

Finally, one checks that the doubly indexed series ψ is normally convergent on K. □
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