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Abstract

The availability of millimeter wave (mm-Wave) band in conjunction with massive multiple-input-multiple-output
(MIMO) technology is expected to boost the data rates of the fifth-generation (5G) cellular systems. However, in order
to achieve high spectral efficiencies, an accurate channel estimate is required, which is a challenging task in massive
MIMO. By exploiting the small number of paths that characterize the mm-Wave channel, the estimation problem can
be solved by compressed-sensing (CS) techniques. In this paper, we propose a novel CS channel estimation method
based on the accelerated gradient descent with adaptive restart (AGDAR) algorithm exploiting a £1-norm
approximation of the sparsity constraint. Moreover, a modified re-weighted compressed-sensing (RCS) technique is
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considered that iterates AGDAR using a weighted version of the £;-norm term, where weights are adapted at each
iteration. We also discuss the impact of cell sectorization and tracking on the channel estimation algorithm. We
compare the proposed solutions with existing channel estimations with an extensive simulation campaign on
downlink third-generation partnership project (3GPP) channel models.

1 Introduction

Due to its huge spectrum availability, the millimeter wave
(mm-Wave) band is currently considered for the fifth gen-
eration (5@G) of cellular networks [1-3]. The high atten-
uation incurred at those frequencies imposes the use
of multiple antennas at each device, typically resulting
in massive multiple-input-multiple-output (MIMO) sys-
tems, giving rise to various challenges. We focus here
on channel estimation that is needed for proper transmit
beamforming. In fact, the least square (LS) estimate using
short training sequences and limited transmit power (to
reduce overhead in massive MIMO systems) is not accu-
rate enough for capacity achieving beamforming. How-
ever, the mm-Wave MIMO channel comprises a small
number of dominant clusters of paths and even with many
antennas a small set of parameters characterizes the entire
channel. This induces a sparsity of the mm-Wave channel
matrix when transformed by a Fourier transform into the
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so-called virtual channel, and compressed-sensing (CS)
techniques can be used for channel estimation.

Various solutions have been proposed for channel esti-
mation in mm-Wave communication systems, and the
reader may refer to [4] for their survey. Part of the litera-
ture has considered transceivers with hybrid beamformers
(cascade of beamformers before and after the digital to
analog converters): the joint optimization of both train-
ing and estimation has been pursued in [5] for these
structures using a feedback channel. Orthogonal match-
ing pursuit (OMP) solutions have been considered with
both single path [6, 7] and multiple-path cancelation [8, 9].
In [10], an enhanced approach for generating the beam-
forming codebook has been proposed, using the contin-
uous basis pursuit (CBP) method, while [11] considers
a fast iterative shrinkage-thresholding algorithm (FISTA)
approach.

For fully digital beamformers, [12] considers the sparse
channel estimation as a least absolute shrinkage and selec-
tion operator (LASSO) problem. In [13], OMP is used to
estimate the channel by iteratively detecting and cancel-
ing paths from the virtual channel estimate. In [14], a basis
pursuit denoise (BPDN) approach is suggested where a
weighted version of ¢;-norm term is considered in the
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LASSO problem and weights are iteratively adapted. A
sparsity adaptive matching pursuit (SSAMP) approach is
instead used in [15], while in [16] the LASSO problem
is solved by applying a generalized approximate mes-
sage passing (GAMP) algorithm exploiting the Bernoulli-
Gaussian distribution of paths in the virtual channel.

In this paper, we propose a novel sparse channel esti-
mation method based on the accelerated gradient descent
with adaptive restart (AGDAR) algorithm [17]. Focus-
ing on a scenario where the receiver obtains first the
LS estimate of the narrowband mm-Wave MIMO chan-
nel, we relax the sparse optimization problem using
LASSO, wherein the £y-norm is replaced by the £;-norm.
We apply then the AGDAR algorithm [17] to solve the
sparse channel estimation problem. In order to further
enhance the channel estimation procedure, a re-weighted
£1-norm problem is considered leading to the re-weighted
compressed-sensing (RCS) algorithm [18], which iterates
AGDAR with different weights of the £;-norm term. We
also discuss the impact of cell sectorization and chan-
nel tracking on the channel estimation algorithm. We
compare the proposed solutions with OMP solutions
[6, 8, 13]. With respect to the rest of the literature we
reduce the complexity (with respect to the random search
of A-LASSO in [12]), we swap the objective functions and
the constraints with respect to [14], effectively minimiz-
ing the mean square error (MSE) and providing details on
the implementation of the optimization algorithm. Com-
pared to [15], we use different algorithms (AGDAR and
RCS instead of SSAMP) that trade-off between sparsity
and noise reduction. Lastly, we consider a single user
and a static pilot transmission for the initial estimate,
while [16] considers the adaptation of the transmit and
receive beamformers to allow channel estimation simulta-
neously for more users. An extensive simulation campaign
on third-generation partnership project (3GPP) channel
models [3] for a downlink scenario has been conducted
to show the merits of the proposed approach in terms of
both estimate MSE and computational complexity.

The rest of the paper is organized as follows. We intro-
duce the system model in Section 2, providing the descrip-
tion of both the mm-Wave channel model and the existing
OMP solutions. The sparse channel estimation problem is
introduced in Section 3, together with a discussion on sec-
torization and channel tracking. The proposed AGDAR
technique is described in Section 4, together with the
refined RCS approach. Numerical results are presented
in Section 5 to assess the performance of the considered
techniques in a 5G scenario, before conclusions are driven
in Section 6.

2 System model
We consider a massive MIMO narrowband communica-
tion system with N; antennas at the transmitter and N;
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antennas at the receiver. This models indifferently either
the uplink or the downlink of a cellular communication
system. Let H € CNr*Nt be the channel matrix with com-
plex entries. Antennas are organized into either uniform
linear arrays (ULAs) [19] or uniform planar arrays (UPAs)
[20] at both the transmitter and receiver: ULA antennas
are uniformly spaced along the z axis while UPA anten-
nas are uniformly tiled over the yz-plane!. For the sake
of a clearer explanation in the main body of the paper,
we only provide derivations for ULA, while we report in
Appendix A the results for an UPA with Dy x D3 = N
transmit antennas and Dy x D; = N receive antennas.

