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[11 Catchment modeling in areas dominated by active geomorphologic processes, such as
soil erosion and landsliding, is often hampered by the lack of reliable methods for the
spatial estimation of soil depth. In a catchment, soil thickness % can vary as a function of
many different and interplaying factors, such as underlying lithology, climate, gradient,
hillslope curvature, upslope contributing area, and vegetation cover, making the distributed
estimation of / challenging and often unreliable. In this work we present an alternative
methodology which links soil thickness to gradient, horizontal and vertical slope
curvature, and relative position within the hillslope profile. While the relationship with
gradient and curvature should reflect the kinematic stability of the regolith cover, allowing
greater soil thicknesses over planar and concave areas, the distance from the hill crest
(or from the valley bottom) accounts for the position within the soil toposequence. This
last parameter is fundamental; points having equal gradient and curvature can have
significantly different soil thickness due to their dissimilar position along the hillslope
profile. The proposed model has been implemented in a geographic information system
environment and tested in the Terzona Creek basin in central Italy. Results are in good
agreement with field data (mean absolute error is 11 cm with 8.5 cm standard deviation)
and average errors are lower than those obtained with other topography-based methods,
where mean absolute error ranges from 47 cm for a model based on curvature, position,

and slope gradient to 94 cm for a model based solely on slope gradient. As a further
test, the predicted soil thickness was used to determine derived quantities, such as the
factor of safety for landsliding potential. Our model, when compared to other empirical
methods, returns the best results and, therefore, can improve the prediction of soil
losses and sediment production when utilized in conjunction with hydrological and

landsliding models.
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1. Introduction

[2] Soil thickness 4, intended here as depth to bedrock
(DTB), or depth to the first marked change in hydrologic
properties, is widely recognized as a controlling factor in
numerous surface and subsurface processes (e.g., landscape
evolution [Heimsath et al., 1997, 2000, 2001b], soil con-
servation [Gabet and Dunne, 2003], crop protection
[Schumacher et al., 1999], sediment budgets [Reid and
Dunne, 1996], landsliding [Johnson and Sitar, 1990; Wu
and Sidle, 1995; Van Asch et al., 1999], and soil mois-
ture storage and conservation capacity [Boer et al., 1996;
Lexer and Honninger, 1998]). This notwithstanding, it is
still one of the least understood and difficult to measure
physical variables of the hillslope system at catchment
scale. Traditional soil mapping at the 1:25,000 to 1:100,000
scales usually does not include continuous information on
spatially variable soil properties [Boer et al., 1996] and
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direct measurement of / is only possible for small and well-
monitored test sites. Satellite or airborne remote sensing
techniques are ineffective, as to date they are only capable
to resolve the first few centimeters of soil [Liang, 1997].

[3] These difficulties are amplified by the lack of reliable
methods for the prediction of spatially distributed soil depth
as few models are capable of describing the behavior of / as
a random spatial function. At a more local scale, the evo-
lution and development of soil horizons and layers through
time are well understood. Early works on soil formation and
classification date back to the beginning of the 20th century
[e.g., Milne, 1935] while more recent contributions on the
same subject are coded into the fundamentals of soil science
[e.g., Hillel, 1980, 1998; Jenny, 1941, 1980; United States
Soil Conservation Service, 1975].

[4] These contributions converge upon a couple of issues
which are of direct interest for the prediction of DTB: the
importance of the Late Quaternary evolution in setting the
controlling conditions and the key role played at basin scale
by the local differences in lithology and morphometry. The
latter is intended here as a complex combination of hillslope
shape and geometric factors. In particular, there is general
agreement [Gessler et al., 2000; Ziadat, 2005; Goodman,
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1999] regarding the relevance of the relative position within
the soil catena, as well as slope gradient and elevation. This
knowledge has not yet been distilled into a single expression
combining DTB factors at basin scale and, for hydrological or
slope stability purposes, soil depth is still usually estimated
from very simple models. Commonly used approaches are
based on a linear correlation between soil thickness and ele-
vation or slope gradient [e.g., Saulnier et al., 1997]. The
performance of such models is usually poor due to the lack of
consideration of fundamental parameters such as slope cur-
vature, lithology and relative position within the soil sequence
or catena.

