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Abstract. LEarning TO Rank (LETOR) is a research area in the field of
Information Retrieval (IR) where machine learning models are employed
to rank a set of items. In the past few years, neural LETOR approaches
have become a competitive alternative to traditional ones like Lamb-
daMART. However, neural architectures performance grew proportion-
ally to their complexity and size. This can be an obstacle for their adop-
tion in large-scale search systems where a model size impacts latency and
update time. For this reason, we propose an architecture-agnostic app-
roach based on a neural LETOR model to reduce the size of its input by
up to 60% without affecting the system performance. This approach also
allows to reduce a LETOR model complexity and, therefore, its training
and inference time up to 50%.
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1 Introduction

LEarning TO Rank (LETOR) is a research area in the field of Information
Retrieval (IR) where machine learning techniques are applied to the task of
ranking a set of items [10]. The input to a LETOR system is a set of real-valued
vectors representing the items to be ranked – in decreasing order of relevance –
in return to a certain user query. The output of such systems is usually a set of
relevance scores – one for each item in input – which estimate the relevance of
each item and are used to rank them. In the recent years, the attention on neural
approaches for this task has grown proportionally to their performance. Starting
from [2], where the authors propose to employ a recurrent neural layer to model
documents list-wise interactions, to [12], where the now popular self-attention
transformer architecture is used. Also, the performance of neural models [12,
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20] recently became competitive with approaches such as LambdaMART [4]
which is often one of the first choices for LETOR tasks. However, neural models
performance grew at the expense of their complexity and this hampers their
application in large-scale search systems. Indeed, in such context, model latency
and update time are as important as model performance. Reducing the input size
can help decreasing model architectural complexity, number of parameters, and
consequently training and inference time. Also, previous works [5,6,8] showed
that the document representations used for LETOR can sometimes be redundant
and often reduced [6] without impacting the ranking performance.

Existing feature selection approaches can be organized into three main
groups: filter, embedded, and wrapper methods [6]1. Filter methods, such as the
Greedy Search Algorithm (GAS) [5], compute one score for each feature – inde-
pendently from the LETOR model that is going to be used afterwards – and
select the top ones according to it. In GAS the authors minimize feature similar-
ity (Kendall Tau) and maximize feature importance. They rank the input items
using only one of the features at a time and consider as importance score the
MAP or nDCG@k value. Embedded approaches, such as the one presented in
[15], incorporate the feature selection process in the model. In [15], the authors
propose to apply different types of regularizations – such as L1 norm regular-
ization – on the weights of a neural LETOR model to reduce redundancy in
the hidden representations of the model and improve its performance. Finally,
wrapper methods such as the ones presented in [6] and the proposed approach,
rely on a LETOR model to estimate feature importance and then perform a
selection.

We reimplemented the two best-performing approaches proposed in [6] and
consider them as our baselines: eXtended naive Greedy search Algorithm for fea-
ture Selection (XGAS) – which relies on LambdaMART to estimate feature rel-
evance – and Hierarchical agglomerative Clustering Algorithm for feature Selec-
tion (HCAS) employing single likage [7] – which relies on Spearman’s correlation
coefficient between feature pairs as a proxy for feature importance. To the best of
our knowledge, our approach is the first feature selection technique for LETOR
specifically targeted to neural models. The main contributions of this paper are
the following:

– we propose an architecture-agnostic Neural Feature Selection (NFS) approach
which uses a neural LETOR model to estimate feature importance;

– we evaluate the quality of our approach on two public LETOR collections;
– we confirm the robustness of the extracted feature set evaluating the perfor-

mance of the proposed neural reranker and of a LambdaMART model using
subsets of features of different sizes computed with the proposed approach.

Our experimental results show that the document representations used for
LETOR can sometimes be redundant and reduced to up to 40% [6] of the total
without impacting the ranking performance.
1 We purposely omit a comparison with other dimensionality reduction approaches

such as PCA since these methods often compute a combination of the features to
reduce the representation size which is beyond the scope of this paper.
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2 Proposed Approach

The proposed Neural Feature Selection (NFS) approach is organized in the fol-
lowing three steps. We first train a neural model for the LETOR task, i.e. to
compute a relevance score for each item in the input set to be used to rank it.
Second, we use the trained model to extract the most significant features groups
considered by the model to rank each item. Finally, we perform feature selection
using the previously computed feature information.

Neural Model Training. The NFS model architecture is composed of n self-
attention layers [19], followed by two fully-connected layers. We train this model
using the ApproxNDCG loss [3]. Before feeding the document vectors to the
self-attention layer we apply the same feature transformation strategy described
in [20]. In [20], the authors apply three different feature transformations to each
feature in the input data and then combine them through a weighted sum.
The weights for each transformation are learned by the model so that the best
feature transformation strategy for each feature could be used each time. The
model architecture is depicted in Fig. 1. Also, we apply batch normalization to
the input of each feed-forward layer and dropout on the output of each hidden
layer. Note that, since our approach for feature selection is architecture-agnostic,
we can easily make changes to this neural architecture without impacting the
following steps for feature selection.