We indicate with L the number of paths for the signal
from the transmitter to the receiver, so that the channel
matrix entries can written as

L
Lo o
[Hlii = ) i@ e, (1)
=1

where iy = 0,...,Ny — 1,ip = 0,...,Ne — L, [n}| < 2,
d = 1,2, A is the carrier wave length, § is the antenna
spacing, and «; is the /-path amplitude including path
loss, shadowing, and fading. Note that parameters nfi are
related to the angles of departure and arrival of the [-
th path. By assuming § < /2, we have né € [—%, %]
The statistics of each parameter depend on the considered
propagation scenario, and various relevant cases can be
found for example in the 3GPP mm-Wave channel model
[3] including channel models with clustered sub-paths [3],
where L becomes the total number of (sub-)paths from all
clusters. Typically, in mm-Wave systems, the number of
paths (or sub-paths) L is small [21].

Figure 1 shows an example of receiver with N; = 3
receive antennas and a single path arriving at the anten-

nas with an angle ¢ from a distance D: in this case ] =

3

0D
s 1 6_127[7.

cos and o = T
2.1 LS estimate
The considered channel estimation techniques in this
paper are all based on the LS channel estimate, briefly
summarized here.

The set of N training symbols? transmitted with the N;
antennas are collected into the N; x N; matrix S, assumed
here to be unitary. The corresponding received N; x N;
matrix signal is

R=HS+N, (2)

where N € CN-*MNt js the noise matrix with independent
and identically distributed (iid) zero-mean complex Gaus-
sian entries, each with power o2. The LS channel estimate
at the receiver is obtained as [22]

H =RS'=H+N/, 3)
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ULA Receiver.

Fig. 1 ULA receiver. Single path received by ULA with N; = 3
antennas at distance D from the source. In this case n] = % cos ¥ and

D
a) = &e’/z”i

where N’ is a matrix with iid zero-mean complex Gaussian
entries having power o2 (thanks to the unitary prop-
erty of ). Note that this estimation procedure may yield
a significant overhead for the transmission of training
sequences only when the number of transmit antennas
grows large [23], since the number of transmitted sym-
bols (the columns of §) is N;. We will further address this
problem in Section 3.

2.2 OMP methods

We will compare our channel estimation algorithm with
two OMP techniques: single peak cancelation (SPC) [6]
and joint peak cancelation (JPC) [8]. Both methods use
the Fourier transform of the channel matrix, in what is
usually denoted as virtual channel or angular domain rep-
resentation [24, Sec. 7.3.3]. With reference to ULA, let

I,(x) = nssll';(gr x% ) be the 1D-periodic sinc function and let

N, N; (fl + Qll) ejﬂ<ﬁ+gll)N/{4_11

(W (@) =| e | — 35— x
/ . Ne—1
() e
2 2
@

be the two-dimensional (2D) sampled periodic sinc func-
tion, where M; and M; are the number of samples per
period in the 2D virtual channel domain, f = (f1,/2),
fa=0,...,M;—1,d = 1,2, are the indices of the samples,

and @/ = (Qll, ng) = (MlﬂlpMZ'llz)

The virtual channel matrix V e CMixM2 jg the 2D-
discrete Fourier transform (DFT) of H with entries [6]

N;—1N¢—1 L. L
1 _2mfinj _ 2rfhin)
Vlf=———— > Y [Hlppe "1 e
MMy (= 550
L
=Y a[weh] . (5)

=1
where f = (f1, f2) are the indices of the channel sample in
the virtual domain.

The SPC method [6] reported in Algorithm 1 (for algo
= SPC), iteratively estimates the amplitude «; and the dis-
crete positions @l of I paths in the virtual channel and
cancels their corresponding periodic sinc functions in
the virtual channel. After / iterations, the channel esti-
mate H is obtained by taking the 2D-inverse discrete
Fourier transform (IDFT) of the estimated virtual channel
V reconstructed by summing the contributions of all the
detected paths.

Algorithm 1 SPC and JPC channel estimation methods
Input: H', I, algo
Output: H.
1: V' < DFT of H'
2 fm:\ll: 1tol do
3 & =argmax|[V']f |2
f

4. ifalgo =JPC then
5: V' < DFT of H’
6: v =vec(V')

7

: w.] = vec (W <§Z)>
8: [a,..., a7 = (wHw)_lev’
: forg=1to!/ do

10: V=V -a,w(e)
11: end for
12:  else if algo =SPC then

. ~ _ ’
13: a =[V ]ﬁl 1
V= V'—a‘l\v(sz)
15 end if
16: end for
7 V=Y aw <§l>

=1
18 H < IDFT of V

The number of iterations (i.e., the number of detected
paths) is a trade-off between L (the number of paths) and
the noise level. On the one hand, it is advisable to esti-
mate all L paths, and on the other hand, noise can make
small-power paths not detectable; therefore, it is better
not to estimate all of them by using I < L. In Section 5, we
determine by simulations the optimal 7 that minimizes the
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MSE of the channel estimate. Note that SPC provides an
intrinsically approximated solution even in the absence of
noise, since the peak positions ' are estimated on a fixed
discrete grid.

The JPC algorithm of [8] reported in Algorithm 1 (for
algo = JPC) is a modification of SPC that at each iteration
jointly estimates the amplitudes of all previously detected
peaks by the LS approach and cancels the corresponding
periodic sinc’s from the virtual channel. In particular, x =
vec(X) stacks the columns of matrix X into the column
vector «; at iteration /, one peak is detected (line 3) and
then the amplitudes of all previously detected peaks are
jointly estimated (line 8), and the new virtual channel with
removed peaks is obtained (lines 9-11). This is achieved
by building matrix w that contains in column / the vector

version of W <§l> (line 6).
This algorithm has the advantage over the SPC that each

amplitude estimate is refined at each iteration thus taking
advantage also of the peaks detected in further iterations.

