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Asymmetric and time-frequency spillovers among commodities using high-

frequency data

Abstract

In this study, we examine the asymmetric short- and long-run spillover among commodities using 
realized variances and realized semivariances calculated through 5-min trading data of commodity 
futures. In doing so, we apply time and frequency domain generalized error variance 
decomposition approaches and build a network of commodity connectedness. Our findings 
indicate low inter-group connectedness, distinct group clustering, and high intragroup network-
based connectedness in realized volatilities of sample commodities. We find more pronounced 
inter- and intra-group volatility connectedness for negative realized volatilities than positive ones. 
Besides, we show that volatility connectedness is a long-run phenomenon. Additionally, the time-
varying net directional spillover connectedness reveals that the bad volatility connectedness 
dictates the good volatility connectedness for the total sample as well as for various frequency 
domains, both in terms of magnitude and length of time. The implications for investors and 
policymakers are discussed.
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1. Introduction

Commodity markets, just like other financial assets, have become increasingly interconnected 

since the onset of the global financial crisis (hereafter GFC). The presence of cross-commodity 

interactions has drawn a great deal of attention from investors, policymakers, and the academic 

community (Diebold, Liu, & Yilmaz, 2017). Although globalization, financial liberalization, and 

trade integration have been partly responsible for strengthening the cross-commodity linkages, the 

financialization of commodities has played a vital role by equipping commodity markets with 

increased liquidity, ease of trading, and thereby a massive influx of investors (Chong & Miffre, 

2010; Silvennoinen & Thorp, 2013). The financialization, on the one hand, transformed 

commodities such as precious metals into successful diversification/hedging tools (Büyükşahin & 

Robe, 2014), and on the other, opened the door for speculators to exploit commodity markets, 

multiplying the transmission of volatility across those markets1, thereby increasing the complexity 

of the investment climate. Since the existence of volatility spillovers between commodity markets 

carries potential challenges for investors and policymakers, a better understanding of these 

spillovers would be needed to improve the decision making around risk management, portfolio 

allocation, and business cycle analysis2 (Baruník & Křehlík, 2018). 

In addition to the determinants of volatility connectedness listed-above, the distinctive nature of 

commodity prices brings with it considerable diversity across commodity groups, leading to 

diverse interactions in their inter- and intra-group volatility. Unlike other financial assets, 

commodity prices are determined by forces of demand and supply. Apart from precious metals, 

which are often regarded as hedge assets, the demand for most commodities tends to follow the 

aggregate global demand. Energy commodities and industrial metals, for example, provide inputs 

for global production processes, which render both commodity groups to be reasonably similarly 

vulnerable to demand shocks; hence their prices are tightly interlinked3 (Diebold et al., 2017). On 

1 An alarming consequence was the dramatic rise in commodity volatility during and after the GFC, which called into 
question the role of speculation in commodity markets. Michael Masters, a member of Masters Capital Management, 
in his testimony to the US Senate, pointed out that speculative trading by hedge funds and investors created a price 
bubble and induced high volatility in commodity markets (Junttila, Pesonen, & Raatikainen, 2018; Naeem et al., 2020).
2 Commodities play a pivotal role in the global economy, and thus their price behavior is widely tracked (Chevallier 
& Ielpo, 2013a). Commodities are a key input into the global manufacturing processes, and a major export of many 
emerging economies. Hence, commodity price swings are a key driver of business cycle fluctuations globally 
(Fernández, González, & Rodriguez, 2018).
3 A sharp decline in the prices of these commodities was witnessed after the GFC.

https://www.sciencedirect.com/science/article/pii/S0140988316303577#bb0110
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the contrary, commodity prices behave more idiosyncratically under supply-shocks, as the factors 

determining the supply of a given commodity (commodity group/class) are often unique. For 

example, while weather conditions and the policies of the exporting countries dictate the supply 

of agricultural commodities (Kang et al., 2017), government export decisions determine the supply 

of industrial and precious metals and oil. Consequently, the inherent differences in supply-shocks 

result in the price behaviors across the commodity market being divergent, and therefore the 

connectedness dynamics are more commodity-centric. Aside from the underpinnings of the supply 

and demand framework, the financialization has also led to more integrated commodity markets, 

including precious metal, industrial metal, energy, and agriculture. However, energy commodities 

have become more financialized (Zhang, 2017) than other commodity groups. For this reason, the 

energy group transmits shocks to other commodity groups, suggesting a close connection with 

precious and industrial metals, and agricultural commodities (Diebold et al., 2017). Therefore, 

driven by the differences in supply/demand processes, financialization, and other macroeconomic 

factors (de Nicola et al., 2016), there is considerable heterogeneity across commodity price 

movements, which potentially translates into inter- and intra-group volatility connectedness.

Under the given cross-commodity interactions, there is a considerable potential that commodity 

volatility spills over from one commodity market to another. Pindyck and Rotemberg (1990) found 

that commodities behave similarly and their prices engage in comovement. Subsequently, 

numerous studies explored the interdependencies and volatility spillovers among commodity 

markets (Dimpfl & Jung, 2012) from various perspectives including the inter- and intra-group 

spillovers across energy and non-energy commodities, and precious metals (Shahzad et al., 2019; 

Kang, Mclver, & Yoon, 2017). The application of novel econometric models has been used to 

uncover the complex dynamics of spillovers (Mensi et al., 2014; Filip et al., 2016), and, more 

recently, the spillover network of commodities (Balli et al., 2019; Tiwari et al., 2020). However, 

although the commodity market spillovers are well-known under the assumption of symmetric 

volatility, three relevant aspects remain unexplored: first, the network dynamics of asymmetric 

volatility spillovers across commodity markets, i.e. by distinguishing between the volatility 

associated with positive and negative returns; second, the behavior of the asymmetric spillover 

network over the short and long run, disentangling the two elements by focusing on time-frequency 

domain analysis; and third, and most important, the asymmetric volatility connectedness 

https://www.sciencedirect.com/science/article/pii/S014098831830433X#bb0210
https://www.sciencedirect.com/science/article/pii/S030142071930426X#bib41
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https://www.sciencedirect.com/science/article/pii/S014098831930324X#bib0185


heterogeneity of total, short- and long-run spillovers using higher-frequency data of commodity 

prices. Inspired by the availability of high-frequency data, an emerging strand of research has 

recently begun to take advantage of the new realized volatility measures, enabling the examination 

of the relationships among various asset markets at micro level. Compared to the traditional daily 

or weekly data, high-frequency data carries more detailed information. Specifically, the volatility 

indicators based on high-frequency data are capable of tracking much smaller intra-day price 

movements, thereby offering more precise estimations of market risk. This carries a great deal of 

economic relevance not only for formulating portfolio strategies and mitigating investor risk, but 

also for devising and implementing appropriate policy initiatives to stabilize the markets. Also, 

Křehlík & Baruník (2017) suggest that decomposing volatility into positive and negative 

components allows us to elucidate the commodity connectedness in a detailed manner that is 

potentially revealing and can be used for trading, portfolio formation, risk preference, and policy 

framing. Likewise, the relevance of time-frequency analysis of asymmetric spillovers emanates 

from the fact that different economic agents operate at different investment horizons – expressed 

in trading frequencies – that are associated with various types of investors, trading tools, and 

strategies that correspond to these various trading frequencies (Gencay et al., 2010; Conlon et al., 

2016; Bredin et al., 2017).

