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Enhanced perversities
By Andrea D’Agnolo at Padova and Masaki Kashiwara at Kyoto

Abstract. On a complex manifold, the Riemann–Hilbert correspondence embeds the
triangulated category of (not necessarily regular) holonomic D-modules into the triangulated
category of R-constructible enhanced ind-sheaves. The source category has a standard t-struc-
ture. Here, we provide the target category with a middle perversity t-structure, and prove that
the embedding is exact.

In the paper, we also discuss general perversities in the framework of R-constructible
enhanced ind-sheaves on bordered subanalytic spaces.
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Introduction

On a complex manifold X , the classical Riemann–Hilbert correspondence establishes an
equivalence

DRX WDb
rh.DX /

�
�! Db

C-c.CX /

between the derived category of DX -modules with regular holonomic cohomologies, and the
derived category of sheaves of C-vector spaces onX with C-constructible cohomologies ([7]).
Here,

DRX .M/ D �X ˝
L
DX

M

is the de Rham functor, and �X the sheaf of top-degree holomorphic differential forms.
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supported by Grant-in-Aid for Scientific Research (B) 15H03608, Japan Society for the Promotion of Science.
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Moreover, the functor DRX interchanges the standard t-structure on Db
rh.DX / with the middle

perversity t-structure on Db
C-c.CX /. In particular, DRX induces an equivalence between the

abelian category of regular holonomic DX -modules and that of perverse sheaves on X .
The Riemann–Hilbert correspondence of [4] provides a fully faithful embedding

DRE
X WD

b
hol.DX /� Eb

R-c.ICX /

from the derived category of DX -modules with (not necessarily regular) holonomic coho-
mologies, into the triangulated category of R-constructible enhanced ind-sheaves of C-vector
spaces onX . Here, DRE

X is the enhanced version of the de Rham functor. The source category
Db

hol.DX / has a standard t-structure. In this paper, we provide the target category Eb
R-c.ICX /

with a generalized middle perversity t-structure, and prove that DRE
X is an exact functor.

Generalized t-structures have been introduced in [10], as a reinterpretation of the notion
of slicing from [3]. For example, let Db

R-c.CX / be the derived category of sheaves of C-vector
spaces onX with R-constructible cohomologies. Then, ifX has positive dimension, Db

R-c.CX /
does not admit a middle perversity t-structure in the classical sense. That is, there is no per-
versity whose induced t-structure on Db

R-c.CX / is self-dual. However, it is shown in [10] that
Db

R-c.CX / has a natural middle perversity t-structure in the generalized sense. This general-
ized t-structure induces the middle perversity t-structure on the subcategory Db

C-c.CX /. More-
over, it is compatible with our construction of the generalized middle perversity t-structure
on Eb

R-c.ICX /, since the natural embedding

Db
R-c.CX /� Eb

R-c.ICX /

turns out to be exact.
From now on, we shall use the term t-structure for the one in the generalized sense, and

refer to the classical notion as a classical t-structure.
Let k be a field andM a real analytic manifold, or more generally a bordered subanalytic

space. Let Eb
R-c.IkM / be the triangulated category of R-constructible enhanced ind-sheaves of

k-vector spaces on M . In this paper, we also discuss the t-structures on Eb
R-c.IkM / associated

with arbitrary perversities, and study their functorial properties. Let us give some details.
On the set of maps pWZ>0 �! R, consider the involution � given by p�.n/ WD �p.n/�n.

A perversity is a map pWZ>0 �! R such that p and p� are decreasing.
Let Db

R-c.kM / be the derived category of R-constructible sheaves of k-vector spaces
on M . For a locally closed subset Z of M , let kZ be the extension by zero to M of the
constant sheaf on Z. For c 2 R, set

pD6c
R-c.kM / WD ¹F 2 Db

R-c.kM /I for any k 2 Z>0 there exists a closed
subanalytic subset Z �M of dimension < k such that
H j .kM nZ ˝ F / ' 0 for j > c C p.k/º;

pD>c
R-c.kM / WD ¹F 2 Db

R-c.kM /I for any k 2 Z>0 and any closed
subanalytic subset Z �M of dimension 6 k one has
H jRHom.kZ ; F / ' 0 for j < c C p.k/º:

Then .pD6c
R-c.kM /;

pD>c
R-c.kM //c2R is a t-structure in the sense of Definition 1.2.2. Moreover,

the duality functor interchanges pD6c
R-c.kM / and p�D>�c

R-c .kM /. In particular, the t-structure
. D1=2 6c

R-c.kM /; D1=2 >c
R-c.kM //c2R associated with the middle perversity n 7! �n=2 is self-dual.
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The analogous definition for R-constructible enhanced ind-sheaves is

pE6c
R-c.IkM / WD ¹K 2 Eb

R-c.IkM /I for any k 2 Z>0 there exists a closed
subanalytic subset Z �M of dimension < k such that
H j .��1kM nZ ˝ K/ ' 0 for j > c C p.k/º;

pE>c
R-c.IkM / WD ¹K 2 Eb

R-c.IkM /I for any k 2 Z>0 and any closed
subanalytic subset Z �M of dimension 6 k one has
H jRIhom.��1kZ ; K/ ' 0 for j < c C p.k/º:

It turns out that .pE6c
R-c.IkM /;pE>c

R-c.IkM //c2R is a t-structure, but it does not behave well with
respect to the duality functor DE

M . Hence we set

Ep 6c
R-c.IkM / WD ¹K 2 Eb

R-c.IkM /IK 2 E6c
p R-c.IkM /; DE

MK 2 E>�c�1=2
p� R-c .IkM /º;

Ep >c
R-c.IkM / WD ¹K 2 Eb

R-c.IkM /IK 2 E>c�1=2
p R-c .IkM /; DE

MK 2 E6�c
p� R-c .IkM /º:

Then
. Ep 6c

R-c.IkM /; Ep >c
R-c.IkM //c2R

is a t-structure, and the duality functor interchanges Ep 6c
R-c.IkM / and Ep� >�c

R-c .IkM /. In par-
ticular, the t-structure

. E1=2 6c
R-c.IkM /; E1=2 >c

R-c.IkM //c2R

associated with the middle perversity n 7! �n=2 is self-dual.
Going back to the Riemann–Hilbert correspondence, the enhanced de Rham functor

DRE
X WD

b
hol.DX /� Eb

R-c.ICX /

is exact with respect to the t-structure associated with the middle perversity.
The contents of this paper are as follows. In Section 1, we recall the notion of t-structure

on a triangulated category. We also recall the t-structure on the derived category of R-construc-
tible sheaves on a subanalytic space associated with a given perversity. In Section 2, we recall
the notions of ind-sheaves and of enhanced ind-sheaves on a bordered space. In both cases
we also discuss the exactness of Grothendieck operations with respect to the standard classical
t-structures. In Section 3, we introduce the t-structure(s) on the derived category of R-construc-
tible enhanced ind-sheaves on a bordered subanalytic space associated with a given perversity.
We also discuss the exactness of Grothendieck operations with respect to these t-structures.
Finally, in Section 4, we prove the exactness of the embedding, provided by the Riemann–
Hilbert correspondence, from the triangulated category of holonomic D-modules on a complex
manifold into that of R-constructible enhanced ind-sheaves.

Notations

In this paper, we take a field k as base ring.
For a category C , we denote by Cop the opposite category of C . One says that a full

subcategory S of a category C is strictly full if it contains every object of C which is isomorphic
to an object of S .
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Let C , C 0 be categories andF WC �! C 0 a functor. The essential image of C byF , denoted
by F.C/, is the strictly full subcategory of C 0 consisting of objects which are isomorphic to
F.X/ for some X 2 C .

For a ring A, we denote by Aop the opposite ring of A.
We say that a topological space is good if it is Hausdorff, locally compact, countable at

infinity, and has finite soft dimension.

1. t-structures and perversities

The notion of t-structure on a triangulated category was introduced in [1]. As shown
in [18], the derived category of a quasi-abelian category has two natural t-structures. They
were presented in [9] in a unified manner, by generalizing the notion of t-structure. A further
generalization is described in [10], reinterpreting the notion of slicing from [3]. In the present
paper, we use the term t-structure in this more general sense, and we refer to the notion intro-
duced in [1] as a classical t-structure. A basic result of [1] asserts that the heart of a classi-
cal t-structure is an abelian category. More generally, it is shown in [3] that small slices of
a t-structure are quasi-abelian categories.

It is shown in [1] that, on a complex manifold, the middle perversity induces a self-dual
classical t-structure on the triangulated category of C-constructible sheaves. On a real analytic
manifold, using results of [11], it is shown in [10] that the middle perversity induces a self-dual
t-structure on the triangulated category of R-constructible sheaves.

Here we recall these facts, considering general perversities.

1.1. Categories. References are made to [11, Chapter I], and to [18] for the notion of
quasi-abelian category (see also [9, Section 2]).

Let C be an additive category. The left and right orthogonal of a subcategory S are the
strictly full subcategories

?S WD ¹X 2 C IHomC .X; Y / ' 0 for any Y 2 Sº;

S? WD ¹X 2 C IHomC .Y;X/ ' 0 for any Y 2 Sº:

Assume that C admits kernels and cokernels. Given f WX �! Y a morphism in C , one
sets

imf WD ker.Y �! cokerf /; coimf WD coker.kerf �! X/:

The morphism f is called strict if the canonical morphism coimf �! imf is an isomorphism.
The category C is called abelian if all morphisms are strict. It is called quasi-abelian if

every pull-back of a strict epimorphism is a strict epimorphism, and every pushout of a strict
monomorphism is a strict monomorphism.

1.2. t-structures. Let T be a triangulated category. Recall the notion of t-structure
from [1].

Definition 1.2.1. A classical t-structure .T 60; T >0/ on T is a pair of strictly full sub-
categories of T such that, setting

T 6n
WD T 60Œ�n�; T >n

WD T >0Œ�n�
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for n 2 Z, one has:

(a) T 60 � T 61 and T >1 � T >0,

(b) HomT .T
60; T >1/ D 0,

(c) for any X 2 T , there exists a distinguished triangle

X60 �! X �! X>1
C1
�!

in T with X60 2 T 60 and X>1 2 T >1.

The following definition of [10] is a reinterpretation of the notion of slicing from [3].

Definition 1.2.2. A t-structure .T 6c ; T >c/c2R on T is a pair of families of strictly full
subcategories of T satisfying conditions (a)–(d) below, where we set

T <c
WD

[
c0<c

T 6c0 and T >c
WD

[
c0>c

T >c0 for c 2 R.

(a) T 6c D
T
c0>c T 6c0 and T >c D

T
c0<c T >c0 for any c 2 R,

(b) T 6cC1 D T 6cŒ�1� and T >cC1 D T >cŒ�1� for any c 2 R,

(c) HomT .T
<c ; T >c/ D 0 for any c 2 R,

(d) for any X 2 T and c 2 R, there are distinguished triangles in T

X6c �! X �! X>c
C1
�! and X<c �! X �! X>c

C1
�!

with XL 2 T L for L equal to 6 c, > c, < c or > c.

Note that condition (c) is equivalent to either of the following:

(c)0 HomT .T
6c ; T >c/ D 0 for any c 2 R,

(c)00 HomT .T
<c ; T >c/ D 0 for any c 2 R.

Moreover, under condition (a), for any c 2 R one has

T 6c
D

\
c0>c

T <c0 ; T >c
D

\
c0<c

T >c0 ;

as follows from [10, Lemma 1.1].
Let .T 60; T >0/ be a classical t-structure. For c 2 R, set

T 6c
WD T 60Œ�n� for n 2 Z such that n 6 c < nC 1;

T >c
WD T >0Œ�n� for n 2 Z such that n � 1 < c 6 n:

Then .T 6c ; T >c/c2R is a t-structure. A classical t-structure is regarded as a t-structure by this
correspondence.

Conversely, if .T 6c ; T >c/c2R is a t-structure, then

(1.2.1) .T 6cC1; T >c/ and .T <cC1; T >c/

are classical t-structures for any c 2 R.
For c 2 R, set

T c
WD T 6c

\ T >c :
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Definition 1.2.3. Let † � R be a discrete subset such that † D †C Z. A t-structure
.T 6c ; T >c/c2R is indexed by † if T c D 0 for any c 2 R n†.

If † is non-empty, this is equivalent to the fact that for any c 2 R one has T <c D T 6s0 ,
T 6c D T 6s00 , T >c D T >t 0 , T >c D T >t 00 , where

s0 WD max¹s 2 †I s < cº; s00 WD max¹s 2 †I s 6 cº;
t 0 WD min¹s 2 †I s > cº; t 00 WD min¹s 2 †I s > cº:

Classical t-structures correspond to t-structures indexed by Z. In this paper, we will
mainly consider t-structures indexed by 1

2
Z.

The following lemma is easily proved by using [10, Lemma 1.1 (iii)].

Lemma 1.2.4. Let .T 6c ; T >c/c2R be a t-structure on T . The following two conditions
are equivalent.

(a) .T 6c ; T >c/c2R is indexed by some discrete subset † � R such that † D †C Z.

(b) For any c 2 R, there exist a; b 2 R such that a < c < b, T <c D T 6a and T >c D T >b .

1.3. Slices. Let .T 6c ; T >c/c2R be a t-structure on T . Note the following facts.
For any c 2 R, one has

T >c
D .T 6c/?; T 6c

D
?.T >c/;

T >c
D .T <c/?; T <c

D
?.T >c/:

The embeddings T 6c � T and T <c � T admit left adjoints

�6c
W T �! T 6c and �<c W T �! T <c ;

called the left truncation functors. Similarly, the embeddings T >c � T and T >c � T admit
right adjoints

�>c
W T �! T >c and �>c W T �! T >c ;

called the right truncation functors.
The distinguished triangles in Definition 1.2.2 (d) are unique up to unique isomorphism.

They are, respectively, given by

�6cX �! X �! �>cX
C1
�! and �<cX �! X �! �>cX

C1
�! :

Summarizing the above notations, to a half-line L (i.e. an unbounded connected subset
L ¨ R) is associated a truncation functor �LW T �! T L. If L0 � R is another half-line, there
is an isomorphism of functors

(1.3.1) �L ı �L
0

' �L
0

ı �LW T �! T L
\ T L0 :

Let I � R be a proper interval (i.e. a bounded connected non-empty subset I � R).
Then there are two half-lines L;L0 (unique up to ordering) such that I D L \ L0. The slice
of T associated with I is the additive category

T I
WD T L

\ T L0 ;
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and one denotes the functor (1.3.1) by

H I
W T �! T I :

For example,
T Œc;c0/

D T >c
\ T <c0

for c < c0, and T ¹cº D T c . One writes for short H c WDH ¹cº.
The following proposition generalizes the fact that the heart T 0 of a classical t-structure

.T 60; T >0/ is abelian.

Proposition 1.3.1 (cf. [3, Lemma 4.3]). Let .T 6c ; T >c/c2R be a t-structure on T , and
let I � R be an interval.

(i) If I �! R=Z is injective, then the slice T I is a quasi-abelian category, and strict short
exact sequences in T I are in one-to-one correspondence with distinguished triangles in
T with all vertices in T I .

(ii) If I �! R=Z is bijective, then the slice T I is an abelian category and the functor
H I W T �! T I is cohomological.

Remark 1.3.2. The notion of slicing from [3] is equivalent to the datum of a t-structure
.T 6c ; T >c/c2R such that T is generated by the family of subcategories ¹T cºc2R.

1.4. Exact functors. Let S and T be triangulated categories. Let .S6c ;S>c/c2R and
.T 6c ; T >c/c2R be t-structures on S and T , respectively.

Definition 1.4.1. A triangulated functor ˆWS �! T is called

(i) left exact if one has ˆ.S>c/ � T >c for any c 2 R,

(ii) right exact if one has ˆ.S6c/ � T 6c for any c 2 R,

(iii) exact if it is both left and right exact.

The following lemma is obvious.

Lemma 1.4.2. Consider two triangulated functors ˆWS �! T and ‰W T �! S . Assume
that .ˆ;‰/ is an adjoint pair. ( This means that ˆ is left adjoint to ‰, or equivalently that ‰ is
right adjoint to ˆ.) Then, ‰ is left exact if and only if ˆ is right exact.

1.5. Sheaves. Let M be a good topological space. Denote by Mod.kM / the abelian
category of sheaves of k-vector spaces on M , and by Db.kM / its bounded derived category.

For a locally closed subset S �M , denote by kS the extension to M by zero of the
constant sheaf on S with stalk k.

For f WM �! N a morphism of good topological spaces, denote by ˝, RHom, f �1,
Rf�, RfŠ , f Š the six Grothendieck operations for sheaves. The duality functor is given by
DMF D RHom.F; !M / for F 2 Db.kM /, where !M denotes the dualizing complex.

IfM is a C0-manifold, one has !M ' orM ŒdM �, where dM denotes the dimension ofM
and orM the orientation sheaf. For a map f WM �! N of C0-manifolds, the relative orientation
sheaf is defined as orM=N WDf ŠkN ŒdN � dM � ' orM ˝f �1 orN .
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1.6. R-constructible sheaves. Recall the notion of subanalytic subsets of a real
analytic manifold (see [6] and [2]).

Definition 1.6.1. (i) A subanalytic spaceM D .M;SM / is an R-ringed space which
is locally isomorphic to .Z;SZ/, where Z is a closed subanalytic subset of a real ana-
lytic manifold, and SZ is the sheaf of R-algebras of real valued subanalytic continuous
functions. In this paper, we assume that subanalytic spaces are good topological spaces.

(ii) A morphism of subanalytic spaces is a morphism of R-ringed spaces.

(iii) A subset S of M is subanalytic if i.S \ U/ is a subanalytic subset of N for any open
subset U of M , any real analytic manifold N and any subanalytic morphism i WU �! N

of subanalytic spaces such that i induces an isomorphism from U to a closed subanalytic
subset of N .

Let M be a subanalytic space. One says that a sheaf F 2 Mod.kM / is R-constructible if
there exists a locally finite family of locally closed subanalytic subsets ¹Siºi2I of M such that
M D

S
i2I Si and F is locally constant of finite rank on each Si . Denote by Db

R-c.kM / the
full subcategory of Db.kM / whose objects have R-constructible cohomologies.

