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The  recent  and  forthcoming  availability  of high  spatial  resolution  imagery  from  satellite  and  airborne
sensors  offers  the  possibility  to generate  an increasing  number  of  remote  sensing  products  and  opens
new  promising  opportunities  for multi-sensor  classification.  Data  fusion  strategies,  applied  to  modern
airborne  Earth  observation  systems,  including  hyperspectral  MIVIS,  color-infrared  ADS40,  and  LiDAR
sensors,  are  explored  in  this  paper  for fine-scale  mapping  of  heterogeneous  urban/rural  landscapes.
An  over  1000-element  array  of supervised  classification  results  is  generated  by  varying  the  underlying
classification  algorithm  (Maximum  Likelihood/Spectral  Angle  Mapper/Spectral  Information  Divergence),
the  remote  sensing  data  stack  (different  multi-sensor  data  combination),  and  the  set  of  hyperspectral
channels  used  for classification  (feature  selection).  The  analysis  focuses  on  the identification  of  the  best
performing  data  fusion  configuration  and investigates  sensor-derived  marginal  improvements.  Numeri-
cal experiments,  performed  on  a 20-km  stretch  of the  Marecchia  River  (Italy),  allow  for  a quantification
of  the  synergies  of  multi-sensor  airborne  data.  The  use  of Maximum  Likelihood  and  of the  feature  space
including  ADS40,  LiDAR  derived  normalized  digital  surface,  texture  layers,  and  24  MIVIS bands  represents

the scheme  that  maximizes  the  classification  accuracy  on  the  test  set.  The  best  classification  provides  high
accuracy (92.57%  overall  accuracy)  and  demonstrates  the  potential  of the proposed  approach  to  define
the  optimized  data  fusion  and  to capture  the  high  spatial  variability  of  natural  and  human-dominated
environments.  Significant  inter-class  differences  in  the  identification  schemes  are  also  found  by indicat-
ing  possible  sub-optimal  solutions  for landscape-driven  mapping,  such  as  mixed  forest,  floodplain,  urban,
and agricultural  zones.
. Introduction

Land cover is a crucial variable, which plays an important role
n most soil–atmosphere interactions (Feddema et al., 2005). The
ignificance of providing accurate fine-scale land cover maps is
mphasized by the evidence of marked impacts of land cover
hanges on local surface dynamics (Claessens et al., 2009). Remote
ensing data classification represents an essential tool for environ-
ental monitoring and sustainable land use management (Melesse

t al., 2007), especially in heterogeneous landscapes characterized
y many interconnected natural- and human-induced processes
Forzieri and Catani, 2011). Given the large number of diverse

and cover types and their possible interclass spectral overlapping,
utomatic mapping of complex urban/rural patterns represents a

∗ Corresponding author. Tel.: +39 0332785528; fax: +39 0332786653.
E-mail address: giovanni.forzieri@jrc.ec.europa.eu (G. Forzieri).
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difficult task, particularly when very high spatial resolutions are
concerned.

Modern space-borne hyperspectral (e.g., HYPERION,
CHRIS/PROBA) and laser scanner (ICESat/GLAS) sensors recently
offered an interesting potential in land surface characterization
(e.g., Duca and Del Frate, 2008; Goodenough et al., 2003), but may
still exhibit possible inaccuracies in monitoring environments that
are highly variable in space (e.g., Cavalli et al., 2008; Pignatti et al.,
2009). In this context, high-resolution airborne sensors represent
enhanced mapping tools (e.g., Gianinetto and Lechi, 2004; Lu et al.,
2007; Melgani and Bruzzone, 2004) and also preliminary tests
to drive planned satellite-based systems (e.g., PRISMA, EnMAP,
HyspIRI, Sentinel). High spatial resolution airborne color-infrared
sensors (e.g., Intergraph DMC, ADS40, RC30) provided encouraging
classification performances especially in antrophic areas, such as

agricultural and urban zones (Belluco et al., 2006; Tansey et al.,
2009). Airborne hyperspectral data, such as Multispectral Infrared
Visible Imaging Spectrometer (MIVIS), Airborne Visible InfraRed
Imaging Spectrometer (AVIRIS), and HyMap, thanks to their high

dx.doi.org/10.1016/j.jag.2012.10.004
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:giovanni.forzieri@jrc.ec.europa.eu
dx.doi.org/10.1016/j.jag.2012.10.004
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pectral resolutions, have demonstrated to be powerful tools
o discriminate land cover classes with partially overlapping of
pectral signatures in the feature space, such as forest and wetland
cosystems (Colombo et al., 2008; Forzieri et al., in press; Hirano
t al., 2003) and geologic features (van Der Meer et al., 2012). Light
etection and Ranging (LiDAR) data have been extensively used

or mapping tasks due to their ability to capture the 3D structure
f the monitored surfaces, especially in vegetated and built-up
reas (e.g., Forzieri et al., 2009; Priestnall et al., 2000).

Several data fusion methods have been successfully tested for
lassification of different landscape scenarios. Here, we  point out
hat the terms “data fusion” and “multi-source (multi-sensor)” clas-
ification are used in this work as synonymous with the meaning
f labeling pixels by drawing inferences from several input data
ources, according to the definition given by Richards and Jia (2006).

 common technique of data fusion for multi-source classification
s the stacked vector approach that consists in generating extended
ixel vectors stacking together the individual vectors that corre-
pond to each input data source (Richards and Jia, 2006; Tso and
ather, 2000). The fusion of LiDAR and hyperspectral/multispectral

ata exhibited an interesting potential in several application fields
ncluding the retrieval of biophysical and geological properties of
and surfaces (Anderson et al., 2008; Forzieri et al., 2012a; Spinetti
t al., 2009). The combined use of laser scanner and spectral data
as particularly effective in classification tasks to distinguish veg-

tation types (e.g., Dalponte et al., 2008; Elaksher, 2008; Mundt
t al., 2006), anthropogenic surfaces (e.g., Chen et al., 2009), and
and cover changes (Forzieri et al., 2012b). Additional derived fea-
ures, such as texture or DTM-based layers, have been used to
mprove class discrimination over cropfields and riparian corridors
e.g., Forzieri et al., 2010; Herold et al., 2003).

