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ABSTRACT. In this paper, we want to exemplify the use
of extrapolation methods (namely Shanks transformations,
the recursive algorithms for their implementation, and the
freely available corresponding matlab software) in the solu-
tion of nonlinear Fredholm integral equations of the second
kind. Extrapolations methods are well–known in some do-
mains of numerical analysis and applied mathematics, but,
unfortunately, they are not frequently used in other domains.
Thus, after presenting the most simple iterative method for
the solution of Fredholm equations, we will show how the
sequence it produces can be accelerated (under some as-
sumptions) and also how the underlying system of nonlinear
equations generated by it can be solved quite efficiently by
a restarting method. Numerical examples and comparisons
with other methods demonstrate the usefulness of these pro-
cedures.

1. Introduction and motivation. Extrapolation methods (also
named convergence acceleration methods) form a particular chapter of
numerical analysis [17,70]. They have been successfully used in several
branches of applied mathematics. However, they do not seem to be
well known from researchers working on integral equations. The aim
of this paper is to present one of these extrapolation methods which
is particularly well adapted to their solution, and can render many
services in this domain. We will focus on Fredholm integral equations
which arise, for example, in signal processing, linear modeling, inverse
problems, diffraction problems, scattering, conformal mapping, water
wave; see [67].
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When a sequence (of numbers, vectors, matrices, tensors or, more
generally elements of a vector space) is slowly converging it can be
transformed, by a sequence transformation, into a new sequence which,
under some assumptions, converges faster to the same limit. Since
such transformations are based on the idea of extrapolation, they are
also often named extrapolation methods. The most well-known such
methods are, in the scalar case, Romberg’s method for accelerating the
trapezoidal rule for the evaluation of a definite integral, and Aitken’s
∆2 process. Based to Aitken’s process, Steffensen’s method for solving
a nonlinear equation in one unknown is also well established. Some of
these methods have been extended to non–scalar sequences and they
have been successfully used in the solution of a number of problems in
numerical analysis and applied mathematics [2, 14, 17, 18, 20, 25, 28, 29,
35–38,40, 47, 50, 55, 59, 61, 62, 66,69].

In this paper, we propose a new approach for solving Fredholm
equations by using a fixed point acceleration strategy. This kind of
strategy is nowadays well known in the literature (and for various
fields of application) but seems never have been applied to the field
of Fredholm equations.

Our method simply consists in evaluating the integral by a quadra-
ture rule, then solving iteratively the corresponding system of nonlin-
ear equations obtained by collocation, and finally in accelerating these
iterations by a sequence transformation implemented via a recursive al-
gorithm. We also use a restarting procedure for this nonlinear system.
Thus, our procedures are quite simple and easy to implement while
many of the techniques encountered elsewhere are more sophisticated
and difficult to implement.

It is not our purpose to produce a method able to compete success-
fully with all those which can be found in the literature. Moreover,
it is clear that, since the quadrature rule we used for approximating
the integral is simply the trapezoidal rule, more precise quadrature
rules will probably lead to better results. We only want to introduce
a new efficient method in the toolbox of researchers working on the
numerical solution of linear and nonlinear Fredholm integral equations
of the second kind, and to exemplify the use of extrapolation meth-
ods (namely Shanks transformations and the corresponding recursive
algorithms for their implementation) in this solution. We show that
Shanks transformations are quite useful in accelerating the convergence
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of Picard iterations (or, more generally, relaxation methods) and that,
coupled with a restarting procedure, they are an interesting way for
solving the underlying system of nonlinear equations. The interest of
an extrapolation method is that it can be used for accelerating the
convergence of a sequence produced by any iterative method used for
solving Fredholm equations and, by a restarting procedure, it leads to
a simple method for solving fixed point problems. Thus, these methods
can also be used for the acceleration of projection methods (Galerkin
and collocation) [4]. Among these methods are the Minimal Polyno-
mial Extrapolation (MPE) [23], the Modified Minimal Extrapolation
(MMPE) [11,54], the Reduced Rank Extrapolation (RRE) [27,48], the
Vector Epsilon Algorithm (VEA) [72], the Topological Epsilon Algo-
rithm (TEA) [11], and other extrapolation methods. Moreover, among
previously cited extrapolation methods, only the methods given in this
paper can be easily recursively implemented. All others, except the
VEA and the MMPE, require the solution of a system of linear equa-
tions at each step. They have been tested on many numerical examples,
and the results they produce are quite comparable. Let us mention that
various generalizations of Padé approximants, some of them being con-
nected to the ε–algorithm(s), were also used in the solution of integral
equations [31, 32, 64].

Automatic programs for Fredholm integral equations can be found
in [3, 6], but only for the linear case. Thus, the interest of this work
also lies in the matlab software which is freely available and easy
to use while this is not the case for other methods presented in the
literature. The matlab files Extrapolation for nonlinear Fredholm

integral equations, producing our numerical results, can be downloaded
from the Matlab File Exchange site

www.mathworks.com/matlabcentral/fileexchange/.
They also allow to try them with other values of the various parameters,
and make new experiments. Moreover, additional integral equations
have been included into the package. For the sequence transformations
needed, these programs use the matlab toolbox EPSfun which is freely
available as na44 from the numeralgo library of netlib [21].

