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Enhanced perversities

By Andrea D’Agnolo at Padova and Masaki Kashiwara at Kyoto

Abstract. On a complex manifold, the Riemann—Hilbert correspondence embeds the
triangulated category of (not necessarily regular) holonomic {D-modules into the triangulated
category of R-constructible enhanced ind-sheaves. The source category has a standard t-struc-
ture. Here, we provide the target category with a middle perversity t-structure, and prove that
the embedding is exact.

In the paper, we also discuss general perversities in the framework of R-constructible
enhanced ind-sheaves on bordered subanalytic spaces.
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Introduction

On a complex manifold X, the classical Riemann—Hilbert correspondence establishes an
equivalence
DRx: DY (Dx) = D .(Cx)

between the derived category of Dy -modules with regular holonomic cohomologies, and the
derived category of sheaves of C-vector spaces on X with C-constructible cohomologies ([7]).
Here,
_ L
DRy (M) = Qx @5, M

is the de Rham functor, and Q2x the sheaf of top-degree holomorphic differential forms.
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Moreover, the functor § Ry interchanges the standard t-structure on th({DX) with the middle
perversity t-structure on D%_c (Cx). In particular, DRy induces an equivalence between the
abelian category of regular holonomic Dy -modules and that of perverse sheaves on X.

The Riemann—Hilbert correspondence of [4] provides a fully faithful embedding

DRY:Dp(Dx) > By (ICx)

from the derived category of Dy-modules with (not necessarily regular) holonomic coho-
mologies, into the triangulated category of R-constructible enhanced ind-sheaves of C-vector
spaces on X . Here, i)ﬁ% is the enhanced version of the de Rham functor. The source category
Dgol(i)x) has a standard t-structure. In this paper, we provide the target category El]fg_ (ICx)
with a generalized middle perversity t-structure, and prove that !D!R)E( is an exact functor.

Generalized t-structures have been introduced in [10], as a reinterpretation of the notion
of slicing from [3]. For example, let DE{{. .(Cx) be the derived category of sheaves of C-vector
spaces on X with R-constructible cohomologies. Then, if X has positive dimension, D%_C (Cx)
does not admit a middle perversity t-structure in the classical sense. That is, there is no per-
versity whose induced t-structure on D%_C (Cy) is self-dual. However, it is shown in [10] that
D%-c (Cx) has a natural middle perversity t-structure in the generalized sense. This general-
ized t-structure induces the middle perversity t-structure on the subcategory D%_C (Cx). More-
over, it is compatible with our construction of the generalized middle perversity t-structure
on EE{{_ (ICx), since the natural embedding

DY .(Cx) > E} .(ICx)

turns out to be exact.

From now on, we shall use the term t-structure for the one in the generalized sense, and
refer to the classical notion as a classical t-structure.

Let k be a field and M a real analytic manifold, or more generally a bordered subanalytic
space. Let E%_C (Ikps) be the triangulated category of R-constructible enhanced ind-sheaves of
k-vector spaces on M. In this paper, we also discuss the t-structures on E%-c (Ikps) associated
with arbitrary perversities, and study their functorial properties. Let us give some details.

On the set of maps p: Z=o — R, consider the involution * given by p*(n) := —p(n)—n.
A perversity is amap p:Z=o — R such that p and p* are decreasing.

Let D%_C(kM) be the derived category of R-constructible sheaves of k-vector spaces
on M. For a locally closed subset Z of M, let kz be the extension by zero to M of the
constant sheaf on Z. For ¢ € R, set

PDEfC(kM) ={F € D']f{_c(kM); for any k € Z> there exists a closed
subanalytic subset Z C M of dimension < k such that
H’(kp\z ® F) ~0for j >c+ p(k)},
Difc(kM) ={F € D'ﬁ‘{_c(kM); for any k € Z>¢ and any closed
subanalytic subset Z C M of dimension < k one has
H/RHom(kz, F) ~ 0for j <c + p(k)}.

Then (? D\C (kar), P D .(Kar))cer is a t-structure in the sense of Definition 1.2.2. Moreover,
the duahty functor 1nterchanges p D\C .(kar) and p* D/_C (kpz). In particular, the t-structure
(1 /2 (kM) 1/2p (kM))ceR ass001ated with the mlddle perversity n — —n /2 is self-dual.
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The analogous definition for R-constructible enhanced ind-sheaves is

pE]EfC(IkM) =1{K € E%_C(IkM); for any k € Z> there exists a closed
subanalytic subset Z C M of dimension < k such that
H/ (77 'kp\ z ® K) = 0for j > c+ p(k)},
pEifC(IkM) =1{K € E%_C(IkM); for any k € Z>¢ and any closed
subanalytic subset Z C M of dimension < k one has
H/Rdhom(n'kz,K) ~ 0for j <c + p(k)}.

It turns out that (,, Eﬁf’c (IKpz), pE]ﬁfc (IKpz))ceRr is a t-structure, but it does not behave well with
respect to the duality functor Dﬁl. Hence we set

< < =—c—1/2
PERC.(Iky) := {K € B} (Iky): K € Ex°.(Iky). DK € Ez "2 (IKky)),
> >c—1/2 <—
PERS (Ikp) := {K € E} (Ikp): K € pERfc 2(1kypp), DK € p*E]E_CC(IkM)}.

Then
< =
(PEg.(Kkpr), PERS (Ikpr))cer

*
is a t-structure, and the duality functor interchanges E]Ei (Ikps) and ? EE
ticular, the t-structure

—C
-C

(Ikpz). In par-

1/2-< 1/2+~=
(2B (Tkpg), VV2EZE (Tkpg)cer

associated with the middle perversity n +— —n /2 is self-dual.
Going back to the Riemann—Hilbert correspondence, the enhanced de Rham functor

DR DY, (Dx) > Ex (ICx)

is exact with respect to the t-structure associated with the middle perversity.

The contents of this paper are as follows. In Section 1, we recall the notion of t-structure
on a triangulated category. We also recall the t-structure on the derived category of R-construc-
tible sheaves on a subanalytic space associated with a given perversity. In Section 2, we recall
the notions of ind-sheaves and of enhanced ind-sheaves on a bordered space. In both cases
we also discuss the exactness of Grothendieck operations with respect to the standard classical
t-structures. In Section 3, we introduce the t-structure(s) on the derived category of R-construc-
tible enhanced ind-sheaves on a bordered subanalytic space associated with a given perversity.
We also discuss the exactness of Grothendieck operations with respect to these t-structures.
Finally, in Section 4, we prove the exactness of the embedding, provided by the Riemann—
Hilbert correspondence, from the triangulated category of holonomic £-modules on a complex
manifold into that of R-constructible enhanced ind-sheaves.

Notations

In this paper, we take a field k as base ring.

For a category €, we denote by €°P the opposite category of €. One says that a full
subcategory § of a category € is strictly full if it contains every object of € which is isomorphic
to an object of §.
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Let €, €’ be categories and F: € — €’ a functor. The essential image of € by F, denoted
by F(€), is the strictly full subcategory of €’ consisting of objects which are isomorphic to
F(X) for some X € €.

For a ring A, we denote by A°P the opposite ring of A.

We say that a topological space is good if it is Hausdorff, locally compact, countable at
infinity, and has finite soft dimension.

1. t-structures and perversities

The notion of t-structure on a triangulated category was introduced in [1]. As shown
in [18], the derived category of a quasi-abelian category has two natural t-structures. They
were presented in [9] in a unified manner, by generalizing the notion of t-structure. A further
generalization is described in [10], reinterpreting the notion of slicing from [3]. In the present
paper, we use the term t-structure in this more general sense, and we refer to the notion intro-
duced in [1] as a classical t-structure. A basic result of [1] asserts that the heart of a classi-
cal t-structure is an abelian category. More generally, it is shown in [3] that small slices of
a t-structure are quasi-abelian categories.

It is shown in [1] that, on a complex manifold, the middle perversity induces a self-dual
classical t-structure on the triangulated category of C-constructible sheaves. On a real analytic
manifold, using results of [11], it is shown in [10] that the middle perversity induces a self-dual
t-structure on the triangulated category of R-constructible sheaves.

Here we recall these facts, considering general perversities.

1.1. Categories. References are made to [11, Chapter I], and to [18] for the notion of
quasi-abelian category (see also [9, Section 2]).

Let € be an additive category. The left and right orthogonal of a subcategory & are the
strictly full subcategories

L8 := {X € €;Home(X,Y) ~ O forany Y € &},
st .= {X € €;Home (Y, X) >~ Oforany Y € §}.

Assume that € admits kernels and cokernels. Given f: X — Y a morphism in €, one
sets
im f :=ker(Y — coker ), coim f := coker(ker /' — X).

The morphism f is called strict if the canonical morphism coim f — im f is an isomorphism.

The category € is called abelian if all morphisms are strict. It is called quasi-abelian if
every pull-back of a strict epimorphism is a strict epimorphism, and every pushout of a strict
monomorphism is a strict monomorphism.

1.2. t-structures. Let 7 be a triangulated category. Recall the notion of t-structure
from [1].

Definition 1.2.1. A classical t-structure (7<%, 72%) on T is a pair of strictly full sub-
categories of 7 such that, setting

TS :=T0=n), 72" :=77-n]

’
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forn € Z, one has:
(@ TS0 c7stand 72! Cc 729,
(b) Homg (70, 721) =0
(c) forany X € T, there exists a distinguished triangle

+1
X<0—>X—>X>1 —

in 7 with X<p € 7<% and X5, € 7>1.
The following definition of [10] is a reinterpretation of the notion of slicing from [3].

Definition 1.2.2. A t-structure (T <€, T>¢).cgr on T is a pair of families of strictly full
subcategories of 7 satisfying conditions (a)—(d) below, where we set
7<= J 75 and 77¢:= ] T> forceR.
c/<c c'>c
T=c __ T=
and T72¢ = (. T7

¢+l — g<¢[—1] and TZ¢+! = 73¢[—1] for any ¢ € R,

4 /

/A

T ¢ ¢ for any ¢ € R,

(a)
(b)
(¢c) Homg (7 =¢,77¢) =0 forany c € R,

~

//\

J=¢
J=¢

(d) forany X € 7 and ¢ € R, there are distinguished triangles in 7

+1 +1
X<ce—> X — Xoe— and X — X — X —

with X7 € 7L for L equal to < ¢, > ¢, < c or = c.

Note that condition (c) is equivalent to either of the following:
(c) Homg (7S¢, 77¢) =0 forany c € R,
(c)” Homg (7 =¢,7¢) = 0forany c € R.

Moreover, under condition (a), for any ¢ € R one has

< 4 > 4
T<C __ F<cC Gq=C __ T >C
J = | | J , J = | l J R

c’>c c’'<c

as follows from [10, Lemma 1.1].
Let (7<% 7>9) be a classical t-structure. For ¢ € R, set

S0[—n] forn € Z suchthatn <c¢ <n + 1,

TEC=7F
rJ’ZC. 7=

Z0[—n] forn € Z suchthatn — 1 < ¢ < n.

Then (7S¢, T2¢).cR is a t-structure. A classical t-structure is regarded as a t-structure by this

correspondence.
Conversely, if (7S¢, T72¢).cR is a t-structure, then
(1.2.1) (TSt 77¢) and (T=¢T! 729

are classical t-structures for any ¢ € R.

For ¢ € R, set
.Tc - TSC N rj«Zc
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Definition 1.2.3. Let X C R be a discrete subset such that X = X + Z. A t-structure
(TS€,T%)cr is indexed by X if T¢ = 0 forany c € R\ X.

If = is non-empty, this is equivalent to the fact that for any ¢ € R one has 7<¢ = =5

< <s” >t/ > >t
TSC = s g = T=t R T=t , where

B

s’ ;== max{s € I;5 <c}, s :=max{se€ ;s

"

c},

<
! ;= min{s € ;5 = c}.

t':=min{s € X;5 >}, t

Classical t-structures correspond to t-structures indexed by Z. In this paper, we will
mainly consider t-structures indexed by YA
The following lemma is easily proved by using [10, Lemma 1.1 (iii)].

Lemma 1.2.4. Let (7€, T>°).cr be a t-structure on T . The following two conditions
are equivalent.

(@) (T=€,TZC).cr is indexed by some discrete subset ¥ C R such that L = X + Z.

(b) Foranyc € R, there exista,b € R suchthata < ¢ < b, T<¢ = 7% and T>¢ = 720,

1.3. Slices. Let (7=¢, 73¢).cr be a t-structure on 7 . Note the following facts.
For any ¢ € R, one has

T>C — (T ) T$C — J_(rJ~>C)’
T= zc _ (T<C)J_ g<c — J_(TZC)

The embeddings 7<¢ C 7 and T =¢ C T admit left adjoints

< <
SCT 576 and 54T > T¢

’

called the left truncation functors. Similarly, the embeddings 72¢ C 7 and 7~¢ C T admit
right adjoints
=c. q- F=c
7T = T77° and 1

called the right truncation functors.
The distinguished triangles in Definition 1.2.2 (d) are unique up to unique isomorphism.

They are, respectively, given by
<c >c +1 <c =c +1
T — X — 177X — and TTX — X — 17X —
Summarizing the above notations, to a half-line L (i.e. an unbounded connected subset
L < R) is associated a truncation functor L7 — 7L If L’ C R is another half-line, there
is an isomorphism of functors

(1.3.1) tbotl ~Volig 5 glngl

Let I/ C R be a proper interval (i.e. a bounded connected non-empty subset / C R).
Then there are two half-lines L, L" (unique up to ordering) such that / = L N L’. The slice
of 7 associated with / is the additive category



D’Agnolo and Kashiwara, Enhanced perversities 191

and one denotes the functor (1.3.1) by

For example,
T[c,c’) — Tzc n T<c’

for ¢ < ¢/, and 7} = 7°¢, One writes for short H¢ := H ¢},
The following proposition generalizes the fact that the heart 79 of a classical t-structure
(79, 729) is abelian.

Proposition 1.3.1 (cf. [3, Lemma 4.3]). Let (T<¢,T%¢).cRr be a t-structure on T, and
let I C R be an interval.

(1) If I — R/Z is injective, then the slice T1 is a quasi-abelian category, and strict short
exact sequences in T!

T with all vertices in

are in one-to-one correspondence with distinguished triangles in

71,

(ii) If I — R/Z is bijective, then the slice T1 is an abelian category and the functor
H': T — 71 is cohomological.

Remark 1.3.2. The notion of slicing from [3] is equivalent to the datum of a t-structure
(7S¢, T%°)ccr such that T is generated by the family of subcategories {7 ¢} cR.

1.4. Exact functors. Let -8 and 7 be triangulated categories. Let (8¢, §%).cgr and
(7S¢, T%°)ccr be t-structures on § and 7, respectively.

Definition 1.4.1. A triangulated functor ®: § — T is called
(i) left exact if one has ®(8>¢) C T>¢ for any ¢ € R,
(ii) right exact if one has ®(8<¢) C 7=¢ for any ¢ € R,

(iii) exact if it is both left and right exact.
The following lemma is obvious.

Lemma 1.4.2. Consider two triangulated functors ®: 8 — T and V: T — §. Assume
that (®, V) is an adjoint pair. ( This means that @ is left adjoint to V, or equivalently that V is
right adjoint to ®.) Then, V is left exact if and only if ® is right exact.

1.5. Sheaves. Let M be a good topological space. Denote by Mod(kjys) the abelian
category of sheaves of k-vector spaces on M, and by DP(kpy) its bounded derived category.

For a locally closed subset S C M, denote by kg the extension to M by zero of the
constant sheaf on S with stalk k.

For f:M — N a morphism of good topological spaces, denote by ®, RHom, f~!,
R fx, Rfi, f' the six Grothendieck operations for sheaves. The duality functor is given by
Dy F = RH#om(F,wyy) for F € D°(kys), where wys denotes the dualizing complex.

