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A B S T R A C T   

Recent advances in the study of human brain networks suggest that efficient cognitive operations depend on 
dynamic changes in large-scale connectivity. In this study we used face processing as a probe to shed light into 
these dynamics, considering that it is relies on a set of well-studied brain regions, whose activity has been well 
detailed in terms of its timing. By modeling cortical connectivity from MEG recordings during the presentation of 
face and scrambled images, we show that the whole-brain network topology becomes more efficient and complex 
in response to a face than a scrambled image, in an early time-window with a peak at ~170 ms. We also observed 
that the core and the extended systems of the face processing network become topologically closer, in a dynamic 
readjustment of connectivity weights that maximize the efficiency of their communication. Furthermore, using 
time-resolved decoding we observed that face familiarity can be distinguished very early on from the functional 
connectivity. Altogether, these results represent a crucial advancement for understanding of how dynamic 
reshaping of cortical connectivity supports cognitive processing of complex visual stimuli, and provide critical 
insights on the dynamic subtending face processing.   

1. Introduction 

In the last years we are witnessing a paradigm shift in functional 
neuroimaging, with increasing efforts in understanding brain activity in 
terms of networks and their time-evolving dynamics (Calhoun et al., 
2014; Preti et al., 2017). Recent studies have shown that cognitive op
erations prompt a reshaping of functional connectivity, characterized by 
increased network integration which is predictive of successful learning 
in simple visual and motor tasks, although on a slow time-scale (Bassett 
et al, 2011, 2015). Indeed, these studies relied on connectivity estimated 
from hemodynamic response collected with f-MRI, which is inherently 
slow and suboptimal to assess fast dynamics. It is decisive therefore to 
study the topology of the functional connectome at higher temporal 
resolution to map its dynamic to the rapid unfolding of cognitive pro
cesses. A promising approach is to study functional connectivity esti
mated from (magneto)-electrophysiological recordings, which allows 
tracking event-related changes in cortical networks with excellent time 
precision (Bola and Sabel, 2015; Valencia et al., 2008). Furthermore, it is 
crucial to quantify how the efficiency of information exchange evolves 
in time, because that is strictly related with optimal cognitive func
tioning (Bassett et al., 2009; Santarnecchi et al., 2014). The present 

study focused on the whole-brain network dynamical changes during a 
face perception task, measured with MEG, and seeks to contribute to this 
goal. 

The first question that this research seeks to answer is how the 
whole-brain network topology changes during a face processing task. 
Efficient processing depends on a highly integrated network that facil
itates information exchange (Bassett et al., 2011; Maffei and Sessa, 
2021; Shine et al., 2016). Therefore, we predicted that in response to the 
presentation of a face the whole-brain network should reconfigure its 
connections toward a compact and highly efficient topology. Using 
graph theory, we computed two indices to track these topological 
changes, namely global efficiency and graph compactness. In addition, 
we also computed a measure of graph entropy derived from information 
theory, predicting that if the network undergoes a reshaping, it will 
consequently carry more information, thus it will be more complex 
(Lynn et al., 2020; Viol et al., 2017). We predicted to observe an increase 
in all the three metrics, with a peak of efficiency and complexity within 
the first 200 ms. Such timing will be coherent with the negative 
evoked-potential peaking around 170 ms from stimulus onset (i.e., 
N170/M170) (Eimer, 2012; Rossion, 2014) that is considered to be a 
“face-sensitive” cortical signature. 
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The second question pertains more specifically with the network 
dynamics that subtend face perception. Face processing has been posited 
to depend on the activity of several regions organized in two systems: a 
core system, delimited to regions in the extrastriate visual cortex, that 
code for visual features (both variant and invariant) that define a face as 
such, and an extended system, distributed in frontal, parietal and tem
poral regions, that code for more abstract dimensions, like identity and 
emotional expressions (Haxby et al., 2000; Haxby and Gobbini, 2012; 
Hoffman et al., 2002). Yet, only recently a formal investigation of the 
topological dynamics of this network has begun (Wang et al., 2020). An 
important matter of debate is how and when the face perception 
network extracts abstract features from a face, like its identity. A recent 
review on the electrophysiological correlates of face familiarity, showed 
that it can be detected on the scalp starting at 250 ms (Huang et al., 
2017). However, it has been recently showed that familiarity informa
tion can be extracted very early on (≤100 ms), enhancing face pro
cessing (Dobs et al., 2019; Ramon and Gobbini, 2018; Visconti di 
Oleggio Castello and Gobbini, 2015). The hypothesized mechanism is a 
pattern-matching between the seen face and a template available in 
memory (Apps and Tsakiris, 2013; Trapp et al., 2018), occurring in the 
core system, exploiting the information back-projected by areas within 
the extended system (Trapp et al., 2018). 