Section 2 begins by fixing our notations for the Fredholm integral
equation to be solved. In Section 2.1, we describe the approximation
scheme that will be used for solving it. It simply consists in approx-
imating the integral by a quadrature formula, namely the trapezoidal
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rule. The system of nonlinear equations obtained by this approxima-
tion scheme is given in Section 2.2, and the Picard iterative method (or
the relaxation method) for its solution is explained in Section 2.3. In
Section 3, we present the sequence transformations that will be used
for accelerating the sequence produced by the iterative method and
for solving the system of nonlinear equations. We also discuss the al-
gorithms for their implementation. Section 4 is devoted to numerical
examples showing the effectiveness of these procedures and comparisons
with other methods.

2. Fredholm integral equations. We consider the following non-
linear Fredholm integral equation of the second kind with a given kernel
K

(1) u(t) =

∫ b

a

K(t, x, u(x)) dx + f(t), t ∈ [a, b].

This equation is also often said to be a Urysohn integral equation. It is
assumed that K is neither singular nor weakly singular.

We assume that f, u ∈ C[a, b] and K ∈ C([a, b] × [a, b] × R). If K
satisfies a uniform Lipschitz condition

‖K(t, x, v)−K(t, x, w)‖ ≤ L‖v − w‖, ∀t, x ∈ [a, b], and v, w ∈ C[a, b],

then this integral equation has a unique solution in C[a, b] if L(b−a) < 1
[7, 74].

This equation will be solved by successive approximations (Picard
iterations) starting from an initial approximation u(0)(t)

u(n+1)(t) =

∫ b

a

K(t, x, u(n)(x)) dx + f(t),

or, more generally, by the relaxation method

(2) u(n+1)(t) = u(n)(t)− α

[
u(n)(t)−

∫ b

a

K(t, x, u(n)(x)) dx − f(t)

]
,

where α is a parameter different from 1 to be adjusted for convergence.
As we will see below, these iterations need not converge for applying
them our extrapolation schemes. In particular, the classical case
α = 1 (Picard iterations) does not always lead to convergence. In
some examples, this choice leads to divergence, while, in some others,
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it converges rapidly, then stagnates, and one cannot see the benefit
brought by the ε-algorithm. However, the relaxation method (2) will
do so if the right hand side is a contraction with a Lipschitz constant
L = |1−α|+ |α|L(b− a) < 1. It is not our purpose here to discuss the
choice of α (see, for example, [12]), and it will be experimentally taken
in our numerical examples.

The parameter α can also be modified at each iteration, and replaced
by αn. Such an iterative method is due to Mann [45], and convergence
results occur under various assumptions. In particular, let T be a
mapping from a nonempty, convex subset of a real Banach space
into itself, then the Mann iterations vn+1 = (1 − αn)vn + αnT (vn)
converge to a fixed point of T : v 7−→ T (v) if the sequence (αn)
converges to zero and if the series

∑
αn diverges (see, for example

[30, p. 83] and [49]). Dynamic relaxation is another procedure for
finding a good value for this parameter (see [40] or [2]) as well as
Richardson acceleration [13, Chap. 7]. Another technique consists in
accelerated refinement [26]. Many other fixed point methods, such as
those described in [12,15,40,42,46,51,57], can be considered as dynamic
relaxation procedures.

Similarly, Fredhlom integral equations of the first kind are written as

f(t) =

∫ b

a

K(t, x, u(x)) dx

and they can be solved correspondingly by the iterations

u(n+1)(t) = u(n)(t) + α

[
f(t)−

∫ b

a

K(t, x, u(n)(x)) dx

]
.

The aim of this paper is to show that some extrapolation methods
can be quite useful either in accelerating the convergence of the relax-
ation method (2) or, more directly, for solving the system of nonlinear
equations obtained from (1) after discretization (see below).

2.1. The approximation. For solving a Fredholm integral equation,
a standard way (see [52, pp. 18ff.]) is to approximate the integral
contained in it by a quadrature formula
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(3)

∫ b

a

K(t, x, u(x)) dx ≃
p∑

j=0

w
(p)
j K(t, x

(p)
j , u(x

(p)
j )),

where x
(p)
0 , . . . , x

(p)
p are p+1 points in [a, b], and where the upper index

p denotes the dependence on the number of points chosen. Remember

that the weights w
(p)
j are strictly positive and sum up to b − a. Thus

(1) is approximated by

(4) up(t) =

p∑

j=0

w
(p)
j K(t, x

(p)
j , up(x

(p)
j )) + f(t).

Such a method is called a quadrature method or a Nyström method.

2.2. The system of nonlinear equations. We will now approx-

imate the solution up by collocation at the points t
(p)
i = x

(p)
i for

i = 0, . . . , p. For a fixed value of p, we set for simplicity ti = xi =

t
(p)
i = x

(p)
i , fi = f(ti), w

(p)
i = wi, and we determine approximations ui

of up(ti), i = 0, . . . , p, as the solution of the system of p+ 1 nonlinear
equations

(5) ui =

p∑

j=0

wjK(ti, tj, uj) + fi, i = 0, . . . , p.

The function

y(t) =

p∑

j=0

wjK(t, tj, uj) + f(t)

interpolates the discrete solution up(t) at the points ti, i = 0, . . . , p.
This formula is known as the Nyström interpolation formula. Its error
is governed by the one of the numerical integration method used for
(3), see [4].