If M is a C°-manifold, one has wps =~ orps[dar], where djs denotes the dimension of M
and oryy the orientation sheaf. Foramap f: M — N of C%-manifolds, the relative orientation
sheaf'is defined as orpz/ = f'ky[dy —dy] ~ oryr ® fLorn.
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1.6. R-constructible sheaves. Recall the notion of subanalytic subsets of a real
analytic manifold (see [6] and [2]).

Definition 1.6.1. (1) A subanalytic space M = (M, 8)r) is an R-ringed space which
is locally isomorphic to (Z, 8z), where Z is a closed subanalytic subset of a real ana-
lytic manifold, and 87 is the sheaf of R-algebras of real valued subanalytic continuous
functions. In this paper, we assume that subanalytic spaces are good topological spaces.

(i) A morphism of subanalytic spaces is a morphism of R-ringed spaces.

(iii) A subset S of M is subanalytic if i(S N U) is a subanalytic subset of N for any open
subset U of M, any real analytic manifold N and any subanalytic morphism i: U — N
of subanalytic spaces such that i induces an isomorphism from U to a closed subanalytic
subset of N.

Let M be a subanalytic space. One says that a sheaf F' € Mod(kyy) is R-constructible if
there exists a locally finite family of locally closed subanalytic subsets {S; };c; of M such that
M = J;c; Si and F is locally constant of finite rank on each S;. Denote by Dﬂb{_c(kM) the
full subcategory of D°(kps) whose objects have R-constructible cohomologies.

1.7. Perversities. On the set of maps p:Zx>o — R, consider the involution * given
by p*(n) :=—p(n) —n.

Definition 1.7.1. (i) A function p:Z=¢ — R is a perversity if both p and p* are
decreasing, i.e. if 0 < p(n) — p(m) < m —n for any m,n € Zx¢ such that n < m.

(i1) A classical perversity is a Z-valued perversity.

Let M be a subanalytic space. To a classical perversity p is associated a classical t-struc-
ture (? DE?C (kKpr), P DI%&?C (kar)) on D]%_C (kpz) (referto [1] and [11, Section 10.2]). Here, slightly
generalizing a construction in [10], we will associate a t-structure to a perversity.

Notation 1.7.2. Set

CSys := {closed subanalytic subsets of M }.
For Z € CSyy, denote by iz: Z — M the embedding. Set
dz :=dimZ (withdg = —0).
For k € Z, set
CS;F :={Z e CSyidz <k}, CSyf :={Z eCSpy:;dz <k}.

Let (DS%(kys), DZ%(kys)) be the standard classical t-structure on D®(kpy).

Definition 1.7.3. Let p be a perversity, ¢ € R and k € Z=¢. Consider the following
conditions on F € DP(kyy):
(p,fc): i]\_,ll\ZF € D$C+p(k)(kM\z) for some Z € CSIT/‘,

(p7%): iy F eD*tP0(ky) for any Z € CS37°.
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We define the following strictly full subcategories of D (kay):
PDSC(kyy) 1= {F € D°(kp); (p,fc) holds for any k € Z>¢},
PD>¢(kpr) == {F € D’(kpr): (p7°) holds for any k € Zxo}.
Let us also set
PDR’, (kar) := PD=¢ (kar) N Dy (kag).
?DZ’ (kar) 1= "D (Kpr) N Dy (Kng)-

Note that (PDS¢(kpz), PDZ“(Kps))ceR is not a t-structure in general.

Lemma 1.74. Forc € R, k € Zz¢ and F € Dlﬁg_c(kM), the following conditions are
equivalent.
(i) F satisfies (p,fc).
(i) dim(supp(H’ F)) < k for any j with j > ¢ + p(k).

Note that supp(H/ F) is subanalytic, since F is R-constructible.

Proof. It is enough to remark that i A_ll\ ,F € DS¢TP®) (kyr\ 7) if and only if one has
supp(H/ F) C Z for any j such that j > ¢ + p(k). ]

Proposition 1.7.5. We have the following properties.
(1) (pDEfC(kM), pDii (Kpz))cer is a t-structure on D%_C (kpp).
(ii) Forany ¢ € R, the duality functor Dyy interchanges © D]Ei(kM) and P D]%R;C (kag).
(iii) For any interval I C R such that I — R /Z is injective, the prestack on M
U "Di (ky)

is a stack of quasi-abelian categories.

Proof. Note that, for (iii), it is enough to consider the case where I — R /Z is bijective,
i.e. the case where I = [c,c + 1) or I = (c,c¢ + 1] for some ¢ € R.

(a) If p is a classical perversity, the result is due to [1]. More precisely, for the statements
(1), (i) and (iii) refer to Theorem 10.2.8, Proposition 10.2.13 and Proposition 10.2.9 of [11],
respectively.

(b) Let now p be an arbitrary perversity.

For ¢ € R, denote by |c| the largest integer not greater than ¢, and by [¢] the smallest
integer not smaller than c¢. Note that [¢] + |—c] = 0.

Statements (i) and (iii) follow from (a) by noticing that for any ¢ € R

("D’ (kpr), PDC (kar)) and  (PDRE.(knr), PDg’s ' (k)

are the classical t-structures associated to the classical perversities
pe,+(n) :=[c+pm)]. pc,—(n):=[c+ pn)],

respectively.
Statement (ii) follows from (a) by noticing that one has (p¢, +)* = (p*)—¢, . m]
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Note that ("D’ (kpr). "Dg’.(Kpr))eer is indexed by Ug<x<a,, (—p(k) + Z).
Definition 1.7.6. The middle perversity t-structure
1 < 1 =
(/D3¢ (knr), " PDEC (knn))cer

is the one associated with the middle perversity m(n) := —%.
Note that m is the only perversity stable by . In particular, the middle perversity t-struc-
ture is self-dual. It is indexed by %Z.

2. Enhanced ind-sheaves

Let M be a good topological space. The derived category of enhanced ind-sheaves on M
is defined as a quotient of the derived category of ind-sheaves on the bordered space M x Ryo.
We recall here these notions and some related results from [4]. We also discuss the exactness
of Grothendieck operations with respect to the standard classical t-structures.

References are made to [13] for ind-sheaves, and to [4] for bordered spaces and enhanced
ind-sheaves. See also [15] for enhanced ind-sheaves on bordered spaces and [16] for an expo-
sition.

2.1. Semi-orthogonal decomposition. Let 7 be a triangulated category, and N C T
a strictly full triangulated subcategory. We denote by 7 /N the quotient triangulated category
(see e.g. [14, Section 10.2]).

Proposition 2.1.1. Let N C T be a strictly full triangulated subcategory which con-
tains every direct summand in T of an object of N. Then the following conditions are
equivalent.

(1) The embedding N — T has a left adjoint.
(ii) The quotient functor T — T /N has a left adjoint.
(iii) The composition *N — T — T /N is an equivalence of categories.

. +1
(iv) For any X € T there is a distinguished triangle X' — X —> X" — with X' € 1N
and X" € N.

(v) The embedding * N — T has a right adjoint, and N ~ (L N)=*.

A similar result holds switching “left” with “right”.

2.2. Ind-sheaves. Let € be a category and denote by €” the category of contravari-
ant functors from € to the category of sets. Consider the Yoneda embedding h: € — €/,
X +— Home (%, X). The category €” admits small colimits. As colimits do not commute
with /, one denotes by lim the colimits taken in €, and by “lim” the colimits taken in €”.

An ind-object in the category € is an object of €” isomorphic to “lim” ¢ for some functor
@: I — € with I a small filtrant category. Denote by Ind(€) the strictly full subcategory of €/
consisting of ind-objects in €.
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Let M be a good topological space. The category of ind-sheaves on M is the category
I(kps) := Ind(Mod, (kar))

of ind-objects in the category Mod, (kps) of sheaves with compact support.

The category I (kps) is abelian, and the prestack on M given by U +— I(ky) is a stack of
abelian categories. There is a natural exact fully faithful functor (37: Mod(kps) — 1(kas) given
by F — “lim”(ky ® F), for U running over the relatively compact open subsets of M. The
functor 137 has an exact left adjoint apz: I (kpr) — Mod(Kkyy ), which sends “li_n)l” @ to h_r)n Q.

In this paper, we set for short

D(M) := D" (I(ky)),

and denote by (DS?(M), D>(M)) its standard classical t-structure.

For f:M — N a morphism of good topological spaces, denote by ®, Rdhom, f~!,
R f+, R fu, f' the six Grothendieck operations for ind-sheaves.

Since ind-sheaves form a stack, they have a sheaf-valued hom-functor #om. One has
RJom >~ apr o Rdhom.

2.V3. Bordered spaces. A boCdered space M = (M, M ) is a pair of a good topological
space M and an open subset M of M. SetM := M.

Notation 2.3.1. Let M = (M, M ) and N = (N, N ) be bordered spaces. For a con-
tinugus map f:M — N, denote by I'r C M x N its graph, and by I' s the closure of I'y
in M x N. Consider the projections

MEMxNS M.

Bordered spaces form a category as follows: a morphism f:M — N is a continuous map
f:M — N such that q1|F : 'y — M is proper; the composition of two morphisms is the
composition of the underlying continuous maps.

Remark 2.3.2. (1) If f: M — N can be extended to a continuous map ]X ‘M — N ,
then f is a morphism of bordered spaces.

(i) The forgetful functor frorrl the category of bordered spaces to that of good topological
spaces is given by M — M. It has a fully faithful left adjoint M — (M, M). By this

functor, we consider good topologiczvll spaces as particular bordered spaces, and denote
(M, M) by M. Note that M = (M, M) — M is not a functor.

\ id \%
Let M = (M, M) be a bordered space. The continuous maps M 5 M <> M induce
morphisms of bordered spaces

\%

2.3.1) M—M2 M
Notation 2.3.3.v For a locally closed subset Z of M, set Zoo = (Z,Z), where Z is
the closure of Z in M, and denote iz__: Zoo — M the morphism induced by the embedding

ZCM.

Note that My, >~ M.
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I;emma 234. Let f:M— N be a morphism of bordered spaces. Let Z C M and
W C N be locally closed subsets such that f(Z) C W. Then f|z:Z — W induces a mor-
phism Zso — Woo of bordered spaces.

In particular, the bordered space Z, only depends on M (and not on M ).

Definition 2.3.5. We say that a morphism f:M — N is semi-proper if the associated
map
q2|Ff: r f — N

is proper. We say that f is proper if moreover f: M — N is proper.
For example, ji and iz__ are semi-proper.

Definition 2.3.6. A subset S of a bordered space M = (M, M ) is a subset of M. We
say that S is open (resp. closed, locally closed) 1Vf it is so in M. We say that S is relatively
compact if it is contained in a compact subset of M.

As seen by the followving obvious lemma, the notion of relatively compact subsets only
depends on M (and not on M).

Lemma 2.3.7. Let f:M — N be a morphism of bordered spaces.
(1) If S is a relatively compact subset of M, then its image f (S) C Nis a relatively compact
subset of N.

(i1) Assume furthermore that f isosemi—proper. If T is a relatively compact subset of N, then
its inverse image f~'(T) C M is a relatively compact subset of M.

2.4. Ind-sheaves on bordered spaces. Let M be a bordered space. The abelian category

of ind-sheaves on M is
I(km) := Ind(Mod, (kwm)),

where Mod, (ky) € Mod(kpy) is the full subcategory of sheaves on M whose support is rela-
tively compact in M.
There is a natural exact embedding

o Mod(kip) — T(k),  F = “lim”(ky ® F),

where U runs over the family of relatively compact open subsets of M.
We set for short
D(M) := D°(I (ku)).

and denote by (Dso(b/l), D>%(M)) its standard classical t-structure.
Let M = (M, M), and consider the embeddings

MAMS ML m

The functor Ri,x >~ Riy induces the embedding D(M \ M) C D(M ), which admits a left and
a right adjoint.
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Proposition 2.4.1. There is an equivalence of triangulated categories:
D(M) ~D(M)/D(M \ M).

Proof. The functor j; induces an exact functor
Mod,. (ky) — Mod, (kjl})’

and hence an exact functor
I(ky) — I(kAyI)

and a functor of triangulated categories
D(M) — D(M).
Composing with the quotient functor, we get the functor
D(M) — D(M)/D(M \ M).
On the other hand, the functor j ~! induces an exact functor
Mod, (kﬂvl) — Mod, (kw),

which induces an exact functor
I(k};{) — I(ky)

and a functor of triangulated categories
D(M) — D(M).
Since the composition D(M \M)— D(M ) — D(M) vanishes, we obtain a functor
D(M)/D(M \ M) — D(M).

It is obvious that these functors between D(M) and D(M )/ D(M \ M) are quasi-inverse
to each other. |

Thus, there are equivalences
D(M) ~D(M)/D(M \ M) ~+*D(M \ M) ~D(M \ M)+,
and one has

LD(M\ M) = {F e D(M):kyy ® F > F},
D(M \ M)t = {F e D(M); Rdhom(ky, F) < F.

Denote by
gqu:D(M) — D(M), Iy, tm:D(M) — D(M)

the quotient functor and its left and right adjoint, respectively. For F' € D(M ), they satisfy

(2.4.1) IvauF ~ky @ F, tvquF =~ Rdhom(kyy, F).
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Remark 2.4.2. At the level of sheaves, there is a natural equivalence
D°(kpr) = D°(K »)/D"(Kaz \ a1).

There is a commutative diagram

D" (kps) e D(M)
2 | l |

D°(k )/DP(Kiz \ ar) =+ D(M)/D(M \ M).

The functor ty: DP(kgy) — D(M) has a left adjoint
ap: D(M) — DP(kyy).

It coincides with the composition

o [
D(M) — D(M) —> DP(kg).
Let f:M — N be a morphism of bordered spaces. The six Grothendieck operations for
ind-sheaves on bordered spaces
®:D(M) x D(M) — D(M),
RdJhom:D(M)°? x D(M) — D(M),
R fu1,R f«: D(M) — D(N),
f71 fD(N) > D(M)
are defined as follows. Recalhng Notation 2.3.1, observe that I's is locally closed in M xN. For
F,F' e D(M) and G € D(N) one sets
auF ® quF’ = qu(F ® F’),
Rdhom(quF,quF’) := quRJdhom(F, F’),
R fuquF := quRqzn(kr, ® g7 ' F).
R fuquF := qnRg2«RIhom(kr, . q} F),
f7'anG == quRq1n(kr, ® ¢5'G),
FanG = qMqu*RJhom(kr_,.,qz! G).

Remark 2.4.3. The natural embedding ty: D°(kgj) — D(M) commutes with the opera-
tions ®, Rdhom, f~1, R fy, f'.If f is semi-proper, one has

(2.4.2) Rfiom = noRf,.

Remark 2.44. LetM = (M, M ). For the natural morphism jy: M — M , one has

aM = = s
I ~Rjpmn,
M > Ry«

The following result generalizes (2.4.1).
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Lemma 2.4.5. Let Z be a locally closed subset of M, and let F € D(M). Using Nota-
tion 2.3.3, one has

kz ® F ~Riz_ iz F,
Rdhom(kz, F) ~ Riz iy F.

Proof.  To avoid confusion, let us denote by kz|y the extension by zero to M of the con-
stant sheaf kz on Z. Since iz_ is semi-proper, equation (2.4.2) implies Kzjm >~ Riz_ nkz.
Hence

kzm® F ~ (Rizukz) ® F
~Riz, n(kz ®iz. F)
~ Riz niz. F.

We can prove the second isomorphism similarly. ]

LetM = (M, M ) be a bordered space. By [4, Section 3.4], one has
DS°(M) = {F € D(M);RjuuF € DSO(M)},
D>°(M) = {F € D(M);RjunF € D>°(M)}.