In this study, we sought to understand the corresponding network 
topology dynamics that support the extraction of this information. We 
measured the dynamic cross-talk between the different nodes of the face 
perception network, in terms of how information is routed efficiently 
among them. We hypothesized that this cross-talk will be faster for 
familiar faces, for which there is a stored memory. On the other hand, for 
unfamiliar faces we expected to observe a long-lasting information 
routing between the core and the extended systems. Furthermore, 
applying time-resolved decoding on connectivity patterns, we sought to 
identify the set of connections that best allow the discrimination of a 
face according to its familiarity. 

2. Method 

2.1. Data and preprocessing 

In this study we used the open-access dataset published by Wakeman 
and Henson (2015). The original study consisted in the presentation of a 
series of images belonging to one of three categories: familiar faces 
(famous people), unfamiliar faces and phase-scrambled images of a face. 
The total number of images presented was 300 per each category. 
Sixteen healthy participants were enrolled in the study, which consisted 
in viewing the images and answering a question unrelated to the goal of 
the study (rating the symmetry of the image presented). Brain activity 
was collected using an Elekta Neuromag VectorView MEG system (102 
magnetometers, 204 planar gradiometers), with a 1100 Hz sampling 
rate. Data were acquired in six 10-min run for a total of 300 trials per 
stimulus category. Each trial begun with a fixation cross presented on 
screen for a random duration between 400 and 600 ms, followed by the 
stimulus which lasted on screen for a random duration between 800 and 
1000 ms. For each participant, a structural T1-weighted image was 
collected from a Siemens 3T TIM TRIO (Siemens, Erlangen, Germany), 
using an MPRAGE sequence (TR 2250 ms, TE 2.98 ms, TI 900 ms, 190 
Hz/pixel; flip angle 9◦, voxel resolution = 1 mm). For registration be
tween MEG sensors locations and T1-MRI three fiducial points (nasion, 
left ear, right ear) were 3-D digitized. 

Data preprocessing was performed using a publicly available 
automatized pipeline developed by the Brainstorm team (Tadel et al., 
2019). For each subject and run, preprocessing consisted in the 
following steps: importing the cortical surface extracted from the T1 
MRI using freesurfer, co-registering MEG sensor locations with the 
cortical surface, importing raw MEG recordings, applying a notch filter 
to remove power-line noise artifact (50 Hz and its harmonics at 100 Hz, 
150 Hz and 200 Hz), detection of eye-blink related artifacts and 

detection and correction of heartbeat related artifacts using SSP signal 
projections, marking of any additional segments of the original re
cordings containing other source of artifacts (i.e. head or body move
ments, muscle-related artifacts), segmenting the data from − 500 ms to 
1200 ms after stimulus onset and discarding epochs containing periods 
previously marked as bad. In order to model source activity, a forward 
model was first estimated using the three-layer boundary element 
method (BEM) from OpenMEEG and then an inverse solution was 
identified using the weighted Minimum Norm Estimation (wMNE) with 
default parameter. Finally, the resulting inverse solution was down
sampled to the 148 cortical parcels defined in the Destrieux atlas for 
further analysis, taking the mean activity of the vertices comprised in 
each parcel. The full dataset can be freely accessed from the Open
NEURO platform (https://openneuro.org/datasets/ds000117), and the 
pre-processing pipeline can be freely accessed as a MATLAB script from 
https://github.com/brainstorm-tools/brainstorm3/blob/master/too 
lbox/script/tutorial_frontiers2018_single.m. 

2.2. Functional connectivity analysis 

Time-resolved functional connectivity was estimated by computing 
the instantaneous phase-locking value between each pair of cortical 
regions. For each trial, the signals from each region was first band-pass 
filtered in the alpha band (8–13 Hz), then the Hilbert transform was 
applied to derive their analytical representation, and finally the differ
ence in the phase angle across trials between each regions pair was 
computed according to the formula: 

PLV(t) =
⃒
⃒E
[
ejΔϕ(t)]⃒⃒

where Δϕ(t) represents the relative phase angles between two analytical 
signals z1(t) and z2(t) at each time point t. This strategy resulted in a 
time-series of weighted undirected functional connectivity matrices that 
were used for the computation of graph theoretical metrics. This 
approach has been successfully applied in previous research to charac
terize time-resolved connectivity from both fMRI (Nobukawa et al., 
2019; Pedersen et al., 2018) and M/EEG data (Maffei and Sessa, 2021). 
The decision to restrict our analysis on alpha band was guided from 
evidence showing a strong overlap between functional networks esti
mated with fMRI and networks estimated from alpha oscillations 
recorded with M/EEG (Mantini et al., 2007; Samogin et al., 2020). 
Moreover, the activity of large-scale brain networks has a strong rela
tionship with alpha oscillatory activity (Sadaghiani et al., 2010) and 
phase synchrony in this band mediates the functional integration be
tween cortical regions located to a relative distance from each other 
(Muller et al., 2018; van Driel et al., 2014). Indeed, slower oscillations 
(<10 Hz) are characterized by a topographic spread that recruits the 
whole cortex, thus informing on the integration processes that occur at 
very long time scales (Maffei, 2020; Massimini et al., 2004; Steriade 
et al., 1993). Finally, phase synchrony in the alpha range coordinates 
gamma oscillations (Bahramisharif et al., 2013), which are related to 
complex sensory processing (Jerbi et al., 2009; Maffei, 2020; Maffei et 
al, 2019, 2020) and are thought to be crucially involved in face pro
cessing (Rossion, 2014). 