2.3. The iterative scheme. The solution of the system of nonlinear
equations (5) can be obtained by Newton or quasi–Newton, or Broyden
methods. However such methods are expensive to implement [4].
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Thus, for solving the nonlinear system, we use the fixed point
iterative scheme (Picard iterations), for n = 0, 1, . . . until convergence

(6) u
(n+1)
i =

p∑

j=0

wjK(ti, tj , u
(n)
j ) + fi, i = 0, . . . , p,

or, more generally, according to (2), the relaxation scheme
(7)

u
(n+1)
i = u

(n)
i − α



u

(n)
i −

p∑

j=0

wjK(ti, tj , u
(n)
j )− fi



 , i = 0, . . . , p,

where α is a parameter to adjust for convergence, and u
(0)
i , i = 0, . . . , p,

is the initial approximation of the solution at the points ti.

A similar iterative scheme can be used for Fredholm equations of the
first kind.

Thus we have two nested approximation methods: the exact solution
u, evaluated at the points ti, that is u = (u(t0), . . . , u(tp))

T is first
approximated through (4) by up = (up(t0), . . . , up(tp))

T for a fixed
value of p, where up(ti) approximates u(ti), which is itself approximated

by the iterates u(n) = (u
(n)
0 , . . . , u

(n)
p )T , where u

(n)
i is the approximation

of up(ti) obtained at the nth iteration of the iterative method (6) or
(7) for the solution of the nonlinear system.

It holds, for i = 0, . . . , p,

u
(n+1)
i − up(ti) = (1− α)(u

(n)
i − up(ti))

+α

p∑

j=0

wj [K(ti, tj , u
(n)
j )−K(ti, tj , up(tj))].

The iterative method described above is quite elementary and cheap
and it may not converge, or its convergence could be quite slow.
However, the sequence of vectors (u(n)) can be directly accelerated
by a suitable method or the nonlinear system can be solved by the
Generalized Steffensen Method (a quasi–Newton method based on an
acceleration procedure) [9, 10, 21].

3. Shanks transformations and the ε–algorithms. In this Sec-
tion, we will not come back to the history of Shanks transformation [58]



8 CLAUDE BREZINSKI AND MICHELA REDIVO–ZAGLIA

for scalar sequences and to the ε–algorithm for its recursive implemen-
tation [71]. We will only discuss the case of sequences of elements of a
vector space E. Of course, there exist many methods for accelerating
the convergence of scalar sequences, and it is often quite difficult to
know, a priori, which one will give the best results. However, as stated
in [33], the ε–algorithm (of Wynn [71]) is arguably the best all–purpose

method for accelerating the convergence. This remark is based on the
fact that this algorithm gives the exact limit of sequences which be-
have as a combination of exponentials (a case frequently encountered
in practice), and on the numerical experiments performed for many
years with various acceleration methods. The scalar ε–algorithm was
extended to vector sequences by Wynn [72] and, later, to sequences
in a general vector space by Brezinski [11] as will be explained below.
Reviews on these methods can be found in [17, 60, 69, 70] and, more
recently, in [22].

Let (Sn) be a sequence of elements of a vector space E on R or
C. We assume that, for all n, this sequence satisfies the homogeneous
linear difference equation of order k

(8) a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0 ∈ E,

where S ∈ E and the ai’s are scalar coefficients with a0ak 6= 0,
a0 + · · · + ak 6= 0 (otherwise S is not uniquely determined by this
relation). If the sequence (Sn) converges, S is its limit. Otherwise, it
is called its antimilit. It does not restrict the generality to assume that
the ai’s sum up to 1. This is the normalization condition that we will
consider.

Obviously, if the coefficients ai are known, S = a0Sn + · · ·+ akSn+k

for all n. If they are unknown, they have to be computed. For that
purpose, we transform the equation (8) in E into k scalar relations.
Let y be an element of E∗, the algebraic dual space of E, that is the
space of linear functionals on E. We denote by 〈·, ·〉 the duality product
between E∗ and E.

Writing (8) for the indices n + 1 and n, subtracting, and applying
y, we obtain, for all n,

a0〈y,∆Sn〉+ · · ·+ ak〈y,∆Sn+k〉 = 0 ∈ C or R,

where ∆ is the usual forward difference operator defined by ∆Sn =
Sn+1 − Sn.
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Solving the system of linear equations

(9)
a0 + · · · + ak = 1

a0〈y,∆Sn+i〉 + · · · + ak〈y,∆Sn+k+i〉 = 0, i = 0, . . . , k − 1

}

gives the coefficients ai and thus we can compute S.

If the sequence (Sn) does not satisfy the relation (8), we still assume
that it holds (this kind of assumption is the basis for constructing
any convergence acceleration or extrapolation method [17]). Then, the
preceding system for the ai’s can still be solved but its solution now
depends on k and n, and the linear combination giving S can still be
computed. Thus, we set

(10) êk(Sn) = a0Sn + · · ·+ akSn+k

which, for a fixed value of k, defines the sequence transformation
(Sn) 7−→ (êk(Sn)). This transformation is called the topological Shanks
transformation (since, for speaking about convergence, E has to be a
topological vector space). By construction, if (Sn) satisfies (8), then,
∀n, êk(Sn) = S. This set of sequences is called the kernel of the
topological Shanks transformation. It includes sequences which behave
as a sum of exponential functions, a common feature to many iterative
procedures, which explains its efficiency in a number of cases [16].