Self-Attention 
Layer

FTLi1

Input Items

i2

in

Feature 
Transformation 

Layer

FTL

FTL

FF

FF

Feed-Forward 
Hidden Layer

FF

FF

FF

Output 
Layer

FF

s1

s2

sn

Fig. 1. Architecture of the neural architecture employed in our evaluation.

Feature Groups Mining. At this step, we use the model trained in the pre-
vious step to select the most important features used to rank each item in our
training data. To do so, we compute the saliency map – a popular approach in
the computer vision field to understand model predictions [1,16,17] – i.e. the
gradient w.r.t. the each input item feature, corresponding to each item in the
training dataset. We then apply min-max normalization on each saliency map
Mi to map the values in each vector to the same range [0, 1]. Afterwards, we
select from each saliency map the groups of features g which have a saliency
score higher than a threshold t. The set of feature groups G extracted at this
step are the most significant features sets that our neural model learned to rely
on to compute the relevance score of each item. These features however might
not be the same for any possible input instance and – as also pointed out in [1]
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– saliency maps can often be noisy and not always represent the behavior of a
neural model. For this reason, we propose to apply a further selection step to
prune less reliable feature groups similarly to what proposed in [18] where the
authors compute the statistical significance of groups of items by comparing their
frequency of occurrence in real data to the one in randomly generated datasets.
We compute K random sets of saliency maps, each of the same cardinality of the
experimental dataset employed. For example, if a dataset contains N queries,
each with R documents to be ranked, then we will generate K random datasets,
each containing N × R saliency maps. Then, we apply the same feature groups
extraction process on the random saliency maps and compute K different sets
of feature groups. The saliency maps are computed sampling values from a uni-
form distribution with support [0, 1]. According to this modeling strategy, each
feature can be considered as salient in the current random saliency map with
probability 1− t; where t is the threshold we used in the previous step to select
salient features. Once we computed these K sets of random feature groups Ĝk

we use their frequency to prune the original ones. In particular, we consider the
frequency fgi of group gi ∈ G and compare it to its frequency in each of the K
random datasets fgi,k – the frequency fgi,k might also be 0 if the feature group gi
does not appear in the random dataset k. If fgi ≤ fgi,k in more than 2%2 of the
randomly generated feature groups Ĝk, we discard feature group gi, considering
it as noise.

Feature Selection. In this final step, we rely on the feature groups extracted
in the previous step and their frequency in the saliency maps to compute a
feature similarity matrix. We then use this similarity matrix to perform feature
selection. Each feature pair similarity value is computed counting the times the
two features appear in the same feature group and normalizing that score by
the total number of groups where that feature appears. Finally, we rely on this
similarity matrix to perform hierarchical clustering as done in [6]. We consider
the number of clusters as the stopping criterion for the single linkage hierarchical
clustering algorithm. The final set of features to keep is computed selecting the
most frequently occurring feature in the previously computed feature groups,
from each feature cluster.

3 Experimental Setup

We evaluate our approach on the first fold of the MSLR-WEB30K [13] and on
the whole OHSUMED [14] dataset where the items to rank are represented by
136 and 45 features, respectively3. We use the LambdaMART implementation
available in the LightGBM4 library [9] and train and test the proposed neural

2 This value was set empirically to yield a reasonable number of feature groups for the
following feature extraction step.

3 https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval.

4 https://github.com/microsoft/LightGBM.

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
https://github.com/microsoft/LightGBM
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model considering only the top 128 results returned by LambdaMART. We tuned
the LightGBM model parameters on the validation sets of both datasets, opti-
mizing the ndcg@3 metric5. The proposed neural reranking model is trained for
500 epochs – 100 epochs on the OHSUMED dataset – with batch size 128, using
Adam optimizer and a learning rate 0.0005. We consider a feature embedding
size of 128 in the feature transformation layer on the MSLR-WEB30K dataset
– while we removed it for the experiments on the OHSUMED collection due
to its much smaller size and number of features which limited the benefits of
it – 4 self-attention heads on the MSLR-WEB30K and 1 on the OHSUMED
dataset and a hidden size of 128 for the hidden feed-forward layer. Since each
attention head has an output size equal to the total number of features divided
by the number of attention heads, to compute the results reported in Table 1,
we reduce the number of attention heads to 1 when using 5% and 10% of all
the available features (6 and 13 features respectively), we use 4 attention heads
when considering 30% (27 features), and 3 when using 40% (54 features). The
batch normalization momentum we use is 0.4 and the dropout probability is
p = 0.5. In the feature groups mining step, we generate 5000 random datasets
and the threshold t to extract the feature groups is empirically set to 0.95. For
the evaluation of the approach we consider the nDCG@3 measure, similar results
are obtained with nDCG at different cutoffs.

