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We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues
and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA)
activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time,
specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in
hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prom-
inent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these
nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer
samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the
same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92
family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were
found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks,
and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we
experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of
miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network.

[Supplemental material is available online at http://www.genome.org. The microarray data from this study have been
submitted to ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae) under accession nos. E-TABM-969–E-TABM-975.]

Characterization of genes that control the timing of larval de-

velopment in Caenorhabditis elegans revealed two small regulatory

RNAs, lin-4 and let-7 (Reinhart et al. 2000). Soon thereafter, lin-4

and let-7 were reported to represent a new class of small RNAs,

named microRNAs (miRNAs) (Lagos-Quintana et al. 2001; Lau

et al. 2001; Lee and Ambros 2001). miRNAs have since been found

in plants, green algae, viruses, and animals (Griffiths-Jones et al.

2008). The number of mature miRNAs in the human genome has

now surpassed 1000 (Ruby et al. 2006, 2007; Landgraf et al. 2007).

Baek et al. (2008) used quantitative mass spectrometry to measure

the proteome response as a function of miRNA activity. Although

some targets were repressed without changes in mRNA levels,

those translationally repressed by more than a third also displayed

mRNA destabilization and, for the most highly repressed targets,

mRNA destabilization usually was the major component of re-

pression. In the same manner, another group (Selbach et al. 2008)

showed that a single miRNA can repress the production of hun-

dreds of proteins, typically in a mild fashion. They too demon-

strated that miRNAs down-regulate target mRNA levels.

Evolutionarily conserved among distant organisms, miRNAs

are involved in a variety of biological processes, including cell cycle

regulation, differentiation, development, metabolism, neuronal

patterning, and aging (Bartel 2009). Alterations in miRNA ex-

pression are also involved in the initiation, progression, and me-

tastasis of human tumors (Spizzo et al. 2009). Germline mutations

in the hsa-miR-15a and hsa-miR-16-1 cluster are associated with

familial chronic lymphocytic leukemia (CLL), whereas a common

SNP in pre-hsa-miR-146a decreases mature miRNA expression and

predisposes to papillary thyroid carcinoma. Furthermore, Mir155
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transgenic mice show proliferation of pre-B cells and develop

lymphoblastic leukemia/high-grade lymphoma. Mice overex-

pressing mmu-miR-17/92 in lymphocytes develop lymphopro-

liferative disease and autoimmunity. hsa-miR-10b, hsa-miR-373,

and hsa-miR-520c have been reported to promote tumor invasion

and metastasis; whereas, research has shown hsa-miR-335, hsa-

miR-206, and hsa-miR-126 to be suppressors of breast cancer me-

tastasis. Moreover, reduced expression of Dicer and Drosha miRNA

processors has been observed in various human cancers. Several

transcription factors regulate the expression of miRNAs, e.g., the

tumor suppressor protein TP53 regulates the expression of hsa-

miR-34 family members; MYC is a negative regulator of miRNA

expression; STAT3 regulates hsa-miR-21; and TWIST1 trans-activates

hsa-miR-10b transcription. The consequences of altered patterns

of miRNA expression are just starting to be understood (Spizzo

et al. 2009). Insensitivity to anti-growth signals is achieved by in-

hibition of E2F transcription factors caused by overexpression of

the hsa-miR-17/92 cluster on chromosome 13q31.1 and by over-

expression of the hsa-miR-106b/25 cluster on chromosome

7q22.1. Modulation of apoptosis may occur by direct regulation of

miRNAs that are: proapoptotic (TP53 and hsa-miR-34 family) or by

targeting of anti-apoptotic proteins (BCL2, MCL1 proteins, and

the hsa-miR-15/16 cluster).

Much of the current effort in miRNA studies is focused on the

elucidation of their function. Typically miRNAs have been studied

by using the gene profiling approach. Each miRNA has been

studied for its single contribution to differential expression or to

a compact predictive signature. However, the effect of miRNAs on

cell pathology and physiology is likely to be complex for two rea-

sons: (1) their activity is exerted in a one-to-many fashion, such

that each miRNA can control translation of tens or even hundreds

of different coding messengers and (2) a single messenger can be

controlled by more than one miRNA. Thus, we propose a paradigm

shift to the study of miRNAs in cancer by applying a systems bi-

ology approach. For this purpose we built miRNA gene networks

by using our very large expression miRNA database.

Previously, Yoon and De Micheli (2005) and Tran et al. (2008)

used computational methods to predict miRNA regulatory mod-

ules. Yoon based his approach solely on miRNA:mRNA inter-

actions as predicted by TargetScan, without expression data. Tran

and colleagues studied the correlation between the expression of

121 miRNAs and their 801 targets (as predicted by PicTar) in 89

human cancer samples.

We built our miRNA networks exclusively from miRNA ex-

pression data. Here, we report the first miRNA network from nor-

mal tissues. In parallel, we built miRNA networks for coupled

cancerous and noncancerous tissues. By comparing normal to

cancer networks we attained a second goal: the identification of

cancer variations in miRNA networks. Finally, we superimposed

DNA variations onto expression data to generate a comprehensive

miRNA alteration map in cancer.

