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A limiting absorption principle

for the Helmholtz equation

with variable coefficients
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Abstract. We prove a limiting absorption principle for a generalized Helmholtz equation

on an exterior domain with Dirichlet boundary conditions

.LC �/v D f; � 2 R

under a Sommerfeld radiation condition at infinity. The operatorL is a second order elliptic

operator with variable coefficients; the principal part is a small, long range perturbation of

��, while lower order terms can be singular and large.

The main tool is a sharp uniform resolvent estimate, which has independent applica-

tions to the problem of embedded eigenvalues and to smoothing estimates for dispersive

equations.
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1. Introduction

The Helmholtz equation

�v C �2v D f .x/; � 2 R (1.1)

on an exterior domain � D R
n n†, is used to model the scattering by a compact

obstacle † of waves generated by a source f .x/. The operator � C �2 has a

nontrivial kernel and to properly select solutions of (1.1) additional conditions are

needed. It is natural to require asymptotic conditions at infinity, and the standard

one is the Sommerfeld radiation condition

jxj n�1
2 r.e�i�jxjv/ �! 0 as jxj ! 1: (1.2)

Condition (1.2) guarantees uniqueness for (1.1), but it can be substantially relaxed

as discussed in the following.

The second part of the problem is the effective construction of solutions; this

is usually done by taking �2 D �C i� complex valued and letting � ! 0. When

the limit exists, one says that the limiting absorption principle holds. Note that for

�2 62 R equation (1.1) is the resolvent equation v D R.�2/f forR.z/ D .zC�/�1,

which is a bounded operator on L2 if and only if z 62 �.��/. Thus the problem

amounts to estimate the resolvent operator R.z/ uniformly in z 62 R. As a

byproduct, one obtains that the resolvent operator in the limits ˙=z ! 0 extends

to operators R.� ˙ i0/ which are bounded between suitable weighted Sobolev

spaces.

The Helmholtz equation with potential perturbations was studied in [1] and [2],

where the correct functional setting for the problem was established, and in [20]

and [21], where non decaying potentials were allowed. More general Schrödinger

operators with electromagnetic potentials were considered in [3] [4], [5], [13],

[14], [17], [27], and [28]. Uniform resolvent estimates in the case of variable

coefficients were obtained in [19], [23], and [25] and the predecessor [8] of this

paper, and estimates local in frequency for general elliptic operators were proved

in Chapter 30 of [16]. We also mention the connection of resolvent estimates

with smoothing and Strichartz estimates for the corresponding evolution equations

(exploited first in [18], [26], and [22]; see also [11], [9], and the references in the

papers mentioned above).

In recent years the problem of establishing sharp regularity and decay condi-

tions on the potentials has attracted some attention, also in view of the applications

to dispersive equations. The critical threshold for electric potentials is � jxj�2
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and for magnetic potentials � jxj�1. Uniform resolvent estimates for singular po-

tentials of critical decay were obtained in [6] and [15] (see also [12]), while the

limiting absorption principle was studied in [27] and [5].

Our goal here is to study the interaction of singular potentials with a non-

flat metric which is a long range, small perturbation of the euclidean metric.

We consider the following generalized Helmholtz equation

.LC �C i�/v D f; �; � 2 R (1.3)

where L is an operator of the form

Lv D rb � .a.x/rbv/C cv; rb D r C ib; (1.4)

defined on the exterior� D R
n n† of a compact, possibly empty obstacle† with

C 1 boundary, in dimension n � 3. Here a.x/ D Œajk.x/�
n
j;kD1

is a real valued,

positive definite symmetric matrix, b takes vaues in R
n and c in R. We shall

always assume that

L is selfadjoint with domain H 2.�/ \H 1
0 .�/ (1.5)

i.e., we restrict to Dirichlet boundary conditions. Note however that in the course

of the paper we shall use the same notation for the selfadjoint operator L and the

differential operator (1.4) (which operates also on functions outsideD.L/, e.g. in

weighted L2 spaces). We shall assume that the metric a.x/ is a small perturbation

of the flat metric, in an appropriate sense precised below, so that in particular

trapping is excluded. Concerning the boundary @�, we shall always assume that

it is starshaped with respect to the metric a.x/: this means

a.x/x � E�.x/ � 0 for all x 2 @� (1.6)

where E�.x/ is the exterior normal to � at x 2 @�.

The assumptions on the magnetic potential b.x/ D .b1; : : : ; bn/ will be ex-

pressed in terms of the corresponding field

db D Œ@j b` � @`bj �
n
j;`D1

as it is physically natural; actually it is sufficient to impose bounds only on the

tangential part of db for the metric a.x/, which is the vector cdb D .cdb1; : : : ;cdbn/

defined by

cdb.x/ D db.x/a.x/ Ox i.e. cdbj D .@jb` � @`bj /a`m Oxm; Ox D x

jxj :
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This fact was already noted in [5] (see also [7]). Here and in the following we use

the convention of implicit summation over repeated indices. Note that for a vector

w 2 C
n we define its radial part wR and its tangential part wT as

wR WD . Ox � w/ Ox; wT WD w �wR (1.7)

respectively; we have of course jwj2 D jwRj2 C jwT j2.

The relevant functional spaces for our problem are the space PY with norm

kvk2
PY WD sup

R>0

1

R

Z

�\¹jxj�Rº

jvj2dx ' kjxj�1=2vk2
`1L2

and its (pre)dual space PY � with norm

kvk PY � ' kjxj1=2vk`1L2 I

the notation `pLq refers to the dyadic norms

kvk`pLq WD
�X

j 2Z
kvkp

Lq.�\¹2j �jxj<2j C1º/

�1=p

; (1.8)

with obvious modification when p D 1. Note that PY � is an homogeneous version

of the Agmon–Hörmander spaceB (see [2]). An important role will be played also

by the space PX with norm

kvk2
PX WD sup

R>0

1

R2

Z

�\¹jxjDRº

jvj2dS

where dS is the surface measure on the sphere jxj D R. Our main result is the

following; in the statement ja.x/j denotes the operator norm of the matrix a.x/,

and we use the shorthand notation ja0.x/j to denote
P

j˛jD1 j@˛a.x/j, and similarly

for a00; a000, while jb0.x/j D P
j˛jD1 j@˛b.x/j.

Theorem 1.1 (limiting absorption principle). Let n � 3, ı 2 .0; 1/ and let L and

� be as in (1.4)–(1.6). There exist two constants N� > 0, N� > 0 depending only on

n; ı such that the following holds.

Assume that for some � 2 Œ0; N�� and K � 0 the coefficients of L satisfy:

(i) khxiı.ja � I j C jxjja0j/k`1L1 < 1 and

kja � I j C jxjja0jk`1L1 C jxj2ja00j C jxj3ja000j � �:
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(ii) b0; b2 2 Ln;1 and b D bS C bL with

jxj2jcdbS j � �; hxiıC1jcdbLj � K:

When n D 3 we assume the stronger condition kjxj2cdbSk`1L1 � �.

(iii) c D cS C cL with jxj2cS , jxj3rcS 2 L1 and

cS � � �

jxj2 ; �@r.jxjcS / � � �

jxj2 ; hxiı jcLj � K:

Then for � > N� � .K CK2/ and all f with
R

jxjı hxijf j2 < 1 the equation

.LC �/v D f (1.9)

has a unique solution v 2 PY \ H 2
loc.�/ satisfying vj@� D 0 and the radiation

condition

lim inf
R!C1

Z

jxjDR

jrbv � i Ox�1=2vj2dS D 0: (1.10)

In addition, the solution satisfies the smoothing estimate

kvk PX C �
1
2 kvk PY C krbvk PY C k.arbv/T kL2 C .n� 3/


v

jxj3=2


L2

� c.n/kf k PY �

(1.11)

and if �k 2 R n ¹0º is an arbitrary sequence with �k ! 0, then v is the limit in

H 1
loc.�/ of the solutions vk 2 H 1

0 .�/ \H 2.�/ of

.LC �C i�k/vk D f:

WhenK D 0, i.e., when the long range components bL; cL of the potentials are

absent, the previous result implies that the limiting absorption principle is valid for

all values of � and for (short range) potentials with critical singularities, provided

suitable smallness conditions are assumed. When K 6D 0, i.e., if long range

potentials are present, we obtain a similar result but only for large frequencies

� depending on the size of the potentials, which can be arbitrarily large.

The structure of the proof is the following.

� The main tool used in the Theorem is a smoothing estimate for the resolvent

R.z/ D .LC z/�1 outside the spectrum, proved in Section 2 (Theorem 2.1).

The estimate improves on earlier results, notably on a similar estimate in the

predecessor of this paper [8]. Indeed, we admit large potentials with critical

singularities and the estimate is uniform for <z � 1. In the short range
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case, if cdbS and the negative part of cS satisfy suitable smallness conditions,

the estimate is uniform for all z 2 C. A few applications include the

non existence of embedded eigenvalues or resonances for L, and smoothing

estimates for the Schrödinger and wave flows associated to L.

� The smoothing estimate alone is not sufficient to exclude functions in the

kernel ofLC�. However, if the source term f has a slightly better decay, then

the difference rbv � i Ox
p
�v satisfies a stronger estimate, and this is enough

to deduce a weak Sommerfeld radiation condition and hence uniqueness of

the solution. The radiation estimate is proved in Theorem 3.2 in Section 3.

� In the last Section 4 we put together all the elements and prove the limiting

absorption principle for L.

We conclude the Introduction by examining a few physically interesting sin-

gular potentials to which the previous result can be applied.

Remark 1.1 (Coulomb potential). We can handle potentials of the form

c.x/ D C

jxja ; 0 < a � 2

including in particular the Coulomb potential a D 1. In the critical case a D 2,

we must require in addition that C � �N� for a suitable N� � 0 depending on n,

however in this case the result is valid without restrictions on the frequency.

Remark 1.2 (Aharonov–Bohm). Consider a magnetic potential b.x/ satisfying

x � b.x/ D 0 and b.tx/ D t�1b.x/ (1.12)

for all x 2 � and t > 0 such that tx 2 �. The first condition is simply a choice of

gauge, which is not restrictive, and the second one states that b.x/ is homogeneous

of degree �1, which is precisely the critical scaling for magnetic potentials. Then

one checks easily (see [5]) that

db.x/ Ox D 0 for all x 2 �:

This implies

cdb.x/ D db.x/a.x/ Ox D db.x/.a.x/ � I / Ox

and as a consequence

kjxj2cdb.x/k`1L1 � ka � Ik`1L1kjxj2bkL1 :
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Since by homogeneity we have also kjxj2bkL1 < 1, recalling that ka � Ik`1L1

is assumed to be sufficiently small, we conclude that any magnetic potential

b satisfying (1.12) (or more generally, any potential b D bS C bL with bS

satisfying (1.12) and bL as in the Theorem) is covered by Theorem 1.1. Interesting

examples in R
3 include the so called Aharonov–Bohm potentials

b.x/ D C
� �x2

x2
1 C x2

2

;
x1

x2
1 C x2

2

; 0
�

and potentials of the form

b.x/ D C
�

� x2

jxj2 ;
x1

jxj2 ; 0
�
:

In both cases the result is valid for all frequencies, independently of the size or

sign of C .