3 Sparse dual channel estimation

In order to obtain an efficient and simple channel esti-
mator, we exploit the specific channel structure described
in the previous section. In particular, we use the fact
that the channel is composed of a small number of paths
with respect to the typically large number of transmit and
receive antennas.

In this paper, we directly refer to the representation (1)
and interpret it as 2D-IDFT of a sparse matrix having only
L non-zero entries. First, the channel H is rearranged into
the channel column vector # = vec(H) € CN:Nex1 wijth
entries

[h]i1+er'2 Z[H]il,iz ’ (6)
where i; = 0,...,N; — 1, i3 = 0,...,N; — 1, while the
2D-IDFT matrix is F € CNNexMaMy with entries

27ifgiq
[F](i1+Nri2,f1+M]f2) = l—[ e Ma (7)
def{1,2}
where f; = 0,...,M; — 1,d = 1,2. Lastly, we define the
column vector v of le_ngth MM, with L non-zero entries
at position Qll +M QL forl=1,...,L,ie,

(Vg fanl = ®)
with
QL = (i), Q5 = (b)), ©)

and (x) denotes the integer part of x. From (1), we can
approximate the channel vector as

h ~ Fv. (10)

We will denote with v as the dual channel in the M; x M,
domain. Note that the dual channel is sparse as it contains
only L non-zero entries.
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Remark 1 The approximation (10) stems from the
rounding of (9), i.e., from approximating in with Qi{' As
My — oo, the approximation becomes more accurate.
Moreover, we have used DF Ts with M, points along dimen-
sion d, as for the dual channel representation, in order to
make a simpler comparison among various channel esti-
mation schemes. Lastly, note that v is not the vectorial
representation of the virtual channel, since the DFT used
to obtain the virtual channel does not invert the IDFT of
(10): in fact, the DFT is taken on the reduced set of Ny X Nt
samples, thus yielding the periodic sinc’s of (4).

Similarly to the vectorial representation of the channel,
we define

W =veclH)~Fv+4, (11)

where indices of H’ to obtain # are selected similarly to
(6). From (11), we observe that the LS estimate is a noisy
version of a linear transformation of the dual channel v.

We propose an algorithm that improves the LS channel
estimate by exploiting the sparsity of v. In particular, we
define by ¥ the new estimate of the dual channel v and
write the sparse channel estimation problem as

V = argmin (|FV — i3 + pllV[l0) , (12)

V,
where ||V/||g is the £p-norm that counts the non-zero ele-
ments in v and p is a parameter that controls the sparsity
of the solution. This problem formulation aims at mini-
mizing the MSE between the estimated channel and the
LS channel estimate, under a constraint on the sparsity of
vector ¥, imposed by the norm-zero term.

Unfortunately, problem (12) is non-convex and NP-hard
[25]. Thus, we relax the problem by replacing the £o-norm
with the £1-norm obtaining the LASSO problem

V = argmin (|Fv — K|[3 + pllvIl1) , (13)
v

with ||v||; = Z?iloMrl |vi|, which is now convex.

Remark 2 Note that estimating the dual channel opens
the possibility of reducing the training overhead. We
observe that systems with different numbers of antennas
(placed at the same position) share the same dual channel.
Thus, once we have an estimate of v, we can change F to
obtain the channel estimate for a different antenna setting.
Indeed, we can use a fewer transmit antennas to transmit
the training sequence, then obtain an estimate of the dual
channel and finally project the estimate into a larger num-
ber of antennas by modifying the size of the IDFT matrix in
(10). Typically paths are concentrated in clusters on part of
the dual channel, thus by an iterative channel estimation
procedure, we can beamform training signals in the part of
the dual channel covered by the clusters.
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4 Solution of the sparse channel estimation
problem

A vast literature is available for the solution of the sparse
channel estimation problem (13), see for example the sur-
vey [26]. We propose here to use two recent and efficient
methods based on the gradient descent algorithm with
improved convergence speed, namely the AGDAR algo-
rithm (also named FISTA with adaptive restart [27]) and
the RCS algorithm [18].

4.1 Accelerated gradient descent with adaptive restart
The AGDAR algorithm [27] has been developed to solve
problems where the objective function is the sum of a
differentiable function and a general but simple closed
convex function.

Here, we briefly summarize the motivation of the
AGDAR algorithm. We first observe that the minimiza-
tion problem min, g~ f(x) when f(-) is convex and
smooth can be solved by the gradient descent algorithm
that iteratively updates the solution, computing at itera-
tion p

Xp = Xp—1 — tVf(xp_l), (14)

where ¢ is the step size and Vf(x) is the gradient of

f(-) computed in x. An alternative formulation of (14) is
provided by the proximal form [28]

: T 1 2
xp = argmin, Vf(x,_1)" (* —xp_1) + 2—t||x—xp71||2.
(15)

Now, in order to minimize f(x) + g(x) with f(-) still
convex and smooth but g(-) convex, nondifferentiable,
and lower semicontinuous, the proximal form must be
modified as follows [28]

1
x, =argmin, Vf (xy_1)7 (x — x,_1) + lex —x,1113
1
+g(®) =argmin,g(®)+-_|1x—(xp-1~£Vf (®p-1))] 3.
(16)

In general, this optimization problem may be hard to
solve; however, when g(x) = pllx||;, problem (16) is
efficiently solved by splitting it into N separate one-
dimensional problems for each entry of & € RY, e,

1
[xp], = argmin, plx| 4 E|x — z,1|2 , (17)

with z, =[x,_1—tVf(x,_1)]s. Problem (17) can be solved
in closed form [29] as [x,], = T)¢(zx), with the shrinkage
operator defined as

Ta(x) = sgn(x)max(|x| — a,0), (18)

obtaining the iterative shrinkage-thresholding algorithm
(ISTA) algorithm. This solution can be made faster by
applying the Nesterov acceleration principle [30]: instead
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of using the gradient descent (14), x, is updated as a lin-
ear combination of the gradient descent terms (14) at the
current and previous iterations, i.e.,

Yy =%p-1 — tVf(xp-1), (19a)

xp = (L= yp-1)¥, + Vp-1p_1- (19b)
Combining this approach with ISTA, we obtain the FISTA
algorithm where [ yp] n= Tpt(z,) and x, is updated using
(19Db) It turns out that this approach fastens the conver-
gence of the algorithm for example by choosing as linear
combination coefficients [30]

0 p=0

Yp = 1_99:,, p>0, (20)
1 p=0

O = (1+/1+462,) /2 p>o0. @D

The explanation of the Nesterov iteration is not very
intuitive, and the interested reader can find more details
in [30].