1.7. Perversities. On the set of maps pWZ>0 �! R, consider the involution � given
by p�.n/ WD �p.n/ � n.

Definition 1.7.1. (i) A function pWZ>0 �! R is a perversity if both p and p� are
decreasing, i.e. if 0 6 p.n/ � p.m/ 6 m � n for any m; n 2 Z>0 such that n 6 m.

(ii) A classical perversity is a Z-valued perversity.

LetM be a subanalytic space. To a classical perversity p is associated a classical t-struc-
ture .pD60

R-c.kM /;
pD>0

R-c.kM // on Db
R-c.kM / (refer to [1] and [11, Section 10.2]). Here, slightly

generalizing a construction in [10], we will associate a t-structure to a perversity.

Notation 1.7.2. Set

CSM WD ¹closed subanalytic subsets of M º:

For Z 2 CSM , denote by iZ WZ �!M the embedding. Set

dZ WD dimZ (with d¿ D �1).

For k 2 Z, set

CS<kM WD ¹Z 2 CSM I dZ < kº; CS6k
M WD ¹Z 2 CSM I dZ 6 kº:

Let .D60.kM /;D>0.kM // be the standard classical t-structure on Db.kM /.

Definition 1.7.3. Let p be a perversity, c 2 R and k 2 Z>0. Consider the following
conditions on F 2 Db.kM /:

.p6c
k
/W i�1MnZF 2 D6cCp.k/.kM nZ/ for some Z 2 CS<kM ;

.p>c
k
/W i ŠZ F 2 D>cCp.k/.kZ/ for any Z 2 CS6k

M :
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We define the following strictly full subcategories of Db.kM /:
pD6c.kM / WD ¹F 2 Db.kM /I .p6c

k
/ holds for any k 2 Z>0º;

pD>c.kM / WD ¹F 2 Db.kM /I .p>c
k
/ holds for any k 2 Z>0º:

Let us also set
pD6c

R-c.kM / WD
pD6c.kM / \ Db

R-c.kM /;
pD>c

R-c.kM / WD
pD>c.kM / \ Db

R-c.kM /:

Note that . Dp 6c.kM /; Dp >c.kM //c2R is not a t-structure in general.

Lemma 1.7.4. For c 2 R, k 2 Z>0 and F 2 Db
R-c.kM /, the following conditions are

equivalent.

(i) F satisfies .p6c
k
/.

(ii) dim.supp.H jF // < k for any j with j > c C p.k/.

Note that supp.H jF / is subanalytic, since F is R-constructible.

Proof. It is enough to remark that i�1
MnZ

F 2 D6cCp.k/.kM nZ/ if and only if one has
supp.H jF / � Z for any j such that j > c C p.k/.

Proposition 1.7.5. We have the following properties.

(i) . Dp 6c
R-c.kM /; Dp >c

R-c.kM //c2R is a t-structure on Db
R-c.kM /.

(ii) For any c 2 R, the duality functor DM interchanges Dp 6c
R-c.kM / and Dp� >�c

R-c .kM /.

(iii) For any interval I � R such that I �! R=Z is injective, the prestack on M

U 7! Dp I
R-c.kU /

is a stack of quasi-abelian categories.

Proof. Note that, for (iii), it is enough to consider the case where I �! R=Z is bijective,
i.e. the case where I D Œc; c C 1/ or I D .c; c C 1� for some c 2 R.

(a) If p is a classical perversity, the result is due to [1]. More precisely, for the statements
(i), (ii) and (iii) refer to Theorem 10.2.8, Proposition 10.2.13 and Proposition 10.2.9 of [11],
respectively.

(b) Let now p be an arbitrary perversity.
For c 2 R, denote by bcc the largest integer not greater than c, and by dce the smallest

integer not smaller than c. Note that dce C b�cc D 0.
Statements (i) and (iii) follow from (a) by noticing that for any c 2 R

. Dp <cC1
R-c .kM /; Dp >c

R-c.kM // and . Dp 6c
R-c.kM /; Dp >c�1

R-c .kM //

are the classical t-structures associated to the classical perversities

pc; C.n/ WD dc C p.n/e; pc; �.n/ WD bc C p.n/c;

respectively.
Statement (ii) follows from (a) by noticing that one has .pc; ˙/� D .p�/�c; �.
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Note that . Dp 6c
R-c.kM /; Dp >c

R-c.kM //c2R is indexed by
S
06k6dM

.�p.k/C Z/.

Definition 1.7.6. The middle perversity t-structure

. D1=2 6c
R-c.kM /; D1=2 >c

R-c.kM //c2R

is the one associated with the middle perversity m.n/ WD �n
2

.

Note that m is the only perversity stable by �. In particular, the middle perversity t-struc-
ture is self-dual. It is indexed by 1

2
Z.

2. Enhanced ind-sheaves

LetM be a good topological space. The derived category of enhanced ind-sheaves onM
is defined as a quotient of the derived category of ind-sheaves on the bordered spaceM �R1.
We recall here these notions and some related results from [4]. We also discuss the exactness
of Grothendieck operations with respect to the standard classical t-structures.

References are made to [13] for ind-sheaves, and to [4] for bordered spaces and enhanced
ind-sheaves. See also [15] for enhanced ind-sheaves on bordered spaces and [16] for an expo-
sition.

2.1. Semi-orthogonal decomposition. Let T be a triangulated category, and N � T

a strictly full triangulated subcategory. We denote by T =N the quotient triangulated category
(see e.g. [14, Section 10.2]).

Proposition 2.1.1. Let N � T be a strictly full triangulated subcategory which con-
tains every direct summand in T of an object of N . Then the following conditions are
equivalent.

(i) The embedding N �! T has a left adjoint.

(ii) The quotient functor T �! T =N has a left adjoint.

(iii) The composition ?N �! T �! T =N is an equivalence of categories.

(iv) For any X 2 T there is a distinguished triangle X 0 �! X �! X 00
C1
�! with X 0 2 ?N

and X 00 2 N .

(v) The embedding ?N �! T has a right adjoint, and N ' .?N /?.

A similar result holds switching “left” with “right”.

2.2. Ind-sheaves. Let C be a category and denote by C^ the category of contravari-
ant functors from C to the category of sets. Consider the Yoneda embedding hWC �! C^,
X 7! HomC .�; X/. The category C^ admits small colimits. As colimits do not commute
with h, one denotes by lim

�!
the colimits taken in C , and by “lim

�!
” the colimits taken in C^.

An ind-object in the category C is an object of C^ isomorphic to “lim
�!

” ' for some functor
'W I �! C with I a small filtrant category. Denote by Ind.C/ the strictly full subcategory of C^

consisting of ind-objects in C .
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Let M be a good topological space. The category of ind-sheaves on M is the category

I.kM / WD Ind.Modc.kM //

of ind-objects in the category Modc.kM / of sheaves with compact support.
The category I.kM / is abelian, and the prestack onM given by U 7! I.kU / is a stack of

abelian categories. There is a natural exact fully faithful functor �M WMod.kM / �! I.kM / given
by F 7! “lim

�!
”.kU ˝ F /, for U running over the relatively compact open subsets of M . The

functor �M has an exact left adjoint ˛M W I.kM / �! Mod.kM /, which sends “lim
�!

” ' to lim
�!

'.
In this paper, we set for short

D.M/ WD Db.I.kM //;

and denote by .D60.M/;D>0.M// its standard classical t-structure.
For f WM �! N a morphism of good topological spaces, denote by ˝, RIhom, f �1,

Rf�, RfŠŠ , f Š the six Grothendieck operations for ind-sheaves.
Since ind-sheaves form a stack, they have a sheaf-valued hom-functor Hom. One has

RHom ' ˛M ı RIhom.

2.3. Bordered spaces. A bordered space M D .M;
_

M/ is a pair of a good topological
space

_

M and an open subset M of
_

M . Set
ı

M WDM .

Notation 2.3.1. Let M D .M;
_

M/ and N D .N;
_

N/ be bordered spaces. For a con-
tinuous map f WM �! N , denote by �f �M �N its graph, and by �f the closure of �f
in
_

M �
_

N . Consider the projections
_

M
q1
 �

_

M �
_

N
q2
�!

_

M:

Bordered spaces form a category as follows: a morphism f WM �! N is a continuous map
f WM �! N such that q1j�f W �f �!

_

M is proper; the composition of two morphisms is the
composition of the underlying continuous maps.

Remark 2.3.2. (i) If f WM �! N can be extended to a continuous map
_

f W
_

M �!
_

N ,
then f is a morphism of bordered spaces.

(ii) The forgetful functor from the category of bordered spaces to that of good topological
spaces is given by M 7!

ı

M. It has a fully faithful left adjoint M 7! .M;M/. By this
functor, we consider good topological spaces as particular bordered spaces, and denote
.M;M/ by M . Note that M D .M;

_

M/ 7!
_

M is not a functor.

Let M D .M;
_

M/ be a bordered space. The continuous maps M
id
�!M ,!

_

M induce
morphisms of bordered spaces

(2.3.1) M �! M
jM
�!

_

M:

Notation 2.3.3. For a locally closed subset Z of M , set Z1 D .Z;Z/, where Z is
the closure of Z in

_

M , and denote iZ1 WZ1 �! M the morphism induced by the embedding
Z �M .

Note that M1 ' M.
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Lemma 2.3.4. Let f WM �! N be a morphism of bordered spaces. Let Z �
ı

M and
W �

ı

N be locally closed subsets such that f .Z/ � W . Then f jZ WZ �! W induces a mor-
phism Z1 �! W1 of bordered spaces.

In particular, the bordered space Z1 only depends on M (and not on
_

M ).

Definition 2.3.5. We say that a morphism f WM �! N is semi-proper if the associated
map

q2j�f
W �f �!

_

N

is proper. We say that f is proper if moreover
ı

f W
ı

M �!
ı

N is proper.

For example, jM and iZ1 are semi-proper.

Definition 2.3.6. A subset S of a bordered space M D .M;
_

M/ is a subset of M . We
say that S is open (resp. closed, locally closed) if it is so in M . We say that S is relatively
compact if it is contained in a compact subset of

_

M .

As seen by the following obvious lemma, the notion of relatively compact subsets only
depends on M (and not on

_

M ).

Lemma 2.3.7. Let f WM �! N be a morphism of bordered spaces.

(i) If S is a relatively compact subset of M, then its image
ı

f .S/ �
ı

N is a relatively compact
subset of N.

(ii) Assume furthermore that f is semi-proper. If T is a relatively compact subset of N, then
its inverse image

ı

f �1.T / �
ı

M is a relatively compact subset of M.

2.4. Ind-sheaves on bordered spaces. Let M be a bordered space. The abelian category
of ind-sheaves on M is

I.kM/ WD Ind.Modc.kM//;

where Modc.kM/ � Mod.k ıM/ is the full subcategory of sheaves on
ı

M whose support is rela-
tively compact in M.

There is a natural exact embedding

�MWMod.k ıM/ �! I.kM/; F 7! “lim
�!

”.kU ˝ F /;

where U runs over the family of relatively compact open subsets of M.
We set for short

D.M/ WD Db.I.kM//;

and denote by .D60.M/;D>0.M// its standard classical t-structure.
Let M D .M;

_

M/, and consider the embeddings

_

M nM
i
�!

_

M
j
 �M:

The functor Ri� ' RiŠŠ induces the embedding D.
_

M nM/ � D.
_

M/, which admits a left and
a right adjoint.
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Proposition 2.4.1. There is an equivalence of triangulated categories:

D.M/ ' D.
_

M/=D.
_

M nM/:

Proof. The functor jŠ induces an exact functor

Modc.kM/ �! Modc.k _
M
/;

and hence an exact functor
I.kM/ �! I.k _

M
/

and a functor of triangulated categories

D.M/ �! D.
_

M/:

Composing with the quotient functor, we get the functor

D.M/ �! D.
_

M/=D.
_

M nM/:

On the other hand, the functor j�1 induces an exact functor

Modc.k _
M
/ �! Modc.kM/;

which induces an exact functor
I.k _

M
/ �! I.kM/

and a functor of triangulated categories

D.
_

M/ �! D.M/:

Since the composition D.
_

M nM/ �! D.
_

M/ �! D.M/ vanishes, we obtain a functor

D.
_

M/=D.
_

M nM/ �! D.M/:

It is obvious that these functors between D.M/ and D.
_

M/=D.
_

M nM/ are quasi-inverse
to each other.

Thus, there are equivalences

D.M/ ' D.
_

M/=D.
_

M nM/ ' ?D.
_

M nM/ ' D.
_

M nM/?;

and one has

?D.
_

M nM/ D ¹F 2 D.
_

M/IkM ˝ F
�
�! F º;

D.
_

M nM/? D ¹F 2 D.
_

M/IRIhom.kM ; F /
�
 � F º:

Denote by
qMWD.

_

M/ �! D.M/; lM; rMWD.M/ �! D.
_

M/

the quotient functor and its left and right adjoint, respectively. For F 2 D.
_

M/, they satisfy

(2.4.1) lMqMF ' kM ˝ F; rMqMF ' RIhom.kM ; F /:
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Remark 2.4.2. At the level of sheaves, there is a natural equivalence

Db.kM / ' Db.k _
M
/=Db.k _

M nM /:

There is a commutative diagram

Db.kM / //
�M //

o

D.M/

o

Db.k _
M
/=Db.k _

M nM / // // D.
_

M/=D.
_

M nM/.

The functor �MWDb.k ıM/ �! D.M/ has a left adjoint

˛MWD.M/ �! Db.k ıM/:

It coincides with the composition

D.M/ �! D.
ı

M/
˛ ı

M
��! Db.k ıM/:

Let f WM �! N be a morphism of bordered spaces. The six Grothendieck operations for
ind-sheaves on bordered spaces

˝WD.M/ � D.M/ �! D.M/;

RIhomWD.M/op
� D.M/ �! D.M/;

RfŠŠ ;Rf�WD.M/ �! D.N/;

f �1; f Š WD.N/ �! D.M/

are defined as follows. Recalling Notation 2.3.1, observe that �f is locally closed in
_

M�
_

N . For
F;F 0 2 D.

_

M/ and G 2 D.
_

N/, one sets

qMF ˝ qMF
0
WD qM.F ˝ F

0/;

RIhom.qMF; qMF
0/ WD qMRIhom.F; F 0/;

RfŠŠqMF WD qNRq2ŠŠ.k�f ˝ q
�1
1 F /;

Rf�qMF WD qNRq2�RIhom.k�f ; q
Š
1F /;

f �1qNG WD qMRq1ŠŠ.k�f ˝ q
�1
2 G/;

f Š qNG WD qMRq1�RIhom.k�f ; q
Š
2G/:

Remark 2.4.3. The natural embedding �MWDb.k ıM/ �! D.M/ commutes with the opera-
tions˝, RIhom, f �1, Rf�, f Š . If f is semi-proper, one has

(2.4.2) RfŠŠ ı �M
�
�! �N ı R

ı

f Š :

Remark 2.4.4. Let M D .M;
_

M/. For the natural morphism jMWM �!
_

M , one has

qM ' j
�1
M ' j ŠM ;

lM ' RjM ŠŠ;

rM ' RjM �:

The following result generalizes (2.4.1).
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Lemma 2.4.5. Let Z be a locally closed subset of M, and let F 2 D.M/. Using Nota-
tion 2.3.3, one has

kZ ˝ F ' RiZ1 ŠŠi
�1
Z1

F;

RIhom.kZ ; F / ' RiZ1�i
Š
Z1

F:

Proof. To avoid confusion, let us denote by kZj ıM the extension by zero to
ı

M of the con-
stant sheaf kZ on Z. Since iZ1 is semi-proper, equation (2.4.2) implies kZj ıM ' RiZ1 ŠŠkZ .
Hence

kZj ıM ˝ F ' .RiZ1 ŠŠkZ/˝ F
' RiZ1 ŠŠ.kZ ˝ i

�1
Z1

F /

' RiZ1 ŠŠi
�1
Z1

F:

We can prove the second isomorphism similarly.

Let M D .M;
_

M/ be a bordered space. By [4, Section 3.4], one has

D60.M/ D ¹F 2 D.M/IRjM ŠŠF 2 D60.
_

M/º;

D>0.M/ D ¹F 2 D.M/IRjM ŠŠF 2 D>0.
_

M/º:

Proposition 2.4.6. Let M be a bordered space. Consider the standard t-structure
on D.M/. Then:

(i) The bifunctor˝ is exact, i.e. for any n; n0 2 Z one has

D6n.M/˝ D6n0.M/ � D6nCn0.M/;

D>n.M/˝ D>n0.M/ � D>nCn0.M/:

(ii) The bifunctor RIhom is left exact, i.e. for any n; n0 2 Z one has

RIhom.D6n.M/;D>n0.M// � D>n0�n.M/:

Let f WM �! N be a morphism of bordered spaces. Consider the standard t-structures on D.M/
and D.N/. Then:

(iii) RfŠŠ and Rf� are left exact.

(iv) f �1 is exact.

Let d 2 Z>0 and assume that f �1.y/ �
ı

M has soft-dimension 6 d for any y 2
ı

N. Then:

(v) RfŠŠ.�/Œd � is right exact, i.e. RfŠŠD6n.M/ � D6nCd .N/ for any n 2 Z.

(vi) f Š .�/Œ�d� is left exact, i.e. f ŠD>n.N/ � D>n�d .M/ for any n 2 Z.

Proof. When M and N are good topological spaces, statements (i)–(iv) follow from [13].
Let M D .M;

_

M/ and N D .N;
_

N/. Replacing .M;
_

M/ with .M; �f /, we may assume
from the beginning that the morphism f WM �! N extends to

_

f W
_

M �!
_

N .
Statement (i) follows from the topological space case, using the fact that RjM ŠŠ com-

mutes with˝.
Statement (ii) follows from (i) by adjunction.
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Statements (iii) and (iv) follow from the topological space case using the isomorphisms

RfŠŠ ' j�1N R
_

f ŠŠRjM ŠŠ ; Rf� ' j�1N R
_

f �RjM�; f �1 ' j�1M

_

f �1RjN ŠŠ :

As (vi) follows from (v) by adjunction, we are left to prove (v).
By dévissage, it is enough to show that for F 2 I.kM/ one hasHkRfŠŠF ' 0 for k > d .

Writing F D “lim
�!

”
i
Fi with Fi 2 Modc.kM/, one has

HkRfŠŠF ' “lim
�!

