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ATTAINABLE PROFILES FOR CONSERVATION LAWS WITH FLUX

FUNCTION SPATIALLY DISCONTINUOUS AT A SINGLE POINT

Fabio Ancona1,* and Maria Teresa Chiri2

Abstract. Consider a scalar conservation law with discontinuous flux

ut + f(x, u)x = 0, f(x, u) =

{
fl(u) if x < 0,

fr(u) if x > 0,
(1)

where u = u(x, t) is the state variable and fl, fr are strictly convex maps. We study the Cauchy
problem for (1) from the point of view of control theory regarding the initial datum as a control.
Letting u(x, t)

.
= SAB

t u(x) denote the solution of the Cauchy problem for (1), with initial datum
u(·, 0) = u, that satisfy at x = 0 the interface entropy condition associated to a connection (A,B)
(see Adimurthi, S. Mishra and G.D. Veerappa Gowda, J. Hyperbolic Differ. Equ. 2 (2005) 783–837),
we analyze the family of profiles that can be attained by (1) at a given time T > 0:

AAB(T ) =
{
SAB
T u : u ∈ L∞(R)

}
.

We provide a full characterization of AAB(T ) as a class of functions in BVloc(R \ {0}) that satisfy
suitable Olěınik-type inequalities, and that admit one-sided limits at x = 0 which satisfy specific con-
ditions related to the interface entropy criterion. Relying on this characterisation, we establish the
L1

loc-compactness of the set of attainable profiles when the initial data u vary in a given class of uni-
formly bounded functions, taking values in closed convex sets. We also discuss some applications of
these results to optimization problems arising in traffic flow.
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1. Introduction

Consider the Cauchy problem for the scalar conservation law in one space dimension

ut + f(x, u)x = 0, x ∈ R, t ≥ 0, (1.1)

u|t=0 = u, x ∈ R, (1.2)
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where u = u(x, t) is the state variable, and the flux f(x, u) is a discontinuous function given by

f(x, u) =

{
fl(u) if x < 0 ,

fr(u) if x > 0 ,
(1.3)

with fl and fr smooth, strictly convex maps. The equation (1.1) is usually supplemented with appropriate
coupling conditions imposed at the point of discontinuity of the flux so to guarantee uniqueness of solutions to
the Cauchy problem (1.1)-(1.2). Namely, the traces

ul(t) = lim
t→0−

u(x, t), ur(t) = lim
t→0+

u(x, t), (1.4)

of a weak distributional solution of (1.1), (1.3), must satisfy the Rankine-Hugoniot condition

fl(ul(t)) = fr(ur(t)) for a.e. t > 0 , (1.5)

at the interface x = 0. Moreover, various type of admissibility conditions (interface entropy conditions) imposed
on ul,r have been introduced in the literature, according with different modelling assumptions (see [8, 9]). Such
conditions lead to different solutions of the Cauchy problem (1.1)-(1.2), which are appropriate for the particular
physical phenomena modelled by (1.1). Alternatively, one can equivalently characterize the admissible solutions
in terms of Kružkov-type (possibly singular) entropy inequalities satisfied up-to-the flux-discontinuity interface
(cf. [39]), or using extended families of entropy inequalities associated to the so called partially adapted entropies
(see [8, 13, 19]).

Starting with the works by Isacson & Temple [34] and by Risebro and collaborators [29, 30, 42], conservation
laws with discontinuous flux have been an intense subject of research in the last three decades (e.g. see [12, 16]
and references therein). Solutions of (1.1), (1.3), satisfying the above mentioned admissibility criteria, can
be obtained as limit of approximations constructed by regularization of the flux [14, 42, 48], by wave front-
tracking [27, 30], by Godunov method [1, 38] and several other numerical schemes [19, 37, 54] or by vanishing
viscosity [11, 16]. In particular, in [12] it was set up a general framework that encompasses all the notions
of admissible solutions to the Cauchy problem (1.1)-(1.2) which lead to the existence of an L1-contractive
semigroup.

In this paper we study the system (1.1)-(1.2) from the point of view of control theory, regarding the initial
data u0 as a control. Namely, we provide a characterization of the space-profile configurations that can be
attained at any fixed time T > 0 :

A(T ) =
{
u(·, T ) : u is an admissible solution of (1.1), (1.3)-(1.2) with u0 ∈ L∞(R)

}
.

Here, u is a solution of (1.1)-(1.2) satisfying an interface entropy condition associated to a so-called interface-
connection (A,B) [1, 19]. A connection (A,B) is a pair of states connected by a stationary weak solution of
(1.1), (1.3), taking values A for x < 0, and B for x > 0, which has characteristics diverging from (or parallel to)
the flux-discontinuity interface x = 0. Such a solution characterize the possible undercompressive (or marginally
undercompressive) shock waves exhibited by admissible solutions of (1.1), (1.3) that satisfy an interface entropy
condition involving the connection (A,B) (cf. [1, 19]). The reason for choosing this type of admissibility condi-
tions for solutions of (1.1), (1.3) is twofold. On one hand, it is consistent with the models of two-phase flows in
heterogeneous porous medium [1] or of traffic flow on roads with variable surface conditions [46]. On the other
hand, it allows to treat any connection (A,B) as a pair of control parameters as well.

We show that any element in A(T ) belongs to a class of functions in BVloc(R \ {0}) (with locally bounded
variation on R \ {0}), which:
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– satisfy suitable Olěınik-type inequalities involving the first and second derivatives of the maps fl, fr;

– admit one-sided limits at x = 0 which satisfy specific conditions related to the interface entropy criterion
of the (A,B)-connection.

Vice versa, we establish an exact-time controllability result, i.e. we prove that, for any target function ω of
the aforementioned class, there exist an initial datum u and a connection (A,B) that steer the system (1.1)-
(1.2) to ω at a given time T . These results extend to the spatially-discontinuous setting the characterization
of the attainable profiles established in [3, 4, 33] for conservation laws with convex flux depending only on the
state variable. Such results are obtained exploiting, as in [3], the theory of generalized characteristics, which was
developed by Dafermos [23] for conservation laws with convex flux (in the state variable) depending smoothly on
the space variable. A detailed analysis of the structure of admissible solutions for a given connection (cf. Prop. 4.2
and Rem. 4.3) is also fundamental to derive a full characterization of the attainable profiles.

Hyperbolic partial differential equations with discontinuous coefficients arise in many different applications
in physics and engineering including: two-phase flow models in porous media with changing rock types (for oil
reservoir simulation) [30, 31]; slow erosion granular flow models [55]; clarifier-thickener problems of continuous
sedimentation (in waste-water treatment plants) [18, 25]; population-balance models of steel ball wear in grinding
mills [17]; ion etching in semiconductor industry [53]; traffic flow models with roads of varying amplitudes or
surface conditions [46]; Saint Venant models of blood flow in endovascular treatments [20, 26]; radar shape-from-
shading models [48]. This kind of equations appear also in the analysis of inverse problems [35, 36] or of optimal
control problems [32] for conservation laws with smooth flux, where one needs to deal with the backward adjoint
transport equation with discontinuous coefficients, which depend on the (possibly discontinuous) solution of the
conservation law. Moreover, conservation laws with discontinuous flux arise also as a reformulation of balance
laws [40] or of triangular systems of conservation laws [16, 41], in order to design efficient numerical schemes
or to analyse their well-posedness. Finally, we observe that such a class of PDEs share fundamental features
of conservation laws evolving on simple networks composed by a number of edges connected together by a
junction [27, 28], which is a topic attracting a vast interest in the last twenty-five years for the wide range of
applications [15].

Despite a large amount of literature on the theoretical and numerical aspects of conservation laws with
discontinuous flux produced in the last three decades, almost no investigation of control issues for such a class
of PDEs has been performed so far. The goal of the present paper is to provide a first step toward the analysis
of controllability properties of these type of equations. Having in mind applications to optimization problems,
we rely on the characterization of the attainable profiles to establish compactness in the L1-topology of the
attainable set in connection with classes of uniformly bounded initial data taking values in closed convex sets.
We then apply these results to two classes of optimization problems for traffic flow where one is interested in:

– minimising the distance from a target configuration (for both models) or the fuel consumption in a given
road segment (for the latter model);

– maximising the net present value of the waterflooding process (in the first model).

We point out that a further step in the research direction pursued in this paper is the characterization of the
traces of admissible solutions at the flux-discontinuity interface as well as the analysis of the reachable set when
one fixes the initial data and considers such traces as control parameters (cf. [5] within the network setting),
which is the object of the forthcoming paper [7].

The paper is organized in the following way. In Section 2 we recall the definition of interface entropy condition
relative to an interface connection (A,B), and the corresponding definition of AB-entropy solution. We also
review the well-posedness theory of L1-contractive semigroups for this particular class of entropy admissible
solutions. Section 3 collects the statements of the main results on the full description of the set of attainable
profiles and their topological properties. In Section 4 we establish a preliminary lemma concerning the structure
of AB-entropy solutions. The proofs of the characterization of the attainable set and of its compactness is
provided in Sections 5 and 6, respectively. Finally, in Section 7 we discuss two applications arising in traffic
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flow models, which lead to variational problems with cost functionals depending on the profile of the solutions,
where we regard as control parameters both the initial data and the connection states.

2. Preliminaries and setting of the problem

Consider the scalar conservation law (1.1) with flux given by (1.3), and assume that fl, fr coincide at two
points of their domain which, up to a reparametrization of the unknown variable, we may suppose to be u = 0
and u = 1. Observe that, by strict convexity, fl fr admit a unique point of minimum which we call, respectively,
θl and θr. Hence, we shall make the following standing hypotheses on the flux f in (1.3):

H1) fl, fr : R→ R are twice continuously differentiable, (uniformly) strictly convex maps

min
{
f ′′l (u), f ′′r (u)

}
≥ c > 0 ∀ u ∈ R;

H2) fl(0) = fr(0), fl(1) = fr(1);
H3) θl ≥ 0, θr ≤ 1.

We recall that, regardless of how smooth the initial data are, nonlinear conservation laws as (1.1), (1.3)
do not posses in general classical solutions globally defined in time, even when fl = fr, since they can develop
discontinuities (shocks) in finite time. Hence, it is natural to consider weak solutions in the sense of distributions
that, for sake of uniqueness, satisfy the classical Kružkov entropy inequalities away from the point of the
flux discontinuity, and a further interface entropy condition at the flux-discontinuity interface. As observed in
the introduction, for modellization and control treatment reasons, we shall employ an admissibility condition
involving the so-called interface connection introduced in [1], which can be equivalently formulated in terms of
an interface entropy condition or of extended entropy inequalities adapted to the particular connection taken
into account (cf. [1, 12, 19]).

Definition 2.1. (Interface connection) Let (A,B) ∈ R2. Then (A,B) is called a connection (Fig. 1) if it
satisfies:

(i) fl(A) = fr(B); (ii) A ≤ θl, B ≥ θr.

We shall denote with Cf the set of pairs of connections associated to the flux f(x, u) in (1.3).

Observe that condition (ii) is equivalent to: (ii)’ f ′l (A) ≤ 0 and f ′r(B) ≥ 0; which shows that the function

kAB(x) =

{
A if x < 0 ,

B if x > 0 ,
(2.1)

is a stationary undercompressive (or marginally undercompressive) weak solution of (1.1), (1.3), since its char-
acteristics diverge from (or are parallel to) the flux-discontinuity interface x = 0. The function kAB is used
in [19] to define the adapted entropy ηAB(x, u) =

∣∣u− kAB(x)
∣∣, which in the spirit of [13] is employed to select

a unique solution of the Cauchy problem (1.1), (1.3)–(1.2), according with the following definition.

Definition 2.2. (AB-entropy solution) Let (A,B) be a connection and let kAB be the function defined
in (2.1). A function u ∈ L∞(R × [0,+∞)) is said an AB-entropy solution of (1.1), (1.3)–(1.2) if the following
holds:

(i) u is a weak distributional solution of (1.1), (1.3) on R × R+, that is, for any test function φ ∈ C1c with
compact support contained in R× (0,+∞), there holds∫ ∞

−∞

∫ ∞
0

{
uφt + f(x, u)φx

}
dxdt = 0.
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Figure 1. Example of AB connection with fl, fr strictly convex fluxes.

(ii) u is a Kružhkov entropy weak solution of (1.1), (1.3)-(1.2) on (R \ {0})× [0,+∞), that is t→ u(·, t) is a
continuous map from [0,+∞) in L1

loc(R), the initial condition (1.2) is satisfied almost everywhere, and:
(ii.a) for any non-negative test function φ ∈ C1c with compact support contained in (−∞, 0) × (0,+∞),

there holds∫ 0

−∞

∫ ∞
0

{
|u− k|φt +

(
fl(u)− fl(k)

)
sgn(u− k)φx

}
dxdt ≥ 0 ∀ k ∈ R;

(ii.b) for any non-negative test function φ ∈ C1c with compact support contained in (0,+∞) × (0,+∞),
there holds∫ +∞

0

∫ ∞
0

{
|u− k|φt +

(
fr(u)− fr(k)

)
sgn(u− k)φx

}
dxdt ≥ 0 ∀ k ∈ R.

(iii) u satisfies a Kružhkov-type entropy inequality relative to the connection (A,B), that is, for any non-
negative test function φ ∈ C1c with compact support contained in R× (0,+∞), there holds

∫ +∞

−∞

∫ ∞
0

{∣∣u− kAB(x)
∣∣φt +

(
f(x, u)− f(x, kAB(x))

)
sgn(u− kAB(x))φx

}
dxdt ≥ 0.