The parameter choice (20) is not in general optimal
while its optimization is a difficult task. An alternative
approach is the adaptive restart technique [27], in which
¥p is set according to (20) (thus in a suboptimal way) but
the FISTA algorithm is restarted whenever the objective
function is locally increasing (thus the iterative solution is
moving in the wrong direction), i.e., when

Vf @p-1)" 0y = ¥p-1) > 0,

From (19a) we obtain that the restarting condition (22)
can be written as

(22)

(xp—l _yp)(yp _yp_l) > 0. (23)

The restart consists in resetting 6, = 1 and using as
initial point the last point produced by the algorithm.

4.2 Re-weighted compressed sensing

The RCS method is proposed [18] to improve the spar-
sity of the gradient descent solution of (13). The algorithm
weights the entries of x,, in the £1-norm in (13) in order to
better approximate the £p-norm term in (12). Therefore,
instead of solving (12), the RCS method aims at solving
problem

v =argmin (|FV — K|z + oDV |I1) , (24)

4
where the diagonal matrix D contains the weights. This
problem can be seen as a £;-norm relaxation of a weighted
version of the £p-norm problem (12), i.e.,

v = argmin (|FV — I||5 + plIDV o) - (25)
V/
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Algorithm 2 AGDAR algorithm

Algorithm 3 RCS algorithm

Input: ¥, p, €, q1,t
Output: n
Lxg=9=06=Lp=1e=2¢
2. while (p < g1 ande > ¢) do
3 z=uxp1 — tF" (Fx,_1 — W)
4: [yp],,=7;>t(zn), n= 1,...,M1M2

s 6= (14 /1+402,) /2

6. if (xp,1 — yp> (yp — ypfl) > 0 then
7: Xp =9, Op =1
8: else
Op_1—1
9 Xp =Y, + 9, (J’p - ypfl)
10  end if
1 e=[lxp—1 — xpllg
12 p=p—+1
13: gnd while
14 h = Fx,

As the £p-norm counts the non-zero entries, regardless
of their amplitude, for non-zero weights, the two problems
(12) and (25) have the same solutions.

About the choice of the weights, they are meant to
provide a good approximation of the £p-norm using the
(weighted) £1-norm. Therefore, imposing that at solution

IDV]l1 = [IVllo» (26)

we obtain the optimum weights (diagonal entries of
matrix D)

1 A
[Dlis= | P> 70
’ * =0,

(27)
where * denotes any non-zero value. However, this choice
requires the knowledge of the problem solution #, which
is not available while solving the problem.

In [18], an iterative approach has been proposed, where
the weights are adapted to converge to (27) without know-
ing the optimal solution. In particular, RCS runs ¢, times
the AGDAR algorithm, using at each iteration a differ-
ent set of weights chosen according to (28). It has been
shown by extensive simulations over a variety of examples
that the following weight adaptation strategy is perform-
ing well: starting from Dy = diag{[1,...,1]}, for which
(24) corresponds to (13), and then at iteration i + 1 update
the weights as

1

= T . j:17-~~7M1M27
I[xp)j | 4+ ¢

[Dit1lj; (28)
where %, is the solution of (24) for weights D; and ¢ is a
small number. Note that at convergence (for { =~ 0) we

obtain (27).

Input: ¥/, p, €, q1, g2, tand ¢
Output: h
1: Do = diagf[1,...,1]}
2. fori=0togy — 1do
3 x=y7=06=1p=1e=2¢
4. while (p <q1ande > €) do
5: z=x,_1 — tF" (Fx,_1 — I)
6 [J’p]n: 7-D,,,,,pt(zn):n = 1!---!M1M2

wo = (14 /1+462,) /2

8: if (xp_l — yp> (yp — yp_1> > 0 then

9: Xp =9, 6p=1
10: else ; .
. — p=1— _
11: Xp =1, + % (yp yp_1>
12: end if
2
13: e=|xp—1 —xpll5

14: p=p+1
15 end while

16: Dy = diag P }
/4

17: End for
18: h = Fx,

The implementation of RCS is obtained by running g2
times the AGDAR algorithm and computing the shrinkage
function with a weighted parameter, i.e., Ty, p¢(z,). The
resulting procedure is reported in Algorithm 3.

It has been shown [18] that the RCS algorithm is a
majorization-minimization algorithm that iteratively min-
imizes a simple surrogate function majoring the objective
function, and indeed provides in general a better approxi-
mation to the original £9p-norm problem.

4.3 Sectorization and channel tracking

When the antennas at either or both the transmitter
and the receiver are transmitting/receiving in a focused
direction (in what is known as cell sectorization), the
departure and arrival angles are within sub-intervals of
[0, 27); therefore, also ”ii will take value in sub-intervals
of [—1/2,1/2) and the rounding of nélMd will be in a

My My

sub-interval of <_T' 7) Therefore, vector v can be

reduced by eliminating the entries corresponding to val-
ues of ’751 that are never taken by the channel realization.
Correspondingly, the columns of F are removed and the
AGDAR algorithm is run over a reduced space, thus
increasing its accuracy.