Results and Discussion

The miRNA network in normal tissues

We assayed mature miRNAs in 17 groups of normal human tissues,

from a total of 1107 chips. Tissue specificity was calculated by

using the information content (IC) according to Landgraf et al.

(2007) who measured expression levels by sequencing cloned

miRNAs. The most tissue-specific miRNAs are the members of the

hsa-miR-302 cluster, as shown in Supplemental Figure 1 and Sup-

plemental Tables I and III. hsa-miR-302a/b/c were expressed in

embryonic samples.

Complexity of genetic regulatory mechanisms in higher or-

ganisms is thought to also be achieved through controlled and

coordinated networks of miRNAs. We exploited our microarray

database to generate miRNA networks based exclusively on ex-

pression data. We applied Banjo (Smith et al. 2006) to infer the

Bayesian network for normal tissues. miRNA relations were mod-

eled as graphs where nodes represent the miRNAs and colored

edges the relationships between them. The node degree distribu-

tion of the normal miRNA network is illustrated in Supplemental

Figure 3A. The exponential decrease of both absolute frequency

and inverse cumulative frequency curves shows that there were

a lot more poorly connected nodes than highly connected (hubs).

More than 40% of the nodes had degrees of 1 and almost 75% had

degrees of #2. The normal tissues miRNA graph thus presented

a scale free behavior. The highest degree hub was hsa-miR-16,

followed by hsa-miR-215.

To discover miRNA groups with highly related expression

patterns we extracted coherent groups of nodes by adopting clus-

tering algorithms. Other researchers have developed algorithms

to extract clusters (i.e., groups of densely connected nodes) from

biological nets and we chose the MCL graph-based algorithm

(Enright et al. 2002). This algorithm, which was implemented in

Neat, (Brohee et al. 2008) has been shown to enable good perfor-

mance in extracting coregulated genes from transcriptomes. Figure

1 displays the miRNA network of normal tissues, obtained from

over 1000 samples and 50 cell types/tissues. We used all of the

expressed miRNAs to build the Bayesian networks (rather than

only the differentially expressed ones). The MCL clusters with high

coexpression patterns throughout normal tissues are linked by spe-

cific colored edges. miRNAs are generally connected as expected

from the published literature. For example, hsa-miR-133a/b was

in a cluster with hsa-miR-1 (light orange) and all were involved

in skeletal muscle proliferation and differentiation (Chen et al.

2006). A close cluster is hsa-miR-10a/b and hsa-miR-214 (green).

hsa-miR-214 is expressed during early segmentation stages in so-

mites and can modulate the expression of genes regulated by

Hedgehog. Inhibition of hsa-miR-214 results in a reduction or loss

of slow-muscle cell types (Flynt et al. 2007). Perhaps not surpris-

ingly these muscle/differentiation clusters are linked to hsa-miR-

143/145, a miRNA capable of pushing ES cells to differentiate (Xu

et al. 2009). The top, right proliferation cluster hsa-miR-106a/b/93

(Petrocca et al. 2008) to hsa-miR-20a/17 and to hsa-miR-25/92a

(MYC-associated) includes hsa-miR-223 (Spizzo et al. 2009) and is

involved in cell cycle progression (Ivanovska et al. 2008). The hsa-

miR-145 node links the proliferation clusters described above to

the muscle differentiation clusters. This link might explain why

the loss of hsa-miR-145 in cancer leads to an undifferentiated cel-

lular state. The hsa-miR-29 family, that targets the anti-apoptotic

protein MCL1 and plays a role in the TP53 pathway (Park et al.

2009) is linked to hsa-miR-30 and to hsa-miR-15/16, miRNAs

that target the anti-apoptotic protein BCL2 (Spizzo et al. 2009).

Overexpression of hsa-miR-29a leads to epithelial-to-mesenchymal

transition (EMT) and metastasis, in cooperation with oncogenic

Ras signaling (Gebeshuber et al. 2009). hsa-miR-221-222, regula-

tors of the cell cycle, together with hsa-miR-206, hsa-miR-155

(pre-B cell proliferation), and hsa-miR-130a/b are in a yellow cluster

(Spizzo et al. 2009). In the top center of the graph, hsa-miR-194

and hsa-miR-192 connect to hsa-miR-215, within a purple cluster

associated with TP53 activation (Braun et al. 2008). In a close

branch the hsa-miR-200 family, hsa-miR-203 and hsa-miR-205 are
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directly involved in TGF-beta-mediated EMT and differentiation

(Spizzo et al. 2009). hsa-miR-181 family members are involved in

B- and T-lineage and myoblast differentiation (Chen et al. 2004;

Naguibneva et al. 2006; Li et al. 2007). hsa-miR-181, hsa-miR-200,

hsa-miR-205, and hsa-miR-215 are all linked to hsa-miR-145. Thus,

the loss of the hsa-miR-145 hub might also impact the TP53/EMT/

differentiation branch. Another important hub appears to be hsa-

miR-16, which is located in the other half of the net and co-

ordinates hsa-miR-29 and hsa-miR-221/206/155/130 clusters. The

hsa-miR-16 hub also feeds the hsa-miR-26/let-7/hsa-miR-302

branch. hsa-miR-26 is a key gene in hepatocellular carcinoma and

its expression is associated with survival and response to adjuvant

therapy with interferon alpha (Ji et al. 2009). Let-7 regulates Ras

and hsa-miR-302 are expressed in ES cells and other early embry-

onic tissues.