Proposition 2.4.6. Let M be a bordered space. Consider the standard t-structure
on D(M). Then:

(i) The bifunctor ® is exact, i.e. for any n,n’ € 7Z one has
D" (M) ® Dsn/(M) c D$n+n’(M),
D> (M) ® D>" (M) C D>"*" (M).
(ii) The bifunctor Rdhom is left exact, i.e. for any n,n’ € Z one has
RJhom(DS"* (M), D> (M)) € D>~ (M).
Let f:M — N be a morphism of bordered spaces. Consider the standard t-structures on D(M)
and D(N). Then:
(iii) R f11 and R fi are left exact.
iv) f~Vis exact.
Letd € Z>¢ and assume that f~1(y) C M has soft-dimension < d for any y € N. Then:
(v) R fu(%)[d] is right exact, i.e. R fyDS"(M) € DS*T4(N) for any n € Z.
(vi) fl(x)[—d] is left exact, i.e. £f'DZ"(N) C D=4 (M) for anyn € Z.

Proof. When M and N are good 50pologica1 spaces, statements (1)—(@v) follow from [13].

Let M= (M, M) and N = (N, N). Replacing (M, M) vgithv (M, ff), we may assume
from the beginning that the morphism f: M — N extendsto f: M — N.

Statement (i) follows from the topological space case, using the fact that R jjs 11 com-
mutes with ®.

Statement (ii) follows from (i) by adjunction.
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Statements (iii) and (iv) follow from the topological space case using the isomorphisms

Rfn ~ ji '"RAyRjmy.  Rfs ~ i ' RER v, £ 2~ jig /RNy

As (vi) follows from (v) by adjunction, we are left to prove (v).
By dévissage, it is enough to show that for F € I(ky) one has H¥R fiy F ~ 0 fork > d.
Writing F = “li_r)n”l_ F; with F; € Mod,(ky), one has

H*Rfy F ~ 133 H*R /i F;.

1

To conclude, note that
(H*Rfi Fy)y > HE(f 7 ) Fi| poayy) = 0

forany y € N and k > d, since £ ~!(y) has soft-dimension < d. m]

Proposition 2.4.7. Let f:M — N be aomoarphigm of bordered spaces. Let n € 7 and
G € D(N). Assume that f is semi-proper and f:M — N is surjective. Then the following state-
ments hold.

(i) f~1G € D>*(M) implies G € D>"(N).
(i) f~'G € DS*(M) implies G € DS*(N).

Proof. LetM = (M, ]\2) and N = (N, ﬁ) Since f~!is exact, it is enough to show that,
for G € DO(N) ~ I(ky) such that /=!G ~ 0, one has G ~ 0.

Write G = “li_II)l” G;, for {G;};ey a filtrant inductive system of objects of Modc (kn).
Recall that this means that G; € Mod(ky ) and supp(G;) is relatively compact in N. Since f
is semi-proper, f~1G; € Mod,(ky) by Lemma 2.3.7 (ii). Since f~!G ~ “lim” f~1G; ~ 0,
for any i € I, there exists i — j in I whose induced morphism -

[71Gi— 716

is the zero map. Since f is surjective, G; — G; is the zero map. Thus G = 0. O

Proposition 2.4.8. Let f: M — N be a continuous map of good topological spaces,
and {V;}iey an open covering of N. Let K; € D(f~1V;), and let

uij:Kj|f—1V,~ﬂf—1Vj — Ki|f—1V,-ﬁf—1Vj

be isomorphisms. Assume that R fyRHom(K;, K;) € DZ°(ky,), and that the morphisms u;;
satisfy the following usual cochain condition u;j o uj = ;i on f~vin 71 Vin .
Then there exist K € D(M) and isomorphisms u;: K| g-1y, = K; compatible with u;j, thatis,
Ujj OUj = U; on f~Win £t Vi. Moreover, such a K is unique up to a unique isomorphism.

Proof. The arguments we use are standard (see e.g. [10, Proposition 5.9]). Let us set
U= f7V; c M.

(i) Let us first discuss uniqueness. Let K’ € D(M) be such that there are isomorphisms
ui: K'ly, — K; compatible with u;;. Note that for any open subset V of N, one has

Homp r—1yy(K|p-1y. K'|[p=1y) ~ H'RI'(V:R fuRHom(K, K")).
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From the fact that R fyRHom (K, K')|y, ~ R fuRHom(K;, K;) € DZO(kVi), we deduce
R fxRHom(K, K') € DZ°(ky).

Hence
V = Homp( r-1y)(K|p-1y. K'|f-1y) is a sheaf on N.

We thus get an isomorphism K — K’ on M by patching together the isomorphisms u;_l ou;

on U;.

(ii) Let us now prove the existence of K as in the statement.

(ii-1) Assume that 7 is finite. In order to prove the statement, by induction we reduce to
the case I = {1,2}. Set Vo := V1 N V2, Ko := K1|y, =~ K2|y,- Let ji: Ui = M (i =0,1,2)
be the open inclusion. By adjunction, fori = 1, 2 there are morphisms f;: R jon Ko — Rj;i n K.
Let us complete the morphism (f1, B») into a distinguished triangle

: , _ 1
RjO!!KOM)RJI!!KI@R]Z!!KZ K —

Then K satisfies the desired condition.

(ii-2) Assume that / = Zx¢ and that {V,},ez., is an increasing sequence of open
subsets of N. Then K, 11|y, >~ Ku. Let j,: Uy, — M (n € Zxo) be the open inclusion. By
adjunction, there are natural morphisms B,:Rj,11 Ky — Rj,411Kn41 (n € Zxp). Let K be
the homotopy colimit of the inductive system {Rj, 11Ky }nez- . that is, let K be the third term
of the distinguished triangle

. . +1
@ RjnnKn LN EB RjnuKn — K — .
neZ=o ne€Zz=o

Here f is the only morphism making the following diagram commute for any m € Zx:

id,— B ) .
RjmnKm =), Rjm1Km ® Rjmr1nKm+1

T

EBneZ;O Rjn11Kn @nezzo Rj,nK,.

Then K satisfies the desired condition.

(ii-3) Let I be arbitrary. Let {Z; },e 7, be an increasing sequence of compact subsets of
N such that N = UHGZ2 o Zn- Let us take an increasing sequence {/, }nez.,, of finite subsets
of I such that Z, is covered by {V;}iey,, and set V,; := {J;¢; Vi, Uy := £~V Applying
(ii-1) with N = V,; and I = I,,, we can find an object K,, € D(U,,) such that K, |y, >~ K; for
any i € I,,. Then we can apply (ii-2) with V,, = V. o

2.5. Ind-sheaves with an extra variable. Let R := R U {+00, —co} be the two-point
compactification of the affine line. The bordered line is

Reo := (R, R).
Let M be a bordered space. Consider the morphisms

(2.5.1) W, q1,q2:M X Rog X Rog > M X R,
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where u(x,t1,t) = (x,t1 + t2), and ¢1,q» are the natural projections. The convolution
functors

+
®R:D(M X Rso) X D(M X Roo) = D(M X Reo),
Jhom™:D(M X Roo)®® x D(M X Ro) = D(M x Roy)
are defined by

+
FL®F:=Runlgy ' F1 ® ¢ ' Fa),
Jhom™ (Fy, F2) := Rq1«Rdhom(qy ' Fy. ' Fy).

Example 2.5.1. Let M = {pt} and leta, b € R. For a < b, one has

+ +
Kt >0} ®K{r = a0y =2 K = a}, Kt >0y ®Kia <1 <b) =2 Kia <t <b},
Jhom™ (Kt = o). Kt = ay) = Kyp <a3[1]. dhom™ (kg > 03, K(a <1 < b)) ~ Kia <1 < b}

For 0 < a < b, one has
+
Kio<i<ay ®Kkjo<r<py Ko<t <a) ® kip <t <a+53[-1].
Consider the standard classical t-structure on D(M X R o) discussed in Section 2.4.

Lemma 2.5.2. Let M be a bordered space.
(1) Forn,n’ € Z one has
+ ’ ’
DS (M X Roo) ® D (M x Roo) € DT I (M x Ryo),
+ / /7
D" (M x Roo) @ D (M X Roo) € DT (M x Roy).

In particular, the bifunctor ® T is left exact.

(i1) Forn,n’ € Z one has

Jhom™ (D" (M x Rog), D" (M x Reg)) C D 7" 1(M x Roo).

Proof. By the definition of the convolution functors ®t and dhom™, the statement
follows from Proposition 2.4.6. O

Remark 2.5.3. There are no estimates of the form
dhom™ (ki > 03, D°(M x Rog)) € DS(M x Roo)

with m € Z>¢ independent of M. In fact, setting, M = R” (n = 1) and F = K{x £ 0, 1 = 1/|x]}>
one has

(2.5.2) dhom™ (kg = 03, F) ¢ DS 3 (M x Roo),
which follows from

n_lk{x =0 ® Jh0m+(k{, >0, F) x> n_lk{x =o[l] ® ﬂ_lk{x =0}[2—n].
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Lemma 2.54. For K € D(M x Ry) and n € Z one has
+ + -~ +
kit >0y ® T (K 00 ® K) = 75" (ks > 0y ® K),
+ o, + ~ =n +
Kir>0 @17 (ki =0y ® K) = 7" (k{y = 0} ® K).

Let us give a proof of this result slightly different from that in [4, Proposition 4.6.2].

Proof. Consider the distinguished triangle

+ o + + +
kKir>00 ® " (kir =0 ® K) — kir > 0y ® (kis > 0y ® K)
+ + +1
— k>0 91t k=0 ® K) — .

Since the middle term vanishes, one has

+ + + o +
Kit>0 @t "kt =0 ® K) @ Kkir > 0y @ 7" (ks = 0y ® K)[1].

By Lemma 2.5.2, the first term belongs to D””(M x Rs,) and the second term belongs
to DS"(M x Ryo). Hence they both vanish. |

2.6. Enhanced ind-sheaves. Let M be a bordered space, and consider the natural mor-
phisms

M MxRoo 2> Mx R 5 M.
Consider the full subcategories of D(M x Reo)
+
Ny :={K € DM X Roo); k(x> 0y ® K = 0}
= {K € D(M x Roo); Jhom™ (K(z¢ > 0}, K) ~ 0},
N = Np NN_ =7~ DWM),

where the equalities hold by [4, Corollary 4.3.11 and Lemma 4.4.3].
The categories of enhanced ind-sheaves are defined by

E5 (Iky) := DM x Roo) /N,  EP(Iky) := D(M x Roo) /N
In this paper, we set for short
E+ (M) := E% (Iky), E(M) := E"(Iky).
By [4, Proposition 4.4.4], there are natural equivalences
E+(M) > Ni/N >~ T Ng = Np NN,
EM) ~ * W ~ EL (M) ® E_(M),

and the same equivalences hold when replacing left with right orthogonals. Moreover, one has
+ ~
L Ng ={K € DM x Reo): ks > 0y ® K = K},

=+ ~
LN ={K e DM xReo); (kir > 0y @ kyr <0y) ® K = K}
= {K S D(M XROO);RJT”K =~ 0},

and the same equalities hold for right orthogonals, replacing ® * with dhom™ and Ry
with Rirs.
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We use the notations

+

Q Q
DM x Roo) 7= E(M),  D(Mx Rog) =—— E (M),
LE, RE LE  RE
’ +° "+

for the quotient functors and their left and right adjoints, respectively. For F' € D(M x R )
one has

L*(QuF) =~ (ki > 0y @ ki < 0)) & F,
R¥(QuF) = Jhom™ (ki > 0y ® kir <0y, F).
For a locally closed subset Z C M x R, we set
(2.6.1) k> := Qu(kz) € E(M).
There are functors
(2.6.2) eD(M) — E(M), F — k2

{r=0
er:D(M) — EL (M), F > k?il;o} ® 7 'F.

}®ﬂ_1F,

The functors € are fully faithful and €(F) ~ €4 (F) & e_(F).
The bifunctors

Jdhom®: E(M) x E(M) — D(M),
Hom": E(M)P x E(M) — D°(kg)

are defined by
Jdhom®(K, K') := RmRdhom(LE K, LE K')
~ RaRIhom(LE K, RE K')
~ Rr«RJhom(RE K, RE K')
~ R7+«RJhom(Rjy LF K, Rj, RE K’)
and
FHom® := ay o Jhom®.
One has
(2.6.3) Homgyy (K, K') ~ Hompqy) (kpr, dhom"™(K, K')).

If M is a topological space, that is, if M — Mis an isomorphism, one has
Homgy (K. K') ~ HORI'(M; Hom® (K. K')).

Note, however, that Homgy) (K, K') ~ H ORI (l\o/l; HomE (K, K')) does not hold for a general
bordered space M.

Definition 2.6.1 ([4, Definition 4.6.3]). Forn € 7Z, set

ES"(M) := {K € E(M);LE K € D"(M x Roo)}.
E*"(M) := {K € EM);LE K € D®"(M x Rgo)}.
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Note that
+ ~ .
E®(M) = {F € I(kuxRo.): (kir = 0y ® kiz <0}) ® F = F in D(M x Reo)}
= {F € l(kmxR.,); Ry F ~ 0in D(M)}.

Proposition 2.6.2 ([4, Proposition 4.6.2]). We have that (ES°(M), EZ%(M)) is a classi-
cal t-structure on E(M).
Example 2.6.3. Leta,b € R with a < b. In the category E({pt}), one has
E E
L k{QaSI}Zk{aSt}, L k?ast<b}:k{a$t<b}’
REKZ v > ky<ap[l], REKD (> Kia<s <)
In particular, k?ag}, k?a$t<b} e E%({pt}).

Proposition 2.6.4. Let M be a good topological space. Then the prestack on M given
by U + E°%(U) is a stack of abelian categories.

Proof. The statement holds since U +— E%(U) is a sub-prestack of the direct image by
7 of the stack of ind-sheaves on M x Ry,. More precisely, one has

+ ~
EOU) = {F € 1(ky x2o)i (ke > 0y D kg <o) ® F = F). o

Lemma 2.6.5. For any n € 7 one has
QuD" (M x Roo) C ES"*1 (M),
QuD™" (M x Rog) = EZ" (M).
In particular, Qy is left exact.
Proof. (i) For F € D(M x Ryo), one has LEQuF ~ (ki > 0y ® ks < 0}) ® ™ F. Hence
the inclusions “C” follow from Lemma 2.5.2.
(ii) It remains to show the opposite inclusion, that is, QuD>"(M x Rs,) D E="*(M). If
K € E*"(M), then F := LE K € D®"(M x Roo), and K ~ Qu(F). i
Lemma 2.6.6. For any n € Z one has
REEZ"(M) Cc D" 1(M x Roo).

Proof. By Lemma 2.6.5, the functor Qy[1] is right exact. Hence its right adjoint RE[—1]
is left exact. O

Remark 2.6.7. (i) It follows from Example 2.6.3 that the estimate in Lemma 2.6.6
is optimal.
(i1) It follows from Remark 2.5.3 that there are no estimates of the form

REE(M) € DS"*(M x Roo)

with m € Z independent of M.
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(iii)) The example in Remark 2.5.3 shows that
({K € EM);:REK € DSO(M x Ro)}. {K € E(M);RE K € D®°(M x Roo)})

is not a classical t-structure on E(M), in general.

Proposition 2.6.8. The two functors d hom® and HomE are left exact for the standard
t-structures, i.e. for n,n’ € 7 one has:

(i) dhom®(ES"(M), E>" (M)) C D>""~"(M),
(i) HomE(ES"(M), EZ" (M)) C D" ~"(Kky)).