About channel tracking, once the channel has been esti-
mated, it may slowly change due to the variations of the
propagation environment. In this case, we can reduce
the complexity of the channel estimation and make it



Soleimani et al. EURASIP Journal on Wireless Communications and Networking

more effective by simply tracking its changes rather than
starting from scratch its estimation. We propose to focus
the search of the paths in the dual channel within inter-
vals around the initial estimates of arrival and departure
angles. Therefore, for both AGDAR and RCS approaches,
we have a reduction of the dual channel vector v. Indeed,
this is similar to sectorization; however, for channel track-
ing we must consider multiple angle intervals, one for each
initially estimated path.

Sectorization or tracking are also possible for SPC and
JPC, wherein the search of the peak positions 2/ will be
done on a sub-grid of the M; x M> grid, according to the
intervals of r]ll and nlz. Also in this case, the benefits for the
channel estimation process will be a lower probability of
periodic sinc misplacement, as the search space is smaller.

4.4 Computational complexity

The computational complexity of the considered algo-
rithms is evaluated in terms of complex multiplications
(CMUX), complex additions (CADD), and comparisons
(COM). Let Mz = [],; M4, where the product is along
all dimensions, depending on the use of either UPA or
ULA. Hence, using the fast Fourier transform algorithm,
a (D)DFT of My, samples requires M;y; log, Mso; CMUX,
Mo log, Mioy CADD and no comparison. A summary of
the computational complexity of the various algorithms
is reported in Table 1, where g3 denotes the effective
number iterations over the variable p of the AGDAR and
RCS algorithms. In the following section, we will present
numerical results also for a complexity comparison among
the various techniques.

5 Numerical results
In this section, we compare the proposed channel estima-
tion techniques by evaluating the MSE in decibels (dB)

MSE = 10log,, E[||IH — H3] , (29)

where E[ -] denotes the expectation operator and H is the
estimated channel matrix.

Table 1 Computational complexity of the channel estimation

methods

Method Complex Additions Comparisons
multiplications

SPC 2Mior 109y Mior + 2Mior 109y Mior + IMiot
3IMior 2IMior

JPC 2Miot logy Meor + 2Miot logy Meor + IMior
@Mrot @/\/’roﬁ-z//\/’tot

AGDAR 3Miotg3 + 2g3Mior 109y Miot+ Miorqs
2G93 Mot 109, Mot SMiotq3

RCS 3Miot2G3 + Miorqs + MiotG2G3
2Miotg3 + 242G3Mior 1095 Mior+
292G3Miot 109 Mior - 5Mr0rG2G3
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We consider the urban macro cell (UMa), urban micro
cell (UMi), rural macro cell (RMa), and Indoor Hotspot
(InH) 3GPP channel models [3], with both line-of-sight
(LOS) and non-line-of-sight (NLOS). In these scenarios,
the number of clusters (typically from 4 to 20) depends on
the channel model and the number of sub-paths is 20 per
cluster, thus totaling L in the range of tens to hundreds.
Note that although the number of sub-paths is large, only
three or four sub-paths have a notable power. Therefore
de facto, we find the sparse channel model described in
this paper and in many literature papers and measurement
campaign results. Channels are obtained for a downlink,
where the base station (BS) and user equipment (UE) are
on the same plane, with parameters defined in Table 2.
The average channel gain is unitary, so we assume that
transmit power has been adapted to compensate for the
path loss; therefore, the average SNR is the reciprocal of
the noise power. This also provides that the MSE for the
LS estimate is simply the reciprocal of the SNR, which is
then not reported in the figures.

For the proposed AGDAR and RCS algorithms, we use
parameters as in Table 2. In the following, we will always
consider the same antenna geometry (either ULA or UPA)
at both BS and UE, with a different number of antennas at
the two ends.

5.1 Parameters setting

We first evaluate the impact of the parameters on the
channel estimate MSE. The performance of both AGDAR
and RCS is determined by the parameter p that weights
the £1-norm term in the objective function and should be
chosen according to the channel sparsity and the oper-
ating signal to noise ratio (SNR). For each value of SNR,
we have assessed the optimum value of p that minimizes
the average MSE of the channel estimate. The results are
reported in Fig. 2 for both (at both devices) with N, =

16 = 4 x4 Dy = D) = 4 and Ny = 4 = 2 x 2
Table 2 Simulation parameters

Parameter Value
number of sub-paths per cluster 20

BS position (0,00 m

BS antenna altitude 25m

UE position (90,15) m
UE antenna altitude 1.5m
Carrier frequency f =28GHz
) 1/2
Average channel gain 0dB

€ 1070

2 3

¢ for ULA, UPA 0.1,099
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15, T T T T

T T T
—}— AGDAR,ULA
—-%-—RCS,ULA
-+ AGDAR,UPA

—— RCS,UPA

SNR (dB)

Fig. 2 Choice of p. Optimized value of p vs SNR, for both UPA, with N, = 16 =4 x 4 (Dg = Dy = 4)and Ny =4 =2 x 2 (D, = D3 = 2) and
Mo =My =My = M3 = 8,and ULAs with N, = 16, Ny = 4 and M7 = M, = 32. UMi LOS model

(Dz = D3 = 2) andMo = M1 = M2 = M3 = 8,and
ULAs (at both devices) with N, = 16, Ny = 4 and M; =
My = 32. In this case the channel model is UMi LOS for
which the number of clusters is random, between 3 and
12, while the number of sub-paths per cluster is 20, for a
maximum total of L = 240 paths. We can see a smooth
behavior of p with respect to the average SNR, that can be
described with simple functions for its adaptation to oper-
ating conditions. Moreover, as the average SNR increases,
the optimal p decreases, since the LS estimate is less noisy
and a limited sparsification of the channel is required.
We have optimized the value of this parameter also for
other conditions (e.g., different number of antennas) and
forthcoming results are obtained with the optimized p.