Remark 2.3. If u is an AB-entropy solution, by property (ii) and because of the strict convexity of the
fluxes fl,r, it follows that u(·, t) ∈ BVloc(R \ {0}) for any t > 0. Actually, it was shown in [2] that for all
connections such that both A 6= θl and B 6= θr, one has u(·, t) ∈ BVloc(R) for any t > 0. On the other hand,
when (A,B) is a critical connection, i.e. when either A = θl or B = θr, the total variation of u(·, t) may well
blow up in a neighbourhood of the flux-discontinuity interface x = 0, at some time t > 0 (see [2]). However,
since u is in particular a distributional solution of ut + fl(u)x = 0 on (−∞, 0)× (0,+∞), and of ut + fr(u)x = 0
on (0,+∞)× (0,+∞), and since the fluxes fl,r are strictly convex, relying on a result in [49] (see also [57]) one
deduces that u(·, t) still admits strong left and right traces at x = 0, i.e. that (after a possibly modification on a
set of measure zero) for all t > 0 there exist the one-sided limits (1.4) (cf [19]). Hence, since u is a distributional
solution of (1.1), (1.3) on R × (0,+∞), by property (i), it follows that the Rankine-Hugoniot condition (1.5)
holds. Furthermore, by the analysis in Lemma 3.2 from [19] and Section 4.8 from [12], it follows that, because
of condition (i) of Definition 2.1 and assumption H1) on fl, fr, we can equivalently replace condition (iii) in
Definition 2.2 with
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(iii)’ u satisfies an interface entropy condition relative to the connection (A,B), that is, the one-sided limits (1.4)
satisfy

fl(ul(t)) = fr(ur(t)) ≥ fl(A) = fr(B),(
ul(t) ≤ θl and ur(t) ≥ θr

)
=⇒ (ul(t), ur(t)) = (A,B)

for a.e. t > 0 . (2.2)

The first condition in (2.2) prescribes that the flux of the solution at the flux-discontinuity interface be greater
or equal than the value of the flux on the (A,B) connection. Whereas the second condition in (2.2) excludes
that the characteristics diverge from the flux-discontinuity interface when (ul(t), ur(t)) 6= (A,B), i.e. the (A,B)
characteristic condition in Definition 1.4 from [19] is verified.

Remark 2.4. Since fl, fr are strictly convex maps, the Kružhkov entropy inequalities (ii.a)-(ii.b) in
Definition 2.2 are equivalent to the Lax entropy condition [43, 44]

u(x−, t) ≥ u(x+, t) ∀ t, x > 0 . (2.3)

It was proved in [1, 19] (see also [12]) that AB-entropy solutions of (1.1), (1.3) with bounded initial data are
unique and form an L1-contractive semigroup. We collect the properties of such a semigroup in the following

Theorem 2.5. (Semigroup of AB-entropy solutions) [1, 19] Let f be a flux as in (1.3) satisfying the
assumptions H1), H2), H3). Then, given a connection (A,B) ∈ Cf , there exists a map

SAB : [0,+∞)× L∞(R)→ L∞(R), (t, u) 7→ SABt u ,

enjoying the following properties:

(i) For each u ∈ L∞(R), the function u(x, t)
.
= SABt u(x) provides the unique AB-entropy solution of the

Cauchy problem (1.1), (1.3)-(1.2).
(ii)

SAB0 u = u, SABs ◦ SABt u = SABs+t u ∀ t, s ≥ 0, ∀ u ∈ L∞(R) .

(iii) ∥∥SABt u− SABs v
∥∥
L1 ≤

∥∥u− v∥∥
L1 + L

∣∣t− s∣∣ ∀ t, s ≥ 0, ∀ u, v ∈ L∞(R) ,

for some positive constant L > 0.

In the present paper we regard as control parameters both the initial data and the connection states whose
flux provides a lower bound on the flux of the solution at the flux-discontinuity interface. Then, given a set
U ⊂ L∞(R), and a set C ⊂ Cf of connections, we consider the following attainable sets for (1.1), (1.3):

AAB
(
T,U

) .
=
{
SABT u : u ∈ U

}
, A

(
T,U ,C

) .
=

⋃
(A,B)∈C

AAB
(
T,U) , (2.4)

which consist of all profiles that can be attained at a fixed time T > 0 by AB-entropy solutions of (1.1), (1.3)
with initial data that varies inside U , or by AB-entropy solutions of (1.1), (1.3) with initial data in U and
connections (A,B) ∈ C . In the case where U is the whole space L∞(R), we set

AAB(T )
.
= AAB

(
T,L∞(R)

)
, A

(
T
) .

= A
(
T,L∞(R),Cf

)
. (2.5)
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We will provide a characterisation of the sets (2.5) in terms of certain Olěınik-type type estimates on the decay
of positive waves, and we will establish the L1-compactness of (2.4) for classes U of initial data with values in
compact convex sets, and for compact sets C of connections.

3. Statement of the main results

We present here the main results of the paper whose proof will be established in Sections 3.1, 3.4. Throughout
the following

D−ω(x) = lim inf
h→0

ω(x+ h)− ω(x)

h
, D+ω(x) = lim sup

h→0

ω(x+ h)− ω(x)

h
, (3.1)

will denote, respectively, the lower and the upper Dini derivative of a function ω at x. We shall also use
the notations f−1l,−

.
= (fl|(−∞,θl])

−1, f−1r,−
.
= (fr |(−∞,θr])

−1, for the inverse of the restriction of fl, fr to their

decreasing part, respectively, and f−1l,+
.
= (fl|[θl,+∞))

−1, f−1r,+
.
= (fr |[θr,+∞))

−1, for the inverse of the restriction
of fl, fr to their increasing part, respectively. Then, we set

πl,±
.
= f−1l,± ◦ fl , πr,±

.
= f−1r,± ◦ fr , πrl,±

.
= f−1l,± ◦ fr , πlr,±

.
= f−1r,± ◦ fl (3.2)

and we introduce the following sets that characterize the left and right traces of an AB-entropy solution at the
flux-discontinuity interface (see Rem. 4.3):

T1
.
=
{

(ul, ur) ∈ (θl,+∞)× (θr,+∞); ul ≥ πl,+(A), B ≤ ur ≤ πlr,+(ul)
}
,

T2
.
=
{

(ul, ur) ∈ (−∞, θl)× (−∞, θr); πrl,−(ur) ≤ ul ≤ A, ur ≤ πr,−(B)
}
,

T3,−
.
=
{

(ul, ur) ∈ [θl,+∞)× (−∞, θr); πl,+(A) ≤ ul ≤ πrl,+(ur), ur ≤ πr,−(B)
}
,

T3,+
.
=
{

(ul, ur) ∈ (θl,+∞)× (−∞, θr]; ul ≥ πl,+(A), πlr,−(ul) ≤ ur ≤ πr,−(B)
}
.

(3.3)

Theorem 3.1. Let f be a flux as in (1.3) satisfying the assumptions H1), H2), H3), and let (A,B) ∈ Cf .
Then, for any fixed T > 0, the set AAB(T ) in (2.5) is given by

AAB(T ) = A1(T ) ∪ A2(T ) ∪ AAB3 (T ) , (3.4)

where A1(T ),A2(T ),AAB3 (T ) are sets of functions ω ∈ L∞(R) having essential left and right limits at x = 0,
defined as follows.

A1(T) is the set of all functions ω that satisfy
(
ω(0−), ω(0+)

)
∈ T1 , and for which there exists R > 0 such

that the following conditions hold.

ω(x) ≥ (f ′l )
−1(x/T + f ′l (ω(0−))

)
∀ x ∈ (−∞, 0), ω(x) ≥ (f ′r)

−1(x/T ) ∀ x ∈ (0, R),

ω(x) < (f ′r)
−1(x/T ) ∀ x ∈ (R,+∞), ω(R−) ≥ ω(R+),

(3.5)
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D+ω(x) ≤



1/
(
f ′′l (ω(x)) · T

)
∀ x ∈ (−∞, 0) ,

f ′r(ω(x))
[
f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

]2[
f ′′l ◦ f

−1
l,+ ◦ fr(ω(x))

]
[f ′r(ω(x))]

2 (
f ′r(ω(x))T − x

)
+ x
[
f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

]2
f ′′r (ω(x))

∀ x ∈ (0, R),

1/
(
f ′′r (ω(x)) · T

)
∀ x ∈ (R,+∞) .

(3.6)

A2(T) is the set of all functions ω that satisfy
(
ω(0−), ω(0+)

)
∈ T2 , and for which there exists L < 0 such

that the following conditions hold.

ω(x) > (f ′l )
−1(x/T ) ∀ x ∈ (−∞, L), ω(x) ≤ (f ′l )

−1(x/T ) ∀ x ∈ (L, 0),

ω(x) ≤ (f ′r)
−1(x/T + f ′r(ω(0+))

)
∀ x ∈ (0,+∞), ω(L−) ≥ ω(L+),

(3.7)

D+ω(x) ≤



1/
(
f ′′l (ω(x)) · T

)
∀ x ∈ (−∞, L) ,

f ′l (ω(x))
[
f ′r ◦ f−1r,− ◦ fl(ω(x))

]2
[
f ′′r ◦ f−1r,− ◦ fl(ω(x))

] [
f ′l (ω(x))

]2 (
f ′l (ω(x))T − x

)
+ x

[
f ′r ◦ f−1r,− ◦ fl(ω(x))

]2
f ′′l (ω(x))

∀ x ∈ (L, 0),

(
1/f ′′r (ω(x)) · T

)
∀ x ∈ (0,+∞) .

(3.8)

AAB3 (T) is the set of all functions ω for which there exist L ≤ 0 ≤ R, such that

(
ω(0−), ω(0+)

)
∈

{
T3,− ∪ T3,+ if L = R = 0 ,{

(A,B)
}

if L ≤ 0 ≤ R ,
(3.9)

and the following conditions hold.

ω(x) = A ∀ x ∈ (L, 0), ω(x) = B ∀ x ∈ (0, R),

ω(L−) ≥ ω(L+) , ω(R−) ≥ ω(R+) ,

ω(x) ≥

{
(f ′l )

−1(x/T ) if L < 0,

(f ′l )
−1(x/T+f ′l (ω(0−))

)
if L = 0,

∀ x ∈ (−∞, L),

ω(x) ≤

{
(f ′r)

−1(x/T ) if R > 0,

(f ′r)
−1(x/T+f ′r(ω(0+))

)
if R = 0,

∀ x ∈ (R,+∞),

(3.10)

D+ω(x) ≤

{
1/
(
f ′′l (ω(x)) · T

)
∀ x ∈ (−∞, L) ,(

1/f ′′r (ω(x)) · T
)
∀ x ∈ (R,+∞) .

(3.11)

Remark 3.2. The conditions (3.6), (3.8), (3.11) reflect the fact that, since the fluxes are strictly convex,
positive waves of AB-entropy solutions decay in time. Such conditions are sufficient to guarantee the exact-time
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Figure 2. Characteristics’s behaviour for profiles in A1(T ).

Figure 3. Characteristics’s behaviour for profiles in A2(T ).

Figure 4. Characteristics’s behaviour for profiles in AAB3 (T ).

controllability of (1.1)-(1.2). In fact, starting at a time T > 0 with a profile ω ∈ A1(T ) ∪ A2(T ) ∪ AAB3 (T ),
because of (3.6), (3.8), (3.11) one can trace backward the (generalized) characteristics ξ1, ξ2 through points
x1 < x2 without crossing in R × (0, T ), unless ω(x1) = A and ω(x2) = B, in which cases the characteristics
ξ1, ξ2 intersects only at x = 0 (see Figs. 2–4). In particular, by (3.5), (3.7), the inequalities (3.6), (3.8) imply
that

D+ω(x) <
f ′l (ω(x))

xf ′′l (ω(x))
∀ x ∈ (L, 0) , D+ω(x) <

f ′r(ω(x))

xf ′′r (ω(x))
∀ x ∈ (0, R) , (3.12)

and we recover the same type of boundary controllability condition derived in [3], if we regard the left and right
traces at x = 0 as controls. Notice that we have in (3.12) a strict inequality since here, differently from [3],
characteristics having slope with the same sign cannot intersect even at x = 0 (they can intersect only at t = 0).

Remark 3.3. Notice that, by the strict convexity assumption (H1) on f ′′l , f
′′
r , and relying on (3.5), (3.7), we

deduce that the right-hand side of (3.6), (3.8), (3.11) is always nonnegative, and it is bounded on any set
bounded away from x = 0. Therefore, any ω ∈ A1(T ) ∪ A2(T ) ∪ AAB3 (T ) is an equivalence class of bounded
measurable functions that haves finite total increasing variation (and hence finite total variation as well) on
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subsets of R bounded away from the origin. Moreover, by assumption any ω ∈ A1(T ) ∪ A2(T ) ∪ AAB3 (T )
admits one-sided limits at x = 0. Hence, any element of A1(T ) ∪ A2(T ) ∪ AAB3 (T ) admits one-sided limits at
every point.

The characterization of the attainable set AAB(T ) provided by Theorem 3.1 yields the L1-compactness of
the attainable sets AAB

(
T,U

)
, A
(
T,U ,C

)
in (2.4) for classes U of admissible controls uniformly bounded and

with values in convex and closed sets, as stated in the following

Theorem 3.4. Let G : R ↪→ R be a measurable, bounded multifunction with convex and closed values, and let
C ⊂ Cf be a compact set of connections. Consider the set

U = {u ∈ L∞(R) : u(x) ∈ G(x) for a.e. x ∈ R} . (3.13)

Then, under the same assumptions of Theorem 3.1, for any fixed T > 0, the sets AAB
(
T,U

)
, A
(
T,U ,C

)
in (2.4)

are compact in the L1
loc(R)-topology and, letting SAB(·) u

∣∣
T

denote the restriction of SAB(·) u to R× [0, T ], the sets

AAB
(
U
) .

=
{
SAB(·) u

∣∣
T

: u ∈ U
}
, A

(
U ,C

) .
=

⋃
(A,B)∈C

AAB
(
U) , (3.14)

are compact in the L1
loc(R× [0, T ])-topology.

In turn, the compactness of the attainable sets yields the existence of optimal solutions for a class of mini-
mization (maximization) problems, by considering a minimizing (maximizing) sequence for the corresponding
cost functionals.

