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Abstract 

Adhesively bonded joints can be treated as bi-materials characterized by a stress singularity promoted by both geometrical and 
constitutive discontinuities, very close to the point where the interface between two elastic solids intersects a traction-free edge. 
Different approaches have been proposed to predict their both static and fatigue strength. Most of them are based on the stress 
distribution at the interface between the adherent and the adhesive. More recently, energy density-based criteria have been 
developed to predict the static and fatigue strength of mono-material notched components, like welded joints. The most promising 
one is the strain energy density approach in which it is assumed that failure occurs when the strain energy density, averaged over 
a control volume of critical radius Rc surrounding the singularity point, will reach a critical value. Advantages are different. Among 
the others, the strain energy density doesn’t depend on the singularity order and doesn’t require a fine mesh.  
This contribution is aimed at applying the strain energy density criterion to bonded joints. 
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1. Introduction 

The use of adhesives as fixing elements has a thousand-year history, but it first use for industrial applications dates 
back to the 1940s with the introduction of bonded joints in aeronautical field. Compared to traditional joints – welding, 
fastening, bolting – bonded joints guarantee less weight, less cost, thermal and electric insulation, absence of 
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distortions, less stress concentration effects, absence of galvanic interaction between dissimilar alloys and finally they 
are the only choice when one or both the parts to be joined are not metallic materials (say, composite). On the other 
hand, the preparation of adherents must be very meticulous and the environmental interaction (say, working 
temperature or contact with solvents) must be carefully taken into account.  

The need to predict the mechanical strength of a bonded joint leads to analyzing the stress distribution within the 
joint itself. This study can be done using an analytical or a numerical approach such as the finite element method 
(FEM). When the domain of investigation is very close to the point where the interface between two elastic solids 
intersects a traction-free edge (point A in Fig. 1), a stress singularity is captured by both analytical and numerical 
models. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
Fig.1.  Singularity zone in bi-materials and polar coordinate system 

 
It is worth mentioning that in bi-materials, like bonded joints, the stress singularity is due to both geometrical 

discontinuities (say, sharp V notches) (Williams, 1952) and constitutive discontinuities at the interface due to the 
different elastic properties of the two materials coupled. 

Over the years, various failure criteria have been developed. The reader can refer to Greenwood et al. (1969), Hart-
Smith (1973), Crocombe and Tatarek (1985), Adams and Panes (1994), Ikegami et al. (1989), Crocombe and Adams 
(1982), Towse et al. (1997a), Towse et al. (1997b), Trantina (1972), Chow and Lu (1992), Zhao, (1991), Schmit and 
Fraisse (1992). Among these, a local approach based on the intensity of the stress singularity quantified by the stress 
intensity factor (SIF) has been proposed by Reedy (1993), Reedy and Guess (1993), Lafebvre and Dillard (1999). 
Unfortunately, SIF parameter requires a very fine mesh near the singularity point and depends on the singularity order, 
making impossible to compare the strength of bonded joints with different geometries. 

In the last years, a powerful approach based on the strain energy density (SED) averaged over a control volume 
around the singularity has been proposed for static and fatigue design of notched components (Lazzarin, Zambardi, 
2001; Berto et al., 2016). It is assumed that the critical radius (Rc) of the control volume is a material characteristic 
only. The SED criterion was successfully used to quantify the effect of residual stress on high cycle fatigue strength 
of welded joints, as well (Ferro, 2014; Ferro and Berto, 2016; Ferro et al., 2016). The SED parameter can be calculated 
with a coarse mesh and due to its scalar nature it is independent from the order of the singularity.  

In this work the SED criterion is applied to bonded joints. To this aim, some hypotheses were assumed: the elastic 
properties of the adherents are much higher than those of the adhesive and the control volume is restricted to the sector 
belonging to the adhesive only (material 1 in Fig. 1) that will behave as a brittle material. Model parameters are 
calibrated using experimental data coming from literature for adhesively butt joints made out of steel and epoxy resin.  
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2. Analytical frame 

The strain energy density, under plain stress or plain strain conditions, is given by the following Beltrami’s 
equation: 
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where E and ν are the elastic modulus and Poisson’s ratio of the adhesive, respectively. On the other hand, the stress 

distribution near the singularity point is described by (Lazzarin, Zambardi, 2001; Berto et al., 2016):  
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where K1 is the mode I SIF, H0 is the generalized SIF and λ is the eigenvalue (Reedy, 1990). Now, by substituting 