Proof. By the definition of dhom®, its left exactness follows from Proposition 2.4.6.
This implies the left exactness of Hom® = ay d homE, since ay is exact. D

2.7. Operations. Let f:M — N be a morphism of bordered spaces. For enhanced ind-
sheaves, the six Grothendieck operations
6-5: E(M) x E(M) — E(M),
Jhom™ :E(M)? x E(M) — E(M),
Efy.Ef«:E(M) — E(N),
Ef L Ef"E(N) > E(M),
are defined as follows. Set fr_ = f X idr M X Ro — N x Roo. For F, F' € D(M x Ryo)
and G € D(N x R), one sets
QuF & QuF’ := Qu(F ® F).
dhom™ (QuF,QuF’) := Qudhom™ (F, F'),
EfnQuF := QnRfR 1 F,
Ef,QuF := QuRfR + F,
Ef7'QnG = Qufg..G.
Ef'Q\G = Qanéoo G.
The duality functor is defined by
DX:E(M) — EM)®, K > Jhom™ (K, 0Q).

where wy 1= j,\il Wy € D(M) and a),\(ﬁ =e(on) = 7 oy ® k?,:o} € E(M).

Lemma 2.7.1 ([4, Lemma 4.3.2]). LetM = (M, ]\2) For F € D(KprxRr), one has
DSA(QMF) ~ Qu(a@ 'DyxrF),
where a is the involution of M x R defined by a(x,t) = (x, —t).

Example 2.7.2. Leta,b € R with a < b. In the category E({pt}), one has

Q 1,Q ~ 1.Q ~ 1.Q Q 41,Q ~ 1.Q
DioKiasy Kyl =k 1oy Dipnkiucicny = K pa—pyll]-

In particular, D?pt}k?a < € E°({pt}) and D?pt}k?a <t<b) € E~1({pt}).
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Proposition 2.7.3. Let M be a bordered space.

(1) Forn,n’ € Z one has

+ / ’
ESn(M) ® ESn (M) C ESn-‘rn +1(M),

+ / ’
E="(M) ® EZ" (M) C EZ"1" (M).

In particular, the bifunctor ® T is left exact for the standard t-structure.
(i1) Forn,n’ € Z one has
Jhom* (BS" (M), E*" (M) C EZ"~"~1(M).
Let f:M — N be a morphism of bordered spaces. Consider the standard t-structures on E(M)
and E(N). Then:
(iii) Efyy and E f , are left exact.
@iv) Ef s exact.
Let d € Z»¢ and assume that f~(y) C M has soft-dimension < d for any y € N. Then:
(v) Bfy(x)[d] is right exact, i.e. Ef yES" (M) C ES"4(N) for any n € Z.
(vi) E f'(*)[=d] is left exact, i.e. E f 'E>"(N) C E*"~4(M) forany n € Z.
Proof. (i) For K € E(M) and K’ € E(M) one has LE(K ® " K’) ~ LEK @ T LE K.
Then the statement follows from Lemma 2.5.2.

(i1) This follows from (i) by adjunction. As we deal here with bifunctors, let us spell out
the proof. Let K € ES”(M), K’ € E** (M), and L € E<"~"~1(M). Then one has

+ ’ + ’ <n’/ >n’/
HOH]E(M) (L, Jdhom (K, K )) ~ HomE(M) (L ® K, K ) € HomE(M) (E (M), E~ (M)) =0.

Then dhom™ (K, K') € E<"'—=1(m)+ = E=7'—n—1(\).

(iii-1) Note that LEoE f, ~ Rfrno LE, where we recall that JRo = f xidr,,.
Then Proposition 2.4.6 implies that E ', is left exact.

(iv) This also follows from Proposition 2.4.6, since one has

LF‘oEf_1 :fR_; oLE.

(iii-2) The fact that E £, is left exact follows from (iv) by adjunction.
(v) The statement has a proof similar to (iii-1).
(vi) The statement follows from (v) by adjunction. O

Proposition 2.7.4. Let f:M — N be aomgrphigm of bordered spaces. Let n € 7. and
L € E(N). Assume that f is semi-proper and f:M — N is surjective. Then:

() f~'L € E®*(M) implies L € E>*(N).
(i) f~'L € ES"(M) implies L € ES*(N).

Proof. It is enough to apply Proposition 2.4.7 to the object G = LF L € D(N x Ry)
and the morphism fr_ :M X Roo = N X Reg. i
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The bifunctors
77 (%) ® (¥): D(M) x E(M) — E(M),
Rdhom(n ™1 (%), %): D(M)*® x E(M) — E(M)
are defined as follows: for L € D(M) and F € D(M x Ry),

7L ® QuF = Qu(r~'L ® F).
Rdhom(n 'L,QuF) := QuRdhom(z 'L, F).
Lemma 2.7.5. Let M be a bordered space. Consider the standard t-structures on D(M)
and E(M). Then:
(i) The bifunctor w1 (%) @ (%) is exact.
(ii) The bifunctor Rdhom (w1 (%), %) is left exact.

In particular, the functor € from (2.6.2) is exact.

Proof. (i) For F € D(M) and K € E(M) one has LE(#7'F ® K) ~ n7'F @ LEK.
Hence the statement follows from Proposition 2.4.6.
(i1) The statement follows by adjunction from (i). m)

Let us end this section stating some facts related to Notation 2.3.3.

Lemma 2.7.6. Let Z be a locally closed subset of M, and K € E(M). One has
m'kz ® K ~Eiz_Ei;' K,
Rdhom(w~'kz.K) ~ Eiz  Eij K.

Proof. Note that
(Z xR)oo = Zoo xReo and iz Xidr,, = i{(ZxR)o-

Hence the statement follows from Lemma 2.4.5. O

Lemma 2.7.7. Let Z be a locally closed subset of M, and let Z' C Z be a closed subset.
For K € E(M), there are distinguished triangles in E(Z o)

1
BinEi j\ 20 K — Eiz! K — EiyEiy} K 75,

+1
Ei\Ei},, K — Eiy K —> Ei.Ei; ) K—,

where i:(Z \ Z)oo = Zoo and i": Z, — Z o are the natural morphisms.

Proof.  Since the proofs are similar, we shall only construct the first distinguished trian-

gle. Consider the distinguished triangle
+1

kZ\Z/ —> kZ —>kZ/ —>.
By Lemma 2.7.6, applying the functor 7! (%) ® K one gets the distinguished triangle
. . . . . . +1
El(Z\Z’)oo”El (ZI\Z’)OOK —> Eiz_ Ei Z;K — EZZ/OO!!EZ Zél>oK —

Since iz, =iz, © i"and i(z\ 7z, =iz, ©1i, the distinguished triangle in the statement is
obtained by applying the functor Ei }io to the above distinguished triangle. m)
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Lemma 2.7.8. Letc € R, Z alocally closed subset of M, and K € E(M).
(1) EiE;K € ES¢(Zyo) ifand only if 1~ 'kz ® K € ES¢(M).
(i1) Ei!ZOOK € E*°(Zoo) if and only if Rdhom (7w~ k7, K) € EZ¢(M).

Proof. (i) By Lemma 2.7.6, one has
n'kz ® K ~EizEi K,
Ei;! K~Eiz' (n7'kz ® K).
The statement follows, since the functors Eiz__,, and Ei E; are exact by Proposition 2.7.3. (It

follows that (i) remains true when interchanging < ¢ with = ¢.)
(i1) The statement is proved similarly. ]

2.8. Stable objects. Setting

kit » 0y 1= "lim” kyz > a},
a——+00
k{t <%} .= “l_iI})l” k{t <a}
a—>+o0
k{0 <t <) = “l_iflg” k{0 <t<a}
a——+o0o

there are distinguished triangles in D(M x Ro)

+1
Kt > 0 — Kir < 3[1] — kpr xR[1] —,

+1
Ko<t <« — k=0 — kg > 00 —
The objects of E(M)
ky == Qu(k{r > 0y) ~ Quiky < (1)),
Ky = Qu(k{o < <))
enter the distinguished triangle

2.8.1) K s kg > 0 — k& > .

Note that we have

+ + +
kg @k ~ k', ky®ky~ky and ki ®ky > 0.

Definition 2.8.1. The category Eg (M) of stable enhanced ind-sheaves is the full subcat-
egory of E (M) given by
+
Eq(M) := {K € E+(M); k)}' ® K ~ 0}

~ +

={K eE;(M): K 5 Kkf ® K}

+

={K e EL(M); K ~ kﬁ ® L for some L € E; (M)}
~ +

={KeEL(M); K — kg%} ® K for any a = 0},

where the equivalences follow from (2.8.1) and [4, Proposition 4.7.5]. Similar equivalences
hold by replacing ®+ with Jhom™ .
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The embedding Eq (M) — E(M) has a left adjoint ki; ®* x, as well as a right adjoint
Jhom™ (KE, %). There is an embedding

(2.8.2) e:D(M) < Eq(M), F kL ® 7z 'F.
Note that e(F) >~ k}\“:,l ®T e(F). .
For a locally closed subset Z C M x R, we set

+
(2.8.3) kK = kb @ kI € Eq(M).

Lemma 2.8.2. The following statements hold.
(1) The embedding e from (2.8.2) is fully faithful and exact.

(i) The functor kf ® T (x) is exact.

Proof. Statement (i) follows from [4, Proposition 4.7.15] and Lemma 2.7.5, and (ii)
from [4, Lemma 4.7.4]. O

The duality functor for stable enhanced ind-sheaves is defined by
Di: E(M) — Eq(M)?, K > Jhom™ (K, wy;),

where we set ‘05 = e(wwm).
Lemma 2.8.3 ([4, Proposition 4.8.3]). LetM = (M, ]\2) For F € D°(Kps x R), one has

+ + +
DE (kb ® QuF) ~ ki ® (DYQwF) ~ kb ® Qu(a 'Dasxr F).

where a is the involution of M x R defined by a(x,t) = (x,—t).

3. Perverse enhanced ind-sheaves

As we recalled in Section 1, a perversity induces a t-structure on the triangulated category
of R-constructible sheaves on a subanalytic space. Here, we extend this result to the triangu-
lated category of R-constructible enhanced ind-sheaves. We allow the subanalytic space to be
bordered, and we also discuss exactness of the six Grothendieck operations.

3.1. Subanalytic bordered spaces. Recall Notation 2.3.1.

Deﬁnitionv3.1.1. (1) A subanalytic bordered space M = (M, M )isa borvdered space
such that M is a subanalytic space and M is an open subanalytic subset of M.

(i) A morphism
fiM—=N=(N,N)
of subanalytic bordered spaces is a morphisgn f : M — N of subanalytic spaces such

that its graph I's is a subanalytic subset of M x N, and ¢1| T, is proper. In particular,
f:M — N is a morphism of bordered spaces.
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(iii) M is smooth of dimension d if M is locally isomorphic to R¢ as a subanalytic space.
(iv) A subset S of M (see Definition 2.3.6) is called subanalytic if it is subanalytic in M .

(v) A morphism f:M — N of subanalytic bordered spaces is said to be submersive if the
continuous map f M — N is locally (in M) isomorphic to the projection N x R4 — N
for some d .

Let M = (M, M ) be a subanalytic bordered space, and let jpr: M — M be the embed-
ding.

Definition 3.1.2. Define D']‘f{ (ky) to be the full subcategory of D°(k M) whose objects
F are such that R jps F is an R-constructible object of DP(k v) We regard D]R (km) as a full
subcategory of D(M).

Proposition 3.1.3. Let f:M — N be a morphism of subanalytic bordered spaces.
() The functors f~' and f' send D]tf{_c(kN) to D%_c(km)-
(i) If f is semi-proper; then the functors R f1y and R fi send D%_C (ky) to D%_C (kn).

In particular, the category Di’{_c (knm) only depends on M (and not on M ).

Notation 3.1.4. For M a subanalytic bordered space, set

CSy := {closed subanalytic subsets of M},
LCSy := {locally closed subanalytic subsets of M}.

For k € Z, set
CSyk :={Z e CSmidz <k}, CS3F:={Z e CSw:dz <k},
and similarly for LCSj;¥ and LCSS¥. For Z € LCSy, denote by
7o' Zoo—> M
the morphism induced by the embedding Z C M (see Notation 2.3.3).
Definition 3.1.5. Let p be a perversity, ¢ € R and k € Z>¢. Consider the following
conditions for F € D(M):
(Ipo): Z(M\Z) F e DSCHPO (M \ Z)o) for some Z € CSF
(ka ): lZOO F e D*¢tP®) (7 ) forany Z € CS,\S,lk )
Consider the following strictly full subcategories of D(M):
DS¢(M) := {F € D(M); (kac) holds for any k € Zxo},
DZ¢(M) := {F € D(M); (kac) holds for any k € Z>¢}.

Let us also set - _ .
xC 53
PDR¢ (kv) := PDS(M) N Dy (Ku),

> >
PDRC (k) := PD>¢(M) N DR (kw).
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One easily checks that

Proposition 3.1.6. We have the following properties.
ONG Df&i (kw). ? D]Iifc (Km))ceRr is a t-structure on D%_ (km).

(ii) Forany c € R, the duality functor Dy interchanges * D]Ei(kM) and ? *Dizc (kwm).
Note that (PDS¢(M), PDZ¢(M)).cR is not a t-structure in general.

Lemma 3.1.7. For any c € R one has

am(PDSE(M)) € PD=¢ (ki)
Proof. This follows from the fact that o commutes with i 1. O

Remark 3.1.8. Since o does not commute with the functors i |, the statement
am(PDZ¢(M)) € PD¢ (ko)

does not hold in general. For example, letM = R and F = “li_r)n”
cise 5.1]. Then

0t K[—¢, ¢ asin [13, Exer-

amF ~ keoy € /2DO(kfy) and g, F ~ Kegy[—1].
Hence F € Y/2DZ1/2(M) butay F ¢ 1/2D>1/2(kg). Here, /2D := ™D for the middle perver-

sity m(n) := —75.

3.2. Intermediate enhanced perversities. LetM = (M, M ) be a subanalytic bordered
space.

Definition 3.2.1. Let p be a perversity, ¢ € R and k € Zx¢. Consider the following
conditions for K € E(M):
(Epc®): Bigpz) K € BSTPO (M \ Z)o) for some Z € CSF,
(Epfc : Ei!ZOOK e gZetr® (7)) forany Z € CS,\ﬁk )
Consider the following strictly full subcategories of E(M):
pEsc(M) :={K € E(M); (Ep,fc) holds for any k € Zxg},
pEZC(M) :={K € E(M); (Epfc) holds for any k € Zg}.

Note that (pESC(M), pEZC (M))ceRr is not a t-structure if dim M > 0. However, we write
PESCM) = U<, pEsc/ (M), ,E€(M) := ,ES¢(M) N EZ¢(M), etc.

Remark 3.2.2. (i) Conditions (E p]fc) and (E p]fc) can be rewritten using the equiva-
lences
Ei 290 K € ES((M \ 2)o0) <= 7 'kn\ 2z ® K € ES(M),
Eiy, K €E*(Zs) <= Rdhom(r 'kz.K) € EZ(M),

which follow from Lemma 2.7.8.
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(i1) One has
Ei 31\ 2).. K € ESC(M \ Z)o0) = Eigy 7). K € ESC(M \ Z') o)
forany Z, Z' € CSy such that Z C Z’. Similarly,
Eil, K €E*(Zo) = Eiy, K € E>°(Z},)
for any Z € CSy and any locally closed subanalytic subset Z” of Z. Indeed, one has

—1 ~ .—1 .—1
EBianzye. =EJ °Bignz).,

and
'z, =8 °HZy

and Ej ! is exact and E j 'is left exact for the standard t-structure. Here,
JM\Z)oo > M\ 2Z)oo and j":ZJ — Zo
are the canonical morphisms.

The following lemma is obvious.

Lemma 3.2.3. Forany c € R, one has
ESC-{—p(dM)(M) C pESC (M) C ESC—i—p(O) (M),
EZC-l—p(O)(M) C pEZC(M) C E>C+p(dM)(M).

Note that the following lemma is a particular case of Proposition 3.3.21 below.

Lemma 3.2.4. Forany c € R and any Z € LCSy, one has
Eiz_  (,ESC(M) C JES(Zso).
Ei7 (,E*(M) C ,E*(Z).

iz, +(,EZ(Zo)) C ,EZ¢(M),
Eiz 11(,ES(Zoo)) C ,ESC(M).