From (9) and (10), it holds

(11) êk(Sn) =

∣∣∣∣∣∣∣∣∣

Sn · · · Sn+k

〈y,∆Sn〉 · · · 〈y,∆Sn+k〉
...

...
〈y,∆Sn+k−1〉 · · · 〈y,∆Sn+2k−1〉

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 · · · 1
〈y,∆Sn〉 · · · 〈y,∆Sn+k〉

...
...

〈y,∆Sn+k−1〉 · · · 〈y,∆Sn+2k−1〉

∣∣∣∣∣∣∣∣∣

.

This is the first topological Shanks transformation. The determinant in
the numerator denotes the linear combination of Sn, . . . ,Sn+k obtained
by developing it with respect to its first row by the classical rule for
expanding a determinant. Replacing this first row by Sn+k, . . . ,Sn+2k
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leads to the second topological Shanks transformation defined by

ẽk(Sn) = a0Sn+k + · · ·+ akSn+2k,

where the coefficients ai are the same as for the first transformation.
This could lead to a better result since the linear combination uses
elements of the sequence (Sn) with higher indices which are usually
closer to the limit S. As we will see below, its recursive implementation
is also easier and cheaper.

These transformations were introduced in [11]. They can be im-
plemented by recursive algorithms (the topological ε–algorithms, TEAs
in short). The rules of these algorithms were recently greatly simpli-
fied, thus leading to the simplified topological ε–algorithms, STEAs in
short [19]. There is now only one rule instead of two, the functional
y has no longer to be used in the rule of the algorithm but only in
its initialization, the necessary storage has been much reduced, and
the numerical stability can be partly controlled. These new algorithms
also allow to prove some theoretical results on the convergence and the
acceleration of the transformation [19]. The corresponding software
and applications to the acceleration of vector and matrix sequences,
the solution of systems of nonlinear vector and matrix equations, and
the computation of matrix functions were given in [21]. It is these algo-
rithms and this software contained in EPSfun that we used to produce
the numerical examples of Section 4. Let us now present them.

We first have to begin by the scalar ε–algorithm of Wynn [71]. We
consider the real or complex sequence (sn) (notice the lowercase letters
instead of the capital ones). This algorithm consists in the rule

ε
(n)
k+1 = ε

(n+1)
k−1 + 1/(ε

(n+1)
k − ε

(n)
k ), k, n = 0, 1, . . . ,

with ε
(n)
−1 = 0 and ε

(n)
0 = sn for n = 0, 1, . . . This algorithm implements

the scalar Shanks transformation of the sequence (sn) which is given
by the same ratio of determinants as in (11) (but now denoted by
ek(sn)) where si replaces Si and ∆si replaces 〈y,∆Si〉, and we obtain

ε
(n)
2k = ek(sn).

These ε
(n)
k ’s are displayed in a two dimensional array called the ε–

array, and the rule of the algorithm relates the quantities located at
the summits of a rhombus as showed in Table 1.
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ε
(0)
−1 = 0

ε
(0)
0 = s0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = s1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1

. . .

.

.

. ε
(2)
0 = s2

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

. ε
(0)
2k

.

.

.
.
.
.

.

.

. . .
.

.

.

.
.
.
.

.

.

. . .
.

.

.

.
.
.
.

.

.

. . .
.

.

.

. ε
(2k−1)
0 =s2k−1

.

.

. . .
.

ε
(2k)
−1 = 0 ε

(2k−1)
1

ε
(2k)
0 = s2k

ε
(n)
k

ր ց

ε
(n+1)
k−1 ε

(n)
k+1

ց ր

ε
(n+1)
k

Table 1. The ε-array (left) and the rhombus rule (right).

For a vector sequence (Sn), the first topological Shanks transforma-
tion can be implemented by the following recursive algorithm, called
the first simplified topological ε–algorithm (STEA1)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε

(n)
2k

(ε̂
(n+1)
2k − ε̂

(n)
2k ), k, n = 0, 1, . . . ,

ε̂
(n)
0 = Sn, n = 0, 1, . . . ,

where the ε
(n)
k ’s are obtained by applying Wynn’s scalar ε–algorithm

to the sequence (sn = 〈y,Sn〉), and we obtain ε̂
(n)
2k = êk(Sn) as given

by (11).

The second topological Shanks transformation is implemented by
the second simplified topological ε–algorithm (STEA2) with the same
initializations as for the first one
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ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+2)
2k − ε

(n+1)
2k

(ε̃
(n+2)
2k − ε̃

(n+1)
2k ),

where the ε
(n)
k ’s are the same as for the STEA1, and we get ε̃

(n)
2k =

ẽk(Sn) but for the second topological Shanks transformation, that is af-
ter replacing the first row of the numerator of (11) by Sn+k, . . . ,Sn+2k.

The initializations of both algorithms are ε̂
(n)
0 = ε̃

(n)
0 = Sn, n =

0, 1, . . . Let us mention that, thanks to the strategy used for its im-
plementation (which was originally described by Wynn for his scalar
ε–algorithm [73]) the STEA2 is much cheaper in term of storage than
the STEA1. Moreover other equivalent formulæ exist for both the al-
gorithms. Numerical test showed that the results are almost equivalent
and, thus, here we indicate only one of them. For details see [19, 21].