”
i

HkRfŠFi :

To conclude, note that

.HkRfŠFi /y ' Hk
c .f

�1.y/IFi
ˇ̌
f �1.y/

/ ' 0

for any y 2 N and k > d , since f �1.y/ has soft-dimension 6 d .

Proposition 2.4.7. Let f WM �! N be a morphism of bordered spaces. Let n 2 Z and
G 2 D.N/. Assume that f is semi-proper and

ı

f W
ı

M �!
ı

N is surjective. Then the following state-
ments hold.

(i) f �1G 2 D>n.M/ implies G 2 D>n.N/.

(ii) f �1G 2 D6n.M/ implies G 2 D6n.N/.

Proof. Let M D .M;
_

M/ and N D .N;
_

N/. Since f �1 is exact, it is enough to show that,
for G 2 D0.N/ ' I.kN/ such that f �1G ' 0, one has G ' 0.

Write G D “lim
�!

”Gi , for ¹Giºi2I a filtrant inductive system of objects of Modc.kN/.
Recall that this means that Gi 2 Mod.kN / and supp.Gi / is relatively compact in

_

N . Since f
is semi-proper, f �1Gi 2 Modc.kM/ by Lemma 2.3.7 (ii). Since f �1G ' “lim

�!
” f �1Gi ' 0,

for any i 2 I , there exists i �! j in I whose induced morphism

f �1Gi �! f �1Gj

is the zero map. Since f is surjective, Gi �! Gj is the zero map. Thus G D 0.

Proposition 2.4.8. Let f WM �! N be a continuous map of good topological spaces,
and ¹Viºi2I an open covering of N . Let Ki 2 D.f �1Vi /, and let

uij WKj jf �1Vi\f �1Vj
�
�! Ki jf �1Vi\f �1Vj

be isomorphisms. Assume that Rf�RHom.Ki ; Ki / 2 D>0.kVi /, and that the morphisms uij
satisfy the following usual cochain condition uij ı ujk D uik on f �1Vi \ f �1Vj \ f �1Vk .
Then there existK 2 D.M/ and isomorphisms ui WKjf �1Vi

�
�! Ki compatible with uij , that is,

uij ı uj D ui on f �1Vi \ f �1Vj . Moreover, such aK is unique up to a unique isomorphism.

Proof. The arguments we use are standard (see e.g. [10, Proposition 5.9]). Let us set
Ui WD f

�1Vi �M .
(i) Let us first discuss uniqueness. Let K 0 2 D.M/ be such that there are isomorphisms

u0i WK
0jUi

�
�! Ki compatible with uij . Note that for any open subset V of N , one has

HomD.f �1V /.Kjf �1V ; K
0
jf �1V / ' H

0R� .V IRf�RHom.K;K 0//:
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From the fact that Rf�RHom.K;K 0/jVi ' Rf�RHom.Ki ; Ki / 2 D>0.kVi /, we deduce

Rf�RHom.K;K 0/ 2 D>0.kN /:

Hence
V 7! HomD.f �1V /.Kjf �1V ; K

0
jf �1V / is a sheaf on N .

We thus get an isomorphism K
�
�! K 0 on M by patching together the isomorphisms u0�1i ı ui

on Ui .
(ii) Let us now prove the existence of K as in the statement.
(ii-1) Assume that I is finite. In order to prove the statement, by induction we reduce to

the case I D ¹1; 2º. Set V0 WD V1 \ V2,K0 WD K1jU0 ' K2jU0 . Let ji WUi �!M (i D 0; 1; 2)
be the open inclusion. By adjunction, for i D 1; 2 there are morphisms ˇi WRj0ŠŠK0 �! Rji ŠŠKi .
Let us complete the morphism .ˇ1; ˇ2/ into a distinguished triangle

Rj0ŠŠK0
.ˇ1;ˇ2/
������! Rj1ŠŠK1 ˚ Rj2ŠŠK2 �����! K

C1
�����! :

Then K satisfies the desired condition.
(ii-2) Assume that I D Z>0 and that ¹Vnºn2Z>0 is an increasing sequence of open

subsets of N . Then KnC1jUn ' Kn. Let jnWUn �!M (n 2 Z>0) be the open inclusion. By
adjunction, there are natural morphisms ˇnWRjnŠŠKn �! RjnC1ŠŠKnC1 (n 2 Z>0). Let K be
the homotopy colimit of the inductive system ¹RjnŠŠKnºn2Z>0 , that is, let K be the third term
of the distinguished triangleM

n2Z>0

RjnŠŠKn
ˇ
�!

M
n2Z>0

RjnŠŠKn �! K
C1
�! :

Here ˇ is the only morphism making the following diagram commute for any m 2 Z>0:

RjmŠŠKm

��

.id;�ˇm/ // RjmŠŠKm ˚ RjmC1ŠŠKmC1

��L
n2Z>0 RjnŠŠKn

ˇ
//
L
n2Z>0 RjnŠŠKn.

Then K satisfies the desired condition.
(ii-3) Let I be arbitrary. Let ¹Znºn2Z>0 be an increasing sequence of compact subsets of

N such that N D
S
n2Z>0 Zn. Let us take an increasing sequence ¹Inºn2Z>0 of finite subsets

of I such that Zn is covered by ¹Viºi2In , and set V 0n WD
S
i2In

Vi , U 0n WD f
�1V 0n. Applying

(ii-1) with N D V 0n and I D In, we can find an object Kn 2 D.U 0n/ such that KnjUi ' Ki for
any i 2 In. Then we can apply (ii-2) with Vn D V 0n.

2.5. Ind-sheaves with an extra variable. Let R WD R [ ¹C1;�1º be the two-point
compactification of the affine line. The bordered line is

R1 WD .R;R/:

Let M be a bordered space. Consider the morphisms

(2.5.1) �; q1; q2WM �R1 �R1 �! M �R1;
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where �.x; t1; t2/ D .x; t1 C t2/, and q1; q2 are the natural projections. The convolution
functors

C

˝WD.M �R1/ � D.M �R1/ �! D.M �R1/;

IhomCWD.M �R1/
op
� D.M �R1/ �! D.M �R1/

are defined by

F1
C

˝ F2 WD R�ŠŠ.q�11 F1 ˝ q
�1
2 F2/;

IhomC.F1; F2/ WD Rq1�RIhom.q�12 F1; �
ŠF2/:

Example 2.5.1. Let M D ¹ptº and let a; b 2 R. For a 6 b, one has

k¹t > 0º

C

˝ k¹t > aº ' k¹t > aº; k¹t > 0º

C

˝ k¹a 6 t < bº ' k¹a 6 t < bº;

IhomC.k¹t > 0º;k¹t > aº/ ' k¹t < aºŒ1�; IhomC.k¹t > 0º;k¹a 6 t < bº/ ' k¹a 6 t < bº:

For 0 < a 6 b, one has

k¹0 6 t < aº

C

˝ k¹0 6 t < bº ' k¹0 6 t < aº ˚ k¹b 6 t < aC bºŒ�1�:

Consider the standard classical t-structure on D.M �R1/ discussed in Section 2.4.

Lemma 2.5.2. Let M be a bordered space.

(i) For n; n0 2 Z one has

D6n.M �R1/
C

˝ D6n0.M �R1/ � D6nCn0C1.M �R1/;

D>n.M �R1/
C

˝ D>n0.M �R1/ � D>nCn0.M �R1/:

In particular, the bifunctor˝C is left exact.

(ii) For n; n0 2 Z one has

IhomC.D6n.M �R1/;D>n0.M �R1// � D>n0�n�1.M �R1/:

Proof. By the definition of the convolution functors ˝C and IhomC, the statement
follows from Proposition 2.4.6.

Remark 2.5.3. There are no estimates of the form

IhomC.k¹t > 0º;D0.M �R1// � D6m.M �R1/

withm 2 Z>0 independent of M. In fact, setting, M D Rn .n > 1/ and F D k¹x ¤ 0; t D 1=jxjº,
one has

(2.5.2) IhomC.k¹t > 0º; F / … D6n�3.M �R1/;

which follows from

��1k¹x D 0º ˝ IhomC.k¹t > 0º; F / ' �
�1k¹x D 0ºŒ1�˚ ��1k¹x D 0ºŒ2 � n�:
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Lemma 2.5.4. For K 2 D.M �R1/ and n 2 Z one has

k¹t > 0º

C

˝ �6n.k¹t > 0º

C

˝K/
�
�! �6n.k¹t > 0º

C

˝K/;

k¹t > 0º

C

˝ �>n.k¹t > 0º

C

˝K/
�
�! �>n.k¹t > 0º

C

˝K/:

Let us give a proof of this result slightly different from that in [4, Proposition 4.6.2].

Proof. Consider the distinguished triangle

k¹t > 0º
C

˝ �6n.k¹t > 0º

C

˝K/ �! k¹t > 0º
C

˝ .k¹t > 0º

C

˝K/

�! k¹t > 0º
C

˝ �>n.k¹t > 0º

C

˝K/
C1
�! :

Since the middle term vanishes, one has

k¹t > 0º
C

˝ �>n.k¹t > 0º

C

˝K/ ' k¹t > 0º
C

˝ �6n.k¹t > 0º

C

˝K/Œ1�:

By Lemma 2.5.2, the first term belongs to D>n.M �R1/ and the second term belongs
to D6n.M �R1/. Hence they both vanish.

2.6. Enhanced ind-sheaves. Let M be a bordered space, and consider the natural mor-
phisms

M
�
 � M �R1

j
�! M �R

�
�! M:

Consider the full subcategories of D.M �R1/

N˙ WD ¹K 2 D.M �R1/Ik¹�t > 0º

C

˝K ' 0º

D ¹K 2 D.M �R1/I IhomC.k¹�t > 0º; K/ ' 0º;

N WD NC \N� D �
�1D.M/;

where the equalities hold by [4, Corollary 4.3.11 and Lemma 4.4.3].
The categories of enhanced ind-sheaves are defined by

Eb
˙
.IkM/ WD D.M �R1/=N�; Eb.IkM/ WD D.M �R1/=N :

In this paper, we set for short

E˙.M/ WD Eb
˙
.IkM/; E.M/ WD Eb.IkM/:

By [4, Proposition 4.4.4], there are natural equivalences

E˙.M/ ' N˙=N '
?N� D N˙ \

?N ;

E.M/ ' ?N ' EC.M/˚ E�.M/;

and the same equivalences hold when replacing left with right orthogonals. Moreover, one has

?N� D ¹K 2 D.M �R1/Ik¹˙t > 0º

C

˝K
�
�! Kº;

?N D ¹K 2 D.M �R1/I .k¹t > 0º ˚ k¹t 6 0º/
C

˝K
�
�! Kº

D ¹K 2 D.M �R1/IR�ŠŠK ' 0º;

and the same equalities hold for right orthogonals, replacing ˝C with IhomC and R�ŠŠ
with R��.
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We use the notations

D.M �R1/
QM // E.M/;

LE; RE
oo D.M �R1/

Q˙M // E˙.M/;
LE
˙
; RE
˙

oo

for the quotient functors and their left and right adjoints, respectively. For F 2 D.M �R1/
one has

LE.QMF / ' .k¹t > 0º ˚ k¹t 6 0º/
C

˝ F;

RE.QMF / ' IhomC.k¹t > 0º ˚ k¹t 6 0º; F /:

For a locally closed subset Z �M �R, we set

(2.6.1) kQ
Z WD QM.kZ/ 2 E.M/:

There are functors

�WD.M/ �! E.M/; F 7! kQ
¹tD0º

˝ ��1F;(2.6.2)

�˙WD.M/ �! E˙.M/; F 7! kQ
¹˙t>0º

˝ ��1F:

The functors �˙ are fully faithful and �.F / ' �C.F /˚ ��.F /.
The bifunctors

IhomE
WE.M/ � E.M/ �! D.M/;

HomE
WE.M/op

� E.M/ �! Db.k ıM/

are defined by

IhomE.K;K 0/ WD R��RIhom.LEK;LEK 0/

' R��RIhom.LEK;REK 0/

' R��RIhom.REK;REK 0/

' R��RIhom.RjŠŠ LEK;Rj� REK 0/

and
HomE

WD ˛M ı IhomE:

One has

HomE.M/.K;K
0/ ' HomD.M/.kM ; IhomE.K;K 0//:(2.6.3)

If M is a topological space, that is, if
ı

M �! M is an isomorphism, one has

HomE.M/.K;K
0/ ' H 0R� .

ı

MIHomE.K;K 0//:

Note, however, that HomE.M/.K;K
0/ ' H 0R� .

ı

MIHomE.K;K 0// does not hold for a general
bordered space M.

Definition 2.6.1 ([4, Definition 4.6.3]). For n 2 Z, set

E6n.M/ WD ¹K 2 E.M/ILEK 2 D6n.M �R1/º;

E>n.M/ WD ¹K 2 E.M/ILEK 2 D>n.M �R1/º:
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Note that

E0.M/ ' ¹F 2 I.kM�R1/I .k¹t > 0º ˚ k¹t 6 0º/
C

˝ F
�
�! F in D.M �R1/º

D ¹F 2 I.kM�R1/IR�ŠŠF ' 0 in D.M/º:

Proposition 2.6.2 ([4, Proposition 4.6.2]). We have that .E60.M/;E>0.M// is a classi-
cal t -structure on E.M/.

Example 2.6.3. Let a; b 2 R with a < b. In the category E.¹ptº/, one has

LE kQ
¹a6tº

' k¹a 6 tº; LE kQ
¹a6t<bº

' k¹a 6 t < bº;

RE kQ
¹a6tº

' k¹t < aºŒ1�; RE kQ
¹a6t<bº

' k¹a 6 t < bº:

In particular, kQ
¹a6tº

;kQ
¹a6t<bº

2 E0.¹ptº/.

Proposition 2.6.4. Let M be a good topological space. Then the prestack on M given
by U 7! E0.U / is a stack of abelian categories.

Proof. The statement holds since U 7! E0.U / is a sub-prestack of the direct image by
� of the stack of ind-sheaves on M �R1. More precisely, one has

E0.U / ' ¹F 2 I.kU �R1/I .k¹t > 0º ˚ k¹t 6 0º/
C

˝ F
�
�! F º:

Lemma 2.6.5. For any n 2 Z one has

QMD6n.M �R1/ � E6nC1.M/;

QMD>n.M �R1/ D E>n.M/:

In particular, QM is left exact.

Proof. (i) For F 2 D.M �R1/, one has LE QMF ' .k¹t > 0º˚k¹t 6 0º/˝
CF . Hence

the inclusions “�” follow from Lemma 2.5.2.
(ii) It remains to show the opposite inclusion, that is, QMD>n.M �R1/ � E>n.M/. If

K 2 E>n.M/, then F WD LEK 2 D>n.M �R1/, and K ' QM.F /.

Lemma 2.6.6. For any n 2 Z one has

RE E>n.M/ � D>n�1.M �R1/:

Proof. By Lemma 2.6.5, the functor QMŒ1� is right exact. Hence its right adjoint REŒ�1�

is left exact.

Remark 2.6.7. (i) It follows from Example 2.6.3 that the estimate in Lemma 2.6.6
is optimal.

(ii) It follows from Remark 2.5.3 that there are no estimates of the form

RE E0.M/ � D6m.M �R1/

with m 2 Z independent of M.
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(iii) The example in Remark 2.5.3 shows that

.¹K 2 E.M/IREK 2 D60.M �R1/º; ¹K 2 E.M/IREK 2 D>0.M �R1/º/

is not a classical t-structure on E.M/, in general.

Proposition 2.6.8. The two functors IhomE and HomE are left exact for the standard
t-structures, i.e. for n; n0 2 Z one has:

(i) IhomE.E6n.M/;E>n0.M// � D>n0�n.M/,

(ii) HomE.E6n.M/;E>n0.M// � D>n0�n.k ıM/.

Proof. By the definition of IhomE, its left exactness follows from Proposition 2.4.6.
This implies the left exactness of HomE D ˛M IhomE, since ˛M is exact.

2.7. Operations. Let f WM �! N be a morphism of bordered spaces. For enhanced ind-
sheaves, the six Grothendieck operations

C

˝WE.M/ � E.M/ �! E.M/;

IhomCWE.M/op
� E.M/ �! E.M/;

Ef ŠŠ;Ef �WE.M/ �! E.N/;

Ef �1;Ef ŠWE.N/ �! E.M/;

are defined as follows. Set fR1 D f � idR1 WM �R1 �! N �R1. For F;F 0 2 D.M �R1/
and G 2 D.N �R1/, one sets

QMF
C

˝ QMF
0
WD QM.F

C

˝ F 0/;

IhomC.QMF;QMF
0/ WD QMIhomC.F; F 0/;

Ef ŠŠQMF WD QNRfR1 ŠŠF;

Ef �QMF WD QNRfR1�F;

Ef �1QNG WD QMf
�1

R1
G;

Ef ŠQNG WD QMf
Š

R1
G:

The duality functor is defined by

DQ
MWE.M/ �! E.M/op; K 7! IhomC.K; !Q

M/;

where !M WD j
Š

M! _M
2 D.M/ and !Q

M WD �.!M/ D �
�1!M ˝ kQ

¹tD0º
2 E.M/.

Lemma 2.7.1 ([4, Lemma 4.3.2]). Let M D .M;
_

M/. For F 2 D.kM�R/, one has

DQ
M.QMF / ' QM.a

�1DM�RF /;

where a is the involution of M �R defined by a.x; t/ D .x;�t /.

Example 2.7.2. Let a; b 2 R with a < b. In the category E.¹ptº/, one has

DQ
¹ptºk

Q
¹a6tº

' kQ
¹t<�aº

Œ1� ' kQ
¹�a6tº

; DQ
¹ptºk

Q
¹a6t<bº

' kQ
¹�b6t<�aº

Œ1�:

In particular, DQ
¹ptºk

Q
¹a6tº

2 E0.¹ptº/ and DQ
¹ptºk

Q
¹a6t<bº

2 E�1.¹ptº/.
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Proposition 2.7.3. Let M be a bordered space.

(i) For n; n0 2 Z one has

E6n.M/
C

˝ E6n0.M/ � E6nCn0C1.M/;

E>n.M/
C

˝ E>n0.M/ � E>nCn0.M/:

In particular, the bifunctor˝C is left exact for the standard t-structure.

(ii) For n; n0 2 Z one has

IhomC.E6n.M/;E>n0.M// � E>n0�n�1.M/:

Let f WM �! N be a morphism of bordered spaces. Consider the standard t-structures on E.M/
and E.N/. Then:

(iii) Ef ŠŠ and Ef � are left exact.