Since asymmetric volatility and its associated spillovers in commodity markets is evident (Cheong, 

2009; Shahzad et al., 2018a), one would naturally expect asymmetric volatility to spill over from 

one commodity market to another. In the energy and agriculture markets, this may be driven by 

demand/supply shocks (Kilian, 2009; Vacha & Barunik, 2012), while for precious metals, 

financialization (Bekiros et al., 2017), or factors such as economic and business cycles, financial 

crises, central bank monetary policy, or geopolitical conflicts could be the underlying channels 

(Uddin et al., 2019). In the time-frequency domain, the possibility of asymmetric volatility 

spillovers may arise from the economic linkages among commodity markets (Casassus et al., 2013) 

or due to the shocks to economic activity which impact variables at various frequencies with 

various strengths (Baruník and Křehlík, 2018). Building on this literature, the foremost 

contribution of this study is as part of the much needed and emerging stream of studies using high-

frequency data to uncover new stylized facts in certain commodity groups (Luo & Ji, 2018; Křehlík 

& Baruník, 2017; Baruník & Kocenda, 2019; Lu, Yang, & Liu, 2019). Using high-frequency data, 

https://www.sciencedirect.com/science/article/pii/S014098831930324X#bib0430
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we provide network-based evidence of asymmetric volatility connectedness among a wide range 

of commodities in the time-frequency domain. To the best of our knowledge, this is the first study 

to achieve this task. We also contribute to the inter- and intra-group evidence of asymmetric 

volatility connectedness (Baruník & Kocenda, 2019; Luo & Ji, 2018; Ji et al., 2018; Baruník et al., 

2015; Uddin et al., 2019) by documenting the asymmetric volatility spillovers of commodities, 

thus partly contributing to the previous studies exploring commodity connectedness via network 

frameworks (Chevallier & Ielpo, 2013b; and Diebold et al., 2017; Balli et al., 2019; Tiwari et al., 

2020). By splitting the realized volatility into positive and negative semivariances, this study also 

contributes to the methodological studies estimating commodity volatility – whether symmetric or 

asymmetric – using a family of GARCH models (Mensi et al., 2014; Olson et al., 2014; Ji and Fan, 

2012; Trujillo-Barrera et al., 2012; Dutta & Noor Md, 2017). Additionally, this study complements 

the existing literature that captures time-frequency commodity interdependence using the wavelet 

framework (Connor & Rossiter, 2005; Naccache, 2011; Filip et al., 2016). 

Using high-frequency data, we investigate asymmetric volatility connectedness among a wide 

variety of commodities by implementing a network framework that also accounts for the time-

frequency domain. Specifically, we compute the asymmetric volatility connectedness using the 

asymmetric connectedness model of Baruník, Kočenda, and Vácha (2017), which also 

encompasses the spillover model of Diebold and Yilmaz (2012) and the frequency connectedness 

approach of Baruník and Křehlík (2016). From high-frequency data, we calculate realized variance 

and realized semivariances through the volatility decomposition approach of Barndorff-Nielsen, 

Kinnebrock, and Shephard (2010).

Our findings indicate low inter-group connectedness, distinct group clustering, and high intra-

group network-based connectedness in the realized volatilities of the sample commodities. We 

find more pronounced inter- and intra-group volatility connectedness for negative realized 

volatilities than positive ones. We also show that volatility connectedness is a long-run 

phenomenon. These results suggest that, although diversification prospects for commodity 

investors are generally curtailed during bearish market conditions, some inter- and intra-group 

commodity combinations continue to carry such prospects irrespective of the market conditions. 

In addition, the time-varying connectedness results indicate that the bad volatility connectedness 

commands the good volatility connectedness for the total sample as well as for various frequency 

https://www.sciencedirect.com/science/article/pii/S014098831930324X#bib0325
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domains. Moreover, the time-varying asymmetries in the volatility connectedness are driven by 

several financial, economic and political events. Finally, we report time-varying asymmetries for 

the inter- and intra-group volatility transmission that again shows the dominance of negative 

volatility transmission, both inter-group and intra-group, in the long-run frequency domain. 

The remainder of the paper is structured as follows. Section 2 provides a brief review of the 

literature. Section 3 describes the methodology. The description of the data is presented in Section 

4. Section 5 presents the empirical findings. Section 6 offers concluding remarks. 

2. Literature Review

A seminal work by Pindyck and Rotemberg (1990) found that commodity prices behave similarly 

and therefore engage in comovement (or spillover). With this new information, many researchers 

began to pay attention to the spillovers among commodity prices, returns, and volatilities as well 

as across commodity classes (Hammoudeh, Li, & Jeon, 2003; Baffes, 2007). Commodity spillover 

literature can be categorized into three strands. 

The first strand of literature focuses on studying the volatility spillovers between individual 

commodities or commodity classes. This strand places an overwhelming emphasis on inter- and 

intra-group volatility connections between energy (oil) and non-energy (agriculture) commodities 

(McPhail and Babcock, 2012; Qiu et al., 2012), within precious metals (Sensoy, 2013; Batten et 

al., 2015), and across commodity classes (Chen & Wu, 2016; Mensi et al., 2013; Abderladi & 

Serra, 2015; Yaya et al., 2016; Shahzad et al., 2019). A key message from this literature is that 

cross-commodity volatility spillovers display considerable heterogeneity across commodity 

groups, accounting for which is essential for any spillover analysis concerning commodity 

markets. In the second strand, scholars uncover the complex dynamics of cross-commodity 

spillovers by employing novel statistical techniques including co-integration and/or Granger-

causality analyses (Chaudhri, 2001; Zhang et al., 2010; Hassouneh et al., 2012; Nemati, 2016; 

Popp et al., 2018), time-frequency domain analyses, mainly the wavelet approach (Connor & 

Rossiter, 2005; Naccache, 2011; Kristoufek et al., 2013; Vacha et al., 2013; Filip et al., 2016), and 

frameworks such as the vector autoregressive (VAR), generalized autoregressive conditional 

heteroskedasticity (GARCH), and dynamic conditional correlation (DCC) (Beckmann & Czudaj, 

https://www.sciencedirect.com/science/article/pii/S014098831830433X#bb0210
https://www.sciencedirect.com/science/article/pii/S030142071930426X#bib39
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https://www.sciencedirect.com/science/article/pii/S014098831930324X#bib0140
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2014; Mensi et al., 2014). Overall, these sophisticated modelling exercises produce mixed 

evidence of volatility spillovers in commodity markets, and there is always a room for new 

evidence using novel techniques. 

With growing concern about commodity connectedness since the GFC, the studies on commodity 

market spillovers moved to a network framework, constituting the third strand of literature. By 

viewing commodity markets as a network, Diebold et al. (2017) opened up new avenues of 

empirical examination. Therefore, another strand of literature started to emerge following their 

work, spotlighting the various dimensions of the commodity network. Table 1 summarizes all 

those attempts made since the publication of Diebold et al. (2017).

<< Insert Table 1 about here >>

As can be seen from Table 1, there is growing evidence of the volatility spillover among 

commodity markets from both network and time-frequency domain perspectives. However, no 

evidence exists to date that capitalizes on high-frequency data to investigate the presence of 

asymmetric volatility spillovers among commodity markets in the time-frequency domain, despite 

the recently documented benefits of high-frequency data from the investment and policy aspects 

of commodity markets (Luo & Ji, 2018; Křehlík & Baruník, 2017; Baruník & Kocenda, 2019; Lu, 

Yang, & Liu, 2019). As suggested by Křehlík and Baruník (2017), the short- and long-run 

dynamics in energy market connectedness have an important bearing for systemic risk, especially 

when modelling the high-frequency aspects of volatility. To fill this literature gap, we first resort 

to the studies indicating the presence of asymmetric volatility and its associated spillovers in 

commodity markets. For instance, consistent with Kilian, (2009), Narayan and Narayan (2007) 

found asymmetric effects on oil price volatility, induced by demand/supply shocks. The presence 

of asymmetry, once joined with the prevalence of volatility spillovers across commodity markets, 

would naturally lead asymmetric volatility to spillover from one commodity market to another, 

mainly because of volatility asymmetries caused by supply/demand shocks and the financialization 

of commodities (Bekiros et al., 2015; Kilian, 2009; Baruník et al., 2015; Shahzad et al., 2018b; 

Apergis, Baruník, & Lau, 2017), and partly because of the asymmetries induced by economic and 

business cycles, financial crises, central bank monetary policy, and geopolitical conflicts (Uddin 

et al., 2019). The time-frequency aspect of the asymmetric volatility spillovers may emerge from 

https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0045
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0170
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the notion that economic agents operate at different investment horizons – expressed in trading 

frequencies – associated with different types of investors, trading tools, and strategies that 

correspond to different trading frequencies (Gencay et al., 2010; Conlon et al., 2016; Bredin et al., 

2017), which is suggested by some recent modelling strategies (Bandi & Tamoni, 2017; Cogley, 

2001; and Ortu et al., 2013), as well as by the presence of economic linkages among commodities 

causing long-term correlation (Casassus et al., 2013). Supporting this aspect are Baruník and 

Křehlík (2018), who argue that shocks to economic activity impact variables at various frequencies 

with various strengths, leading to frequency connectedness. In addition to the studies listed above, 

an emerging strand of literature uses high-frequency data to uncover spillover asymmetry along 

with new stylized facts for certain commodity groups (Luo & Ji, 2018; Křehlík & Baruník, 2017; 

Baruník & Kocenda, 2019; Lu, Yang, & Liu, 2019). Reconciling the literature on asymmetric 

volatility, its associated spillovers in the time-frequency domain, and the related studies using 

high-frequency data with the network-based evidence of commodity market spillovers (Chevallier 

& Ielpo, 2013b; Diebold et al., 2017; Balli et al., 2019; Tiwari et al., 2020), we conjuncture about 

the presence of asymmetric volatility connectedness among commodity markets in the time-

frequency domain using high-frequency data, and that this connectedness is different for total, 

short- and long-run spillovers. In light of this literature, we also hypothesize possible heterogeneity 

across inter- and intra-group spillovers in terms of their directional asymmetric spillover effects. 