Mapping approaches based on multisource data can be either
ontextual or noncontextual depending on the possible use of spa-
ial information. Region- and object-based methods represent a
rimary subcategory of contextual classification methods. Non-
ontextual classifiers label the (multi-source) signature of each
ixel regardless of all other pixels (e.g., Richards and Jia, 2006),
hus discarding the spatial information associated with the image.
ontextual approaches use both spectral and spatial information
Moser and Serpico, in press; Moser et al., in press). The former
pproach bears the obvious advantage of simplicity, but the lat-
er generally includes more powerful classification techniques.
egion-based and object-based methods currently play a primary
ole in the literature of contextual classification, especially when
igh-resolution data are concerned. A basic region-based approach
ay  be two-step process involving: (1) segmentation of the image

nto homogeneous regions, possibly representing objects or parts
f objects, and (2) classification of those regions (e.g., de Jong and
an der Meer, 2004; Navulur, 2007). However, more sophisticated
egion-based architectures can be devised, depending on the nature
f data being analyzed, their spatial resolutions, the computational
esource available, and the intended application of the classified
ata (Lillesand et al., 2008; Moser et al., in press).

Even though the costs of airborne image acquisition are high
ompared to satellite remote sensing image procurement and may
epresent an operational constraint in several environmental appli-
ations, their exploitation can be viewed both as a preliminary
tep toward the development of spaceborne advanced monitor-
ng systems and in the perspective of the application to specific

onitored areas of particular environmental interest. In light
f the recent advances in sensor technology, additional fusion
xperiments on modern airborne remote sensing data serve for
 better understanding of the potential and limitations of cur-
ent Earth observation systems. In particular, there is a great need
or assessing optimized exploitation strategies of multi-sensor
emote sensing data to maximize the inter-class separability in
bservation and Geoinformation 23 (2013) 313–323

heterogeneous landscape scenarios. In this context, hyperspec-
tral MIVIS, color-infrared ADS40 and LiDAR data represent useful
datasets to quantify multi-source synergies for image classifica-
tion tasks. Given their very high spatial and spectral resolutions,
such sensors have separately demonstrated to be effective for
detailed land cover mapping (e.g., Belluco et al., 2006; Forzieri
et al., in press), but their implementation into data fusion pro-
cesses is still scarcely explored. For this purpose, in this paper
we analyze different fusion strategies involving MIVIS, ADS40,
and LiDAR data for classification tasks associated with complex
landscapes. We generate an array of standard supervised pixel-
based classification scenarios by varying a set of key choices
(classifier and remote sensing data combination) and we  iden-
tify the configuration with the highest accuracy on the test set.
Sensor-derived marginal improvements and land cover-based per-
formances are also investigated. The main novel contribution of
this paper consists in the experimental investigation of possi-
ble synergies among high-dimensional multi-sensor airborne data
(MIVIS, ADS40, LiDAR) for the classification of heterogeneous
landscapes.

2. Methods

2.1. Study area

The study was conducted over a 20-km stretch of the Marec-
chia river (∼40 km2), that sources in Eastern Tuscany and runs at
the border of the Emilia-Romagna and Marche regions, in North-
Eastern Italy (43◦N, 12◦E) (Fig. 1). Such study area has been chosen
for its complexity in land cover spatial variability and repre-
sents an excellent test to quantify multi-sensor remote sensing
capability to classify heterogeneous landscapes. The hill slopes
are characterized by a significant biodiversity of arboreal species,
which include conifer and broad-leaved types, such as oak, pine,
cypressus, and spruce (Fig. 1A, mixed forest). Riparian ecosys-
tems exhibit complex patterns with flexible and stiff vegetation
in different succession stages, such as willow, arundo donax, heat-
land, and poplar. Streamside caves for fluvial sediment extraction
with related decantation basins are also present in the floodplain
(Fig. 1B, floodplain). The valley floor is prevalently made up of fab-
rics/industrial units (Fig. 1C, urban zones), agricultural fields, such
as croplands and olive groves, and semi-natural vegetation, such as
meadows (Fig. 1D, agricultural areas).

We defined 17 main target land cover classes to be discrimi-
nated: water river (WR), water lagoon (WL), bare soil (BS), asphalt
(AS), plowed field (PF), urban fabric (UF), industrial unit (IU), herba-
ceous (HE), heatland (HL), arundo donax (AD), poplar (PL), oak (OK),
pine (PN), cypressus (CY), spruce (SP), willow (WI), and olive (OV).