(iv) Ef �1 is exact.

Let d 2 Z>0 and assume that f �1.y/ �
ı

M has soft-dimension 6 d for any y 2
ı

N. Then:

(v) Ef ŠŠ.�/Œd � is right exact, i.e. Ef ŠŠE
6n.M/ � E6nCd .N/ for any n 2 Z.

(vi) Ef Š.�/Œ�d� is left exact, i.e. Ef ŠE>n.N/ � E>n�d .M/ for any n 2 Z.

Proof. (i) For K 2 E.M/ and K 0 2 E.M/ one has LE.K ˝C K 0/ ' LEK ˝C LEK 0.
Then the statement follows from Lemma 2.5.2.

(ii) This follows from (i) by adjunction. As we deal here with bifunctors, let us spell out
the proof. Let K 2 E6n.M/, K 0 2 E>n0.M/, and L 2 E<n

0�n�1.M/. Then one has

HomE.M/.L; IhomC.K;K 0// ' HomE.M/.L
C

˝K;K 0/ 2 HomE.M/.E
<n0.M/;E>n0.M// D 0:

Then IhomC.K;K 0/ 2 E<n
0�n�1.M/? D E>n0�n�1.M/.

(iii-1) Note that LE ıEf ŠŠ ' RfR1 ŠŠ ı LE, where we recall that fR1 WD f � idR1 .
Then Proposition 2.4.6 implies that Ef ŠŠ is left exact.

(iv) This also follows from Proposition 2.4.6, since one has

LE
ı Ef �1 ' f �1R1

ı LE:

(iii-2) The fact that Ef � is left exact follows from (iv) by adjunction.
(v) The statement has a proof similar to (iii-1).
(vi) The statement follows from (v) by adjunction.

Proposition 2.7.4. Let f WM �! N be a morphism of bordered spaces. Let n 2 Z and
L 2 E.N/. Assume that f is semi-proper and

ı

f W
ı

M �!
ı

N is surjective. Then:

(i) f �1L 2 E>n.M/ implies L 2 E>n.N/.

(ii) f �1L 2 E6n.M/ implies L 2 E6n.N/.

Proof. It is enough to apply Proposition 2.4.7 to the object G D LEL 2 D.N �R1/
and the morphism fR1 WM �R1 �! N �R1.
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The bifunctors
��1.�/˝ .�/WD.M/ � E.M/ �! E.M/;

RIhom.��1.�/;�/WD.M/op
� E.M/ �! E.M/

are defined as follows: for L 2 D.M/ and F 2 D.M �R1/,

��1L
C

˝ QMF WD QM.�
�1L˝ F /;

RIhom.��1L;QMF / WD QMRIhom.��1L;F /:

Lemma 2.7.5. Let M be a bordered space. Consider the standard t-structures on D.M/
and E.M/. Then:

(i) The bifunctor ��1.�/˝ .�/ is exact.

(ii) The bifunctor RIhom.��1.�/;�/ is left exact.

In particular, the functor � from (2.6.2) is exact.

Proof. (i) For F 2 D.M/ and K 2 E.M/ one has LE.��1F ˝ K/ ' ��1F ˝ LEK.
Hence the statement follows from Proposition 2.4.6.

(ii) The statement follows by adjunction from (i).

Let us end this section stating some facts related to Notation 2.3.3.

Lemma 2.7.6. Let Z be a locally closed subset of M, and K 2 E.M/. One has

��1kZ ˝ K ' EiZ1 ŠŠEi
�1
Z1

K;

RIhom.��1kZ ; K/ ' EiZ1�Ei
Š
Z1

K:

Proof. Note that

.Z �R/1 D Z1 �R1 and iZ1 � idR1 D i.Z�R/1 :

Hence the statement follows from Lemma 2.4.5.

Lemma 2.7.7. LetZ be a locally closed subset of M, and letZ0 � Z be a closed subset.
For K 2 E.M/, there are distinguished triangles in E.Z1/

Ei ŠŠEi�1.ZnZ0/1K �! Ei�1Z1K �! Ei 0ŠŠEi
�1
Z01

K
C1
�!;

Ei 0�Ei
Š
Z01

K �! Ei ŠZ1K �! Ei�Ei Š.ZnZ0/1K
C1
�!;

where i W .Z nZ0/1 �! Z1 and i 0WZ01 �! Z1 are the natural morphisms.

Proof. Since the proofs are similar, we shall only construct the first distinguished trian-
gle. Consider the distinguished triangle

kZ nZ0 �! kZ �! kZ0
C1
�!:

By Lemma 2.7.6, applying the functor ��1.�/˝ K one gets the distinguished triangle

Ei.ZnZ0/1 ŠŠEi
�1
.ZnZ0/1

K �! EiZ1 ŠŠEi
�1
Z1

K �! EiZ01 ŠŠEi
�1
Z01

K
C1
�! :

Since iZ01 D iZ1 ı i
0 and i.ZnZ0/1 D iZ1 ı i , the distinguished triangle in the statement is

obtained by applying the functor Ei�1Z1 to the above distinguished triangle.
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Lemma 2.7.8. Let c 2 R, Z a locally closed subset of M, and K 2 E.M/.

(i) Ei�1Z1K 2 E6c.Z1/ if and only if ��1kZ ˝ K 2 E6c.M/.

(ii) Ei ŠZ1K 2 E>c.Z1/ if and only if RIhom.��1kZ ; K/ 2 E>c.M/.

Proof. (i) By Lemma 2.7.6, one has

��1kZ ˝ K ' EiZ1 ŠŠEi
�1
Z1

K;

Ei�1Z1K ' Ei�1Z1.�
�1kZ ˝ K/:

The statement follows, since the functors EiZ1 ŠŠ and Ei�1Z1 are exact by Proposition 2.7.3. (It
follows that (i) remains true when interchanging 6 c with > c.)

(ii) The statement is proved similarly.

2.8. Stable objects. Setting

k¹t � 0º WD “lim
�!

”
a!C1

k¹t > aº;

k¹t < �º WD “lim
�!

”
a!C1

k¹t < aº;

k¹0 6 t < �º WD “lim
�!

”
a!C1

k¹0 6 t < aº;

there are distinguished triangles in D.M �R1/

k¹t � 0º �! k¹t < �ºŒ1� �! kM �RŒ1�
C1
�!;

k¹0 6 t < �º �! k¹t > 0º �! k¹t � 0º
C1
�! :

The objects of E.M/

kE
M WD QM.k¹t � 0º/ ' QM.k¹t < �ºŒ1�/;

ktor
M WD QM.k¹0 6 t < �º/

enter the distinguished triangle

(2.8.1) ktor
M �! k¹t > 0º �! kE

M
C1
�! :

Note that we have

ktor
M

C

˝ ktor
M ' ktor

M ; kE
M

C

˝ kE
M ' kE

M and ktor
M

C

˝ kE
M ' 0:

Definition 2.8.1. The category Est.M/ of stable enhanced ind-sheaves is the full subcat-
egory of EC.M/ given by

Est.M/ WD ¹K 2 EC.M/Iktor
M

C

˝K ' 0º

D ¹K 2 EC.M/IK
�
�! kE

M

C

˝Kº

D ¹K 2 EC.M/IK ' kE
M

C

˝ L for some L 2 EC.M/º

D ¹K 2 EC.M/IK
�
�! kQ

¹t>aº

C

˝K for any a > 0º;

where the equivalences follow from (2.8.1) and [4, Proposition 4.7.5]. Similar equivalences
hold by replacing˝C with IhomC.
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The embedding Est.M/ �! E.M/ has a left adjoint kE
M ˝
C �, as well as a right adjoint

IhomC.kE
M;�/. There is an embedding

(2.8.2) eWD.M/ ,! Est.M/; F 7! kE
M ˝ �

�1F:

Note that e.F / ' kE
M ˝
C �.F /.

For a locally closed subset Z �
ı

M �R, we set

(2.8.3) kE
Z WD kE

M

C

˝ kQ
Z 2 Est.M/:

Lemma 2.8.2. The following statements hold.

(i) The embedding e from (2.8.2) is fully faithful and exact.

(ii) The functor kE
M ˝
C .�/ is exact.

Proof. Statement (i) follows from [4, Proposition 4.7.15] and Lemma 2.7.5, and (ii)
from [4, Lemma 4.7.4].

The duality functor for stable enhanced ind-sheaves is defined by

DE
MWE.M/ �! Est.M/op; K 7! IhomC.K; !E

M/;

where we set !E
M WD e.!M/.

Lemma 2.8.3 ([4, Proposition 4.8.3]). Let M D .M;
_

M/. For F 2 Db.kM �R/, one has

DE
M.k

E
M

C

˝ QMF / ' kE
M

C

˝ .DQ
MQMF / ' kE

M

C

˝ QM.a
�1DM�RF /;

where a is the involution of M �R defined by a.x; t/ D .x;�t /.

3. Perverse enhanced ind-sheaves

As we recalled in Section 1, a perversity induces a t-structure on the triangulated category
of R-constructible sheaves on a subanalytic space. Here, we extend this result to the triangu-
lated category of R-constructible enhanced ind-sheaves. We allow the subanalytic space to be
bordered, and we also discuss exactness of the six Grothendieck operations.

3.1. Subanalytic bordered spaces. Recall Notation 2.3.1.

Definition 3.1.1. (i) A subanalytic bordered space M D .M;
_

M/ is a bordered space
such that

_

M is a subanalytic space and M is an open subanalytic subset of
_

M .

(ii) A morphism
f WM �! N D .N;

_

N/

of subanalytic bordered spaces is a morphism f WM �! N of subanalytic spaces such
that its graph �f is a subanalytic subset of

_

M �
_

N , and q1j�f is proper. In particular,
f WM �! N is a morphism of bordered spaces.
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(iii) M is smooth of dimension d if M is locally isomorphic to Rd as a subanalytic space.

(iv) A subset S of M (see Definition 2.3.6) is called subanalytic if it is subanalytic in
_

M .

(v) A morphism f WM �! N of subanalytic bordered spaces is said to be submersive if the
continuous map

ı

f W
ı

M �!
ı

N is locally (in
ı

M) isomorphic to the projection
ı

N �Rd �!
ı

N
for some d .

Let M D .M;
_

M/ be a subanalytic bordered space, and let jM WM �!
_

M be the embed-
ding.

Definition 3.1.2. Define Db
R-c.kM/ to be the full subcategory of Db.kM / whose objects

F are such that RjM ŠF is an R-constructible object of Db.k _
M
/. We regard Db

R-c.kM/ as a full
subcategory of D.M/.

Proposition 3.1.3. Let f WM �! N be a morphism of subanalytic bordered spaces.

(i) The functors f �1 and f Š send Db
R-c.kN/ to Db

R-c.kM/.

(ii) If f is semi-proper, then the functors RfŠŠ and Rf� send Db
R-c.kM/ to Db

R-c.kN/.

In particular, the category Db
R-c.kM/ only depends on M (and not on

_

M ).

Notation 3.1.4. For M a subanalytic bordered space, set

CSM WD ¹closed subanalytic subsets of Mº;

LCSM WD ¹locally closed subanalytic subsets of Mº:

For k 2 Z, set

CS<kM WD ¹Z 2 CSMI dZ < kº; CS6k
M WD ¹Z 2 CSMI dZ 6 kº;

and similarly for LCS<kM and LCS6k
M . For Z 2 LCSM, denote by

iZ1 WZ1 �! M

the morphism induced by the embedding Z �
ı

M (see Notation 2.3.3).

Definition 3.1.5. Let p be a perversity, c 2 R and k 2 Z>0. Consider the following
conditions for F 2 D.M/:

.Ip6c
k
/W i�1.MnZ/1F 2 D6cCp.k/..M nZ/1/ for some Z 2 CS<kM ;

.Ip>c
k
/W i ŠZ1 F 2 D>cCp.k/.Z1/ for any Z 2 CS6k

M :

Consider the following strictly full subcategories of D.M/:

Dp 6c.M/ WD ¹F 2 D.M/I .Ip6c
k
/ holds for any k 2 Z>0º;

Dp >c.M/ WD ¹F 2 D.M/I .Ip>c
k
/ holds for any k 2 Z>0º:

Let us also set
Dp 6c

R-c.kM/ WD Dp 6c.M/ \ Db
R-c.kM/;

Dp >c
R-c.kM/ WD Dp >c.M/ \ Db

R-c.kM/:
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One easily checks that

Proposition 3.1.6. We have the following properties.

(i) . Dp 6c
R-c.kM/; Dp >c

R-c.kM//c2R is a t-structure on Db
R-c.kM/.

(ii) For any c 2 R, the duality functor DM interchanges Dp 6c
R-c.kM/ and Dp� >�c

R-c .kM/.

Note that . Dp 6c.M/; Dp >c.M//c2R is not a t-structure in general.

Lemma 3.1.7. For any c 2 R one has

˛M. Dp 6c.M// � Dp 6c.k ıM/:

Proof. This follows from the fact that ˛ commutes with i�1.

Remark 3.1.8. Since ˛ does not commute with the functors i Š , the statement

˛M. Dp >c.M// � Dp >c.k ı
M
/

does not hold in general. For example, let M D R and F D “lim
�!

”
"�!0C

kŒ�"; "� as in [13, Exer-
cise 5.1]. Then

˛MF ' k¹0º 2 D1=2 0.k ıM/ and i Š
¹0ºF ' k¹0ºŒ�1�:

Hence F 2 D1=2 >1=2.M/ but ˛MF … D1=2 >1=2.k ıM/. Here, D1=2 WD Dm for the middle perver-
sity m.n/ WD �n

2
.

3.2. Intermediate enhanced perversities. Let M D .M;
_

M/ be a subanalytic bordered
space.

Definition 3.2.1. Let p be a perversity, c 2 R and k 2 Z>0. Consider the following
conditions for K 2 E.M/:

.Ep6c
k
/W Ei�1.MnZ/1K 2 E6cCp.k/..M nZ/1/ for some Z 2 CS<kM ;

.Ep>c
k
/W Ei ŠZ1K 2 E>cCp.k/.Z1/ for any Z 2 CS6k

M :

Consider the following strictly full subcategories of E.M/:

E6c
p .M/ WD ¹K 2 E.M/I .Ep6c

k
/ holds for any k 2 Z>0º;

E>c
p .M/ WD ¹K 2 E.M/I .Ep>c

k
/ holds for any k 2 Z>0º:

Note that . E6c
p .M/; E>c

p .M//c2R is not a t-structure if dimM > 0. However, we write
E<cp .M/ WD

S
c0<c E6c0

p .M/, Ecp .M/ WD E6c
p .M/ \ E>c

p .M/, etc.

Remark 3.2.2. (i) Conditions .Ep6c
k
/ and .Ep>c

k
/ can be rewritten using the equiva-

lences

Ei�1.MnZ/1K 2 E6c..M nZ/1/ ” ��1kM nZ ˝ K 2 E6c.M/;

Ei ŠZ1K 2 E>c.Z1/ ” RIhom.��1kZ ; K/ 2 E>c.M/;

which follow from Lemma 2.7.8.
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(ii) One has

Ei�1.MnZ/1K 2 E6c..M nZ/1/ H) Ei�1.MnZ0/1K 2 E6c..M nZ0/1/

for any Z, Z0 2 CSM such that Z � Z0. Similarly,

Ei ŠZ1K 2 E>c.Z1/ H) Ei Š
Z001

K 2 E>c.Z001/

for any Z 2 CSM and any locally closed subanalytic subset Z00 of Z. Indeed, one has

Ei�1.MnZ0/1 ' Ej�1 ı Ei�1.MnZ/1

and
Ei Š
Z001
' Ej 00 Š ı Ei ŠZ1 ;

and Ej�1 is exact and Ej 00 Š is left exact for the standard t-structure. Here,

j W .M nZ0/1 �! .M nZ/1 and j 00WZ001 �! Z1

are the canonical morphisms.

The following lemma is obvious.

Lemma 3.2.3. For any c 2 R, one has

E6cCp.dM /.M/ � E6c
p .M/ � E6cCp.0/.M/;

E>cCp.0/.M/ � E>c
p .M/ � E>cCp.dM /.M/:

Note that the following lemma is a particular case of Proposition 3.3.21 below.

Lemma 3.2.4. For any c 2 R and any Z 2 LCSM, one has

Ei �1Z1
. E6c
p .M// � E6c

p .Z1/;

Ei ŠZ1. E>c
p .M// � E>c

p .Z1/;

EiZ1�. E>c
p .Z1// � E>c

p .M/;

EiZ1 ŠŠ. E6c
p .Z1// � E6c

p .M/:

Proof. Since the proofs are similar, let us only discuss the third inclusion.
LetK 2 E>c

p .Z1/. ForW 2 CS6k
M , consider the Cartesian diagram of bordered spaces

.Z \W /1

i
��

i 0 // W1

iW1
��

Z1
iZ1 // M.

Noticing that Z \W 2 CS6k
Z1

and that Ei 0� is left exact for the standard t-structures by Propo-
sition 2.7.3, one has

Ei ŠW1EiZ1�K ' Ei 0�Ei
ŠK 2 Ei 0�.E

>cCp.k/..Z \W /1// � E>cCp.k/.W1/:
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Lemma 3.2.5. For any c 2 R and K 2 E.M/, the following conditions are equivalent.

(i) K 2 E>c
p .M/.

(ii) Ei ŠS1K 2 E>cCp.k/.S1/ for any k 2 Z>0 and any S 2 LCS6k
M .

(iii) Ei ŠS1K 2 E>cCp.k/.S1/ for any k 2 Z>0 and any smooth S 2 LCS6k
M .

(iv) For any k 2 Z>0 and any Z 2 CS6k
M , there exists an open subanalytic subset Z0 of

Z1 such that dim.Z nZ0/ < k and Ei Š
.Z0/1

K 2 E>cCp.k/..Z0/1/.

(v) For any k 2 Z>0 and any S 2 LCS6k
M , there exists an open subanalytic subset S0 of

S1 such that dim.S n S0/ < k and Ei Š
.S0/1

K 2 E>cCp.k/..S0/1/.

Proof. The implications in the following diagram are clear:

.iii/
'/

.i/ +3 .ii/
'/

/7
.iv/.