3. Methodology

In this section, we describe the computation procedures for the realized volatility and asymmetric 

volatility. The subsequent section provides details of the asymmetric and time-frequency 

connectedness approaches adopted for this investigation. 

By overcoming the network-based model of Diebold et al. (2017), where the range-based volatility 

measures of Garman and Klass (1980) are used, we exploit the potential of recently developed 

realized volatility estimators of Barndorff-Nielsen, Kinnebrock, and Shephard (2010) by taking 

advantage of high-frequency data. Accordingly, a given spillover analysis becomes much more 

exciting and informative once the connections between volatilities from both negative and positive 

returns are spotted through the realized semivariances. What follows is an introduction to the two 

https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0085
https://www.sciencedirect.com/science/article/pii/S1386418115000622#bib8


existing concepts and a subsequent description of how we combine the two concepts to compute 

asymmetric volatility spillovers using high-frequency measures.

3.1. Realized variance and semivariance

Consider a continuous-time stochastic process for log-prices, , evolving over a time horizon t ∊ 𝑝𝑡

, which consists of a continuous component and a pure jump component,[0,𝑇]

(1)𝑝𝑡 = ∫𝑡
0𝜇𝑠𝑑𝑠 + ∫𝑡

0𝜎𝑠𝑑𝑊𝑠 + 𝐽𝑡,

Where  is a locally bounded predictable drift process, and  is a strictly positive volatility process, 𝜇 𝜎

and all are adapted to some common filtration CF. The quadratic variation of the log prices  is𝑝𝑡

(2)[𝑝𝑡,𝑝𝑡] = ∫𝑡
0𝜎2

𝑠𝑑𝑠 + ∑
0 < 𝑠 ≤ 𝑡(∆𝑝𝑠)2,

where  are jumps, if present. A natural measure for quadratic variation has been ∆𝑝𝑠 =  𝑝𝑠 ‒ 𝑝𝑠 ‒

proposed by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen (2002) as 

the sum of squared returns called “realized variance” (RV). Formally, let us suppose that the intra-

day returns  defined as a difference between intraday log prices  are equally 𝑟𝑖 =  𝑝𝑖 ‒ 𝑝𝑖 ‒ 1 𝑝0….., 𝑝𝑛

spaced on the interval , then[0,𝑡]

(3)𝑅𝑉 =  ∑𝑛
𝑖 = 1𝑟2

𝑖

converges in probability to  with .[𝑝𝑡,𝑝𝑡] 𝑛→∞

Later, Barndorff-Nielsen, Kinnebrock, and Shephard (2010) split the realized variance into 

realized semivariance for capturing the variation due to negative or positive movements (  and 𝑅𝑉 ‒

) in a specific variable4, defined as:𝑅𝑉 +

, (4)𝑅𝑉 ‒ = ∑𝑛
𝑖 = 1𝕀(𝑟𝑖 < 0)𝑟2

𝑖

4 The technique was quickly adopted by Feunou, Jahan-Parvar, and Tédongap (2013), Patton and Sheppard (2015), 
and Segal, Shaliastovich, and Yaron (2015).
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(5)𝑅𝑉 + = ∑𝑛
𝑖 = 1𝕀(𝑟𝑖 ≥ 0)𝑟2

𝑖

such that the decomposition, , holds exactly for any n. Barndorff-Nielsen, 𝑅𝑉 =  𝑅𝑉 ‒ +  𝑅𝑉 +

Kinnebrock, and Shephard (2010) contend that the realized semivariance converges to  
1
2∫𝑡

0𝜎2
𝑠𝑑𝑠

and limits to the sum of the jumps due to negative and positive returns. Consequently, the postitive 

and negative semivariances correspond to the good and bad state of the realized volatilities. We 

discuss below that the two states may spill over differently across markets, creating asymmetries 

in the volatility spillovers.

3.2. Asymmetric spillovers through Diebold and Yilmaz (2012)

To compute the asymmetric volatility connectedness across our sample commodities, we first 

apply the spillover model of Diebold and Yilmaz (2012). To further explore the time-frequency 

domain aspect of asymmetric volatility connectedness, we implement the connectedness 

framework of Brunik and Krehlik (2016). Under the model framework, we consider 𝑅𝑉𝑡 =  

 to measure total volatility spillovers, and  and (𝑅𝑉1𝑡,…,𝑅𝑉𝑛𝑡)' 𝑅𝑉 ‒
𝑡 =  (𝑅𝑉 ‒

1𝑡,…, 𝑅𝑉 ‒
𝑛𝑡)

' 𝑅𝑉 +
𝑡 =  

 to measure volatility spillovers due to negative and positive returns, respectively, (𝑅𝑉 +
1𝑡 ,…, 𝑅𝑉 +

𝑛𝑡)'

which allows for the measurement of bad and good volatility and hence asymmetric spillovers 

(Baruník et al., 2016). 

According to Diebold and Yilmaz (2012), total and directional spillover measures follow directly 

from the forecast error variance decomposition associated with an N-variable vector autoregression 

fitted to volatility (semivariance). To begin, consider an N-dimensional vector 𝑅𝑉𝑡 =  

 holding the realized variance of N assets, which is modelled by a covariance (𝑅𝑉1𝑡,…,𝑅𝑉𝑛𝑡)'

stationary vector autoregression VAR (p) as:

 (6)𝑅𝑉𝑡 = ∑𝑝
𝑖 = 1𝜙𝑖𝑅𝑉𝑡 ‒ 𝑖 + 𝜀𝑡,

where  is a vector of independently and identically distributed disturbances and , 𝜀𝑡 ~ 𝑁(0,𝛴𝜀) 𝜙𝑖

for  coefficient matrices. 𝑖 = 1,…,p

https://www.sciencedirect.com/science/article/pii/S1386418115000622#bib8
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Provided that the VAR process is invertible, the moving average (MA) representation is written 

as:

, (7)𝑅𝑉𝑡 = ∑∞
𝑗 = 0𝐴𝑖𝜀𝑡 ‒ 𝑖

where the  coefficient matrices  obey a recursion of the form , with   𝑁 × 𝑁 𝐴𝑖 𝐴𝑖 = ∑𝑝
𝑗 = 1𝜙𝑗𝐴𝑖 ‒ 𝑗 𝐴0

being the  identity matrix,   𝑁 × 𝑁 𝐴0 = 𝐼𝑁 .