Corollary 3.5. Let G be multivalued map as in Theorem 3.4 and assume that G(x) = 0 for all x ∈ R \K, for
some bounded set K ⊂ R. Given an interval I ⊂ R and T > 0, let F1 : L1(I)→ R, F2 : L1(I × [0, T ])→ R be
lower semicontinuous functionals, and let U be the set of admissible controls defined in (3.13). Then, under the
same assumptions of Theorem 3.1, the optimal control problems

min
u∈U

F1(STu(·)), min
u∈U

F2(S(·)u(·)), (3.15)

admit a solution. If we assume that F1, F2 are upper semicontinuous functionals, then there exists a solution of
the maximization problems

max
u∈U

F1(STu(·)), max
u∈U

F2(S(·)u(·)). (3.16)

4. Structure of AB-entropy solutions and a technical lemma

We analyze here some structural properties of AB-entropy solutions and we derive a technical lemma on the
relation between upper bounds on the Dini derivative and the monotonicity of suitable maps, that will be useful
for the proofs of Theorems 3.1 and 3.4.

Remark 4.1. By the analysis in Section 3.1 from [27] it follows that the Riemann solver associated to a
given connection (A,B) enjoys the following properties. Letting u(x, t) be the AB-entropy solution of the
Cauchy problem for (1.1), (1.3), with initial data u(x) = u− if x < 0, and u(x) = u+ if x > 0, for any given
a ≤ θr, b ≥ θl, a < b, there holds

{A,B, u−, u+} ⊆ [a, b] =⇒ u(x, t) ∈
[

min{a, πrl,−(a)}, max{b, πlr,+(b)}
]

∀ x ∈ R, t ≥ 0 . (4.1)
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Moreover, if A,B ∈ [0, 1], by the assumptions H1), H2) on fl, fr, one has

{A,B, u−, u+} ⊆ [0, 1] =⇒ u(x, t) ∈ [0, 1] ∀ x ∈ R, t ≥ 0 . (4.2)

Observe that, if u(x, t) is a front tracking solution (cf. [27], Sect. 4) constructed with approximate Riemann
solvers that satisfy (4.1), (4.2), then the same type of a-priori bounds hold. In fact, u can assume values which
do not belong to the range of the initial data u only on regions adjacent to the discontinuity x = 0 (from the
left or from the right), and such values always belong to the interval[

inf
{

min{u(x), πrl,−(u(x))}; x ∈ R
}
, sup

{
max{u(x), πlr,+(u(x))}; x ∈ R

}]
.

Hence, since a general solution of a Cauchy problems for (1.1), (1.3) can be obtained as limit of front tracking
solutions (see [27, 30]), we deduce the following a-priori bounds for any u(x, t)

.
= SABt u(x), with u ∈ L∞(R):

{A,B}∪{u(x); x ∈ R} ⊆ [a, b] =⇒ u(x, t) ∈
[

min{a, πrl,−(a)}, max{b, πlr,+(b)}
]

∀ x ∈ R, t ≥ 0 , (4.3)

and

{A,B} ∪ {u(x); x ∈ R} ⊆ [0, 1] =⇒ u(x, t) ∈ [0, 1] ∀ x ∈ R, t ≥ 0 . (4.4)

Moreover, if the initial data u vanishes outside a bounded set K, then there will be some bounded set K ′ such
that supp(u(·, t)) ⊂ K ′ for all t > 0.

The classical theory of generalized characteristics for conservation laws with continuous and convex flux [23]
guarantees that backward characteristics, lying in the same quarter of plane (−∞, 0] × [0,+∞) or [0,+∞) ×
[0,+∞), never intersect at times t > 0 in points x 6= 0. A fundamental feature of AB-entropy solutions is
that backward generalized characteristics cannot intersect at times t > 0 even along the discontinuity interface
x = 0, unless (ul(s), ur(s)) = (A,B) for all 0 < s ≤ t. It follows in particular that no rarefaction fan can be
originated at x = 0 and t > 0. This property is the consequence of the next Proposition. We recall that a
generalized characteristic ξ(t), t ∈ (t′, t′′) for a conservation law ut + f(u)x = 0 is called genuine if, for almost
every t ∈ (t′, t′′), there holds u(ξ(t)−, t) = u(ξ(t)+, t) = v for some constant v such that f ′(v) = ξ̇. Thus, genuine
characteristics are segments of lines which may intersect only at their end points [23].

Proposition 4.2. Let f be a flux as in (1.3) satisfying the assumptions H1), H2), H3), and let u(x, t) be
an AB-entropy solution of (1.1), (1.3)-(1.2), for some initial data u ∈ L∞(R) and a connection (A,B) ∈ Cf .
Then, at any time t > 0 the following hold.

(i) If ul( t+) < θl and ur( t+) > θr, then (ul(t±), ur(t±)) = (A,B) for all t ∈ (0, t∗), for some t∗ > t.
Moreover, there exist exactly two forward, genuine, characteristics η′, η′′, starting at (0, t ), which lie in
(−∞, 0)× ( t, t∗) and (0,+∞)× ( t, t∗), respectively.

(ii) If ul( t+) ≥ θl or ur( t+) ≤ θr, then there exists at most a single forward, genuine, characteristic starting
at (0, t ) and lying in (R \ {0})× ( t, t∗), for some t∗ > t.

Proof. We shall distinguish three cases.

Case 1. ul( t+) > θl and ur( t+) 6= θr, or ur( t+) < θr and ul( t+) 6= θl.
1a) If ul( t+) > θl, ur( t+) > θr and u(0+, t ) ≥ ur( t+) (see Fig. 5), then consider two sequences of points
{tn, tn ↓ 0}, and {(xn, t ), xn ↓ 0}, of continuity for ur and u, respectively. Tracing the backward genuine char-
acteristics (with positive slopes) through (0, tn) and (xn, t ) one deduces that there exist sequences of points
{(x′n, t ), x′n ↑ 0}, and {t′n, t′n ↑ 0}, such that u(x′n, t ) → ul( t+) and ur(t

′
n) → u(0+, t ). Hence, there holds

u(0−, t ) = ul( t+), ur( t−) = u(0+, t ). Now observe that, if ul( t−) 6= u(0−, t ), then there should be a shock
with positive slope arriving in (0, t ) (or generated in (0, t )) and connecting the left state u(0−, t ) with the right
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state ul( t−). Such a shock is entropy admissible for the conservation law with flux fl and has positive slope if
and only if ul( t−) < u(0−, t ) and fl(ul( t−)) < fl(u(0−, t )). Since by (2.2) one has fl(ul( t−)) = fr(ur( t−)),
and because of u(0−, t ) = ul( t+), from fl(ul( t−)) < fl(u(0−, t )) it follows that fr(ur( t−)) < fl(ul( t+)).
On the other hand, θr < ur( t+) ≤ u(0+, t ) = ur( t−) implies fr(ur( t+)) ≤ fr(ur( t−)) which is in con-
trast with fr(ur( t−)) < fl(ul( t+)). Therefore, ul( t+) > θl, ur( t+) > θr and u(0+, t) ≥ ur( t+), together
imply that ul( t−) = u(0−, t ) = ul( t+). Moreover, since by (2.2) one has fl(ul( t+)) = fr(ur( t+)), from
θr < ur( t+) ≤ u(0+, t ) = ur( t−) it follows that fr(ur( t+)) ≤ fr(ur( t−)) ≤ fr(ur( t+)). Hence, ul( t+) > θl,
u(0+, t ) ≥ ur( t+) > θr together imply that ul( t±) = u(0−, t ) and ur( t±) = u(0+, t ), which shows that from
(0, t ) it emerges a single forward genuine characteristic, lying on (0,+∞)× ( t, t∗), for some t∗ > t, and property
(ii) is verified.
1b) If ul( t+) > θl and θr ≤ u(0+, t ) < ur( t+), then there is a shock with positive slope starting at (0, t ) and
connecting the left state ur( t+) with the right state u(0+, t ). Moreover, tracing the backward genuine charac-
teristics through a sequence of points (xn, t ), xn ↑ 0, of continuity for u, one deduces that ur( t−) = u(0+, t ).
Hence, by (2.2) one has fl(ul( t−)) = fr(ur( t−)) < fr(ur( t+)) = fl(ul( t+)). On the other hand, by the obser-
vations in case 1a) it follows that u(0−, t ) = ul( t+), which implies fl(u(0−, t )) > fl(ul( t−)). Thus, it must be
u(0−, t ) > ul( t−), and there is a shock with positive slope arriving at (0, t ) (or generated in (0, t )) connecting
the left state u(0−, t ) with the right state ul( t−) ∈ {πrl,−(u(0+, t )), πrl,+(u(0+, t ))}. Therefore, if ul( t+) > θl
and θr ≤ u(0+, t ) < ur( t+), then there is no forward, genuine characteristic, emerging from (0, t ), there is a
single (forward) shock starting at (0, t ) with positive slope, and property (ii) is verified.
1c) If ul( t+) > θl and u(0+, t ) < θr < ur( t+), then with similar arguments to case 1b) one deduces that:
– there is a shock with positive slope starting at (0, t ) and connecting the left state ur( t+) with the right state
u(0+, t) > πr,−(ur( t+));
– there is a shock with positive slope arriving at (0, t ) (or generated in (0, t )) connecting the left state
u(0−, t ) = ul( t+) with the right state ul( t−) ∈ {πrl,−(ur( t−)), πrl,+(ur( t−))};
– either ur( t−) = u(0+, t ), or ur( t−) > u(0+, t ), and in this latter case there is a shock with negative slope
arriving at (0, t ) (or generated in (0, t )) that connects the left state ur( t−) ∈ (u(0+, t ), πr,+(u(0+, t ))) with
the right state u(0+, t ).
Therefore, if ul( t+) > θl and u(0+, t ) < θr < ur( t+), then as in case 1b) there is no forward, genuine, charac-
teristic emerging from (0, t ), while there is a single (forward) shock starting at (0, t ), which has negative slope.
Hence, property (ii) is verified.
1d) If ul( t+) < θl and ur( t+) < θr, then we can proceed as in cases 1a)-1c) to conclude that: either
ul( t±) = u(0−, t ), ur( t±) = u(0+, t ), and it emerges a single forward genuine characteristic, lying on
(−∞, 0) × ( t, t∗), for some t∗ > t, or ul( t+) < u(0−, t ), ur( t+) = u(0+, t ), and there is no forward, gen-
uine characteristic, emerging from (0, t ), while there is a single (forward) shock starting at (0, t ), which has
negative slope. Thus, property (ii) is verified.
1e) If ul( t+) > θl and ur( t+) < θr, then with the same arguments as above we deduce that u(0−, t ) = ul( t+),
u(0+, t ) = ur( t+), and by (2.2) one of the following subcases occurs:
– ul( t+) = ul( t−), ur( t+) = ur( t−), and in a neighbourhood of t the characteristics are crossing the line x = 0
with positive slopes on the left side, with negative slopes on the right side;
– ul( t−) ≤ θl < ul( t+), ur( t+) < ur( t−) ≤ θr, there is a shock with positive slope arriving at ( t, 0) (or gener-
ated in (0, t )), which connects the left state u(0−, t ) = ul( t+) with the right state ul( t−), there is a shock with
negative slope connecting the left state ur( t−) = πlr,−(ul( t−)) with the right state u(0+, t ) = ur( t+), and in
a left neighbourhood of t the characteristics are crossing the line x = 0 with negative slopes on both sides;
– θl < ul( t−) = A < ul( t+), ur( t+) < ur( t−) = B < θr, there are two shocks with positive and negative slopes
arriving at (0, t ) as in the previous case, and in a left neighbourhood of t the characteristics are crossing the
line x = 0 with with positive slopes on the left side, with negative slopes on the right side;
– θl < ul( t−) < ul( t+), ur( t+) < θr ≤ ur( t−), there are two shocks with positive and negative slopes arriving
at (0, t ) as in the previous case, and in a left neighbourhood of t the characteristics are crossing the line x = 0
with positive slopes on both sides.
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Figure 5. On the left case 1a, on the right case 2a.

In all subcases of 1e) there is no forward characteristic emerging from (0, t ) and hence property (ii) is verified.