There are two different ways of using these algorithms. The simplest
one is to use the STEA1 or the STEA2 for accelerating a sequence
(Sn) of vectors or matrices or tensors or, more generally, elements of a
vector space E. It is named the Acceleration Method and denoted AM
below. Usually, the user fixes the maximal even column 2k to reach
in the ε-array. For reaching the first term of the column 2k, 2k + 1
terms are needed, that is 2k evaluations of the system. Then, one
more evaluation leads to the next term of this column. In this way, the
algorithm furnishes the staircase along the main descending diagonal
until the column 2k has been reached. This is showed in Table 2 where
ε stands for ε̂ or ε̃.

The second way of using the algorithms is a restarted version of them
for the solution of a system of linear or nonlinear equations S = F (S),
where F : Rm 7−→ Rm. Starting from a given x0, we fix 2k, we set
S0 = x0, we compute Si+1 = F (Si) for i = 0, . . . , 2k − 1 (the basic

iterations), we apply the STEA1 or the STEA2 to these vectors or

matrices, and we set x1 = ε̂
(0)
2k or x1 = ε̃

(0)
2k . The whole process

(denoted a cycle) is then restarted with S0 = x1. It is named the
Restarted Method and denoted RM.

When, as particular case, we take k = m (the dimension of the
system) it was proved that the sequence (xn) converges quadratically
to the fixed point S of F under some assumptions [41]. This last
method can be considered as a generalization to higher dimensions
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column 0 column 2 column 4

ε
(0)
0 = S0

↓

ε
(1)
0 = S1 −→ ε

(0)
2

↓

ε
(2)
0 = S2 ε

(1)
2 −→ ε

(0)
4

↓

ε
(3)
0 = S3 ε

(2)
2 ε

(1)
4

↓

ε
(4)
0 = S4 ε

(3)
2 ε

(2)
4

↓

ε
(5)
0 = S5 ε

(4)
2 ε

(3)
4

.

.

.

.

.

.

.

.

.

ε
(2k)
0 = S2k ε

(2k−1)
2 ε

(2k−2)
4

.

.

.

.

.

.

.

.

.

Table 2. Values obtained with a maximal column 2k = 4 fixed.

of Steffensen’s method for m = 1 [63]. This is why it has been called
the Generalized Steffensen Method and denoted by GSM. Quadratic
convergence still occurs if k is the degree of the minimal polynomial
of F ′ for the vector S0 − S. This type of convergence has also been
observed for much smaller values of k. Let us notice that each term
of the sequence (xn) needs 2k evaluations of the system of equations.
Notice that, in our case, the system of nonlinear equations to be solved
is given by (7), and, thus, m = p+ 1.

The RM and the GSM can be extended to the case where F :
Rm×s 7−→ Rm×s, but the quadratic character of the convergence has
yet to be studied.

The concept of mesh independence principle is of interest in our
context. It states that, under reasonable assumptions on the numerical
integration scheme, the iterates produced by a quasi-Newton method
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for solving (4) and (5) (which is the case of the RM as explained in [22])
behave asymptotically the same. Therefore, the cost in the number of
iterates necessary to achieve a given precision is essentially the same
for both systems [1, 39, 50, 68].

Let us mention that the choice of y is a difficult and unsolved
problem in the general case. The experience acquired after many
numerical experiments has shown us that the most appropriate choices
seem to be either y = (1, . . . , 1)T or a random y [20, 21]. However,
for some special classes of sequences, theoretical results have been
obtained [19].

4. Examples. We will now give examples of the use of the STEA1
and the STEA2 for accelerating the iterations (7) or solving the system
of nonlinear equations (5) coming out from our method for computing
an approximate solution of Fredholm integral equations of the second
kind.

For our examples, we remind that we used the trapezoidal rule (see,

for example, [49]). We set h = (b− a)/p, x
(p)
j = a+ jh for j = 0, . . . , p,

and we have

∫ b

a

K(t, x, u(x)) dx ≃ h

2

[
K(t, x

(p)
0 , u(x

(p)
0 )) + 2

p−1∑

j=1

K(t, x
(p)
j , u(x

(p)
j ))

+K(t, x(p)
p , u(x(p)

p ))
]
.

Thus the system of p+ 1 nonlinear equations to be solved becomes

ui =
h

2

[
K(ti, t0, u0) + 2

p−1∑

j=1

K(ti, tj , uj) +K(ti, tp, up)
]
+ fi,

for i = 0, . . . , p, and we solved it by the iterative procedure

u
(n+1)
i = u

(n)
i − α

{
u
(n)
i − h

2

[
K(ti, t0, u

(n)
0 ) + 2

p−1∑

j=1

K(ti, tj , u
(n)
j )

+K(ti, tp, u
(n)
p )

]
− fi

}
, i = 0, . . . , p.
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These iterations can be written as

u(n+1) = F (u(n)).

The value of the parameter α is not the same for all examples. It was
chosen to obtain convergence of the iterations.