2. The smoothing estimate

In this section we develop the key tool for Theorem 1.1: a smoothing estimate for

the resolvent of L which is uniform on appropriate regions of C. In order to get

sharp results, we distinguish two situations.

(1) Short range perturbations of�with critical singularities (Assumption (A0)).

In this case we can prove a uniform smoothing estimate for all z 2 C n R.

(2) Long range perturbations of �, with large electromagnetic potentials of

milder decay at infinity (Assumption (A)). In this case the estimate is uniform

on a region <z > C , whereC is a suitable norm of the long range component

of the potentials.

Moreover, from our analysis one can read precisely the influence of different

components of the potentials b and c on the estimate.

The assumptions in the short range case are the following.

Assumption (A0 ) . Let n � 3 and let L and � be as in (1.4)–(1.6), with

b0; b2 2 Ln;1. We assume that, for some constant � � 0

Ca.x/ WD ja � I j C jxjja0j C jxj2ja00j C jxj3ja000j � �; kjxja0k`1L1 � �:

The magnetic field in dimension n � 4 is of the form b D bICbII and in dimension

n D 3 of the form b D bI, with

kjxj2cdbIk`1L1 C kjxj2ja � I jcdbIIk`1L1 C kjxj2cdbIIkL1 � �:
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The electric field is of the form c D cI C cII with

kjxj2cIIk`1L1 � �; cI,� 2 L1

and in dimension n � 4

ja � I j � .jxj2jcIj C jxj3jrcIj/C jxj2 � .cI,� C Œ@r.rcI/�C/ � �

while in dimension n D 3

kja � I j � .jxj2jcIj C jxj3jrcIj/C jxj2 � .cI,� C Œ@r.rcI/�C/k`1L1 � �:

In the long range case the assumptions are the following. Note that Assump-

tion (A) reduces to (A0) when Z D 0:

Assumption (A). We assume b D bI C bII C bIII and c D cI C cII C cIII C cIV

with bI, bII, cI, cII as in (A0) while

kjxjcdbIIIk`1L1 � Z; kjxjhxi�1cIVk`1L1 � Z;

kja � I j � .jcIIIj C jxjjrcIIIj/C jxj2 � .cIII,� C Œ@r.rcIII/�Ck`1L1 � Z:

Then we can prove the following result.

Theorem 2.1 (smoothing estimate). There exist two constants �0.n/ and c0.n/

depending only on n such that the following holds.

Let v 2 H 2
loc.�/ with vj@� D 0 be such that

lim inf
R!1

Z

jxjDR

.jrbvj2 C jvj2/dS D 0 (2.1)

and define for some �; � 2 R

f D .LC �C i�/v:

If (A0) holds with � < �0.n/ then

7kvk PX C .j�j C j�j/1=2kvk PY C krbvk PY C k.arbv/T kL2 C .n � 3/


v

jxj3=2


L2

� c.n/kf k PY � :

(2.2)

The same estimate is valid if (A) holds with � < �0.n/ and � � c0.n/.Z C Z2/.
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Remark 2.1 (uniform resolvent estimate). Condition (2.1) is satisfied if v is in

H 1. Thus the Theorem applies in particular to the solution v of

.LC �C i�/v D f

for � ¤ 0 and f 2 L2.�/, which exists and belongs to H 1
0 .�/ \ H 2.�/ by the

assumptions on L. This gives the following estimate for the resolvent operator

R.z/ D .z C L/�1, uniform in z 62 R or in <z � c0.n/.Z C Z2/; z 62 R

respectively:

krbR.z/f k PY C jzj1=2kR.z/f k PY C kR.z/f k PX
. kf k PY � :

Remark 2.2 (absence of embedded eigenvalues or resonances). Suppose v is a

solution of

.LC �/v D 0; vj@� D 0

for some � � c0.n/.Z C Z2/. From the smoothing estimate, we see that if v

satisfies condition (2.1) then v � 0.

Since any function v 2 H 1
0 .�/ satisfies condition (2.1), this implies that there

is no eigenvalue � � cn.Z C Z2/. In particular in the case Z D 0 (that is to

say, under condition (A0)) we obtain there are no embedded eigenvalues in the

spectrum of L.

A similar argument gives a more general result about resonances. Writing

��R D �\ ¹jxj � Rº, we say that a function v is a resonance at z 2 C if

.LC z/v D 0; vj@� D 0; v 6� 0; lim inf
R!1

1

R

Z

��R

jvj2 D 0:

Note that the last condition is weaker than the usual one:

hxi�sv 2 L2 for some s <
1

2
H) lim

R!1

1

R

Z

��R

jvj2 D 0:

Then we have the following result.

Corollary 2.2 (absence of resonances). Assume (A) holds with � < �0.n/, and

let � � c0.n/.Z CZ2/. Then no resonance exists at �.

Proof. We must only prove that v satisfies condition (2.1). For jvj2 this follows

immediately from the assumption lim inf 1
R

R
��R

jvj2 D 0. For jrbvj2, we apply

Lemma 4.2 from Section 4 which gives

lim inf
1

R

Z

��R

jrbvj2 . lim inf
1

R

Z

��R

jvj2 D 0: �
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Remark 2.3 (smoothing estimates for dispersive flows). A natural application

of estimate (2.2) to dispersive equations is given by Kato’s theory of smoothing

operators. We recall the procedure in the simplest case. Assume (A0) holds. Then,

from (2.2) we deduce the (Hilbert space) estimate

khxi�3=2�vkL2 . khxi1=2Cf kL2

uniform in �C i� 62 R, which can be written as the resolvent estimate

khxi�3=2�R.z/f kL2 . khxi1=2Cf kL2

uniform in z 62 R. By duality and interpolation we get

khxi�1�R.z/f kL2 . khxi1Cf kL2 i.e. kA�R.z/Af kL2 . kf kL2

where A D hxi�1� is the multiplication operator. In terms of Kato’s theory, this

means that A is supersmoothing for the operator L, and immediate consequences

of the theory are the estimates for the Schrödinger group eitL

khxi�1�eitLf kL2
t L2.�/ . kf kL2.�/

and the corresponding Duhamel term



tZ

0

hxi�1�ei.t�s/LF.s/ds


L2

t L2.�/

. khxi1CF kL2
t L2.�/:

Moreover, if L is nonnegative, we also get the estimate for the wave flow eit
p

L

khxi�1�eit
p

Lf kL2
t L2.�/ . kL1=4f kL2.�/

and a similar one for the Duhamel term. With some more work, smoothing

estimates with a weight hxi�1=2� can be deduced for the flows jDj1=2eitL and

jDj1=2eit
p

L. For more details, and the extension of Kato’s theory to the wave and

Klein–Gordon groups, we refer to [10].

2.1. Notations. With the convention of implicit summation over repeated in-

dices, we write

Abv WD rb � .a.x/rbv/ D @b
j .ajk.x/@

b
kv/;

Av WD r � .a.x/rv/ D @j .ajk.x/@kv/:
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We use the notations

Ox WD x

jxj D . Ox1; : : : ; Oxn/; a.w; z/ WD ajk.x/wk Nzj ; ajkI` WD @`ajk

and

Oa.x/ WD a`m.x/ Ox` Oxm; Na.x/ WD t r a.x/ D amm.x/; Qa WD a`mI` Oxm:

If a.x/ is positive definite, we have

0 � Oa D a Ox � Ox � ja Oxj � Na:

We shall use frequently the following identity, valid for any radial function .x/ D
 .jxj/:

A .x/ D @`.a`m Oxm 
0/ D Oa 00 C Na � Oa

jxj  0 C Qa 0 (2.3)

where  0 denotes the derivative of  .r/ with respect to the radial variable.

In order to refine the scale of dyadic spaces `pLq, we introduce the mixed

radial-angular LqLr norms on an annulus C D R1 � jxj � R2

kvkLqLr .C/ D kvkL
q

jxj
Lr

�
.C/ WD

� R2Z

R1

� Z

jxjD�

jvjrdS
�q=r

d�

�1=q

D
kvkLr.jxjD�/


Lq.R1;R2Id�/

;

and on�\C we define kvkLqLr .�\C/ D k1�vkLqLr . When q D r this definition

reduces to the usual Lq.C / norm. Then we define for all p; q; r 2 Œ1;1�

kvk`pLqLr WD k¹kvkLqLr .�j /ºj 2Zk`p ; �j D � \ ¹2j � jxj < 2j C1º: (2.4)

In the case q D r we reobtain the previous dyadic norms:

kvk`pLq D kvk`pLqLq :

Both spaces PX; PY are included in this finer scale

kvk PX ' kjxj�1vk`1L1L2 ; kvk PY ' kjxj�1=2vk`1L2 (2.5)

like the predual norm PY �, which is given by

kvk PY � ' kjxj1=2vk`1L2 '
X

j 2Z
2j=2kvkL2.Cj \�/:
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Remark 2.4 (magnetic Hardy inequality). We shall make frequent use of the

magnetic Hardy inequality, valid for s < n=2 and w 2 H 1
0 .�/:

kjxj�swkL2 � 2

n � 2s
kjxj1�srbwkL2: (2.6)

This is proved as usual, starting from the identity

r �
° Ox

jxj2s�1
jwj2

±
D 2<w Ox � rw

jxj2s�1
C n � 2s

jxj2s
jwj2

D 2<w Ox � rbw

jxj2s�1
C n � 2s

jxj2s
jwj2;

then integrating on �, estimating with Cauchy–Schwartz

Z

�

n � 2s
jxj2s

jwj2dx � ˛

Z

�

jwj2
jxj2s

dx C ˛�1

Z

�

jrbwj2
jxj2s�2

and finally optimizing the value of ˛.

2.2. Basic identities and boundary terms. Using the two multipliers

ŒAb;  � Nv D .A / Nv C 2a.r ;rbv/ and � Nv

one obtains the following Morawetz type identities, proved in [8]:

text slightly

changed to

avoid an

overfull

Theorem 2.3. Let v 2 H 2
loc.�/ on an open set � � R

n, �; � 2 R, the map

a.x/W� ! R
n�n symmetric, b.x/W� ! R

n and the maps c; �;  W� ! R

sufficiently smooth, and let

f WD Abv � c.x/v C .�C i�/v: (2.7)

Then the following identity holds:

Irv C Iv C I� C Ib C If D <@j ¹Qj C Pj º (2.8)

where

If D <Œ.A C �/ Nvf C 2a.r ;rbv/f �; (2.9)

Irv D ˛`m<.@b
mv @

b
`
v/C a.rbv;rbv/�; (2.10)

with

˛`m WD 2ajm@j .a`k@k / � ajk@k @ja`m;

Iv D �1
2
A.A C �/jvj2 � Œa.r ;rc/� c� C ���jvj2; (2.11)
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I� D 2�=Œa.r ;rbv/v�; (2.12)

Ib D 2=Œajk@
b
kv.@jb` � @`bj /a`m@m Nv� D 2=Œ.arbv/ � .db ar / Nv�; (2.13)

and

Qj Dajk@
b
kv �ŒAb;  � Nv� 1

2
ajk.@kA /jvj2�ajk@k 

h
.c � �/jvj2 C a.rbv;rbv/

i
;

Pj D ajk@
b
kv� Nv � 1

2
ajk@k�jvj2:

Moreover we have the identity

@jPj Da.rbv;rbv/� C .c � �� i�/jvj2� C f Nv� � 1

2
A�jvj2 C i=a.rbv; vr�/:

(2.14)

Remark 2.5 (boundary terms). In the next computations we shall integrate iden-

tities (2.8) and (2.14) on �, with various choices of real valued weights � and  ,

with  radial, for a function v 2 H 2
loc.�/ vanishing at @� and satisfying the as-

ymptotic condition (2.1). The weights will always be piecewise smooth functions,

with possible singularities only at 0 or along spheres jxj D R; the worst singular-

ity at 0 appearing in all computations is dominated by jxj�3 in dimension n � 4

and by jxj�2 in dimension n D 3; concerning the singularity appearing along the

sphere, in the worst case it will be a surface measure ıjxjDR with a definite sign.