Case 2. ul( t+) < θl and ur( t+) > θr.
Let t∗ > t be such that ul(t) < θl and ur(t) > θr for all t ∈ (t, t∗). Then, by (2.2) this implies that
(ul(t), ur(t)) = (A,B) for all t ∈ (t, t∗), with A < θl, B > θr, and hence there holds (ul( t+), ur( t+)) = (A,B).
2a) If u(0−, t ) < A, then tracing the backward genuine characteristics (with negative slopes) through a sequence
of points (xn, t ), xn ↑ 0, of continuity for u, one deduces that ul(t−) = u(0−, t ). Hence, ul(t−) < A and
fl(ul(t−)) > f(A). By (2.2) this implies that ur(t−) < πr,−(B). Observe that if u(0+, t ) < B, then a shock
with positive slope should emerge from (0, t ), with left state ur( t+) = B and right state u(0+, t ). But, this
implies that u(0+, t ) > πr,−(B). On the other hand, from ur(t−) 6= u(0+, t ) it follows that there should be a
shock with negative slope arriving in (0, t ) (or generated in (0, t )) and connecting the left state ur( t−) with the
right state u(0+, t ) > ur( t−), which is not entropy admissible for the conservation law with flux fr. Therefore,
if ul( t+) < θl, ur( t+) > θr and u(0−, t ) < A, then it must be u(0+, t ) ≥ B (see Fig. 5). Hence, tracing the
backward genuine characteristics (with positive slopes) through a sequence of points (xn, t ), xn ↓ 0, of conti-
nuity for u, one deduces that ur(t−) = u(0+, t ) ≥ B, which is in contrast with ur(t−) < πr,−(B). Therefore,
ul( t+) < θl and ur( t+) > θr together imply u(0−, t ) ≥ A.
2b) If u(0−, t ) > A, then there should be a shock with negative slope connecting the left state u(0−, t )
with the right state ul( t+) = A emerging at (0, t ). This implies that u(0−, t ) < πl,+(A). On the other
hand, if u(0−, t ) ≤ θl then tracing the backward genuine characteristics (with negative slopes) through a
sequence of points (xn, t ), xn ↑ 0, of continuity for u, one deduces that ul( t−) = u(0−, t ) ∈ (A, πl,+(A)).
This implies that fl(ul( t−)) < fl(A), which is in contrast with (2.2). Hence, if u(0−, t ) > A, then it must
be u(0−, t ) ∈ (θl, πl,+(A)). However, by (2.2) we have ul( t−) ∈ (−∞, A] ∪ [πl,+(A),+∞), which implies
ul( t−) /∈ (θl, πl,+(A)). Thus, there should be a shock with positive slope arriving in (0, t ) (or generated in (0, t ))
and connecting the left state u(0−, t ) ∈ (θl, πl,+(A)) with the right state ul( t−) ∈ (−∞, A] ∪ [πl,+(A),+∞),
which is not entropy admissible for the conservation law with flux fl. Therefore, ul( t+) < θl and ur( t+) > θr
together imply u(0−, t ) = A, and with the same arguments we deduce also that u(0+, t ) = B.
2c) If u(0−, t ) = A < θl and u(0+, t ) = B > θr, then tracing the backward genuine characteristics through
two sequences of points (xn, t ), xn ↑ 0, and (xn, t ), xn ↓ 0 (having negative and positive slopes, respectively),
one deduces that there exists t′ < t such that ul(t±) = A and ur(t±) = B for all t ∈ (t′, t ). Then, set
τ
.
= inf

{
t′ < t; ul(s±) = A < θl, ur(s±) = B > θr ∀ s ∈ (t′, t )

}
. If τ > 0, since one has ul(τ+) = A,

ur(τ+) = B, repeating the above arguments of cases 2a)-2b) one would deduce that ul(t±) = A, ur(t±) = B
for all t ∈ (t′′, τ), for some t′′ < τ , which is in contrast with the definition of τ . Therefore it must be τ = 0.
On the other hand, ul( t+) = A, ur( t+) = B clearly imply that ul(t±) = A, ur(t±) = B for all t ∈ ( t, t∗),
for some t∗ > t. Thus, one has ul(t±) = A, ur(t±) = B for all t ∈ (0, t∗) and at any point (0, t), t ∈ (0, t∗)
starts exactly two forward, genuine characteristics η′, η′′, which lie in (−∞, 0) × (t, t∗) and (0,+∞) × (t, t∗),
respectively, proving property (i).

Case 3. ul( t+) = θl or ur( t+) = θr.
Notice that, by (2.2) ul( t+) = θl implies θl = A, while ur( t+) = θr implies θr = B.
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3a) If ul( t+) = θl and u(0−, t ) = θl, then tracing the backward genuine characteristics through a sequence
of points (xn, t ), xn ↑ 0, of continuity for u, one deduces that ul(t) = θl for all t ∈ (0, t ). Hence, ul( t−) = θl
as well. In turn, by (2.2) this implies that ul( t±) = A, ur( t±) ∈ {B, πr,−(B)}. Suppose that ur( t+) = B and
u(0+, t ) < θr. Since by Definition 2.1 we have B ≥ θr, it follows that a shock with positive slope emerges from
(0, t ), and thus u(0+, t ) > πr,−(B). However, ur( t−) ∈ {B, πr,−(B)} and πr,−(B) < u(0+, t ) < B imply that
there should be a shock with negative slope arriving in (0, t ) (or generated in (0, t )) and connecting the left
state ur( t−) ∈ {B, πr,−(B)} with the right state u(0+, t ) ∈ (πr,−(B), B), which is not entropy admissible for
the conservation law with flux fr. Therefore, if ur( t+) = B, then it must be u(0+, t ) ≥ θr. Then, tracing the
backward genuine characteristics through a sequence of points (xn, t ), xn ↓ 0, of continuity for u, one deduces
that ur( t−) ≥ θr. Since ur( t−) ∈ {B, πr,−(B)}, this implies that ur( t−) = B. By similar arguments we deduce
that, if ur( t+) = πr,−(B), then also ur( t−) = πr,−(B). Therefore, if ul( t+) = θl and u(0−, t ) = θl, it follows
that t is a point of continuity for ul and ur, ul( t±) = A = θl, and ur( t±) = B or ur( t±) = πr,−(B). This
implies that there is no forward genuine characteristic starting from (0, t ) and lying on (−∞, 0) × (0,+∞),
while there is a single forward genuine characteristic starting from (0, t ) and lying on (0,+∞)× (0,+∞), which
proves the property (ii).
3b) Next, assume that ul( t+) = θl and u(0−, t ) > θl. Then, there should be a shock with negative slope
connecting the left state u(0−, t ) with the right state θl emerging at (0, t ), which is not possible since any
entropy admissible shock with right state θl has positive slope. Therefore, ul( t+) = θl implies that u(0−, t ) ≤ θl.
3c) Assume now that ul( t+) = θl > u(0−, t ). Then, tracing the backward genuine characteristics (with negative
slopes) through a sequence of points of continuity for u as above, (xn, t ), xn ↑ 0, we deduce that ul( t−) =
u(0−, t ). Since θl = A 6= ul( t−), by (2.2) this implies that ur( t−) ≤ πlr,−(A) = πr,−(B). On the other hand,
by the same observations in case 1a) we know that ur( t+) ∈ {B, πr,−(B)}. Moreover, with similar arguments
of case 1a) we deduce that ur( t+) = B and ur( t−) ≤ πr,−(B) imply u(0+, t ) ≥ θr, and ur( t−) = B. Next,
assume that ur( t−) ≤ πr,−(B), ur( t+) = πr,−(B). Again with similar arguments as above we deduce that
ur( t+) = πr,−(B) implies u(0+, t ) = πr,−(B), and that there is no entropy admissible shock connecting a left
state ur( t−) < πr,−(B) with a right state πr,−(B). Hence, if ur( t−) ≤ πr,−(B), ur( t+) = πr,−(B), it must be
ur( t−) = πr,−(B). In turn, because of (2.2) and since ul( t−) < θl, this implies that ul( t−) = A, which is in
contrast with ul( t−) = u(0−, t ) < θl = A.
Therefore, ul( t+) = θl implies that u(0−, t ) = θl as well, which are the assumptions of case 1a), and thus
property (ii) is verified. Moreover, one has ur( t±) = u(0+, t ) ∈ {B, πr,−(B)}. With similar arguments we deduce
that ur( t+) = θr implies u(0+, t ) = θr, u(0−, t ) = ul( t±) ∈ {A, πl,+(A)}, and then the same conclusions of
the case ul( t+) = θl hold true. This completes the proof of the Proposition.

Remark 4.3. By the analysis of Proposition 4.2 it follows that, if ul
.
= ul( t ), ur

.
= ur( t ), are the one-sided

limits (1.4) at x = 0, and t > 0, of an AB-entropy solution, then either (ul, ur) = (A,B), or there exists a
backward characteristic through (0, t ), defined on [0, t ], and taking values in R \ {0} at any time t < t. In this
latter case, consider the minimal and maximal backward characteristics ξ−, ξ+ through (0, t ), defined on [0, t ],
and taking values in R. By the proof of Proposition 4.2, and recalling the definition (3.3), we deduce that one
of the following cases occurs:

1. ξ±(0) < 0 and (ul, ur) ∈ T1 ;
2. ξ±(0) > 0 and (ul, ur) ∈ T2 ;
3. ξ−(0) < ξ+(0) = 0, or ξ−(0) = 0 < ξ+(0), or ξ−(0) < 0 < ξ+(0), and (ul, ur) ∈ T3 .

The next result shows that the upper bounds on the Dini derivative of a function ω ∈ Ai(T ), i = 1, 2, 3, given
in (3.6), (3.8), (3.11), are equivalent to the monotonicity of the maps ϕi that associates to any x 6= 0, the
starting point ϕi(x) at time t = 0 of a characteristic that reaches x at time T .

Lemma 4.4. Let ω : R→ R be a bounded function having right and left limits in any point. Then, the following
hold.

(i) If
(
ω(0−), ω(0+)

)
∈ T1 , and ω satisfies (3.5), then (3.6) holds if and only if the function



ATTAINABLE PROFILES FOR CONSERVATION LAWS WITH FLUX FUNCTION SPATIALLY DISCONTINUOUS 15

ϕ1(x) :=


x− f ′l (ω(x)) · T if x < 0,

−f ′l ◦ f
−1
l,+ ◦ fr(ω(x)) ·

(
T − x/f ′r(ω(x))

)
if 0 < x < R,

x− f ′r(ω(x)) · T if x > R

(4.5)

is nondecreasing, and the function

ψ1(x) := T − x/f ′r(ω(x)) 0 < x < R , (4.6)

is decreasing.
(ii) If

(
ω(0−), ω(0+)

)
∈ T2 , and ω satisfies (3.7), then (3.8) holds if and only if the function

ϕ2(x) :=


x− f ′l (ω(x)) · T if x < L,

−f ′r ◦ f−1r,− ◦ fl(ω(x)) ·
(
T− x/f ′l (ω(x))

)
if L < x < 0,

x− f ′r(ω(x)) · T if x > 0

(4.7)

is nondecreasing, and the function

ψ2(x) := T − x/f ′l (ω(x)) L < x < 0 , (4.8)

is increasing.
(iii) If ω satisfies (3.9)−(3.10), then the function

ϕ3(x) :=

{
x− f ′l (ω(x)) · T if x < L,

x− f ′r(ω(x)) · T if x > R,
(4.9)

is nondecreasing if and only if (3.11) holds.

Proof. We prove only the statement (i), the proofs of the other two statements being entirely similar.
1. First observe that the monotonicity of ϕ1, ψ1, are equivalent to

D+ϕ1(x) ≥ 0 ∀ x ∈ R, D+ψ1(x) < 0 ∀ x ∈ (0, R) . (4.10)

Next, notice that by (3.5) we have

f ′l (ω(0−)) ≥ 0 , ω(0−) ≥ θl , f ′r(ω(x)) · T − x ≥ 0 ∀ x ∈ (0, R) , (4.11)

R− f ′r(ω(R+)) · T ≥ 0 , f ′r(ω(R−)) > 0 , T −R/f ′r(ω(R−)) ≥ 0 . (4.12)

Moreover, (ω(0−), ω(0+)) ∈ T1 implies that fl(ω(0−)) ≥ fr(ω(0+)). Hence, relying on (4.11) we deduce that

ω(0−) = f−1l,+ ◦ fl(ω(0−)) ≥ f−1l,+ ◦ fr(ω(0+)), (4.13)

which in turn, together with (4.12), yields

ϕ1(ω(0−)) = −f ′l (ω(0−)) · T ≤ −f ′l ◦ f−1l,+ ◦ fr(ω(0+)) · T = ϕ1(ω(0+)). (4.14)

On the other hand, since the function f−1l,+ takes values in [θl,+∞) (see definition in Sect. 3), it follows that

f ′l ◦ f−1l,+ ◦ fr(v) ≥ 0 ∀ v ∈ R . (4.15)



16 F. ANCONA AND M. T. CHIRI

Hence, because of (4.12), we deduce that

ϕ1(R−) = −f ′l ◦ f−1l,+ ◦ fr(ω(R−)) ·
(
T−R/f ′r(ω(R−))

)
≤ 0 ≤ R− f ′r(ω(R+)) · T = ϕ1(R+). (4.16)

Therefore, in order to establish the statement (i) it is sufficient to show that

D+ϕ1(x) ≥ 0 ∀ x ∈ R \ {0, R} D+ψ1(x) < 0 ∀ x ∈ (0, R), (4.17)

are verified if and only if (3.6) holds.
2. We first show that the equivalence between (3.6) and (4.17) holds at any point of discontinuity for ω. To this
end observe that the maps

g1(v, x)
.
= x−f ′l (v) ·T, g2(v.x)

.
=
[
−f ′l ◦ f−1l,+ ◦ fr(v)

(
T− x/f ′r(v)

)]
|{v; f ′r(v)·T−x≥0}

, g3(v, x)
.
= x−f ′r(v) ·T ,

are nonincreasing in v since, by the strict convexity of the fluxes fl, fr, and because of (4.15), we have

∂v g1(v, x) = −f ′′l (v) · T < 0 ,

∂v g2(v, x) = −
[
f ′′l ◦ f

−1
l,+ ◦ fr(v)

][
f ′r(v)

]2[
f ′r(v) · T − x

]
+ x
[
f ′l ◦ f

−1
l,+ ◦ fr(v)

]2[
f ′′r (v)

][
f ′l ◦ f

−1
l,+ ◦ fr(v)

][
f ′r(v)

]2 ≤ 0 ,

∂v g3(v, x) = −f ′′r (v) · T < 0 .

(4.18)

Moreover, (3.6), (4.11) and the assumption H1) together imply that D+ω(x) is upper bounded since

D+ω(x) ≤


1/(c · T ) if x < 0 ,

f ′r(ω(x))/(x · c) if 0 < x < R ,

1/(c · T ) if x > 0 .