From the MA representation, it is possible to recover the system forecasts, the forecast errors, and 

the forecast error variance. The latter might also be decomposed highlighting the contribution of 

the system shocks, thus leading to the forecast error variance decomposition (FEVD). Diebold and 

Yilmaz (2012) define the generalized spillover index as the fraction of the -step-ahead forecast 𝐻

error variance of  owing to the shocks to  (  for . Accordingly, the total 𝑅𝑉𝑖 𝑅𝑉𝑗 𝑖 ≠ 𝑗) 𝑖, 𝑗 = 1,2,⋯,𝑁

spillover index takes into account both (a) the ith variable’s own share of the H-step-ahead forecast 

error variance due to its own shocks, for i for , and (b) the cross variance share of the 𝑖 = 1,2,⋯,𝑁

H-step-ahead forecast error variances in the ith variable due to shocks to the jth variable, for 𝑖, 𝑗

, such that . Hence, for , the -step-ahead generalized forecast error = 1,2,⋯,𝑁 𝑖 ≠ 𝑗  𝐻 = 1,2,⋯ 𝐻

variance decomposition can be described as:

                                                                                        (8) 𝜃𝑖𝑗(𝐻) =
𝜎 ‒ 1

𝑗𝑗 ∑𝐻 ‒ 1
ℎ = 0(𝑒'

𝑖𝐴ℎ 𝛴𝜀 𝑒𝑗)2

∑𝐻 ‒ 1
ℎ = 0(𝑒'

𝑖𝐴ℎ 𝛴𝜀 𝐴 '
ℎ𝑒𝑖)

 ,

where  is the variance matrix of the vector of errors .  is the standard deviation of the error 𝛴𝜀 𝜀 𝜎𝑗𝑗

term of the  equation, and  is selection vector with a value of one for the  element and zero 𝑗𝑡ℎ 𝑒𝑖 𝑖𝑡ℎ

otherwise. Following Diebold and Yilmaz (2012), we obtain the generalized FEVD through a VAR 

system which is independent of variable ordering (Koop, Pesaran, & Potter, 1996; Pesaran & 

Shin,1998). stands for the  matrix of MA coefficients corresponding to the forecast 𝐴ℎ  𝑁 × 𝑁

horizon h. Since the own- and cross-variable variance contribution shares do not sum to one under 

the generalized decomposition, each entry of the variance decomposition matrix is normalized by 

its row sum as follows: 

https://www.sciencedirect.com/science/article/pii/S1386418115000622#bib25
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                                                                                                      (9)𝜃𝑖𝑗(𝐻) =
𝜃𝑖𝑗(𝐻)

∑𝑁
𝑗 = 1𝜃𝑖𝑗(𝐻)

,

Using the contributions from the variance decomposition, Diebold and Yilmaz (2012) define the 

total spillover index (SPILL), which measures the contribution of spillovers from volatility shocks 

across variables in the system to the total forecast error variance as:

                                              (10)𝑆𝑃𝐼𝐿𝐿(𝐻) =
∑𝑁

𝑖,𝑗 = 1,𝑖 ≠ 𝑗𝜃𝑖𝑗(𝐻)

∑𝑁
𝑖,𝑗 = 1𝜃𝑖𝑗(𝐻)

× 100 =
∑𝑁

𝑖,𝑗 = 1,𝑖 ≠ 𝑗𝜃𝑖𝑗(𝐻)

𝑁 × 100 .

Note that, by construction,  and  Thus the contributions of ∑𝑁
𝑗 = 1𝜃𝑖𝑗(𝐻) = 1 ∑𝑁

𝑖,𝑗 = 1𝜃𝑖𝑗(𝐻) = 𝑁.

spillovers from volatility shocks are normalized by the total forecast error variance.

Similarly, we can identify directional spillovers by decomposing the total spillovers into those 

coming from or going to a particular variable in the system. Diebold and Yilmaz (2012) use the 

following to measure the directional spillovers received by asset i from all other assets j:

                                      (11)𝑆𝑃𝐼𝐿𝐿𝑖←𝑗(𝐻) =
∑𝑁

𝑗 = 1,𝑖 ≠ 𝑗𝜃𝑖𝑗(𝐻)

𝑁 × 100 .

In a similar fashion, the directional spillovers transmitted by asset i to all other assets j can be 

measured as:

                                      (12)𝑆𝑃𝐼𝐿𝐿𝑖→𝑗(𝐻) =
∑𝑁

𝑗 = 1,𝑖 ≠ 𝑗𝜃𝑗𝑖(𝐻)

𝑁 × 100 .

3.3. Asymmetric spillovers

Following the spillover model described above, we can not only compute the total spillovers from 

 ( ) and  ( ) but also the directional spillovers from  ( , 𝑅𝑉 ‒ 𝑆𝑃𝐼𝐿𝐿 ‒ 𝑅𝑉 + 𝑆𝑃𝐼𝐿𝐿 + 𝑅𝑉 ‒ 𝑆𝑃𝐼𝐿𝐿 ‒
𝑖←𝑗

) and ( , ), and this enables us to capture symmetric volatility 𝑆𝑃𝐼𝐿𝐿 ‒
𝑗→𝑖 𝑅𝑉 +  𝑆𝑃𝐼𝐿𝐿 +

𝑖←𝑗 𝑆𝑃𝐼𝐿𝐿 +
𝑗→𝑖

spillovers. To quantify the extent of asymmetric volatility spillovers, we follow the spillover 

asymmetry measure of Baruník et al. (2016). If the contributions of  and  are equal, the 𝑅𝑉 ‒ 𝑅𝑉 +

spillovers are symmetric, and are expected to be equal to spillovers from . On the other hand, 𝑅𝑉

https://www.sciencedirect.com/science/article/pii/S1386418115000622#bib25
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the differences in the realized semivariances result in asymmetric spillovers. A bootstrapping 

procedure tests the null hypothesis  of the spillover asymmetry. 𝐻1
0: 𝑆𝑃𝐼𝐿𝐿 ‒ = 𝑆𝑃𝐼𝐿𝐿 +

Accordingly, the extent of spillover asymmetry ( ) only measures the difference between 𝑆𝐴

positive and negative spillovers: 

(13)𝑆𝐴 = 𝑆𝑃𝐼𝐿𝐿 + ‒ 𝑆𝑃𝐼𝐿𝐿 ‒

where  and  are volatility spillover indices due to  and , respectively, 𝑆𝑃𝐼𝐿𝐿 + 𝑆𝑃𝐼𝐿𝐿 ‒ 𝑅𝑉 + 𝑅𝑉 ‒

with an H-step-ahead forecast at time t. When  takes the value of zero, spillovers coming from 𝑆𝐴

 and  are equal. When  is positive (negative), spillovers coming from  ( ) 𝑅𝑉 ‒ 𝑅𝑉 + 𝑆𝐴 𝑅𝑉 + 𝑅𝑉 ‒

are larger than those from ( ).𝑅𝑉 ‒ 𝑅𝑉 +

3.4. Total, directional, and asymmetric spillovers in the frequency domain 

In this section, we lay out details of the spillover framework recently introduced by Barunik 

and Krehlik (2018). We apply this model to test whether the results of spillover asymmetry 

continue to hold for short- and long-term horizons. For spillover computations, Diebold and 

Yilmaz (2012) aggregate information through frequencies while disregarding the possible 

heterogeneity across frequency responses to shocks, which we highlighted earlier. However, the 

behavior of asymmetric spillovers could well behave differently over different frequency bands, 

and be computed by the connectedness framework of Barunik and Krehlik (2018). Relying on the 

spectral representation of variance decomposition (e.g., Stiassny, 1996; Dew-Becker and Giglio, 

2016), this approach is an expansion of Diebold and Yilmaz (2012).

In this framework, the frequency response function plays a central role and is obtained as the 

Fourier transform of the coefficients , with  , which can be defined as: 𝐴ℎ =  ‒ 1

                                      (14)𝐴(𝑒 ‒ 𝑖ℎ𝜔) =  ∑∞
ℎ = 0𝑒 ‒ 𝑖ℎ𝜔𝐴ℎ 

where  denotes the frequency.𝜔

The power spectrum , which indicates how the variance of is distributed over the 𝑆𝑅𝑉 (𝜔) 𝑅𝑉𝑡 

frequency components  , is computed as:𝜔



                            (15)𝑆𝑅𝑉 (𝜔) =  ∑∞
ℎ = 0𝐸(𝑅𝑉𝑡 𝑅𝑉 '

𝑡 ‒ ℎ)𝑒 ‒ 𝑖ℎ𝜔 =  𝐴(𝑒 ‒ 𝑖ℎ𝜔)∑𝐴'(𝑒 + 𝑖ℎ𝜔) 

According to Krehlik and Barunik (2018), the frequency domain counterparts can be defined by 

the spectral representation for covariance and can be written as: 

(16)𝐸(𝑅𝑉𝑡 𝑅𝑉 '
𝑡 ‒ ℎ) =  ∫𝑏

𝑎𝑆𝑅𝑉(𝜔)𝑒𝑖ℎ𝜔𝑑𝜔

where  is an arbitrary frequency band such that, .(𝑎,𝑏) = 𝑑 𝑎,𝑏 ∈ ( ‒ 𝜋, + 𝜋) & 𝑎 < 𝑏

The spectral quantities are estimated using standard discrete Fourier transforms. The cross-spectral 

density on the interval d is estimated as:

, for (17)∑
𝜔𝐴(𝜔)𝛴𝐴'(𝜔) 𝜔 ∈  {⌊𝑎𝐻

2𝜋⌋,…,⌊𝑏𝐻
2𝜋⌋}, 

where:

 , (18)𝐴(𝜔) =  ∑𝐻 ‒ 1
ℎ = 0𝐴ℎ𝑒 ‒ 2𝑖𝜋𝜔/𝐻

and , where z is a correction for a loss of a degree of freedom, which depends on 𝛴 = 𝜀'𝜀/(𝑇 ‒ 𝑧)

the VAR specification. 