Moreover, in our choice of  we have  0 2 L1 and  0 � 0 (see (2.33) below).

In order to handle the boundary terms, some smoothness of the coefficients is

necessary. We note that from our assumptions it follows that a; a0; a00; a000; c are

bounded for large x and

a; jxja0; jxj2a00; jxj3a000 2 L1; b 2 Ln=2;1; b0; c 2 Ln;1: (2.15)

Then one checks easily that for v 2 H 2
loc.�/ the quantities Qj and Pj are in

L1
loc, using the Sobolev–Lorentz embedding H 1 ,! L2 \ L

2n
n�2

;2 which implies

jvj2 2 L1 \ L n
n�2

;1, and the Hölder–Lorentz inequality.

We integrate the identities (2.8) and (2.14) on a set � \ ¹jxj � M º and let

M ! 1. At the boundary� \ ¹jxj D M º we get the quantities �DM with

indexD M ? Is

it correct?

Z

�DM

�jQjdS;

Z

�DM

�jPjdS;

where E� D .�1; : : : ; �n/ is the exterior normal and dS is the surface measure

on the sphere ¹jxj D M º. Letting M ! 1 along a suitable subsequence,
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by condition (2.1) we see that both integrals tend to 0. Moreover, at the boundary

@� one has directly Pj j@� D 0 since vj@� D 0. Concerning Qj , after canceling

the terms containing a factor v and noticing that rbv D rv C ibv D rv on @�,

we are left with
Z

�

@jQj D
Z

@�

Œ2a.rv; E�/ � a. Ox;rv/� a.rv;rv/ � a. Ox; E�/� 0dS (2.16)

where E� is the exterior unit normal to @�. Dirichled boundary conditions imply

that rv is normal to @� so that rv D .E� � rv/E� and hence

a.rv; E�/ D .E� � rv/a.E�; E�/; a. Ox;rv/ D .E� � r Nv/a. Ox; E�/;

a.rv;rv/D jE� � r Nvj2a.E�; E�/;

and Z

�

@j <Qj D
Z

@�

jE� � rvj2a.E�; E�/a. Ox; E�/ 0dS:

Now using the condition that @� is a.x/-starshaped and recalling that  0 � 0 we

conclude Z

�

@j <Qj � 0: (2.17)

2.3. Preliminary estimates. The first group of estimates is based on the iden-

tity (2.14).

Lemma 2.4 (I�). We have the identities

�

Z

�

jvj2 D =
Z

�

f Nv;
Z

�

a.rbv;rbv/ D �

Z

�

jvj2 � <
Z

�

f Nv �
Z

�

cjvj2: (2.18)

Moreover if we assume ka � IkL1 � 1=2 and c D cI C cII with cI,� 2 L1

and kjxj2cII,�kL1 � n�2
8

, we have the following estimate of the quantity I� WD
2�=Œa.vr ;rbv/�

Z

�

jI�j � �.j�j C j�j C kcI,�kL1/kvk2
PY C C��1kf k PY � (2.19)

where C D C.n; kr kL1/ and � 2 .0; 1/ is arbitrary.
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Proof. Consider identity (2.14) with � D 1 and c D 0 and let g D AbvC.�Ci�/v,

so that g D f C c.x/v. Taking the imaginary part we get

�jvj2 D =.g Nv/ � =@j ¹ Nvajk@
b
kvº (2.20)

and integrating on � we obtain the first identity in (2.18), since =.f Nv/ D =.g Nv/.
Note that the identity implies

j�jkvk2
L2 � kf NvkL1 : (2.21)

If instead we take the real part of (2.14) with � D 1 and c D 0 we get

a.rbv;rbv/ D �jvj2 � <.g Nv/C <@j ¹ Nvajk@
b
kvº:

Integrating on �, the boundary term vanishes (see Remark 2.5), and we get the

second identity (2.18), after replacing g D f C c.x/v.

We can now write

�
Z

�

cjvj2 �
Z

�

cI,�jvj2 C
Z

�

cII,�jvj2 �
Z

�

cI,�jvj2 C kjxj2cII,�kL1

Z

�

jvj2
jxj2

and by the magnetic Hardy inequality (2.6)

kjxj2cII,�kL1

Z

�

jvj2
jxj2 � 2kjxj2cII,�kL1

.n � 2/

Z

�

jrbvj2 � 1

2

Z

�

a.rbv;rbv/

provided ka � IkL1 � 1=2 and kjxj2cII,�kL1 � n�2
8

. Absorbing the last term at

the left hand side of (2.18) we have proved

Z

�

a.rbv;rbv/ � 2�

Z

�

jvj2 � 2<
Z

�

f Nv C 2

Z

�

cI,�jvj2: (2.22)

Next, by Cauchy–Schwartz and a � NI we have

jI�j � jvjj�ja.r ;r /1=2a.rbv;rbv/1=2

� N 1=2kr kL1j�jjvja.rbv;rbv/1=2

and using (2.18), (2.22), with C D 2N 1=2kr kL1 ,

Z

�

jI�j � C

�
.sgn �/=

Z

�

f Nv
�1=2�

j�j�
Z

�

jvj2 � j�j<
Z

�

f Nv C j�j
Z

�

cI,�jvj2
�1=2
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(note that both quantities inside brackets are positive). Using again (2.21) we get

Z

�

jI�j � C

ˇ̌
ˇ̌
Z

�

f Nv
ˇ̌
ˇ̌
1=2�

.j�j C j�j/j
Z

�

f Nvj C j�j
Z

�

cI,�jvj2
�1=2

which implies

Z

�

jI�j � C.j�j C j�j/1=2kf NvkL1 C C j�j1=2kf Nvk1=2

L1 kc1=2

I,� vkL2:

Using (2.21) we have

j�j1=2kc1=2

I,� vkL2 � j�j1=2kcI,�k1=2
L1kvkL2 � kcI,�k1=2

L1jkf Nvk1=2

L1 I

plugging it into the previous inequality we get

Z

�

jI�j � C.j�j C j�j C kcI,�kL1/1=2kf NvkL1

and using Cauchy–Schwartz we obtain (2.19). �

Lemma 2.5 (auxiliary estimate I). We have

j�j1=2kvk PY � CkakL1.krbvk PY C kvk PX C kf k PY �/ (2.23)

for some universal constant C .

Proof. Take the imaginary part of (2.14) and choose � as follows:

�.x/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1 if jxj � R;

2 � jxj
R

if R � jxj � 2R;

0 if jxj � 2R:

(2.24)

Integrating on � the boundary term vanishes and we get

j�j
Z

��R

jvj2 �
Z

��2R

jf Nvj C N

R

Z

�R�jxj�2R

jvjjrbvj

�2Rkf k PY �kvk PX C 3NRkvk PXkrbvk PY :

(2.25)

Dividing by R and taking the sup for R > 0 we obtain (2.23). �
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Lemma 2.6 (auxiliary estimate II). Assume

� D ��� � 0 andka � IkL1 C kjxja0kL1 � 1=8:

Then in dimension n � 4 we have

��kvk2
PY � Ckc�jxj2kL1kjxj�3=2vk2

L2 C ıkvk2
PX C Cı�1kf k PY � (2.26)

and in all dimensions n � 3 we have

��kjxj�1=2vk2
L2 C kjxj�1=2rbvk2

L2 � .Ckjxj2c�k`1L1 C ı/kvk2
PX CCı�1kf k2

PY �

(2.27)

for some universal constant C and all ı 2 .0; 1/. Note also that

kvk PY � kjxj�1=2vkL2:

Proof. Since � D ��� � 0, we can rewrite (the real part of) (2.14) in the form

.cC C ��/jvj2� C a.rbv;rbv/� D @j <Pj C c�jvj2� � <.f Nv/� C 1

2
A�jvj2:

(2.28)

We choose the radial weight

� D 1

jxj _R H) �0 D � 1

jxj2 1jxj>R; �
00 D � 1

R2
ıjxjDR C 2

jxj3 1jxj>R:

By the formula A� D Oa�00 C Na� Oa
jxj �

0 C Qa�0, writing Oa D 1 C .a � I / Ox � Ox and

Na D nC tr.a � I / and dropping a negative term, we get

A� D � Oa
R2
ıjxjDR C 3 Oa � Na C jxj Qa

jxj3 1jxj>R

� 3 � nC .nC 3/.ja � I j C jxjja0j/
jxj3 1jxj>R:

In dimension n � 4, if ka � IkL1 C kjxja0kL1 � 1=6, we get A� � 0; hence

integrating (2.28) on � and estimating a.rbv;rbv/ � �jrbvj2, we get

Z

�

.cC C ��/jvj2 C �jrbvj2
jxj _R �

Z

�

c�jvj2 C jf Nvj
jxj _R :

Taking the sup over R > 0 we conclude

kc1=2
C jxj�1=2vk2

L2 C ��kjxj�1=2vk2
L2 C �kjxj�1=2rbvk2

L2

� kc1=2
� jxj�1=2vk2

L2 C
Z

�

jf Nvj
jxj :
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Since kvk PY . kjxj�1=2vkL2 , we have in particular

��kvk2
PY � Ckc�jxj2kL1kjxj�3=2vk2

L2 C kjxj�1vk PY kf k PY �

and using the inequality kjxj�1vk PY . kvk PX we obtain (2.26).

If the dimension is n � 3 we choose a different weight, for � > 0 arbitrary:

� D 1

� C jxj H) 1

2
A� D Oa

.� C jxj/3 � Na � OaC jxj Qa
.� C jxj/2jcj :

By the estimates Oa � 1CC 0
a, jxjj Qaj � C 0

a, Na � n.1�C 0
a/withC 0

a D ja�I jCjxjja0j,
we have

1

2
A� � �jxj.n � 2 � .nC 1/C 0

a/ � �.n � 1 � nC 0
a/

jxj.� C jxj/3 � � 1

2jxj.� C jxj/2

provided we choose e.g.C 0
a � 1=8. Hence integrating (2.28) on� and using again

that a.rbv;rbv/ � �jrbvj2, � � 1
2
, we get for some universal constant C

Z

�

��jvj2 C �jrbvj2
� C jxj C

Z

�

jvj2
jxj.� C jxj/2

� Ckjxj�1=2c1=2
� vk2

L2 C Ckjxj�1f NvkL1

� Ckjxj2c�k`1L1kvk2
PX C Ckf k PY �kvk PX :

Letting � ! 0 we obtain (2.27). �

Lemma 2.7 (auxiliary estimate III). Let n � 4. Assume kCakL1 Ckjxj2c�kL1 �
1=16. Then

kjxj�1=2rbvk2
L2.jxj�1/

� �Ckjxj�1=2vk2
L2.jxj�2/

C c.n/kvk2
PX C c.n/kf k2

PY �
:

(2.29)

Note also that �Ckjxj�1=2vkL2.jxj�2/ � 2�Ckjxj�3=2vkL2.jxj�2/.