All examples are started from u
(0)
i = 1 for i = 0, . . . , p. The

STEA1 and the STEA2 will be applied to the sequence of vectors

Sn = u(n) = (u
(n)
0 , . . . , u

(n)
p )T , and the scalar ε–algorithm to the

sequence of scalars sn = (y,u(n)), where (·, ·) is the usual scalar
product. In our examples, two possible choices are made for the vector
y: it is randomly chosen in [−1, 1] (a choice which can lead to quite
different results), or it is set to y = (1, . . . , 1)T . Due to the homogeneity
property of the scalar ε–algorithm, this second choice is equivalent to
applying it to the sequence (sn) whose terms are the mean values of the
components of the vectors Sn. In the examples, we will show the results
obtained by the Acceleration Method (AM), and those that came from
the Restarted Method (RM) and the Generalized Steffensen Method
(GSM), that is when the RM is applied with k = p + 1. Sometimes,
the value of k is not the same for the AM and for the RM. The reason
is that one cycle of the RM needs 2k basic iterations thus the number
of iterations is equal to 2k times the number of cycles, while the AM
needs 2k basic iterations to reach the first term of the column 2k, and
one additional iteration for each new term in that column. Thus, the
comparison between the AM and the RM for reaching a given precision
has to take into account the total number of evaluations of F .

In some examples we plot the infinity norm of the error while, in
others, it is the infinity norm of the difference, called the residual,
between a result and F applied to it. The advantage of using the
residual is to allow us to check the convergence to the solution of the
discretized fixed point problem, which is not the exact solution of the
integral equation, without knowing it. In the case of the AM we show
the errors or the residuals of the basic iterations and of the extrapolated
ones. For the RM, we show the errors or the residuals at the points
xn (indicated by a special character) and, in between, the errors or
the residuals of the basic iterations. The fact that, in some cases, the
residuals are much smaller than the errors means that the system of
equations (obtained after discretization by the quadrature rule) has
been well solved (the fixed point of F has been reached) but that, due
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to the error in the quadrature formula, its solution is not close to the
exact solution of the integral equation.

As a stopping criterion for the use of the STEA1 or the STEA2 in
the AM, we use the following inequalities on the residuals

‖ε̃(n+1)
2k − F (ε̃

(n+1)
2k )‖ > M‖ε̃(n)2k − F (ε̃

(n)
2k )‖ or

‖ε̂(n+1)
2k − F (ε̂

(n+1)
2k )‖ > M‖ε̂(n)2k − F (ε̂

(n)
2k )‖,

or
‖ε̃(n)2k − F (ε̃

(n)
2k )‖ ≤ τ or ‖ε̂(n)2k − F (ε̂

(n)
2k )‖ ≤ τ,

where M and τ are chosen by the user, and F is as defined above.
Let us comment on these tests. When convergence occurs with a
precision close to machine’s, oscillations arise due to instability and
there is no advantage to continue the iterations. This is the role of
the first line of tests. A large value of M (for example M = 20) will
allow oscillations in the results, while the iterates will be stopped with
a small one (for example M = 2). The tests in the second line are
related to the convergence. A large value of τ (for example 10−4) will
stop the iterations too early, while a much smaller value will never stop
the iterations (no convergence reached). For the RM, the stopping
criterion we used is the number of cycles. Obviously, it can be easily
replaced by a test on the error of the fixed point iterates.

In the Figures, the norm (in log scale) is the infinity one, but the
choice of the Euclidean norm can be made in the software. In the
legends, eps denotes the values obtained by the corresponding STEA
algorithm, and sol is u, the exact solution. For the AM, u(n) is
designated by u, while for the RM, it is designated by uori. In the
RM, the u’s denote the basic iterates u(n) obtained after restarting
from the last extrapolated value.

The precision of the results cannot go beyond the error of quadrature

rule used, that is, for the trapezoidal rule, ‖u(n)−u‖∞ = (b−a)M̃h2/12

where M̃ = maxt∈[a,b] |K
′′

x (t, x, u(x))|, see [4, 5]. Obviously, using a
more precise quadrature formula, such a Gaussian one, will produce
better results. When full precision is achieved, stagnation occurs and
the algorithm can stop due to a division by a number smaller than our
tolerance.

The examples are taken from the literature on the topic, and, for
each of them, we indicate the corresponding reference(s). The results
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were obtained with matlab R2010b. Differences can be observed with
other versions of matlab and/or other processors. More examples are
given in the software provided with this paper.

The RM has also been compared with Anderson acceleration and
with the method of Lemaréchal [42], a method of dynamic Aitken-like
relaxation which only requires two evaluations of F at each iteration.
Anderson acceleration [2] is only a fixed point method for the solution
of a system of nonlinear equations. It produces its own sequence and
it cannot be used for accelerating a given sequence contrarily to the
claims made in [55] and [24] which were based on a misunderstanding
(on this topic, see [22]). Moreover, Anderson acceleration needs the
solution, in the least squares sense, of a system of linear equations
of increasing dimension at each iteration. For its implementation, we
used the matlab program written by Walker [65] with the default
parameters. The linear systems are solved by a QR decomposition,
but, due to their increasing ill-conditioning, a dropping strategy of
additional columns on the left has to be used to maintain an acceptable
conditioning. Without it, the method diverges. In the corresponding
Figures, the basic iterations of RM have not been plotted, Anderson
acceleration is designated by AA, and Lemaréchal method by LM. It
will be interesting to conduct more such experiments in a systematic
way.

4.1. Example 1. This example is treated in [56]

u(t) =
1

5

∫ 1

0

cos(πt) sin(πx)u3(x) dx + sin(πt).

Its solution is

u(x) = sin(πx) +
1

3
(20−

√
391) cos(πx).

The authors used a combination of Simpson method for evaluating the
integral and the Newton–Kantorovich method for solving the system of
nonlinear equations. They obtained a maximal error of 7.5×10−2 after
one iteration of the Newton–Kantorovich method, 4.9 × 10−2 after 3
iterations, and then stagnate.