.v/
/7

Here the less trivial implication (i)) (ii) follows from Remark 3.2.2 (ii).
It remains to show that (iv)) (i). That is, we have to show that for any Z 2 CS6k

M one
has

(3.2.1) RIhom.��1kZ ; K/ 2 E>cCp.k/.M/:

We shall prove it by induction on k 2 Z>0. When k D 0, (3.2.1) is true, because Z0 in (iv)
coincides with Z. Assume that k > 0. Let Z0 � Z be an open subanalytic subset as in (iv), so
that

RIhom.��1kZ0 ; K/ 2 E>cCp.k/.M/:

Since Z nZ0 2 CS6k�1
M , the induction hypothesis implies

RIhom.��1kZ nZ0 ; K/ 2 E>cCp.k�1/.M/ � E>cCp.k/.M/:

Then (3.2.1) follows from the distinguished triangle

RIhom.��1kZ nZ0 ; K/ �! RIhom.��1kZ ; K/ �! RIhom.��1kZ0 ; K/
C1
�! :

Proposition 3.2.6. For any c; c0 2 R, one has

IhomE. E6c
p .M/; E>c0

p .M// � D>c0�c.M/;

HomE. E6c
p .M/; E>c0

p .M// � D>c0�c.k ı
M
/:

In particular, HomE.M/. E6c
p .M/; E>c0

p .M// D 0 if c0 > c.

Proof. (i) Let K 2 E6c
p .M/ and K 0 2 E>c0

p .M/. Reasoning by decreasing induction
on k 2 Z>�1, let us show the following:

(i)k there exists Zk 2 CS6k
M such that

RIhom.kM nZk ; IhomE.K;K 0// 2 D>c0�c.M/:

The above statement is obvious for k > dM . Assuming that (i)k holds true for k > 0, let us
prove (i)k�1. Since K 0 2 E>c0

p .M/, one has

RIhom.��1kZk ; K
0/ 2 E>c0Cp.k/.M/:
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Moreover, since K 2 E6c
p .M/, there exists Wk�1 2 CS6k�1

M with

��1kM nWk�1 ˝ K 2 E6cCp.k/.M/:

Then

RIhom.kZk nWk�1 ; IhomE.K;K 0// ' RIhom.kM nWk�1 ˝ kZk ; IhomE.K;K 0//

' IhomE.��1kM nWk�1 ˝ K;RIhom.��1kZk ; K
0//

2 IhomE.E6cCp.k/.M/;E>c0Cp.k/.M//

� D>c0�c.M/;

where the last inclusion follows from Proposition 2.6.8.
Considering the distinguished triangle

RIhom.kZk nWk�1 ; IhomE.K;K 0// �! RIhom.kM n .Zk \Wk�1/; IhomE.K;K 0//

�! RIhom.kM nZk ; IhomE.K;K 0//
C1
�!;

we deduce (i)k�1 for Zk�1 D Zk \Wk�1.
(ii) The second inclusion follows from the first since HomE ' ˛M IhomE.
(iii) The last assertion follows from (2.6.3).

Lemma 3.2.7. For any c; c0 2 R, one has

IhomE.E6c.M/; E>c0

p .M// � Dp >c0�c.M/;

and in particular,
IhomE.kQ

M; E>c
p .M// � Dp >c.M/:

Proof. Let k 2 Z>0, Z 2 CS6k
M , K 2 E6c.M/ and K 0 2 E>c0

p .M/. One has

RIhom.kZ ; IhomE.K;K 0// ' IhomE.K;RIhom.��1kZ ; K 0//

2 IhomE.E6c.M/;E>c0Cp.k/.M//

� D>c0�cCp.k/.M/;

where the last inclusion follows from Proposition 2.6.8.

Remark 3.2.8. For c; c0 2 R, the inclusion

HomE.E6c.M/; E>c0

p .M// � Dp >c0�c.k ı
M
/

does not hold in general. For example, with notations as in Remark 3.1.8, let M D R, K D kE
M

and K 0 D kE
M ˝ �

�1F . Then K 2 E0.M/, K 0 2 1=2E>1=2.M/ and

HomE.K;K 0/ ' ˛MF … D1=2 >1=2.kM/:

Here, 1=2E WD mE and D1=2 WD Dm for m.n/ WD �n
2

the middle perversity.

Proposition 3.2.9. For c 2 R one has

. E<cp .M//? D E>c
p .M/:
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Proof. One has
E>c
p .M/ � . E<cp .M//?

by Proposition 3.2.6.
Let K 2 . E<cp .M//?. We have to show that one has

Ei ŠZ1K 2 E>cCp.k/.Z1/

for any k 2 Z>0 and Z 2 CS6k
M . Since E>cCp.k/.Z1/ D .E<cCp.k/.Z1//?, this is equiva-

lent to showing that for any L 2 E<cCp.k/.Z1/ one has

HomE.Z1/.L;Ei
Š
Z1

K/ ' 0:

By Lemma 3.2.3, one has
E<cCp.k/.Z1/ � E<cp .Z1/:

Hence EiZ1 ŠŠL 2 E<cp .M/ by Lemma 3.2.4. Then

HomE.Z1/.L;Ei
Š
Z1

K/ ' HomE.M/.EiZ1 ŠŠL;K/ ' 0:

Proposition 3.2.10. Let M be a subanalytic space. For any interval I � R such that
I �! R=Z is injective, the prestack on M

U 7! EIp .U /

is a stack.

Proof. (i) Let K;L 2 EIp .M/. By Proposition 3.2.6, one has

HomE.K;L/ 2 D>�1.M/ D D>0.M/:

Hence the presheaf

U 7! Hom EIp .U/.Ei
�1
U K;Ei�1U L/ ' � .U IH 0.HomE.K;L///

is a sheaf. Thus U 7! EIp .U / is a separated prestack on M .
(ii) Let M D

S
a2A Ua be an open cover, Ka 2 EIp .Ua/, and let

uabWKbjUa\Ub
�
�! KajUa\Ub

be isomorphisms such that uab ı ubc D uac on Ua \ Ub \ Uc (a; b; c 2 A). We have to show
that there exist K 2 EIp .M/ and isomorphisms uaWKjUa

�
�! Ka such that uab ı ub D ua

on Ua \ Ub (a; b 2 A). This follows from Proposition 2.4.8 by applying it with f D � to
RjaŠŠ LEKa 2 D.Ua �R/, where jaWUa �R1 �! Ua �R is the canonical morphism.

Lemma 3.2.11. Let M be a bordered space. Let c 2 R, Z 2 CSM and K 2 E.M/. Set
U D

ı

M nZ, and consider the morphisms i WZ1 �! M and j WU1 �! M. Then one has:

(i) K 2 E6c
p .M/ if and only if Ei�1K 2 E6c

p .Z1/ and Ej�1K 2 E6c
p .U1/;

(ii) K 2 E>c
p .M/ if and only if Ei ŠK 2 E>c

p .Z1/ and Ej ŠK 2 E>c
p .U1/.

Proof. Since the proofs are similar, let us only discuss (i).
IfK 2 E6c

p .M/, then Ei�1K and Ej�1K satisfy the required conditions since the func-
tors Ei�1 and Ej�1 are right exact by Lemma 3.2.4.
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Conversely, assume that Ei�1K 2 E6c
p .Z1/ and Ej�1K 2 E6c

p .U1/. For k 2 Z>0,
let SU 2 CS<kU1 be such that

��1kU n SU ˝ Ej�1K 2 E6cCp.k/.U1/;

and SZ 2 CS<kZ1 be such that

��1kZ n SZ ˝ Ei�1K 2 E6cCp.k/.Z1/:

Set S D SZ [ SU 2 CS<kM and S 0Z D SZ [ .Z \ SU / 2 CS<kZ1 . (Here the closure of SU is
taken in

ı

M.) Then S \ U D SU and S \Z D S 0Z . Since

��1kU n SU ˝ K 2 E6cCp.k/.M/; ��1kZ n S 0Z ˝ K 2 E6cCp.k/.M/;

one concludes that ��1kM n S ˝ K 2 E6cCp.k/.M/ by considering the distinguished triangle

��1kU n SU ˝ K �! ��1kM n S ˝ K �! ��1kZ n S 0Z ˝ K
C1
�! :

A subanalytic stratification ¹M˛º˛2A of M WD .M;
_

M/ is a locally finite (in
_

M ) family
of smooth M˛ 2 LCSM such that M D

F
˛2AM˛ and M ˛ \Mˇ ¤ ¿ implies M ˛ �Mˇ .

Proposition 3.2.12. Let ¹M˛º˛2A be a subanalytic stratification of M, and set for short
M˛ D .M˛/1. Let K 2 E.M/.

(i) K 2 E6c
p .M/ if and only if Ei�1M˛K 2 E6c

p .M˛/ for any ˛ 2 A.

(ii) K 2 E>c
p .M/ if and only if Ei ŠM˛K 2 E>c

p .M˛/ for any ˛ 2 A.

Proof. The statement follows from Lemma 3.2.11.

3.3. R-constructible enhanced ind-sheaves. In this subsection, we extend to the case
of subanalytic bordered spaces the definition of R-constructible enhanced ind-sheaves from
[4, Section 4.9].

Let M D .M;
_

M/ be a subanalytic bordered space.

Definition 3.3.1. (i) An object K 2 E.M/ is R-constructible if for any relatively
compact subanalytic open subset U of M, one has

Ei�1U1K ' kE
U1

C

˝ QU1F in E.U1/ for some F 2 Db
R-c.kU1 �R1/.

In particular, K is stable.

(ii) ER-c.M/ is the strictly full subcategory of E.M/ whose objects are R-constructible.

Recall the morphism jMWM �!
_

M .

Lemma 3.3.2. Let K 2 E.M/. Then K 2 ER-c.M/ if and only if EjM ŠŠK 2 ER-c.
_

M/.

Proposition 3.3.3 ([4]). Let f WM �! N be a morphism of subanalytic bordered spaces.

(i) ER-c.M/ is a triangulated subcategory of E.M/.

(ii) The duality functor DE
M gives an equivalence ER-c.M/op ��! ER-c.M/, and there is a can-

onical isomorphism of functors idER-c.M/
�
�! DE

M ı DE
M.
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(iii) The functors Ef �1 and Ef Š send ER-c.N/ to ER-c.M/, and

DE
M ı Ef �1 ' Ef Š ı DE

N and DE
M ı Ef Š ' Ef �1 ı DE

N:

(iv) Assume that f is semi-proper. Then the functors Ef � and Ef ŠŠ send ER-c.M/ to ER-c.N/,
and

DE
N ı Ef � ' Ef ŠŠ ı DE

M and DE
N ı Ef ŠŠ ' Ef � ı DE

M:

See [4, Corollary 4.9.4, Theorem 4.9.12, Propositions 4.9.14, 4.8.2].

Definition 3.3.4. (i) An E-type on M is the datum

(3.3.1) L D .'a; ma;  
˙
b ; nb/a2A; b2B

consisting of finite sets A;B , integers ma and nb for any a 2 A and b 2 B , and mor-
phisms of subanalytic bordered spaces 'a;  ˙b WM �! R1 for any a 2 A and b 2 B , such
that  �

b
.x/ <  C

b
.x/ for any x 2M .

(ii) An E-type L as in (3.3.1) is called stable if for any b 2 B

(3.3.2) ¹.x; t/ 2M �RI t D  C
b
.x/ �  �

b
.x/º \ .

_

M � ¹C1º/ ¤ ¿;

where the closure is taken in
_

M �R.

Notation 3.3.5. For an E-type L on M as in (3.3.1), set

ˆa WD ¹.x; t/ 2M �RI t > 'a.x/º;
‰b WD ¹.x; t/ 2M �RI �b .x/ 6 t <  

C

b
.x/º;

and

kQ
L
WD .

M
a2A

kQ
ˆa
Œ�ma�/˚ .

M
b2B

kQ
‰b
Œ�nb�/ 2 E.M/;

kE
L WD .

M
a2A

kE
ˆa
Œ�ma�/˚ .

M
b2B

kE
‰b
Œ�nb�/ ' kE

M

C

˝ kQ
L
2 ER-c.M/:

Note that kE
‰b
6' 0 if and only if (3.3.2) holds true.

Definition 3.3.6. One says that K 2 E.M/ is free (resp. stably free) on M if, for any
connected component S of

ı

M, there exists an E-type L on S1 such that Ei�1S1K ' kQ
L

(resp.
Ei�1S1K ' kE

L
). (Note that Ei�1S1 ' Ei ŠS1 .)

If K 2 E.M/ is stably free, then it is R-constructible. If K is free, then it is constructible
in the sense of Remark 3.5.12 below.

A regular filtration .Mk/k2Z of M is an increasing sequence of closed subanalytic subsets
Mk of M such that Mk D ¿ for k 6 �1, Mk D

ı

M for k > d ı
M

, and Mk nMk�1 is smooth of
dimension k. In particular,

¿ DM�1 �M0 � � � � �MdM�1 �MdM D
ı

M:

Lemma 3.3.7 ([4, Lemma 4.9.9]). For anyK 2 ER-c.M/ there exists a regular filtration
.Mk/k2Z of M such that both Ei �1

.MknMk�1/1
K and Ei Š

.MknMk�1/1
K are stably free.
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Definition 3.3.8. Let L D .'a; ma;  
˙
b
; nb/a2A; b2B be an E-type on M, and assume

that M is smooth of dimension d . The dual of L, denoted by

L� D .'�a ; m
�
a;  

˙�
b ; n�b/a2A; b2B ;

is the E-type on M defined by '�a WD �'a,m�a WD �ma�d , ˙�
b
WD � �

b
, n�
b
WD �nb�d�1.

Accordingly, we set

ˆ�a WD ¹.x; t/ 2M �RI t > �'a.x/º;
‰�b WD ¹.x; t/ 2M �RI � C

b
.x/ 6 t < � �b .x/º:

Lemma 3.3.9. Let L be an E-type on M. Assume that M is smooth and equidimen-
sional. Then DQ

MkQ
L
' kQ

L�
and DE

MkE
L
' kE

L�
.

Proof. This follows from Lemma 3.3.10 below.

Lemma 3.3.10. Recall Notation 3.3.5 and Definition 3.3.8. If M is smooth of dimen-
sion d , one has

DQ
M.k

Q
ˆa
/ ' kQ

ˆ�a
Œd �; DQ

M.k
Q
‰b
/ ' kQ

‰�
b

Œd C 1�;

and

DE
M.k

E
ˆa
/ ' kE

ˆ�a
Œd �; DE

M.k
E
‰b
/ ' kE

‰�
b

Œd C 1�:

Proof. By Lemma 2.8.3, one has

DQ
M.k

Q
ˆa
/ ' kQ

¹t<�'a.x/º
Œd C 1� ' kQ

ˆ�a
Œd �;

DQ
M.k

Q
‰b
/ ' kQ

¹� 
C

b
.x/6t<� �

b
.x/º

Œd C 1� D kQ
‰�
b

Œd C 1�:

The other statements also follow from Lemma 2.8.3.

Definition 3.3.11. For p a perversity and c 2 R, we set

E6c
p R-c.M/ WD E6c

p .M/ \ ER-c.M/; E>c
p R-c.M/ WD E>c

p .M/ \ ER-c.M/:

Proposition 3.3.12. The following properties hold.

(i) . E6c
p R-c.M/; E>c

p R-c.M//c2R is a t-structure on ER-c.M/.

(ii) Assume that M DM is a subanalytic space. For any interval I � R such that I �! R=Z
is injective, the prestack on M

U 7! EIp R-c.U /

is a stack of quasi-abelian categories.

Plan of the proof. (i) We have to prove that the conditions in Definition 1.2.2 are sat-
isfied. Conditions (a) and (b) are clear. Condition (c) follows from Proposition 3.2.6. Condi-
tion (d) is checked in Proposition 3.3.19 below.

(ii) This follows from Proposition 3.2.10.
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Notation 3.3.13. We denote by

. E6c
1=2 R-c.M/; E>c

1=2 R-c.M//c2R

the t-structure associated with the middle perversity m.n/ D �n
2

.

Remark 3.3.14. The t-structures . E6c
p R-c.M/; E>c

p R-c.M//c2R are not well behaved with
respect to duality, as one observes in Lemma 3.3.15 below. We will come back to this point in
Section 3.5.

Lemma 3.3.15. Assume that M is smooth of dimension d . Using Notation 3.3.5, one
has:

(i) kE
ˆa
;kE
‰b
2 E�p.d/
p R-c .M/.

(ii) DE
MkE
ˆa
2 Ep.d/
p� R-c .M/ and DE

MkE
‰b
2 Ep.d/�1
p� R-c .M/.

Proof. (i) As the proofs are similar, let us only discuss kE
ˆa

.
(i-1) By Lemma 3.2.3, one has

kE
ˆa
2 E60

R-c.M/ � E6�p.d/
p R-c .M/:

(i-2) Let us now show that kE
ˆa
2 E>�p.d/
p R-c .M/. We have to prove that for any smooth

Z 2 LCS6k
M one has

E i ŠZ1.k
E
ˆa
/ 2 E>�p.d/Cp.k/.Z1/:

We may assume that k < d . Consider the embedding i WZ �R �!M �R. Then one has

E i ŠZ1.k
E
ˆa
/ ' kE

Z1

C

˝ QZ1.i
Šk¹t > 'a.x/º/

' kE
Z1

C

˝ QZ1.i
�1k¹t > 'a.x/º ˝ i

ŠkM �R/;

where the first isomorphism follows from [4, Proposition 4.7.14]. Locally on Z, one has
i ŠkM �R ' kZ �RŒk � d�. Hence

E i ŠZ1.k
E
ˆa
/ 2 E>d�k.Z1/

by Lemmas 2.6.5 and 2.8.2. One concludes since d � k > �p.d/C p.k/ by perversity.
(ii) Using Lemma 3.3.10 and (i), one has

DE
MkE
ˆa
' kE

ˆ�a
Œd � 2 E�p

�.d/�d
p� R-c .M/ D Ep.d/

p� R-c .M/;

DE
MkE
‰b
' kE

‰�
b

Œd C 1� 2 E�p
�.d/�d�1

p� R-c .M/ D Ep.d/�1
p� R-c .M/:

Lemma 3.3.16. Assume that
ı

M is non-empty and smooth of dimension d . Given a stable
E-type L D .'a; ma;  

˙
b
; nb/a2A; b2B on M, and c 2 R, one has:

(i) kE
L
2 E6c
p R-c.M/ if and only ifma 6 cCp.d/ and nb 6 cCp.d/ for any a 2 A and b 2 B .