The miRNA networks in solid cancers are reprogrammed

In previous research, we studied six types of solid cancer in about

500 different samples (Volinia et al. 2006). Here, we expanded our

study to 51 types of cancer in 3312 samples (2532 solid cancers and

780 leukemia samples). The results of miRNA differential expres-

sion in solid cancers are listed in Table 1 and in Supplemental Ta-

bles IV and V. They confirm our earlier report and the established

miRNA profiling in cancer. For example, hsa-miR-21 and hsa-miR-

17/20/25/92/103/106/146a were overexpressed, whereas hsa-miR-

203/205 and hsa-miR-143/145 were down-regulated. The KEGG

pie chart in Figure 2 and the corresponding network graphs (Sup-

plemental Figs. 5, 6) show the functional effect of differentially

expressed miRNAs on cellular pathways. The large majority of

the affected pathways is related to cancer or signal transduction

(i.e., Wnt, VEGF, TGF-beta, insulin, phosphatidylinositol signal-

ing, focal adhesion, and colorectal cancer). We also applied the IC

measure to identify cancer-specific miRNAs. The ICs were almost

as high as those measured for the normal tissues, indicating that

there were miRNAs with high cancer-type specificity (Supple-

mental Fig. 4; Supplemental Table VI).

We generated a global miRNA expression network for solid

cancers (Fig. 3). It is important to note that, to build the Bayesian

net, we used all the expressed and varying miRNAs as input, rather

than only using the differentially expressed ones (miRNAs with

low variation were excluded from the analysis). The node degree

distribution of the solid cancer miRNA network is illustrated in

Supplemental Figure 3B. Like the normal tissues miRNA graph, the

solid cancer net also presented a scale-free behavior. In cancer, the

most connected hub was hsa-miR-30c (degree 10), followed by hsa-

miR-16 (degree 6). Whereas, in nonmalignant tissues, hsa-miR-16

was the most connected node (degree 8) and hsa-miR-30c had only

a low degree of 3. Opposite behavior had TP53 regulated hsa-miR-

215 (degree 6 in normal tissues and degree 3 in cancer) and hsa-

miR-103/106a (degree 5 in normal tissues and only degree 1 in

cancer). The exchanges of hubs between nonmalignant and cancer

tissues were the first notable sign of divergences in their respective

miRNA programs. The MCL clustering algorithm was employed to

map the subnetworks with high coexpression patterns (these MCL

clusters, or cliques, are linked by specific colored edges). Addi-

tionally, we color-coded the miRNA nodes according to their dif-

ferential expression in tumors (red, overexpressed; green, down-

regulated). Neighbors preferentially appeared with the same trend,

such that clustered miRNAs were either overexpressed or down-

regulated. For example, hsa-miR-17/20a (chr 13q31.3), hsa-miR-

106a/b (chr Xq26.2 and chr 7q22.1), and hsa-miR-93 (chr 7q22.1)

were all up-regulated in cancers. Conversely, hsa-miR-143/145 (chr

5q32), hsa-miR-133a/b (chr 18q11.2, chr 20q13.3 and chr 6p12.2),

Figure 1. The miRNA network in normal tissues (1107 samples, 50 tissues, 115 miRNAs). The network was inferred for all expressed and varying
miRNAs, without preselecting for differential expression. Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph
depicted here was obtained from the best 100 nets (after searching through 8.3 3 109 networks). MCL graph-based clustering algorithm was applied to
clusters extraction (miRNAs with highly related expression pattern have edges of the same color); thus, different clusters in the network are linked by
different color edges. yEd graph editor (yFiles software) was employed for graphs visualization. See text for further discussion.

microRNA networks are rewired in cancer
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hsa-miR-214 (chr 1q24.3), and hsa-miR-138 (chr 3p21.33 and chr

16q13), all in the same coexpression clique, were down-regulated.

To individually investigate cancer types (lung, colon, breast,

prostate) we built graphs for normal and cancer tissues and applied

MCL to extract miRNA coexpression clusters. Normal lung miR-

Nome was represented by a single complete miRNA network (Fig.

4A), while adenocarcinomas were by one major and eight un-

connected subnetworks (Fig. 4B). KEGG functional analysis of the

miRNAs in the eight minor subnetworks unconnected in cancer

showed that they target genes involved in cancer-related pathways

(Fig. 5). Strikingly, a similar situation of disjointed miRNA cliques

was also present in the other cancers we studied, which included:

colon, breast, and prostate cancers (Supplemental Figs. 8–10, re-

spectively). In particular, we identified a number of notable, and

often common, miRNAs in the unconnected cancer clusters. hsa-

miR-10a/b was identified in lung, colon, and breast cancers (Ma

et al. 2007), miR 26a/b in colon and prostate cancers (Kota et al.