2.2. Remote sensing and field data

For this study we used multi-sensor data, including optical
ADS40, hyperspectral MIVIS, and LiDAR. Color-infrared aerial dig-
ital image data acquired by ADS40 have 4 spectral bands: blue
(0.430–0.490 �m),  green (0.535–0.585 �m),  red (0.610–0.660 �m),
and near-infrared (NIR; 0.835–0.885 �m).  The data have 12-bit
radiometric depth and 0.2-m pixel size. MIVIS is a whiskb-
room hyperspectral sensor with high spatial (3-m pixel size) and
radiometric (12 bit) resolution, and with variable spectral reso-
lution (sr) depending on the spectrometer. This sensor records
102 bands spanning across the visible (20 bands within the

0.43–0.83 �m range with sr = 0.02 �m),  near-infrared (8 bands
within the 1.15–1.55 �m range with sr = 0.05 �m),  middle-infrared
(64 bands within the 1.983–2.478 �m range with sr = 0.009 �m)
and thermal-infrared (10 bands within the 8.18–12.7 �m range
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ig. 1. Study area: key map  and entire monitored 20-km stretch of the Marecchia
anoramic view (Z1) (upper map), typical investigated landscapes including mixed

ith sr from 0.34 to 0.54 �m).  LiDAR data were provided in terms
f Digital Terrain Model (DTM) and Digital Surface Model (DSM)
ith 1-m spatial resolution and 0.2-m vertical accuracy. The air-

orne platform (Casa 212/C I-MAFE) was prepared for two camera
atches. Multi-sensor data were acquired in December 6 and 11,
009, within a time-frame spanning from 10.00 to 14.00 UTC:
DS40 and MIVIS data were simultaneously acquired in the former
cquisition date, while LiDAR data were taken in the latter date.

Training and test pixels have been collected during the same
eason of the remote sensing acquisitions through field surveys
nd through the visual interpretation of the ADS40 image. While
elineating training and test polygons, pixels located along the
dges between land cover types were avoided to reduce the impact

f potential small registration errors and to prevent the inclu-
ion of mixed pixels in the training and test sets. The resulting
ample sizes are listed in Table 1 in terms of number of 1-m
ixels.
 (Emilia Romagna, Italy) (bottom left map), reference 3-km × 3-km inset box and
 (A), floodplain (B), urban zone (C) and agricultural area (D).

2.3. Methodology

The proposed procedure explores different strategies of
exploitation of multi-sensor remote sensing data for fine-scale
mapping of 17 land cover classes. The method generates a large
array of classification scenarios obtained with different sen-
sor/setting combinations and, similar to a model identification
problem, identifies the combination which maximizes the clas-
sification accuracy. The configuration to identify include: (1)
classification algorithm (al); (2) multi-source data combination
(FS); and (3) number n of hyperspectral channels. The array of the
classification maps can be described by the following mathematical
notation:
H = K(al, FS, n) (1)

where H is the classification accuracy associated with the triplet
(al, FS,  n) used as input in the classification routine (K).
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Table  1
The seventeen spectral classes used for training and testing, their codes, and the
corresponding number of 1-m pixels.

Land cover class Code Training set [#
1-m pixels]

Testing set [#
1-m pixels]

Water river WR 23,855 26,368
Water lagoon WL 4448 3310
Bare  soil BS 52,414 55,022
Asphalt AS 14,253 10,855
Plowed field PF 90,262 81,411
Urban fabric UF 16,557 14,587
Industrial unit IU 13,748 12,515
Herbaceous HE 300,477 265,074
Heatland HL 56,977 50,986
Arundo donax AD 10,258 9828
Poplar PL 13,114 13,358
Oak OK 96,804 97,532
Pine  PN 15,793 15,718
Cypressus CY 11,241 11,996
Spruce SP 26,774 29,576
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Willow WI 6446 6490
Olive OV 5976 5116

.3.1. Explored classification solutions
Fig. 2 displays the flowchart of the generation of the explored

rray of classification results. This generation is organized in five
equential steps.

.3.1.1. Pre-processing. The remote sensing data were orthorecti-
ed and co-registered in the UTM-WGS84 projection by ground
ontrol points. MIVIS radiance data were used for classification,
.e., no preliminary atmospheric correction was applied to map
adiance to reflectance data. On one hand, this correction would
llow atmospheric effects affecting spectra absorption features
e.g., effects associated with the bidirectional reflectance distri-
ution function, adjacency effects) to be addressed. On the other
and, atmospheric correction in itself may  introduce biases or
istortions, which might negatively affect the classification per-
ormances. Therefore, similar to many previous applications of
upervised classification to the problem of land-cover mapping

rom hyperspectral sensors (e.g., Landgrebe, 2003; Serpico and

oser, 2007), data were used in radiance format for the classifi-
ation study discussed here.

ig. 2. Flowchart of the developed classification scheme. Data, pre-processing, fea-
ure extraction, feature reduction, stacked vector and mapping procedures are
ifferently displayed according to the reference shaded color.
bservation and Geoinformation 23 (2013) 313–323

2.3.1.2. Feature extraction. To better discriminate the spectral sig-
natures of the shadow and shadow-free areas we calculated the
hillshade modeling (HM) by using the Digital Terrain Model and
the solar position parameters related to the spectral data acquisi-
tion time (Burrough and McDonell, 1998). We  also calculated the
normalized Digital Surface Model (nDSM) by the simple subtraction
of DTM and DSM to increase the inter-class separability for the 3D-
derived information. Finally we  computed three popular texture
features (range, mean, variance, collectively labeled in the follow-
ing as TX) estimated by means of a first-order statistical analysis
(Haralick et al., 1973) with a 3 m × 3 m window size on a simulated
panchromatic channel. This channel is defined as the average of
the ADS40 channels weighed on the spectral acquisition range of
each band (Wang et al., 2010). A preliminary analysis supported the
suitability of the selected window size to capture spatial correlation
patterns (e.g., croplands, olive fields, and road networks). Hillshade
modeling (HM), normalized digital surface model (nDSM) and tex-
ture layers (TX) have been used in this study as additional features
in the mapping procedure.