Proof. Choose a smooth nonnegative weight of the form

� D jxj�1 for jxj � 1; 0 � � � jxj�1 for 1 � jxj � 2; � D 0 for jxj � 2

in (2.14), take the real part and integrate on �. We get

Z

�jxj�1

a.rbv;rbv/

jxj �
Z

�jxj�2

�
.�C C c�/

jvj2
jxj � Na � 3 OaC jxj Qa

jxj3 jvj2 C 1

jxj jf Nvj
�

C Ckvk2
L2.1�jxj�2/
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for some C D C.n; kCakL1/. Since

Na � 3 OaC jxj Qa � n� 3� .nC 4/kCakL1 � 1

2
(2.30)

if e.g. kCakL1 � 1=16, and moreover

Z

�jxj�2

jf jjvj
jxj � ıkjxj�3=2vk2

L2.jxj�2/
C ı�1kf k2

PY �
; kvkL2.1�jxj�2/ � 2kvk PX ;

we have

Z

�jxj�1

a.rbv;rbv/

jxj � �C


v

jxj1=2


2

L2.jxj�2/

C
�
ı C kjxj2c�kL1 � 1

4

� 
v

jxj3=2


2

L2.jxj�2/

C C.n; kCakL1/.kvk2
PX C ı�1kf k2

PY �
/

by taking ı sufficiently small we get the claim. �

We recall the notations

.arbv/R D . Ox � arbv/ Ox; .arbv/T D arbv � .arbv/R

for the radial and the tangential part of arbv. Note that in case the weight

 D  .jxj/ is a radial function, the term Ib takes the form

Ib D 2=Œ.arbv/ � .db a Ox/ Nv� 0 D 2=Œ.arbv/ � cdb Nv� 0

where cdb WD db a Ox is the tangential part of the magnetic field.

Lemma 2.8 (Ib). Assume  is a radial function, b D bI C bII C bIII. Then,

Z

�

jIb j � Cˇ1krbvk PY kvk PX

C Cˇ2

� Z

�

jvj2
jxj3

�1=2� Z

�

j.arbv/T j2
jxj

�1=2

C Cˇ3krbvk PY kvk PY ;

where C D 2kakL1kr kL1 and

ˇ1 D kjxj3=2cdbIk`1L2L1 C kjxj3=2ja � I jcdbIIk`1L2L1 ; (2.31)

ˇ2 D kjxj2cdbIIkL1 ; ˇ3 D kjxjcdbIIIk`1L1 : (2.32)
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Proof. We split Ib D IbI
C IbII

C IbIII
with IbI

D 2=Œ.arbv/ � cdbI Nv� 0 and so on.

Then
Z

�

jIbI
j � Ckrbvk PY kjxj1=2cdbIvk`1L2L2

� Ckrbvk PY kvk PXkjxj3=2cdbIk`1L2L1

where C D 2Nkr kL1 , and similarly

Z

�

jIbIII
j � Ckrbvk PY kjxj1=2cdbIIIvk`1L2L2

� Ckrbvk PY kvk PY kjxjcdbIIIk`1L1L1 :

Next we note that dbII is antisymmetric, hence .a Ox/ � cdbII D .a Ox/ � .dbII a Ox/ D 0,

and for any  2 C we can rewrite IbII
as

IbII
D 2=Œ.arbv �  Ox C  Ox � a Ox/ � cdbII Nv� 0:

If we choose  D Ox � arbv we obtain

IbII
D 2=Œ.arbv/T � cdbII Nv� 0 C 2=Œ. Ox � arbv/..I � a/ Ox/ � cdbII Nv� 0 DW I 0

bII
C I 00

bII
:

We estimate I 00
bII

like IbI
:

Z

�

jI 00
bII

j � Ckrbvk PY kvk PXkjxj3=2ja � I jcdbIIk`1L2L1 :

Finally we have

Z

�

jI 0
bII

j � Ckjxj�1=2.arbv/T kL2kjxj�3=2vkL2kjxj2cdbIIkL1 : �

2.4. Choice of the weights and main terms. We choose, for arbitrary R > 0,

 D 1

2R
jxj21jxj�R C jxj1jxj>R; � D � Oa

R
1jxj�R: (2.33)

Note that � is not radial. We have then

 0 D jxj
jxj _R;  00 D 1

R
1jxj�R; A C � D Na � OaC jxj Qa

jxj _R : (2.34)

since A D Oa 00 C Na� Oa
jxj  

0 C Qa 0. Recalling the notation

Ca.x/ D ja.x/ � I j C jxjja0.x/j C jxj2ja00.x/j C jxj3ja000.x/j
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we have, after a long but easy computation,

jxj2.jA NajCjA OajCjxjjA QajCjr Qaj/Cjxj.jr NajCjr OajCj Qaj/ � C.n; kCakL1/�Ca.x/:

(2.35)

Then for jxj > R we find that

A.A C �/ D � . Na � Oa/. Na � 3 Oa/
jxj3 CR.x/

where

R.x/ D �2a.r Na � r Oa; Ox/C Qa. Na � Oa/
jxj2 C A. Na � Oa/

jxj C A Qa

and by (2.35)

jR.x/j � C.n; kCakL1/ � Ca.x/

jxj3 ; jxj > R: (2.36)

In the region jxj < R we have instead

A.A C �/ D R.x/ D A. Na � Oa/C Qa2 C jxjA Qa C 2a.r Qa; Ox/
R

C Qa. Na � Oa/
Rjxj

and again by (2.35)

jR.x/j � C.n; kCakL1/ � Ca.x/

Rjxj2 ; jxj � R: (2.37)

Finally, along the sphere jxj D R there is a singularity of delta type, originated by

the term

Oa
� Na � OaC jxj Qa

jxj _R
�00

and therefore the singular term has the form

� Oa. Na � OaCR Qa/
R2

ıjxjDR:

Summing up we have

A.A C �/ D � . Na � Oa/. Na � 3 Oa/
jxj3 1jxj>R � Oa. Na � Oa CR Qa/

R2
ıjxjDR CR.x/ (2.38)

where R.x/ satisfies (2.36), (2.37). Further, we note that

j Oa � 1j C jxjj Qaj � Ca.x/; j Na � nj � nCa.x/ (2.39)

so that

Oa. Na � Oa CR Qa/ � 1
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provided e.g kCakL1 � 1=6. Moreover we have

. Na � Oa/. Na � 3 Oa/ � .n � 1/.n� 3/ � 2.nC 2/Ca

and in conclusion we have proved the inequality

� A.A C �/ � .n� 1/.n � 3/
jxj3 1jxj>R C 1

R2
ıjxjDR CR1.x/ (2.40)

where R1.x/ satisfies for all x

jR1.x/j � C.n/ � Ca.x/

jxj2.jxj _R/
with a constant C.n/ depending only on n (polynomially).

Lemma 2.9 (Iv). Let c D c1 C c2 C c3 C c4 C c5, with c5 supported in jxj � 1,

and �;  as in (2.24). If n � 4 we have, for all ı 2 .0; 1/,

sup
R>0

Z

�

Iv � .�n � 1 � c.n/.2 C 5 C kCakL1//kjxj�3=2vk2
L2 C kvk2

PX

C .� � �3 � c.n/ı�1�4/kvk2
PY

� .2 C ı/krbvk2
PY � 5kjxj�1=2rbvkL2.jxj�1/

(2.41)

where �n D .n � 1/.n � 3/=2 and (@r WD Ox � r)

1 D kjxj2.Œ@r .jxjc1/�C C c1;� C ja � I j.jxjjrc1j C jc1j/kL1 ;

2 D kjxj2c2k`2L1 ; 5 D kjxj2c5kL1 ;

�3 D kŒ@r.jxjc3/�C C c3;� C ja � I j.jxjjrc3j C jc3jk`2L1 ;

�4 D kc4;�k`1L1 C kc4k2
`1L1 :

In dimension n D 3, provided c5 D 0, we have instead

sup
R>0

Z

�

Iv � .1� 1 � c.n/2 � c.n/kCakL1/kvk2
PX

C .� � �3 � c.n/�4/kvk2
PY � .2 C ı/krbvk2

PY

(2.42)

where the definition of �3, �4 is the same, while

1 D kjxj.Œ@r .jxjc1/�C C c1;� C ja � I j.jxjjrc1j C jc1j/k`1L1L1 ;

2 D kjxj3=2c2k`1L2L1 :
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Proof. Integrating Iv on � and using (2.40) we obtain
Z

�

Iv �
Z

��R

�njvj2
jxj3 C

Z

�DR

jvj2
R2

dS �
Z

�

c.n/Ca.x/jvj2
jxj2.jxj _R/

C
Z

��R

�jvj2
R

�
Z

�

� jxj.a Ox/ � rc
jxj _R C Oac

R
1jxj�R

�
jvj2:

(2.43)

Consider first the case n � 4. We estimate the term

Ic D
� jxj.a Ox/ � rc

jxj _R C Oac
R

1jxj�R

�
jvj2

in two different ways for c1, c3 and for c2, c4. For c1, writing r D jxj and @r D Ox�r,

we have

jxj.a Ox/ � rc1

jxj _R C Oac1

R
1jxj�R D @r

� jxjc1

jxj _ R
�

C .a � I / Ox � r
� jxjc1

jxj _R
�

� 1

jxj .Œ@r.rc1/�C C c1;� C ja � I j.jxjjrc1j C jc1j//

so that

sup
R>0

Z

�

Ic1
� kjxj�1

�
Œ@r.rc1/�C C c1;� C ja � I j.jxjjrc1j C jc1j/

�
jvj2kL1

� 1kjxj�3=2vk2
L2 :

A similar computation for Ic3
gives (also in the case n D 3)

sup
R>0

Z

�

Ic3
� �3kvk2

PY :

On the other hand for c2 we write

Ic2
D r �

°a Oxjxjc2jvj2
jxj _R

±
� Na � Oa C jxj Qa

jxj _R c2jvj2 � 2
jxjc2

jxj _R<a.rbv; Oxv/

and if e.g. kCakL1 � 1=4, recalling also (2.30), we get

Ic2
� r �

°a Oxjxjc2jvj2
jxj _R

±
C c.n/

c2;�
jxj jvj2 C 4jc2jjvjjrbvj

so that

sup
R>0

Z

�

Ic2
� c.n/kjxj�1=2.c2;�/

1=2vk2
L2 C 4kc2vjrbvjkL1

� c.n/kjxj2c2;�kL1kjxj�3=2vk2
L2

C 4kjxj2c2k`2L1kjxj�3=2vkL2krbvk PY

� c.n/2kjxj�3=2vk2
L2 C 2krbvk2

PY :
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Using the same identity for c4 we can estimate

sup
R>0

Z

�

Ic4
� c.n/kc4;�k`1L1kvk2

PY C 4kc4k`1L1kvk PY krbvk PY

and this implies

sup
R>0

Z

�

Ic4
� ıkrbvk2

PY C c.n/ı�1�4kvk2
PY :

The same identity for c5 can be estimated as follows, with C D c.n/:

sup
R>0

Z

�

Ic5
� C5k v

jxj3=2
k2

L2 C 5k rbv

jxj1=2
k2

L2.jxj�1/
:

Hence taking the sup in R > 0 of (2.43) and using the previous estimates we

get (2.41).

