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BASIC INVESTIGATION

Multiple-Image Deep Learning Analysis for Neuropathy
Detection in Corneal Nerve Images

Fabio Scarpa, PhD, Alessia Colonna, MSc, and Alfredo Ruggeri, MSc

Purpose: Automated classification of corneal confocal images from
healthy subjects and diabetic subjects with neuropathy.

Methods: Over the years, in vivo confocal microscopy has
established itself as a rapid and noninvasive method for clinical
assessment of the cornea. In particular, images of the subbasal nerve
plexus are useful to detect pathological conditions. Currently, clinical
information is derived through a manual or semiautomated process
that traces corneal nerves and achieves their descriptors (eg, density
and tortuosity). This is tedious and subjective. To overcome this
limitation, a method based on a convolutional neural network (CNN)
for the classification of images from healthy subjects and diabetic
subjects with neuropathy is proposed. The CNN simultaneously
analyzes 3 nonoverlapping images, from the central region of the
cornea. The algorithm automatically extracts features, without the
need for neither nerve tracing nor parameter extraction nor montage/
mosaicking, and provides an overall classification for each image trio.

Results: On a dataset composed by images from 50 healthy
subjects and 50 subjects with neuropathy, the algorithm achieves
a classification accuracy of 96%. The proposed method improves the
results obtained using a traditional method that traces nerves and
evaluates their density and tortuosity.

Conclusions: The proposed method provides a completely auto-
mated analysis of corneal confocal images. Results demonstrate the
potentiality of the CNN in identifying clinically useful features for
corneal nerves by analysis of multiple images.

Key Words: corneal nerves, confocal microscopy, convolutional
neural network, multiple-image

(Cornea 2019;00:1–6)

Accurate diagnoses in ophthalmology usually depend on
the recognition of typical features and their changes in the

main ocular structures, for example, nerve fibers in the corneal
nerve plexus. Thanks to in vivo confocal microscopy (IVCM),

nerves are imaged in a fast and noninvasive way. Because of
these attributes, IVCM became an indispensable tool for
studying corneal physiology and disease.

The cornea is one of the most densely innervated tissues
in the human body,1,2 and the correlation between morpho-
metric parameters of corneal nerves (density, tortuosity, etc.)
and a wide group of ocular (eg, dry eye syndrome) and
systemic diseases (eg, diabetic neuropathy) has been widely
demonstrated.3–17

A variety of methods for quantifying corneal nerve
parameters have been recently proposed in the literature.18

However, most of these methods are based on a manual or
semiautomatic tracing of nerve fibers, which is a tedious,
subjective (not reproducible), and time-consuming process. A
few completely automatic software applications were devel-
oped, each with its own specific advantages and disadvantages
(especially in low-quality images), and several morphological
parameters were proposed.19–27 However, none of them is
currently used in clinical practice, and standard criteria for this
analysis are still missing. In addition, because each image
covers only a small part of the cornea, one single image may
not fully describe the general corneal nerve appearance and thus
may not be sufficient to achieve a correct diagnosis. To cope
with this, wide-field mosaics can be built,28,29 but their
construction requires acquisition of several images, mostly
overlapped, and a registration process that can create an artifact
(eg, because of the misalignment of the images) in the final
wide-field image. These are the main reasons why corneal nerve
analysis has not become a widespread clinical practice yet,
despite its great potentiality reported in the scientific literature.

This work bypasses the tracing problem and proposes
a method based on a convolutional neural network (CNN),
a deep learning technique, which directly associates IVCM
images to healthy subjects or to subjects with diabetic
neuropathy. The proposed method considers simultaneously
different nonoverlapping images, so as to enlarge the analyzed
corneal area, without building their mosaics.

CNNs are increasingly being used in the field of image
processing, with interesting results, and also in the medical
field,30 particularly in ophthalmology.31–34 This study inves-
tigates whether the CNN can also be successfully used for
corneal nerve multiple-image analysis.

MATERIAL
In this study, confocal images of the subbasal corneal

nerve plexus from 50 diabetic (type 1 or 2) with neuropathy
and 50 age-matched healthy subjects (536 13 years, 58 men/
42 women) were used.
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For each subject, 3 nonoverlapping images were
considered from the left and right eye separately, acquired
from the central part of the cornea, with no information
about the mutual position of the images. Thus, the dataset
of this study consists of 600 confocal images. They were
acquired using the Heidelberg Retina Tomograph-II with
the Rostock Cornea Module (Heidelberg Engineering
GmbH, Heidelberg, Germany). Each image, saved in
a gray-scale digital format, covers an area of 400
· 400 mm (384 · 384 pixels), showing a small region
of the corneal nerve structure. Figure 1 shows 2
representative images.

Image acquisition was performed in different clinical
centers, and each image was anonymized to delete any
patient information. Because the acquisition of these
images was approved by the respective local ethical
review committees, occurred with informed consent, and
followed the tenets of the Declaration of Helsinki, no
specific further ethical approval was sought for the
retrospective analysis of the resulting compilation
of images.