(ii) kE
L
2 E>c
p R-c.M/ if and only ifma > cCp.d/ and nb > cCp.d/ for any a 2 A and b 2 B .

(iii) DE
MkE

L
2 E>�c
p� R-c .M/ if and only ifma 6 cCp.d/ and nb 6 cCp.d/�1 for any a 2 A

and b 2 B .

(iv) DE
MkE

L
2 E6�c
p� R-c .M/ if and only ifma > cCp.d/ and nb > cCp.d/�1 for any a 2 A

and b 2 B .
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Proof. Since

kE
L D

�M
a2A

kE
ˆa
Œ�ma�

�
˚

�M
b2B

kE
‰b
Œ�nb�

�
;

the statement follows from Lemma 3.3.15. Note that a non-zero object of Ecp .M/ belongs to
E6c0

p .M/ (resp. E>c0

p .M/) if and only if c 6 c0 (resp. c > c0) by Proposition 3.2.6.

Corollary 3.3.17. Assume that M is smooth of dimension d . Let K 2 ER-c.M/ be
a stably free object. Then, for c 2 R, one has:

(i) K 2 E6c
p R-c.M/ if and only if K 2 E6cCp.d/

R-c .M/.

(ii) K 2 E>c
p R-c.M/ if and only if K 2 E>cCp.d/

R-c .M/.

Lemma 3.3.18. Let c 2 R and K 2 ER-c.M/. Assume that M is smooth and K is stably
free on M. Then there are distinguished triangles in ER-c.M/

K6c �! K �! K>c
C1
�! and K<c �! K �! K>c

C1
�!

with KL 2 EL
p R-c.M/ for L equal to 6 c, > c, < c or > c.

Proof. It is obvious since K is a direct sum of objects belonging to Ea
p R-c.M/ for some

a 2 R by Lemma 3.3.15.

Proposition 3.3.19. Let c 2 R and K 2 ER-c.M/. Then there are distinguished trian-
gles in ER-c.M/

K6c �! K �! K>c
C1
�! and K<c �! K �! K>c

C1
�!

with KL 2 EL
p R-c.M/ for L equal to 6 c, > c, < c or > c.

Proof. Since the proof of the existence of the second distinguished triangle follows
from the first one, we will construct only the first distinguished triangle. The arguments we
use are standard (see e.g. [10, Lemma 5.8]).

Let M D .M;
_

M/. Reasoning by decreasing induction on k 2 Z>�1, let us show that

(dt)k there exists Zk 2 CS6k
M and a distinguished triangle

K 0k �! Ejk
�1K �! K 00k

C1
�!;

with K 0
k
2 E6c
p R-c..M nZk/1/ and K 00

k
2 E>c
p R-c..M nZk/1/.

Here, jk is the morphism indicated in the diagram below, where we picture all the morphisms
that will be used in the proof:

.Zk nZk�1/1
i 0
k //

ik
((

.M nZk�1/1

jk�1
��

.M nZk/1
j 0
koo

jk
vv

M.

The statement (dt)k is obvious for k > dM . Assuming that (dt)k holds true for some k > 0, let
us prove (dt)k�1. The morphismK 0

k
�! Ejk�1K ' Ejk ŠK induces by adjunction a morphism
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Ejk ŠŠK 0k �! K, that we complete in a distinguished triangle in ER-c.M/

Ejk ŠŠK
0
k �! K �! L

C1
�! :

LetZk�1 2 CS6k�1
M be such thatZk nZk�1 is smooth and Ei Š

k
L is stably free. Lemma 3.3.18

gives a distinguished triangle

(3.3.3) L0 �! Ei ŠkL �! L00
C1
�!;

with L0 2 E6c
p R-c..Zk nZk�1/1/ and L00 2 E>c

p R-c..Zk nZk�1/1/.
The first morphism above, namely

L0 �! Ei ŠkL ' Ei 0 Šk Ej Šk�1L;

induces by adjunction a morphism Ei 0
k ŠŠ
L0 �! Ej Š

k�1
L ' Ej�1

k�1
L, that we complete in

a distinguished triangle in ER-c..M nZk�1/1/

(3.3.4) Ei 0k ŠŠL
0
�! Ej�1k�1L �! K 00k�1

C1
�! :

Consider the composite morphism Ej�1
k�1

K �! Ej�1
k�1

L �! K 00
k�1

, and complete it in a distin-
guished triangle in ER-c..M nZk�1/1/

K 0k�1 �! Ej�1k�1K �! K 00k�1
C1
�! :

We claim that this satisfy (dt)k�1.
Note that

Ej 0�1k K 00k�1 ' Ej�1k L ' K 00k 2 E>cp R-c..M nZk/1/;

Ej 0�1k K 0k�1 ' K
0
k 2 E6c

p R-c..M nZk/1/:

Hence, by Lemma 3.2.11, we are reduced to prove

Ei 0�1k K 0k�1 2 E6c
p R-c..Zk nZk�1/1/;(3.3.5)

Ei 0 Šk K
00
k�1 2 E>cp R-c..Zk nZk�1/1/:(3.3.6)

Applying the functor Ei 0 Š
k

to (3.3.4), we get a distinguished triangle

L0 �! Ei ŠkL �! Ei 0 Šk K
00
k�1

C1
�! :

Thus (3.3.3) gives Ei 0 Š
k
K 00
k�1
' L00 2 E>c

p R-c..Zk nZk�1/1/, which proves (3.3.6).
By the octahedral axiom, there is a diagram in E..M nZk�1/1/

K 0
k�1

''

��

Ej�1
k�1

Ejk ŠŠK 0k

77

��

Ei 0
k ŠŠ
L0C1oo

��

Ej�1
k�1

K

''

// K 00
k�1

C1

OO

C1

__

Ej�1
k�1

L

77

C1

__
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and hence a distinguished triangle

Ej�1k�1Ejk ŠŠK
0
k �! K 0k�1 �! Ei 0k ŠŠL

0 C1
�! :

Applying the functor Ei 0�1
k

, we get

Ei 0�1k K 0k�1 ' L
0
2 E6c
p R-c..Zk nZk�1/1/;

which proves (3.3.5).

Definition 3.3.20. For pWZ>0 �! R a perversity and d 2 Z>0, the shifted perversity
pŒd � is given by pŒd �.n/ D p.d C n/.

Note that the soft dimension of a subanalytic space is equal to its dimension.

Proposition 3.3.21. Let f WM �! N be a morphism of subanalytic bordered spaces, and
d 2 Z>0. Assume that dim

ı

f �1.y/ 6 d for any y 2
ı

N. Then, for any c 2 R one has:

(i) Ef �1. E6c
pŒd� .N// � E6c

p .M/.

(ii) Ef Š. E>c
pŒd� .N// � E>c�d

p .M/.

(iii) Ef �. E>c
p .M// � E>c

pŒd� .N/.

(iv) ER-c.N/ \ Ef ŠŠ. E6c
p .M// � E6cCd

pŒd� .N/.

Proof. Let M D .M;
_

M/ and N D .N;
_

N/.
(i) Let L 2 E6c

pŒd� .N/. We have to prove that, for any k 2 Z>0, there exists Z 2 CS<kM
such that one has

Ei�1.MnZ/1Ef �1L 2 E6cCp.k/..M nZ/1/:

Let W 2 CS<k�dN be such that one has

Ei�1.NnW /1L 2 E6cCp.k/..N nW /1/:

Note that if 0 6 k < d , then W D ¿ will do because L 2 E6cCpŒd�.0/.N/ � E6cCp.k/.N/
since p.d/ 6 p.k/.

Then Z WD f �1.W / 2 CS<kM satisfies the desired condition. Indeed, denoting

f0W .M nZ/1 �! .N nW /1

the morphism induced by f jMnZ , one has

Ei�1.MnZ/1Ef �1L ' Ef �10 Ei�1.NnW /1L

2 Ef �10 E6cCp.k/..N nW /1/

� E6cCp.k/..M nZ/1/;

where the last inclusion follows from Proposition 2.7.3.
(ii) Let L 2 E>c

pŒd� .N/. We have to show that for any k 2 Z>0 and Z 2 CS6k
M there

exists an open subanalytic subset Z0 of Z1 such that dim.Z nZ0/ < k and

(3.3.7) Ei Š.Z0/1Ef ŠL 2 E>cCp.k/�d ..Z0/1/:

Recall Notation 2.3.1. Replacing
_

M with �f , we may assume that f extends to a morphism
of subanalytic spaces

_

f W
_

M �!
_

N:
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Since (3.3.7) is local on
_

M , we may assume that Z is relatively compact in
_

M . Then,
there exists an open subanalytic subset Z0 of Z satisfying the following properties:

(a) dim.Z nZ0/ < k,

(b) Z0 D
F
i2I Si , where ¹Siºi2I is a family of subanalytic smooth subsets of dimension k,

(c) Ti WD f .Si / is a smooth equidimensional subset of N for any i 2 I ,

(d) f induces a submersive morphism fi W .Si /1 �! .Ti /1 for any i 2 I .

We claim that Z0 satisfies (3.3.7). In fact, for any i 2 I , one has

Ei Š.Si /1Ef ŠL ' Ef ŠiEi
Š
.Ti /1

L 2 Ef Ši E>cCp.dTiCd/..Ti /1/:

Since fi is submersive, we have Ef Ši ' �
�1 orSi=Ti ˝Ef �1i ŒdSi � dTi �, where orSi=Ti is the

relative orientation sheaf (see Section 1.5). Hence we have

Ef Ši E>cCp.dTiCd/..Ti /1/ � E>cCp.dTiCd/CdTi�dSi ..Si /1/

� E>cCp.dSi /�d ..Si /1/:

Here, the last inclusion follows from dTiCd > dSi and p.dTiCd/CdTiCd > p.dSi /CdSi
by perversity.

Thus we obtain
Ei Š.Si /1Ef ŠL 2 E>cCp.k/�d ..Si /1/

for any i 2 I , which implies (3.3.7).
Statements (iii) and (iv) follow from (i) and (ii) by adjunction using, respectively, Propo-

sition 3.2.9 and Proposition 3.3.12 (i).

Remark 3.3.22. Concerning (iv) above, the inclusion

Ef ŠŠ. E6c
p .M// � E6cCd

pŒd� .N/

does not hold in general, since E6c
p .M/ is not stable by “

L
”. For example, let M D R n ¹0º,

N D R, and let f WM �! N be the inclusion map. For n 2 Z>1, let xn D 1
n

and set

Fn D �
�1k¹xnº ˝ k¹t > 0º;

an object of Mod.kM�R1/. LetK D QM .
L
n>1 Fn/ 2 E.M/. Then we haveK 2 E01=2 .M/

but Ef ŠŠK ' QN .“
L

”n>1 fRŠŠFn/ 2 E.N / does not belong to E60
1=2 .N /. Here

fR WD f � idRWM �R �! N �R:

Indeed, there is noZ 2 CS<1.N / such that Ei�1
.NnZ/1

Ef ŠŠK 2 E6�1=2..N nZ/1/, i.e. such
that Ei�1

.NnZ/1
Ef ŠŠK ' 0.

3.4. Dual intermediate enhanced perversity. Let p be a perversity and let M be a sub-
analytic bordered space. Since the t-structure . E6c

p R-c.M/; E>c
p R-c.M//c2R is not well behaved

with respect to duality, we consider also its dual t-structure.

Notation 3.4.1. For c 2 R, set

E0 6c
p R-c.M/ WD ¹K 2 ER-c.M/IDE

MK 2 E>�c
p� R-c .M/º;

E0 >c
p R-c.M/ WD ¹K 2 ER-c.M/IDE

MK 2 E6�c
p� R-c .M/º:
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The following result is a consequence of Proposition 3.3.12.

Proposition 3.4.2. We have that . E0 6c
p R-c.M/; E0 >c

p R-c.M//c2R is a t-structure on ER-c.M/.

Note that, by the definition, for any c 2 R the duality functor DE
M interchanges E6c

p R-c.M/
and E0 >�c

p� R-c .M/, as well as E>c
p R-c.M/ and E0 6�c

p� R-c .M/.

Lemma 3.4.3. Let M be a bordered space. Let c 2 R, Z 2 CSM, and K 2 ER-c.M/. Set
U D

ı

M nZ. Then, considering the morphisms i WZ1 �! M and j WU1 �! M, one has:

(i) K 2 E0 6c
p R-c.M/ if and only if Ei�1K 2 E0 6c

p R-c.Z1/ and Ej�1K 2 E0 6c
p R-c.U1/;

(ii) K 2 E0 >c
p R-c.M/ if and only if Ei ŠK 2 E0 >c

p R-c.Z1/ and Ej ŠK 2 E0 >c
p R-c.U1/.

Proof. The statement follows from Lemma 3.2.11, noticing that

DE
Z1

Ei�1K ' Ei ŠDE
MK; DE

U1
Ej�1K ' Ej ŠDE

MK;

DE
Z1

Ei ŠK ' Ei�1DE
MK; DE

U1
Ej ŠK ' Ej�1DE

MK;

which is a consequence of Proposition 3.3.3.

Lemma 3.4.4. For any c 2 R one has

E0 6c
p R-c.M/ � E6c

p R-c.M/ � E0 6cC1
p R-c .M/;

E>c
p R-c.M/ � E0 >c

p R-c.M/ � E>c�1
p R-c .M/:

Proof. Let K 2 E.M/. By Lemma 3.3.7, there exists a regular filtration .Mk/k2Z of M
such that both Ei �1

.MknMk�1/1
K and Ei Š

.MknMk�1/1
K are stably free. In order to check the

inclusions in the statement, by Lemmas 3.2.11 and 3.4.3, we may assume that M is smooth
equidimensional, and that K is stably free. Then one concludes using Lemma 3.3.16.

Proposition 3.4.5. Let f WM �! N be a morphism of subanalytic bordered spaces, and
d 2 Z>0. Assume that dimf �1.y/ 6 d for any y 2

ı

N. Then, for any c 2 R one has:

(i) Ef �1. E0 6c
pŒd� R-c.N// � E0 6c

p R-c.M/.

(ii) Ef Š. E0 >c
pŒd� R-c.N// � E0 >c�d

p R-c .M/.

(iii) ER-c.N/ \ Ef �. E0 >c
p R-c.M// � E0 >c

pŒd� R-c.N/.

(iv) ER-c.N/ \ Ef ŠŠ. E0 6c
p R-c.M// � E0 6cCd

pŒd� R-c .N/.

Proof. (i) Let K 2 E0 6c
pŒd� R-c.N/, that is, DE

NK 2 E>�c
pŒd�� R-c .M/. Noticing that one has

pŒd ��.n/ D p�Œd �.n/C d;

Proposition 3.3.21 implies

DE
MEf �1K ' Ef ŠDE

NK 2 E>�c
p� R-c .M/:

Hence Ef �1K 2 E0 6c
p R-c.M/.

Statement (ii) is proved similarly, and statement (iii) and (iv) follow from (i) and (ii) by
adjunction.
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3.5. Enhanced perversity. Let p be a perversity and M a subanalytic bordered space.

Definition 3.5.1. For c 2 R, consider the strictly full subcategories of ER-c.M/ given
by

Ep 6c
R-c.M/ WD E6c

p R-c.M/ \ E0 6cC1=2
p R-c .M/

D ¹K 2 ER-c.M/IK 2 E6c
p R-c.M/; DE

MK 2 E>�c�1=2
p� R-c .M/º;

Ep >c
R-c.M/ WD E>c�1=2

p R-c .M/ \ E0 >c
p R-c.M/

D ¹K 2 ER-c.M/IDE
MK 2 Ep 6�c

R-c .M/º

D ¹K 2 ER-c.M/IK 2 E>c�1=2
p R-c .M/; DE

MK 2 E6�c
p� R-c .M/º:

By Lemma 3.4.4 one has

(3.5.1) E0 6c
p R-c.M/ � Ep 6c

R-c.M/ � E6c
p R-c.M/; E>c

p R-c.M/ � Ep >c
R-c.M/ � E0 >c

p R-c.M/:

In the rest of this section, we will give a proof of the following result.

Theorem 3.5.2. Let M be a subanalytic bordered space.

(i) . Ep 6c
R-c.M/; Ep >c

R-c.M//c2R is a t-structure on ER-c.M/.

(ii) For any c 2 R, the duality functor DE
M interchanges Ep 6c

R-c.M/ and Ep� >�c
R-c .M/.

(iii) Assume that M DM is a subanalytic space. For any interval I � R such that I �! R=Z
is injective, the prestack on M

U 7! Ep I
R-c.U /

is a stack of quasi-abelian categories.

Plan of the proof. As in the proof of Proposition 3.3.12, statement (i) follows from
Propositions 3.5.4 and 3.5.5 below.

Statement (ii) is clear from the definitions, and statement (iii) has a proof analogous to
that of Proposition 3.2.10.

Lemma 3.5.3. Assume that
ı

M is non-empty and smooth of dimension d . For c 2 R
and L a stable E-type on M as in (3.3.1), one has:

(i) kE
L
2 Ep 6c

R-c.M/ if and only if ma 6 c C p.d/ and nb 6 c C p.d/ � 1
2

for any a 2 A
and b 2 B .

(ii) kE
L
2 Ep >c

R-c.M/ if and only if ma > c C p.d/ and nb > c C p.d/ � 1
2

for any a 2 A
and b 2 B .

Proof. The statement follows from Lemma 3.3.16.

Proposition 3.5.4. The bifunctors IhomE and HomE are left exact, that is, for any
c; c0 2 R one has

IhomE. Ep 6c
R-c.M/; Ep >c0

R-c.M// � D>c0�c.M/;

HomE. Ep 6c
R-c.M/; Ep >c0

R-c.M// � D>c0�c.k ı
M
/:

In particular, HomER-c.M/. Ep 6c
R-c.M/; Ep >c0

R-c.M// D 0 if c < c0.
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Proof. The second inclusion follows from the first one, since HomE ' ˛MIhomE. Let
us prove the first inclusion.