In the case n D 3 we have �3 D 0 and the weighted L2 norm of v is

unavailable. We use the PX norm instead and we obtain

sup
R>0

Z

�

Ic1
� 1kvk2

PX ;

sup
R>0

Z

�

Ic2
� c.n/kc2;�jxjk`1L1L1kvk2

PX C 4kjxj3=2c2k`1L2L1kvk PXkrbvk PY

with the new definition of 1; 2, and this gives (2.42). �

Lemma 2.10 (Irv). With  as in (2.34), we have

sup
R>0

Z

�

Irv � .1� 6ka � IkL1 � c.n/kjxja0k`1L1/krbvk2
PY C

Z

�

j.arbv/T j2
jxj :

(2.44)

Proof. By separating the terms in ˛`m which contain derivatives of ajk we have

Irv D s`m � <.@b
`v@

b
mv/C r`m � <.@b

`v@
b
mv/C a.rbv;rbv/�

where

s`m.x/ D 2ajma`k Oxj Oxk 
00 C 2Œajmaj` � ajma`k Oxj Oxk �

 0

jxj ;

r`m.x/ D Œ2ajma`kIj � ajka`mIj � Oxk 
0:
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With our choice of  we get

jr`m.x/<.@b
`v@

b
mv/j � c.n/

jxjja0j
jxj _R jrbvj2 � c.n/ja0jjrbvj2;

a.rbv;rbv/� D � Oa
R

1jxj�Ra.rbv;rbv/ � �N
2

R
1jxj�Rjrbvj2:

Moreover

s`m<.@b
`v@

b
mv/ D 2j.arbv/Rj2 00 C 2j.arbv/T j2  

0

jxj
which gives, using jwRj2 C jwT j2 D jwj2 (we recall notation (1.7))

s`m<.@b
`v@

b
mv/ D 2

R
jarbvj21jxj�R C 2

jxj j.arbv/T j21jxj>R:

Summing up we obtain

Irv � .2�2 �N 2/

R
� jrbvj21jxj�R C 2

jxj j.arbv/T j21jxj>R � c.n/ja0jjrbvj2:

Note that we can assume � � 1� ka � IkL1 and N � 1C ka � IkL1 so that

2�2 � N 2 � 1� 6ka � IkL1 :

Integrating on � and taking the sup over R > 0 we obtain

sup
R>0

Z

�

Irv � .1 � 6ka � IkL1/krbvk2
PY C

Z

�

j.arbv/T j2
jxj � c.n/kja0jjrbvj2kL1

and this implies the claim. �

Lemma 2.11 (If ). With �;  as in (2.33), we have for all ı 2 .0; 1/
Z

�

If � ıkvk2
PX C ıkrbvk2

PY C C.n; kCakL1/ı�1kf k2
PY �
: (2.45)

Proof. By (2.34)

If D Na � OaC jxj Qa
jxj _ R <. Nvf /C 2jxja Ox

jxj _R<.rbvf / � C.n; kCakL1/.
jvj
jxj C jrbvj/jf j

and hence
Z

�

If � C.n; kCakL1/.kjxj�1vk PY C krbvk PY /kf k PY � :

The claim follows recalling that kjxj�1vk PY � kvk PX . �



26 F. Cacciafesta, P. D’Ancona, and R. Lucà

2.5. Conclusion of the proof. We are ready to complete the proof of Theo-

rem 2.1. We integrate (2.8) on � with the choice of weights (2.33) and we take

the supremum over R > 0. We then apply the previous Lemmas to estimate the

individual terms.

We consider first the case (A0). One checks easily that the assumptions on b; c

imply the following: for b D bI C bII we have

kjxj3=2cdbIk`1L2L1 C kjxj3=2ja � I jcdbIIk`1L2L1 C kjxj2cdbIIkL1 < �;

with bII D 0 in n D 3, while the electric potential can be written c D c1 C c2 C cf
with

kjxj3=2cf k`1L2L1 < �; c1;� 2 L1

and in dimension n � 4

ja�I j �.jxj2jc1jCjxj3jrc1j/Cjxj2 �.c1;� C Œ@r.rc1/�C Cc2;�/Ckjxjc2k`1L1 < �

while in dimension n D 3

kja � I j � .jxj2jc1j C jxj3jrc1j/C jxj2 � .c1;� C Œ@r .rc1/�C C c2;�/k`1L1

C kjxjc2k`1L1

< �:

Indeed, it is sufficient to take c1 D cI and, for a fixed cutoff 0 � �.x/ � 1

supported near 0, c2 D .1� �/ � cII and cf D � � cII.
Consider the case n � 4. Write Qc D c1 C c2 and

Qf D .Ab � Qc C �C i�/v; Qf D f C cf v:

Then all the assumptions of Lemmas 2.4, 2.5, 2.6, 2.8, 2.9, 2.10, and 2.11 are

satisfied by a, b and Qc. As a consequence we have

sup
R>0

Z

�

jI�j C jIbj C jI Qf
j

� C � .ı C �/.kvk2
PX C krbvk2

PY C kjxj�3=2vk2
L2/

C Œ�C ı.j�j C j�j C kcI,�kL1/�kvk2
PY C Cı�4k Qf k2

PY �
;

sup
R>0

Z

�

.Iv C Irv/

�
�1
2

� C�
�
kjxj�3=2vk2

L2 C .1� C.�C ı//krbvk2
PY C kvk2

PX C �kvk2
PY ;

��kvk2
PY � C�kjxj�3=2vk2

L2 C ıkvk2
PX C Cı�1k Qf k2

PY �
:
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Thus integrating (2.8) on � and dropping the boundary terms, which give a

negative contribution as proved in Remark 2.5, from the previous inequalities

taking ı and � sufficiently small we obtain (2.2), with Qf D f C cf v in place

of f . More precisely, we use Lemma 2.5 to get rid of the � term at the right hand

side, so that we obtain (2.2) with � D 0. To reinclude the � term, we can use

again (2.23) combined with the local smoothing just obtained, which gives

j�j1=2kvk PY � CkakL1.krbvk PY C kvk PX C kf k PY �/ � C.a/.1C c.n//kf k PY � :

Now it remains to estimate

kf C cf vk PY � � kf k PY � C kjxj3=2cf k`1L2L1kvk PX < kf k PY � C �kvk PX

and absorb the last term at the left hand side, provided � is small enough. The

proof for n D 3 is completely analogous.

In the case of the weaker condition (A) the argument is almost the same. We

split c D c1 C c2 C c3 C c4 C cf with c1 D cI, c2 D .1 � �/cII, c3 D cIII,

c4 D .1� �/cIV and cf D � � .cII C cIV/, and we write Qc D c1 C c2 C c3 C c4 and

Qf D .Ab � Qc C �C i�/v; Qf D f C cf v

as before. Note that in the estimate of I� we get an additional term kc3;� C
c4;�kL1kvk2

PY , while in estimate (2.41) we must take 1
2
� > c.n/.Z C Z2/ �

�3 C c.n/�4 in order to obtain positive terms. Then we can apply the lemmas as

above, and in the final step we estimate Qf as follows:

k Qf k PY � � kf k PY � C kjxj3=2�cIIk`1L2L1kvk PX C kjxj�cIVk`1L1kvk PY

� kf k PY � C �kvk PX C Zkvk PY :

In conclusion, we arrive at an estimate of the form

kvk PX C .�C j�j/1=2kvk PY C krbvk PY C k.arbv/T kL2 � c.n/kf k PY � C c.n/Zkvk PY

and the additional term kvk PY can be absorbed at the left hand side, provided � is

large enough. We omit the details.

Remark 2.6 (Inverse square potentials). Note that in dimension n � 4 and for

� > 0 we can add to the electric potential c a further term cV satisfying

5 WD kjxj2cV kL1 � 1 cV supported in ¹jxj � 1º:
Indeed, taking c5 D cV in Lemma 2.9, we obtain an additional term at the right

hand side of the estimate:

kvk PX C kjxj�3=2vkL2 C .�C C j�j/1=2kvk PY C krbvk PY C k.arbv/T kL2

� c.n/.kf k PY � C 
1=2
5 kjxj�1=2rbvkL2.jxj�1//:
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We can estimate the additional term using Lemma 2.7:

kjxj�1=2rbvkL2.jxj�1/ � 2�Ckjxj�3=2vk2
L2.jxj�2/

C c.n/kvk2
PX C c.n/kf k2

PY �

and if � is small enough we can absorb the kvk PX term at the right hand side:

kvk PX C kjxj�3=2vkL2 C .j�j C j�j/1=2kvk PY C krbvk PY C k.arbv/T kL2

� c.n/kf k PY � C c.n/.5�C/
1=2kjxj�3=2vkL2 :

In conclusion, if we assume

kjxj2cV kL1 � �C < �.n/ (2.46)

for a suitable constant �.n/ depending only on n, we can absorb also the remaining

term and we obtain that the estimate (2.2) continues to hold. However in this case

the condition on cV is not independent of � and actually becomes worse as �C
grows.

3. The radiation estimate

The goal of this Section is to prove an estimate for the difference

rb
Sv WD rbv � i Ox

p
�v

(S stands for Sommerfeld) in a norm slightly stronger than k � k PY ; to this purpose

we use the weighted L2 norms, for some ı > 0,
Z

�

jxjı�1jrb
Svj2dx: (3.1)

This is enough to rule out functions in the kernel of L C � and hence to get

uniqueness for the Helmholtz equation. Indeed, if the previous norm is finite

then condition (1.10) is satisfied. The value of ı is connected to the asymptotic

behaviour of the metric a.x/ (see the statement of Theorem 3.2), a fact already

observed in [23].

Note that we can only estimate (3.1) in terms of the PY norms of v and its

derivative; in order to get an actual estimate, this result must be combined with

the smoothing estimate of Section 2.

Since we are interested in the behaviour of solutions in the limit � C i� !
� > 0, it is actually sufficient to prove an estimate in the quarter plane j�j < �.