Proof.  Since the proofs are similar, let us only discuss the third inclusion.

213

LetK € pEZC (Zso).For W e CS,\s,,k , consider the Cartesian diagram of bordered spaces

(Z O W )oo —2s Wi

iz

Zoo ————— M.

Noticing that Z N W € CS;’;o and that Ei’, is left exact for the standard t-structures by Propo-

sition 2.7.3, one has

Eily BEiz+K ~Ei\Bi'K € Ei,,(B>TP®(Z N W))) € B> TP (W)
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Lemma 3.2.5. Forany c € R and K € E(M), the following conditions are equivalent.
(i) K € ,EZ¢(M).
(i1) Ei}gOOK e EZ¢+tP) (S ) forany k € Z>¢ and any S € LCS,f,lk.
(iii) Ei}gooK e EZtr&) (S for any k € Z>q and any smooth S € LCS,\SAk.
(iv) For any k € Z>¢ and any Z € CS,\SAk, there exists an open subanalytic subset Zy of

Z oo such that diim(Z \ Zy) < k and EigZO)OOK e EZ¢tP0) ((Z0)oo).

(v) For any k € Zi=o and any S € LCSﬁk, there exists an open subanalytic subset Sy of

Seo such that dim(S \ So) < k and EigSO)ooK e EZ<TP0)((Sp)o0).

Proof.  The implications in the following diagram are clear:

(i) .

(i) = (i)

Here the less trivial implication (i) = (ii) follows from Remark 3.2.2 (ii).
It remains to show that (iv) = (i). That is, we have to show that for any Z € CS,\ﬁk one
has

(3.2.1) Rdhom(n kg, K) € EZTP®) ().

We shall prove it by induction on k € Zx>o. When k = 0, (3.2.1) is true, because Zg in (iv)
coincides with Z. Assume that k > 0. Let Zy C Z be an open subanalytic subset as in (iv), so
that

Rdhom(n 'kz,, K) € EZTPE ().

Since Z \ Zy € CS,\SAk_l, the induction hypothesis implies
Rﬂhom(n_lkz\zo, K) € E>C+P(k—1)(M) - E>C+p(k)(M)_

Then (3.2.1) follows from the distinguished triangle

Rthom(n_lkZ\Zo, K) — Rdhom(n " 'kz, K) —> Rthom(n_lkZO, K) i . O

Proposition 3.2.6. For any c¢,c¢’ € R, one has
Jhom® (,ESE(M), ,EZ (M) € D¢ ~¢(M),
Jeom®( ,ES® (M), B> (M)) C DBC/_C(k’\c;I).
In particular, Homgyy ( ,ES¢ (M), pEZC/(M)) =0ifc’ > c.
Proof. (i) Let K € pEsc (M) and K’ € pEZC/(M). Reasoning by decreasing induction
onk € Zx=_1, let us show the following:
(1) there exists Zj € CSﬁk such that

Rdhom(Kpg \ z,.. dhomE(K, K')) € D€'~ (M).

The above statement is obvious for k = djs. Assuming that (i) holds true for k£ = 0, let us
prove (i)g_1. Since K’ € pEZC/(M), one has

Rdhom(z'kz, . K') € EZTP® ).
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Moreover, since K € pEsC(M), there exists Wi_; € CS,\s,lk_1 with
7 Yk \w_, ® K € ESHPO )y,
Then

RJhom(kz, \ w;_,, Jhom"(K, K')) ~ Rdhom(kp\ w,_, ® kz, , Jhom"™(K, K"))
~ Jhom® (7w 'kpr\ w,_, ® K,Rdhom(x 'kz,, K'))
€ Jhom®(ESHPE (\), EZ¢ PR (\m))
C D7 (M),

where the last inclusion follows from Proposition 2.6.8.
Considering the distinguished triangle

Rdhom(kz, \ w;_,, Jhom"™(K, K')) —> Rdhom(Kp \ (2, 0 w;_,)> Jhom™(K, K'))
—> Rdhom(kp \ z, . JhomE(K, K")) il),

we deduce (i);_q for Zx_1 = Zj N Wi _;.
(ii) The second inclusion follows from the first since Hom® ~ ay Jhom®.
(ii1) The last assertion follows from (2.6.3). O

Lemma 3.2.7. Foranyc,c’ € R, one has
JhomP(ES€ (M), ,E> (M) € PD>¢"~¢(M),

and in particular,
Jhom® (ky3, JEZ¢(M)) C PD>(M).

Proof. Letk € Zzo, Z € CSy*, K € ES°(M) and K’ € ,E>¢'(M). One has

Rdhom(kz, dhom®(K, K')) ~ Jhom®(K,Rdhom(n~'kz, K'))
€ Jhom®(ESC (M), EZ¢+20) (1))
C DZC’—C-i—p(k) (M),

where the last inclusion follows from Proposition 2.6.8. ]

Remark 3.2.8. For ¢, ¢’ € R, the inclusion
Jeom™(ES¢ (M), ,EZ¢' (M) C ”DZC/_C(k'\c;l)

does not hold in general. For example, with notations as in Remark 3.1.8,let M = R, K = kf,l
and K’ = ki; ® 7! F. Then K € E®(M), K’ € 1/,E>/2(M) and

Hom®(K,K') ~ anF ¢ /*D>'/2(ky).

Here, 1/2E := nE and 12D := ™D for m(n) := —2 the middle perversity.

Proposition 3.2.9. Forc € R one has

(LESC(M))* = B> (M).
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Proof.  One has
> < 1
LEZS(M) C (,E<°(M))

by Proposition 3.2.6.
Let K € (pE<C (M))L. We have to show that one has

Eiy, K eE>Tr®(z,)

forany k € Z>¢ and Z € CS,\SAk. Since =<0 (7 ) = (E<ctP®) (7))L, this is equiva-
lent to showing that for any L € E<¢tP®)(Z_) one has

Homg(z_)(L.Ei}y, K) 0.

By Lemma 3.2.3, one has
E=tP®)(Zo) C B (Zoo).

Hence Eiz_ nL € ,E~°(M) by Lemma 3.2.4. Then
Homg(z_)(L.Ei}y_K) =~ Homgg)(Eiz uL.K) ~ 0. O
Proposition 3.2.10. Let M be a subanalytic space. For any interval I C R such that
1 — R/Z is injective, the prestack on M
U+~ E'(U)

is a stack.

Proof. (i) LetK,L € pEI (M). By Proposition 3.2.6, one has
Hom® (K, L) e D”~Y(M) = DZ°(M).
Hence the presheaf
U+ HompE,(U)(Eigl K,Eiy'L) ~ I'(U; H°(Hom"(K, L)))
is a sheaf. Thus U +— pEI (U) is a separated prestack on M .
(ii) Let M = UaeA U, be an open cover, K, € pEI (Uyg), and let
uap: Kplu,nv, = Kalvu,nu,

be isomorphisms such that u,p o up. = tge on U, N Up N U, (a, b, ¢ € A). We have to show
that there exist K € pEI (M) and isomorphisms u,: K|y, — K, such that ugp o up = ug
on U, NUp (a,b € A). This follows from Proposition 2.4.8 by applying it with f =7 to
Rjan LE K, € D(U,; x R), where Ja:Uag X Roo = U, x R is the canonical morphism. O

%emma 3.2.11. Let M be a bordered space. Let c € R, Z € CSy and K € E(M). Set
U = M\ Z, and consider the morphisms i: Zo — M and j: Uso — M. Then one has:

() K € ,ESC(M) ifand only if Ei7'K € ,ES¢(Zoo) and Ej 'K € JES¢(Uno);
(i) K € ;E>“(M) ifand only if Bi'K € ;E**(Zoo) and Ej'K € ,E>(Uso).
Proof.  Since the proofs are similar, let us only discuss (i).

IfK e pESC (M), then Ei "' K and Ej ~! K satisfy the required conditions since the func-
tors Ei ~! and Ej ! are right exact by Lemma 3.2.4.
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Conversely, assume that Ei 7' K € ,ES(Zoo) and Ej 'K € ,ES¢(Uqo). Fork € Zo,
let Sy € CSG¥ be such that

7 ky\ sy ® Ej 'K € ESTP0 (1),
and Sz € CS;’; be such that
7 kz\s, ® Bi 'K e ESCTP®R) (7).

Set § = Sz U Sy € CSi¥ and S, =8SzU(Z NnSy) € CS;’;. (Here the closure of Sy is
taken in M.) Then SN U = Sy and S N Z = S,. Since

7 'k \ sy ® K € ESTPOM), 77kz\ 5, ® K € ESCTPE (1),

one concludes that 7~ ks \s ® K € ES¢t? &) (M) by considering the distinguished triangle

- — — +1
7 'ky\sy ® K— 'k \s ® K — 7 'kz\s, ® K — . O

A subanalytic stratification {My}qeq of M= (M, M ) is a locally finite (in M ) family
of smooth My € LCSy such that M = | |,c4 My and My N Mg # & implies My D Mg.

Proposition 3.2.12. Let {My}qeca be a subanalytic stratification of M, and set for short
My = (My)oo. Let K € E(M).

(i) K € JES(M) ifand only if Eiyy! K € JES¢(My) for any « € A.
(i) K € pEZC (M) if and only ifEi,{,laK € pEZC(Ma)for any o € A.

Proof. The statement follows from Lemma 3.2.11. O

3.3. R-constructible enhanced ind-sheaves. In this subsection, we extend to the case
of subanalytic bordered spaces the definition of R-constructible enhanced ind-sheaves from
[4, Section 4.9]. .

Let M = (M, M) be a subanalytic bordered space.

Definition 3.3.1. (i) An object K € E(M) is R-constructible if for any relatively
compact subanalytic open subset U of M, one has

+
Eiy! K ~ky ®Qu.F inE(Us) for some F € Dy  (Ku., x Roo)-
In particular, K is stable.
(i) Er.c(M) is the strictly full subcategory of E(M) whose objects are R-constructible.
Recall the morphism jy: M — M.

Lemma 3.3.2. Let K € E(M). Then K € Eg (M) if and only if EjunK € Eg.o(M).

Proposition 3.3.3 ([4]). Let f:M — N be a morphism of subanalytic bordered spaces.
(1) Er-c(M) is a triangulated subcategory of E(M).

(i1) The duality functor DEA gives an equivalence Er_..(M)®® = ERr_.(M), and there is a can-
onical isomorphism of functors idgg () = DEA o DEA.
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(iii) The functorsEf ' and E f ' send ERr.c(N) t0o Er_..(M), and
DEoEf ' ~Ef'oDf and DfoEf'~Ef 1oDE.

(iv) Assume that f is semi-proper. Then the functors Ef , and E f |, send Er (M) to Er_.(N),
and

DyoEf,~Ef,oDf and DfoEf, ~Ef, oD
See [4, Corollary 4.9.4, Theorem 4.9.12, Propositions 4.9.14, 4.8.2].

Definition 3.3.4. (1) An E-type on M is the datum
(3.3.1) L = (¢a,Ma, lﬂf, Np)acA, beB

consisting of finite sets A, B, integers m, and nj for any ¢ € A and b € B, and mor-
phisms of subanalytlc bordered spaces ¢, wb M — R foranya € A and b € B, such
that ¥~ (x) < wb (x) forany x € M.

(i1) An E-type £ asin (3.3.1) is called stable if for any b € B

(3.3.2) ((e,1) € M xR 1 = Y (x) — ¥y (1)} N (M x {+00)) # @,

Vv J—
where the closure is taken in M x R.

Notation 3.3.5. For an E-type £ on M as in (3.3.1), set
D, = {(x,t) e M xR;t = @q(x)},
Wy = {(x,1) € M xRy (x) <1 < ¥;f (x)},
and

k$ = (P kg, [-ma)) & (P kg, [-n]) € E(M),

acA beB
+
kK% = (P K5, [-ma)) & (P K, [-n5) = kij ® k3 € Erc(M).
acA beB

Note that kE‘I,b 2 0if and only if (3.3.2) holds true.

Definition 3.3.6. One says that K € E(M) is free (resp. stably free) on M if, for any
connected component S of M there ex1sts an E-type &£ on S such that Ei Sl K ~ k2 ¢ (resp.
Ezg1 K ~ kE) (Note that EzS ~ Ez .)

If K € E(M) is stably free, then it is R-constructible. If K is free, then it is constructible
in the sense of Remark 3.5.12 below.

A regular filtration (M}, )<z of Mis an increasing sequence of closed subanalytic subsets
M. of M such that My = @ fork < —1, M}, = M for k > dl\(;l’ and My, \ Mj_, is smooth of
dimension k. In particular,

®=M_1CM0C'--CMdM_1CMdM=|\O/|.

Lemma 3.3.7 ([4, Lemma 4.9.9]). Forany K € ER (M) there exists a regular filtration

(Mp) ez of M such that both El(M \Mi— oo K and EZ(M \Mi— oo K are stably free.
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Definition 3.3.8. Let £ = (¢4, mg, wl;t, Np)aca, bep be an E-type on M, and assume
that M is smooth of dimension d. The dual of £, denoted by

* * * +x %
£ :(goa’ma’ b »nb)aeA,beBa

is the E-type on M defined by ¢ := —¢4, m}, := —mg—d, w,;t* = —W;F,nz ‘= —np—d—1.
Accordingly, we set

O = {(x,1) € M xR;t = —¢4(x)},

Wy = {(x,1) € M x R; =y, (x) <1 < =y (x)}.

Lemma 3.3.9. Let £ be an E-type on M. Assume that M is smooth and equidimen-
sional. Then Dyky =~ K. and DK%, ~ K&,

Proof. This follows from Lemma 3.3.10 below. O

Lemma 3.3.10. Recall Notation 3.3.5 and Definition 3.3.8. If M is smooth of dimen-
sion d, one has
Dp(kg,) ~kg.[d]. Dy(ky)) ~ kQZ[d + 1],
and

Dy (kg,) = Kg«[d], Dy(ky,) = kEZ[d + 1].

Proof. By Lemma 2.8.3, one has

Df\)/l(k%a) = k?t<—¢a(X)}[d +1] = kQZ[d]’

Q. Q y ~ 1LQ _ 1,Q
DR, Kty oyl + 1= K5l + 10

The other statements also follow from Lemma 2.8.3. O

Definition 3.3.11. For p a perversity and ¢ € R, we set
JERC(M) = ESC(M) NEpe(M).  EZS(M) := ,E>(M) N Er.c(M).

Proposition 3.3.12. The following properties hold.
(i) (pEEfC(M), pEE_CC (M))cer is a t-structure on Eg_.(M).

(ii) Assume that M = M is a subanalytic space. For any interval I C R such that [ — R/Z
is injective, the prestack on M
U Eg. (U)

is a stack of quasi-abelian categories.

Plan of the proof. (i) We have to prove that the conditions in Definition 1.2.2 are sat-
isfied. Conditions (a) and (b) are clear. Condition (c) follows from Proposition 3.2.6. Condi-
tion (d) is checked in Proposition 3.3.19 below.

(i1) This follows from Proposition 3.2.10. O
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Notation 3.3.13. We denote by

(1/2EJ§R?C(M)v 1/2E§fC(M))ceR

the t-structure associated with the middle perversity m(n) = —%.

Remark 3.3.14. The t-structures ( pEE_CC (M), pEEfC(M))ceR are not well behaved with
respect to duality, as one observes in Lemma 3.3.15 below. We will come back to this point in
Section 3.5.

Lemma 3.3.15. Assume that M is smooth of dimension d. Using Notation 3.3.5, one
has:

. —p(d
() K, .KG e Ex”@(m).
.. d d)—
(ii) DEKG, € ERY (M) and DEKE, e ERD ™! (M),

Proof. (i) As the proofs are similar, let us only discuss k]&:)u.
(i-1) By Lemma 3.2.3, one has

< <-p(d
K, € ExO(M) C B3 7@ (M.