2.3.1.3. Feature reduction. Within the available MIVIS dataset,
we have only used the first 24 bands (spanning within the
0.43–1.319 �m spectral range), as the remaining channels were
corrupted (Forzieri et al., in press). The main problematic issue in
the analysis of hyperspectral data is related to the high dimension-
ality of the spectral space: when increasing the number of features,
the Hughes’ phenomenon (Hughes, 1968) may occur, that con-
sists in a loss of classification accuracy caused by the mismatch
between the number of available training samples and the num-
ber of samples that should be needed to reliably estimate the
classifier parameters (Landgrebe, 2003). In order to reduce possi-
ble hyperspectral-derived dimensionality effects, we applied the
Sequential Forward Selection (SFS) to the MIVIS bands (Serpico
et al., 2002). This selection algorithm is based on a sub-optimal iter-
ative search strategy, it is initialized with an empty set of selected
features, and iteratively identifies the best feature subset (see Fig. 2)
that can be obtained by adding to the current feature subset one
feature at a time (whose size ranges in our case from 1 to 24) until
the desired number n of features is achieved. The Jeffries–Matusita
measure was used as an inter-class distance measure to guide this
selection process (Richards and Jia, 2006). We  used feature selec-
tion strategies instead of feature space transformations to preserve
the physical meanings of the discriminant components of the MIVIS
subsets. Within the selection methods, we chose SFS thanks to its
limited computational burden and because it has been demon-
strated to be a powerful and efficient tool in hyperdimensional
feature space reduction (Serpico et al., 2002).

2.3.1.4. Stacked vector approach. A straightforward approach to
classify mixed data is to form extended pixel vectors stacking
together the individual vectors that correspond to each input data
source (stacked vector method; Richards and Jia, 2006; Tso and
Mather, 2000). Here, 16 options for stacking the original (ADS40,
MIVIS) and derived information (nDSM, HM, TX) were explored.
The data from the resulting 16 multi-source feature spaces (FS, in
Fig. 2) – which differently combine the available remote sensing
information (Table 2) – were resampled at the common 1-m spa-
tial resolution. The resampling cell size was  chosen to finely capture
the spatial variability of land covers without asking for massive
computing power or excessive computing time.

2.3.1.5. Mapping procedure. The generated multi-stacks were clas-

sified by means of three popular classifiers (al in Fig. 2) that have
been chosen in this study for their simple implementations and
computational efficiencies: the well known Maximum Likelihood
(ML, Richards and Jia, 2006), Spectral Angle Mapper (SAM, Kruse
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Table  2
The sixteen feature spaces used in the classification procedure (FS1, . . .,  FS16)
including: normalized Digital Surface Model (nDSM), hillshade modeling (HM),
multispectral data (ADS40), texture layers (TX) and hyperspectral data (MIVIS).
Admissible numbers of input features are shown in brackets.

Feature space nDSM [1] HM [1] ADS40 [4] TX [3] MIVIS [1:24]

FS1 X
FS2 X
FS3  X X
FS4 X X
FS5 X X X
FS6 X X
FS7 X X
FS8  X X X
FS9 X X X
FS10 X X X X
FS11 X X
FS12 X X
FS13 X X X
FS14 X X X
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FS15 X X X X
FS16 X X X X X

t al., 1993), and Spectral Information Divergence (SID, Chang,
000) classifiers. Since SAM needs as input, at least, a two-band
et, all classification scenarios were accordingly developed with a
inimum of two input bands to better compare the performances

f different algorithms. In order to reduce possible salt-and-pepper
ffects, we also applied a post-classification majority filter to the
esulting maps with a 3 m × 3 m kernel size (Yuan et al., 2005).

This strategy produced 1104 land cover maps with different
onfigurations of the afore-mentioned variables (3 classifiers × 16
eature spaces × 23 hyperspectral subsets).

.3.2. Classification accuracy assessment
Training/testing samples were used to calibrate/validate each

enerated configuration. The classification performances were
uantified in terms of confusion matrix (M), overall accuracy (OA),
ommission (COM)/omission (OMI) errors and kappa conditional
tatistics (Ks).

Marginal improvements derived from each individual data
ource were also investigated by extracting, from the full array, the
ubsets that include/exclude the source under investigation. For
ach data source, we selected two different subsets (X, Y) defined
s follows:

X = K(al, FS = fsx, n),

Y = K(al, FS = fsy, n),
al = ML,  SAM, SID; n = 2, . . . , 24 (3)

here fsx (fsy) denote the feature spaces that include (exclude)
he considered source. These spaces are listed in Table 3 with
egard to each source (ADS40, MIVIS, nDSM, HM,  and TX). Then,
he Behrens–Fisher statistics with 0.95 confidence level was com-
uted for testing the difference between the means (�) of the two
verall accuracies calculated separately with the X and Y subsets.
e  analyzed two different tests:

1 :

{
H0 : �x = �y

H1 : �x > �y

; t2 :

{
H0 : �x = �y

H1 : �x < �y

(4)

he rejection of the null hypothesis H0, in favor of the target hypoth-
sis H1, in the t1 (t2) case indicates a prevalent positive (negative)
mpact of the investigated data source on the classification per-
ormances. The large size of the classification array (1104 land

over maps) allowed for a robust quantification of the statistical
ignificance of the possible benefits associated with each source
Kottegoda and Rosso, 1997).
servation and Geoinformation 23 (2013) 313–323 317

2.3.3. Classification scheme identification
As mentioned previously, the behavior of the classification

performances within the array of generated classification results
can be assimilated to a three-parameter function (H = K(al,FS,n)),
whose global maximum value identifies the optimal classification
scheme, with respect to the criterion of maximizing the overall
classification accuracy on the test set. In order to highlight spe-
cific parameter-dependent improvements and to define possible
sub-optimal alternatives we described the classification scheme
identification through 3 sequential steps, by progressively fixing
one optimal configuration variable at a time and by accordingly
reducing the size of the search space:

1st-step array subset, classifier choice;

Hal(FS, n) = max
al

[K(al, FS, n)] (5)

2nd-step array subset, choice of the stacked vector configuration;

Hal,FS(n) = max
(FS)

[Hal(FS, n)], (6)

3rd-step array subset, choice of the number of hyperspectral chan-
nels.