2009), hsa-miR-29a/b in breast, colon, and lung cancers (Mott et al.

2007; Gebeshuber et al. 2009), hsa-miR-181 family members in

colon and breast cancers (Spizzo et al. 2009), and hsa-miR-107/

hsa-miR-103 in breast, prostate, lung, and colon cancers (Volinia

et al. 2006). The let-7c/a miRNAs were prominent in colon, lung,

and prostate cancers (Johnson et al. 2005) and hsa-miR-106a/b

(Petrocca et al. 2008), linked to hsa-miR-17 and hsa-miR-20, in

colon and lung cancers. Other miRNA cliques included hsa-miR-

200c (Korpal and Kang 2008), linked to TP53-associated hsa-miR-

192/215 (Braun et al. 2008; Georges et al. 2008), in a colon sub-

network. Thus, miRNA networks were reprogrammed in solid

cancer, and the expression of a few notable miRNAs was inde-

pendent from the major network. The single graph in the overall

solid cancer net can be explained only by the same miRNAs having

variable roles in a range of cancers, such that a miRNA regulates

different targets in different cell types. The cell type and context

specific action of miRNAs has been described often (Spizzo et al.

2009). An extreme example for such a double play is the apparently

controversial role of hsa-miR-29, which acts as a tumor suppressor

in leukemia and an oncogene in solid tumors (Gebeshuber et al.

2009).

Leukemias confirm that miRNA networks
are aberrant in neoplasia

In addition to looking at miRNA networks in solid cancers, we

generated the networks for two hematological cancers, acute my-

eloid leukemia (AML) and chronic lymphocytic leukemia (CLL).

Both of these leukemias have been well characterized in terms of

miRNA profiles and their relations to prognosis. The miRNA net-

work in AML also had disjointed cliques (Fig. 6). The most prom-

inent finding here was that hsa-miR-155 and hsa-miR-181, two

miRNAs with clinical relevance (Debernardi et al. 2007; Marcucci

et al. 2008a,b), were positioned in two separated subnetworks, as

Table 1. Differentially regulated miRNA in solid cancers

Parametric
P-value FDR

Intensities in
solid cancers

Intensities in
normal tissues Fold-change miRNA

Chromosomal
location

<1 3 10�7 <1 3 10�7 967 617.9 1.57 hsa-miR-21 17q23.1
<1 3 10�7 <1 3 10�7 1378.2 917.7 1.5 hsa-miR-25 7q22.1
<1 3 10�7 <1 3 10�7 902.7 626.3 1.44 hsa-miR-20a 13q31.3
<1 3 10�7 <1 3 10�7 925.7 646.9 1.43 hsa-miR-17 13q31.3
<1 3 10�7 <1 3 10�7 652.3 469 1.39 hsa-miR-106a Xq26.2
<1 3 10�7 <1 3 10�7 410 297.8 1.38 hsa-miR-106b 7q22.1

1.30 3 10�6 1.1 3 10�05 918.8 697.9 1.32 hsa-miR-146a 5q34
<1 3 10�7 <1 3 10�7 11893.3 9370.9 1.27 hsa-miR-92a 13q31.3,Xq26.2

1.60 3 10�6 1.2 3 10�5 2354.9 1919.4 1.23 hsa-miR-103 5q35.1,20p13
<1 3 10�7 <1 3 10�7 289.4 237.8 1.22 hsa-miR-130b 22q11.21
<1 3 10�7 <1 3 10�7 452.7 372 1.22 hsa-miR-93 7q22.1

3.90 3 10�6 2.7 3 10�5 2116.4 1743.6 1.21 hsa-miR-107 10q23.31
<1 3 10�7 <1 3 10�7 297.7 248 1.2 hsa-miR-30e 1p34.2

7.4 3 10�6 4.8 3 10�5 225.6 259.4 0.87 hsa-miR-138 16q13,3p21.33
1 3 10�7 1 3 10�6 220.5 260.2 0.85 hsa-miR-326 11q13.4

3.7 3 10�6 2.6 3 10�5 419.9 507.8 0.83 hsa-miR-193a 17q11.2
2 3 10�7 1.8 3 10�6 382.5 471.2 0.81 hsa-miR-206 6p12.2
3 3 10�6 2.2 3 10�05 273.7 349.6 0.78 hsa-miR-205 1q32.2

<1 3 10�7 <1 3 10�7 714.9 1015.1 0.70 hsa-miR-145 5q32
<1 3 10�7 <1 3 10�7 275.7 403.0 0.68 hsa-miR-203 14q32.33

Solid cancer samples numbering 2532 vs. 806 corresponding normal samples, at least one class with intensity >250, P-value < 1 3 10�5.