Let K 2 Ep 6c
R-c.M/ and K 0 2 Ep >c0

R-c.M/. As in the proof of Proposition 3.2.6, reasoning
by decreasing induction on k 2 Z>�1, let us show the following statement:

(i)k there exists Zk 2 CS6k
M such that

RIhom.kM nZk ; IhomE.K;K 0// 2 D>c0�c.M/:

The above statement is obvious for k > dM . Assuming that (i)k holds true for some k, let us
prove (i)k�1. There exists Zk�1 2 CS6k�1

M such that Zk�1 � Zk , Zk nZk�1 is smooth of
dimension k, and Ei�1

.ZknZk�1/1
K and Ei Š

.ZknZk�1/1
K 0 are stably free. Consider the distin-

guished triangle

RIhom.kZk nZk�1 ; IhomE.K;K 0// �! RIhom.kM nZk�1 ; IhomE.K;K 0//

�! RIhom.kM nZk ; IhomE.K;K 0//
C1
�! :

Then (i)k�1 will follow if we show that

RIhom.kZk nZk�1 ; IhomE.K;K 0// 2 D>c0�c.M/:

This is equivalent to i ŠS1 IhomE.K;K 0/ 2 D>c0�c.S1/ for any connected component S of
Zk nZk�1. One has

i ŠS1 IhomE.K;K 0/ ' IhomE.Ei�1S1K;Ei
Š
S1
K 0/:

By assumption,
Ei�1S1K ' kE

L and Ei ŠS1K
0
' kE

L0

for some stable E-types LD .'a; ma;  
˙
b
; nb/a2A; b2B , L0 D .'a0 ; ma0 ;  

˙
b0
; nb0/a02A0; b02B 0 .

Then we are reduced to prove

(3.5.2) IhomE.kE
L;k

E
L0/ 2 D>c0�c.S1/:

Recall that

kE
L D

�M
a2A

kE
ˆa
Œ�ma�

�
˚

�M
b2B

kE
‰b
Œ�nb�

�
2 Ep 6c

R-c.S1/;

kE
L0 D

�M
a02A0

kE
ˆa0
Œ�ma0 �

�
˚

�M
b02B 0

kE
‰b0
Œ�nb0 �

�
2 Ep >c0

R-c.S1/:

By Lemma 3.5.3 and Proposition 2.6.8, one has

IhomE.kE
‰b
Œ�nb�;kE

‰b0
Œ�nb0 �/

2 IhomE.E6cCp.k/�1=2.S1/;E>c0Cp.k/�1=2.S1// � D>c0�c.S1/:

Similarly, one has

IhomE.kE
ˆa
Œ�ma�;kE

‰b0
Œ�nb0 �/ 2 D>c0�c�1=2.S1/;

IhomE.kE
‰b
Œ�nb�;kE

ˆa0
Œ�ma0 �/ 2 D>c0�cC1=2.S1/;

IhomE.kE
ˆa
Œ�ma�;kE

ˆa0
Œ�ma0 �/ 2 D>c0�c.S1/:

Hence (3.5.2) reduces to show that for any a 2 A and b0 2 B 0,

HmIhomE.kE
ˆa
Œ�ma�;kE

‰b0
Œ�nb0 �/ ' 0
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for any m 2 Z such that c0 � c � 1=2 6 m < c0 � c. Since we have

HmIhomE.kE
ˆa
Œ�ma�;kE

‰b0
Œ�nb0 �/ ' H

mCma�nb0IhomE.kE
ˆa
;kE
‰b0
/;

we may assume that mCma � nb0 > 0. Since ma 6 c C p.k/ and nb0 > c0 C p.k/ � 1
2

, one
has mCma � nb0 6 m � c0 C c C 1

2
< 1
2

. Then, we have mCma � nb0 D 0.
Let � WS1 �R1 �! S1 and � WS1 �R �! S1 be the projections. Then one concludes

by noticing that

H 0IhomE.kE
ˆa
;kE
‰b0
/ ' H 0IhomE.kQ

ˆa
;kE
‰b0
/

' H 0R��RIhom.k¹t > 'a.x/º;k¹t � 0º

C

˝ k¹ �
b0
.x/ 6 t <  

C

b0
.x/º/

' H 0R� ŠŠRIhom
�

k¹t > 'a.x/º; “lim
�!

”
s�!C1

k¹ �
b0
.x/C s 6 t <  

C

b0
.x/C sº

�
' � ŠŠIhom

�
k¹t > 'a.x/º; “lim

�!
”

s�!C1

k¹ �
b0
.x/C s 6 t <  

C

b0
.x/C sº

�
'
.�/

“lim
�!

”
s�!C1

� ŠŠIhom.k¹t > 'a.x/º;k¹ �b0 .x/C s 6 t <  
C

b0
.x/C sº/

' “lim
�!

”
s�!C1

�S1
ı
��Hom.k¹t > 'a.x/º;k¹ �b0 .x/C s 6 t <  

C

b0
.x/C sº/ ' 0;

where �S1 WMod.kS / �! I.kS1/ is the natural embedding. Note that .�/ holds because � ŠŠ and
Ihom.k¹t > 'a.x/º; � / commute with inductive limits.

Proposition 3.5.5. For any c 2 R and K 2 ER-c.M/ there are distinguished triangles
in ER-c.M/

K6c �! K �! K>c
C1
�!; K<c �! K �! K>c

C1
�!;

with KL 2 Ep L
R-c.M/ for L equal to 6 c, > c, < c or > c.

Proof. Since the proofs are similar, we will construct only the first distinguished
triangle.

As in the proof of Proposition 3.3.19, one reduces to the case where M is smooth and
connected, andK is stably free. ThenK is a direct sum of objects in Ep a

R-c.M/ for some a 2 R
by Lemma 3.5.3.

As a corollary of Propositions 3.3.21 and 3.4.5, one has the following result.

Proposition 3.5.6. Let f WM �! N be a morphism of subanalytic bordered spaces, and
d 2 Z>0. Assume that dim

ı

f �1.y/ 6 d for any y 2
ı

N. Then, for any c 2 R one has:

(i) Ef �1. EpŒd� 6c
R-c.N// � Ep 6c

R-c.M/.

(ii) Ef Š. EpŒd� >c
R-c.N// � Ep >c�d

R-c .M/.

(iii) ER-c.N/ \ Ef �. Ep >c
R-c.M// � EpŒd� >c

R-c.N/.

(iv) ER-c.N/ \ Ef ŠŠ. Ep 6c
R-c.M// � EpŒd� 6cCd

R-c .N/.

Proof. Statements (i) and (ii) follow from Propositions 3.3.21 and 3.4.5, and (iii) and
(iv) follow from them by adjunction.
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Proposition 3.5.7. Let M be a subanalytic bordered space. The embedding

eWDb
R-c.kM/ ,! ER-c.M/

induced by (2.8.2) is exact, i.e. for any c 2 R one has

e. Dp 6c
R-c.kM// � Ep 6c

R-c.M/;

e. Dp >c
R-c.kM// � Ep >c

R-c.M/:

Proof. It follows from the exactness of e with respect to the standard t-structures and

��1kS ˝ e.F / ' e.kS ˝ F /;

RIhom.��1kS ; e.F // ' e.RHom.kS ; F //

for any F 2 Db.kM/ and S 2 LCS.M/, by [4, Corollary 4.7.11].

Definition 3.5.8. The enhanced middle perversity t-structure

. E1=2 6c
R-c.M/; E1=2 >c

R-c.M//c2R

is the one associated with the middle perversity m.n/ WD �n
2

. It is a self-dual t-structure
indexed by 1

2
Z.

Example 3.5.9. Let M D ¹ptº. Note that one has:

(i) kE
¹a6t<bº

' 0 for a; b 2 R with a < b.

(ii) kE
¹t>aº

' kE
M for a 2 R.

(iii) DEkE
M ' kE

M.

Hence kE
M 2 E1=2 0

R-c.¹ptº/, and any object of ER-c.¹ptº/ is a finite direct sum of shifts of copies
of kE

M.

Example 3.5.10. Let M DM D R and K D kE
¹x>0; 06t<1=xº[¹xD0; t>0º

, so that

DE
MK ' kE

¹x>0; �1=x6t<0ºŒ2�:

Noticing that

Ei Š
¹0ºK ' DE

¹0ºEi
�1
¹0ºD

E
MK ' 0;

Ei Š
¹0ºD

E
MK ' DE

¹0ºEi
�1
¹0ºK ' DE

¹0ºk
E
¹0º ' kE

¹0º;

one has K 2 E1=2
1=2 R-c.R/ and DEK 2 E�3=2

1=2 R-c .R/, so that K 2 E0 3=2
1=2 R-c.R/. Hence we have

K 2 E1=2 1
R-c.R/.

Example 3.5.11. Let ¹M˛º˛ be a subanalytic stratification of M, and set M˛ WD .M˛/1.
LetK 2 ER-c.M/. Assume that Ei�1M˛K and Ei ŠM˛K are stably free. Recall Notation 3.3.5. Even
if only direct summands containing ˆa appear in Ei�1M˛K, direct summands containing ‰b can
appear in Ei ŠM˛K. For example, let M D R2 �R>0 with coordinates .x; y; z/, consider the
bordered space M WD .M;R2 �R/, and set K WD kE

S 2 E.M/ for

S WD

²
.x; y; z; t/ 2M �RI x > 0; y > 0; t >

zx

x C y

³
:
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Set Z D ¹x D y D 0º �M . Then one has

Ei�1Z1K ' 0; Ei ŠZ1K ' kE
¹06t<zºŒ�1�;

Ei ŠZ1DE
MK ' 0; Ei�1Z1DE

MK ' DE
Z1

Ei ŠZ1K ' kE
¹�z6t<0ºŒ3�:

We deduce that K 2 E3=2
1=2 R-c.M/ and DE

MK 2 E�3=2
1=2 R-c .M/. Hence K 2 E0 3=2

1=2 R-c.M/, so that
K 2 E1=2 3=2

R-c.M/.

Remark 3.5.12. Let M be a subanalytic space. The triangulated category of enhanced
sheaves on M (cf. [19] and [5]) is defined by

Eb.kM / WD Db.kM �R/=�
�1Db.kM /;

where � WM �R �!M is the projection. One similarly defines Eb
˙
.kM /, so that

Eb.kM / ' Eb
C.kM /˚ Eb

�.kM /:

Note that

Eb
˙
.kM / ' ¹K 2 Eb

˙
.M/ILEK 2 Db.kM �R1/º:

We say that an object K 2 Eb
C
.kM / is R-constructible if so is LEK 2 Db.kM �R1/. Let

pWZ>0 �! R be a perversity. Then, with obvious notations, . Ep 6c
R-c.kM /; Ep >c

R-c.kM //c2R sat-
isfies the analogue of Theorem 3.5.2. Moreover, a description analogous to that in Lemma 3.3.7
holds, replacing “stably free” with “free”.

Remark 3.5.13. Let M be a subanalytic space. It is shown in [16] that HomE induces
a functor

HomE.kE
M ;�/WE

b
R-c.M/ �! Db

R-c.kM /:

This is neither left nor right exact with respect to the middle perversity t-structures. For
example, let M D Rn and K D kE

¹x 6D0; tD�1=jxjº
. Then

K 2 E1=2 n=2
R-c .M/:

Moreover, by [16, Corollary 6.6.6.], one has

F WDHomE.kE
M ; K/ ' k¹x 6D 0º:

Hence, H1=2 n=2.F / ' kM and H1=2 1.F / ' k¹0º when n > 3. Therefore, HomE.kE
t>0;�/ is

not left exact. Since HomE.kE
t>0;�/ commutes with duality, HomE.kE

t>0;�/ is not right exact
either.

4. Riemann–Hilbert correspondence

On a complex manifold, the Riemann–Hilbert correspondence embeds the triangulated
category of holonomic D-modules into that of R-constructible enhanced ind-sheaves. We
prove here the exactness of the embedding, when the target category is endowed with the
middle perversity t-structure.



D’Agnolo and Kashiwara, Enhanced perversities 231

4.1. Subanalytic ind-sheaves. For subanalytic sheaves and ind-sheaves we refer to [13]
(where subanalytic sheaves are called ind-R-constructible sheaves).

Let M be a subanalytic space. An ind-sheaf on M is called subanalytic if it is isomor-
phic to a small filtrant ind-limit of R-constructible sheaves. Then, being subanalytic is a local
property.

Let us denote by I suban.kM / the category of subanalytic ind-sheaves. Note that it is
a strictly full subcategory of I.kM / stable by kernels, cokernels and extensions.

Let OpMsa
be the category of relatively compact subanalytic open subsets of M , whose

morphisms are inclusions.

Definition 4.1.1 (cf. [12, 13]). A subanalytic sheaf F is a functor Opop
Msa
�! Mod.k/

which satisfies

(i) F.¿/ D 0,

(ii) for U; V 2 OpMsa
, the sequence

0 �! F.U [ V /
r1
�! F.U /˚ F.V /

r2
�! F.U \ V /

is exact. Here r1 is given by the restriction maps and r2 is given by the restriction
F.U / �! F.U \ V / and the opposite of the restriction F.V / �! F.U \ V /.

Denote by Mod.kMsa/ the category of subanalytic sheaves.

The following result is proved in [13].

Proposition 4.1.2. The category I suban.kM / of subanalytic ind-sheaves and the cate-
gory Mod.kMsa/ of subanalytic sheaves are equivalent by the functor sending F 2 I suban.kM /
to the subanalytic sheaf

OpMsa
3 U 7! HomI.kM /.kU ; F /:

4.2. Enhanced tempered distributions. Hereafter, we take the complex number field
C as the base field k.

LetM be a real analytic manifold. Denote by DbM the sheaf of Schwartz’s distributions
on M . The subanalytic sheaf of tempered distributions on M is defined by

Db t
M .U / WD Im.DbM .M/ �! DbM .U // ' DbM .M/=�MnU .M IDbM /

for any U 2 OpMsa
. We still denote by Db t

M the corresponding subanalytic ind-sheaf.
Denote by P the real projective line, and let t 2 R � P be the affine coordinate. Consid-

ering the natural morphism of bordered spaces

j WM �R1 �!M � P;

one sets

DbT
M WD j

Š .Db t
M�P

àt�1
���! Db t

M�P/ 2 D.M �R1/;

where the above complex sits in degrees �1 and 0.
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By the results in [4, Section 8.1] one has:

Proposition 4.2.1. The following statements hold.

(i) There are isomorphisms in D.M �R1/

DbT
M
�
�! IhomC.C¹t>0º;DbT

M /
�
 � IhomC.C¹t>aº;DbT

M / for any a > 0:

(ii) The complex DbT
M is concentrated in degree �1.

(iii) There are natural monomorphisms in I.CM�R1/

C¹t<�º ˝ �
�1Db t

M � H�1DbT
M � ��1DbM :

The enhanced ind-sheaf of tempered distributions is defined by

DbE
M WD QM .DbT

M / 2 E.M/:

Part (iii) in the following proposition is new.

Proposition 4.2.2. The following statements hold.

(i) DbE
M is stable, i.e. CE

M
˝C DbE

M ' DbE
M .

(ii) RE DbE
M ' DbT

M . In particular, it is concentrated in degree �1.

(iii) DbE
M 2 E0.M/. In other words, the complex LE DbE

M is concentrated in degree 0.

Proof. (i) This follows from Proposition 4.2.1 (i).
(ii) By Proposition 4.2.1 (i), one has RE DbE

M ' DbT
M . This is concentrated in degree�1

by Proposition 4.2.1 (ii).
(iii) By (ii), RE DbE

M ' DbT
M is concentrated in degree�1. Hence Lemma 2.5.2 implies

LE DbE
M ' C¹t>0º

C

˝DbT
M 2 DŒ�1;0�.M �R1/;

and we are reduced to prove that H�1 LE DbE
M ' 0.

By [4, Proposition 4.3.10], there is a distinguished triangle

��1M R�M ŠŠDbT
M �! LE DbE

M �! DbT
M

C1
�! :

By Proposition 4.2.1 (iii),

H�1R�M ŠŠDbT
M ' �M ŠŠH

�1DbT
M � �M ŠŠ�

�1DbM D 0:

Thus, the above distinguished triangle induces the exact sequence

0 �! H�1 LE DbE
M �! H�1DbT

M


�! ��1R1�M ŠŠH

�1DbT
M :

To conclude, we have to show that  is a monomorphism.
By Proposition 4.2.1 (iii), there is a commutative diagram

H�1DbT
M


//

��

��

��1M R1�M ŠŠH
�1DbT

M

��

��1M DbM
� // ��1M R1�M ŠŠ�

�1
M DbM :

Hence  is a monomorphism.
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4.3. D-modules. Let X be a complex manifold. We denote by dC
X its complex dimen-

sion. Denote by OX and DX the sheaves of algebras of holomorphic functions and of differen-
tial operators, respectively. Denote by �X the sheaf of differential forms of top degree.

Denote by Mod.DX / the category of left DX -modules, and by Db.DX / its bounded
derived category. For f WX �! Y a morphism of complex manifolds, denote by ˝D, Df �,
Df � the operations for D-modules.

Consider the dual of M 2 Db.DX / given by

DXM D RHomDX .M;DX ˝OX �
˝�1
X /ŒdC

X �:

A DX -module M is called quasi-good if, for any relatively compact open subset U � X ,
MjU is isomorphic (as an OX jU -module) to a filtrant inductive limit of coherent OX jU -sub-
modules. A DX -module M is called good if it is quasi-good and coherent.

To a coherent DX -module M one associates its characteristic variety char.M/, a closed
conic involutive complex analytic subset of the cotangent bundle T �X . If char.M/ is
Lagrangian, then M is called holonomic. For the notion of regular holonomic DX -module,
refer e.g. to [8, Section 5.2].

Denote by Db
hol.DX / and Db

rh.DX / the full subcategories of Db.DX / whose objects
have holonomic and regular holonomic cohomologies, respectively. These are triangulated cat-
egories.

Let f WX �! Y be a morphism of complex manifolds. For x0 2 X consider

rankC
x0
.f / WD rankC.Tx0X

df .x0/
����! Tf .x0/Y / and flat-dimDX;x0

.DX�!Y;x0/;

the complex dimension of the image of df .x0/, and the flat dimension of the transfer bimodule
DX�!Y;x0 as a left DX;x0-module, respectively.

Proposition 4.3.1. Let f WX �! Y be a morphism of complex manifolds. For x0 2 X
one has

flat-dimDX;x0
.DX�!Y;x0/ 6 d

C
X � rankC

x0
.f /:

Proof. Set n D dC
X , m D dC

Y , d D rankC
x0
.f /, and y0 D f .x0/.