(i-2) Let us now show that kgu € pEi;p (d)(M). We have to prove that for any smooth
YRS LCSfAk one has
E l‘éoo (kl(iba) c Ez—p(d)er(k)(Zoo)'

We may assume that k < d. Consider the embedding i: Z x R — M x R. Then one has

.| E E 3 -1
Biy (kg ) ~Kky ®Qz (i'Kizg,x))

E 1 .
~ky ®Qz (i Kit=p,(x)} ®i KmxR),
where the first isomorphism follows from [4, Proposition 4.7.14]. Locally on Z, one has
i'Ky xp kz « r[k — d]. Hence
Eiy (kg ) € EZ97%(Z)
by Lemmas 2.6.5 and 2.8.2. One concludes since d — k = —p(d) + p(k) by perversity.
(i1) Using Lemma 3.3.10 and (i), one has
—p*(d)—d d
Diik, = kazld] € ,Eg V(M) = L ERT(M).
—p*(d)—d—1 d)—1
Dyky, = ky:[d + 1] € .Eg” D=~y = .ERD™ (m). D

Lemma 3.3.16. Assume that M is non-empty and smooth of dimension d. Given a stable
E-type £ = (¢q,mq, Wbi’nb)aeA, pep on M, and ¢ € R, one has:

1) k‘;i € pEEfC(M) ifand only ifm, < c+p(d) andny < c+p(d)foranya € Aandb € B.
(i1) k?c € pEE_cC(M) ifand only ifmg = c+ p(d) andnp = c+ p(d) foranya € Aandb € B.
(iii) Dﬁkg: € p*EEEC(M) ifand only ifmg < ¢+ p(d) andny < ¢+ p(d)—1foranya € A

and b € B.
(iv) Dyk5 € p*EEf(M) ifand only ifmg = ¢+ p(d) andnp = ¢+ p(d)—1 foranya € A
and b € B.
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Proof.  Since
K = (D5, mal) @ (D15, il
acA beB

the statement follows from Lemma 3.3.15. Note that a non-zero object of pEC (M) belongs to
pE$c/(M) (resp. pEzcl(M)) if and only if ¢ < ¢’ (resp. ¢ = ¢’) by Proposition 3.2.6. O

Corollary 3.3.17. Assume that M is smooth of dimension d. Let K € Er_.(M) be
a stably free object. Then, for ¢ € R, one has:

(1) K € pEEfC(M) ifand only if K € EE?CJFP(‘Z)(M).
(ii) K € JEZ.(M) ifand only if K € Eg" 7@ ().

Lemma 3.3.18. Letc € R and K € Egr..(M). Assume that M is smooth and K is stably
free on M. Then there are distinguished triangles in Eg_.(M)

+1 +1
K< — K— Kse — and K< — K — Kz —

with K1, € pE]]fK_C(M)for L equalto < ¢, > ¢, < cor=c.

Proof. It is obvious since K is a direct sum of objects belonging to pE%_C(M) for some
a € R by Lemma 3.3.15. |

Proposition 3.3.19. Let ¢ € R and K € Er_..(M). Then there are distinguished trian-
gles in Eg_.(M)

+1 +1
K< — K— Kse — and K< — K — Kz —

with K, € pEH]i_C(M)for L equalto < ¢, > ¢, < cor=c.

Proof. Since the proof of the existence of the second distinguished triangle follows
from the first one, we will construct only the first distinguished triangle. The arguments we
use are standard (see e.g. [10, Lemma 5.8]).

LetM = (M, M ). Reasoning by decreasing induction on k € Zx_, let us show that

(dt)g there exists Z; € CS,\s,lk and a distinguished triangle

+1
K, — Eji 'K — K] —,

with K} € pEEfC((M \ Zi)oo) and K} € |Eg¢((M \ Z)oo)-
Here, jj is the morphism indicated in the diagram below, where we picture all the morphisms

that will be used in the proof:

(Zi\ Zie oo —5s (M\ Zi—1)oo 25— (M \ Zi)oo

N

The statement (dt) is obvious for k = dps. Assuming that (dt); holds true for some k = 0, let
us prove (dt)g—1. The morphism K ]’( — Ejir 'K ~Ej 'K induces by adjunction a morphism
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EjinK ,/C — K, that we complete in a distinguished triangle in Eg_.(M)

R +1
EjxnkKy — K — L —.
Let Zg—; € CS5*" be such that Z \ Zg— is smooth and Ei | L is stably free. Lemma 3.3.18
gives a distinguished triangle

(333) L —EilL — 1" 55

with L' € JESC.((Zk \ Zk—1)oo) and L” € B2 ((Zi \ Zik—1)o0)-

C
The first morphism above, namely

L' - Ei,L ~Ei'Ej_,L,
induces by adjunction a morphism Ei;,L"— Ej ]!c_lL ~Ej I:IL, that we complete in
a distinguished triangle in Eg_.(M \ Zr_1)o0)

1
(3.3.4) Bip L' — Ejil L — K}, =

Consider the composite morphism E ,:11 K—Ej 1:11 L— K ]/(’_1 , and complete it in a distin-
guished triangle in ER_.((M \ Zxr_1)co0)

/ .—1 Vi +1
Kk—l — Ejk_lK — Kk_1 — .

We claim that this satisfy (dt);—;.
Note that
Eji 'Ky, ~Bji 'L~ K} € JER5.((M\ Zp)oo),
Eji 'Ky =~ K} € BRS((M \ Zi)oo).

Hence, by Lemma 3.2.11, we are reduced to prove

(3.3.5) Bi; 7' Ky € ERS((Zi \ Zik—1)o0),
(3.3.6) Eif' K| € JER((Zi \ Zk—1)oo)-

Applying the functor Ei ,/c! to (3.3.4), we get a distinguished triangle
L' —EilL —Eil'K]_, >
Thus (3.3.3) gives Ei,’c! K/ ,~L"¢€ pE]EfC((Zk \ Zx—1)oo), Which proves (3.3.6).
By the octahedral axiom, there is a diagram in E((M \ Z;_1)oo)
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and hence a distinguished triangle

— . . +1
Ej ' EjxukK; — K}_, — Ei,, L' —

Applying the functor Ei; !, we get
Ei 'K, ~L'€ pEfgi((Zk \ Zk-1)o0).
which proves (3.3.5). O

Definition 3.3.20. For p:Z>o — R a perversity and d € Zxy, the shifted perversity
pld] is given by p[d](n) = p(d + n).

Note that the soft dimension of a subanalytic space is equal to its dimension.

Proposition 3.3.21. Let f:M— Nbea morphzsm of subanalytic bordered spaces, and
d € Z>o. Assume that dlmf Y(y) <d foranyy e N. Then, for any ¢ € R one has:

() Ef 7' (aESC(N) C LESC(M).
(i) Ef'(,aE>(N)) C ,EZ~4 (M),
(iii) Ef . (,EZC(M)) C pa1E>(N).
(iv) Er(N) NEfy(,ESC(M)) C (g BSCH4(N).

Proof. LetM = (M, M) and N = (N, N).
() Let L € p[d]E@ (N). We have to prove that, for any k € Z >, there exists Z € CS,\<,|k
such that one has
Ei g2y ES 'L € BSTTPO (M \ Z2)0).

Let W € CS5*~¢ be such that one has
Ei (y\ o L € ESTTPE (N \ W)oo).

Note that if 0 < k < d, then W = @& will do because L € ESctrldl(N) ¢ gsctrk)(N)
since p(d) < p(k).
Then Z := f~1(W) e CS,\<,|I‘ satisfies the desired condition. Indeed, denoting
Jor(M \ Z)oo — (N \ W)oo
the morphism induced by f'[p\z, one has

EI(M\Z) Ef 'L ~ Efo El(N\W)
€Efq ESTPO(N \ W)oo)
CESTPO((M N\ Z)w),
where the last inclusion follows from Proposition 2.7.3.

(ii) Let L € p[d]Ezc (N). We have to show that for any k € Zx>o and Z € CS,\SAk there
exists an open subanalytic subset Zg of Z, such that dim(Z \ Zp) < k and

(3.3.7) Ei{z, Bf'L e EZTPO=4((Z0)).

Recall Notation 2.3.1. Replacing M with T #» we may assume that f extends to a morphism
of subanalytic spaces

V

fY:M—>1<7.
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Since (3.3.7) is local on M , we may assume that Z is relatively compact in M. Then,
there exists an open subanalytic subset Z of Z satisfying the following properties:

(a) dim(Z \ Zy) <k,
(b) Zo = ;s Si, where {S;};er is a family of subanalytic smooth subsets of dimension k,
(c) T; := f(S;) is a smooth equidimensional subset of N for any i € 1,
(d) f induces a submersive morphism f;: (S;)oo = (7;)oo foranyi € I.
We claim that Zj satisfies (3.3.7). In fact, for any i € I, one has
Ei(s,, BEf'L ~Ef[Ei{y, LeEfE>TPUntd(r).).
Since f; is submersive, we have Ef,-! ~ g1 Ors, /T; (}Z)Efi_1 [ds; — dr,], where org, /T, is the
relative orientation sheaf (see Section 1.5). Hence we have
E f}EZCHPUEn ) (7y) ) ¢ BECHPEn + )+ —ds; () )
C BZFPUs)TA(8)) ).
Here, the last inclusion follows from dr, +d = ds; and p(dr, +d)+dr, +d = p(ds;) +ds;
by perversity.

Thus we obtain
. | —
Ei(g,) Bf'L € EZTP0~4((5;))

for any i € I, which implies (3.3.7).
Statements (iii) and (iv) follow from (i) and (ii) by adjunction using, respectively, Propo-
sition 3.2.9 and Proposition 3.3.12 (i). D
Remark 3.3.22. Concerning (iv) above, the inclusion
Efn(,ES(M) C ,gESH(N)

does not hold in general, since pEsc (M) is not stable by “@5”. For example, let M = R \ {0},
N =R, andlet f: M — N be the inclusion map. Forn € Zx>1, let x, = % and set

Fp =7 'Kix,} ® ki > 03,

an object of Mod(kpsxRr.,)- Let K = Qu (P,,>; Fn) € E(M). Then we have K € 1/ZEO(M)
butEf K ~ Qn(“D”,>; fRuFn) € E(N) does not belong to 1/2E$0(N). Here

fR:=f xidp: M xR — N xR.
Indeed, there is no Z € CS<'(N) such that Ei(_l\lf\Z)ooEf!!K € EST1/2((N \ Z)0), i.e. such
that Ei (y\ 7y EfnK = 0.

3.4. Dual intermediate enhanced perversity. Let p be a perversity and let M be a sub-
analytic bordered space. Since the t-structure ( pEEfC(M), pEii(M))ceR is not well behaved
with respect to duality, we consider also its dual t-structure.

Notation 3.4.1. Forc € R, set

JERG(M) = (K € Ego(M); DyK € .Ex “(M)},
JERG(M) :={K € ER(M);DyK € .Ex_“(M)}.
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The following result is a consequence of Proposition 3.3.12.
Proposition 3.4.2. We have that ( p’EEfC (M), p,E]IZQf‘C (M))¢eR is a t-structure on Eg_.(M).

Note that, by the definition, for any ¢ € R the duality functor D} interchanges pEfRfc (M)
and p*/Ei;C (M), as well as pEfRC (M) and p*/Ef{:f (M).

-C
];emma 3.4.3. Let M be a bordered space. Let c € R, Z € CSy, and K € Er_(M). Set
U = M\ Z. Then, considering the morphisms i: Zoo — M and j: Uso — M, one has:
(i) K e p’Efgc(M) ifand only if Ei 'K € p’EEf’C(ZOO) and Ej 'K € p’EEfC(UOO);
(i) K € JER,(M) if and only if Ei 'K € JERS(Zoo) and E j 'K € SERS (Uso).

Proof. The statement follows from Lemma 3.2.11, noticing that
DY Ei"'K ~Ei'DjK., Dy Ej 'K ~Ej'DyK,
DY Ei'K ~Ei"'DhK, Dj_E;j'K~E;j 'DyK,

which is a consequence of Proposition 3.3.3. |

Lemma 3.4.4. Forany c € R one has
P/EE?C(M) C pEﬂS{f‘C(M) C p/E]}sQ?c—i_l(M)?
SERG(M) C JERS (M) C ERSTT(M).

Proof. Let K € E(M). By Lemma 3.3.7, there exists a regular filtration (M );cz of M
§uch that b.oth Ei ( 1‘7111(\ Mkfl)ooK and Ei ( ]!Mk\ Mkfl)ooK are stably free. In order to f:heck the
inclusions in the statement, by Lemmas 3.2.11 and 3.4.3, we may assume that M is smooth
equidimensional, and that K is stably free. Then one concludes using Lemma 3.3.16. O

Proposition 3.4.5. Let f:M — N be a morphz{'}sm of subanalytic bordered spaces, and
d € Z>o. Assume that diim f~1(y) < d for any y € N. Then, for any ¢ € R one has:

@) Ef 7' aEr(N) C JERS(M).
(i) B/ (Bas(N) € JERST4 (M),
(iii) ER«(N) NEf,(;ERS(M)) C ,,ERS(N).

(iv) Er(N) NEfy(JERS(M) C BRI (N).
Proof. (i) LetK € EE?C(N), that is, DEK € o d]*EHZK;c (M). Noticing that one has

pld]*(n) = p*[d](n) + d,

/
pld]

Proposition 3.3.21 implies
— | —
DuEf 'K ~Ef'DyK € .Eg °(M).

Hence Ef 'K € JER’.(M).
Statement (ii) is proved similarly, and statement (iii) and (iv) follow from (i) and (ii) by
adjunction. |
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3.5. Enhanced perversity. Let p be a perversity and M a subanalytic bordered space.

Definition 3.5.1. For ¢ € R, consider the strictly full subcategories of Er_.(M) given
b
y PERL(M) = ERS(M) N JERTT2 ()
= {K € Ero(M): K € E5°.(M), DiK € ,.Eg "2},
PERS(M):= ERM)n JERS (M)
= {K € Er(M): DK € "Eg (M)}
= {K € Ep.(M):K € Bz’ >(\M). DjK € .EX (M)}

By Lemma 3.4.4 one has
< < = = =
(3.5.1) I;EE? (M) C PERS.(M) C pE];fC(M), pE];_C (M) c PERS.(M) C p’E]EfC(M).

C C

In the rest of this section, we will give a proof of the following result.

Theorem 3.5.2. Let M be a subanalytic bordered space.
@) (pEEfC(M), pEii(M))ceR is a t-structure on Eg_.(M). )
(ii) For any ¢ € R, the duality functor DII:T/I interchanges * EE_CC(M) and ? Ei;e (M).

(iii) Assume that M = M is a subanalytic space. For any interval I C R such that I — R/Z

is injective, the prestack on M
U+ PEg (U)

is a stack of quasi-abelian categories.

Plan of the proof. As in the proof of Proposition 3.3.12, statement (i) follows from
Propositions 3.5.4 and 3.5.5 below.

Statement (ii) is clear from the definitions, and statement (iii) has a proof analogous to
that of Proposition 3.2.10. O

Lemma 3.5.3. Assume that M is non-empty and smooth of dimension d. For ¢ € R
and £ a stable E-type on M as in (3.3.1), one has:

(i) k§ € pEEi(M) if and only if mqg < ¢ + p(d) and np < c + p(d) — 1 forany a € A

and b € B.

(ii) k],::C € pEi_CC(M) if and only if mg = ¢ + p(d) and np, = ¢ + p(d) — %for any a € A
and b € B.
Proof. The statement follows from Lemma 3.3.16. O

Proposition 3.5.4. The bifunctors dhom® and HomE are left exact, that is, for any

c,c’ € R one has _ _ /
Jhom®(PER’ (M), PEZC. (M)) C D*“ ¢ (M),

Jom® (PERS,(M). PE5 . (M)) € DZ~ (k).

