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Abstract.  The performance of the vehicle's active safety systems depends on accurate 

knowledge of the vehicle state, and the frictional forces resulting from tyre contact and the road 

surface. This paper aims to estimate the vehicle states and tyre-road coefficient of friction 

through and Extended Kalman Filter (EKF), integrated with the Double-Track model and the 

Pacejka Magic Formula that allows knowledge of the lateral force of the tyre. Besides, this 

approach can estimate the overall coefficient of lateral friction on each side of the vehicle, left 

and right respectively. Simulations based on a reference vehicle model are performed on 

different road surfaces and driving manoeuvres to verify the effectiveness of the proposed 

estimation method, in order to obtain good performance from different vehicle control systems. 

1. Introduction 

Over the past decades driver assistance system have become a standard in automotive industry [1].  

Nevertheless, the number of deaths caused each year in the world by road accidents exceeds one million. 

This number is unacceptable as technology and technology advances. In order to try to reduce this very 

high value, it is possible to try to improve the performance of these driver assistance systems. The 

performance of these systems could be further improved if more accurate knowledge on the vehicle 

state, inputs and parameters would be available. However, many of these variables, as the sideslip angle, 

cannot be measured directly in commercial vehicles because the sensors are very expensive. In literature, 

it’s possible to distinguish mainly two approaches to develop vehicle state observers, that employing 

readily available sensors to correct the estimation of the variables which require the employment of 

expensive sensors. The first approach uses a kinematic vehicle model, independent from tyre parameters 

and road condition, in combination with measurement from standard vehicle sensor. This estimation 

technique is sensitive to sensor errors (noise and bias). A correction for these errors by GPS 

measurement is possible [2] [3], but require accuracy is not achievable by consumer-grade GPS and 

reception may be lost. 

The second approach uses a dynamic vehicle model in combination with the measurements from 

standard vehicle sensors. With this approach the model can correct for sensors inaccuracies and 

unwanted measurements, but information on tyre parameter and road condition is needed for the tyre 

model. Many observers have been developed based on this approach [4] [5] [6] [7] [8], where different 

tyre models have been used.  

This paper proposes a new method for estimating the fundamental variables of vehicle dynamics and, at 

the same time, thanks to the use of a simple Magic formula characterized by four parameters obtained 

from extensive offline testing [9][10], the estimation of the lateral friction coefficient, through the use 

of an extended Kalman filter. The determination of interaction forces is a very complex operation, and 

as already mentioned, it requires the adoption of very expensive sensors. Through the approach proposed 

in this work a computationally slim method has been offered, one that can be inserted inside a car control 

unit and therefore considerably reduce the cost of sensors on the vehicle. And in the final analysis to be 

able to allow to equip, any type of car, with high-performance safety systems and driving aid. 

 



 

 

 

 

 

 

2. Estimator Design 

The estimator is based on the Double-Track model. This model is shown in Figure 1 and Figure 2. The 

nomenclature used follows the following standard: the first subscript indicates the axle (front/rear), 

while the second subscript indicates the position (left/right). 𝛿 is the steering wheel angle; 𝑟 is the yaw 

rate; 𝑉𝐺 is the centre of gravity (COG) velocity vector, 𝑣 and  𝑢  are, respectively , the COG vehicle 

velocity components in lateral and longitudinal direction; 𝛽 is the COG sideslip angle; 𝛼11 = 𝛿 −
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) are respectively the front left, 

the front right, the rear left and the rear right tyre slip angles; 𝐹𝑥𝑖𝑗 and 𝐹𝑦𝑖𝑗 are the longitudinal and 

lateral tyre-road interaction forces; 𝑎 and 𝑏 are the distances from the COG to the front and rear axle; 𝑠 
is the vehicle track width; 𝑚 is the vehicle mass and 𝐽 is the yaw inertia moment. �̇� and �̇� represent the 

derivatives of 𝑣 and 𝑟 with respect to time. 

 

 

 

 

Figure 1. The Double-Track 

model: velocity vectors, slip 

angles and steering wheels angles. 

 Figure 2. The Double-Track 

model: velocity vectors and 

pneumatic-road tangential 

interaction forces. 

 
 

The lateral vehicle dynamic can be formulated as follow: 

 

{
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A four-parameter version of the Pacejka Magic Formula (stiffness factor 𝐵, form factor 𝐶, peak value 

𝐷, curvature factor 𝐸) is used to model the tyre/road interaction forces to complete the dynamic vehicle 

description: 

 
𝐹𝑦(𝛼) = 𝐷 sin {𝐶 𝑎tan [𝐵𝛼 − 𝐸(𝐵𝛼 − atan (𝐵𝛼))] }    (2) 



 

 

 

 

 

 

 

The parameter 𝐷 is placed equal to the product between the global lateral friction coefficient and the 

vertical load, respectively equal to 𝜇𝑙𝐹𝑧 for the left side of the vehicle, and equal to 𝜇𝑙𝑟𝐹𝑧 for the right 

side, obtaining two different formulations of the Pacejka Magic Formula (MF). Considering the global 

lateral friction coefficients represented by the following equation  
 

�̇�𝑙 = 0; �̇�𝑟 = 0 (3) 
 

as additional states of an augmented state vector [11], the estimator design model is obtained. The state 

vector is given by 𝒙 = [𝑣, 𝑟, 𝜇𝑙 ,   𝜇𝑟]𝑇 where 𝑣 is the lateral velocity, 𝑟 is the yaw rate, and 𝜇𝑙 and 