METHODS

Preprocessing
In the peripheral area of images, problems can arise

because of the characteristic curvature of corneal layers and
the possible misalignment of the instrument to the corneal
apex during image acquisition. Other common problems
include spatial distortion, partial volume effect (sometimes
corneal structures belonging to layers adjacent to the
subbasal nerve plexus also appear in the image), illumina-
tion drift, and blurring.

Thus, the first step of the proposed automatic pro-
cedure consists of a crop of the most external area (10 pixels,
empirically determined) of the analyzed image. Moreover,
each image is resized by a factor of 0.7. The final size of the
image is 256 · 256 pixels. The bicubic function used to
resize the image also allows a partial noise reduction.

The dataset consists of 3 nonoverlapping images of the
eye of each subject. Thus, to simultaneously analyze all
images of each eye, 6 (ie, 3!) blocks of 3 images each were
built, and within them, the order of the images was

FIGURE 1. Representative images from a healthy
(left) and a pathological (right) subject.

FIGURE 2. Diagram of the proposed
algorithm. Input data correspond to
N subjects, each composed by n
blocks of 3 images. The algorithm
uses the CNN to provide a binary
classification (healthy/pathological).
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rearranged. This technique should ensure that the final
classification is not influenced by the order in which the images
of each subject are considered because, in this dataset, there is
no information about their mutual position in the cornea.

CNNs are known for their need of large datasets: for this
reason, a data augmentation technique was used, consisting of
flipping each image horizontally. Thus, for each block of 3
images, a new block obtained by horizontally flipping each of
its images was derived.

In this way, 2400 blocks with 3 images each were used
to train the CNN (12 blocks for each of the left and right eyes
of 100 subjects), as shown in Figure 2.

Neuropathy Classification
The proposed CNN classifies each block of 3 images as

healthy or pathological. The CNN is composed by a feature
extraction part and a classification part (the architecture of the
CNN is shown in Figure 3).

The first part of the architecture consists of subsequent
application of convolutional units [convolution, batch normal-
ization, and rectified linear unit (ReLU)] and down-sampling
layers (max-pool layer). CNNs usually present an architecture
in which the input size gets smaller and smaller from the start
to the end of the network, whereas the number of channels
increases. The proposed CNN progresses from a small number
of filters (8 filters with kernel size 7 · 7, in the first 2
convolutional units), detecting low-level features, to a larger
number of filters (32 filters with kernel size 3 · 3, in the last 2
convolutional units), each looking at different high-level
features. The intermediate layers have 16 filters with kernel
size 3 · 3. Zero padding is used during every convolutional
layer. Moreover, after each convolutional layer, a ReLU layer
is used to introduce nonlinearities, which allow models to learn
patterns that are more complex. The output of the last layer is
a 32 · 32 · 32 representation of the input.

The achieved representation is supplied to 2 fully
connected layers, which represent the classification part.
After the final fully connected layer, a softmax nonlinearity
is used to normalize the result into a binominal distribution
over the 2 classes, healthy and pathological subjects. This
layer also provides a score that represents the confidence of
the final classification.

The parameters of the convolutional and fully connected
layers were randomly initialized from a zero-mean Gaussian
distribution. Different values of hyperparameters were tried:
SGDM optimization with a momentum of 0.9 was adopted, the
training was performed on 10 epochs, the batch size was set to
128, and the initial learning rate was set to 0.0001. After training,
the classification of a multiple-image block took less than 1 ms.

A cross-validation strategy was used: training and
evaluation were repeated 5 times, and each time, the CNN
was trained on data from 80 subjects and evaluated on data
from the other 20 subjects (10 healthy and 10 pathological each
time). In this way, the CNN classified all available subjects, but
each time it was trained on data in which the subjects (both left
and right eyes) under test were not included.

FIGURE 3. Convolutional neural network architecture
for healthy/pathological classification. Input is a block
of 3 images. Blue boxes correspond to a convolutional
unit (which consist of a convolutional layer, followed
by a batch normalization and a ReLU activation layer).
Orange boxes correspond to activation maps ob-
tained by max-pooling. The 2 green boxes represent
the fully connected layers, and the gray one represents
the softmax layer. The number of channels (number
of filters/kernels) is denoted at the bottom of each
box. The xy-size is provided at the top of each box.

TABLE 1. Performance Achieved by the Proposed CNN Either
on a Single Block of 3 Images or on a Single Subject, Using
Cross-Validation on 100 Subjects: Training on 80 Subjects and
Evaluation on the Other 20, Repeated for 5 Times

Mean, % SD, %

Single block

Accuracy 97 2

Sensitivity 98 3

Specificity 96 6

Whole subject

Accuracy 96 4

Sensitivity 98 4

Specificity 94 9
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RESULTS
Cross-validation was used to evaluate the proposed

classification on 100 subjects: training on 80 subjects and
evaluation on the other 20, repeated 5 times. Results were
obtained from 5 different test sets, each composed of 20
subjects (10 healthy and 10 pathological).