The decomposition of the impulse response function at a given frequency band can be estimated 

as: 

(19)𝐴(𝑑) = ∑
𝜔𝐴(𝜔)

Finally, the generalized variance decomposition at the desired frequency band is estimated as 

                                                                              (20)𝜃𝑖𝑗(𝑑) = ∑
𝜔𝛤𝑖(𝜔)

𝜎 ‒ 1
𝑗𝑗 (𝑒'

𝑖𝐴(𝜔)𝛴𝑒𝑗)
2

𝑒'
𝑖𝐴(𝜔)𝛴𝐴'(𝜔) 𝑒𝑖

 ,

where  is an estimate of the weighing function, and . 𝛤𝑖(𝜔) =
𝑒'

𝑖𝐴(𝜔)𝛴𝐴'(𝜔)𝑒𝑖

𝑒'
𝑖𝛺𝑒𝑖

𝛺 = ∑
𝜔𝐴(𝜔)𝛴𝐴'(𝜔)



Then, the connectedness measures at a given frequency band of interest can be readily derived by 

substituting  to estimate the traditional measures outlined above.𝜃𝑖𝑗(𝑑)

4.  Data and descriptive statistics 

The data we use for empirical analysis consists of high-frequency 5-minute prices of 12 

commodities from September 30, 2009 to December 31, 2019. The availability of liquid data 

dictates the start date. The twelve commodity products comprise three categories, energy, metals, 

and grains. All the data is sourced from the Kibot.com5 database on a nearly 24-hour basis, so each 

day there are 288 prices with matched date/time information set at New York time. Consistent 

with Luo and Ji (2018), Degiannakis (2008), and Andersen and Todorov (2010), we use a high-

frequency sample of five minutes as it strikes a logical balance between accurate estimation and 

microstructure noise.   

<< Insert Table 2 about here >>

Table 2 presents the descriptive statistics of the realized volatility measure in three classifications, 

1) total realized variance, 2) realized positive semivariance, and 3) realized negative semivariance. 

As shown in Table 2, natural gas has the highest average realized variance, positive and negative 

semivariances, and standard deviation, while gold has the lowest estimates for all variance 

measures. Moreover, in the three commodity groups, natural gas produces the highest realized 

variance and semivariances in the energy commodities, whereas palladium and wheat dominate 

the metal and agriculture commodities. These commodities also show the highest standard 

deviations of realized variance for the respective commodity groups except for agriculture 

commodities where corn has a higher variation for the total realized and negative semivariance. It 

is evident from the descriptive analysis that energy commodities produce higher volatilities 

compared to other commodities, confirming a common finding reported in the commodity 

literature (Ji, Bouri, Roubaud, & Shahzad, 2018; Kang, McIver, & Yoon, 2017).  

5. Empirical results

5 This data provider is lesser known than its competitors, but its data quality is comparable to that of the New York 
Stock Exchange’s TAQ database. A limited comparison of the two databases is available upon request.



5.1 Static volatility spillover analysis 

First, we employ  the Diebold & Yilmaz (2012) spillover approach to analyze the volatility 

connectedness among twelve commodities under consideration. Fig. 1 presents the volatility 

connectedness network that shows the volatility spillovers from each commodity to other 

commodities and vice versa.  This spillover table is estimated from the GFEVD with a forecast 

horizon of H=100 days and lag order of 3 (based on the Schwarz information criterion). Overall, 

crude oil transmits more volatility spillovers than it receives, making it a leading net transmitter 

of volatility spillovers. In contrast, natural gas is the leading net receiver as it receives more 

volatility spillovers than it transmits. Additionally, we observe a robust intragroup volatility 

clustering for all commodity groups that signifies the importance of related production processes 

and complement/substitute effect in all commodity groups. Our group-wise volatility clustering 

findings corroborate Diebold, Liu, and Yilmaz (2017) and Balli, Naeem, Shahzad, and de Bruin 

(2019), as they also report volatility clustering among commodity groups in their connectedness 

analysis.

Moreover, in terms of intragroup volatility connectedness, the metal commodities show the highest 

connectedness followed by agricultural commodities, while the energy commodity group has the 

lowest intragroup volatility connectedness. Precisely, all the metal group commodities 

transmit/receive moderate to strong volatility spillovers to/from each other, and two strong 

commodity pairs, i.e., gold/silver and palladium/platinum emerge in the metal commodity group. 

In contrast, the only significant connection in the energy commodity group is between crude oil 

and RBOB gasoline. It is relevant to mention that gasoline is generally refined from crude oil; 

hence a volatility spillover connection between these two commodities is inevitable. Moreover, 

for the agriculture commodity group, rough rice is least connected to other commodities, while 

strong connectedness is present between the wheat/corn pair. Our intragroup commodity pairing 

concurs with previous studies (Balli et al., 2019; Diebold et al., 2017) and indicates the significance 

of interdependence in similar commodities. 

<< Insert figure 1 about here >>



Furthermore, in the inter-group connectedness, commodities in the metal group transmit/receive 

substantial spillovers to/from energy and agricultural commodities, while the latter two groups 

show disconnect from each other. In particular, crude oil and natural gas receive volatility 

spillovers from gold, platinum, and silver, while the latter transmits the same to gold and silver. 

Moreover, in the agricultural commodities, corn and wheat receive significant volatility spillovers 

from metal commodities. Also reported by  Barbaglia, Croux, and Wilms (2020), the inter-group 

volatility transmission highlights the reliance of various commodities on each other’s production 

processes and supply chains.  

Overall, the volatility connectedness analysis shows low inter-group connectedness, distinct group 

clustering, and high intra-group connectedness. These findings imply that commodity volatilities 

show more connectedness in the same group than inter-group transmissions. Hence, commodity 

investors can diversify volatility risks by constructing balanced portfolios, and choosing 

commodities from different commodity groups rather than just sticking to one commodity group. 

Additionally, we observe the intra-group volatility disconnect between some commodities such as 

crude oil and ethanol, that offers diversification possibilities for specialized commodity group 

investors. 

Furthermore, studies show that negative shocks generate more spillovers in the commodity market 

than positive ones, producing asymmetries in the connectedness of volatility spillovers (Luo & Ji, 

2018; Shahzad, Hernandez, Al-Yahyaee, & Jammazi, 2018). To determine these asymmetries in 

the sampled commodity volatility spillovers, we construct a volatility connectedness network 

using positive and negative semivariance estimates. The positive semivariance connectedness 

network presented in Fig. 2a shows a relatively weak intra-group connectedness and fewer inter-

group spillovers than the negative semivariance connectedness network presented in Fig. 2b, 

confirming the presence of asymmetries in the volatility spillovers. Moreover, in the negative 

semivariance connectedness network, ethanol clusters with agricultural commodities instead of 

energy commodities, which confirm the agriculture-biofuel link reported by Barbaglia et al. (2020) 

and Shahzad et al. (2018). Nevertheless, intra-group connectedness in the agriculture commodity 

group is more robust in the positive semivariance network than the negative semivariance network, 

indicating intra-group diversification possibilities during bearish market times.  



<< Insert figure 2 about here >>

Based on the asymmetric volatility spillovers analysis, we observe the dominance of bad volatility 

transmission over good volatility in the total volatility connectedness for the commodity market. 

However, dividing total spillover transmission into positive and negative volatility connectedness 

overlooks the effect of asymmetries when commodity groups experience distinct market 

conditions. For instance, due to a recent political or economic event, the energy market may face 

a downturn, while the same event does not affect the other commodity groups. Therefore, to gauge 

the impact of how good or bad volatility in one commodity spills over to good or bad volatility of 

other commodities, we construct the volatility connectedness networks shown in Fig. 3, which 

serve to identify the good/bad volatility spillovers to/from individual commodities. Additionally, 

we estimate the volatility transmission mechanism in the short and long run, in order to understand 

the volatility connectedness in various frequency domains.   