Figure 2. Cellular pathways regulated by differentially expressed miRNAs
in cancer. KEGG analysis by ClueGO (Bindea et al. 2009) of pathways
(score = 3, P-value < 1 3 10�3) simultaneously targeted by both up-reg-
ulated and down-regulated miRNAs (listed in Table 1; Supplemental Ta-
bles IV, V). The KEGG pie-chart shows the functional effect of differentially
expressed miRNAs on cellular pathways in cancer. The large majority of
the affected pathways is related to cancer or signal transduction (i.e., Wnt,
VEGF, TGF-beta, insulin, and phosphatidylinositol signaling, focal adhe-
sion, and colorectal cancer). Target genes selection was performed with
DIANA-miRpath, microT-V4.0 (Papadopoulos et al. 2009). The union of
the target mRNAs with a score above 3 was used as an input to ClueGO.
Right-sided hypergeometric test yielded the enrichment for GO terms.
Benjamini-Hochberg correction for multiple testing controlled the P-values.
GO term fusion was applied for redundancy reduction.
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expected from their prognostic independence. In fact, hsa-miR-181

was associated to hsa-miR-146a in a detached yellow miniclique

(Taganov et al. 2006; Labbaye et al. 2008), while hsa-miR-155 (Thai

et al. 2007; O’Connell et al. 2009) belonged to the main sub-

network, in the same red MCL clique as hsa-miR-223, hsa-miR-92a,

hsa-miR-25, and hsa-miR-32. Finally, hsa-miR-29b has a key role in

AML (Garzon et al. 2008) and, in accordance, it acts as a hub in the

AML net.

In chronic lymphocytic leukemia (CLL) two small cliques

were separated from the main net (Fig. 7): hsa-miR-23a/b (Gao

et al. 2009) and a second one embracing the hsa-miR-15/16 pair.

hsa-miR-15 and hsa-miR-16, two miRNAs frequently deleted in

CLL, have been showed to regulate apoptosis via BCL2 (Calin et al.

2005; Cimmino et al. 2005). Thus, the network topologies for these

two leukemias could recapitulate their respective molecular pa-

thology, with the key AML hsa-miR-29b acting as a hub in AML,

but only a branch in CLL. AML prognostic hsa-miR-181 was dis-

jointed in AML, but not in CLL, with the reverse being true for the

CLL prognostic hsa-miR-15/16 pair.

miRNA copy number variations in cancer and leukemia

miRNAs are differentially expressed in human cancer (Spizzo et al.

2009), but little is known about their chromosomal alterations,

such as amplifications (hsa-miR-17/92) and deletions (hsa-miR-

15a/16-1). To systematically study miRNA copy number alter-

ations in cancer, we investigated 744 samples (solid cancers and

leukemia), at medium resolution (150 kb). We used data from array

comparative genomic hybridization (aCGH) and calculated, for

each of 20,000 different chromosomal locations, two P-values, one

for deletion and one for amplification. To measure miRNA copy

number alterations we used their respective host genes or, when

unavailable, their two flanking genes. In addition, to focus on

the functional role of miRNAs, to increase the statistical power of

Figure 3. The miRNA network in solid cancers (2532 samples, 31 cancer types, 120 miRNAs). The network was inferred for all expressed and varying
miRNAs, without preselecting for differential expression. Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph
depicted here was obtained from the best 100 nets (after searching through 8.4 3 109 networks). MCL expression clusters are linked by different color
edges. yEd graph editor (yFiles software) was employed for graph visualization. The miRNAs expressed differentially in the tumors are color-coded and in
the graph miRNA neighbors are of the same color code: Closely clustered miRNAs are either pink (overexpressed) or green (down-regulated). The node
labels, for which expression and physical alteration (CGH, see ‘‘miRNA copy number variations in cancer and leukemia’’ section) were concordant (i.e.,
overexpression and amplification), were emboldened and visually reinforced with a hexagonally shaped border.

microRNA networks are rewired in cancer
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our approach and to possibly dilute the contribution of the host/

associated genes, we considered miRNAs as families (Grimson

et al. 2007). miRNA families have similar targeting properties

and thus their members are expected to have similar impacts on

oncogenesis.

We worked on aCGH samples from lung, pancreas, breast,

colon, and nasopharyngeal carcinomas, glioblastoma, mela-

noma, Ewing sarcoma, osteosarcoma, T-cell acute lymphoblastic

leukemia (T-ALL), AML, CLL, myelodysplasia, various lymphomas,

and mucosa-associated lymphoid tissue MALT (Supplemental Ta-

ble VII). We used aCGH from the NCBI Gene Expression Omnibus

(GEO) and Stanford Microarray Database (SMD). CDKN2A and

CDKN2B were identified as the most deleted genes in human can-

cers, followed by other tumor suppressors PTEN, ATM, and TP53.

Oncogenes, like EGFR, MYC, LYN, MET, and MOS, were amplified.