[5] Better results, although usually site specific, were
described by Boer et al. [1996] and Tsai et al. [2001] using
multivariate statistical models that correlate soil depth with a
combination of independent variables assumed to influence
DTB spatial distribution. Over limited areas, Moore et al.
[1993] and Odeha et al. [1994] found that the thickness of
the A horizon correlated well with topographic attributes
such as slope angle and the wetness index (as defined by
Beven and Kirkby [1979]).

[6] Other studies [Heimsath et al., 1999, 2000, 2001a,
2001b; Mudd and Furbish, 2004, 2006; Saco et al., 2006]
concentrate on the understanding and modeling of the
temporal evolution of soil thickness over geological time
scales. These studies have their roots in the early works of
Gilbert [1877], Jenny [1941], Hack [1960], Carson and
Kirkby [1972], and others that hypothesized the depen-
dence of soil properties on topography and suggested the
use of a mass conservation equation for soil transfer. Using
a similar approach Park et al. [2001] highlighted a clear
relationship between soil depth and the terrain character-
ization index, a morphometric measure of soil transport
capacity. At the same time, they showed significant statis-
tical correlations between 4 and a number of terrain attri-
butes such as surface curvature, topographic wetness index
and upslope contributing area. Deterministic methods based
on these factors have been used by many authors in models
of soil depth evolution [Heimsath et al., 1997, 1999, 2000,
2001a, 2001b; Martin, 2000; Braun et al., 2001; Mudd and
Furbish, 2004, 2006; Saco et al., 2006]. These are usually
based on expressions for soil production and transport
(whose rates are assessed by cosmogenic nuclides mea-
surements performed at discrete points) that solve the con-
servation of mass equation. Assuming steady state erosion
and the predominance of slope-dependent erosion processes
such as soil creep, they predict soil depth as a function of
hillslope curvature at the slope scale or over small test areas
[Heimsath et al., 1997, 1999, 2001a, 2001b; Braun et al.,
2001; Saco et al., 2006]. In high-order catchments, cos-
mogenic nuclides measurements at discrete points become
too expensive and samples are often collected at basin
outflow points. Soil production rate is then extrapolated to
the subtended basin [Bierman and Steig, 1996]. In large
areas with heterogeneous lithology these averaged data may
lead to incorrect estimations of local soil depth [Heimsath et
al., 2001b]. Thus, despite being useful for landscape evo-
lution models, such methods are less suitable at present for
instantaneous soil thickness predictions at broad scales for
applied purposes. Moreover, while the hypothesis of land-
scape equilibrium (steady state) with absence of mass
movements (such as landslides) produces good results in the
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upper convex portions of the hillslopes, outcomes are poorer
on concave midslopes and footslopes, especially in tecton-
ically young regions where mass movements have a sig-
nificant influence on soil thickness distribution [Densmore
et al., 1997, 1998; Heimsath et al., 1999, 2001b; Roering
et al., 1999].

[7] These drawbacks can be avoided if, instead of pre-
dicting soil depth evolution, we attempt to predict the
instantaneous values of 4 over a discrete space at a chosen
spatial resolution. In such cases a simple empirical model
valid over the entire catchment can be derived from a set of
empirical relationships linking the parameters of the deter-
ministic formulation to the soil depth measured in the field
for both concave and convex areas. In the following pages
we develop a model of this type, based on topographic
Digital Terrain Model (DTM) data, digital geological maps
and general information on the land-surface units. Ideally,
the model should be able to predict the depth of the colluvial
and residual layers with an accuracy compatible with the
requirements of slope stability and rainfall-runoff models.
We have calibrated and validated the model in a study
catchment located in central Italy, the Terzona basin. The main
characteristics of the model are as follows: (1) catchment-scale
analysis, (2) possible implementation within a geographic
information system (GIS) environment, (3) wide availability
and low cost of the required parameters, and (4) more bal-
anced consideration of topographic attributes in conjunction
with geological and geomorphological factors.