Fig. 3 Panels a and b present the individual commodity-based asymmetric volatility connectedness 

among all the commodities under consideration in the short and long run. There are various points 

to note; first, owing to a strong production process link between crude oil and RBOB gasoline, we 

observe robust volatility transmission in the long-run between these energy commodities, whereas 

in the metal commodities, gold and silver show moderate volatility connectedness in the long-run 

regardless of market conditions. In contrast, wheat and corn transmit higher volatility spillovers to 

each other in the short run when both commodities are in a similar market state, i.e., positive-

positive and negative-negative. Second, the metal commodities show higher volatility 

connectedness with each other than to other commodity groups in all the scenarios considered, 

eliminating any possible intra-group diversification opportunities. Third, the volatility 

connectedness is more pronounced in the networks involving analogous volatility spillovers, i.e., 

positive-positive and negative-negative. This observation indicates the availability of fewer 

diversification opportunities when overall markets are experiencing negative returns. Fourth, the 

metal commodities are the only ones transmitting inter-group spillovers to crude oil, wheat, and 

rough rice when the overall commodity market experiences downturn, i.e., negative to negative 

spillovers. Lastly, the long-run clustering of ethanol with agricultural commodities under all 

scenarios reinforces the agriculture-biofuel link. Thus, we confirm the asymmetries in the volatility 

transmission of individual commodities under various directional spillover scenarios. In another 



vein, Baruník, Kočenda, and Vácha (2017) and Baruník, Kočenda, and Vácha (2016) report similar 

asymmetries in volatility spillovers for forex and stock markets, respectively.  

<< Insert figure 3 about here >>

Overall, the network connectedness approach discussed above provides essential insights into 

volatility connectedness among the sampled commodities over time. However, the static network 

analysis approach overlooks the time-varying feature of the volatility spillovers, which is very 

important given the vulnerability of commodity prices to the economic, financial, and political 

events such as the European debt crisis, middle east conflicts, and oil crises. To mitigate this 

shortcoming of the static spillover analysis approach, in the next sub-section we estimate and 

analyze time-varying volatility connectedness among sample commodities and commodity groups 

using the total and asymmetric volatility spillovers. The frequency domain analysis further 

highlights the importance of using various time horizons. 

5.2 Dynamic volatility spillover analysis 

Fig. 4 presents the total volatility spillovers among all commodities using the rolling window 

approach. This dynamic total spillover index is calculated from the GFEVD using a rolling window 

size of 200 days, a forecast horizon of H=100 days, and lag order of 3 (based on SIC). One can see 

many spikes and drops in the total connectedness confirming the time-varying nature of the 

volatility connectedness. The spikes and drops in the total volatility connectedness indicate the 

impact of economic, financial, or political events on commodity markets. For example, after a 

stable period from the start of the sample period to late 2011, the volatility connectedness 

experienced two spikes between 2012 and 2103 that can be attributed to the European debt crisis 

and political disturbances in the Middle East and North Africa. During the European debt crisis, 

countries such as Greece, Portugal, and Ireland failed to bail out over-indebted financial 

institutions or, even worse, were not able to refinance their government debts. Additionally, bigger 

European economies such as Spain, Italy, and France also experience a drop in their economic 

activity leading to sharp a decline in commodity demand from the region6; consequently, 

increasing the volatility transmission in the commodity markets. Similarly, political disturbances 

6 See https://www.ft.com/content/e5c80488-20f3-11e1-8a43-00144feabdc0

https://www.ft.com/content/e5c80488-20f3-11e1-8a43-00144feabdc0


in the Middle East and North Africa, particularly in Libya and Egypt, increased the volatility 

connectedness in the commodity markets due to the notable presence of the African continent in 

the commodity market supply chain7.   

<< Insert figure 4 about here >>

Owing to stable crude oil price and the slowdown of the global economy, the commodity market 

volatility connectedness started to decrease in the later part of 2013 and reached its second-lowest 

point by the start of 2015. However, in mid-2015, the Chinese stock market experienced a strong 

bearish trend as one-third of the total value of A-shares on the Shanghai Stock Exchange was lost 

within a month (Jayanthakumaran, 2016). The disruption of the Chinese financial market increased 

uncertainty not only in the financial markets but also in commodity markets globally, leading to 

increased volatility connectedness among commodities that lasted until the end of 2015. 

Post-2015, we observe a gradual decrease in the total volatility spillover connectedness with the 

index touching its lowest point just before the end of 2017. Owing to increasing US-China trade 

frictions, the spillover index experienced another sharp increase in the third quarter of 2018. 

Hence, our time-varying analysis indicates that the commodity markets are highly susceptible to 

both economic and political global shocks, which corroborates Balli et al. (2019), Barbaglia et al. 

(2020), Diebold et al. (2017), and Kang et al. (2017).

<< Insert figure 5 about here >>

Fig. 2 confirms the existence of asymmetries for the static spillover analysis, and we further 

explore these asymmetries in the time-varying framework. Fig. 5 shows asymmetries due to 

positive/negative shocks plotted in the positive/negative domain. It is apparent that the adverse 

negative shocks dominate the volatility spillovers both in magnitude and duration, confirming the 

distinctive asymmetries in the commodity spillovers, and concurring with the findings of Kang et 

al. (2017) and Luo & Ji (2018). Additionally, we present time-varying asymmetries in various 

frequency domains in Fig. 6a, and Fig. 6b, for the short and long term, respectively. Both short- 

7 See https://www.weforum.org/agenda/2016/05/which-are-africas-biggest-exports/

https://www.weforum.org/agenda/2016/05/which-are-africas-biggest-exports/


and long-term frequencies show a similar pattern of asymmetries in the volatility spillovers; 

however, long-term spillovers are more pronounced than short-term.     

<< Insert figure 6 about here >>

The analysis above confirms asymmetries in the total volatility connectedness among sampled 

commodities for the total sample and the various frequency domains. To further explore the 

asymmetries in inter- and intra-group volatility transmission, we estimate and analyze the time-

varying asymmetric inter- and intra-group volatility transmission. The short-term time-varying 

asymmetric volatility connectedness presented in Fig. 7a shows the dominance of bad volatility 

connectedness over good volatility connectedness for all commodity groups both in terms of 

magnitude and duration. Although we observe a similar time-varying intragroup volatility 

transmission pattern, the agriculture commodity group experiences higher intragroup volatility 

transmission than the metal or energy groups, which could be attributed to the ever-declining prices 

of agricultural commodities since their 2011 peak. Fig. 7 (b-d) presents inter-group volatility 

spillovers in the short run. It is evident from the figures that bad volatility spillovers from one 

group of commodities to other groups are more frequent and more pronounced than good volatility 

spillovers. Additionally, there is a higher inter-group volatility transmission between energy and 

agricultural commodities than metal commodities. 

<< Insert figure 7 about here >>

Lastly, Fig. 8 (a-d) presents the asymmetric inter- and intra-group volatility transmission for the 

long-run frequency that reinforces the dominance of bad volatility transmission in the commodity 

market over good volatility, consequently confirming the asymmetries in the volatility 

transmission mechanism. Moreover, we observe a higher (lower) volatility transmission between 

energy and metals (agriculture) commodity groups in the long run than the short run. Overall, the 

asymmetries in the inter- and intra-group volatility transmission indicate the importance of 

breaking down volatility connectedness analysis into commodity groups and frequency domains 

to explore the dynamics of volatility connectedness in the commodity market.       

<< Insert figure 8 about here >>



6. Conclusion

This paper examines the asymmetric volatility transmission between twelve commodities 

belonging to the energy, agriculture and metals commodity groups, using 5-minute trading data of 

commodity futures. We compute the asymmetric volatility connectedness using the asymmetric 

connectedness model of Baruník, Kočenda, and Vácha (2017), which encompasses the spillover 

model of Diebold and Yilmaz (2012) and the frequency connectedness approach of Baruník and 

Křehlík (2016). Additionally, we investigate the time-varying dynamics of volatility spillovers for 

all commodities and inter- and intra-group volatility connectedness, which reveal the asymmetries 

in the volatility connectedness owing to various economic, financial, and political events. 