𝜇𝑟 are the lateral coefficients of adhesion left and right respectively. The input vector 𝒖 = [𝛿, 𝑢]𝑇 is 

composed by the steering wheel angle 𝛿 and the longitudinal speed of the vehicle 𝑢. The EKF estimation 

algorithm is briefly recalled in Figure 2 [11]. Consider the nonlinear state function 𝒇 given by the 

combination of the equations (1) – (3) with an additive Gaussian process noise 𝒘 and a nonlinear 

function 𝒉 of measurement equations with an additive Gaussian noise 𝒗: 

 

 
 

Figure 2. EKF estimation algorithm 
 

Diagonal and constant process noise covariance 𝑄𝑘−1 and measurement noise covariance 𝑅𝑘 matrices 

are considered. In the estimator design model outlined above, the estimated measurements vector is 

constituted by the lateral acceleration and the yaw rate:  
 

�̂� = [
�̂�𝑦
�̂�
] = [

�̇� +  𝑢𝑟

𝑟
] (4) 

 

This vector is compared with the real measurements vector coming from the vehicle to perform the 

updating operation of the estimated states and the error covariance. The suitability of the EKF estimator 

for the proposed application is demonstrated for two case studies. 

  

3. Simulation Results 

The simulations results presented in this section are obtained using Matlab/Simulink. A comparison was 

made between the estimator and a full-vehicle model obtained through the software Adams/Car. The 

sideslip angle, the left and right coefficient of frictions and the measurements of the reference vehicle 

are compared with the estimation provided by the EKF. In order to obtain realistic measurements, 

Gaussian noises are added in the simulated measurements. The simulation results of two representative 

manoeuvres are presented here. Table 2 gives the details and purpose of each manoeuvres. Figure 3 

provides the indicative physical representation of each proposed scenario where the colour represents 

the friction coefficient. The black colour corresponds to a high friction value; the green colour 

corresponds to a medium friction value; and the green colour corresponds to a low friction value. The 

change in friction is time-dependent and occurs at successive time intervals. During simulations, the 

system is set on an equilibrium point with constant longitudinal velocity 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 2. Details and investigative purpose of each simulated manoeuvres. 

 
 

 

Figure 3. Schematic road layout with time-dependent changing of global 

friction coefficient. 

 

3.1. Step Steer Manoeuvre: case 1 

In this configuration, Figure 3a, a decreasing trend of the tire-road friction coefficient has been imposed. 

Transitions occur during successive equal time intervals of 10 seconds A 0 − 100 𝑑𝑒𝑔 change in the 

steering angle of the front left and right tires have been imposed. The longitudinal speed is set to 

60 𝑘𝑚/ℎ. The estimator behaviour is represented by the measurements vector and the sideslip angle, 

Figure 4; the global left and right lateral friction coefficient, Figure 5; the lateral forces, Figure 6, and 

the normal, Figure 7, forces of the tire. 

 

 

 

Figure 4. Measurements Vector and Sideslip 

Angle: Step steer case 1. 

 Figure 5. Left and Right lateral global friction 

coefficient in a time varying friction scenario. 

 

 

 

 

Figure 6. Lateral forces of the tyre: Step steer 

case 1. 
 

Figure 7. Normal forces of the tyre: Step steer 

case 1. 



 

 

 

 

 

 

This simulation allows appreciating how the estimator reacts to successive variations of the global lateral 

friction coefficient. It is possible to observe three different variations of this latter value that occur every 

10 seconds. The estimator manages, in an excellent way, to provide an estimation of the value of the 

global lateral friction coefficient and the vehicle states. 

3.2. Step Steer Manoeuvre: case 2 

While case 1 showed an equal change for all the wheels, here, the tyre-road friction coefficient is set at 

two different levels for the left and the right side of the vehicle, Figure 3b. The transition occurs during 

an equal time interval of 10 seconds. A 0 − 100 𝑑𝑒𝑔 change in the steering angle of the front left and 

right tires have been imposed. The longitudinal speed is set to 60 𝑘𝑚/ℎ. The estimator behaviour is 

represented by the measurements vector and the sideslip angle, Figure 8; the global left and right lateral 

friction coefficient, Figure 9; the lateral forces, Figure 10, and the normal, Figure 11, forces of the tire.  

 

 

 

Figure 8. Measurements Vector and Sideslip 

Angle: Step steer case 2. 
 

Figure 9. Left and Right lateral global friction 

coefficient in a time varying friction scenario 

with different friction for each side of the 

vehicle. 

 

 

 

 

Figure 10. Lateral forces of the tyre: Step steer 

case 2. 

 Figure 11. Normal forces of the tyre: Step steer 

case 2. 
 

This simulation highlights a different peculiarity of the EKF. The estimator is able to detect a different 

value of the global lateral coefficient of friction on the two different sides of the vehicle and manages 

to detect the small variation in friction that occurs at 10 seconds. In both situations, the employed 

approach provides an excellent estimation of the vehicle conditions. 

 

4. Conclusions 

An Extended Kalman Filter has been proposed for the estimation of the lateral friction coefficient and 

the state of the vehicle. The procedure provides a reliable estimation of the state of the system and a 

consistent identification of the lateral friction coefficient. The EKF has been compared to a full-vehicle 



 

 

 

 

 

 

Adams/Car model, these simulations results are the first step in the model validation. This estimation 

can be used to improve the performance of the vehicle's active safety systems, as well as to monitor real-

time changes in road conditions. A possible future development is its implementation in an onboard 

real-time system. 
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