(4.19)

Hence, if x is a point of discontinuity for ω, the inequality (3.6) is verified if and only if ω(x−) > ω(x+). On
the other hand, since

ϕ1(x) =


g1(ω(x), x) if x < 0 ,

g2(ω(x), x) if 0 < x < R ,

g3(ω(x), x) if x > R ,

by the monotonicity of the maps g1, g2, g3 in v, and by the strict convexity of fr, we have ω(x−) > ω(x+)
if and only if ϕ1(x−) < ϕ1(x+) and ψ1(x−) > ψ1(x+) (if x ∈ (0, R)). In turn, if x is a point of discontinuity
for ϕ1 and ψ1 (if x ∈ (0, R)), then ϕ1(x−) < ϕ1(x+), ψ1(x−) > ψ1(x+), are verified if and only if D+ϕ1(x) ≥ 0,
D+ψ1(x) < 0. Thus, we conclude that in order to establish the statement (i) it is sufficient to prove that the
equivalence between (3.6) and (4.17) is verified at any point of continuity for ω.
3. If x < 0 is a point of continuity for ω, then we get

D+ϕ1(x) = 1 + ∂v g1(ω(x), x) ·D+ω(x) = 1− f ′′l (ω(x)) · T ·D+ω(x) , (4.20)

which shows the equivalence between the first inequality in (3.6) and (4.17). With the same computation we
find the equivalence between the third inequality in (3.6) and (4.17), considering a point x > R of continuity
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for ω. Next, consider a point 0 < x < R where ω is continuous. Then we find

D+ϕ1(x) = ∂v g2(ω(x)) ·D+ω(x) +

[
f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

]
f ′r(ω(x))

= −
[
f ′′l ◦ f

−1
l,+ ◦ fr(ω(x))

]
[f ′r(ω(x))]

2 (
f ′r(ω(x)) · T−x

)
+x
[
f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

]2
f ′′r (ω(x))[

f ′l ◦ f
−1
l,+ ◦ fr(ω(x))

]
· [f ′r(ω(x))]

2 ·D+ω(x)

+

[
f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

]
f ′r(ω(x))

,

and

D+ψ1(x) = −f
′
r(ω(x))− xf ′′r (ω(x)) ·D+ω(x)

[f ′r(ω(x))]
2 .

Hence, by (4.15) we deduce that D+ϕ1(x) ≥ 0 and D+ψ1(x) < 0 hold if and only if

[[
f ′′l ◦ f−1l,+ ◦ fr(ω(x))

]
[f ′r(ω(x))]

2 (
f ′r(ω(x)) · T−x

)
+x
[
f ′l ◦ f−1l,+ ◦ fr(ω(x))

]2
f ′′r (ω(x))

]
·D+ω(x)

≤
[
f ′l ◦ f−1l,+ ◦ fr(ω(x))

]2 · f ′r(ω(x)) ,
(4.21)

and

x f ′′r (ω(x)) ·D+ω(x) < f ′r(ω(x)) . (4.22)

By (4.11) and the convexity of fr, the inequalities (4.21)-(4.22) are equivalent to the second inequality in (3.6),
and the prove of the statement (i) is completed.

An immediate consequence of Lemma 4.4 is the following.

Lemma 4.5. In the same setting and with the same notations of Theorem 3.1, the sets A1(T ),A2(T ),AAB3 (T )
are equivalently defined as sets of functions ω ∈ L∞(R) having essential left and right limits at x = 0, that
satisfy the following conditions.

A1(T) is the set of all functions ω that satisfy
(
ω(0−), ω(0+)

)
∈ T1 , and for which there exists R > 0 such

that: there holds ω(R−) ≥ ω(R+),

f ′l (ω(x)) ≥ x/T + f ′l (ω(0−)) ∀x < 0, f ′r(ω(x)) ≥ x/T ∀ 0 < x < R, f ′r(ω(x)) < x/T ∀x > R,
(4.23)

the map ϕ1 in (4.5) is nondecreasing, and the map ψ1 in (4.6) is decreasing.
A2(T) is the set of all functions ω that satisfy

(
ω(0−), ω(0+)

)
∈ T2 , and for which there exists L < 0 such

that: there holds ω(L−) ≥ ω(L+),

f ′l (ω(x)) > x/T ∀x < L, f ′l (ω(x)) ≤ x/T ∀ 0 < x < L, f ′r(ω(x)) ≤ x/T + f ′r(ω(0+)) ∀x > 0,
(4.24)

the map ϕ2 in (4.7) is nondecreasing, and the map ψ2 in (4.8) is increasing.
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AAB3 (T) is the set of all functions ω for which there exist L ≤ 0 ≤ R, such that:

(
ω(0−), ω(0+)

)
∈

{
T3,− ∪ T3,+ if L = R = 0 ,{

(A,B)
}

if L ≤ 0 ≤ R ,
ω(L−) ≥ ω(L+) , ω(R−) ≥ ω(R+) ,

(4.25)

ω(x) = A ∀ x ∈ (L, 0), ω(x) = B ∀ x ∈ (0, R),

f ′l (ω(x)) ≥

{
x/T if L < 0,

x/T+f ′l (ω(0−)) if L = 0,
∀ x ∈ (−∞, L),

f ′r(ω(x)) ≤

{
x/T if R < 0,

x/T+f ′r(ω(0+)) if R = 0,
∀ x ∈ (R,+∞),

(4.26)

and the map ϕ3 in (4.9) is nondecreasing.

5. Proof of Theorem 3.1

We proceed by dividing the proof into two steps: first we show that any attainable profile at time T > 0 of
a solution to the problem (1.1), (1.3)-(1.2) satisfies all the conditions of one of the tree sets described in the
statement of Lemma 4.5. Next, we prove that, for any function ω in A1(T ), A2(T ) and AAB3 (T ), there exists
u ∈ L∞(R) such that STu = ω.

5.1. Proof of A(T) ⊆ A1(T) ∪ A2(T) ∪ AAB
3 (T)

Given u ∈ L∞, let u(·, t) .
= SABt u, t > 0, we will show that ω

.
= SABT u belongs to one of the sets

A1(T ),A2(T ),AAB3 (T ). By Remark 2.3 we know that ω ∈ BVloc(R \ {0}) and that ω admits one-sided lim-
its at x = 0. Then, recalling Remark 4.3, we will distinguish the following five cases.

Case 1. ω(0−) = A < θl, ω(0+) = B > θr.
Observe that, tracing the backward characteristics through points of continuity of ω in a neighbourhood of
x = 0, with the same arguments of the proof of Proposition 4.2 and relying on (2.2), we deduce that

ul(t) = A, ur(t) = B ∀ t ∈ (δ1, T ) ,

ω(x) = A ∀ x ∈ (−δ1, 0), ω(x) = B ∀ x ∈ (0, δ1),
(5.1)

for some there exist δ1 > 0 such that Thus, by Proposition 4.2 we deduce that

ul(t) = A, ur(t) = B ∀ t ∈ (0, T ) . (5.2)

Next, let R
.
= sup{x > 0; ω(x) = B for all y ∈ (0, x)}, L .

= inf{x < 0; ω(x) = A for all y ∈ (x, 0)}. By (5.1)
one has L < 0 < R. Notice that ω(L−) ≥ ω(L+) and ω(R−) ≥ ω(R+) because of the Lax entropy condition (see
Rem. 2.4). Consider the maximal backward characteristic ξR,+ through (R, T ) and assume that it crosses the
axis x = 0 at time tR > 0. Then, by (5.2) and the observations in Section 4, it follows that ξR,+ is a segment with
positive slope f ′r(B) = f ′(ω(R+)). But this means that we may find δ2 > 0 such that all backward characteristics
ξx through points (x, T ), with x ∈ (R,R + δ2), reach the axis x = 0 at times tx ∈ (δ2, tR). This implies that
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ω(x) = ur(tx) = B for all x ∈ (R,R + δ2), which is in contrast with the definition of R. Thus, the maximal
backward characteristic ξR,+ is defined on the whole interval [0, T ], and there holds ξR,+(t) ≥ 0 for all t ∈ [0, T ].
With the same arguments we deduce that the minimal backward characteristic ξL,− through (L, T ), is defined
on [0, T ] and there holds ξL,−(t) ≤ 0 for all t ∈ [0, T ].

Given any x > R, consider the minimal and maximal backward characteristics ξx,−, ξx,+ through (x, T ).
Since ξx,±, ξR,+ are genuine characteristics for the conservation law ut + fr(u)x = 0, it follows that they never
intersect in the open quarter of plane (0,+∞)× (0,+∞). Hence, ξx,± are defined on the whole interval [0, T ],
and there holds

ξx,−(t) = x+ f ′r(ω(x−)) · (t− T ), ξx,+(t) = x+ f ′r(ω(x+)) · (t− T ) ∀ t ∈ [0, T ] .

Moreover, one has x − f ′r(ω(x±)) · T = ξx,±(0) ≥ ξR,+(0) ≥ 0, which implies f ′r(ω(x±)) ≤ x
T . On the other

hand, recalling the definition (4.9) of ϕ3, we deduce that, for every R < x < y, there holds ϕ3(x±) = ξx,±(0) ≤
ξy,±(0) = ϕ3(y±), which proves the nondecreasing monotonicity of ϕ3 on (R,+∞). With similar arguments we
deduce that f ′l (ω(x±)) ≥ x

T for all x ∈ (−∞, L), and that ϕ3 is nondecreasing also on (−∞, L). Therefore, the
function ω satisfies conditions (4.25), (4.26) and ϕ3 is nondecreasing on (−∞, L) and (R,+∞). Since ϕ3(x) ≤ 0
for all x ∈ (−∞, L), and ϕ3(x) ≥ 0 for all x ∈ (R,+∞), it follows that ϕ3 is nonincresing on its domain and
hence we have ω ∈ AAB3 (T ).

Case 2. (ω(0−), ω(0+)) = (A,B), A = θl, B > θr, or A < θl, B = θr, or A = θl, B = θr.
Assume that A = θl, B > θr, the other cases being entirely similar. Then, letting R

.
= sup{x > 0; ω(x) =

B for all y ∈ (0, x)}, by the same analysis of Case 1 we deduce that R > 0, ω(R−) ≥ ω(R+), f ′r(ω(x±)) ≤ x
T

for all x > R, and that the map ϕ3 in (4.9) is nondecreasing on (R,+∞). Next, assume that there exists x < 0
such that f ′l (ω(x+)) < x

T . Then, the maximal backward characteristics ξx starting at (x, T ) crosses the axis
x = 0 at some time tx > 0. On the other hand, the maximal backward characteristics ξxn

trough a sequence
of points (xn, T ), xn ↑ 0, are lines with slope f ′l (ω(xn+)) → f ′l (ω(0−)) = 0. Hence, there will be some n such
that ξxn intersect ξx in (−∞, 0)× (0,+∞), which is not possible. Therefore, there holds f ′l (ω(x±)) ≥ x

T for all
x < 0, and with the same arguments of Case 1 one can show that ϕ3 is nondecreasing on (−∞, 0) as well, and
that ϕ3(0−) ≤ 0 < ϕ3(R+). Thus, setting L = 0, we have shown that ω ∈ AAB3 (T ).

Case 3. (ω(0−), ω(0+)) ∈ T1.
Notice that (ω(0−), ω(0+)) ∈ T1 implies ω(0+) > θr, and hence f ′r(ω(0+)) > 0. Thus, there exist δ1 > 0
such that f ′r(ω(x+)) ≥ x

T for all x ∈ (0, δ1). Then, setting R
.
= sup{x > 0; f ′r(ω(x+)) ≥ x

T }, one has R > 0
and ω(R−) ≥ ω(R+), because of the Lax entropy condition (see Rem. 2.4). Observe that if, f ′r(ω(x+)) < x

T
or f ′r(ω(x−)) < x

T for some x ∈ (0, R), then one would deduce that the backward (minimal and maximal)
characteristics ξy,± through (y, T ), y ∈ (x,R), should cross in (0,+∞) × (0,+∞) the backward characteris-
tic ξx,+ or ξx,+ through (x, T ), which is not possible. Thus, there holds f ′r(ω(x±)) ≥ x

T for all x ∈ (0, R).
Next, consider the maximal backward characteristic ξR,+ through (R, T ), and suppose that it is defined on
an interval [tR, T ], tR > 0, with ξR,+(tR) = 0. This means that f ′r(ω(R+)) = R

tR
> R

T , which implies that
there exists δ1 > R such that f ′r(ω(x+)) > x

T for all x ∈ (R, δ1). But this is in contrast with the definition
of R. Hence ξR,+ is defined on the whole interval [0, T ], and there holds ξR,+(t) ≥ 0 for all t ∈ [0, T ]. On
the other hand, (ω(0−), ω(0+)) ∈ T1 implies ω(0−) > θl, and hence the minimal backward characteristics ξ0,−
through (0, T ) satisfies ξ0,−(0) = −f ′l (ω(0−)) · T < 0. Then, since backward characteristics starting at points
(x, T ) with x < 0 or x > R cannot cross ξ0,− and ξR,+, respectively, and by the definition of R, we deduce
that f ′l (ω(x±)) ≥ x

T + f ′l (ω(0−)) for all x ∈ (−∞, 0) and f ′r(ω(x±)) < x
T for all x ∈ (R,+∞, ). Moreover,

with the same arguments we deduce that f ′r(ω(x±)) ≥ x
T for all x ∈ (0, R). Therefore, the function ω satisfies

condition (4.23).
Next, with similar arguments of Case 1, we deduce that the map ϕ1 defined in (4.5) is nondecreasing on

the intervals (−∞, 0) and (R,+∞). Regarding the monotonicity of ϕ1, ψ1 (defined in (4.6)) on (0, R), first
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observe that, since the Lax entropy condition implies ω(x−) ≥ ω(x+), by the strict convexity of fr it follows
that ψ1(x−) > ψ1(x+) at any point x ∈ (0, R) of discontinuity for ω. Next, consider the maximal backward
characteristic ξx,+ through (x, T ), 0 < x < R, and the minimal backward characteristic ξy,− through (y, T ),
x < y < R, given by

ξx,+(t) = x+ f ′r(ω(x+)) · (t− T ) t ∈ [tx, T ], ξy,−(t) = y + f ′r(ω(y−)) · (t− T ) t ∈ [ty, T ] ,

with ξx,+(tx) = ξy,−(ty) = 0, tx
.
= ψ1(x+), ty

.
= ψ1(y−). Since ξx,+, ξy,− cannot cross on (0,+∞)× (0,+∞), one

has tx ≥ ty. On the other hand, if tx = ty, then there would be two forward characteristics with positive slope
issuing form (0, tx), which is in contrast with Proposition 4.2. Thus, it must be ψ1(x+) = tx > ty = ψ1(y−),
which proves the decreasing monotonicity of ψ1.