In particular, HomEch(M)(pEE_CC(M), pEfRi’(M)) =0ifc <.
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Proof. The second inclusion follows from the first one, since Hom®" ~ apnd homE. Let
us prove the first inclusion. )

Let K €? EE?C(M) and K’ € ? E]%Rfc (M). As in the proof of Proposition 3.2.6, reasoning
by decreasing induction on k € Zx>_1, let us show the following statement:

(1) there exists Zj € CS,\SAk such that
Rdhom (K \ z, . dhom®(K, K')) € D ~¢(M).

The above statement is obvious for k = djs. Assuming that (i); holds true for some k, let us
prove (i);—;. There exists Z;_; € CSﬁk_1 such that Zy_1 C Zy, Zi \ Zj_1 is smooth of
dilpension. k, and Ei (_Zlk\ Zk—l)ooK and Ei %Zk\ Zk—l)ooK " are stably free. Consider the distin-
guished triangle

Rdhom(kz, \ z,_,, dhom®(K, K')) —> Rdhom(kp \ z,_,, Jhom™(K, K'))
— Rdhom(kp \ z,, Jhom®(K, K')) XL
Then (i) will follow if we show that
Rdhom(kz, \ z,_,. Jhom®(K, K')) € D¢ ~¢(M).

This is equivalent to i éoo Jhom®(K,K') € DZC/_C(SOO) for any connected component S of
Zi \ Zj_1.One has

i, dhom" (K, K') ~ Jhom*(Eig! K. Eig K').

By assumption,
Eigl K ~k% and Eiy K’ ~kf,

for some stable E-types £ = (¢4, Mg, wlj':, np)aecd, bep> £ = (ar, mar, wlj'f, Np)a’ed’, b'eB’-
Then we are reduced to prove

(3.5.2) Jhom® (K KE,) € DZ¢'7¢(Ss).
Recall that

kgz(@kg,u[— ) (@k [nb)e”EEi(Soo),
beB

acA

K = (D k5, l-mal) @ (D K5, vl € "B (50)

a’eA’ b’eB’
By Lemma 3.5.3 and Proposition 2.6.8, one has

I hom" (K, [-ny) K, [=ny))
€ JhomE(ESCHPR—=1/2(g_y p=c+p()=1/2(g ) = D>¢'~¢(5.).

Similarly, one has

Jhom" (kg [-ma), kg, [-ny]) € DZ712(Se),

Jhom® (KY, [—np). kg, [=ma]) € DZC7CT2(S),

Jhom® (K, [-ma]. kg [-mar]) € D77 (Se0).
Hence (3.5.2) reduces to show that for any ¢« € A and b’ € B’,

H™ Jhom" (kg [-ma), Ky, , [-np]) =~ 0
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for any m € Z such that ¢’ — ¢ — 1/2 < m < ¢’ — ¢. Since we have
H™ Jhom®(Kg, [-ma), ky, [=np]) >~ H™ a7 Jhom® (kg , Ky, ),
we may assume that m + mg —np = 0. Since mg < ¢ + p(k) and ny = ¢’ + p(k) — %, one
hasm +mg —np <m—c' +c¢ —|—% < %.Then,wehavem +mg —np = 0.
Let 7: Soo X Roo = Soo and 7: Seo X R — S be the projections. Then one concludes
by noticing that
HO$hom® (K, . Ky, ) ~ H®Jhom" (kG Ky, )

+
~ HORsRIhom(Kie = g, () Kie » 0y @ Ky x) <1 < v, o))
~ H°RwRdhom (k{r > 0a(0b M7 Ky peo +5 <t <yl o+ s})

s—>+o00
=~ wndhom (k{t > pe(0b M7 Ky Zoo +5 <t <yl 0+ s})
s—>—+00

5 S_li_f)iloo Tndhom Ky = g, (0) Kiyy (x) +s <t < b (x) +53)

2 M s TxHom (K > g, () Kiyy (0 +5 <1 < v (0 +53) = 0.
s—>+00

where (g__:Mod(kg) — I(kg_) is the natural embedding. Note that () holds because 7y and
Jhom (ks > ¢, (x)}, ® ) commute with inductive limits. O

Proposition 3.5.5. For any ¢ € R and K € Er_.(M) there are distinguished triangles

in Eg.«(M) +1 +1
K< — K— Koy —, Keg — K — Kxp —,

with Ky, € pE]Ili_C(M)for L equalto <c,>c, <cor=c.

Proof. Since the proofs are similar, we will construct only the first distinguished
triangle.

As in the proof of Proposition 3.3.19, one reduces to the case where M is smooth and
connected, and K is stably free. Then K is a direct sum of objects in ? E?R_C(M) for somea € R
by Lemma 3.5.3. ]

As a corollary of Propositions 3.3.21 and 3.4.5, one has the following result.

Proposition 3.5.6. Let f:M— Nbea morphl;sm of subanalytic bordered spaces, and
d € Zxq. Assume that dim f~1(y) < d for any y € N. Then, for any ¢ € R one has:

@) Ef 1 (PYIERS () € PERC.(M).

) Ef'(PYIEZS (N) € PEZS4 (M.
(iii) Erc(N) NEf,(PEZ5.(M)) € PMEZC (N).
(iv) Erc(N) N Efy(PERS,(M) € PIEZCH ().

Proof. Statements (i) and (ii) follow from Propositions 3.3.21 and 3.4.5, and (iii) and
(iv) follow from them by adjunction. m)
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Proposition 3.5.7. Let M be a subanalytic bordered space. The embedding
e: D'ﬁg_c(kM) — Er..(M)
induced by (2.8.2) is exact, i.e. for any ¢ € R one has
e("DR’, (kw)) C "ER%(M).
e("DE’, (k) C PER’,(M).

Proof. It follows from the exactness of e with respect to the standard t-structures and
7 ks @ e(F) ~ e(ks ® F),
Rdhom(n~'kg,e(F)) ~ e(RHom(ks, F))
for any F € DP(ky) and S € LCS(M), by [4, Corollary 4.7.11]. o

Definition 3.5.8. The enhanced middle perversity t-structure
(“2ERS M), V2ERS (M) cer

is the one associated with the middle perversity m(n) := —5. It is a self-dual t-structure
indexed by 17

Example 3.5.9. Let M = {pt}. Note that one has:
@) ka<t<b} ~0fora,b € R witha < b.

(ii) k{t>a} ~ kE fora € R.

(iii) DFkf; ~ kE
Hence kf; € 1/2g Eg. C({pt}) and any object of Er_.({pt}) is a finite direct sum of shifts of copies
of kﬁ.

Example 3.5.10. LetM = M = R and K = k¥ so that

{x>0, 0<r<1/x}U{x=0, =0}’
DMK k{x>0 —1/x<t<0}[ ]
Noticing that
E LE .. LE
Ei oDy K =~ D{O}E’ {O}K DioyK(oy = k{or

3/2(]R) so that K € 3/2(]12{) Hence we have

one has K € 1/Z(R) and DFK € 1 1/2 R-c

1/2 R-c
K € "?Ep (R).

/ 2

Example 3.5.11. Let {M}, be a subanalytic stratification of M, and set My, := (My)oo-
Let K € Er.¢(M). Assume that Ei W K and Ei ,{,, K are stably free. Recall Notation 3.3.5. Even
if only direct summands containing ®, appear in Ei Ml K, direct summands containing W can
appear in EzM K. For example, let M = R? x R~ with coordinates (x, y, z), consider the
bordered space M := (M, R? x R), and set K := kE € E(M) for

:{(x,y,z,t)eMxR;x20,y>0,t> el }
xX+y
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Set Z = {x = y = 0} C M. Then one has
Eiz! K~0, Biz K~kgye -1,
Eil, DyK ~0, Eiz! DK ~D§ Eij, K~k . _[3l.
We diz;lzuc?e’:/;tzat)l( € | ,Ex 2(M) and DEK € | ,Ex*>(M). Hence K € | ,7E2/2(M), so that
K M

Remark 3.5.12. Let M be a subanalytic space. The triangulated category of enhanced
sheaves on M (cf. [19] and [5]) is defined by

E"(kpr) := DP(kpr xr)/7 "D (kpr),
where 7: M x R — M is the projection. One similarly defines E® % (Kar), so that
E°(kar) ~ E5 (k) @ E (kpr).
Note that
E% (kpr) ~ {K € ES.(M);LE K € D*(ky xR..)}-

We say that an object K € E % (kpr) is R-constructible if so is LEK e Db(kM x Roo)- Let
p:Z=0 — R be a perversity. Then with obvious notations, (¥ E\c (kar), P E (Ka))cer sat-
isfies the analogue of Theorem 3.5.2. Moreover, a description analogous to that in Lemma 3.3.7
holds, replacing “stably free” with “free”.

Remark 3.5.13. Let M be a subanalytic space. It is shown in [16] that #om" induces
a functor
Hom"(KY,, %): ER (M) — Dy (Kpm).

This is neither left nor right exact with respect to the middle perversity t-structures. For
example, let M = R” and K = k{x7é0 t=—1/|x]}" Then

K € PN (M),
Moreover, by [16, Corollary 6.6.6.], one has
F := Jom®(Ky;, K) ~ Kix £ 0}

Hence, /2H"/2(F) ~ kps and Y/2H(F) ~ K{oy when n = 3. Therefore, JfomE(kt>0, *) is
not left exact. Since Hom® (K}, *) commutes with duality, Hom"(k}s . %) is not right exact
either.

4. Riemann—Hilbert correspondence

On a complex manifold, the Riemann—Hilbert correspondence embeds the triangulated
category of holonomic $-modules into that of R-constructible enhanced ind-sheaves. We
prove here the exactness of the embedding, when the target category is endowed with the
middle perversity t-structure.
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4.1. Subanalytic ind-sheaves. For subanalytic sheaves and ind-sheaves we refer to [13]
(where subanalytic sheaves are called ind-R-constructible sheaves).

Let M be a subanalytic space. An ind-sheaf on M is called subanalytic if it is isomor-
phic to a small filtrant ind-limit of R-constructible sheaves. Then, being subanalytic is a local

property.

Let us denote by Igwpan(Kas) the category of subanalytic ind-sheaves. Note that it is
a strictly full subcategory of I (kps) stable by kernels, cokernels and extensions.

Let Opyy,, be the category of relatively compact subanalytic open subsets of M, whose
morphisms are inclusions.

Definition 4.1.1 (cf. [12,13]). A subanalytic sheaf F is a functor Opﬁf}ga — Mod(k)
which satisfies

(i) F(2) =0,
(i) for U,V € Opy,,, . the sequence

0— FUUV)S FU)e F(V) 2 FUNV)

is exact. Here ry is given by the restriction maps and r, is given by the restriction
F(U)— F(U N V) and the opposite of the restriction F (V) — F(U NV).

Denote by Mod(kyy,,) the category of subanalytic sheaves.
The following result is proved in [13].

Proposition 4.1.2. The category Igpan(Kpar) of subanalytic ind-sheaves and the cate-
gory Mod(kyy,,) of subanalytic sheaves are equivalent by the functor sending F € Igypan(Kpr)
to the subanalytic sheaf

Opp, 2 U = Homy ,,)(ku . F).

4.2. Enhanced tempered distributions. Hereafter, we take the complex number field
C as the base field k.

Let M be a real analytic manifold. Denote by Dby the sheaf of Schwartz’s distributions
on M. The subanalytic sheaf of tempered distributions on M is defined by

Dbl (U) := Im(Dbyr (M) — Dbpg(U)) ~ Dbar(M)/Typy (M Dbyy)

forany U € Opy, . We still denote by i)b}u the corresponding subanalytic ind-sheaf.
Denote by P the real projective line, and let € R C P be the affine coordinate. Consid-
ering the natural morphism of bordered spaces

JiM xReo > M xP,
one sets
T . t 01 t

where the above complex sits in degrees —1 and 0.
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By the results in [4, Section 8.1] one has:

Proposition 4.2.1. The following statements hold.
(1) There are isomorphisms in D(M X Ryo)
JDbZTM = Jhom+((C{l;0}, JDb]TM) oad Jh0m+(C{,>a}, JDb]TM) forany a = 0.
(i1) The complex i)b},[ is concentrated in degree —1.
(iii) There are natural monomorphisms in 1(Cprxr__)

Cireny ® T Dby, > H ' Dby, »> 7 ' Dby

The enhanced ind-sheaf of tempered distributions is defined by
Dby = Qu (Dby,) € E(M).

Part (iii) in the following proposition is new.

Proposition 4.2.2. The following statements hold.
@) o‘DbE,I is stable, i.e. (C]]fl 1T DbE, ~ i)b}?,[.

(i) RE O‘Db}a ~ i)b}l. In particular, it is concentrated in degree —1.

(iii) !Db]]f,l € EO(M). In other words, the complex LF i)bfl is concentrated in degree 0.
Proof. (i) This follows from Proposition 4.2.1 (i).
(ii) By Proposition 4.2.1 (i), one has RF i)b}f,[ ~ @b}l. This is concentrated in degree —1

by Proposition 4.2.1 (ii).
(iii) By (ii), RE i)b}f,[ ~ i)b},[ is concentrated in degree —1. Hence Lemma 2.5.2 implies
+
LEDbE, ~ Cynpy ® Dby, € DULI(M x Ry),

and we are reduced to prove that H ! LE DbF ~ 0.

By [4, Proposition 4.3.10], there is a distinguished triangle

nA_,[anMggi)bITw —LF i)b}fl — i)bjTu i1> .

By Proposition 4.2.1 (iii),

H 'Rupy Dby ~ ey nH Dby, C iy ' Dby = 0.
Thus, the above distinguished triangle induces the exact sequence

0— H'LEDBE, - H'0bT, L 7 'Ry H' DD,

To conclude, we have to show that y is a monomorphism.
By Proposition 4.2.1 (iii), there is a commutative diagram

HA1DBT, — s 2w Ry H-L 0T,
nﬂ_llﬂbM —/— JTA_llRlﬂM!!JTA}IfObM.

Hence y is a monomorphism. m)
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4.3. D-modules. Let X be a complex manifold. We denote by d)(? its complex dimen-
sion. Denote by Ox and Dy the sheaves of algebras of holomorphic functions and of differen-
tial operators, respectively. Denote by Qx the sheaf of differential forms of top degree.

Denote by Mod(Dy) the category of left Dy-modules, and by DP(Dy) its bounded
derived category. For f: X — Y a morphism of complex manifolds, denote by ®P, D f*,
D f , the operations for £D-modules.

Consider the dual of M € D°(Dy) given by

Dx M = RHomg, (M, Dx ®e, Q2 1[dS].

A Dx-module M is called quasi-good if, for any relatively compact open subset U C X,
M|y is isomorphic (as an Oy |y-module) to a filtrant inductive limit of coherent Oy |¢7-sub-
modules. A Dy-module M is called good if it is quasi-good and coherent.

To a coherent Dy -module M one associates its characteristic variety char(.M), a closed
conic involutive complex analytic subset of the cotangent bundle 7*X. If char(.M) is
Lagrangian, then M is called holonomic. For the notion of regular holonomic Dy-module,
refer e.g. to [8, Section 5.2].

Denote by Dﬁol(i)x) and D?h(c‘DX) the full subcategories of DP(Dy) whose objects
have holonomic and regular holonomic cohomologies, respectively. These are triangulated cat-
egories.

Let f: X — Y be a morphism of complex manifolds. For xo € X consider

df(xo)

rank;(go (f):= rank® (TxoX —— Tf(xp)Y) and flat-dimg, (Dx—v,x0)-

the complex dimension of the image of df(x¢), and the flat dimension of the transfer bimodule
Dx—v,x, as aleft Dy, x,-module, respectively.

Proposition 4.3.1. Let f: X — Y be a morphism of complex manifolds. For xg € X
one has
ﬂalt—dimu@X,X0 (Dx—y.x) < dg — rank;(go (f).

Proof. Setn = d)((C’ m = d?, d = rankf (f),and yo = f(x0).