In order to control that differences in the phase-based connectivity 
could not depend on underlying differences in the alpha power (Demuru 
et al., 2020), we also performed a time-frequency decomposition of the 
signals for each experimental condition. This decomposition was ob
tained convolving the source-space signal with a Morlet wavelet (Cen
tral frequency = 1 Hz; FWHM = 3 s), and a measure of event-related 
spectral perturbation (ERS/D) was computed as the percentage of 
power change compared to the baseline. The TF was computed for the 
148 ROIs defined in the Destrieux atlas and considering a baseline of 500 
msec to account for edge effects (~140 ms for the alpha band). 
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2.3. Network modeling 

In this research we were interested in characterizing what are the 
time-evolving dynamics governing the topology of the cortical network 
when it is involved in a complex visual processing task. For this purpose, 
we focused on three properties, namely network complexity, network 
efficiency and network diameter. In order to quantify the network 
complexity, and how it changes in time, we drawn from information 
theory the concept of Shannon entropy. Shannon entropy is an easy, yet 
powerful and flexible, statistical measure of the amount of information 
contained in a signal. A higher information content, thus higher 
complexity, results in a higher entropy. From a computational 
perspective, Shannon Entropy of a network G at time t 

Gt =

⎛

⎜
⎜
⎝

[G]1,1 [G]1,2 … [G]1,b
[G]2,1 [G]2,2 … [G]2,b
⋮ ⋮ ⋱ ⋮
[G]a,1 [G]a,2 … [G]a,b

⎞

⎟
⎟
⎠

can be defined as: 

Ht = −
∑n

i
P

(

xi

)

∗ log2P

(

xi

)

where xi = [G]a,b and P(xi) correspond to the probability of observing 
that connectivity strength among all possible connections in the 
network. 

For what concerns the efficiency and the structure of the network we 
used instead two metrics derived from graph theory, network diameter 
and global efficiency. Graph theory is a mathematical framework that 
allows to easily characterize the behavior of complex systems and rep
resents, de-facto, the gold standard for the study of brain networks and 
its time-dependent properties (Bullmore and Sporns, 2009; Calhoun 
et al., 2014; Rubinov and Sporns, 2010). Within this framework, a core 
characteristic of a network is the path length, namely the minimum 
number of steps needed to connect any pair of nodes in the graph. 
Starting from this simple property it is possible to define the topology 
and the efficiency of the information flow in a network. Indeed, a 
network can be deemed as efficient when information flows rapidly 
among its nodes, i.e. the path length is short. As a consequence, an 
efficient network is compact. The compactness of a network is described 
by its diameter, which is simply the longest among all the shortest paths. 
The smaller its diameter, the more compact is the network and thus 
connecting any pair of nodes is easier. 

Global efficiency is a more fine-grained measure of network effi
ciency, which is dependent from the inverse of the path length, defined 
as: 

Eglob =
1

n(n − 1)
∑n

i∕=j

1
d(i, j)

where n is the total number of nodes and d(i, j) represents the shortest 
path between node i and node j. The global efficiency increases when the 
path length is short, suggesting that the network has a topological 
structure that supports an optimal information exchange. 

We were interested in modeling the communication between the core 
and the extended systems involved in face processing, specifically the 
portion of the extended system involved in retrieving information per
taining to the knowledge of a face. This goal was accomplished through 
the following steps. First, we retrieved a meta-analytical map of the 
activation foci associated with face processing using Neurosynth (Yar
koni et al., 2011). We searched for all the studies included in the Neu
rosynth database matching the keyword term face and extracted the 
association z-map (FDR correct at p < .01). This map encodes, for each 
voxel, the likelihood of it being activation in the studies matching the 
query term while not being activated in the studies not matching the 
query (Yarkoni et al., 2011). Second, we identified using the automated 

labeling tools available in AFNI the nodes included in the Destrieux atlas 
that are activated in response to a face. Finally, we assigned the nodes 
identified to either the core (CS) or the extended (ES) system (Fig. 1 and 
Supplementary Table 1) according to the model described by Haxby and 
Gobbini (2012); finally, we computed the routing efficiency between the 
two systems. For this last step, we first computed (at each time point t) 
using the Floyd-Warshall algorithm the whole-network shortest path 
length matrix Rmat , defined as: 

Rmat =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

SPL1,2
⋯

1
SPL1,n

1
SPL2,1

1 ⋯
1

SPL2,n

⋮ ⋮ ⋱ ⋮
1

SPLn,1

1
SPLn,2

⋯ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in which each off-diagonal entry represents the routing efficiency (i.e. 
the inverse of the shortest path length) between any pair of nodes in the 
matrix. Then, we defined the routing efficiency between CS and ES as: 

Reff =maxRmat(CS,ES)

which represents the maximum routing efficiency between a node 
belonging to the CS and a node belonging to the ES. For each metric 
considered in this study, the analysis was computed for each type of 
stimulus (familiar face, unfamiliar face, scrambled face) after mean 
aggregation of adjacent layers in the time-varying network to achieve a 
final sampling rate of 256 Hz (Taylor et al., 2016) and thresholding each 
layer to retain the 20% of the strongest connection weights thus miti
gating the effect of spurious edges (Maffei and Sessa, 2021). The ana
lyses were performed in MATLAB (v2019a) using custom scripts 
employing functions from Brainstorm (Tadel et al., 2011) and Brain 
Connectivity Toolbox (Rubinov and Sporns, 2010). 