Our empirical results are as follows: First, we report low inter-group connectedness, distinct group 

clustering, and high intra-group network-based connectedness in realized volatilities of sample 

commodities. Second, we find more pronounced inter- and intra-group volatility connectedness 

for negative realized volatilities than positive ones. We show that volatility connectedness is a 

long-run phenomenon. These findings reveal that commodity investors have fewer diversification 

opportunities when the overall commodity market is going through bearish trends. However, some 

inter- and intra-group commodity pairs such as crude oil/ethanol and natural gas/rice still offer 

diversification opportunities regardless of market conditions. Short-horizon investors can make 

use of short-term diversification opportunities available in the commodity market.

Based on the dynamic connectedness results, we show time-varying asymmetries in the total 

spillover transmission between the selected commodities. Additionally, the time-varying net 

directional spillover connectedness reveals that the bad volatility connectedness dictates the good 

volatility connectedness for the total sample as well as for the various frequency domains; both in 

terms of magnitude and duration. We identify various financial, economic and political events 

such as the European debt crisis, Chinese stock market crash, and political drift in the North 

African region, as potentially driving time-varying asymmetries in the volatility connectedness of 

the commodity market.  Finally, we report time-varying asymmetries for the inter- and intra-group 

volatility transmission that again shows the dominance of negative volatility transmission in both 

inter- and intra-group volatility transmission, being more pronounced in the long-run frequency 

domain.     
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Table 1. Summary of Literature

No Author(s) Method(s) Sample Period Variables Main Findings

1 Diebold et al. (2017) VAR; FEVD 2011–2016
Daily 

Energy, livestock, 
agricultural 
commodities, 
precious and 
industrial metals

Clustering of commodities into groups; high overall 
connectedness; energy group as the main transmitter.

2 Kang et al. (2017) DECO-GARCH 2002–2016
Daily 

Oil, agricultural 
commodities; and 
precious metals

Strong spillover during crisis; gold and silver are 
transmitters to other commodities.

3 Rehman et al. (2018) SVAR 1989–2015
Daily

Crude oil, and 
precious and 
industrial metals

Structural oil shocks impact precious metal returns tails 
except for gold.

4 Zhang and 
Broadstock (2018) VAR; FEVD 1982–2017

Daily

Crude oil, beverage, 
fertilizers, food, 
precious metals, and 
raw materials

Codependence in price-changes among seven major 
commodity classes; the spillover from food commodities 
increases after GFC.

5 Ferrer et al. (2018) VAR; FEVD 2003–2017
Daily

Crude oil, US 
renewable energy 
stocks, high 
technology stocks, 
conventional energy 
stocks, US 10-year 
Treasury bond yields

Return and volatility is mostly connectedness in the short-
term; crude oil prices are not the key driver of renewable 
energy companies' performance.

6 Křehlík and Baruník 
(2017)

Asymmetric 
Connectedness

1987-2014
5-Minutes Data

Crude oil, heating oil, 
and gasoline 

Shocks to volatility with response shorter than one week are 
increasingly important; demand-side shocks to volatility are 
becoming increasingly important in creating short-run 
connectedness.

7 Luo and Ji (2018) MHAR with DCC-
GARCH 

2006-2015
5-Minutes Data 

US crude oil futures 
and China's 
agricultural 
commodity futures

Volatility spillover from the US oil to China's agricultural 
markets is verified; asymmetric volatility spillover exists 
between positive and negative volatilities.

https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0085
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0135
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0200
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0250
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0250
https://www.sciencedirect.com/science/article/pii/S0140988319301859#bb0095


8
Mensi, Tiwari, 
Bouri, Roubaud, and 
Al-Yahyaee (2017)

Wavelet and Copula 
methods

2012-2016 
Daily 

Implied volatility 
indexes of oil, wheat, 
and corn 

Time-varying asymmetric tail dependence was found; the 
dependence structure is sensitive to time horizons.

9 Ji, Bouri, Roubaud, 
& Shahzad (2018)

Dependence-
Switching CoVaR-
Copula model; 
CoVaR; CoVaR∆

2000-2017
Daily

Crude oil, natural 
gas, maize, rice, 
soybean, and wheat, 
as well as IGC's 
grains and oilseeds 
index

Agricultural commodities are more sensitive to shock from 
oil than from gas.

10
Shahzad, Hernandez, 
Al-Yahyaee, and 
Jammazi (2018a)

CoVaR; CoVaR∆ 2000-2017
Daily

WTI crude oil and 
IGC’s wheat, maize, 
soybeans, and rice

Asymmetric tail dependence between oil and all agricultural 
commodities was found; bilateral and asymmetric upside 
and downside spillovers from oil to agricultural 
commodities were witnessed.

11 Guhathakurta, Dash, 
and Maitra (2020)

Structural Breaks 
Test;
DY (2009, 2012, 
2014);
Baur and Lucey 
(2010)

1996-2018
Daily 

Prices of agro-
commodities (cocoa, 
coffee, rubber, 
soybeans, soya oil, 
sugar, wheat, palm 
oil, oats, and corn), 
six metal 
commodities 
(aluminum, copper, 
silver, 
gold, palladium, and 
platinum), and oil 
price of WTI index

Overall spillovers peaked during the oil price boom of 
2007–08 and crash of 2015–16; oil contributes most to the 
volatility of agro and metal commodities; generally, agro 
commodities are net receivers; strong volatility connection 
between oil price and agro commodities is consistent with 
the demand for biofuels.

12
Kang, Tiwari, 
Albulescu, and Yoon 
(2019)

BK (2018) 1990-2017
Monthly 

Crude oil price and 
five agriculture 
commodity price 
indexes (meat, dairy, 
cereals, vegetable 
oils, and sugar)

Vegetable oil contributes most to the volatility of oil; 
bidirectional and asymmetric connectedness between oil and 
agriculture markets at all frequency bands were found; 
volatility spillover between oil and agriculture commodities 
increased in the long run.

13 Yip, Brooks, Do, and 
Nguyen (2020) FIVAR

2012-2017
Daily

CBOE commodity 
implied volatility 
indices of crude oil, 

Net volatility spillover from oil to agricultural commodities 
decreased during the low regime and more so during 
relatively high volatility regime of oil; a regime-dependent 
trading strategy can be beneficial to oil futures investors.

https://www.sciencedirect.com/science/article/pii/S0140988319303615#bib0075
https://www.sciencedirect.com/science/article/pii/S0140988319303615#bib0075
https://www.sciencedirect.com/topics/engineering/palladium
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corn, soybean, and 
wheat 

14 Lu, Yang, and Liu 
(2019)

HAR 2008-2017
5-Minutes Data

Future contracts on 
crude oil, corn, 
soybean, and wheat 

Bidirectional spillovers of short-term volatilities between 
crude oil and agricultural commodity markets in the crisis 
period, compared to mid-term and long-term volatilities of 
corn being transmitted to the crude oil volatility in the post-
crisis period.

15 Barbaglia, Croux, 
and Wilms (2020)

DY (2012) using t-
LASSO VAR

 2012-2016
Daily 

Agricultural (corn, 
wheat, soybean, 
sugar, cotton, coffee), 
energy (crude oil, 
gasoline, natural gas) 
and biofuel (ethanol) 
commodities

Volatility spillovers between energy and agricultural 
commodities were found. 
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Balli, Naeem, 
Shahzad, and de 
Bruin (2019).

Uncertainty 
Measurement 
(Chuliá et al. 
(2017);
DY ( 2014); BK 
(2018)

2007-2016 
Daily

Commodity 
uncertainty indicators 
computed by using 
daily spots and 
futures price of 22 
commodities which 
are traded globally, 
namely WTI crude 
oil, Brent crude oil, 
gasoline, heating oil, 
gas oil, natural gas, 
gold, silver, platinum, 
palladium, aluminum, 
copper, zinc, lead, 
nickel, wheat, corn, 
soybean, coffee, 
sugar, cocoa, and 
cotton.

Uncertainty spillovers increased during the GFC and 2014–
16 oil price collapse; intra-group spillover are more 
pronounced; the safe-have role of precious metsls; 
commodity uncertainties are more connected in the long-run.