Eq. (2) in Eq. (1), the following equation holds true: 
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Eq. (3) is integrated over the circular sector belonging to the adhesive only, having radius R and 1 = /2 (Fig. 1), 
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and then averaged on the adhesive sector: 
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It is assumed that failure occurs when the strain energy density averaged over a control volume of critical radius 
Rc surrounding the singularity point will reach a critical value. The Rc value is obtained by equating the energy density 
to failure of the adhesive with that of the adhesively bonded butt joint: 
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In Eq. (7), σL and H0,C are the stress to failure and the critical GSIF of the adhesive, respectively. 
The H0,C value is calculated by combining numerical and experimental results taken from literature (Suzuki, 1985). 

In particular, the butt joint steel-epoxy (Epikote 828) was taken into account, with the adhesive having the following 
material properties: E = 3140 MPa, ν = 0.37 and σL = 65 MPa. The steel elastic properties are: E = 206 GPa, ν = 0.3. 
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3. Critical radius assessment 

The geometry of the adhesively bonded butt joint follows that of Standard ISO 6922. In particular, the joint diameter 
is 15 mm while the adhesive thicknesses (h) modelled are: 0.12, 0.4, 2.0, 7.5 mm. By taking advantage of the load 
and geometry symmetry, only a quarter of the geometry has been modelled using PLANE 183 elements and 
axisymmetric condition. The size of the smallest element was about 1.6ꞏ10-5 mm (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. A detail of the mesh near the singularity point A 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Asymptotic stress distribution at steel-epoxy interface (θ = 0), adhesive side. σ0 = 1 MPa, nominal applied stress; h = 0.12 mm 
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The order of the singularity was found -0.3 ( = 0.7), in good agreement with the theoretical value of -0.301 
(Akisanya, 1997) (Fig. 3). The GSIF is obtained by using numerical results and Eq. (7): 
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In particular, by using experimental tensile stress to failure as a function of h, the H0,C value was found to be 10.3 MPa 
mm0.3, irrespective of adhesive thickness size. It is noted that fθθ(0) is set equal to 1 (Eq. 7) since the angular stress 
distribution functions are always defined within a constant value. Ones these functions are obtained via numerical 
analysis (Fig. 4), the integral of () in Eq. (6) is calculated. Finally, by using Eq. (6) the critical radius resulted to be 
6.2ꞏ10-3 mm. That low value agrees well with the process zone size of bonded joints (Mintzas and Nowell, 2012; 
Reedy, 2000), which is much lower than that of welded joints, and is considered and intrinsic property of the bi-
material system under investigation, rather than a mere adhesive property only. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – Angular stress distribution functions obtained via numerical analysis 
 

4. ASED static failure criterion verification 

Table 1 summarizes the results of the simulations in terms of SED values corresponding to the experimental stress 
to failure as a function of adhesive thickness.  
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It is observed that the critical SED value is maintained constant as a function of adhesive thickness, with a maximum 

deviation from the theoretical value of 11.9% that may be caused by uncertainties on experimental data. 
It can be concluded that the SED criterion can be applied to adhesively bended joint brittle fracture assessment. 
 

5. Conclusions 

The strain energy density approach was applied to bonded joints brittle fracture assessment. Under the simplifying 
assumption of infinitely rigid substrates, the control volume of critical radius Rc is restricted to adhesive only. The Rc 
value was obtained using experimental data taken from literature concerning the tensile tests carried out on steel/epoxy 
butt joints. It was found that the SED critical value averaged over the control volume of radius Rc is maintained 
constant despite the adhesive thickness variation, therefore representing a bi-material property that can be used as 
failure parameter for adhesively bonded joints design. 
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It is observed that the critical SED value is maintained constant as a function of adhesive thickness, with a maximum 

deviation from the theoretical value of 11.9% that may be caused by uncertainties on experimental data. 
It can be concluded that the SED criterion can be applied to adhesively bended joint brittle fracture assessment. 
 

5. Conclusions 

The strain energy density approach was applied to bonded joints brittle fracture assessment. Under the simplifying 
assumption of infinitely rigid substrates, the control volume of critical radius Rc is restricted to adhesive only. The Rc 
value was obtained using experimental data taken from literature concerning the tensile tests carried out on steel/epoxy 
butt joints. It was found that the SED critical value averaged over the control volume of radius Rc is maintained 
constant despite the adhesive thickness variation, therefore representing a bi-material property that can be used as 
failure parameter for adhesively bonded joints design. 
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