0

Choose a system of local coordinates y = (y1,..., ym) of Y on a neighborhood of yg
such that dy,,...,dy, generate df(xo)(TxoX) C Tr(xy)Y. Set xp = yg o f for k <d, and
complete them to a system of local coordinates x = (x1,...,x,) of X on a neighborhood
of xq.

Consider the subring
R = Ox, xl0x;+.-..0x,] T D := Dx, x,-
Then Dx—v, x, = Ox, x, ®0y. 1, Dy, y, is a free R-module. In fact, one has

DXy, xp = P Rob.

Be{0}d x2254 cz,
The statement follows by Lemma 4.3.2 below. |
Lemma 4.3.2. Use notations as in the proof above. Let M be a left D-module. If M is

flat as a left R-module, then
flat-dimgp (M) < n —d.
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Proof. Set O := Ox, x, and D' := O[0x,,,,...,0x,], so that D ~ D' ®e R. Set
K :=COx,,, ® --- ® C0y,. Then the Spencer resolution of .M, considered as a £’-module,
' , n—d ,
0> @D'®/\ K®M—>-—>D Q@ M— M—0.

Since D' ®@ R =~ D, the above resolution reads as

—d
0@\ "TK@gM—>- > D@ M- M- 0.

Since M is a flat left R-module, this is a flat resolution of M as a left D-module. D

For a category €, let Pro(€) be the category of pro-objects in €, and let “l(i_r_n” be the
projective limit in Pro(€).

Lemma 4.3.3. Let M be a quasi-good Dx-module, flat over Dx. Let {M;}ics be
a filtrant inductive system of coherent Dx-modules such that M =~ lir_)niel M;. Then, for any
x € X and any k # 0 one has

“lim” Extly (M. Dx)x ~ 0 in Pro(Mod(Dy',)).
iel
Proof. There exists a filtrant inductive system {L;};cy of free Dy, ,-modules of finite

rank such that
Mx ~ h_n>1 Lj
J
(see [17]). It implies that
limy” My = i L

i J
in Ind(Mod(Dyx x)). Hence, for any i € I there exist j € J, a morphism u:i — i’ in / and
a commutative diagram

Miy —————— Mirx

L;.
It follows that the morphism induced by u,
Extly, (Mirx. Dy x) — Extlyy  (Mix. Dy.).

is the zero morphism. O

For a hypersurface Y of X, denote by Ox (xY') the sheaf of meromorphic functions on X
with poles in Y. We set

@X(*Y) = Ox(*Y) ®(9X :OX =~ o(l)X ®0X (9x(>l<Y).
It is a sheaf of C-algebras on X. For a Dy -module M, we set

M(xY) = Dx(*xY) g, M.
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Lemma 4.3.4. Let Y C X be a closed complex analytic hypersurface, and let M be
a quasi-good Dyx-module. Assume that M|x\y is flat over Dx\y. Let {M;}ier be a fil-
trant inductive system of coherent Dy -modules such that M(xY ) ~ li_r)nl_el M;. Then, for any
V cC X:

(1) Foranyk # 0,
“lim” Extley (Mi. Dx (xY))|y =0
iel
in Pro(Mod(i)‘o,p)).
(ii) One has
“l(i_r_n” RHomg, (M, Dx (xY))|y =~ “l(i_r_n” Homg, (M;, Dx (xY))|v
iel iel

in Pro(Db(!D?,p ).

Proof. (i)Fori € I, denote by I' the category whose objects are morphism i — i’ in I
with source i, and whose morphisms are commutative diagrams in /

i
i

It is enough to show that for any i € I there exists (ug:i — ig) € I’ such that the induced
morphism
upy: Extlyy (Mg, Dx (+Y))|y — Extly (M;, Dx (xY )|y
is the zero morphism. For (u:i — i’) € I', set
Ny = Im(Extly (Mir, Dx) — Extly (M;, Dx)).

Itis a coherent i);p—module. Note that the decreasing family of closed complex analytic subsets
{supp(My)},csi is locally stationary. Since /' is filtrant by [14, Corollary 3.2.3], there exists
(uo:i — ig) € I' such that
supp(Nuo|v) = [ ] supp(Nulv).
uel?

By Lemma 4.3.3, one has (),c;i supp(Nyu|y) C Y. Thus supp(MNy,|y) C Y, and one has
0 =~ (MNMyy @y Dx(xY))|y =~ Im(uy). Hence we obtain (i).

(i1) This follows from (i). O

Proposition 4.3.5. Let Y C X be a closed complex analytic hypersurface, and let M
be a quasi-good Dx-module. Assume that M|x\y is flat over Dx\y. Then M(xY) is a flat
Dx -module.

Proof. The question being local, we can write M (*Y) =~ 1i_n)1i M; with {M;};er a fil-
trant inductive system of coherent Dy -modules. Set
Ml* = Jfom;DX (Mi, <DX)-
Then Homg, (M;, Dx (xY)) =~ M*(xY). By Lemma 4.3.4, one has
(4.3.1) 12 RHomg, (M;, Dx (xY)) =~ l(ln MF(xY) in Pro(DP(DY)),

1 4
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by shrinking X if necessary. Let & € Mod(i);}p ). We have to show that, for k < 0,
(4.3.2) H*(P @Y% M(xY)) ~ 0.
One has
HY(P @Y% M(xY)) = HX(P(xY) @Y M(xY)) = h_n)lHk(f(*Y) ®'p, Mi).
i

Moreover,

" P (+Y) @, My = “lim” R Hom g (R Homp,, (M;, Dy). P(<Y)
l l
~ “li_T>n” RJ(O}’/’I:D;(P(*Y) (RJfomg)X (Ml, @X(*Y))? :(/j(*Y))
l

& “lim™ Rtom DT () (M (FY ), P(xY),

where () follows from (4.3.1). Hence we obtain
H*(P @Y% M(xY)) ~ @HkR%om@;;(*Y)(mg*(*Y), P(xY)),
i

which vanishes for £k < 0. D

Let us denote by E(i);p) the category of enhanced ind-sheaves on X with i);p—action
(see [4, Section 4.10] where E(Dy") is denoted by E° (1 Dy))).
Consider the forgetful functor

for: E(Sl);p) — E(X).

Lemma 4.3.6. Let ¢ € R, X a complex manifold, Y C X a closed complex analytic
subset, K € E(i);p), and M a quasi-good Dy -module. Set U = X \ Y. Assume

(a) K ~ Rdhom(n~'ky, K),
(b) for(K) € EZ¢(X),
(¢) M|y is flat over Dy .

Then
K ®%, M eEZ(X).

Proof. We may assume that Y is a proper subset of X, as otherwise the statement is
trivial.

(i) Let ¢: X’ — X be a projective morphism such that Y’ := ¢~ (Y) is a hypersurface,
and ¢ induces an isomorphism U’ := ¢~} (U) = U. Set

K’ :=Rdhom(z~'Cy, B~ K ®1¢;
M = (Dp*M)(xY").

~1py Dx<x') € E(Dy).

Then we have for(K’) € EZ¢(X’). Note that .M’ is concentrated in degree zero. Moreover, by
Proposition 4.3.5, M is a flat Dy-module. Since

K ®%, M ~Ep,(K' ®§)X/ M),

and since Eg,, is left exact, we reduce to the case where M is flat over Dy .
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(i1) Let M be a quasi-good flat Dy-module. Let {M; }; s be a filtrant inductive system
of coherent Dy -modules such that M =~ li_r)ni M;. Set

Ml* = Jf’omg)x (Mi, °©X)
Then Lemma 4.3.4 implies that
[33 PR L) PORT PR . b
1(121 RHomg,, (M;, Dx) ~ 1(1121 M} in Pro(D°(DY")),
1 1
by shrinking X if necessary. Hence one has
HY(K @Y M) ~ “lim” HY(K @Y M;)
1
~ 11)11 HFRItom o RHomgp, (M, Dx), K)
1
[13 M 2 k
~ h_r)n H Rﬂomi);(p(u\/(?‘, K)~0
1

fork <c. o

Proposition 4.3.7. Let £ € Z>, ¢ € R, X a complex manifold, Y C X a closed com-
plex analytic subset, K € E(éD;p), and M a quasi-good Dy -module. Set U = X \ Y. Assume

(a) for(K) € EZ¢(X),
(b) flat-dimgpy,  (Mx) < £ forany x € U.

Then
Rdhom(z " 'ky, K) ®§0x M € EZC_Z(X)-

Proof. We may assume that Y is a proper subset of X, as otherwise the statement
is trivial. Replacing K with Rdhom (7w~ 'ky, K), we may assume from the beginning that
K ~ Rdhom(w~'ky, K). We proceed by induction on £. The case £ = 0 follows from Lem-
ma 4.3.6. Let £ > 0. Then, there is locally a short exact sequence

O N—->L—>M—=O0,

with a free Dy-module £. It follows that N is a quasi-good Dy-module satisfying the con-
dition flat-dimgpy . (Nx) < £ —1 for any x € U. One has K ®E@X N € EZe{H1(x) by the
induction hypothesis. Moreover, K ®£be & € E>¢(X) since & is free. One concludes by con-

sidering the distinguished triangle

Koy £— Keh M— Kah N[1] . 5

4.4. Enhanced tempered holomorphic functions. Let X be a complex manifold, and
denote by d;? its dimension.

Denote by X the real analytic manifold underlying X, and by X the conjugate complex
manifold. The ind-sheaf of tempered holomorphic functions

Ox 1= RHomgp_(Ox, Dby, ) € D(X)

is the Dolbeault complex with values in tempered distributions. It is not concentrated in degree
zero if d§ > 1. Note that (9}( inherits from ebe)t(]R a natural Dy -action.
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Denote by IP the complex projective line, and let 7 be its affine coordinate. The enhanced
ind-sheaf of tempered holomorphic functions is defined by
OF .= i'RHomgp, (Dpe®, 0%, p)[2] € E(X),

wherei: X x Ry — X x P is the natural morphism, and Dpe? is the exponential Dp-module
generated by e®. Note that (9)]:; inherits from @ )‘(X]P, a natural Dy -action.

Proposition 4.4.1.  One has O% € | ,E>% (X).

<k

Proof. By Lemma 3.2.5, it is enough to show that for any k € Z>¢ and any Z € CSXR
there exists an open subanalytic subset Zg of Z such that dim(Z \ Zy) < k and

. C_
(4.4.1) Ei7,)..0% € X K2((Z0) o).

Since the question is local on X, we may assume from the beginning that Z is compact. Let Z,
Wo C N, L =dyandg: N — M be as obtained by Lemma 4.4.3 below, for M = X the real
analytic manifold underlying X . There exists a complexification ¥ of N suchthat g: N — X
extends to a holomorphic map f:Y — X. Then, d$ = € and there is a commutative diagram

J

(Wo)oo:=(Wo. N) Tzv\lvé y
gol l ;

(Zy)oo

(Z0)oo:=(Z0.2) X.

Note that for any w € Wy, setting x = f(w) € Zy, one has
(4.4.2) rank® () = dim® (T Zo + V=17 Zo) = (dim T Zg)/2 = k/2.
Set .
- . C
V.= {y € Y;rank, (f) = 5}
Then V is an open subset of ¥ such that Y \ V is a closed complex analytic subset. Moreover,
Wy C V. Hence Proposition 4.3.1 implies

(4.4.3) flat-dimper (Dx<y) < dg — % =(— % forany y € V.
By Proposition 2.7.4, in order to see (4.4.1) it is enough to show

(4.4.4) Egy'Ei . 0% € B> /2 (Wp)o).

Since Wy — Z is smooth, one has

Egy 'Eiiz, 0% ~ orwyzy ®EgoEi 7, O%ldz, —dy]
~ oty zo ®Eiqy,, EiyEf 0%k — 1]
~ oty zo ®Ej 'Ein «Ei yE f 0% [k — €],

where oryy, 7z, ' =H k=t (g(!) Cz,) is the relative orientation sheaf.
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By [4, Theorem 9.1.2], one has
Ef'0% ~ Dyy ®%, OF[C—df].
Moreover, denoting by ory/y =i I'V Cy [€] the relative orientation sheaf, one has
Ei 0% ~ ory/y @ DbY [-(].
Thus, we obtain
OTWo/ Zo ®Eg0_1E i(Z!O)oo (9)]:;

~ Ej'Eiy,Ei gy (Dx vy ®F, OF)k —df]

~Ej (Dxey ®, Eina(oryy @ Db )k —df — ]

~Ej'(Dx«y ®, RIhom(n~'Cy . Eiyy(ory y @ Dbk — d — ().
By Proposition 4.2.2, one has

Ein«(ory/y ®DbY) € EZO(Y).

Hence Proposition 4.3.7 and (4.4.3) imply that

Dx«y ®%, Rdhom(n~'Cy . Biy(ory;y ®Dbl)) € EZF/27(y),

Finally, we obtain (4.4.4). O
Corollary 4.4.2. One has O}, € /2D>4x (X).

Proof. Since O} ~ Jhom"(CE, OF), the statement follows from Proposition 4.4.1 and
Lemma 3.2.7. O

Here is the lemma which is used in the course of the proof of Proposition 4.4.1.

Lemma 4.4.3. Let M be a real analytic manifold, and let Z € CS;[k for k € Zi>y.
Assume that Z is compact. Then there exist

(1) an open subset Zo of Z which is a real analytic submanifold of dimension k,
(ii) a real analytic manifold N of dimension £ = k,
(ii1) a real analytic proper map g: N — M,
(iv) an open subanalytic subset Wy of N
such that one has
(a) dim(Z \ Zp) <k,

(b) g(N) = Z, g(Wy) = Zo and g induces a smooth morphism Wy — Z of real analytic
manifolds.

Proof. It follows immediately from the existence of a real analytic manifold N and
a proper real analytic map g: N — M such that g(N) = Z. Note that we may assume that
N is equidimensional, by multiplying each connected component of N with a sphere
if necessary. |
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4.5. Riemann—Hilbert correspondence. Let X be a complex manifold. The enhanced
de Rham and solution functors are defined by

DRY:D°(Dx) > E(X), M Q% ®% M,
80l%:D°(Dx)® — E(X), M > RHomg, (M,0%),

where 525( = Qx ®]@X (9}1?.
The Riemann—Hilbert correspondence of [4, Theorem 9.5.3] implies that these functors
induce fully faithful functors

(4.5.1) DRS: DY (Dx) — Ero(X), Bolk:DP (Dx)P — Eg.o(X).

Theorem 4.5.1. The functors i)fR;z( and 801}% [d§ | are exact. That is, for any ¢ € R

one has
1/2 1/2 >dX —c
DRE (DS (Dy)) © V2B (X)), Solk (DS (Dy)) C B (X).
1 2 <
DRE(DZ(Dy)) € VPEZE(X), S0l (DZE(Dx)) © EEN ().

In particular, there are commutative diagrams of embeddings

DRY
Modho (Dx) ——— 2Ep (X)

I I

Mode (Dx) 22 2pY (Cx)

and

ol
MOdhol(e@X)Op >L> 1/2 dX

1 ]

8ol
Mod (D)% > 17D

(X)

(Cx).
Proof. 1t is enough to show that for any M € Modye (Dyx ) one has

(X))

DRE(M) € 2B (X).  Solb(M) e PELX

(i) By Proposition 4.4.1, 9% € /ZE/dX (X). Hence

S0l (M) = Rtomp, (M. 0F) € | Ex" I x) c VE2

X (X),
where the inclusions follow from (3.5.1). As M € Modye(Dy ), one has
DRY (M) ~ Solk (Dx M)[dF] € *E2° (X).
(ii) By [4, Theorem 9.4.8], DY .SORE( (M) ~ JDR]}E( (Dx M). We thus get from (i)
DRY (M) € ?ES" (X),
and hence

1/2

S0lE (M) ~ DRE (Dy M)[—df] € (X) 0
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