In order to perform time-resolved decoding of face familiarity, we 
first vectorized the thresholded connectivity matrices for the Famous 
and Unfamiliar conditions, and then trained a support vector machine 
(SVM) classifier using a leave-one-subject out cross-validation scheme 
(Gi et al., 2018; Grootswagers et al., 2017). At each time point the 
classifier was trained on the data from a subsample of n-1 subjects, and 
classification was tested on the remaining data. Time-resolving accuracy 
was obtained averaging the performance of the decoder across the n 
folds for each sampling point. Model weights in the time window in 
which the decoder performed significantly above chance in the classi
fication task were projected in the connectivity space, after multiplying 
them with the data covariance, in order to retrieve the edges most 
important for the classification task (Grootswagers et al., 2017; Haufe 
et al., 2014). This latter step is necessary to make the weights of 
multivariate model interpretable. Indeed, the weight matrix acts as a 
filter to project the observed data (in this case edge strengths) to a latent 
space that maximizes classification (Haufe et al., 2014). Nevertheless, 
the actual values of this weight matrix, being a function of both signal 
and noise in the data, does not allow to draw conclusions on the 
one-to-one mapping between the latent and the observed features 
(Haufe et al., 2014). The multiplication of the model weights with the 
data covariance, reverts this process and make the model weights 
interpretable, telling, in this case, how much an edge contributes to 
classification accuracy. 

Finally, as an additional control analysis, we computed the correla
tion between the event-related fields and each network metric time- 
series. The aim of this analysis was to rule out the possibility that the 
latter could provide redundant information, and thus event-related 
network dynamics could reflect simpler dynamics already present in 
the event-related fields time-series. 
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2.4. Statistical analysis 

Statistical modeling was performed within a massive univariate non- 
parametric permutation framework (Groppe et al., 2011). This approach 
has been widely accepted in the neuroimaging field because it allows to 
relax the very strict assumptions of parametric models, which are rarely 
met, and at the same time allows taking into account the full multidi
mensional structure of the data without restricting a-priori the testing to 
specific set of regions/sensors and time-window(s) (Maris and Oos
tenveld, 2007). It consists in performing a statistical test (like a t-test or 
ANOVA) for every point in the region by time plane, then iteratively 
permuting the within-subject condition assignment and performing the 
test a sufficient number of times to construct an empirical distribution of 
the test statistic under the null hypothesis that the condition labels are 
interchangeable. This empirical null-distribution is then used to derive 
the exact probability and perform the statistical inference (Maris and 
Oostenveld, 2007). 

For each metric we had a time series per each subject and stimulus 
category, that were used to performed three set of contrasts: Familiar 
Face vs Scrambled Face, Unfamiliar Face vs Scrambled Face, Familiar 
Face vs Unfamiliar Face. For each contrast, the null-distribution of the t 
statistic was constructed using 5000 permutation of the data, and the 
resulting p-values were corrected using the Benjamini and Hochberg’s 
procedure (1995) to control the false discovery rate to address the 
problem of multiple comparisons. Furthermore, to minimize the risk of 
finding significant effects due to short-lived random fluctuations in a 
metric time-series, we deemed an effect as significant only when 
observed for at least 10 consecutive sampling points. Statistical analyses 
were performed using custom scripts developed in R (v. 3.5.5). 

The same statistical approach was adopted to test the presence of 
difference in the event-related alpha power among the experimental 
conditions. For the same three set of contrasts described above, we 
performed a paired permutation-based t-test on the ERS/D data, aver
aged in 8–13 Hz range, correcting the resulting p-values using the 
Benjamini and Hochberg’s procedure (1995) to control the false dis
covery rate. The analysis was performed in MATLAB using Brainstorm. 

For what concerns the statistical testing of classification accuracy, we 
estimated for each time point the null distribution of the decoder per
formance. This distribution was generated by simulating 10000 time the 
decoding, for each time point following the same cross-validation 
scheme described above (Etzel, 2015), under the null hypothesis that 
the classification is performed by a random guess of the two categories. 
This distribution was then used to assess the probability to observe by 
chance a classification accuracy larger than the one obtain by the trained 
classifier. 