17 An, Gao, An, Liu, 
Sun, and Jia (2020)

Dynamic Complex 
Network;
GARCH-BEKK 

2011-2019 
Daily

Future prices of 
energy commodities 
(natural gas, crude 
oil, RBOB regular 

The dynamic evolutionary feature of overall structure of the 
spillover network was found.
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gasoline, heating oil, 
coal), precious metals 
(gold, palladium, 
platinum, silver) and 
industrial metals 
(aluminum, copper, 
zinc, lead, nickel, tin, 
cobalt, uranium, iron 
ore, U.S. steel)

18
Uddin, Shahzad, 
Boako, Hernandez, 
and Lucey (2019)

DY (2012);BK 
(2018) 

1999-2019
Daily

Tradable futures of 
silver, gold, platinum, 
and palladium

Asymmetric spillovers are pronounced during crisis periods; 
silver and gold are the highest transmitter in both the short 
and long run while palladium and platinum are receivers.

19 Ji, Bahloul, Geng, 
and Gupta (2020)

Sentiment Measure 
(Bahloul, 2018);
DY (2009, 2012, 
2014)

2008-2016
Daily

Market sentiments 
computed from 
hedgers’ positions on 
agricultural, energy 
commodities, metals, 
and live-stocks

Sentiments in agricultural and energy markets were mainly 
engaged in cross-hedging in the futures market by benefiting 
from the safe-haven potential of metals; country-specific 
geopolitical risk drives sentiments’ connectedness through 
energy markets.  

20
Tiwari, Nasreen, 
Shahbaz, and 
Hammoudeh (2020)

Wavelet Coherency; 
Phase-Difference; 
DY
(2012);

1990-2017
Monthly

Food Price Index, 
Beverage Price 
Index, Industrial 
Inputs Price Index, 
Agricultural Raw 
Materials Index, 
Metals Price Index, 
the Fuel (Energy) 
Index

The agriculture sector is mostly the spillover receiver; 
industrial inputs are the primary source of volatility 
transmission at all frequencies.

Notes: VAR = Vector Auto-Regression; FEVD = Forecast Error Variance Decomposition; GARCH = Generalized Autoregressive Conditional Heteroskedasticity; 
DCC = Dynamic Conditional Correlation; SVAR = Structural Vector Auto-Regression; DECO = Dynamic Equi-Correlation; MHAR = Multivariate Heterogeneous Auto-
Regressive; HAR = Heterogeneous Auto-Regressive; FIVAR = Fractionally Integrated Vector Auto-Regressive; CoVaR = Conditional Value-at-Risk; BEKK = Baba, 
Engle, Kraft, and Kroner; GFC = Global Financial Crisis; DY = Diebold & Yilmaz; BK = Barunik & Krehlik; CBOE = Chicago Board Options Exchange.
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Table 2. Descriptive stats of realized volatility measures.

Class Symbol Commodity Mean Minimum Maximum Std. Dev.
a). Realized variances
Energy CL Crude oil 3.68 0.15 35.29 3.77

NG Natural Gas 6.27 0.47 64.56 5.73
RB RBOB gasoline 3.47 0.26 46.21 3.59
AC Ethanol 2.24 0.00 85.51 4.33

Metals GC Gold 0.89 0.05 12.77 0.94
SI Silver 2.95 0.14 35.80 3.27
PA Palladium 3.56 0.31 28.98 3.10
PL Platinum 1.59 0.23 14.12 0.99

Grains W Wheat 3.22 0.00 44.32 3.02
C Corn 2.50 0.15 52.15 3.08
S Soybeans 1.47 0.15 42.50 1.80
RR Rough rice 2.04 0.00 27.47 2.30

b). Realized positive semivariances
Energy CL Crude oil 1.84 20.99 0.09 2.05

NG Natural Gas 3.20 56.37 0.28 3.78
RB RBOB gasoline 1.69 43.59 0.09 2.00
AC Ethanol 1.06 29.42 0.00 1.83

Metals GC Gold 0.44 6.38 0.03 0.49
SI Silver 1.48 26.09 0.08 1.78
PA Palladium 1.77 20.33 0.16 1.57
PL Platinum 0.79 6.93 0.11 0.50

Grains W Wheat 1.64 36.66 0.00 1.98
C Corn 1.25 30.95 0.05 1.65
S Soybeans 0.70 10.92 0.00 0.67
RR Rough rice 1.00 12.95 0.00 1.25

c). Realized negative semivariances
Energy CL Crude oil 1.84 17.90 0.06 1.91

NG Natural Gas 3.11 42.95 0.20 2.94
RB RBOB gasoline 1.79 44.22 0.12 2.32
AC Ethanol 1.19 64.36 0.00 3.30

Metals GC Gold 0.45 7.09 0.02 0.52
SI Silver 1.53 34.31 0.06 2.10
PA Palladium 1.79 17.09 0.13 1.67
PL Platinum 0.80 7.20 0.11 0.55

Grains W Wheat 1.57 30.30 0.00 1.53
C Corn 1.22 51.63 0.04 2.01
S Soybeans 0.76 41.77 0.07 1.35
RR Rough rice 1.02 20.44 0.00 1.33

Note: Std. Dev. indicates the standard deviation.



Figure 1. Spillover network of commodities realized volatilities using DY (12) approach.

Note: This figure depicts the network graphs of the pairwise directional volatility connectedness across the 
16 commodities under consideration computed using the approach of Diebold and Yilmaz (2012). The size 
of edges shows the magnitude of pair-wise directional spillover. The color of node shows the hierarchical 
cluster. The pie on the border of node shows the net position of that node, filled area shows net transmission 
position relative to reception. 



Figure 2. Spillover network of commodities realized semivariances using DY (12) approach.

a). Positive realized semivariances 

 
b). Negative realized semivariances

Note: This figure depicts the network graphs of the pairwise directional volatility connectedness across the 
16 commodities under consideration computed using the approach of Diebold and Yilmaz (2012). The size 
of edges shows the magnitude of pair-wise directional spillover. The color of node shows the hierarchical 



cluster. The pie on the border of node shows the net position of that node, filled area shows net transmission 
position relative to reception.



Figure 3. Spillover network of commodities realized semivariances using BK (18) approach.

a). Short-run (1-5 days) b). Long-run (more than 5 days)
Positive to positive realized semivariances

Positive to negative realized semivariances

Negative to positive realized semivariances

Negative to negative realized semivariances



Note: These figures display the network graphs of net directional volatility connectedness across 16 commodities 
considered and estimated using the method of Barunik and Krehlik (2016). The size of edges shows the magnitude of 
pair-wise directional spillover. The color of node shows the hierarchical cluster. The pie on the border of node shows 
the net position of that node, filled area shows net transmission position relative to reception. 



Figure 4. Total volatility spillover among all commodities using DY (12)

Note: This figure displays the time-varying behavior (blue line) of the total volatility spillover index among the 16 
commodities considered computed using the approach of Diebold and Yilmaz (2012). This dynamic total spillover 
index is calculated from the generalized forecast error variance decompositions using a rolling window size of 200 
days and a forecast horizon of H=100 days and lag order of 3 (based on SIC). The average spillover is shown using 
dotted red line.



Figure 5. Asymmetric volatility spillover among all commodities using DY (12)

Note: This figure displays the time-varying behavior (black line) of the difference between total positive volatility 
spillover index and total negative spillover index among the 16 commodities considered computed using the approach 
of Diebold and Yilmaz (2012). The dynamic total asymmetric spillover indices are calculated from the generalized 
forecast error variance decompositions using a rolling window size of 200 days and a forecast horizon of H=100 days 
and lag order of 1 (based on SIC). 



Figure 6. Asymmetric volatility spillover among all commodities using BK (18)

a). Short-run (1-5 days)

b). Long-run (more than 5 days)

Note: These figure displays the time-varying behavior (black line) of the difference between total positive volatility 
spillover index and total negative spillover index among the 16 commodities considered computed using the approach 
of Barunik and Krehlik (2016). The dynamic total asymmetric spillover indices are calculated from the generalized 
forecast error variance decompositions using a rolling window size of 200 days and a forecast horizon of H=100 days 
and lag order of 1 (based on SIC). 



Figure 7. Short-run volatility spillover asymmetries among and across commodity classes.

a). Within class b). From energy to others

c). From metals to others d). From Grains to others



Figure 8. Long-run volatility spillover asymmetries among and across commodity classes.

a). Within class b). From energy to others

c). From metals to others d). From Grains to others