Hal,FS,n = max
(n)

[Hal,FS(n)], (7)

We also explored the variability of the three key parameters
(al, FS,  n) across the investigated land covers to assess possible
sub-optimal classification solutions more suited to specific envi-
ronments, such as mixed forest, floodplain, urban, and agricultural
zones.

3. Results and discussions

3.1. Classification algorithm performances (al identification)

In this section we focus on the impact of the tested classifiers
(ML, SAM, SID) on the overall accuracy to identify the best perform-
ing classification algorithm (first step of the identification scheme).
Fig. 3 is organized in 16 plots, each related to an individual investi-
gated feature space (FS variable). The selected subsets composed of
increasing numbers of MIVIS bands (n variable) and overall accu-
racies (OA) are displayed on the x-axis and y-axis, respectively (see
Section 3.3 for details on the optimization of n). The three different
color lines refer to the three classifiers.

Classification accuracies are obviously n-independent in the fea-
ture spaces not including MIVIS bands (Fig. 3A, C, F, H, M and O).
It is evident that ML  provides higher performances with all the 16
feature space configurations, especially in the highest-dimensional
cases (Fig. 3B–E, G, I, L, N and P–R), than SAM and SID. These two
classifiers generally exhibit comparable accuracies, with slightly
better performances of SAM than of SID in low-dimensional feature
spaces (Fig. 3A, C, F, H and M)  and vice versa in high-dimensional
ones (Fig. 3E, L, N and P). The improved accuracy of ML  over SAM
and SID is an expected result due to the capability of ML to take
into account first- and second-order statistics of the data associated
with each class. On the contrary, SAM and SID essentially charac-
terize each class with a unique prototype and consequently do not
allow appreciating the shapes of the class-conditional distributions
in the feature space (Richards and Jia, 2006).
ML  is based on a Gaussian unimodal model for each class-
conditional statistics. In order to verify the possible unimodal
spectral distribution of the data associated with each land cover,
we applied the Hartigan test (Hartigan and Hartigan, 1985) and



318 G. Forzieri et al. / International Journal of Applied Earth Observation and Geoinformation 23 (2013) 313–323

Table  3
Array subsets for each input source (ADS40, MIVIS, nDSM, HM, TX) used in the source marginal improvement assessment: fsx and fsy include and exclude the reference
data  source, respectively. Statistical test results (t1 and t2) of the array subsets for each input source are listed: 1 (0) values of the Behrens–Fisher test indicate rejection (no
rejection) of the H0 null hypothesis with 0.95 confidence level.

Tested features Array subset Behrens–Fisher test

fsx fsy t1 t2

H0: �x = �yH1: �x > �y H0: �x = �yH1: �x < �y

ADS40 1,3,5,6,8,10,11,13,15,16 2,4,7,9,12,14 0 1
MIVIS  2,4,5,7,9,10,12,14,15,16 1,3,6,8,11,13 1 0
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nDSM  3,4,5,8,9,13,14,15,16 1,2,6,7,11,12
HM  6,7,8,9,10,16 1,2,3,4,5,11,
TX  11,12,13,14,15,16 1,2,3,4,5,6,7

stimated the corresponding probability through a 500-sample
ootstrap permutation scheme. High probability values of the uni-
odal distribution hypothesis are obtained for normalized digital

urface and texture features and for most MIVIS bands, especially
hen conditioned to forest classes (average probability > 0.75),

hus supporting the use of ML  for classification purposes in the
onsidered case study. More sophisticated approaches, based for
xample on classifier Ensembles, Markov random fields or support
ector machines, could represent valuable alternatives to further
mprove the classification accuracy (e.g., Melgani and Bruzzone,
004; Moser and Serpico, in press; Pal and Mather, 2005; Zhang
t al., 2011).

.2. Feature space combination (FS identification)
To optimally combine the available multi-source remote sensing
ata, the feature space configuration (FS) corresponding to the
ighest accuracy was determined (second step of the identifica-
ion scheme). To this purpose, a preliminary testing analysis was

ig. 3. Classification accuracies for the sixteen tested feature spaces displayed separatel
ccuracies (OA) are displayed on the x-axis and y-axis, respectively. The three different co
ndicated in the legend.
1 0
14,15 0 0

 1 0

performed to assess the marginal improvements derivable from
each data source. Fig. 4 shows 5 plots related to the marginal
improvements of ADS40, MIVIS, nDSM, HM,  and TX. Each plot dis-
plays the distributions of overall accuracies (OA, on the y-axis) of
the two reference array subsets (X and Y, on x-axis), defined in Eq.
(3) and listed in Table 4. The classification performances are dis-
played through box plots where the central mark is the median
(Me), the edges of the box are the 25th and 75th percentiles, and the
whiskers extend to the most extreme data points. X median values
greater (lower) than Y median values suggest possible source-
dependent positive (negative) impacts.

Results suggest that the use of ADS40 in the classifica-
tion process mainly negatively affects classification performances
(Me(X) < Me(Y) in Fig. 4A and t1 = 0 and t2 = 1 in Table 3). This neg-
ative effect is likely imputable to the possible redundancy due to

the overlapping of spectral signatures between ADS40 and MIVIS in
the visible range. Furthermore lower probability values in the Har-
tigan test for unimodal distribution were also found for the ADS40
channels. This last issue could highlight possible limitations of the

y on different plots. Selected subsets of increasing input MIVIS bands and overall
lor lines refer to the three classification algorithm performances (ML, SAM, SID), as
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Fig. 4. Marginal improvements of specific data source: ADS40 (A), MIVIS (B), nDSM
(C), HM(D) and TX(E). Each plot displays the distributions of overall accuracies (OA,
y-axis) of the two reference array subsets (X and Y, x-axis, see Table 3 for the defini-
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Fig. 5. The iterative selection of MIVIS subsets (on x-axis) with the progressive
increasing of the number of hyperspectral bands (on left y-axis). Selected bands
ion). The classification performances are displayed in box plots where the central
ark is the median and the edges of the box are the 25th and 75th percentiles, the
hiskers extend to the most extreme data points.

elected classifiers, which essentially assume a monomodal behav-
or for each class-conditional statistics, in correctly capturing the
pectral signature of this sensor.