3. Results 

To model the evolution of functional connectivity during face pro
cessing, we reconstructed for each trial the source activity from MEG 
recordings. We first downsampled the source activity to the 148 nodes 
comprised in the Destrieux parcellation, and then computed the time- 

resolved phase-locking value in the α band. This resulted in a time se
ries of connectivity matrices, representing the strength of connection 
between every nodes pair at each time-point (Fig. 1). These matrices 
were modeled as a time evolving graph, which was described in term of 
its global efficiency, compactness and entropy. 

3.1. Time-resolved evolution of network efficiency during face processing 

We first wanted to test if face processing prompts an increased effi
ciency in the network compared to a scrambled image. Furthermore, we 
were interested in testing if familiarity with faces modulates this dy
namic, and when this modulation does occur. Permutation based non- 
parametric analysis revealed that, for both global efficiency and 
network compactness, the network evolves in the hypothesized direc
tion. The analyses showed that in an early time window, for both famous 
(tmax = 164.67, p < .05) and unfamiliar (tmax = 107.61, p < .05) faces 
the network diameter is reduced, leading to a shrinking of the network 
dimension, which becomes more compact (Fig. 2A, first and second 
panels). Conversely, in the same time window the global efficiency in
creases in response to both famous (tmax = 129.73, p < .05) and unfa
miliar (tmax = 97.35, p < .05) faces when compared to scrambled faces 
(Fig. 2B, first and second panels). The analysis also revealed that around 
300 ms, network diameter increases (i.e., the network becomes less 
compact) and global efficiency decreases for the contrast Famous vs 
Scrambled. With regard to the contrast between famous and unfamiliar 
faces, it revealed that during the processing of an unfamiliar face the 
network becomes, in a late time window, more compact (tmax = 66.74, p 
< .05, Fig. 2A third panel) and has more global efficiency (tmax = 50.11, 
p < .05, Fig. 2B third panel) compared to its shape during the processing 
of famous faces. 

3.2. Time-resolved evolution of network entropy during face processing 

Having established that the network undergoes a dynamical 
reshaping of its connections in order to maximize its efficiency, we 
wanted to understand if this reshaping results in an increased network 
complexity. In the context of information theory, complexity can be 
defined in terms of Shannon Entropy, a statistical measure of how pre
dictable the information content of a signal is. If the predictability is low, 
then the information conveyed by that signal is high and its entropy 
increases. In this study, the time-evolving predictability of network 
connections was used to quantify its entropy, hypothesizing that the 
dynamical rearranging of connectivity during face processing will result 
in an increased entropy of the system. Permutation based non- 
parametric analysis revealed that in an early time window, entropy in
creases in response to faces compared to scrambled images, peaking 
around 170 ms (Fig. 3, first and second panels). This effect was observed 
for both famous (tmax = 135.71, p < .05) and unfamiliar faces (tmax =

118.33, p < .05). Additionally, the contrast Famous vs Scrambled 
revealed a significant effect in a late time window, showing a reduction 
in network entropy for famous faces compared to scrambled images. 

The analysis testing the difference in entropy between famous and 

Fig. 1. Overview of the analysis scheme. Source activity in response to faces and scrambled images was reconstructed from MEG recordings for each trial (A). Then, 
time-varying connectivity was estimated using the instantaneous phase-locking value in the alpha band (B). From the time-resolved adjacency matrices, the topology 
of the network was quantified at each time-point (C). 
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unfamiliar faces revealed a significant effect (tmax = 65.47, p < .05) 
occurring around 300 ms, showing that entropy is larger when the 
processed face is unfamiliar (Fig. 3, third panel). 

3.3. Routing efficiency between the core and the extended systems 

Face processing relies on the activity of distributed set of cortical 
regions that comprise the face processing network. We wanted to model 
this activity, with a specific focus on the cross-communication among 
the nodes in the core system and the nodes in the extended system. This 
cross-communication was quantified in terms of how efficiently the in
formation is routed between the two systems. Permutation-based non 
parametric analysis revealed that in response to a face the information 
flow between them becomes rapidly more efficient, with a peak around 
170 ms. This effect has been observed for both famous (tmax = 114.85, p 
< .05) and unfamiliar faces (tmax = 253.29, p < .05) compared to 
scrambled faces (Fig. 4, first and second panels). Additionally, we 

observed only for unfamiliar faces that routing efficiency increases also 
in a late time window (Fig. 4, second panel). 

With regard to the Famous vs Unfamiliar contrast (Fig. 4, third 
panel), the analysis revealed a significant effect showing that routing 
efficiency is larger when the face under processing is unfamiliar (tmax =

43.42, p < .05). 

3.4. Time-resolved decoding of familiarity from connectivity patterns 

The analysis of network topological changes and cross-talk among 
the nodes of the face perception network are sensitive to face familiarity. 
In order to probe the connectivity dynamics subtending the extraction of 
this abstract feature, we applied multivariate pattern recognition on the 
time-resolved connectivity estimated during processing of famous and 
unfamiliar faces. The decoder showed an above chance classification 
accuracy (p < .05) as early as ~100 ms (Fig. 5C), confirming that fa
miliarity is a feature that is extracted very rapidly from the stimulus. 