However, the estimate in the case � � j�j is elementary (and actually stronger),

and we give it here for the sake of completeness.
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Proposition 3.1 (radiation estimate, case � � j�j). Let � 2 R, 0 < � � j�j.
Assume Ca < 1=2 and c D cI C cII with

kjxj2cI,�kL1 � �; kcII,�kL1 � K:

If � is sufficiently small with respect to n, we have

krbvk2
L2 C �kvk2

L2 . .1CK��1/Œkvk2
PY C kf k2

PY �
�: (3.2)

Proof. We can assume � > 0. By � � � and (2.18) we have

�

Z
jvj2 � �

Z
jvj2 �

Z
jf Nvj � kvk2

PY C kf k2
PY �
:

Also by (2.18), we can write for all ı > 0
Z
a.rbv;rbv/ � �

Z
jvj2 C

Z
c�jvj2 C

Z
jf Nvj

� .�CK/

Z
jvj2 C �

Z jvj2
jxj2 C

Z
jf Nvj:

By the magnetic Hardy inequality (2.6) and the previous inequality we have then

� .2CK��1/

Z
jf Nvj C �c.n/krbvk2

L2

and if � is sufficiently small we deduce

krbvk2
L2 . .1CK��1/

Z
jf Nvj:

Appying the Cauchy–Schwartz inequality we obtain (3.2). �

Theorem 3.2 (radiation estimate, case � > j�j). Let ı 2 .0; 1�, b D bI C bII,

c D cI C cII and assume that jxj3rcI 2 L1 and for some constants �;K

kCakL1 C kjxj2cdbIkL1 C kjxj2.@r.jxjcI//CkL1 C kjxj2cI,�kL1 � �;

kjxjı.ja � I j C jxjja0j/k`1L1 C kjxjıC1cdbIIk`1L1 C kjxjıcIIk`1L1 � K:

If � is sufficiently small with respect to n; ı, then we have for ı < 1

.1� ı/kjxjı�1.arbv/T k2
L2 C

Z �
jxjı�1 C �p

�
jxjı

�
jrb

Svj2

. .1CK/

�
.1C �/kvk2

PY C krbvk2
PY C

Z
jxjıhxijf j2

�

CK��1

Z
jxjı hxijf j2;

(3.3)
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while for ı D 1 we have

Z �
1C �p

�
jxj

�
jrb

Svj2

. .1CK/

�
.1C �/kvk2

PY C krbvk2
PY C ��1kf k2

PY �
C

Z
jxj2jf j2

�
:

(3.4)

Proof. In the proof we shall use the shorthand notation

a.w/ WD a.w;w/ D a.x/w � Nw; w 2 C
n

for the quadratic form associated to the matrix a. We can assume � � 0, the other

case being similar.

For later use we write the computations in terms of a generic weight function

� as far as possible. We consider again identity (2.8) with the choices

 0 D � i.e.  .jxj/ D
jxjZ

0

�.s/ds; � D ��0 C �p
�
�

where � is a smooth radial function with �; �0 � 0, and we add to it the imaginary

part of identity (2.14) with the choice � D �2
p
��. We also rearrange the terms

using the identities

I� D 2�=Œa.r ;rbv/v� D Œa.rbv � i Ox
p
�v/� a.rbv/ � Oa�jvj2� �p

�
�

and

=a.rbv; vr.�2
p
��// D Œa.rbv � i Ox

p
�v/ � a.rbv/� Oa�jvj2��0: (3.5)

We obtain the following identity:

IS C Irv C Iv C Ic C Ib C If D @j ¹<Qj C <Pj C = zPj º (3.6)

where

IS D
h
�0 C �p

�
�

i
a.rbv � i

p
� Oxv/

Irv D 2j.arbv/Rj2�0 C 2j.arbv/T j2 �jxj � 2a.rbv/�0 C r`m<.@b
`v@

b
mv/

with r`m.x/ D Œ2ajma`kIj � ajka`mIj � Oxk� and using notation (1.7),

Iv D
h

� 1

2
A.A C �/C .1 � Oa/.�

p
��C ��0/

i
jvj2
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Ic D
h �p

�
�c � �0c � a. Ox;rc/�

i
jvj2

Ib D 2=Œ.arbv/ � .db/T / Nv��

If D <Œ.A C �/ Nvf C 2a. Ox;rbv/�f �� 2
p
�=. Nvf�/

where

Qj D ajk@
b
kv � ŒAb;  � Nv � 1

2
ajk.@kA /jvj2 � ajk Oxk�Œ.c � �/jvj2 C a.rbv/�

with  0 D �, and

Pj D ajk@
b
kv Nv

h �p
�
� � �0

i
� 1

2
ajk Oxk jvj2

h �p
�
�0 � �00

i
; zPj D ajk Nv@b

kv�:

Note that at @� the boundary terms Pj ; zPj vanish, while Qj give a negative con-

tribution as proved in Remark 2.5; on the other hand, the integrals of Pj ; zPj ; Qj

on the sphere ¹jxj D M º tend to zero as M ! 1 by the conditions imposed on

the growth of �. Hence by integrating (3.6) on�\¹jxj � M º and lettingM ! 1
we can neglect the boundary terms and we obtain

Z

�

.IS C Irv C Iv C Ic C Ib C If / � 0:

We shall also use the magnetic Hardy inequality (2.6) for different choices of s.

Note that with the substitution w D e�i
p

�jxjv we have also

kjxj�svkL2 � 2

n� 2s
kjxj1�srb

SvkL2 (3.7)

where we used the notation rb
S D rb � i Ox

p
�.

We estimate each term separately. We can write

Irv D 2�0a.rbv; .a� I /rbv/C 2
� �

jxj � �0
�
j.arbv/T j2 C r`m<.@b

`v@
b
mv/

and noticing that � � jxj�0 for � D jxjı , ı � 1, we obtain

Z

�

Irv � �c.n/kjxjı.ja � I j C jxjja0j/k`1L1 � krbvk2
PY

C .1 � ı/kjxj ı�1
2 .arbv/T k2

L2 :

(3.8)
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In order to estimate Iv we first compute

A C � D . Oa � 1/�0 C Na � OaC jxj Qa
jxj �C �p

�
�:

Recalling (2.35) we have easily

jA C �j � c.n/
� �

jxj C �0
�

C �p
�
� � c.n/jxjı�1 C �p

�
jxjı ; (3.9)

while a straightforward computation gives, with �n D .n� 1/.n� 3/,

A.A C �/ � � �n

jxj2
� �

jxj � �0
�

C n � 1
jxj �

00 C c.n/
CaC�

jxj2

C �p
�

�
Oa�00 C n � 1

jxj �
0 C c.n/

Ca�
0

jxj
�

where

C�.x/ WD jxj�1�C �0 C jxjj�00j C jxj2j�000j:
With the choice � D jxjı , and dropping a negative term, this reduces to

A.A C �/ � � .1� ı/.n� 3C ı/

jxj3�ı
C c.n/Ca

jxj3�ı
C �ıp

�

n � 1C Cac.n/

jxj2�ı
:

We shall drop also the first term at the right, although it gives a positive contribu-

tion, since it can be recovered from the final estimate. Thus we have

Iv � �c.n/Ca

jxj3�ı
jvj2 � �ıp

�

n � 1C Cac.n/

jxj2�ı
jvj2 � ja � I j.�

p
��C ��0/jvj2:

We now integrate Iv on �. Thanks to the magnetic Hardy inequality (3.7) with

s D .3� ı/=2 and using the previous estimate for A.A C �/, we have

c.n/

Z
Cajxjı�3jvj2 � 4c.n/kCakL1

.n� 3C ı/2

Z
jxjı�1jrb

Svj2 � �

Z
IS

(note that in 3D the constant ! 1 as ı ! 0) provided

4c.n/kCakL1

�.n � 3C ı/2
� � � ı:

Here � is a universal constant (it will be chosen equal to 1=10) which we keep

around to track the smallness assumptions on the coefficients. In a similar way,

with s D .2 � ı/=2,
�p
�
ı

Z
n � 1C Cac.n/

jxj2�ı
jvj2 � 4ı.n� 1C c.n/kCakL1/

.n � 2� ı/2

Z
�p
�

jxjı jrb
Svj2

� �

Z
IS

(3.10)
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provided
4.n� 1C c.n/kCakL1/

�.n � 2 � ı/2 � ı � �:

Note that the last condition restricts ı to an interval .0; ın�which covers .0; 1� only

for n sufficiently large. To get around this difficulty we give an alternative estimate

of the � term. Fix ˛ > 0 and split the integral in the regions jxj � ˛ and jxj � ˛:

�

Z jvj2
jxj2�ı

� �˛

Z jvj2
jxj3�ı

C�˛ı�2

Z
jvj2 � 4�˛

�.n � 3C ı/2

Z
IS C˛ı�2

Z
jf Nvj

where we used again (3.7) and the inequality �
R

� jvj2 �
R

� jf Nvj (recall the first

identity (2.18)). Hence we obtain

�p
�
ı

Z
n � 1C Cac.n/

jxj2�ı
jvj2 � C1

�ı˛p
�

Z
IS C C2

ı˛ı�2

p
�

Z
jf Nvj

where

C1 D 4.n � 1C c.n/kCakL1/

�.n � 3C ı/2
; C2 D n � 1C c.n/kCakL1 :

We choose now

˛ D �

C1ı
p
�

and we arrive at the following inequality, which is valid for all ı 2 .0; 1�:

�p
�
ı

Z
n � 1C Cac.n/

jxj2�ı
jvj2 � �

�
�

Z
IS C C3

p
�

1�ı
Z

jf Nvj

where

C3 D 42�ı Œı.n� 1C c.n/kCakL1/�3�ı

.��.n� 3C ı/2/2�ı

and we can estimate the coefficient �=� with 1 since � � �. Thus we get

�p
�
ı

Z
n � 1C Cac.n/

jxj2�ı
jvj2 � �

Z
IS C c.n; ı/.1C �/1�ıkvk2

PY C kf k2
PY �
:

Moreover we have
Z

ja � I j��0jvj2 � kja � I jjxjık`1L1�kvk2
PY

Z
ja � I j�

p
��jvj2 � kja � I jjxjıkL1

p
�

Z
jf Nvj
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where we used the estimate �
R

�
jvj2 � R

�
jf Nvj which follows from (2.18). Sum-

ming up, we obtain, as ı 2 .0; 1�,
Z
Iv � �2�

Z
IS � c.n; ı/.1CK/..1C �/kvk2

PY C kf k2
PY �
/: (3.11)

The term Ib can be estimated as follows. We note that

arbv � .db/T D arb
Sv � .db/T

so that, with the choice � D jxjı ,

Z
IbI

� �c.n/kjxj ı�1
2 rbI

S vkL2kjxj2cdbIkL1kjxj ı�3
2 vkL2

and using the magnetic Hardy inequality

Z
IbI

� � 2c.n/

.n� 3C ı/
kjxj2cdbIkL1kjxjı�1rb

Svk2
L2 � ��

Z
IS

provided

2c.n/

�.n � 3C ı/
kjxj2cdbIkL1 � 2c.n/

�.n � 3C ı/
� � � � � ı:

For the second piece IbII
we have simply

Z
IbII

� �c.n/krbvk PY kvk PY kjxj1Cı cdbIIk`1L1 � �c.n/Kkrbvk PY kvk PY

and in conclusion
Z
Ib � ��

Z
IS � c.n/Kkrbvk PY kvk PY : (3.12)

To estimate Ic we begin by writing, with � D jxjı ,

Z
IcI

� � �p
�

kjxj2cI,�kL1

Z
jjxjı�2jvj2 �

Z
Œıjxjı�1cI C jxjıa. Ox;rcI/�jvj2

and the first term can be handled again using Hardy’s inequality:

� ��
Z
IS �

Z
Œıjxjı�1cI C jxjıa. Ox;rcI/�jvj2

provided

4

�.n � 2C ı/2
kjxj2cI,�kL1 � 4

�.n � 2C ı/2
� � � � � ı:
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To bound the second integral we write, with @r denoting the radial derivative,

ıjxjı�1cI C jxjıa. Ox;rcI/�jvj2

D @r.jxjıcI/C .a � I / Ox � rcIjxjı

D ..ı � 1/jxj2cI C jxj2@r.jxjcI//jxjı�3 C .a � I / Ox � rcIjxjı

� � � .1C kxj3rcIkL1/ � jxjı�3

and hence, using Hardy’s inequality,

Z
Œıjxjı�1cI C a. Ox;rcI/��jvj2 � �

Z
IS

provided

4

�.n � 3C ı/2
.1C kxj3rcIkL1/ � � � � � ı:

Thus we have proved, for � small enough,

Z
IcI

� �2�
Z
IS :

For the second piece IcII
we use again (2.18): with � D jxjı , we have

Z
IcII

� ���1=2kjxjıcII,�kL1

Z
jf Nvj �

Z
Œ�0cII C a. Ox;rcII/��jvj2:

Using the identity (c D cII)

a. Ox;rc/�jvj2 D @j ¹ajk Oxkc�jvj2º � Na � Oa C jxj Qa
jxj c�jvj2

� Oac�0jvj2 � 2<a.rbv; Oxv/c�

we obtain

Z
Œ�0cII C a. Ox;rcII/��jvj2 � c.n/kjxjıcIIk`1L1.kvk2

PY C krbvk2
PY /:

Summing up, we have proved

Z
Ic � �2�

Z
IS � ��1Kkf k2

PY �
� c.n/K.krbvk2

PY C kvk2
PY /: (3.13)
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Finally for If we can write

2<a. Ox;rbv/�f � 2
p
�=. Nvf�/ D 2<.a � I / Ox � rbv�f C 2< Ox � rb

Sv�f

and recalling (3.9)

If � �.c.n/jxjı�1 C �p
�

jxjı/jf Nvj � ja � I jjxjı jrbvjjf j � 2jxjı jrb
Svjjf j:

The integral of the first term is estimated by Cauchy–Schwartz

Z
jxjı�1jf Nvj � ˛ı

Z
jxjı�3jvj2 C 1

˛ı

Z
jxjıC1jf j2

and then by Hardy’s inequality

˛ı

Z
jxjı�3jvj2 � 4˛ı

.n � 3C ı/2

Z
jxjı�1jrb

Svj2 � �

Z
IS ;

with 4˛ D �.n � 3C ı/2�, and we conclude

Z
jxjı�1jf Nvj � �

Z
IS C c.n; ı/

Z
jxjıC1jf j2:

For the second term we use the condition � � � and we obtain

�p
�

Z
jxjı jf Nvj � �

Z
jvj2 C

Z
jxj2ı jf j2 �

Z
jf Nvj C

Z
jxj2ı jf j2

Next we have
Z

ja � I jjxjı jrbvjjf j � kjxjı.a � I /kL1krbvk PY kf k PY � :

The integral of remaining term can be estimated as follows:

Z
jxjı jrb

Svjjf j � �ı�

Z
jxjı�1jrb

Svj2 C 1

�ı�

Z
jxjıC1jf j2

� �

Z
IS C 1

�ı�

Z
jxjıC1jf j2:

Summing up, we have proved

Z

�

If � �2�
Z
IS � c

Z
.jxjıC1 C jxj2ı/jf j2 �

Z
jf Nvj �Kkrbvk PY kf k PY �

(3.14)

for some c D c.n; �; ı/.
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We collect (3.8), (3.11), (3.12), (3.13), and (3.14) to obtain

.1 � 7�/
Z
IS C .1� ı/kjxj ı�1

2 .arbv/T k2
L2

� c.n; ı/

Z
.jxjıC1 C jxj2ı/jf j2

C c.n; ı/.1CK/..1C �/kvk2
PY C krbvk2

PY C ��1kf k2
PY �
/:

We now choose � D 1=10 so that 1 � 7� > 0. Moreover, in the case ı < 1 we

have easily

Z
.jxjıC1 C jxj2ı/jf j2 C kf k2

PY �
.

Z
jxjıhxijf j2

and this gives (3.3), while for ı D 1 we leave the two norms of f separate, and

we obtain (3.4). �

4. Proof of Theorem 1.1

We first prove that the only solution satisfying the Sommerfeld condition is 0.

Corollary 4.1 (uniqueness). Assume (A) holds,

� < �0.n/ and � � c0.n/.Z CZ2/:

Let v 2 H 1
loc.�/ with vj@� D 0 be a solution of

.LC �/v D 0

satisfying the Sommerfeld radiation condition

lim inf
R!1

Z

jxjDR

jrbv � i
p
� Oxvj2dS D 0: (4.1)

Then v � 0. If in particular

Z

jxj�1

jxjı�1jrbv � i
p
� Oxvj2dx < 1 (4.2)

for some ı > 0, then (4.1) is satisfied and the same conclusion holds.
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Proof of the corollary. By the assumptions on L we have v 2 H 2
loc. Moreover,

multiplying the equation by Nv and taking the imaginary part we obtain the identity

=@j ¹ajk@
b
kv Nvº D 0

and integrating on�\ ¹jxj < Rº, thanks to the Dirichlet boundary conditions we

get, for R large enough,

Z

jxjDR

=. Nv Ox � rbv/dS D 0:

This implies

Z

jxjDR

.jrbvj2 C �jvj2/dS D
Z

jxjDR

ˇ̌
rbv � i

p
� Oxv

ˇ̌2
dS

and hence condition (2.1) is satisfied. Then applying the previous estimate with

f D 0, � D 0, we obtain that v � 0. The last claim is proved by contradiction:

if
R

jxjDR jrbv � i
p
� Oxvj2dS � � for some constant � > 0, then multiplying by

jxjı�1 and integrating in the radial variable we obtain that the quantity (4.2) can

not be finite. �

Lemma 4.2. Assume (A), with �; � arbitrary, and let

� D ka � IkL1 C kjxj2c�kL1.jxj�2/:

Let v 2 H 2
loc.�/ with vj@� D 0, �; � 2 R and let f D .LC �C i�/v. Then, if �

is sufficiently small with respect to n, for all R > 0 we have

Z

�\¹jxj�Rº

jrbvj2 � C

Z

�\¹jxj�RC1º

jvj2 C
Z

�\¹jxj�RC1º

jf j2 (4.3)

where C D c.n/.1C �C C kc�kL1.jxj�1//.

Proof. For any real valued test function  we can write

.LC �C i"/. v/ D  f C .A /v C 2a.rbv;r /

and multiplying by  Nv and rearranging the terms we get

@j ¹ Nvajk@
b
k. v/º � a.rb. v/;rb. v//C .�C i� � c/j vj2

D f  2 Nv C .A / jvj2 C 2a.rbv;r / Nv:
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Now we take the real part and use the fact that

2<a.rbv;r / Nv D 2<a.rv;r / Nv

D � 1

2
a.rj j2;rjvj2/

D � 1

2
.Aj j2/jvj2 � @j

°1
2
ajk jvj2@k j j2

±

and we obtain

@j

°
< Nvajk@

b
k. v/C 1

2
ajk jvj2@k j j2

±
D a.rb. v/;rb. v//C .c � �/j vj2

C <f  2 Nv C .A / jvj2

� 1

2
.Aj j2/jvj2:

Integrating on � and using Aj j2 D 2 A C 2a.r ;r / and the Dirichlet

boundary conditions, we arrive at
Z

�

a.rb. v/;rb. v// D
Z

�

.� � c/j vj2 �
Z

�

<f  2 Nv C
Z

�

a.r ;r /jvj2:

(4.4)

It is clear that this identity holds for any compactly supported, piecewise C 1

weight function  .

We introduce now a cutoff function � equal to 1 in jxj � 1, equal to 0 for

jxj � 2, and such that 0 � � � 1. Then we can write

�
Z
cj vj2 �

Z
.1� �/c�j vj2 C

Z
�c�j vj2:

We estimate the first term simply as follows:
Z

�

.1� �/c�j vj2 � kc�kL1.jxj�1/

Z

�

j vj2:

On the other hand, for the second term we use the magnetic Hardy inequality:
Z

�

�c�j vj2 � kjxj2c�kL1.jxj�2/

Z

�

jxj�2j vj2 � c.n/�

Z

�

jrb. v/j2:

Since a � .1 � �/I , if � is sufficiently small with respect to n we can absorb the

last term at the left hand side of (4.4) and we obtain the estimate
Z

�

jrb. v/j2

� c.n/.1C �C C kc�kL1.jxj�1//

Z

�

j vj2 C
Z

�

a.r ;r /jvj2 C
Z

�

j f j2:
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Finally, we choose  as follows: for a given R > 0,

 D

8
ˆ̂̂
<
ˆ̂̂
:

1 if jxj � R;

0 if jxj � RC 1;

RC 1 � jxj elsewhere.

Plugging  in the previous estimate we obtain the claim. �

We are ready to conclude the proof of Theorem 1.1. Given f with

Z
jxjıhxijf j2 < 1;

we consider a sequence �k > 0 with �k ! 0 and define vk as the unique solution

vk 2 H 1
0 .�/ \H 2.�/ of

.LC �C i�k/vk D f:

We now remark that under the assumptions of Theorem 1.1, if � is sufficiently

small, all the conditions in both Theorems 2.1 and 3.2 are satisfied. Then, intro-

ducing the norm

kwk PZ WD kwk PX C j�jkwk PY C krbwk PY C .n � 3/


jwj2
jxj3=2



C
� Z

jxjı�1jrb
Svj2dx

�1=2

;

we get the bound (uniform in j�j < � for fixed �)

kvkk2
PZ .

Z
jxjıhxijf j2 (4.5)

since the last norm controls kf k PY � . Note on the other hand that the smoothing

estimate

kvkk PX C j�j1=2kvkk PY C krbvkk PY C k.arbvk/T kL2 C .n � 3/

vk

jxj3=2


L2

� c.n/kf k PY �

(4.6)

is uniform for all � > N� � .K CK2/ and all �.
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From (4.5) we deduce that vk is a bounded sequence in H 1.� \ ¹jxj < Rº/
for all R > 0; by a diagonal procedure and the compact embedding ofH 1 into L2

we can extract a subsequence, which we denote again by vk, strongly convergent

in L2.� \ ¹jxj < Rº/ for all R > 0. Moreover, the difference vk � vh of two

solutions satisfies the equation

.LC �C i�k/.vk � vh/ D .�k � �h/vh;

hence by Lemma 4.2 we see that vk is a Cauchy sequence in H 1.�\ ¹jxj < Rº/,
and in conclusion vk converges strongly in H 1.�\ ¹jxj < Rº/ for all R > 0 to a

limit v. Clearly v 2 H 1
loc.�/, vj@� D 0, and v is a solution of

.LC �/v D f:

We note that by (4.5) the sequence vk is bounded in PZ which is the dual of a

separable space, hence it admits a weakly-* convergent subsequence whose limit

satisfies the same bound. This means that v 2 PZ with

kvk2
PZ .