Supplemental Tables VIII and IX list amplified and deleted

miRNA families. The detection of an amplified hsa-miR-17-5p/20/

93/106 family was a successful validation of our approach. It is also

noteworthy that the MIR17HG host gene for the hsa-miR-17/92

cluster was not present in the arrays, but its flanking genes suc-

cessfully compensated for its absence. The top deleted miRNA

family was hsa-miR-204/211, followed by other families including

hsa-miR-200b/c/429, hsa-miR-141/200a, hsa-miR-125/351, and

hsa-miR-218. Down-regulation of hsa-miR-200a/b/c/429 and 141

have been linked to breast cancer stem cells by targeting BMI1,

a stem cell self-renewal regulator (Shimono et al. 2009). Likewise

hsa-miR-211 is involved in stem cells as it shows the highest In-

formation content in an ES cell differentiation series (Supple-

mental Fig. 2; Supplemental Table III). Therefore, we suggest that

loss of hsa-miR-211 might be involved in regulation of cancer

differentiation. We suggest the same possibility for hsa-miR-218,

which is deleted in cancer and highly expressed in spontaneously

differentiated monolayers. The results from aCGH were overlaid

on the expression network in solid cancers (Fig. 3). The node labels,

for which expression and physical alteration were concordant (i.e.,

overexpression and amplification), were emboldened and visually

reinforced with a hexagonally shaped border.

Deregulated miRNAs in a Mir155-induced leukemia
are preferentially located around hsa-miR-155
in the miRNA network

We generated two cases of leukemias in an Em/VH Mir155 trans-

genic mice. These leukemias were positive for CD43 and T-cell

markers (CD3, CD8) and negative for B220. Both cases exhibited

VDJ and TCR oligoclonal rearrangement. This T-cell immuno-

phenotype might be caused by the proliferation of lymphoid

progenitors that atypically differentiated into T cells. The disease

started early, at 2 and 4 mo of age, respectively, and had a rapid

course with the mice dying 2 wk later. Their autopsy revealed

a widespread leukemic infiltration, with organomegaly and

lymphadenopathy, histologically diagnosed as an aggressive ma-

lignant lymphoproliferation similar to Burkitt lymphoma (data

not shown). The injection of single sick splenocytes into 30 syn-

geneic mice was sufficient to reproduce the full blown malignancy.

We compared the miRNA profiles of three leukemia samples

from these Mir155 trangenes to controls from wild-type mice.

Then we located the positions in the network for the miRNAs

regulated in the transgene’s leukemias (Supplemental Table X). We

did not have an acute lymphocytic leukemia miRNA network as

reference, therefore we mapped the deregulated miRNAs onto the

generic cancer network and highlighted the nodes in yellow (Fig.

8). The yellow nodes appeared concen-

trated around the hsa-miR-155 node

(black). When a diagonal, separating the

hsa-miR-155 half from the other one, was

drawn and the two sides compared, the

difference in yellow node concentrations

was significant (14 vs. 43, 4 vs. 57, Fisher’s

exact test, two-tail P-value < 0.009). The

topological distribution was even more

skewed if hsa-miR-29s and hsa-miR-181s

were not considered as hsa-miR-155 reg-

ulated. In fact, hsa-miR-181 overexpres-

sion and hsa-miR-29 down-regulation are

hallmarks miRNAs in leukemia; thus,

they are likely to be independent events

in cellular transformation and not di-

rectly related to the Mir155 transgene.

Conclusion
We have presented a thorough analysis of

miRNA tissue specificity in 50 different

normal tissues grouped by 17 systems,

corresponding to 1107 human samples. A

small set of miRNAs were tissue-specific,

while many others were broadly expressed.

We also studied 51 oncologic or hemato-

oncologic disorders and identified cancer-

type-specific miRNAs. Then we inferred

genetic networks for miRNAs in nor-

mal tissues and in their pathological

Figure 4. Comparison of miRNA networks in normal lung and adenocarcinoma. (A) Normal lung
(71 samples). A single complete miRNA network is shown. (B) Lung adenocarcinoma (125 samples). In
this graph, one major and eight minor subnetworks were detected. For example, hsa-miR-10a/b, hsa-
miR-29a/b, hsa-miR-107, and hsa-miR-103 are in minor independent subnetworks disjoint from the
main one.
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counterparts. Normal tissues were represented by single complete

miRNA networks. Cancers instead were portrayed by separate and

unlinked miRNA subnets. Intriguingly, miRNAs independent from

the general transcriptional program were often known as cancer-

related. This ‘‘egocentric’’ behavior of cancer miRNAs could be the

result of positive selection during cancer establishment and pro-

gression, as supported by aCGH. Leukemias were also rewired, but

to a much lower extent. Nevertheless, miRNAs related to AML and

CLL pathogenesis, such as hsa-miR-155, hsa-miR-181, and hsa-

miR-15/16, were still removed from coordinated control. The dis-

similar behavior of solid cancers and leukemia might be due to the

diverging pathogenetic mechanisms, which include differing on-

cogenic miRNA networks. In the former, complex chromosomal

aberrations are frequent, whereas in the latter, translocations often

represent the major driving force.