Fig. 2. Time-series of network diameter (A) and global efficiency (B). Each panel refers to a different contrast. The red ribbon on top of each panel indicates time 
frames in which a significant difference between categories was observed. 

A. Maffei and P. Sessa                                                                                                                                                                                                                         



Neuroimage: Reports 1 (2021) 100022

6

Projecting the classifier weights in the original connectivity space 
(Fig. 5D), we reveal that this extraction relies on two connection path
ways, mainly in right hemisphere, that grant communication between 
posterior and anterior nodes of the face perception network. A more 
ventral pathway that connects extrastriate visual cortices to anterior 
regions, like the inferior frontal gyrus and the anterior insula, and a 
dorsal pathway that projects the information to parietal associative 
cortices (inferior parietal cortex and precuneus) through the superior 
temporal sulcus. Furthermore, this analysis reveals that a fine-grained 
processing of the face relies on many different nodes that do not usu
ally show a face-selective response in standard univariate activation- 
based analysis (i.e. GLM and ERP/ERF). The pattern we observed is 
also in line with a recent study employing MVPA on fMRI activation to 
familiar and unfamiliar faces (Visconti Di Oleggio Castello et al., 2017). 
In this study the authors identified a larger set of regions contributing to 
the cortical representation of familiarity, comprising portions of the face 
perception system that with GLM-based analysis fail to show an asso
ciation with familiarity extraction. Overall, this suggests that face pro
cessing might be more distributed than how current theoretical models 

envision (Bernstein and Yovel, 2015; Duchaine and Yovel, 2015). 

3.5. Analysis of event-related power changes in the alpha band 

A recent study (Demuru et al., 2020) showed that changes in the 
oscillatory power of a node activity, unrelated to its connectivity with 
other nodes in the network, might bias the graph-theoretical analysis of 
networks estimated from electrophysiological measures of cortical 
connectivity. 

Although this bias has been reported for nodal measures, rather than 
global network properties like the one investigated in this study, we 
wanted to rule out this possibility. Indeed, analysis of event-related 
modulation of oscillatory power in the alpha band did not show any 
differences among the experimental conditions (Fig. 6). This result is 
important because it shows that our network modeling approach is 
effective in tracking the inter-regional time and phase-locked commu
nication in the alpha band, ruling out potential confounds related to 
underlying alpha power modulations. 

Fig. 4. Time-series of routing efficiency between the core (red nodes) and the extended (blue nodes) systems. Each panel refers to a different contrast. The red ribbon 
on top of each panel indicates time frames in which a significant difference between categories was observed. 

Fig. 3. Time-series of network entropy. Each panel refers to a different contrast. The red ribbon on top of each panel indicates time frames in which a significant 
difference between categories was observed. 
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3.6. Correlation of event-related fields and event-related network changes 

The results presented so far show that strong event-related topo
logical changes characterize the cortical network in the time-windows in 

which the typical face-evoked potentials occur. In order to rule out the 
possibility that the dynamics observed in the network are not simply a 
redundant way to present information already contained in the event- 
related fields, we correlated the latter with each network metric time- 

Fig. 5. Time-resolved decoding of face familiarity. After vectorization of connectivity patterns (A), decoding analysis of famous and unfamiliar faces was performed 
at each time point using a leave-one-subject out cross-validation scheme (B). Significant time frames of decoding accuracy are highlighted by the red ribbon (C). 
Classifier weights were projected in the original connectivity space to highlight the most critical edges for extracting face familiarity (D). 

Fig. 6. Butterfly plots showing the grand average event-related desynchronization in the alpha band for each stimulus category. The black lines represent each ROI, 
the red lines represent the grand mean surrounded by shaded ribbons representing the standard errors. 
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series. Additionally, we computed the correlation among the network 
metrics time series, in order to understand how much each metric rep
resents unique information. 

We found that the median correlations and the shared variance be
tween our network metrics and the grand-average event-related field, 
for each stimulus category, were very modest (ranging from 0 to 0.12, 
top row of Fig. 7). Similar patterns were observed when correlating 
network metrics time-series with the event-related fields of each ROI 
(Supplementary Fig. 1). Additionally, to investigate the robustness of 
our results, we also performed the statistical contrasts described in the 
previous sections after regressing out the event-related field time-series 
from the network metric time-series, showing that the results are un
changed (Supplementary Fig. 2). Altogether, the results of these ana
lyses suggest that the metrics used in this study carry unique information 
regarding the state of the network during face processing. 

With regards to the correlations among the network metrics, the 
results show that some are strongly correlated among them (Fig. 7). 
Specifically, we found a strong negative correlation between the 
Diameter and the Global Efficiency (r = 0.98). This is not surprising, 
since these two metrics are both computed from the network path length 
(see Methods) and show, from different perspectives, the same under
lying network dynamic, that is the network shrinking leading to a higher 
efficiency in sharing information. We observed that these two metrics 
are also strongly correlated with Entropy. This is an interesting result, 
because it shows that Entropy, on one side, and Diameter and Global 
efficiency on the other, are tracking a coherent modulation of the con
nectivity weights defining the network, despite being derived through 
completely different computations. Finally, we observed very modest 
correlations with the fourth metric that we used, that is the Routing 
efficiency. This is an important result, because this latter metric was 
designed to track the dynamics only within the nodes comprising the 
face processing network. Observing that it has very modest correlation 
with the metrics that measure whole-brain topological changes support 

the claim that using different metrics is necessary to highlight different 
and non-redundant features of the network dynamical reshaping that 
supports face processing. 