Hillshade modeling (HM) does not improve the mapping accu-
acy (Me(X) ∼ Me(Y) in Fig. 4D and t1 = 0 and t2 = 0 in Table 3).
lthough HM well discriminates shaded/free-shaded areas in urban
ones, this marginal classification benefit is negatively counterbal-
nced by the HM-derived noise in forest patterns (not shown here
or brevity).

In contrast, MIVIS, nDSM, and TX features represent the most
mportant discriminant contributions in the classification process
Me(X) > Me(Y) in Fig. 4B, C and E and t1 = 1 and t2 = 0 in Table 3).
espite the evident cutoff of the original MIVIS bands (from 102

o 24 bands) results confirm the high capability of the remaining
yperspectral channels of classifying complex landscapes. Further-
ore, LiDAR-derived 3D information (nDSM) and spatial textural
eatures (TX) introduce additional discriminant information and
ositively contribute to maximize the inter-class separability.

Table 4 lists, for each explored feature space combination,
he maximum classification accuracy, the ranking (rk), and the

able 4
aximum overall accuracy (MOA), corresponding ranking order (rk) and rela-

ive  improvement with respect to FS1 (IFS1) and FS2 (IFS2), for each feature space
FS1, . . ., FS16). Relative improvements are calculated as IFSi(FSj) = 100 · [MOA(FSj) −
OA(FSi)]/MOA(FSj)  where i = 1, 2 and j = 1, . . .,  16.

Feature space MOA  (%) Rank rk IFS1 (%) IFS2 (%)

FS1 55.51 15 0.00 −50.24
FS2  83.4 9 33.44 0.00
FS3  73.42 12 24.39 −13.59
FS4  88.21 6 37.07 5.45
FS5  90.54 2 38.69 7.89
FS6  53.9 16 −2.99 −54.73
FS7  82.25 10 32.51 −1.40
FS8  70.2 13 20.93 −18.80
FS9  87.39 7 36.48 4.57
FS10  89.38 5 37.89 6.69
FS11 68 14 18.37 −22.65
FS12 87.32 8 36.43 4.49
FS13 75.41 11 26.39 −10.60
FS14 89.91 4 38.26 7.24
FS15 91.19 1 39.13 8.54
FS16 90.17 3 38.44 7.51
are  displayed in black circles, while gray shaded colors define the reference spectral
regions: visible (VIS), near infrared (NIR) and middle infrared (MIR). The overlaid
overall accuracy is visualized as a solid black line and refers to the right y-axis.

relative improvements as compared to the original sets of ADS40
(FS1) and MIVIS (FS2) channels. The use of multi-source data
leads to classification improvements ranging up to ∼40% and
∼8% as compared to ADS40 and MIVIS alone. Interestingly, FS15
(ADS40 + MIVIS + TX + nDSM) represents the optimal multi-source
configuration (OA = 91.19%, Table 4). This identified best combi-
nation represents an extreme point of the box plot in Fig. 4A
(percentile > 75th). Comparable performances are obtained on
configurations without ADS40 (e.g., FS14, OA = 89.91%, Table 4).
Although, as discussed above, ADS40 generally yields a nega-
tive impact on the classification performances, as demonstrated
through t-tests, its use can lead to improved accuracy if included
within specific classification schemes. This might be interpreted as
due to the 0.835–0.885 �m spectral range covered by ADS40 but
not by MIVIS.

In the following sections FS15 (ADS40 + MIVIS + TX + nDSM) is
retained as the best configuration of multi-source data for classifi-
cation of heterogeneous landscapes on the considered data set.

3.3. Hyper-spectral contribution (n identification)

The number n of MIVIS channels remains the last issue (third
step of the identification scheme) to determine in the proposed
multi-source data fusion scheme. Fig. 5 shows the iteratively
selected MIVIS subsets based on the SFS (x-axis) and the avail-
able hyperspectral bands (left y-axis) included in FS15. The selected
bands are displayed in circles, while gray shaded colors define the
reference spectral regions: visible (VIS), near infrared (NIR), and
middle infrared (MIR). The overlaid overall accuracy (OA) is visual-
ized as a solid black line and refers to the right y-axis.

The MIVIS bands are iteratively selected from the VIS, NIR, and
MIR  ranges, thus suggesting that the whole spectral span of the sen-
sor is relevant for class discrimination, at least, for the considered
data set. This result can be related to the high number and spatial
variability of complex landscapes that likely benefit from spectral
contributions from all the investigated spectral regions. The OA
curve shows a sharp increment up to the #6 MIVIS bands subset
and a subsequent monotonically increasing trend. This behavior

suggests that the data variability may  be prevalently captured by
the 6-feature subset (#2, 7, 12, 15, 17, 24 MIVIS bands), at least,
with respect to the task of discriminating the considered land cover
classes. The highest accuracy (OA = 91.19%) is obtained with all
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Fig. 6. Synoptic view of the accuracy improvements resulting through the three
steps of the procedure adopted to identify the optimal classification scheme
K(ML,FS15,24). Each box plot displays the variability of the overall accuracies of
the  mentioned array subsets: the central mark is the median, the edges of the box
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re  the 25th and 75th percentiles, the whiskers extend to the most extreme data
oints. Black bars indicate the average marginal improvement (AMI) obtained by
he identification process (in shaded colors) by referring to the right y-axis.