The monotonicity of ψ1 in particular implies ψ1(x±) > ψ1(R−) for all x ∈ (0, R). Observe that ur(t±) > θr
for all t ∈ (ψ1(R−), T ), since any point (0, t), t ∈ (ψ1(R−), T ) is reached by a backward characteristic (crossing
x = 0 with positive slope) issuing from a point (x, T ), x ∈ (0, R). In turn, this implies that ul(t±) > θl for any
time t ∈ (ψ1(R−), T ) of continuity for ul, ur, since otherwise, by (2.2) we should have ul( t−) = A, ur( t−) = B,
for some t ∈ (ψ1(R−), T ). But, by the analysis of Proposition 4.2, this implies that either

ul(t) = A, ur(t) = B ∀ t ∈ (0, t ), ul( t+) > θl , ur( t+) < θr ,

or

ul(t) = A, ur(t) = B ∀ t ∈ (0, T ),

which are in contrast with ur(t±) > θr for all t ∈ (ψ1(R−), T ), and with (ω(0−), ω(0+)) ∈ T1, respectively.
Therefore, we have ul(t±) > θl for all t ∈ (ψ1(R−), T ). Hence, by (2.2), (3.2), there holds ul(t) = πrl,+(ur(t)) at
any time t ∈ (ψ1(R−), T ) of continuity for ul, ur. Hence, in particular for tx

.
= ψ1(x+), ty

.
= ψ1(y−) we find

ul(tx−) = πrl,+(ur(tx−)) = πrl,+(ω(x+)) , ul(ty+) = πrl,+(ur(ty+)) = πrl,+(ω(y−)) . (5.3)

Consider now the backward characteristics (for ut + fl(u)x = 0) ζtx,−, ζty,+, issuing from (0, tx) and from
(0, ty), respectively, given by

ζtx,−(t) = f ′l (ul(tx−)) · (t− tx) = f ′l
(
πrl,+(ω(x+))

)
· (t− tx) t ∈ [0, tx],

ζty,+(t) = f ′l (ul(ty+)) · (t− ty) = f ′l
(
πrl,+(ω(y−))

)
· (t− ty) t ∈ [0, ty, ] .

By definitions (3.2), (4.5), , (4.6), we find that

ζtx,−(0) = −f ′l
(
πrl,+(ω(x+))

)
·
(
T − x/f ′r(ω(x+))

)
= −f ′l ◦ f−1l,+ ◦ fr(ω(x+)) ·

(
T − x/f ′r(ω(x+))

)
= φ1(x+) ,

ζty,+(0) = −f ′l
(
πrl,+(ω(y−))

)
·
(
T − y/f ′r(ω(y−))

)
= −f ′l ◦ f−1l,+ ◦ fr(ω(y−)) ·

(
T − y/f ′r(ω(y−))

)
= φ1(y−) .

Since tx > ty and because backward characteristics cannot cross on (−∞, 0) × (0,+∞), it follows that
φ1(x+) = ζtx,−(0) ≤ ζty,+(0) = φ1(y−), proving the nondecreasing monotonicity of ϕ1. This completes the
proof that ω ∈ A1(T ) in the case (ω(0−), ω(0+)) ∈ T1.

Case 4. (ω(0−), ω(0+)) ∈ T2.
With entirely similar arguments to Case 3, we deduce that ω ∈ A2(T ).
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Case 5. (ω(0−), ω(0+)) ∈ T3,− ∪ T3,+.
We assume that ω(0−) > θl, ω(0+) > θr. The cases with ω(0−) = θl, or ω(0+) = θr, can be treated with entirely
similar arguments, relying on the analysis of Case 2. Let ξ0,−, ξ0,+ be the minimal and maximal backward
characteristics through (0, T ). Then we have ξ0,−(0) = −f ′l (ω(0−)) · T < 0 < ξ0,+(0) = −f ′r(ω(0+)) · T . Since
backward characteristics starting at points (x, T ) with x < 0 or x > 0 cannot cross ξ0,− and ξ0,+, respectively,
we deduce that f ′l (ω(x±)) ≥ x

T + f ′l (ω(0−)) for all x < 0 and f ′r(ω(x±)) ≤ x
T + f ′r(ω(0+)) for all x > 0. Thus,

setting L = R = 0, the conditions (4.26) are satisfied. Moreover, with the same arguments of Case 1 we deduce
that the map ϕ3 in (4.9) is nondecreasing. Hence, we have shown that ω ∈ AAB3 (T ), and this completes the
proof of A(T ) ⊆ A1(T ) ∪ A2(T ) ∪ AAB3 (T ).

5.2. Proof of A1(T) ∪ A2(T) ∪ AAB
3 (T) ⊆ A(T)

Given a function ω ∈ A1(T ) ∪ A2(T ) ∪ AAB3 (T ), we will show that there exists an initial datum u ∈ L∞(R)
such that SABT u = ω. We shall analyze only two cases, the others being entirely similar.

Case 1. ω ∈ A2(T ).
We assume that ω(0−) > πrl,−(ω(0+)), the case ω(0−) = πrl,−(ω(0+)) being entirely similar and simpler. Hence,

we have πlr,−(ω(0−)) > ω(0+). We will construct the initial datum u with the desired property adopting a
similar procedure to [3], which consists of the following steps:

1. For every x 6= 0 we trace the lines ϑx,−,ϑx,+ through (T, x) with slope f ′l (ω(x−)), f ′l (ω(x+)), respectively,
if x < 0, and f ′r(ω(x−)), f ′r(ω(x+)), respectively, if x > 0. At x = 0 we trace the lines ϑ0,−, ϑ0,+ through
(T, 0) with slope f ′r(π

l
r,−(ω(0−))), f ′r(ω(0+), respectively. Because of (3.7), ϑ−L and all lines {ϑx,± : x ≥

0 or x < L} reach the x-axis without crossing the line x = 0 at times t > 0, while ϑL,+ and all lines
{ϑx,± : L < x < 0} cross the line x = 0 at a time t ≥ 0. Then, we redefine ϑL,+ and {ϑx,± : L < x < 0}
as polygonal lines that, after crossing x = 0, continue with slope f ′r(π

l
r,−(ω(L+))) and f ′r(π

l
r,−(ω(x−))),

f ′r(π
l
r,−(ω(x+)), respectively. Since the curves ϑx,± are defined so that one has ϑx,±(0) = ϕ2(x±) for all

x, from the monotonicity of the map ϕ2 in (4.7) we deduce that ϑx,± never intersect each other in the
region R × (0, T ). We will treat the polygonal lines ϑx,±, x ∈ R, as (minimal and maximal) backward
characteristics of the AB-entropy solution that we are constructing on R× [0, T ].

2. Since the solution is constant along genuine characteristics, for every x ∈ (−∞, ϑL,−(0)) ∪ (ϑ0,+(0),+∞)
such that x = ϑy,±(0) for some y ∈ (−∞, L) ∪ (0,+∞), we will set u(x) = ω(y±), while for for every
x ∈ (ϑL,+(0), ϑ0,−(0)) such that x = ϑy,±(0) for some y ∈ (L, 0), we will set u(x) = πlr,−(ω(y±)). The
set of remaining x is a disjoint union of countably many open intervals, say (x−n , x

+
n ), n ∈ N, with x−n =

ϑyn,−(0), x+n = ϑyn,+(0), for some yn ∈ R, where u is defined so to produce a compression wave which
generates a discontinuity at the point (yn, T ).

3. According with the definition of u in step 2, we define a function u : R× [0, T ]→ R which is constant along
the lines ϑx,± that do not cross x = 0, and it is piecewise constant along the polygonal lines ϑx,± that
intersect x = 0, changing value at x = 0 so to satisfy the interface entropy condition (2.2). Namely, we set
u equal to ω(y±) along the line ϑy,±(t), t ∈ [0, T ], when y ∈ (−∞, L) ∪ (0,+∞), and along the segment
of polygonal ϑy,±(t), t ∈ [τy, T ], with ϑy,±(τy) = 0, when y ∈ (L, 0). Instead we define u as πlr,−(ω(y±))
along the segment of polygonal ϑy,±(t), t ∈ [0, τy], with ϑy,±(τy) = 0, when y ∈ (L, 0). Finally, for any
x ∈ (x−n , x

+
n ) we let u to be equal to u(x) on the right of x = 0 and to be equal to πrl,−(u(x)) on the left

of x = 0, along a polygonal line ηx(t), t ∈ [0, T ], which connects (x, 0) with (yn, T ).
4. With the same arguments of [3] one can show that the function u constructed in step 3: is locally Lipschitz

continuous on R× [0, T ]; it is a classical solution of ut + fl(u)x on (−∞, 0)× (0, T ), and of ut + fr(u)x on
(0,+∞)× (0, T ); it is continuous with respect to the L1

loc topology as a function from [0, T ] to L∞(R); it
attains the initial data u at time t = 0 and the terminal profile ω at time t = T . Moreover, u satisfies the
interface entropy condition (2.2) associated to the connection AB.
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Figure 6. An example of partition of R associated to the profile ω.

1. For each x 6= 0, L, consider the polygonal lines

ϑx,±(t) :=



x+ f ′l (ω(x±))(t− T ) if x < L, t ∈ [0, T ],

x+ f ′l (ω(x±))(t− T ) if L < x < 0, t ∈
[
T − x/f ′l (ω(x±)), T

]
,

f ′r(π
l
r,−(ω(x±)))

(
t− T + x/f ′l (ω(x±))

)
if L < x < 0, t ∈

[
0, T − x/f ′l (ω(x±))

]
,

x+ f ′r(ω(x±))(t− T ) if x > 0, t ∈ [0, T ],

(5.4)

and, at x = 0, x = L, set

ϑ0,−(t) := f ′r(π
l
r,−(ω(0−)))(t− T ) if t ∈ [0, T ],

ϑ0,+(t) := f ′r((ω(0+))(t− T ) if t ∈ [0, T ],

ϑL,−(t) := L+ f ′l (ω(L−))(t− T ) if t ∈ [0, T ],

ϑL,+(t) :=

{
x+ f ′l (ω(L+))(t− T ) if t ∈

[
T − x/f ′l (ω(L+)), T

]
,

f ′r(π
l
r,−(ω(L+)))

(
t− T + x/f ′l (ω(L+))

)
if t ∈

[
0, T − x/f ′l (ω(L+))

]
.

(5.5)

Notice that, by definitions (3.2), (4.7), (4.8), we have ϑx,±(0) = ϕ2(x±) for all x, and ϑx,±(ψ2(x±)) = 0 for
all x ∈ (L, 0). Then, relying on (3.7), on the nondecreasing monotonicity of ϕ2, and on the increasing mono-
tonicity of ψ2, we deduce that the polygonal lines ϑx,±, x ∈ R, never intersect each other in the region R× (0, T ).

2. Consider the following partition of R (see Fig. 6):

IR
.
=
{
x ∈ R : ∃ y < z : ϑy,+(0) = ϑz,−(0) = x

}
,

IC
.
=
{
x ∈ R : @ y ∈ R : ϑy,−(0) = x or ϑy,+(0) = x

}
,

IW
.
=
{
x ∈ R : ∃! y : ϑy,−(0) = x or ϑy,+(0) = x

}
.

(5.6)

Some considerations about this partition are useful for the next. The set IR consists of the centres of
rarefaction waves originated at time t = 0, the set IC consists of the starting points of the compression waves
that generate shocks at time T , and IW collects the starting points of all other waves. With entirely similar
arguments to [3], one can verify that:

– the set IR contains at most countably many points;
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– the set IC is a disjoint union of at most countably many open intervals of the form

In = (x−n , x
+
n ), x±n = ϑyn,±(0), yn ∈ (−∞, L) ∪ [0,+∞),

InL = (x−n , x
+
n ), x±n = ϑyn,±(0), yn ∈ [L, 0) ,

(5.7)

with yn point of discontinuity of ω. Notice that, since ϑyn,±(0) = ϕ2(yn±), by the monotonicity of ϕ2 and
fl, f

′
r, it follows that ω(yn−) > ω(yn+) for all yn 6= 0. Moreover, we observed at the beginning that we

have πlr,−(ω(0−)) > ω(0+). Thus, we will construct compression waves generating a shock connecting the

states ω(yn−), ω(yn+) at (yn, T ), yn 6= 0, and connecting the states πlr,−(ω(0−)), ω(0+) at (0, T ).

In order to define the initial data in the sets InL, for any (x−n , x
+
n ) with x±n = ϑyn,±(0), L < yn < 0, setting

α±n
.
= f ′r(π

l
r,−(ω(yn±))), consider the function

hn(x, α) = T − yn/
[
f ′l ◦ πrl,− ◦ (f ′r)

−1(α)
]

+ x/α x ∈ (x−n , x
+
n ), α ∈ [α+

n , α
−
n ] . (5.8)

Notice that, because of the monotonicity of f ′r, π
l
r,−, and since by (4.24) we have ω(yn+) < ω(yn−) < θl, it

follows that α+
n < α−n < 0. Moreover, letting τ±n be the times of intersection of ϑyn,± with x = 0, i.e., such that

ϑyn,±(τ±n ) = 0, we have

τ±n = T − yn/f ′l (ω(y±n )) = T − yn/
[
f ′l ◦ πrl,− ◦ (f ′r)

−1(α±n )
]

= −x±n /α±n . (5.9)

Then, by a direct computation one finds that, for any x ∈ (x−n , x
+
n ), there holds

hn(x, α+
n ) = (x− x+n )/α+

n > 0, hn(x, α−n ) = (x− x−n )/α−n < 0 ,

∂αhn(x, α) = yn
α · f ′′l ◦ πrl,− ◦ (f ′l )

−1(α)[
f ′l ◦ πrl,− ◦ (f ′r)

−1(α)
]2 · [f ′l ◦ πrl,− ◦ (f ′r)

−1(α)
]
·
[
f ′′r ◦ (f ′r)

−1(α)
] − x

α2
< 0 ∀ α ∈ (α+

n , α
−
n ) .