4. Discussion 

The present paper focused on the investigation of event-related 
changes in the cortical network measured with MEG during a simple 
face processing task. The aim of this research was twofold. First, it 
sought to understand, on the fine temporal scale provided by MEG, the 
dynamic changes that brain networks go through when probed with a 
task. Second, it aimed at showing how the investigation of cortical 
connectivity can improve our understanding of the neuro-cognitive 
mechanisms underlying face processing. To accomplish these goals, 
we first estimated the time-varying phase synchronization among 148 
cortical regions in the alpha band, which has been proved to be the 
cortical oscillatory mode most sensitive to the activity of large scale 
brain networks (Samogin et al., 2020). Then, we computed a series of 
graph-theoretical measures to characterize how network topology, ef
ficiency and complexity changed in time as a function of the features of 
the target stimulus. 

With regard to the first aim, we found that during face processing the 
cortical network undergoes a series of substantial changes, in terms of its 
complexity, topological shape, and efficiency of information flow, 
unfolding in a coherent timing. Comparing the dynamic elicited by a 
face with the one elicited by a scrambled image, we observed an increase 
in the information entropy of the network together with a reduction of 
its diameter and an increase of its global efficiency. This pattern of 
changes suggests that, when probed with a visual stimulus, the cortical 
network adapts its connections to maximize the encoding and the suc
cessful processing of the stimulus itself, especially when it has an 
inherent meaning, as it is the case with the image of a face. 

Functional MRI investigation of the time-evolving modularity of 

Fig. 7. Median correlations and shared variance between each network time series and grand-average event related fields, separately for each condition.  
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brain network already established that cognitive activity is mediated by 
a dynamic reconfiguration of network topology. These studies showed 
that a task-induced reshaping of the network modular structure occurs 
recurrently on several time scales, from days to seconds (Bassett et al, 
2011, 2015, 2011; Shine et al., 2016). This reshaping is thought to serve 
mainly one purpose, that is maximizing integration across heteroge
neous regions, at the cost of segregation, in order to prioritize the 
execution of cognitive demanding processes (Shine et al., 2016). 
Moreover, we recently extended these findings, demonstrating that 
similar dynamics can be detected also on the finer temporal scale pro
vided by EEG (Maffei and Sessa, 2021). 

The present results further improve our understanding of how the 
network topology changes when it is probed with a task. The dynamic 
readjustment in the connectivity pattern translates to a reduction of the 
overall diameter of the network, that becoming more compact is char
acterized by an easier information exchange across its nodes. This is 
shown by the concomitant increase in the global efficiency of the 
network, a metric that quantifies how efficient is the information flow in 
the network. As a consequence of this topological readjustment, the 
pattern of connections among the cortical regions become more com
plex, as shown by an increase in the Shannon entropy of the network. 
This increase suggests that the information stored in the network edges 
becomes less predictable during the processing of a stimulus, so its 
density increases. This latter result seems appealing also because it is in 
line with a series of converging evidence that, leveraging the concept of 
entropy, suggest that the brain operates in a non-equilibrium state 
characterized by an increased entropy, especially when probed with 
cognitive demanding tasks (Lynn et al., 2020; Viol et al., 2017). 

Interestingly, we detected these coordinated event-related network 
changes in a time-window comprised between 100 and 200 ms, 
observing also that they are characterized by a peak around 170 ms. This 
time-evolving pattern closely follows the typical timing observed in the 
well-established event-related potentials/event-related fields elicited by 
face processing, characterized by a component with a negative polarity 
and a peak latency around 170 ms. These results, focusing on whole- 
brain connectivity, rather than on the local activation detected by 
ERP/ERF, have the potential to shed new light regarding the mecha
nisms that ultimately give rise to the typical event-related response. 
Indeed, this response can be thought as the final output of an underlying 
process of elaboration that operates through phase synchronization of 
firing from disparate neural populations (Nunez, 2000; Nunez and Sri
nivasan, 2006). These results, tracking this underlying dynamic, suggest 
that a fast and large-scale rearrangement of the functional network, in 
terms of its shape and efficiency, is strongly associated with the 
event-related modulation of the cortical potential. This adds to several 
previous studies highlighting a relationship between the ERP response 
and the time-evolving phase synchronization across the whole cortical 
network (Dimitriadis et al., 2013; Karamzadeh et al., 2013; Martini 
et al., 2012). 