IVIS channels and is used as a reference hyperspectral config-
ration for the final optimized exploitation.

.4. Marginal accuracy improvements

Fig. 6 shows a synoptic view of the accuracy improvements
esulting from the adopted classification scheme as compared
o the original full array, K(al,FS,n) up to the final solution,
(ML,FS15,24), identified through the aforementioned 3-steps (in
ifferent gray scales). Each box plot displays the variability of the
verall accuracies of the reference array subset labeled on the x-
xis: the central mark is the median, the edges of the box are
he 25th and 75th percentiles, the whiskers extend to the most
xtreme data points, whose range is indicated as DR (data range)
n the following lines. Black bars indicate the average marginal
mprovement (AMI) associated with each step and obtained as the
ifference between the average values of the classification accura-
ies in two subsequent array subsets.

The first two  identification steps (i.e., those related to the
l and FS variables) prove most effective in reducing classi-
cation errors. The classifier selection (K(al,FS,n) → K(ML,FS,n))
ignificantly lowered the variability in classification accuracy (DR
rom ∼90% to ∼60% with AMI  ∼ 28%). The subsequent selection
f the feature-space configuration provides for a further reduc-
ion in the range of accuracies (DR from ∼60% to ∼10%) and
or an enhancement in classification performance (AMI ∼ 12%),
K(ML,FS,n)  → K(ML,FS15,n)). Although the third step – the opti-

ization of n (K(ML,FS15,n) → K(ML,FS15,24)) – has a smaller
mpact on the final classification accuracy than the previous steps
DR decreased from ∼10% to 1%, AMI  = ∼2%), it allows for an
mportant accuracy improvement for certain classes, i.e., water
odies (WR, WL,  reduction of commission/omission errors of
50–70%), forest plant species (OK, PN, CY, SP, reduction of com-
ission/omission errors of ∼50%) and agriculture zones (PF, HE,

eduction of commission/omission errors of ∼70–80%).
.5. Optimized multi-sensor data fusion

The resulting scheme, characterized by the ML  classifier and by
he feature space including ADS40, TX, nDSM, and the full set of
bservation and Geoinformation 23 (2013) 313–323

MIVIS bands, is retained as the best performing multisource classi-
fication configuration with respect to the discrimination of the 17
classes in the considered data set. The final majority filter allows
reaching a 92.57% OA. Fig. 7 shows the obtained high resolution
land cover map: the entire monitored transect (bottom left map);
the 3-km × 3-km reference window (upper map); and four zoomed
classification views on typical landscapes (inset boxes A, B, C, and
D). It is evident by a visual comparison of Figs. 1 and 7 that the
obtained classification map  captures well the spatial variability of
the monitored area, especially considering that, at the data acqui-
sition times, most of the vegetation types were in the senescence
phase and consequently exhibited low reflectance values.

The coverage data, which exhibit the lowest error rate, are
– as expected – the classes with well defined spectral signa-
tures such as water river (COM(WR) = 1.38%, OMI(WR) = 3.66%),
bare surfaces (COM(BS) = 3.58%, OMI(BS) = 5.92%), plowed
fields (COM(PF) = 1.84%, OMI(PF) = 2.48%), herbaceous pat-
terns (COM(HE) = 0.97%, OMI(HE) = 2.32%), and oak forests
(COM(OK) = 3.08%, OMI(OK) = 14.71%). However, by referring to
the confusion matrix M (M(u,v)) expressed in terms of percentage
values (where the (u, v)-th entry M(u, v) refers to pixels classified in
land cover u and belonging to the test set of land cover v), persistent
errors are found due to possible inter-class spectral overlapping:
bare surfaces classified as asphalt (M(AS, BS) = 11.78%); some
industrial units labeled as urban fabric (M(UF,IU) = 21.33%);
heatlands, herbaceous, oak, poplar and arundo donax partially
incorrectly detected (e.g., M(HL,HE) = 5.33%, M(HL,OK) = 5.97%,
M(AD,HL) = 9.96%, M(AD,OK) = 14.36%, M(PP,OK) = 37.01%);
misclassifications in mixed conifer forests (M(CY,SP) = 26.47%,
M(PN,SP) = 5.39%); possible errors between willows and poplar
(M(WI,PP) = 10.13%), and misclassification errors on olive groves
and herbaceous fields (M(OV,HE) = 24.12%).

3.6. Possible land cover-based optimized solutions

The optimized classification scheme represents the configura-
tion that best performs on the considered 17-class set of land
covers. Exploring the possible dependences of the aforementioned
identification process on land cover can suggest possible alterna-
tive strategies to extend the proposed approach to landscapes with
only certain land covers or with a marked predominance.

Fig. 8 shows the key variables for each land cover and for the top
10 classification schemes: the al, FS,  and n choices that maximized
the kappa conditional statistics are displayed in plots A–C. Rank
order and land covers are shown on the x-axis and y-axis, respec-
tively. For the sake of clarity, we  grouped the land cover classes as:
mixed forest (OK, PN, CY, SP); floodplain (WR, WL,  RS, HL, AD, PL,
WI); urban zone (AS, UF, IU); and agricultural area (PF, HE, OV).

3.6.1. Mixed forest
ML  represents the best candidate classifier for all the monitored

vegetation species (Fig. 8A) and is supported by significant prob-
abilities of unimodal distributions in the Hartigan tests. Oak  (OK),
pine (PN), and cypressus (C) are better identified through FS7, FS5,
FS4, respectively, as the preferential multi-source combinations
maximizing the kappa conditional statistics (Fig. 8B), thus con-
firming the central role of hyperspectral data for classification of
complex forest landscapes. The selected MIVIS subset is generally
large (about > 16 channels, Fig. 8C). Interestingly, spruce patterns
(SP) show multiple sub-optimal solutions in terms of FS and n.