Choose a system of local coordinates y D .y1; : : : ; ym/ of Y on a neighborhood of y0
such that ày1 ; : : : ; àyd generate df .x0/.Tx0X/ � Tf .x0/Y . Set xk D yk ı f for k 6 d , and
complete them to a system of local coordinates x D .x1; : : : ; xn/ of X on a neighborhood
of x0.

Consider the subring

R WD OX;x0 Œàx1 ; : : : ; àxd � � D WD DX;x0 :

Then DX�!Y; x0 ' OX;x0 ˝OY;y0
DY;y0 is a free R-module. In fact, one has

DX�!Y; x0 '

M
ˇ2¹0ºd�Zm�d>0 �Zm>0

Ràˇy :

The statement follows by Lemma 4.3.2 below.

Lemma 4.3.2. Use notations as in the proof above. Let M be a left D-module. If M is
flat as a left R-module, then

flat-dimD.M/ 6 n � d:
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Proof. Set O WD OX;x0 and D 0 WD OŒàxdC1 ; : : : ; àxn �, so that D ' D 0 ˝O R. Set
K WD CàxdC1 ˚ � � � ˚ Càxn . Then the Spencer resolution of M, considered as a D 0-module,
is

0 �! .D 0 ˝
^n�d

K/˝O M �! � � � �! D 0 ˝O M �!M �! 0:

Since D 0 ˝O R ' D , the above resolution reads as

0 �! .D ˝
^n�d

K/˝R M �! � � � �! D ˝R M �!M �! 0:

Since M is a flat left R-module, this is a flat resolution of M as a left D-module.

For a category C , let Pro.C/ be the category of pro-objects in C , and let “lim
 �

” be the
projective limit in Pro.C/.

Lemma 4.3.3. Let M be a quasi-good DX -module, flat over DX . Let ¹Miºi2I be
a filtrant inductive system of coherent DX -modules such that M ' lim

�!i2I
Mi . Then, for any

x 2 X and any k ¤ 0 one has

“lim
 �

”
i2I

ExtkDX .Mi ;DX /x ' 0 in Pro.Mod.Dop
X;x//:

Proof. There exists a filtrant inductive system ¹Lj ºj2J of free DX;x-modules of finite
rank such that

Mx ' lim
�!
j

Lj

(see [17]). It implies that

“lim
�!

”
i

Mi;x ' “lim
�!

”
j

Lj

in Ind.Mod.DX;x//. Hence, for any i 2 I there exist j 2 J , a morphism uW i �! i 0 in I and
a commutative diagram

Mi;x
//

%%

Mi 0;x

Lj .

88

It follows that the morphism induced by u,

ExtkDX;x .Mi 0;x;DX;x/ �! ExtkDX;x .Mi;x;DX;x/;

is the zero morphism.

For a hypersurface Y ofX , denote by OX .�Y / the sheaf of meromorphic functions onX
with poles in Y . We set

DX .�Y / WDOX .�Y /˝OX DX ' DX ˝OX OX .�Y /:

It is a sheaf of C-algebras on X . For a DX -module M, we set

M.�Y / WDDX .�Y /˝DX M:
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Lemma 4.3.4. Let Y � X be a closed complex analytic hypersurface, and let M be
a quasi-good DX -module. Assume that MjXnY is flat over DXnY . Let ¹Miºi2I be a fil-
trant inductive system of coherent DX -modules such that M.�Y / ' lim

�!i2I
Mi . Then, for any

V �� X :

(i) For any k ¤ 0,
“lim
 �

”
i2I

ExtkDX .Mi ;DX .�Y //jV ' 0

in Pro.Mod.Dop
V //.

(ii) One has

“lim
 �

”
i2I

RHomDX .Mi ;DX .�Y //jV ' “lim
 �

”
i2I

HomDX .Mi ;DX .�Y //jV

in Pro.Db.D
op
V //.

Proof. (i) For i 2 I , denote by I i the category whose objects are morphism i �! i 0 in I
with source i , and whose morphisms are commutative diagrams in I

i

{{ $$

i 0 // i 00.

It is enough to show that for any i 2 I there exists .u0W i �! i0/ 2 I
i such that the induced

morphism
u00WExtkDX .Mi0 ;DX .�Y //jV �! ExtkDX .Mi ;DX .�Y //jV

is the zero morphism. For .uW i �! i 0/ 2 I i , set

Nu D Im.ExtkDX .Mi 0 ;DX / �! ExtkDX .Mi ;DX //:

It is a coherent D
op
X -module. Note that the decreasing family of closed complex analytic subsets

¹supp.Nu/ºu2I i is locally stationary. Since I i is filtrant by [14, Corollary 3.2.3], there exists
.u0W i �! i0/ 2 I

i such that

supp.Nu0 jV / D
\
u2I i

supp.NujV /:

By Lemma 4.3.3, one has
T
u2I i supp.NujV / � Y . Thus supp.Nu0 jV / � Y , and one has

0 ' .Nu0 ˝DX DX .�Y //jV ' Im.u00/. Hence we obtain (i).
(ii) This follows from (i).

Proposition 4.3.5. Let Y � X be a closed complex analytic hypersurface, and let M

be a quasi-good DX -module. Assume that MjXnY is flat over DXnY . Then M.�Y / is a flat
DX -module.

Proof. The question being local, we can write M.�Y / ' lim
�!i

Mi with ¹Miºi2I a fil-
trant inductive system of coherent DX -modules. Set

M�i WDHomDX .Mi ;DX /:

Then HomDX .Mi ;DX .�Y // 'M�i .�Y /. By Lemma 4.3.4, one has

(4.3.1) “lim
 �

”
i

RHomDX .Mi ;DX .�Y // ' “lim
 �

”
i

M�i .�Y / in Pro.Db.D
op
X //,
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by shrinking X if necessary. Let P 2 Mod.Dop
X /. We have to show that, for k < 0,

(4.3.2) Hk.P ˝L
DX

M.�Y // ' 0:

One has

Hk.P ˝L
DX

M.�Y // ' Hk.P .�Y /˝L
DX

M.�Y // ' lim
�!
i

Hk.P .�Y /˝L
DX

Mi /:

Moreover,

“lim
�!

”
i

P .�Y /˝L
DX

Mi ' “lim
�!

”
i

RHomD
op
X
.RHomDX .Mi ;DX /; P .�Y //

' “lim
�!

”
i

RHomD
op
X .�Y /

.RHomDX .Mi ;DX .�Y //;P .�Y //

'
.�/

“lim
�!

”
i

RHomD
op
X .�Y /

.M�i .�Y /;P .�Y //;

where .�/ follows from (4.3.1). Hence we obtain

Hk.P ˝L
DX

M.�Y // ' lim
�!
i

HkRHomD
op
X .�Y /

.M�i .�Y /;P .�Y //;

which vanishes for k < 0.

Let us denote by E.Dop
X / the category of enhanced ind-sheaves on X with D

op
X -action

(see [4, Section 4.10] where E.Dop
X / is denoted by Eb.I D

op
X /).

Consider the forgetful functor

forWE.Dop
X / �! E.X/:

Lemma 4.3.6. Let c 2 R, X a complex manifold, Y � X a closed complex analytic
subset, K 2 E.Dop

X /, and M a quasi-good DX -module. Set U D X n Y . Assume

(a) K ' RIhom.��1kU ; K/,
(b) for.K/ 2 E>c.X/,

(c) MjU is flat over DU .

Then
K ˝L

DX
M 2 E>c.X/:

Proof. We may assume that Y is a proper subset of X , as otherwise the statement is
trivial.

(i) Let 'WX 0 �! X be a projective morphism such that Y 0 WD '�1.Y / is a hypersurface,
and ' induces an isomorphism U 0 WD '�1.U /

�
�! U . Set

K 0 WD RIhom.��1CU 0 ;E'�1K ˝L
'�1DX

DX �X 0/ 2 E.Dop
X 0/;

M0 WD .D'�M/.�Y 0/:

Then we have for.K 0/ 2 E>c.X 0/. Note that M0 is concentrated in degree zero. Moreover, by
Proposition 4.3.5, M0 is a flat DX 0-module. Since

K ˝L
DX

M ' E'�.K
0
˝

L
DX0

M0/;

and since E'� is left exact, we reduce to the case where M is flat over DX .
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(ii) Let M be a quasi-good flat DX -module. Let ¹Miºi2I be a filtrant inductive system
of coherent DX -modules such that M ' lim

�!i
Mi . Set

M�i WDHomDX .Mi ;DX /:

Then Lemma 4.3.4 implies that

“lim
 �

”
i

RHomDX .Mi ;DX / ' “lim
 �

”
i

M�i in Pro.Db.D
op
X //,

by shrinking X if necessary. Hence one has

Hk.K ˝L
DX

M/ ' “lim
�!

”
i

Hk.K ˝L
DX

Mi /

' “lim
�!

”
i

HkRHomD
op
X
.RHomDX .Mi ;DX /;K/

' “lim
�!

”
i

HkRHomD
op
X
.M�i ; K/ ' 0

for k < c.

Proposition 4.3.7. Let ` 2 Z>0, c 2 R, X a complex manifold, Y � X a closed com-
plex analytic subset, K 2 E.Dop

X /, and M a quasi-good DX -module. Set U D X n Y . Assume

(a) for.K/ 2 E>c.X/,

(b) flat-dimDX;x .Mx/ 6 ` for any x 2 U .

Then
RIhom.��1kU ; K/˝L

DX
M 2 E>c�`.X/:

Proof. We may assume that Y is a proper subset of X , as otherwise the statement
is trivial. Replacing K with RIhom.��1kU ; K/, we may assume from the beginning that
K ' RIhom.��1kU ; K/. We proceed by induction on `. The case ` D 0 follows from Lem-
ma 4.3.6. Let ` > 0. Then, there is locally a short exact sequence

0 �! N �! L �!M �! 0;

with a free DX -module L. It follows that N is a quasi-good DX -module satisfying the con-
dition flat-dimDX;x .Nx/ 6 ` � 1 for any x 2 U . One has K ˝L

DX
N 2 E>c�`C1.X/ by the

induction hypothesis. Moreover, K ˝L
DX

L 2 E>c.X/ since L is free. One concludes by con-
sidering the distinguished triangle

K ˝L
DX

L �! K ˝L
DX

M �! K ˝L
DX

N Œ1�
C1
�! :

4.4. Enhanced tempered holomorphic functions. Let X be a complex manifold, and
denote by dC

X its dimension.
Denote by XR the real analytic manifold underlying X , and by X the conjugate complex

manifold. The ind-sheaf of tempered holomorphic functions

O t
X WD RHomDX

.OX ;Db t
XR
/ 2 D.X/

is the Dolbeault complex with values in tempered distributions. It is not concentrated in degree
zero if dC

X > 1. Note that O t
X inherits from Db t

XR
a natural DX -action.



238 D’Agnolo and Kashiwara, Enhanced perversities

Denote by P the complex projective line, and let � be its affine coordinate. The enhanced
ind-sheaf of tempered holomorphic functions is defined by

OE
X WD i

ŠRHomDP
.DPe

� ;O t
X�P /Œ2� 2 E.X/;

where i WX �R1 �! X � P is the natural morphism, and DPe
� is the exponential DP -module

generated by e� . Note that OE
X inherits from O t

X�P a natural DX -action.

Proposition 4.4.1. One has OE
X 2 E>dC

X
1=2 .X/.

Proof. By Lemma 3.2.5, it is enough to show that for any k 2 Z>0 and any Z 2 CS6k
XR

there exists an open subanalytic subset Z0 of Z such that dim.Z nZ0/ < k and

(4.4.1) Ei Š
.Z0/1

OE
X 2 E>dC

X �k=2..Z0/1/:

Since the question is local onX , we may assume from the beginning thatZ is compact. LetZ0,
W0 � N , ` D dN and gWN �!M be as obtained by Lemma 4.4.3 below, forM D XR the real
analytic manifold underlying X . There exists a complexification Y of N such that gWN �! X

extends to a holomorphic map f WY �! X . Then, dC
Y D ` and there is a commutative diagram

.W0/1WD.W0; N /

g0
��

i.W0/1

//

j

))
N

iN

// Y

f

��

.Z0/1WD.Z0; Z/
i.Z0/1 // X .

Note that for any w 2 W0, setting x D f .w/ 2 Z0, one has

(4.4.2) rankC
w.f / D dimC.TxZ0 C

p
�1TxZ0/ > .dimTxZ0/=2 D k=2:

Set

V WD

²
y 2 Y I rankC

y .f / >
k

2

³
:

Then V is an open subset of Y such that Y n V is a closed complex analytic subset. Moreover,
W0 � V . Hence Proposition 4.3.1 implies

(4.4.3) flat-dimD
op
Y;y
.DX �Y / 6 dC

Y �
k

2
D ` �

k

2
for any y 2 V .

By Proposition 2.7.4, in order to see (4.4.1) it is enough to show

(4.4.4) Eg�10 E i Š
.Z0/1

OE
X 2 E>dC

X �k=2..W0/1/:

Since W0 �! Z0 is smooth, one has

Eg�10 E i Š
.Z0/1

OE
X ' orW0=Z0 ˝Eg Š0E i Š

.Z0/1
OE
X ŒdZ0 � dN �

' orW0=Z0 ˝E i Š
.W0/1

Ei ŠNEf ŠOE
X Œk � `�

' orW0=Z0 ˝Ej ŠEiN �Ei
Š
NEf ŠOE

X Œk � `�;

where orW0=Z0 WDH
k�`.g Š0CZ0/ is the relative orientation sheaf.
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By [4, Theorem 9.1.2], one has

Ef ŠOE
X ' DX �Y ˝

L
DY

OE
Y Œ` � d

C
X �:

Moreover, denoting by orN=Y ' i ŠN CY Œ`� the relative orientation sheaf, one has

Ei ŠNOE
Y ' orN=Y ˝DbE

N Œ�`�:

Thus, we obtain

orW0=Z0 ˝Eg�10 E i Š
.Z0/1

OE
X

' Ej ŠEiN �Ei
Š
N .DX �Y ˝

L
DY

OE
Y /Œk � d

C
X �

' Ej Š.DX �Y ˝L
DY

EiN �.orN=Y ˝DbE
N //Œk � d

C
X � `�

' Ej Š.DX �Y ˝L
DY

RIhom.��1CV ;EiN �.orN=Y ˝DbE
N //Œk � d

C
X � `�:

By Proposition 4.2.2, one has

EiN �.orN=Y ˝DbE
N / 2 E>0.Y /:

Hence Proposition 4.3.7 and (4.4.3) imply that

DX �Y ˝
L
DY

RIhom.��1CV ;EiN �.orN=Y ˝DbE
N // 2 E>k=2�`.Y /:

Finally, we obtain (4.4.4).

Corollary 4.4.2. One has O t
X 2 D1=2 >dC

X .X/.

Proof. Since O t
X ' IhomE.CE

X ;O
E
X /, the statement follows from Proposition 4.4.1 and

Lemma 3.2.7.

Here is the lemma which is used in the course of the proof of Proposition 4.4.1.

Lemma 4.4.3. Let M be a real analytic manifold, and let Z 2 CS6k
M for k 2 Z>0.

Assume that Z is compact. Then there exist

(i) an open subset Z0 of Z which is a real analytic submanifold of dimension k,

(ii) a real analytic manifold N of dimension ` > k,

(iii) a real analytic proper map gWN �!M ,

(iv) an open subanalytic subset W0 of N

such that one has

(a) dim.Z nZ0/ < k,

(b) g.N / D Z, g.W0/ D Z0 and g induces a smooth morphism W0 �! Z0 of real analytic
manifolds.

Proof. It follows immediately from the existence of a real analytic manifold N and
a proper real analytic map gWN �!M such that g.N / D Z. Note that we may assume that
N is equidimensional, by multiplying each connected component of N with a sphere
if necessary.
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4.5. Riemann–Hilbert correspondence. Let X be a complex manifold. The enhanced
de Rham and solution functors are defined by

DRE
X WD

b.DX / �! E.X/; M 7! �E
X ˝

L
DX

M;

SolE
X WD

b.DX /
op
�! E.X/; M 7! RHomDX .M;OE

X /;

where �E
X WD �X ˝

L
OX

OE
X .

The Riemann–Hilbert correspondence of [4, Theorem 9.5.3] implies that these functors
induce fully faithful functors

(4.5.1) DRE
X WD

b
hol.DX / �! ER-c.X/; SolE

X WD
b
hol.DX /

op
�! ER-c.X/:

Theorem 4.5.1. The functors DRE
X and SolE

X Œd
C
X � are exact. That is, for any c 2 R

one has

DRE
X .D

6c
hol .DX // � E1=2 6c

R-c.X/; SolE
X .D

6c
hol .DX // � E

1=2 >dC
X �c

R-c .X/;

DRE
X .D

>c
hol .DX // � E1=2 >c

R-c.X/; SolE
X .D

>c
hol .DX // � E

1=2 6dC
X �c

R-c .X/:

In particular, there are commutative diagrams of embeddings

Modhol.DX / //
DRE

X // E1=2 0
R-c.X/

Modrh.DX /

OO

OO

// DR // D1=2 0
R-c.CX /

OO

OO

and

Modhol.DX /
op //

SolE
X // E

1=2 dC
X

R-c.X/

Modrh.DX /
op

OO

OO

//
SolX // D

1=2 dC
X

R-c.CX /.

OO

OO

Proof. It is enough to show that for any M 2 Modhol.DX / one has

DRE
X .M/ 2 E1=2 0

R-c.X/; SolE
X .M/ 2 E

1=2 dC
X

R-c.X/:

(i) By Proposition 4.4.1, OE
X 2 E>dC

X
1=2 .X/. Hence

SolE
X .M/ D RHomDX .M;OE

X / 2 E
>dC
X

1=2 R-c .X/ � E
1=2 >dC

X

R-c .X/;

where the inclusions follow from (3.5.1). As M 2 Modhol.DX /, one has

DRE
X .M/ ' SolE

X .DXM/ŒdC
X � 2 E1=2 >0

R-c.X/:

(ii) By [4, Theorem 9.4.8], DE
XDRE

X .M/ ' DRE
X .DXM/. We thus get from (i)

DRE
X .M/ 2 E1=2 60

R-c.X/;

and hence

SolE
X .M/ ' DRE

X .DXM/Œ�dC
X � 2 E

1=2 6dC
X

R-c .X/:
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