For the AM, we take α = 0.1, p = 21, 2k = 6. With 50 iterations,
we obtain the results on the left of Figure 1 for y = (1, . . . , 1)T , and
those on the right with a random y. We see that, in this case, the
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Figure 1. Example 1. AM with y = (1, . . . , 1)T (left) and y random
(right).
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Figure 2. Example 1. RM with y = (1, . . . , 1)T (left) and y random
(right).

random y leads to much better results. The AM has been compared
with the MPE, the MMPE, and the RRE in terms of level of accuracy
reached with the same number of iterations. The results obtained are
quite similar.

For the RM, with α = 0.1, p = 21, and 2k = 2, we get the results of
Figure 2. With y = (1, . . . , 1)T , only 3 iterates of the RM are possible
due to a division by a value smaller than the tolerance used in our
toolbox. This is due to the stagnation of the RM which achieves its full
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accuracy, thus leading to the difference of two almost equal quantities
in a denominator of the scalar ε–algorithm.

We compared RM (STEA2) with the other methods but with α =
0.01 and again 2k = 2. Each iteration of the RM and Lemaréchal
method needs 2 evaluations of F . The RM again stagnated around
10−3 afer 2 iterations. The method of Lemaréchal reaches a precision
of 10−8 after 5 iterations while Anderson acceleration goes to an error o
10−4 at iteration 5 (see left Figure 4). This example was also computed
by the HAM in [34].

4.2. Example 2. This example was given by Anderson [2]

u(t) =
3
√
2π

16

∫ 1

−1

cos(π|t− x|/4)u2(x) dx − cos(πt/4)/4.

Its solution is
u(x) = cos(πx/4).

With α = 0.1, the basic iterates strongly diverge and so the AM,
as noticed by Anderson who made use of the vector ε–algorithm. The
RM with α = 0.001,y = (1, . . . , 1)T , p = 21 and 2k = 6, gives the
results on the left of Figure 3. On the right, we see the exact and the
approximate solutions. This example is quite sensitive.
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Figure 3. Example 2. RM with y = (1, . . . , 1)T (left). Exact and
approximate solutions (right).
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In Figure 4, Anderson acceleration, the method of Lemaréchal and
the RM (STEA2) have been compared (right).
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Figure 4. Comparison of the methods. Example 1 (left), Example 2
(right).

0 5 10 15 20 25 30 35 40
10-5

10-4

10-3

10-2

10-1

100
EXAMPLE 3. AM with y = (1,...,1)T - Errors

||u-sol||
||eps - sol|| stea1
||eps - sol|| stea2

0 5 10 15 20 25 30 35 40
10-8

10-6

10-4

10-2

100
EXAMPLE 3. AM with y = (1,...,1)T - Residuals

||u-F(u)||
||eps-F(eps)|| stea1
||eps-F(eps)|| stea2

Figure 5. Example 3. AM with y = (1, . . . , 1)T errors (left), residuals
(right).

4.3. Example 3. An error was corrected in the equation of example
5.3 considered in [8] (+1 instead of −1)

u(t) = −
∫ 1

0

(x+ t)eu(x) dx+ et+ 1,
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Figure 6. Example 3. RM with y = (1, . . . , 1)T errors (left), residuals
(right).

whose solution is u(x) = x. The authors discretize the integral by
a Newton–Cotes formula and then perform the basic iterative scheme
(Picard iterations or the relaxation method). In [0, 1], the error is in
the interval [−5× 10−3, 10−2].

With α = 0.1, p = 100,y = (1, . . . , 1)T , and 2k = 6, the AM
produces the error curves on the left of Figure 5 and the residuals
on the right. We asked for 50 iterations but, as it can be seen, the
iterations stopped at 40 because τ = 10−7 (and M = 20). With the
same τ and M = 2, the iterations terminate at 8. With p = 10, the
error after 40 iterations is 2.3× 10−3 while it reaches 2.4× 10−5 when
p = 100 which confirms that the error of the trapezoidal rule behaves
as O(h2). The results obtained by the RM are given on Figure 6. The
Figures 5 and 6 allow to compare the errors and the residuals, and
they show a quite similar behavior. There is stagnation of the error of
the quadrature formula because full accuracy has been obtained. The
residuals do not stagnate because the fixed point of F for the STEAs
has not been reached. Between the 4th and the 5th cycle the residuals
decrease from 2.09 × 10−13 to 2.95 × 10−14 while the errors stagnate
but around 10−4 which is a quite different level of precision. It not
possible to perform an additional cycle because a division by a too
small quantity arises. A comparison with other method can be seen in
Figure 8 (left).

Table 3 shows the results obtained by the AM for various values of
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the parameters α, p and k after 25 iterations and with y = (1, . . . , 1)T .
With α = 0.2, p = 100, 2k = 6 and a random vector y, the errors
are 2.30× 10−5 for the STEA1 and the STEA2, and the residuals are
8.22× 10−8 and 6.39× 10−9 respectively.