3.6.2. Floodplain

ML  represents the best classifier within the considered ones,

for all the land covers with the exception of water lagoon (WL)
where SID performs better in terms of kappa conditional statis-
tics (Fig. 8A). Feature space combinations very different from the
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Fig. 7. Classification map  resulting from the proposed optimized exploitation of multi-source remote sensing data, K(ML,FS15,24). Entire monitored 20-km stretch (bottom
left  map), reference 3-km × 3-km inset box (upper map), typical investigated landscapes including mixed forest (A), floodplain (B), urban zone (C) and agricultural area (D).

Fig. 8. Main classification variables for 4 grouped typical landscapes: mixed forest, floodplain, urban zone and agricultural area. Algorithm (al), feature space (FS)  and MIVIS
subset  (n) maximizing kappa conditional statistics (Ks) are shown on plots A/B/C for each land cover and for the top 10 classification schemes. Rank order and land cover are
shown  on the x-axis and y-axis, respectively.
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eference optimized solution K(ML,FS15,24) are identified for WL
FS7–9). Possible multi-modal spectral distributions of the sur-
ace response (low probability of unimodal distribution), possibly
mpacting on the performances of ML,  are found through the Harti-
an test (p(WL) = 0.05) and could be imputable to a high spatial
ariability of suspended sediments into the monitored lagoons.
nalogously to forest landscapes, the best multi-source combina-

ions for the riparian vegetation prevalently include MIVIS-based
chemes (such as FS14, FS15 and FS16 for AD, WR,  HE, HL, AD, PL,
ig. 8B). A certain agreement is reached, with the identification of a
IVIS subset, between land covers of typical floodplain areas and

he optimized solution (n > 20) (Fig. 8C).

.6.3. Urban zone
Within the considered classifiers, ML  represents the best candi-

ate for the monitored land cover classes in urban scenarios, such
s asphalt (AS), urban fabric (UF) and industrial unit (IU). MIVIS,
ormalized Digital Surface Model, texture, and hillshade modeling
lay the most important contribution and are then selected into the
ultisource combination FS2, FS15, FS16 (Fig. 8B). Lower dimen-

ionality MIVIS subsets are preferred (n < 7) for urban fabric over
ndustrial unit and asphalt (n > 16) (Fig. 8C).

.6.4. Agricultural area
Herbaceous (HE) and plowed fields (PF) are well discriminated

y ML  according to the reference optimized solution (Fig. 8A). For
E and OV, preferential feature space combinations are represented
y FS2 and FS4. FS16, by exhibiting a positive contribution of texture

ayers, is selected as the best feature space for plowed field. Mainly
ower dimensional MIVIS subsets (n < 20) than in K(ML,FS15,24)
nd multiple valuable alternatives with different hyperspectral
ands are found appropriate for agricultural land covers.

. Conclusions

In this paper we investigated an optimized scheme to jointly
xploit hyperspectral MIVIS, color-infrared ADS40, and LiDAR data
or land cover mapping of heterogeneous landscapes. The method-
logy focuses on the generation of an array of possible classification
cenarios obtained by varying classifiers, multi-source stacks, and
ubsets of hyperspectral channels, and on the subsequent identifi-
ation of the best performing configuration.

The proposed procedure resulted a valuable tool for identifying
he optimal multi-source remote sensing data combination (with
espect to the criterion of classification performances over test sam-
les) by providing a final accurate map  (OA = 92.57%). Among the
hree tested classifiers (ML, SAM, SID), the Maximum Likelihood is
onfirmed to be a suitable algorithm for mapping purposes (classi-
er selection has a 28% impact on the final optimized exploitation
A). The feature space including ADS40 (only in certain data com-
inations), nDSM, TX, and MIVIS data was the optimal multisource
ataset to maximize class discrimination (additional 10% on the
nal OA). In particular, the optimal hyperspectral subset turned out
o be the full available set of MIVIS channels (2% further marginal
mprovement). Significant inter-class differences are also found in
he identification schemes, by indicating possible landscape-driven
and cover mapping solutions to maximize classification perform-
nces.

Additional analysis on independent test areas and multi-scene
cquisitions would contribute to fully define optimization strate-
ies in the use of high dimensional remote sensing data and to
trengthen the transferability of the proposed approach. However,

he exploited remote sensing dataset and spatial domain are con-
idered a good case study (in terms of multi-source imagery, size of
he classification array, areal extension, and land cover variability)
o quantify the multi-sensor capability for high resolution mapping
bservation and Geoinformation 23 (2013) 313–323

of heterogeneous landscapes. In particular, the conducted analysis
provided an experimental framework of the potential and limi-
tations of the combined use of MIVIS, ADS40, and LiDAR sensors
for classification tasks by focusing on certain natural- and human-
dominated environments of interest for different application fields,
such as urban planning, river restoration, agricultural, and forestry
resource management. Future developments should focus on a bet-
ter understanding of the contribution of ADS40 – that showed
highly variable benefits across the tested feature space configu-
rations – when used in combination with hyperspectral MIVIS and
LiDAR data.

An advantage of airborne remote sensing, compared to satel-
lite remote sensing, is the capability of offering very high spatial
resolution images and detailed thematic maps. The main dis-
advantages are low coverage area and high cost per unit area
of ground coverage. In light of the recent progresses in space-
borne sensor technology (e.g., ENMAP, Sentinel, ICESat/GLAS), the
proposed approach can be viewed also as a preliminary investi-
gation of the synergic use of spectral and laser data originating
from different sources for fine-scale classification purposes, whose
translation to forthcoming satellite systems would allow for higher
cost-effectiveness of land use/land cover mapping, especially for
continuous monitoring.
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