Z
jxjıhxijf j2;

and that v satisfies also the smoothing estimate (4.6).

Finally, if we apply the same procedure to any subsequence of the original

sequence, we can extract from it a subsequence which converges in H 1
loc strongly

and in PZ weakly-* to a solution Qv of the Helmholtz equation satisfying the same

bounds, and by Corollary 4.1 we must have Qv D v. This implies that the entire

original sequence converges to v both inH 1
loc strongly and in PZ weakly-*, and the

proof is concluded.

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218. MR 0397194

Zbl 0315.47007

[2] S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential

equations with simple characteristics. J. Analyse Math. 30 (1976), 1–38. MR 0466902

Zbl 0335.35013

[3] J. A. Barceló, L. Fanelli, A. Ruiz, and M. Vilela, A priori estimates for the Helmholtz

equation with electromagnetic potentials in exterior domains. Proc. Roy. Soc. Edin-

burgh Sect. A 143 (2013), no. 1, 1–19. MR 3023001 Zbl 1293.35060

http://www.ams.org/mathscinet-getitem?mr=0397194
http://zbmath.org/?q=an:0315.47007
http://www.ams.org/mathscinet-getitem?mr=0466902
http://zbmath.org/?q=an:0335.35013
http://www.ams.org/mathscinet-getitem?mr=3023001
http://zbmath.org/?q=an:1293.35060


42 F. Cacciafesta, P. D’Ancona, and R. Lucà

[4] J. A. Barceló, A. Ruiz, and L. Vega, Some dispersive estimates for Schrödinger equa-

tions with repulsive potentials. J. Funct. Anal. 236 (2006), no. 1, 1–24. MR 2227127

Zbl 1293.35090

[5] J. A. Barceló, L. Vega, and, M. Zubeldia, The forward problem for the electromag-

netic Helmholtz equation with critical singularities. Adv. Math. 240 (2013), 636–671.

MR 3046321 Zbl 1284.35144

[6] N. Burq, F. Planchon, J.. Stalker, and A. Tahvildar-Zadeh, Strichartz estimates for

the wave and Schrödinger equations with potentials of critical decay. Indiana Univ.

Math. J. 53 (2004), no. 6, 1665–1680. MR 2106340 Zbl 1084.35014

[7] F. Cacciafesta, Smoothing estimates for variable coefficients Schrödinger equation

with electromagnetic potential. J. Math. Anal. Appl. 402 (2013), no. 1, 286–296.

MR 3023258 Zbl 1307.35244

[8] F. Cacciafesta, P. D’Ancona, and R. Lucà, Helmholtz and dispersive equations with

variable coefficients on exterior domains. SIAM J. Math. Anal. 48 (2016), no. 3,

1798–1832. MR 3499554 Zbl 1338.35143

[9] B. Cassano and P. D’Ancona, Scattering in the energy space for the NLS with variable

coefficients. Math. Ann. 366 (2016), no. 1-2, 479–543. MR 3552248 Zbl 1352.35158

[10] P. D’Ancona, Kato smoothing and Strichartz estimates for wave equations with mag-

netic potentials. Comm. Math. Phys. 335 (2015), no. 1, 1–16. MR 3314497

Zbl 1311.35166

[11] P. D’Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equa-

tions with magnetic potentials. Comm. Partial Differential Equations 33 (2008),

no. 4-6, 1082–1112. MR 2424390 Zbl 1160.35363

[12] P. D’Ancona, L. Fanelli, L. Vega, and N. Visciglia, Endpoint Strichartz estimates for

the magnetic Schrödinger equation. J. Funct. Anal. 258 (2010), no. 10, 3227–3240.

MR 2601614 Zbl 1188.81061

[13] D. M. Eidus, The principle of limiting absorption. Mat. Sb. (N.S.) 57 (99) 1962

13–44. In Russian. English translation, Amer. Math. Soc. Transl. (2) 47 (1965) 157–191.

MR 0145187 Zbl 0149.30602

[14] L. Fanelli, Non-trapping magnetic fields and Morrey–Campanato estimates for

Schrödinger operators. J. Math. Anal. Appl. 357 (2009), no. 1, 1–14. MR 2526801

Zbl 1170.35374

[15] L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz

inequalities. Math. Ann. 344 (2009), no. 2, 249–278. MR 2495769 Zbl 1163.35005

[16] L. Hörmander, The analysis of linear partial differential operators. IV. Fourier inte-

gral operators. Corrected reprint of the 1985 original. Grundlehren der Mathematis-

chen Wissenschaften, 275. Springer-Verlag, Berlin, 1994. MR 1481433 Zbl 0612.35001

http://www.ams.org/mathscinet-getitem?mr=2227127
http://zbmath.org/?q=an:1293.35090
http://www.ams.org/mathscinet-getitem?mr=3046321
http://zbmath.org/?q=an:1284.35144
http://www.ams.org/mathscinet-getitem?mr=2106340
http://zbmath.org/?q=an:1084.35014
http://www.ams.org/mathscinet-getitem?mr=3023258
http://zbmath.org/?q=an:1307.35244
http://www.ams.org/mathscinet-getitem?mr=3499554
http://zbmath.org/?q=an:1338.35143
http://www.ams.org/mathscinet-getitem?mr=3552248
http://zbmath.org/?q=an:1352.35158
http://www.ams.org/mathscinet-getitem?mr=3314497
http://zbmath.org/?q=an:1311.35166
http://www.ams.org/mathscinet-getitem?mr=2424390
http://zbmath.org/?q=an:1160.35363
http://www.ams.org/mathscinet-getitem?mr=2601614
http://zbmath.org/?q=an:1188.81061
http://www.ams.org/mathscinet-getitem?mr=0145187
http://zbmath.org/?q=an:0149.30602
http://www.ams.org/mathscinet-getitem?mr=2526801
http://zbmath.org/?q=an:1170.35374
http://www.ams.org/mathscinet-getitem?mr=2495769
http://zbmath.org/?q=an:1163.35005
http://www.ams.org/mathscinet-getitem?mr=1481433
http://zbmath.org/?q=an:0612.35001


Sommerfeld condition 43

[17] T. Ikebe and Y. Saito, Limiting absorption method and absolute continuity for

the Schrödinger operator. J. Math. Kyoto Univ. 12 (1972), 513–542. MR 0312066

Zbl 0257.35022

[18] J. L. Journé, A. Soffer, and C. D. Sogge, Decay estimates for Schrödinger operators.

Comm. Pure Appl. Math. 44 (1991), no. 5, 573–604. MR 1105875 Zbl 0743.35008

[19] J. Marzuola, J. Metcalfe, and D. Tataru, Strichartz estimates and local smoothing

estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255 (2008),

no. 6, 1497–1553. MR 2565717 Zbl 1180.35187

[20] B. Perthame and L. Vega, Morrey–Campanato estimates for Helmholtz equations.

J. Funct. Anal. 164 (1999), no. 2, 340–355. MR 1695559 Zbl 0932.35048

[21] B. Perthame and L. Vega, Energy concentration and Sommerfeld condition for

Helmholtz equation with variable index at infinity. Geom. Funct. Anal. 17 (2008),

no. 5, 1685–1707. MR 2377500 Zbl 1137.35020

[22] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations

with rough and time-dependent potentials. Invent. Math. 155 (2004), no. 3, 451–513.

MR 2038194 Zbl 1063.35035

[23] I. Rodnianski and T. Tao, Effective limiting absorption principles, and applications.

Comm. Math. Phys. 333 (2015), no. 1, 1–95. MR 3294943 Zbl 1310.35204

[24] H. Koch and D. Tataru, Carleman estimates and unique continuation for second-order

elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math. 54 (2001),

no. 3, 339–360. MR 1809741 Zbl 1033.35025

[25] D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with

variable coefficients. Amer. J. Math. 130 (2008), no. 3, 571–634. MR 2418923

Zbl 1159.35315

[26] K. Yajima, On smoothing property of Schrödinger propagators. In H. Fujita, T. Ikebe,

and S. T. Kuroda (eds.), Functional-analytic methods for partial differential equa-

tions. Proceedings of the International Conference on Functional Analysis and its

Application in honor of Professor Tosio Kato held at the University of Tokyo, Tokyo,

July 3–6, 1989, and the Symposium on Spectral and Scattering Theory held at

Gakushuin University, Tokyo, July 7–9, 1989. Lecture Notes in Mathematics, 1450.

Springer-Verlag, Berlin, 1990, 20–35. MR 1084599 Zbl 0725.35084

[27] M. Zubeldia, Energy concentration and explicit Sommerfeld radiation condition

for the electromagnetic Helmholtz equation. J. Funct. Anal. 263 (2012), no. 9,

2832–2862. MR 2967307 Zbl 1269.35041

[28] M. Zubeldia, Limiting absorption principle for the electromagnetic Helmholtz equa-

tion with singular potentials. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4,

857–890. MR 3233761 Zbl 1297.35228

http://www.ams.org/mathscinet-getitem?mr=0312066
http://zbmath.org/?q=an:0257.35022
http://www.ams.org/mathscinet-getitem?mr=1105875
http://zbmath.org/?q=an:0743.35008
http://www.ams.org/mathscinet-getitem?mr=2565717
http://zbmath.org/?q=an:1180.35187
http://www.ams.org/mathscinet-getitem?mr=1695559
http://zbmath.org/?q=an:0932.35048
http://www.ams.org/mathscinet-getitem?mr=2377500
http://zbmath.org/?q=an:1137.35020
http://www.ams.org/mathscinet-getitem?mr=2038194
http://zbmath.org/?q=an:1063.35035
http://www.ams.org/mathscinet-getitem?mr=3294943
http://zbmath.org/?q=an:1310.35204
http://www.ams.org/mathscinet-getitem?mr=1809741
http://zbmath.org/?q=an:1033.35025
http://www.ams.org/mathscinet-getitem?mr=2418923
http://zbmath.org/?q=an:1159.35315
http://www.ams.org/mathscinet-getitem?mr=1084599
http://zbmath.org/?q=an:0725.35084
http://www.ams.org/mathscinet-getitem?mr=2967307
http://zbmath.org/?q=an:1269.35041
http://www.ams.org/mathscinet-getitem?mr=3233761
http://zbmath.org/?q=an:1297.35228


44 F. Cacciafesta, P. D’Ancona, and R. Lucà

Received December 3, 2016

Federico Cacciafesta, Dipartimento di Matematica, Università degli studi di Padova,

Via Trieste, 63, 35131 Padova, Italia

e-mail: cacciafe@math.unipd.it

Piero D’Ancona, Dipartimento di Matematica, Sapienza Università di Roma,

Piazzale A. Moro 2, 00185 Roma, Italy

e-mail: dancona@mat.uniroma1.it

Renato Lucà, Departement Matematik und Informatik, Universität Bsel, Spiegelgasse 1,

4051 Basel, Switzerland

e-mail: renato.luca@unibas.ch

mailto:cacciafe@math.unipd.it
mailto:dancona@mat.uniroma1.it
mailto:renato.luca@unibas.ch

	Introduction
	The smoothing estimate
	The radiation estimate
	Proof of Theorem 1.1
	References