2. Test Site Description

[8] The test site for the calibration and validation of the
model was the Terzona Creek Basin (24 km?) which is
located in central Italy, about 20 km south of Florence
(Tuscany). The Terzona is a mountain stream with a marked
erosive behavior which flows in a hilly region without
developing a proper floodplain. Geologically, the area
(Figure 1) is characterized by the prevalence of Pliocene
to Quaternary granular deposits outcropping in the central
and northern parts of the catchment. These represent post-
orogenic deposits of extensional intermontane basins that
are common to the whole Northern Apennine [Martini and
Vai, 2001]. Subhorizontal layers of pliocenic conglomerates,
deeply incised by the Terzona Creek, are the dominant
lithology in the basin. Ridge tops in this area are often
occupied by “Pianalto,” a Quaternary terrain made up of
fine, silty sediment that includes Pleistocene paleosols. This
geological domain gives rise to a smooth landscape that is
strongly influenced by agriculture. On the hillslopes small
woods are surrounded by vineyards and olive groves.
Buildings, mainly isolated farmhouses or country houses,
are concentrated on the main ridges. In the southeastern
portion of the catchment the geology changes significantly,
giving way to the Early Tertiary fold and thrust belt units of
the Northern Apennines composed of marly and calcareous
flysch, belonging to the Sillano and Monte Morello forma-
tions. These terrains possess a greater average mechanical
strength than the transgressive marine and lacustrine deposits
filling the intermontane basin and produce a higher-relief
landscape, with elevations that reach 512 m above sea level.
Small forests are common in this area. To the south, a third
geological domain is represented by the shaley clays of the
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Figure 1.

Tuscan Series. Here, again, relief is gentle and vegetation
sparse. Soil formation and development varies within each
of these three geological domains, as will be clarified in
section 3. From a geomorphological standpoint the area is
characterized by the presence of several landslides, mainly
located within the conglomerates of the first geological
domain and whose activity is characterized by an alternating
of periods of stasis and sporadic episodes of movement. Rates
of movement are generally very low (107 to 102 m d ")
but the sediment quantities involved are quite large (10* to
10° m®), thus making landsliding an important landscape
shaping process in the area [ Catani et al., 2005 and references
therein]. On the other hand, newly formed slope failures are
relatively rare and are usually represented by small slumps or
falls along channel banks, road cuts or erosion scarps.

3. Methodology

[¢] Under the assumption that we are interested in the
prediction of the present instantaneous local values of depth
to bedrock (DTB) at every point in a catchment, we can
modify the basic equations of conservation of mass for the
soil column proposed by Heimsath et al. [1997, 1999] and
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Main lithological units of the Terzona basin. See Table 2 for more details.

Minasny and McBratney [1999, 2001] in which the conti-
nuity equation is expressed as

oh ob ow
PSE*_prE_psE_v'(psqsL (1)

where ps and p, are soil and rock density, ¢ is the soil flux,
h is surface layer thickness, b and w are the elevation of
bedrock and ground surface with respect to an arbitrary
elevation reference, ob/ot is the rate of soil production from
bedrock and ow/ct is the soil lowering rate due to chemical
weathering.

[10] First, the rate of soil production from bedrock ob/ot
and that of soil chemical dissolution Ow/0t can be replaced
with implicit constant coefficients within boundary condi-
tions that depend locally on lithology and geological history.

[11] Second, for simple creep [Dietrich et al., 1995],
depth-dependent creep [Braun et al., 2001] and overland
flow erosion [Moore and Burch, 1986], it can be shown that
soil transfer by diffusion depends mainly on slope. In fact, in
the right hand side of equation (1), which expresses soil loss
for sediment transport, the sediment flux can be expressed as

qs = —K,Vz (2)
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for soil creep [Dietrich et al., 1995]

gy = —K,H (V2" (3)
for depth-dependent creep [Braun et al., 2001]

g = —K, A (V2)’ (4)

for overland flow [Moore and Burch, 1986], where K, K,
and K,, are the relative diffusion or advection coefficients,
h. is soil creep depth, A is upslope contributing area, z is
elevation, m, n, k and p are empirically defined constants.

[12] Substituting (2), into (1) gives a relationship in the
form

Vg x —K(Vz) (5)

that links soil losses to hillslope laplacian curvature. This
hypothesis is supported by several experiments and field
observations [Heimsath et al., 1999, 2001a; Braun et al.,
2001; Park et al., 2001], which show that local soil depth
is inversely correlated with slope curvature. However, cur-
vature is only one part of the problem since equation (5)
ignores the contribution of active processes that depend on
slope length or on upslope contributing area. Their impact
on soil thickness distribution will be taken into account by
linking them to position along the hillslope profile, which
will be discussed further in the following paragraphs.