A second relevant parameter for both AGDAR and RCS
is the maximum number of iterations q;. Figure 3 shows
the average MSE as a function of the number of maximum
allowed iterations ¢; for ULAs with N; = 16, N; = 4, and
various DFT sizes. We note that for all DFT sizes the MSE
is flooring as g1 increases: in particular, with log;o 1 =
2.5, all algorithms converge to the minimum MSE. We also
observe that the required number of iterations grows with
(M7, M3), and RCS achieves a lower asymptotic MSE and
converges faster.

For a comparison with SPC and JPC, we have also opti-
mized parameter I, i.e., the number of detected paths.
Note that the existing literature typically assumes the
knowledge of L and sets I = L. We instead observe that
I does not necessarily correspond to the number of paths,

since small paths can be neglected as may be easily con-
fused with noise artifacts. This is particularly true in the
3GPP channel model, where many clusters and sub-paths
are present, most of which however have a very limited
power. Figure 4 shows the value of I that minimizes the
average MSE versus the average SNR for various values of
M = M; = My, using ULAs with N, = 16, N; = 4 and
SPC. The channel model is UMi LOS. We observe that we
need a large value of / when the SNR is high, as the con-
sidered channel model has many (sub-)paths, and at high
SNRs, they can be distinguished from the noise. Also, note
that the optimal value of I is decreasing as M increases:
indeed, for higher M the approximation between posi-
tions €; and ﬁl becomes more accurate, thus fewer sinc
functions (closer to the actual number of paths) is enough
(and better) for channel estimation. The results reported
in the rest of this section are obtained with the optimized
value of 1.

Lastly, we consider the optimization of the DFT size, i.e.,
the number of points used to approximate 77111 in all con-
sidered channel estimation methods. In Appendix B, we
provide the analytical derivation of the MSE as a func-
tion of M, for ULA and a Rayleigh fading channel with a
small number of taps. Figure 5 shows the MSE as a func-
tion of M = My = M, for ULA with N; = 8, N, = 2 and
the channel model described in Appendix B. As expected
the MSE decreases for a higher value of M, as the quan-
tization error is reduced, flooring for high values of M.
We then have considered a ULA system with N, = 32
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Effects of iterations g .
Fig. 3 Effects of iterations g1. MSE vs the maximum number of iterations g; for ULA with Ny = 32, Ny = 4 using AGDAR (solid lines) and RCS (dotted
lines). UMi LOS model

and Ny = 4 and a DFT size multiple i of the number
of antennas, i.e.,, M; = uN; and My = uN;. For a UMi
LOS model, Fig. 6 shows the average MSE for an SNR of
0, 10, and 20 dB, and different channel estimation tech-
niques. We observe that in all cases by increasing © we
obtain a better channel estimate, thanks to a better quan-
tization precision of either the virtual channel domain (for

SPC and JPC) or the values of nii (for both AGDAR and
RCS). Moreover, both AGDAR and RCS methods achieve
alower MSE than SPC and JPC techniques at both low and
high SNRs, thanks to their better exploitation of compact
channel representation in the dual domain. The RCS has
almost negligible performance improvement with respect
to AGDAR, as both have a gain from 3 to 5 dB with respect

Q0 A
—>—M=16
80 e |
—v— M=64
70 - D |
60 [ |
— 50 |
40 |
30 |
20 | et g
.................. D — o
or e 1 -
2 4 6 8 10 12 14 6 " .
SNR (dB)
Choice of I.
Fig. 4 Choice of /. Optimal / for both SPC and JPC methods and various values of M = My = M, using ULA with N; = 16, Ny = 4. UMi LOS model
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Fig. 5 Analysis of choice of M. MSE vs M = My = Mj for the scenario of Appendix B, with Ny = 16 and N; = 4

150 200 250
M

to interference cancelation techniques. Note that the gain
is more remarkable at a lower SNR, showing that the
compressed-sensing techniques are able to better reject
the noise. Lastly, note that JPC has an almost negligible
improvement over SPC; thus, we can conclude that the
detection of the peaks is already accurate when performed

sequentially rather than in parallel. Overall, we conclude
that u = 2 already provides close-to-optimal results for all
methods. Similar observations can be drawn from Fig. 7,
where we report the MSE for a UPA configuration with
2 x 2 antennas at the UE and 6 x 6 antennas at BS in a
UMa LOS channel model.

(dashed lines) and My = uN; and My = uN;. UMi LOS model

Choice of M for N, = 32 and N; = 4.

Fig. 6 Choice of M for N = 32 and Ny = 4. MSE vs u for ULA with Ny = 32 and N; = 4 at an SNR of 0 (dotted lines), 10 (solid lines) and 20 dB




Soleimani et al. EURASIP Journal on Wireless Communications and Networking

(2018) 2018:272 Page 11 of 17

MSE (dB)

(dashed lines) and My = uN; and My = uN:. UMa LOS model

Choice of M for N, = 32 and Ny = 4.
Fig. 7 Choice of M for N, = 32 and N; = 4. MSE vs u for UPA with Ny = 36 and N; = 4 at an SNR of O (dotted lines), 10 (solid lines) and 20 dB

In order to show the performance of the proposed
solution in a scenario with a large number of antennas,
Fig. 8 shows the MSE as a function of u for ULA with
N, = 128 and Ny = 16 and the UMi LOS model.
Also in this case, we can appreciate the advantage of all

techniques with respect to the LS method, as we recall
that for LS the MSE is the reciprocal of the SNR, thus
0 dB in correspondence of the dotted lines, —10 dB for
the solid lines and —20 dB for the dashed lines. Indeed, a
higher number of antennas with respect to Fig. 6 increases

MSE (dB)

(dashed lines) and My = uN; and My = uNe. UMi LOS model

22 24 26 28 3

Choice of M for N, = 32 and N; = 4.
Fig. 8 Choice of M for N, = 32 and Ny = 4. MSE vs u for ULA with N; = 128 and N; = 16 at an SNR of 0 (dotted lines), 10 (solid lines), and 20 dB
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the gain of the other channel estimation techniques with
respect to LS. About the comparison among the various
methods, we can derive similar conclusions as those of
Fig. 6, confirming also that other results are representative
of a massive MIMO scenario.