4 Experimental Results

In Table 1, we report the results of our experiments on the MSLR-WEB30K
dataset. We trained both a LambdaMART model and the proposed neural
reranking one on different subsets of features of increasing size. From these exper-
iments, we observe that the proposed Neural Feature Selection (NFS) approach
always outperforms all the other baselines when the selected features are used to
train a LambdaMART model, and in most of the cases when used with the pro-
posed neural model. The evaluation results on the OHSUMED dataset reported
in Table 2 are computed as the previous case. Here, we consider 60%, 70%, 80%,
and 90% of the total features in the collection since the total number of feature is
much smaller than in the previous dataset. In our evaluation, NFS outperforms
HCAS in the majority of the cases, even though the latter approach is slightly
more competitive than before.

The main advantage of using a subset of features to represent the inputs to
a neural model is that we can reduce the model complexity. We observe this
effect mainly when our data is represented by a large number of features as in
the MSLR-WEB30K collection. For example, when using 40% of the features
of the dataset, the number of attention heads in our model was reduced from 4
to 3 and, since we were considering only 54 out of 136 features, the number of
parameters of the self-attention heads – the first layer of our model – was also

5 We set the learning rate to 0.05, the number of leaves to 200 and the number of trees
to 1000 (500) on the MSLR-WEB30K (OHSUMED) collection.
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Table 1. Evaluation of the proposed Neural Feature Selection (NFS) approach on the
MSLR-WEB30K dataset. We report the ndcg@3 values obtained by LambdaMART
and the proposed Neural Reranking model employing different subsets of features.

LambdaMART Neural reranker

Features Perc. XGAS HCAS (single) NFS XGAS HCAS (single) NFS
5% 0.3580 0.3589 0.3753 0.3768 0.3595 0.3749
10% 0.3701 0.4044 0.4195 0.3826 0.3923 0.4117
20% 0.3781 0.4672 0.4672 0.3831 0.4444 0.4434
30% 0.4169 0.4655 0.4713 0.4085 0.4478 0.4236
40% 0.4387 0.4709 0.4730 0.3943 0.4516 0.4559
100% 0.4731 0.4731 0.4731 0.4526 0.4526 0.4526

reduced. As a consequence, training time was halved and inference time also
decreased.

Table 2. Evaluation of the proposed Neural Feature Selection (NFS) approach on the
OHSUMED dataset. We report the ndcg@3 values obtained by LambdaMART and the
proposed Neural Reranking model employing different subsets of features.

LambdaMART Neural reranker

Features Perc. XGAS HCAS (single) NFS XGAS HCAS (single) NFS
60% 0.3669 0.3781 0.3950 0.4210 0.4275 0.4242
70% 0.3669 0.3781 0.3860 0.4243 0.4431 0.4437
80% 0.3669 0.3993 0.4007 0.4374 0.4369 0.4205
90% 0.3669 0.4050 0.3959 0.3669 0.4050 0.4221
100% 0.3968 0.3968 0.3968 0.4973 0.4973 0.4973

It is also interesting to observe the differences between the features selected
by the proposed NFS approach and other baselines. We focus on the top 3 fea-
tures selected from the OHSUMED collection by each of the considered feature
selection algorithms over the 5 different dataset folds and refer the reader to [14]
for a more detailed description of each feature. NFS most frequently selected
features computed with popular retrieval models such as BM25 or QLM [11]
(features 4, 12 and 28) based on the document abstract or title. On the other
hand, HCAS selected simpler features derived from raw frequency counts of the
query terms in each document’s title and abstract (features 23, 40 and 36).
Finally, XGAS selected a mix of features computed with traditional retrieval
approaches such as QL, and simpler frequency counts (features 2, 44 and 13).
We conclude that the advantage of NFS is likely due to its ability to recog-
nize and select the most sophisticated and useful matching scores thanks to the
information learned during training.
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5 Conclusions

In the recent years, neural models became a competitive alternative to tradi-
tional Learning TO Rank (LETOR) approaches. Their performance however,
grew at the expense of their efficiency and complexity. In this paper, we propose
an approach for feature selection for Learning TO Rank (LETOR) based on a
neural ranker. Our approach is specifically designed to optimize the performance
of neural LETOR models without the need to change their architecture. In our
experiments, the proposed approach improved the efficiency of a sample neural
LETOR model and decreased its training time without impacting its perfor-
mance. We also validated the robustness of the selected features testing them
using a different – non neural – model such as LambdaMART. We performed
our evaluation on two popular LETOR datasets – i.e. MSLR-WEB30K and
OHSUMED – comparing our approach to three state-of-the-art techniques from
[6]. The proposed approach outperformed the selected baselines in the majority
of the experiments on both datasets.
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