Overall, miRNA networks in cancer cells defined indepen-

dently regulated miRNAs. The target genes of these uncoordinated

miRNA were involved in specific cancer-related pathways.

Methods

miRNA expression arrays

Microarray analysis was performed as previously described (Volinia

et al. 2006). Briefly, 5 mg of total RNA were used for hybridization

of miRNA microarray chips. These chips contain gene-specific oligo-

nucleotide probes, spotted by contacting technologies and co-

valently attached to a polymeric matrix. The microarrays were

hybridized in 63 SSPE (0.9 M NaCl, 60 mM NaH2PO4 �H2O, 8 mM

EDTA at pH 7.4), 30% formamide at 25°C for 18 h, washed in

0.753 TNT (Tris-HCl, NaCl, Tween 20) at 37°C for 40 min, and

processed by using a method of detection of the biotin-containing

transcripts by streptavidin-Alexa647 conjugate. Processed slides

were scanned using a microarray scanner (Axon), with the laser set

to 635 nm, at a fixed PMT setting, and a scan resolution of 10 mm.

Microarray images were analyzed by using GenePix Pro and post-

processing was performed essentially as described earlier (Volinia

et al. 2006) . Briefly, average values of the replicate spots of each

miRNA were background-subtracted and subject to further analy-

sis. miRNAs were retained, when present, in at least 20% of sam-

ples and when at least 20% of the miRNA had a fold change of

more than 1.5 from the gene median. Absent calls were thresholded

prior to normalization and statistical analysis. Normalization was

performed by using the quantiles method. MiRNA nomenclature

was according to the miRNA database at Sanger Center (Griffiths-

Jones et al. 2008).

Data analysis

An SQL miRNA internal database was built with the data retrieved

from a large number of different experiments performed in our

laboratory. The description of the procedure and statistics for the

Figure 5. The KEGG functional analysis of eight disjointed minor miRNA networks in lung adenocarcinoma. The miRNA present in the unconnected
cliques target genes are involved in many cancer-related terms, such as focal adhesion, small cell lung cancer, and calcium signaling. The detailed list of
significant GO terms is shown in Supplemental Figure 7.
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database will be reported elsewhere (L Tagliavini, G Gamberoni,

S Rossi, M Galasso, J Palatini, CM Croce, and S Volinia, in prep.).

Briefly, the F635-background values were used. Bad spots were re-

moved. Nonexpressed spots were averaged for each gpr files (chip).

For each mature miRNA, we computed the geometric mean of

its multiple reporters in the chip. A NaN value was assigned to

miRNAs with more than 50% of corrupted spots, as reported by

the GenePix image analysis software. All the results were log2-

transformed. The normalization was performed by using the quan-

tiles normalization, as implemented in the Bioconductor ‘‘affy’’

package (Bolstad et al. 2003). BRB Arraytools was used to perform

t-test over two classes’ experiments or F-tests over multiple classes

(i.e., different normal tissues) (Zhao and Simon 2008). Target

genes selection was performed by DIANA-miRpath, microT-V4.0

(Papadopoulos et al. 2009). The union of the target mRNAs with

a score >3 was used as an input to ClueGO (Bindea et al. 2009).

ClueGO was used to relate differential expression in cancer to

functional pathways (KEGG). ClueGO visualizes the selected

terms in a functionally grouped annotation network that reflects

the relationships between the terms based on the similarity of their

associated genes. The size of the nodes reflects the statistical sig-

nificance of the terms. The degree of connectivity between terms

(edges) is calculated using kappa statistics. The calculated kappa

score is also used for defining functional groups. A term can be

included in several groups. The reoccurrence of the term is shown

by adding ‘‘n.’’ The not grouped terms are shown in white color.

The group leading term is the most significant term of the group.

The network integrates only the positive kappa score term associ-

ations and is automatically laid out using the Organic layout al-

gorithm supported by Cytoscape. A right-sided hypergeometric

test yielded the enrichment for GO-terms. Benjamini-Hochberg

correction for multiple testing controlled the P-values. (Please refer

to the Supplemental material for the complete list of data sets

analyzed in this study.)

Figure 6. The miRNA network in acute myeloid leukemia (589 samples, two subnetworks). Standard Banjo parameters were adopted with a q6
discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through 8.5 3 109 networks). The miRNA
network in AML has disjointed cliques. hsa-miR-155 and hsa-miR-181, two miRNAs with clinical relevance are in two separated subnetworks, as expected
from their prognostic independence. hsa-miR-181 is associated with hsa-miR-146a in a detached yellow miniclique. mir-155 belongs to the main sub-
network, in the same red MCL clique of hsa-miR-223, hsa-miR-92a, hsa-miR-25, and hsa-miR-32. Finally, hsa-miR-29b has a key role in AML and acts as
a hub in the AML net.