5.2 Sectorization and channel tracking
As we already discussed, sectorization provides a faster
and more accurate search of the channel paths. Here, we
consider a system where channel angles are uniformly dis-
tributed in intervals of 6, 60, and 180 degrees. We have
L = 14 paths, with independent Gaussian-distributed
amplitudes «;: by this simple channel model, we better
capture the effects of sectorization and channel tracking.

Figure 9 shows the resulting MSE as a function of M =
My = M, for the various systems, when the average SNR
is 10 dB. We observe that sectorization indeed reduces
the MSE of all channel estimates, and sectors of 6° pro-
vide a MSE of 10 to 16 dB smaller than that of 6° sectors.
Comparing the various techniques we observe that with
large (180°) and small (6°) sectors all techniques take
advantage of the sectorization in a similar way, while for
intermediate values (60°) the compressed-sensing meth-
ods have a higher gains than interference cancelation
methods.

We also consider channel tracking where, after an ini-
tial channel estimation performed according to the var-
ious considered techniques and with an angle span of
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360°, when channels are time-invariant. Estimators are
run using an angle span of 6° around the angles of each
path. Figure 10 shows the MSE of the channel estimates
at an average SNR of 10 dB, and for various values of
M and M,. We observe that, thanks to the search over
a smaller angle span both SPC and JPC achieve similar
performance to the proposed approaches, a phenomenon
that we already observed with sectorization. Also, the dif-
ference between RCS and AGDAR is further reduced,
again because of the easier task of channel estimation in
this case. We still note instead a high sensitivity to the
DFT-size, which corresponds to an accuracy in the esti-
mate of the angles of arrival and departure. Lastly, both
sectorization and channel tracking reduce the complexity
of the proposed solutions, as path search operations can
be performed on a reduced space.

5.3 3GPP channel scenarios comparison

Until now, we considered only the UMi LOS channel
model: in this section instead, we consider also the other
3GPP channel models. Figure 11 shows the average MSE
for various algorithms and UPAs with N = 8 x 8 at the
BS and N, = 2 x 2 at the UE, and My = M; = 10
and My = Ms = 4. We compare various channel esti-
mation techniques for an average SNR of 10 dB. At this
intermediate SNR value, we observe that the proposed
AGDAR and RCS significantly outperform both SPC and
JPC for all the considered channel models, by 6 to 7 dB.

JPC .
SPC
AGDAR e
RCS

oX<go

Effects of Sectorization.

Fig. 9 Effects of sectorization. MSE vs M = My = M, for ULAs and various channel estimation techniques, when the average SNRis 10 dB when
sectorization is used, with 6 (solid lines), 60 (dashed lines), and 180° (dotted lines). Ny = Ny = 16
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Fig. 10 Effects of tracking. MSE for ULAs of various channel estimation techniques, when the average SNR is 10 dB with channel tracking at 6°, and
various values of M. Ny = 16 and Ny = 4

The indoor-office model (InH Mixed) has a few signifi- taps (UMi Street Canyon NLOS) make the channel esti-
cant taps with reduced dispersion, a favorable condition = mation more problematic for SPC and JPC, while can
for SPC and JPC, which exhibit a reduced gap with respect ~ be handled very efficiently by the compressed-sensing
to the proposed (still better performing) techniques. On  techniques, thanks to their ability to better distinguish
the other hand, dispersive channels with many low-power  between noise and channel components. This provides a

0 ] [T T TR T TN T
I UMa NLOS
I uMa LOS
"] UMi StreetCanyon NLOS
5+ I UM StreetCanyon LOS |
[ RMa NLOS
[CIRMalLOS
I nH Office Mixed NLOS
& 40 F I InH Office Mixed LOS |
Z
w
(2] L
E _15 L |
20 F 4
_25 Il Il Il Il
SPC JPC AGDAR RCS
Algorithms
Effects of channel models.
Fig. 11 Effects of channel models. MSE under different channel models with SNR of 10 dB for UPA with Ny = 8 x 8 atthe BSand N, = 2 x 2 at the
UE,aﬂdMo =/\/h = 10and M2 = /\/’3 =4
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gain of 7 dB between SPC and AGDAR. We also note
that both AGDAR and RCS have comparable performance
across all channel models. Similar results are obtained at
low and high SNR (results are not reported here for the
sake of conciseness).

5.4 Complexity comparison

In order to assess the complexity of the various chan-
nel estimation methods, we first report in Fig. 12 the
effective number of iterations g3 of AGDAR as a func-
tion of the maximum allowed number of iterations ¢,
for ULAs with N; = 32, N = 4, and average SNR
of 10 dB on a UMi LOS channel model. As expected,
when the number of allowed iterations increases, also the
number of effective iterations increases, until reaching a
floor. Moreover, a higher value of M; and M3 requires a
higher number of iterations. We also observe that RCS
requires fewer iterations (while achieving a better perfor-
mance in terms of MSE) as the reweighting fastens the
convergence.

In Fig. 13, we compare the complexity of the various
scenarios, by considering the number of complex multi-
plications, as derived in Section 4.4, as a function of the
number of canceled paths 1. Parameters are those of Fig. 3,
so that we can compare the achieved MSE of the various
schemes. We observe that the number of multiplications
grows exponentially for the SPC and JPC techniques. We
also report the number of complex multiplications for the
AGDAR and RCS methods that do not depend on 1. We
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note that the AGDAR has a remarkably lower complex-
ity than other methods. However, we also notice that for
M; = 64 and M, = 8, RCS has a significantly higher
complexity with respect to the other methods. When
comparing the MSE performance (Fig. 3), we see that
AGDAR achieves a much lower MSE than SPC and JPC
methods for a lower complexity (in terms of CMUX and
CADD).