(5.10)
Hence, we may define a continuous, decreasing map αn : (x−n , x

+
n )→ (α+

n , α
−
n ) that satisfies

T − yn/
[
f ′l ◦ πrl,− ◦ (f ′r)

−1(αn(x))
]

= −x/αn(x) x ∈ (x−n , x
+
n ) . (5.11)

Notice that limx→x±n αn(x) = α±n . The quantity αn(x) determines the slope λ+n on the right of x = 0 of a

polygonal line ηx, connecting (x, 0) and (yn, T ), with the property that, letting λ−n
.
= f ′l ◦ πrl,− ◦ (f ′r)

−1(αn(x))
be the slope of ηx on the left of x = 0, there holds

(f ′l )
−1(λ−n ) = πrl,−

(
(f ′r)

−1(λ+n )
)
, (5.12)

which guarantees that the states ul
.
= (f ′l )

−1(λ−n ), ur
.
= (f ′l )

−1(λ+n ), satisfy the interface entropy condition (2.2).
In the case (x−n , x

+
n ) ⊂ InL is of the form x±n = ϑL,±(0), ϑL,−(0) < 0 < ϑL,+(0), with the same arguments of

above we may define a continuous, decreasing function αn : [0, x+n ) → (α+
n , yn/T ] that satisfies the equalities
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in (5.11) for all x ∈ [0, x+n ), and there holds αn(0) = yn/T . Then, we define the initial data as

u(x) :=



ω(y±) if x ∈ IW , x = ϑy,±(0), y ∈ (−∞, L) ∪ (0,+∞),

πlr,−(ω(0−)) if x ∈ IW , x = ϑ0,−(0),

ω(0+) if x ∈ IW , x = ϑ0,+(0),

ω(L−) if x ∈ IW , x = ϑL,−(0),

πlr,−(ω(L+)) if x ∈ IW , x = ϑL,+(0),

πlr,−(ω(y±)) if x ∈ IW , x = ϑy,±(0), y ∈ (L, 0),

(f ′l )
−1((yn − x)/T

)
if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), yn < L,

(f ′r)
−1((yn − x)/T

)
if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), yn ≥ 0,

(f ′r)
−1(αn(x)) if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), L < yn < 0,

(f ′r)
−1(αn(x)) if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑL,±(0), x ≥ 0,

(f ′l )
−1((yn − x)/T

)
if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑL,±(0), x < 0.

(5.13)

Notice that u is not defined on the set IR which is of measure zero since it is countable. Moreover, we have

|u(x)| ≤M .
= sup

{
max{|ω(x)|, |πlr,−(ω(x))|}; x ∈ R

}
. (5.14)

3. In order to define the solution u in the region of compression waves, for any x ∈ IC , consider the polygonal
lines

ηx(t) :=



x+
(
(yn − x) t

)
/T if x ∈ (x−n , x

+
n )⊆IC , x±n = ϑyn,±(0), yn<L or yn≥0, t ∈ [0, T ],

x+ αn(x) t if x ∈ (x−n , x
+
n )⊆IC , x±n = ϑyn,±(0), L< yn< 0, t ∈ [0,− x

αn(x)
],

x+f ′l ◦ πrl,−◦(f ′r)−1(αn(x)) t if x ∈ (x−n , x
+
n )⊆IC , x±n =ϑyn,±(0), L< yn< 0, t ∈ [− x

αn(x)
, T ],

x+ αn(x) t if x ∈ (x−n , x
+
n )⊆IC , x±n = ϑL,±(0), x ≥ 0, t ∈ [0,− x

αn(x)
],

x+f ′l ◦ πrl,−◦(f ′r)−1(αn(x)) t if x ∈ (x−n , x
+
n )⊆IC , x±n =ϑL,±(0), x ≥ 0, t ∈ [− x

αn(x)
, T ],

x+
(
(yn − x) t

)
/T if x ∈ (x−n , x

+
n )⊆IC , x±n = ϑL,±(0), x < 0, t ∈ [0, T ].

(5.15)
Observe that, by construction the polygonal lines ϑx,±, x ∈ R in (5.4)-(5.5), and ηx, x ∈ IC in (5.15), never
intersect each other in the region R× (0, T ) and there holds

∀ (x, t) ∈ R× (0, T ) ∃! y ∈ R s.t. x = ϑy,−(t), or x = ϑy,+(t) or x = ηy(t), y ∈ IC . (5.16)
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Thus, we may define on (R \ {0})× (0, T ) the function:

u(x, t) :=



ω(y±) if ∃ y ∈ (−∞, L) ∪ (0,+∞) : x = ϑy,±(t),

ω(y±) if ∃ y ∈ [L, 0) : x = ϑy,±(t) < 0,

πlr,−(ω(y±)) if ∃ y ∈ [L, 0) : x = ϑy,±(t) > 0,

πlr,−(ω(0−)) if x = ϑ0,−(t),

ω(0+) if x = ϑ0,+(t),

u(y) if ∃ y ∈ InL : x = ηy(t) > 0,

πrl,−(u(y)) if ∃ y ∈ InL : x = ηy(t) < 0,

u(y) if ∃ y ∈ In : x = ηy(t) .

. (5.17)

4. By construction the function u in (5.17) is continuous on R × (0, T ) and satisfies the interface entropy
condition (2.2) at x = 0. Moreover, with the same type of analysis in [3] one can show that there holds

D−x u(x, t) ≥
[
f ′′l,r(u(x, t)) · (t− T )

]−1 ≥ [c · (t− T )
]−1 ∀(x, t) ∈ R× (0, T ) . (5.18)

On the other hand, relying on (5.14), (5.17), and on the assumption H1), with the same arguments of the proof
of A(T ) ⊆ A1(T ) ∪ A2(T ) ∪ AAB3 (T ) we derive

D+
x u(x, t) ≤



[
f ′′l (u(x, t)) · t

]−1 ≤ [c · t]−1 ∀ x < η0(t) ,

f ′l (u(x, t))

f ′′l (u(x, t)) · x
≤M ′

[
c · x

]−1 ∀ η0(t) < x < 0,[
f ′′r (u(x, t)) · t

]−1 ≤ [c · t]−1 ∀ x > 0

(5.19)

for some constant M ′ > 0. Hence u is locally Lipschitz continuous and therefore it is differentiable almost every-
where. By a direct computation one can check that u is a classical solution of ut + fl(u)x on (−∞, 0)× (0, T ),
and of ut + fr(u)x on (0,+∞) × (0, T ). Hence, u is an AB-entropy solution of (1.1), (1.3). Finally, with the
same arguments in [3] one verifies the continuity of t→ u(·, t) on [0, T ] with respect to the L1

loc-topology, and
that u(·, 0) = u, u(·, T ) = ω, which proves that ω = SABT u ∈ A(T ).

Case 2. ω ∈ AAB3 (T ), L = 0 = R, (ω(0−), ω(0+)) ∈ T3,−.
Since (ω(0−), ω(0+)) ∈ T3,− it follows that ω(0−) ≥ θl and fl(ω(0−)) ≤ fr(ω(0+)). We assume that ω(0−) > θl,
and that fl(ω(0−)) < fr(ω(0+)), the cases with ω(0−) = θl or with fl(ω(0−)) = fr(ω(0+)) being entirely
similar. We follow the same procedure of the previous case discussing only the points where there is a difference
in the construction of the initial data u and of the solution u.
1. For each x 6= 0, consider the lines

ϑx,±(t) :=

{
x+ f ′l (ω(x±))(t− T ) if x < 0, t ∈ [0, T ],

x+ f ′r(ω(x±))(t− T ) if x > 0, t ∈ [0, T ],
(5.20)

and, for x = 0, set

ϑ0,−(t) := f ′l (ω(0−))(t− T ), ϑ0,+(t) := f ′r(ω(0+))(t− T ),

ϑ0,∗(t) := f ′r(π
l
r,−(ω(0−)))(t− T ),

∀ t ∈ [0, T ]. (5.21)
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2. Then, letting x±0
.
= ϑ0,±(0), x∗0

.
= ϑ0,∗(0), consider the partition of R \ {0}:

IR
.
=
{
x ∈ R : ∃ y < z : ϑy,+(0) = ϑz,−(0) = x

}
,

IC
.
=
{
x ∈ R \ [x−0 , x

∗] : @ y ∈ R : ϑy,−(0) = x or ϑy,+(0) = x
}
,

IW
.
=
{
x ∈ R : ∃! y : ϑy,−(0) = x or ϑy,+(0) = x

}
,

I0,−
.
= (x−0 , 0), I0,+

.
= (0, x∗0 ) .

(5.22)

Here I0,−, I0,+ are intervals where the initial data u will assume the constant value ω(0−) and πlr,−(ω(0−)),
respectively, while IC is a disjoint union of at most countably many open intervals of the form

In = (x−n , x
+
n ), x±n = ϑyn,±(0), yn ∈ (−∞, 0) ∪ (0,+∞),

I0 = (x∗0, x
+
0 ), x∗0 = ϑ0,∗(0), x+0 = ϑ0,+(0),

(5.23)

with yn point of discontinuity of ω. Observe that x∗0 > 0, and that ω(0−) > θl, fl(ω(0−)) < fr(ω(0+)), together
imply ω(0+) < πlr,−(ω(0−)). Hence, the states πlr,−(ω(0−)), ω(0+) are connected by a shock with negative slope
for the conservation law ut + fr(u)x. Thus, we will define the initial data u on I0 so to produce a compression
wave that generates a shock at (0, T ). Thus, we define

u(x) :=



ω(y±) if x ∈ IW , x = ϑy,±(0), y ∈ R,

ω(0−) if x ∈ (x−0 , 0), x−0 = ϑ0,−(0),

πlr,−(ω(0−)) if x ∈ (0, x∗0), x∗0 = ϑ0,∗(0),

(f ′l )
−1((yn − x)/T

)
if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), yn < 0,

(f ′r)
−1((yn − x)/T

)
if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), yn > 0,

(f ′r)
−1(−x/T ) if x ∈ (x∗0, x

+
0 ) ⊆ IC , x∗0 = ϑ0,∗(0), x+0 = ϑ0,+(0).

(5.24)

3. Then, setting for every x ∈ IC :

ηx(t) :=

{
x+

(
(yn − x) t

)
/T if x ∈ (x−n , x

+
n ) ⊆ IC , x±n = ϑyn,±(0), yn 6= 0, t ∈ [0, T ],

−(x t)/T if x ∈ (x∗0, x
+
0 ) ⊆ IC , x∗0 = ϑ0,∗(0), x+0 = ϑ0,+(0),

(5.25)

we define on (R \ {0})× (0, T ) the function:

u(x, t) :=



ω(y±) if ∃ y ∈ R : x = ϑy,±(t),

ω(0−) if ϑ0,−(t) < x < 0,

πlr,−(ω(0−)) if 0 < x < ϑ0,∗(t),

u(y) if ∃ y ∈ IC : x = ηy(t) .

(5.26)

4. Observe that, since (ω(0−), ω(0+)) ∈ T3,−, it follows that the pair ul(t) = ω(0−), ur(t) = πlr,−(ω(0−)) satisfies
the interface entropy condition (2.2). Then, with the same arguments of the previous case, we conclude that u
is an AB-entropy solution of (1.1), (1.3)-(1.2), and that ω = SABT u. This proves that ω ∈ A(T ), and completes
the proof of Theorem 3.1.



ATTAINABLE PROFILES FOR CONSERVATION LAWS WITH FLUX FUNCTION SPATIALLY DISCONTINUOUS 27

6. Proof of Theorem 3.4

The proof is devided in three steps.

Step 1. Let U be as in (3.13) and let C ⊂ Cf be a compact set of connections. Given T > 0, {un}n ⊂ U , and
(A,B) ∈ C , {(An, Bn)}n ⊂ C , consider the sequences{

SABT un
}
n
,

{
SAnBn

T un
}
n
,

{
SAB(·) un

∣∣
T

}
n
,

{
SAnBn

(·) un
∣∣
T

}
n
, (6.1)

where u
∣∣
T

denotes the restriction to R× [0, T ] of a map defined on R× [0,+∞). Since, G in (3.13) is bounded,
C is compact and because of (4.3) in Remark 4.1, there holds∥∥SABt un

∥∥
L∞(R) ≤ C,

∥∥SAnBn
t un

∥∥
L∞(R) ≤ C ∀ t ≥ 0, ∀ n , (6.2)

for some constant C > 0. Hence, the first two sequences in (6.1) are weakly∗ relatively compact in L∞(R), the
latter two are weakly∗ relatively compact in L∞(R× [0, T ]). Thus, we can assume that

un
∗
⇀ u in L∞(R) , (An, Bn) → ( Ã, B̃ ) , (6.3)

for some u ∈ L∞(R), ( Ã, B̃ ) ∈ C , and that

SABT un
∗
⇀ ωAB , SAnBn

T un
∗
⇀ ωÃB̃ in L∞(R), (6.4)

SAB(·) un
∣∣
T

∗
⇀ uAB , SAnBn

(·) un
∣∣
T

∗
⇀ uÃB̃ in L∞(R× [0, T ]), (6.5)

for some functions ωAB , ωÃB̃ ∈ L∞(R) and uAB , uÃB̃ ∈ L∞(R × [0, T ]). Notice that, since un(x) ∈ G(x) for
almost every x ∈ R, and because G is convex closed valued, by Mazur’s lemma it follows from (6.3) that u ∈ U .