Figure 7. The miRNA network in chronic lymphocytic leukemia (254 samples, three subnetworks). Standard Banjo parameters were adopted with a q6
discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through >1 3 1010 networks). The network
graph shows a major net and two separated minicliques: hsa-miR-23a/b and the hsa-miR-15/16 cluster. hsa-miR-15 and hsa-miR-16, two miRNAs fre-
quently deleted in CLL, have been shown to regulate apoptosis via BCL2. The key hsa-miR-29b, acting as a hub in AML, is only a branch in CLL. AML
prognostic hsa-miR-181 is disjointed in AML but not in CLL, while the reverse happens in CLL for prognostic hsa-miR-15/16 genes.
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Network generation and clustering

Banjo was used to infer the Bayesian network for the different

tissues and diseases. For each tissue or disease all the mature

expressed and varying miRNAs were used as input to Banjo. The

expression values were preprocessed with Gene Pattern to only

filter out nonvarying miRNAs, according to the following param-

eters: #filter.flag = filter (variation filter and thresholding flag);

#preprocessing.flag = no disk or norm (discretization and nor-

malization flag); #minchange = 10 (minimum fold change for fil-

ter); #mindelta = 512 (minimum delta for filter); #threshold = 64

(value for threshold); #ceiling = 20,000 (value for ceiling); #max.

sigma.binning = 1 (maximum sigma for binning); #prob.thres = 1

(value for uniform probability threshold filter); #num.excl = 2% of

total chips (number of experiments to exclude (max and min)

before applying variation filter); #log.base.two = no (whether to

take the log base two after thresholding); #number.of.columns.

above.threshold = 1% of total chips (remove row if n columns not $

than given threshold above.threshold); and #column.threshold =

512 (threshold for removing rows). We then performed a quality

control step to remove chips with abnormal expression distribu-

tion across miRNAs: Chips were retained only if less than 25% of

miRNAs were absent (expression value < 64). Similarly, miRNAs were

retained only when less than 25% of samples had absent expression

(value < 64). The static Bayesian network inference algorithm was

run on the miRNA expression matrix by using standard parameters,

with a discretization policy of q6. Consensus graphs, based on the

top 100 networks, were obtained from at least 8 3 109 searched

networks. We applied the MCL graph-based clustering algorithm to

extraction of clusters (i.e., groups of densely connected nodes) from

miRNA networks. MCL (Neat) has been shown to enable good

performances in extracting coregulated genes from transcriptome

networks. yEd graph editor (yFiles software, Tubingen, Germany)

was employed for graphs visualization.

miRNA family array CGH

Seven hundred forty-four comparative genomic hybridization

arrays were studied (537 samples from GEO and 207 from SMD).

All platforms were two-channel based, data were downloaded

as normalized values, and genes were annotated according to the

gene symbol. All normalized log ratios were converted to log2

Figure 8. Deregulated miRNAs in leukemia from Mir155 transgenic mice are preferentially located close to hsa-miR-155 in the cancer network. We
compared miRNA profiles of three leukemia samples from Mir155 transgenes to controls from wild-type mice. The deregulated miRNAs (Supplemental
Table X) were mapped onto the cancer network and highlighted in yellow. Most of the other miRNAs are concentrated around hsa-miR-155 node (black).
When a diagonal is drawn and the two sides compared the difference between yellow nodes is significant (Fisher’s exact test, two-tail P-value < 0.009).
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ratios, with the cancer value at the numerator and the control

value at the denominator. Bootstrap analysis was used (10,000

random swaps of cancer and control channels) to obtain P-values

and confidence limits for deletion and amplifications. We in-

vestigated 306 miRNA loci; 168 miRNA loci were associated to

a host gene, and 138 miRNA loci to flanking genes. miRNA families

were defined according to TargetScan. The threshold P-value for

a miRNA family was set at 0.05 to the number of family members, n

(0.05n). To control for multiple testing, we performed 100 boot-

strapping cycles and used the results to calculate the false discovery

rate (FDR). The resampling analysis was executed by randomly

assigning the original P-values to the miRNA loci, while all family

structures and chromosomal locations were kept unchanged. The

FDR was defined as the percentage of families in the simulation

evaluating better (lower P-values) than in the original test. Since

the number of family member was variable (from a minimum of

2 to 7), FDRs were computed for each family according to its size

(n, number of miRNA members).
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Italy; 2Comprehensive Cancer Center, Ohio State University, Co-

lumbus, Ohio 43210, USA; 3Biomedical Informatics, Ohio State

University, Columbus, Ohio 43210, USA; 4Department of

Chemistry, The Scripps Research Institute, La Jolla, California

92037, USA; 5Department of Pathology, David Geffen School of

Medicine at UCLA, Los Angeles, California 90095, USA; 6De-

partment of Urology, Thomas Jefferson University, Kimmel Cancer

Center, Philadelphia, Pennsylvania 19107, USA; 7Istituto Tumori,

Milano 20133, Italy; 8Laboratory of Human Carcinogenesis, Na-

tional Institutes of Health, Bethesda, Maryland 20892, USA;
9Department of Medicine, Moores Cancer Center, University of

California, San Diego, La Jolla, California 92093, USA; 10Institut
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