6 Conclusions

In this paper, we have proposed channel estimation tech-
niques for mm-Wave massive MIMO systems, based on a
CS approach, where we have exploited the sparse nature
of the channel, considering in particular the small number
of channel paths at those frequencies. Efficient innova-
tive solutions based on the adaptive restart of the Nes-
terov accelerated gradient algorithm have been explored.
Numerical results have shown the superiority of the pro-
posed approaches with respect to existing procedures,
with similar or lower computational complexity. We have
also considered the effects of sectorization and proposed
a channel tracking technique that exploits slow channel
variations.

Endnotes

! Note that other configurations (e.g., UPA on one side
and ULA on the other side) can be obtained with similar
derivations.

3 T T T T T
o Ml = 32, M2 =4
2.5F W P-"|1=6~‘3, f‘-12 =8
O M,=128 M, =16
2 -
m
o
2157
o
=]
P
1} /
0.5} e = 8 B = 8 8 &
O@/ i i i i i
0 0.5 1 15 2 2.5
10,4 G,
Choice of g3.
Fig. 12 Choice of g3. Number of iterations g3 (in log scale) vs the number iterations g; (in log scale) for a ULA system with N, = 32 and N; = 4 for
AGDAR (solid lines) and RCS (dotted lines). UMi LOS model
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Fig. 13 Computational complexity. Average number of complex multiplications as function of / for various systems with (M = 32, M, = 4) (solid
lines) and (M = 64, M, = 8) (dotted lines), ULA system with (N, = 32, N; = 4) and SNR of 10 dB

2In general, the number of symbols can be larges than
N¢ but we consider here this simpler case for the sake of

conciseness.

Appendix A: CS channel estimation for UPA

For a UPA system, we denote as Dy and D3 the number
of transmit antennas along the y- and z-axes, respectively;
therefore, Ny = D; x Ds. Similarly Dy and D; are the
numbers of antennas at the receiver along the two axes;
therefore, N, = Dy x D;. The channel matrix has entries

L
[ UPA] :Z 0”6271nf)iojeZnnlliljeZnnlzizjehnéz?i.
i1+Durio,iz+D3iz -

(30)

The channel HYPA is transformed into the channel col-
umn vector H'"A = vec (HUPA) e CNNex1 with entries

_ [HUPA] .
i1+D1ig,iz+D3ia
(31)

[ hUPA]
io+Doi1+DoD1io+Do D1 Dyis

We also define the 4D-DFT matrix as F*P ¢
CN N X (MoMMaM3) yyith entries

4D
[F ] (io++Doi1+D1Doiz+D2 D1 Doi3,fo+Mofi +M1 Mofa+Ma M1 Mof3)

3 _ 2migfy)
= e My . (32)

d=0

Lastly, we define the column vector vWPA of length
MoM1MaMs with L non-zero entries, namely

=aq (33)

[VUPA]
Qé +M()S_2[1 +M1M0Q12+M2M1M0 Qé

where

Q% =<néMo> Q= <n§M1> . =<néM3> o =<néM3> :
(34)

From (30), we can approximate the channel as

JUPA , pADUPA (35)

Similarly, we can define U and v'UPA for the LS
estimate of the channel and its dual representation. The
AGDAR and RCS algorithms for UPA can be obtained as
described in Section 4, with F, i, and v replaced by D,

I ’ .
h UPA, and v YPA respectively.

Appendix B: On the choice of My

The choice of the number of DFT points per dimension
M, is important to determine the performance of the
channel estimation algorithm. From (34), we have that the
AGDAR solution approximates né with a quantized value
taken over M, possible points. Therefore, we can write the
quantization error on the /-th path as

(i) -
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Focusing now on a scenario wherein ULAs are used at
both transmitter and receiver, assuming that all other esti-
mates (i.e., the amplitude angle estimates of each path)
are correct and the only imperfection is the quantization
error, from (36), the estimated channel can be written as
(compared with (1))

Hl;\ i, = Z oe (

—€ )11/ 271( 7y 62)12] (37)

and using the definition of H of (1), we have that the MSE
of the channel estimate is

—1Nt—

Z > B[l -

11—0 in=0

Ni—1Ni—1
- D{

]u,iz ‘2]

I I
Zallemltl/eZﬂnth/ (1 _ 6*27[611118*27!62!2})

2
i1=0 ir=0

(38)

Now, assuming that the amplitudes and angles are inde-
pendent random variables, we have

Ny—1N—1 L

Z Z ZUZ(I)E U e—zne{n/e—megizj

i1=0 i2=0 [=1

2
N Nt ] ’ (39)

where a(f(l) = E[|a;|%]. Expanding the expectation we
have

Ne—1Ni—1 L ,
y@ = NNt llz;) l;) IXI:UZ(I)IE {|:1 — cos (27r (51;1 + €2l2>)]
s o )|

N —1Ni—1 L

Y Y S G20k {2 [1 — cos (271 (e i +e212))]}

i1=0 iy=0 |=1
Ni—1N—1 L

DD aky2x

i1=0 i2=0 [=1
!
o, ()
My ! T My

NrNt

NrNt

EJ1—cos|2m (n{ i

(40)

Let us assume that arrival and departure angles (¢, and
19[) are uniformly distributed in the interval [0, 27) and

r;ll = icos U 772 = —%cos z?lt. Then, the probability

A
density function of n{ and né for s = ) becomes

2
N T Y el —1 2,1 2
p.i(a) = sn/1-02a% /& [-1/2,1/2) @)
" 0 otherwise,

and (40) becomes
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—1Ni— My—1My—1
7Y =N Z ZZUZW > 2
t i1=0 i»=0 [=1 m1=0 my=0
(mi+1)/M1—=1/2  p(ma+1)/Ma—1/2
/ / Py (@p, (b)x
my /M1 —1/2 my/Ma—1/2 1 2
my '\ . my
l—cos|2n (a—— i1+ |b—— )i dadb .
{ [ ( Ml)l ( Mz) 2]}

(42)

This MSE provides a guideline for the choice of M, as
we must have at least y(q) > 02, so that quantization does
not introduce more errors (in terms of its power) than
noise already present.
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