α p 2k err STEA1 err STEA2 res STEA1 res STEA2 ‖u − sol‖ ‖u − F(u)‖

0.1 100 4 8.08×10−3 6.83×10−3 9.98×10−4 7.82×10−4 9.08×10−2 8.02×10−3

0.1 100 6 2.51×10−4 2.02×10−4 3.08×10−5 2.24×10−5 9.08×10−2 8.02×10−4

0.2 100 2 1.13×10−4 9.85×10−5 1.99×10−5 1.48×10−5 7.80×10−3 1.39×10−3

0.2 100 4 2.34×10−5 2.33×10−5 1.07×10−7 6.59×10−8 7.80×10−3 1.39×10−3

0.2 100 6 2.11×10−5 2.18×10−5 5.43×10−7 2.89×10−7 7.80×10−3 1.39×10−3

0.2 100 10 2.30×10−5 2.30×10−5 1.08×10−10 4.07×10−11 7.80×10−3 1.39×10−3

0.5 100 6 2.30×10−5 2.30×10−5 5.41×10−11 6.76×10−12 2.22×10−5 4.87×10−7

0.1 10 6 2.53×10−3 2.48×10−3 3.14×10−5 2.29×10−5 8.94×10−2 8.07×10−3

0.2 10 6 2.30×10−3 2.30×10−3 3.56×10−7 1.89×10−7 5.64×10−3 1.41×10−3

0.5 10 6 2.30×10−3 2.30×10−3 6.03×10−11 7.49×10−12 2.30×10−3 5.28×10−7

Table 3. Example 3. Results with y = (1, . . . , 1)T and various choices
of the parameters.
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Figure 7. Example 4. AM (left) and RM (right) with y = (1, . . . , 1)T .

4.4. Example 4. In reference [43], we found the equation (Ex. 1)

u(t) = t/20

∫ 1

0

xu2(x) dx + 3 + 0.6625t.

Its solution is u(x) = x + 3. The computation used Haar wavelets.
With 16 of them, they obtained an error similar to our.
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We took α = 0.1, p = 21, and y = (1, . . . , 1)T . With 2k = 8, the
AM gives the results on the left of Figure 7, while the RM with 2k = 6
gives the curves on the right. We see that quadratic convergence has
been achieved by RM with k much smaller than m.

In Figure 8, Anderson acceleration, the method of Lemaréchal and
the RM (STEA2) are compared (right).
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Figure 8. Comparison of the methods. Example 3 (left), Example 4
(right).

4.5. Example 5. Consider now

u(t) = t2
∫ 1

0

x2

1 + u2(x)
dx+ (1/2− ln 2)t2 +

√
t,

whose solution is u(x) =
√
x [43] (Ex. 4). The results obtained is

comparable to our.

The AM with α = 0.2, p = 31,y = (1, . . . , 1)T , and 2k = 10 give the
results on the left of Figure 9. With 2k = 4, the RM gives the results
on the right of this Figure.

4.6. Example 6. Let us end by an example of a linear Fredholm
equation [44] (Ex. 1)

u(t) =

∫ 1

0

sin(4πt+ 2πx)u(x) dx + cos(2πt) + sin(4πt)/2
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Figure 9. Example 5. AM (left) and RM (right) with y = (1, . . . , 1)T .

whose solution is u(x) = cos(2πx). Take α = 0.1, p = 3,y = (1, . . . , 1)T

and τ = 10−9. Thus, there are only 4 nodes. With 2k = 8, the
AM and the RM (which, in this case, is the GSM) gives the results of
Figure 10. The theory of Shanks transformations tells us that the exact
solution of a system of linear equations is obtained in one iteration when
2k = 2(p+ 1).
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Figure 10. Example 6. AM (left) and GSM (right) with y =
(1, . . . , 1)T .

In Figure 11, we show the results obtained by Anderson acceleration,
the method of Lemaréchal and the RM on Example 5 (left) and on
Example 6 (right). Example 6 was obtained by the STEA1 but now
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with p = 10 and 2k = 2 instead of p = 3) and 2k = 8. Thus the RM is
no longer the GSM, and it does not reach the exact solution. The RM
and the method of Lemaréchal need 2 evaluations of F per iteration.
The STEA2 stopped before due to a division by zero.
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Figure 11. Comparison of the methods. Example 5 (left), Example
6 (right).

5. Conclusions. The aim of this paper was not to present a new
method for solving nonlinear Fredholm equations of the second kind
which provides better results than the methods existing in the literature
in all situations. We only want to exemplify the fact that the Simplified
Topological Epsilon Algorithms can accelerate the convergence of the
Picard iterations (or, more generally, the relaxation method) for solving
the system of nonlinear equations obtained after discretization of the
integral by a quadrature formula (Acceleration Method), and to show
that these iterations can be coupled with our algorithms by a restarting
procedure (Restarted Method). The examples given above show that
the RM (and still more the GSM) seems to be more effective than
the AM but one has to remind that one step of the RM is costly in
terms of evaluations of F , and, thus, the whole process is much more
expensive than the AM. It must be noticed that, although quadratic
convergence of the restarting process has only been proved in the case
of the GSM, it also sometimes occurs with the RM. As seen from
examples, the results obtained are quite sensitive to the choice of the
parameter α which, maybe, could be advantageously replaced by a
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sequence (αn) appropriately chosen. They also depend on the choice of
y, an important unsolved problem. A more precise quadrature formula
than the trapezoidal rule could lead to better results. Our methods can
also be used for Fredholm equations of the first kind and for Volterra
equations. Since our software for the STEA1 and the STEA2 can
accelerate matrix sequences and solve matrix equations, it can treat
integral equations in two variables (see, for example, [53]).
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