[13] Third, the net contribution of soil losses and gains
due to mass movements can be linked to threshold processes
triggered by slope gradient that in some cases decouple
relief from soil losses [Roering et al., 2001; Montgomery
and Brandon, 2002]. The authors show that when a
threshold slope is approached, landslides of increasing size
and frequency are triggered, influencing the hillslope or
catchment DTB distribution and progressively reducing
curvature with increasing slope gradient.

[14] However, it is also well known that local hillslope
geometry is not the only factor controlling regolith thick-
ness: two different points along a hillslope profile can have
the same slope gradient and curvature but still have different
soil characteristics, due to their different relative position [see,
e.g., Arnett and Conacher, 1973; Conacher and Dalrymple,
1977; Armstrong, 1987; Moore et al., 1993; Gessler et al.,
1995]. The effect of hillslope processes, history, geology
and of environmental settings are remarkably important in
controlling the distribution of soil parameters [Milne, 1935;
Jenny, 1941; Hillel, 1980; McFadden and Knuepfer, 1990;
Selby, 1993; Schlunegger et al., 2002; Saco et al., 2006].
Furthermore, soil thickness evolution models do not
explicitly take into account the presence of active landslides
[Roering et al., 2001] that can decouple hillslope curvature
from regolith thickness at the footslopes where profile
convexity is generated by landslide bodies. In such cases,
profile convexity is actually an indication of higher DTB, as
it is related to large soil masses [Rapisarda, 2007], while the
convexities characterizing hilltops are usually related to
erosional morphologies and to shallower soil depths. We
propose here a method that encompasses such traditionally
neglected cases by spatially partitioning the study area into
two-dimensional land-surface units (TLU) which are based
on similar relationships between topography, active geo-
morphic processes and soil thickness. TLUs are delineated
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from digital geological and geomorphological maps, field
surveys and DTM data. A similar approach is suggested by
Brundsen et al. [1975], Moore et al. [1993], and Selby
[1993] to assess the impact and relevance of different sur-
face processes on various hillslopes.

[15] Once the TLUs have been defined, it is then neces-
sary to explicitly consider the position of a point along the
hillslope profile and to express it as a function of the regolith
catenary sequence. This requires the following two steps:
(1) the calculation of the actual relative position p of a point
along the hillslope and (2) the translation of p into an index
of relative thickness n based on the known local topose-
quence pertaining to a given TLU.

[16] In a raster DTM, p can be determined by a simple
recursive algorithm that calculates the shortest upslope
hydrologic distance to the hilltop and the shortest down-
slope path to the channel network, following the method
proposed by Tucker et al. [2001].

[17] This number, which ranges from 0 at the crest to 1 at
the channel, is then translated into a DTB value by com-
bining p with the particular catenary sequence of the TLU.
To estimate soil thickness with this model it is not necessary
to perform a complete analysis and classification of the soil
toposequences present within an area. A simpler approach
that identifies large land-surface units according to the
“nine-unit” model of Conacher and Dalrymple [1977]
through detailed field surveys is adequate. The nine-unit
land-surface model defines the three-dimensional space of a
hillslope as a set of adjacent units differentiated on the basis
of the dominant processes acting on them. It extends from
hilltops (or drainage divides) to channels and from the
lowermost weathered material (C horizon) within the soil to
the ground surface [Conacher and Dalrymple, 1977; Selby,
1993] thereby linking soil-related forms and slope pro-
cesses. This approach, although subjective and simplistic,
makes it possible to partition the basin into TLU classes on
the basis of the average land-surface characteristics. The
DTB model will then be parameterized differently for each
TLU.

[18] In the case of the Terzona catchment, the following
three main types of hillslope morphologies were identified
(Figure 2):

[19] 1. Convex profiles, typical of relatively young hill-
slopes dominated by creep-like diffusive processes in which
all the material eroded from the slope reaches the footslope
and is then removed by streams. In this case soil thickness is
inversely proportional to curvature, as creep erosion rates
increase with increasing convexity.