We will show that there exist subsequences of (6.1) that converge in the L1
loc topology to ωAB , ωÃB̃ , and

uAB , uÃB̃ , respectively, and that

ωAB = SABT u, ωÃB̃ = SÃB̃T u , uAB = SAB(·) u
∣∣
T
, uÃB̃ = SÃB̃(·) u

∣∣
T
, (6.6)

which proves the compactness of the sets AAB
(
T,U

)
, A
(
T,U ,C

)
and AAB

(
U
)
, A
(
U ,C

)
.

Step 2. Notice that, by Remark 3.3, for any 0 < a < b, there exists Ca,b, La,b > 0 such that, setting Ia,b
.
=

[−b,−a] ∪ [a, b], one has

Tot.Var.
{
SABt un : Ia,b

}
≤ Ca,b, Tot.Var.

{
SAnBn
t un : Ia,b

}
≤ Ca,b, ∀ t ∈ [a, T ], ∀ n,

∥∥SABt un−SABs un
∥∥
L1(Ia,b)

≤ La,b · |t−s|,
∥∥SAnBn

t un−SAnBn
s un

∥∥
L1(Ia,b)

≤ La,b · |t−s| ∀ t, s ∈ [a, T ], ∀ n.

By Helly’s theorem there exists subsequences
{
SABt unj

}
j

,
{
S
Anj

Bnj

t unj

}
j

, which converges to some functions

w(·, t) and w̃(·, t), respectively, in L1(Ia,b) for all t ∈ [0, T ]. Because of (6.5), the functions w, w̃ must coincide

with the restriction to Ia,b × [0, T ] of uAB and uÃ,B̃ , respectively, and there holds

SABt unj
→ uAB(·, t) , S

Anj
Bnj

t unj
→ uÃB̃(·, t) in L1(Ia,b) , ∀ t ∈ [a, T ] .
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Then, repeating the same arguments for Iaj ,bj
.
= [−bj ,−aj ]∪ [aj , bj ], with aj ↓ 0, bj → +∞, and observing that

by (6.2) one has ‖uAB(·, t)‖L∞(R) ≤ C, ‖uÃB̃(·, t)‖L∞(R) ≤ C, for all t ∈ [0, T ], we deduce that we can select
diagonal subsequences (still denoted with index j) such that

SABt unj
→ uAB(·, t) , S

Anj
Bnj

t unj
→ uÃB̃(·, t) in L1

loc(R) , ∀ t ∈ (0, T ] . (6.7)

In particular, because of (6.4), (6.7), we have uAB(·, T ) = ωAB , uÃB̃(·, T ) = ωÃB̃ . Therefore, in order to
establish (6.6), it remains to show only that

uAB = SAB(·) u
∣∣
T
, uÃB̃ = SÃB̃(·) u

∣∣
T
. (6.8)

We will provide only a proof of the second equality in (6.8), the proof of the first one being entirely similar.

Step 3. First observe that, by the regularity of fl, fr, the convergence (6.7) implies that

fl
(
S
Anj

Bnj

t unj

)
→ fl

(
uÃB̃(·, t)

)
in L1

loc((−∞, 0])

fr
(
S
Anj

Bnj

t unj

)
→ fr

(
uÃB̃(·, t)

)
in L1

loc([0,+∞) ,
∀ t ∈ (0, T ] . (6.9)

Therefore, since unj
(·, t) .

= S
Anj

Bnj

t unj
, t ≥ 0, are in particular weak solutions of the Cauchy problem for (1.1),

(1.3) with initial data unj
, relying on (6.7), (6.9), and on (6.3), we find

∫ ∞
−∞

∫ ∞
0

{
uÃB̃φt + f

(
x, uÃB̃

)
φx

}
dxdt+

∫ ∞
−∞

u(x)φ(x, 0)dx

= lim
j→∞

∫ ∞
−∞

∫ ∞
0

{
unjφt + f

(
x, unj

)
φx
}

dxdt+

∫ ∞
−∞

unj (x)φ(x, 0)dx = 0 ,

(6.10)

for any test function φ ∈ C1c with compact support contained in R× (0,+∞), which shows that uÃB̃ is a weak
solution of the Cauchy problem (1.1), (1.3)-(1.2). Next, setting Il

.
= (−∞, 0), Ir

.
= (0,+∞), with the same

arguments we derive

∫
Il,r

∫ +∞

0

{∣∣uÃB̃ − k∣∣φt +
(
fl,r
(
uÃB̃

)
− fl,r(k)

)
sgn

(
uÃB̃ − k

)
φx

}
dxdt

= lim
j→∞

∫
Il,r

∫ +∞

0

{∣∣unj − k
∣∣φt +

(
fl,r
(
unj

)
− fl,r(k)) sgn

(
unj − k

)
φx

}
dxdt ≥ 0 ,

for any non negative function φ ∈ C1 with compact support in Il,r × (0, T ] and for any k ∈ R. Therefore,

since uÃB̃ is a weak solution of the Cauchy problem (1.1), (1.3)-(1.2), that satisfies the Kružhkov entropy
inequalities on (R \ {0})× (0, T ], invoking a result in [21] (see also Coroll. 6.8.4 from [24]) we deduce that the

map t → uÃB̃(·, t) is continuous from [0, T ] in L1
loc(R), and that the initial condition (1.2) is satisfied. This

shows that uÃB̃ satisfies conditions (i)-(ii) of Definition 2.2.
Finally, observing that by definition (2.1) and because of (6.3), there holds kj

.
= kAnj

Bnj
→ kÃ B̃ in L1

loc(R),

we deduce that uÃB̃ satisfies also the Kružhkov-type entropy inequality associated to the ÃB̃-connection.
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Figure 7. Velocity and flux in the LWR model, and a discontinuous flux with critical
connection.

Namely, for any non negative function φ ∈ C1 with compact support in R× (0, T ], we get∫ +∞

−∞

∫ ∞
0

{∣∣uÃB̃ − kÃB̃(x)
∣∣φt +

(
f
(
x, uÃB̃

)
− f(x, kÃB̃(x))

)
sgn

(
uÃB̃ − kÃB̃(x)

)
φx
}

dxdt

= lim
j→∞

∫ ∫ {∣∣unj − kj(x)
∣∣φt +

(
f
(
unj

)
− f

(
kj(x)

)
sgn

(
unj − kj(x)

)
φx
}

dxdt ≥ 0,

which shows that uÃB̃ is an ÃB̃-entropy solution of the Cauchy problem (1.1), (1.3)-(1.2) on R× [0, T ], according

with definition (2.1). Thus, by uniqueness of ÃB̃-entropy solutions of the Cauchy problem (see Thm. 2.5), we

deduce that uÃB̃ = SÃB̃(·) u
∣∣
T

, completing the proof of Theorem 3.4.

7. Some applications in LWR traffic flow models

Starting from the seminal papers by Lighthill, Whitham [45] and Richards [51], the evolution of unidirectional
traffic flow along an highway can be described at a macroscopic level with a partial differential equation (LWR
model) where the dynamical variable is the traffic density ρ(x, t) (the number of vehicles per unit length). The
LWR model expresses the mass conservation, i.e. the conservation of the total number of vehicles, and postulates
that the average traffic speed v(x, t) is a function of the traffic density alone. Thus, the mean traffic flow (the
number of cars crossing the point x per unit time) is given by f(x, t) = ρ(x, t) v(ρ(x, t)), and we are lead to the
hyperbolic conservation law

ρt + (ρ v(ρ))x = 0 . (7.1)

Here ρ(x, t) takes values in the interval [0, ρmax], where ρmax represents the situation in which the vehicles
are bumper to bumper and thus depends only on the average length of the vehicles. The velocity v(ρ) has a
maximum value vmax (representing the limit speed) attained at ρ = 0, and it is strictly decreasing since in
presence of larger number of cars each driver goes slower. Hence, the corresponding flux f(ρ) = ρ v(ρ) (the
so-called fundamental diagram) is a (uniformly) strictly concave map (see Fig. 7), satisfying the assumptions

H1)′ fl, fr : R→ R are twice continuously differentiable, (uniformly) strictly concave maps

max
{
f ′′l (u), f ′′r (u)

}
≤ −c < 0 ∀ u ∈ R,

and H2)-H3) in Section 2 (with ρmax in place of 1). We refer to [28, 47, 52] for general references on macroscopic
models of traffic flow.

The occurrence of special events (like heavy rain) that alter the road condition, or the presence along the
road of obstacles (such as speed bumps, construction sites) that hinder the traffic flow, may force the vehicles
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to slow down or speed up in different sections of the highway. These inhomogeneities of the road are described
by considering different speed-density relationships (and therefore different fundamental diagrams) on different
portions of the highway. Assuming for simplicity that the change in the flow-density relation in two sections of
the road of infinite length occurs at x = 0, we are led to a conservation law with discontinuous flux f(x, ρ) as
in (1.3), where the right and left fluxes are of the form fl,r(ρ) = ρ vl,r(ρ). This model was considered in [46]
where it was employed an admissibility criterion for the one-sided limits of the solution at x = 0 according with
the flux maximization principle (see also [10]). Such a criterion is equivalent to an interface entropy condition as
in (2.2) relative to a critical connection (A∗, B∗) passing trough the minimum of the two points of maximum of
fl, fr (see Fig. 7). Here, since we are considering a two-flux concave flux, we replace in the AB-interface entropy
condition (2.2) the ≤ signs with the ≥ signs and viceversa. This implies that the flux of an AB-entropy solution
along the discontinuity {x = 0} must be smaller or equal to the value of the flux on the connection. We let S∗
denote the solution operator for (1.1), (1.3) with fluxes fl,r(ρ) = ρ vl,r(ρ), ρ ∈ [0, ρmax], and connection (A∗, B∗).
Since our analysis will be focused on a finite section of the road, we shall assume that all the initial data have
support in a bounded set K ⊂ R. One can derive similar characterization of the attainable set provided by
Theorem 3.1 in the two-flux concave case. Thus, the results stated in Theorem 3.4 and Corollary 3.5 continue
to hold as well in the concave-concave case.

In this setting we shall consider two type of optimization problems. In the first one we treat as control
parameters only the initial data. Instead, in the latter we regard as control parameters also the connection
states whose flux value provides an upper limitation on the flux of the solution at x = 0. Such a control can be
viewed as a local point constraint control acting at x = 0 (cf. [22]). Similar problems in the context of a junction
are treated in [6].

Output least square optimization with traffic density target. In order to validate the LWR models
employed by transport engineers, it is fundamental to compare the experimental data with the solutions that
better approximate a given observable function. A classical cost functional adopted to this pourpose is the
L2-distance from an observation output (see for instance [36]). Thus, we are led to consider the optimization
problem

min
ρ∈U

∫
R
|S∗T ρ(x)− l(x)|2dx, (7.2)

where U is the admissible control set

U .
=
{
u ∈ L∞(R); u(x) ∈ G(x) for a.e. x ∈ R

}
, (7.3)

with

G(x) =

{
[0, ρmax] if x ∈ K ,

{0} otherwise,
(7.4)

and l ∈ L2(R) is a given target function. Notice that, by Remark 4.1, there will be some bounded set K ′ ⊂ R
such that

S∗t s ∈ Ω
.
=
{
ω ∈ L∞(R; [0, c]); supp(ω) ⊂ K ′

}
∀ s ∈ U , t ≥ 0 . (7.5)

Therefore, since the map ω 7→
∫
R |ω(x)− l(x)|2dx is clearly continuous on Ω with respect to the L1(R) topology,

we deduce the existence of a solution to problem (7.2) from the natural extension of Corollary 3.5 to the two-flux
concave case.

Alternatively, in order to address road safety issues in planning design, it is important to analyse the initial
density distributions and the (upper) flow limitations at the flux discontinuity interface which lead to the closest
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configuration to a desired density distribution. For example, one may consider two stretches of road of different
capacities connected at a junction located in front of a school, where one may regulate the maximum rate at
which the vehicles pass through the junction. In this case, it would be interesting to analyze the solutions of
the optimization problem

min
ρ∈U, (A,B)∈C

∫
R
|SABT ρ(x)− l(x)|2dx, (7.6)

where T is the exit time from school, l ∈ L2(R) represents a “safe” traffic distribution, U is the set of admis-
sible initial data as above, and C is a compact set of connections. Again, relying on the analogous result of
Corollary 3.5 for the two-flux concave case, we deduce the existence of a solution to (7.6).

Fuel consumption optimization. Traffic simulation is a fundamental instrument to predict the impact
of road design and to examine the performance of traffic facilities under changing surface conditions. In this
context, a major challenge for transport planners is to design solutions for mitigating pollution, which has
huge economic impact, beside affecting people’s quality of life. Various definitions to quantify the overall fuel
consumption have been introduced in the literature (see [56]). We employ here the definition proposed in [50]
where the fuel consumption rate of a single vehicle is expressed by a polynomial function P depending only
on the average traffic speed v(ρ). The overall fuel consumption rate is then obtained multiplying P by the
density ρ. Thus, if we consider two stretches of road of different capacities connected at a junction where we
may regulate the maximum flow rate of traffic, and we are interested in analyzing the initial density distribution
that produces the minimum fuel consumption in a given interval of time [0, T ], we are led to the optimisation
problem

min
ρ∈U, (A,B)∈C

∫ T

0

∫
R
SABt ρ(x)P

(
v(SABt ρ(x))

)
dxdt , (7.7)

with U and C as above. Observe that, by Remark 4.1, there will be some bounded set K ′ ⊂ R such that

SAB(·) ρ ∈ Ω
.
=
{
ω ∈ L∞(R× [0, T ]; [0, ρmax]); supp(ω) ⊂ K ′

}
∀ ρ ∈ U , (A,B) ∈ C . (7.8)

Hence, since the map ω 7→
∫
T×[0,T ]

ω(x, t)P
(
v(ω(x, t))

)
dxdt is continuous on Ω with respect to the L1(R× [0, T ])

topology, we deduce the existence of a solution to (7.7) from the analogous result of Corollary 2.3 for the two-flux
concave case.
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