For each subject, 12 blocks of 3 images were considered
for the left and for the right eye, and each block was classified
by the proposed CNN. Results from each block revealed
a good capability of the CNN to achieve the correct
classification. The mean accuracy is 97%, as shown in Table 1.

A final classification was derived for each subject,
considering the prevalent classification of her/his blocks. A
subject was considered properly classified if both right and left
eyes were correctly classified. The validation of the proposed
CNN resulted in a mean accuracy of 96% (96/100 subject were
correctly classified).

Furthermore, the classification score for each subject was
investigated: this score represents the probability to belong to
the predicted class (high score = high probability to belong to
the class). Results for each subject were derived by the mean
probability of these blocks and are shown in Figure 4. The
average score was approximately 93%, as shown in Table 2.
Incorrect and correct classifications were also considered
separately with a mean score of 94% for the correct ones
and 74% for the incorrect being obtained. This classification
score could therefore be used as an index of the reliability of
the classification proposed by the CNN.

The proposed method was also compared with a method
previously developed that analyzes the nerve density and
morphology of each single image: nerve fibers are automati-
cally traced,25 and density and 2 tortuosity indexes (short-range
and long-range tortuosity) are derived for each image.13 Based

on these morphological measures, a final classification is first
derived for each image and finally for the whole subject
(obtained by averaging the classifications of all its images). To
compare the results, both methods were evaluated on the same
dataset of 100 subjects. Density and tortuosity were different in
healthy versus pathological subjects, as expected from the
literature.4,9,13,18,20,23,24,26 However, the accuracy obtained
using nerve density and tortuosity in the classification of each
subject was much lower than that obtained by the proposed
method, as shown in Table 3. The CNN appears to be able to
identify features that better describe neuropathy conditions.

DISCUSSION
In recent years, IVCM has definitely increased the

clinical interest in the corneal structure. IVCM allows acquir-
ing images of various layers in the human cornea, in a fast and
noninvasive way. Many studies revealed correlations between
morphometric parameters of the corneal nerves and a wide
group of ocular and/or systemic diseases. However, parameter
estimation is based on a manual or semiautomatic tracing of
nerves structures, which is a tedious, subjective (not reproduc-
ible), and time-consuming process. Difficulties in obtaining an
accurate nerve tracing and long run times are likely the main
reasons why corneal nerve analysis has not become part of the
mainstream clinical diagnostic process yet.

The proposed method is based on a CNN. It aims to find
the correlation between corneal nerve images and the presence
of diabetic neuropathy, bypassing the tracing problem and
obtaining a direct classification between healthy and patholog-
ical subjects. This work considered 3 corneal images of the left
eye and 3 of the right eye, of 100 subjects (50 healthy and 50
pathological), using cross-validation to evaluate results.

The proposed method obtained a mean accuracy of
96% (96/100 subjects were correctly classified), demonstrat-
ing the potential of the CNN in identifying clinically useful
features. These results outperform the ones obtained by
traditional methods using nerve density and tortuosity
automated estimation. These results denote that the CNN

FIGURE 4. Classification scores for
each subject. Mean scores of blocks
are reported for each subject. Dots
represent healthy subjects, while tri-
angles represent pathological ones.
Blue-colored shapes (dot or triangle)
correspond to correctly classified sub-
jects, and red-colored shapes corre-
spond to incorrectly classified subjects.

TABLE 2. Classification Scores

Mean SD Minimum Value Maximum Value

93% 9% 59% 100%
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provides a more complex analysis of the 3 images, which is
more similar to the human clinical process than the one
obtained by classifying each image separately and taking the
average, as performed in previous works.13,26 Indeed, clinical
practice involves the observation of several images at the
same time, looking for some features that reveal the presence
of pathologies (in this case, neuropathy due to diabetes).
These features could be present only in some of the acquired
images (even only in one) because of the limited field of view
of IVCM. Those features are, however, crucial for the final
diagnosis, even if they are present in only 1 image out of 3.
The proposed CNN analysis appears to reproduce what
clinicians do during the diagnostic process, simultaneously
analyzing multiple images and providing an overall classifi-
cation for the whole subject.

An additional advantage of the proposed method is that
analysis of multiple images is performed without the need for
their montage/mosaicing, which requires acquisition of
several images, mostly overlapped, is time consuming, and
can introduce artifacts as a result of registration errors.

The dataset of this study consisted of 3 images for the
eye of each subject; thus, the CNN was implemented to
analyze 3 images simultaneously. However, better results
may probably be achieved by increasing the number of
simultaneously analyzed images.

The score associated with the classification of each
block was also investigated. The proposed CNN presents high
scores in correct classifications (94%), whereas scores are
lower (74%) in incorrect classifications, as shown in Figure 4.
The classification score could be used, as an example, to
assess whether the proposed classification is reliable or
whether more images are required.

In conclusion, the automated classification, obtained by
the proposed CNN, and its confidence score provide an
interesting quantitative analysis that could be useful for the
diagnostic clinical process.
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