With regard to its second aim, this research provides several inter
esting insights about the network dynamics that subtend face processing 
and how familiarity affects its elaboration. We observed modulations of 
the network state in two different time-windows. In an early face-sen
sitive window, we observed for both famous and unfamiliar faces a 
similar pattern of response of increased efficiency compared to scram
bled images. Furthermore, studying the information flow between the 
core and the extended systems of the face processing network revealed an 
interesting pattern in their cross-communication. In the first 200 ms the 
topological distance between the two systems is dramatically reduced 
when processing a face compared to a scrambled image. Altogether 
these results fit nicely with studies suggesting that face encoding occurs 
through a bidirectional communication between early visual areas and 
higher-order regions comprising the face perception network (Rossion, 
2014; Wang et al., 2020; Zhao et al., 2018). In addition, they reveal the 
topological dynamic of this process in terms of both the whole cortical 
network and the specific subsets of nodes involved in face processing. 

For what concerns the effect of familiarity, an open question is when 
this information is extracted. Scalp electrophysiology suggests that the 
effect of familiarity can be detected not earlier than 250 ms, but this 
result has been questioned by recent behavioral and neuroimaging ev
idence showing that face identity is extracted earlier (Dobs et al., 2019; 
Visconti di Oleggio Castello and Gobbini, 2015). Our results provide the 
ground to reconcile this apparent discrepancy. Indeed, we observed that 
is possible to decode familiarity information from connectivity patterns 
as early as ~100 ms. Then, in a later time window, we observe that when 
the network is processing a face with an unknown identity it maintains 
the task-induced configuration. Conversely, when the face is known it 
returns to its resting topology. Our interpretation of this result is that, in 
the first stage of processing the network reshapes to maximize its effi
ciency and to support information exchange between the core and the 
extended systems. This dynamic is needed in order to establish a positive 
match between the incoming information and the stored one (Apps and 
Tsakiris, 2013; Trapp et al., 2018). This pattern-matching happens 
through a similar reshaping of the functional network, for both familiar 
and unfamiliar faces, as we did not observe difference between the two 
in the early time frame in terms of global topology. We also observed 
that the information flow between the core and extended systems 
increased similarly for both, with a slightly increased efficiency for the 
latter. Then, when the positive match occurs for a famous face, the 
network returns to an idling state because maintaining that network 
configuration would likely require unnecessary metabolic costs (Achard 
and Bullmore, 2007; Bassett and Bullmore, 2006; Bullmore and Sporns, 
2012; Lynn et al., 2020). This is supported by the results showing a drop 
in all the global topological metrics investigated. Instead, when the face 
under processing is unknown no match could have taken place in the 
early time window, therefore the core and extended system have to 
maintain an efficient cross-talk, likely based on the refined information 
available after the full encoding of the visual features of the face has 
been completed. 

5. Conclusions 

This research provides new insights regarding the time-evolving 
properties of brain networks, showing that cognitive tasks induce a 
reshaping of the network topology which is rapid and coordinated. The 
consistency observed across the metrics investigated suggests that this 
dynamic readjustment has the ultimate goal to maximize the efficiency 
of the communication pathways across cortical nodes. Furthermore, the 
timing features of this dynamics highlight the inherent potential that 
investigating event-related network changes has for understanding the 
timing of cognitive operations. Indeed, these results provide an empir
ical evidence of the predicted cross-systems information exchange un
derlying face processing. 

Altogether, this adds to the flourishing field of functional chron
nectomics (Calhoun et al., 2014; Preti et al., 2017) and calls for further 
investigation of network dynamics using electrophysiological estimates 
of cortical connectivity. Indeed, this study does not come without lim
itations that should be addressed in future studies. First, in this study we 
focused on alpha band because it is strongly related with the activity of 
large-scale cortical networks and because face processing is related with 
alpha phase connectivity. Nevertheless, recent studies, characterizing 
the resting-state functional networks with a multi-spectral resolution 
approach, suggested that the network architecture can be also the results 
of interactions between oscillations with different frequencies (Iandolo 
et al., 2020; Samogin et al., 2020). Thus, future research should aim at 
extending the present findings to characterize in detail how these in
teractions evolve in time during a task. Second, future works should aim 
at extending the current results to different experimental tasks, like an 
active face recognition task, in order to detail further the unfolding of 
network activity underlying face processing. Third, it would be ideal to 
also characterize the network dynamics contrasting face-evoked activity 
to both a scrambled face and a different stimulus category, to gain a 
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more comprehensive understanding of what the face-specific dynamics 
are. 

Finally, it also important to stress the limits of the decoding analysis 
used. First, we observed that the classification yielded moments of 
below-chance accuracy which has been previously suggested as a 
drawback of low SNR in the data features (Jamalabadi et al., 2016). This 
does not invalidate the results observed, whose significance has been 
assessed using permutations (Etzel, 2015; Jamalabadi et al., 2016), but 
nevertheless invites to for further investigations to evaluate their 
generalizability. Second, our connectivity estimate was not at the 
single-trial level therefore we could not employ different 
cross-validation schemes to disentangle the contribution of familiarity 
from identity and low-level image features (Visconti Di Oleggio Castello 
et al., 2017). 
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