[20] 2. Convex to concave profiles, the classical mature
hillslope [Armstrong, 1987] where upslope erosive pro-
cesses (mainly wash and creep) produce convex shapes
while the eroded material partially accumulates downslope
in gentle concave areas. As in the previous case, DTB and
curvature are inversely correlated: in the upper portion of the
hillslope erosion increases with convexity, leading to thinner
soils, and field observations [Segoni, 2008] confirm that in
the concave lower sections soil depths are higher; in both
sections of the slope the inverse correlation still holds.

[21] 3. Convex to concave to convex profiles, typical of
many of the Northern Apennine’s landslide areas, are sim-
ilar to the previous case with the exception of the presence
of a convex footslope unit occupied by the deposits of deep-
seated mass movements. As opposed to the other regimes,
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Figure 2. Schematic representation and spatial distribution of the three types of hillslope morphologies
encountered within the Terzona catchment. Every slope draining into a first- or higher-order stream has
been classified through field surveys and DTM analyses. The relationship between soil depth and profile
curvature is parameterized differently for each typology.

this colluvial area is characterized by a direct correlation
between curvature and depth to bedrock.

[22] For each of these profiles the curvature is translated
into a nondimensional index C, whose value ranges between
0 and 1, by means of linear normalization. This index
expresses the expected DTB of each pixel with respect to
slope curvature.

[23] In addition, TLU type links the p factor and the rel-
ative DTB value by means of the catenary position within
the hillslope profile, represented by the adimensional scale
factor 7 (where 0 <79 < 1).

[24] The following three TLUs identified in the Terzona
catchment are related to the lithology of the bedrock
(Figure 1).

[25] 1. For flysch and hard rocks (Figure 1), in the Terzona
basin the areas with massive or layered rocks have a typical
hillslope toposequence composed of an interfluve where
shallow soil depths suggest that erosion rates are high rel-
ative to rates of soil production. The eroded material moves
downslope and partially accumulates on the midslope, where
it is transported to the base of the slope by intermittent mass
movements. The largest DTB values are observed in the
colluvial deposits at the footslope close to the channels. The
latter have a marked erosive behavior and do not develop an

alluvial plain. In this TLU the p— relationship is derived on
the basis of qualitative observations and direct measurements
performed over a subset of calibration points by assuming
that 7 increases linearly from the minimum value (1 = 0) in
the interfluves (p = 0) to the maximum (7 = 1) in the toeslope
(p = 1). n is therefore set equal to p [Segoni, 2008].

[26] 2. For conglomerates (“Conglomerates,” ‘“Pianalto”
and “Colluvial and alluvial deposits” lithologies in Figure 1),
in the areas where the bedrock is made up of mostly gran-
ular material the divide is occupied by the Pianalto silty
loam, which gives rise to flat morphologies with consider-
ably thick soils. The shallowest soils are usually found on
the convex creep slope, while the largest DTB values are
found in the alluvial plain. Consequently, 7 has relatively
high values (n around 0.6) at p = 0, decreases to the mini-
mum in correspondence of p = 0.4 and then rapidly increases
again to the maximum value (p=1) at p =1 (corresponding
to the alluvial plain, mainly constituted by colluvial mate-
rial from the surrounding hillslopes and by sediments car-
ried from upstream without lateral erosion and redeposition)
[Segoni, 2008; Benvenuti et al., 2007]. The corresponding
p—n trend can be approximated by a polynomial function of
the form n=a p*+ b p’ + ¢ p* + d p + e, where the coefficients
from a to e are estimated from the 7 value expected for dis-
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Table 1. Geotechnical Parameters of the Formations Present in the Study Area®

Threshold Slope ks

Geological Formation or Unit Abbreviation Prevalent Lithology Angle c(KPa) (m/s x 10°%) ¢
Sillano formation Sil Clayey shales 35° 6.5 7.53 22°
Monte Morello formation Mil Limestones and marly limestones 35° 3.0 7.53 30°

(subordinately marly shales)
San Polo marls Poo Silty marls and marls, 27° 6.5 0.33 22°
with interbedding of silts
and fine-grained sandstones

Ponte a Elsa syntheme, silt-clay lithofacies Ela Silts and clays 27° 4.0 6.56 22°
Fiume Elsa syntheme E2 Weathered conglomerates (sub. sandy silts) 45° 3.0 6.56 25°
San Casciano syntheme: pebbles lithofacies Cc Conglomerates 45° 1.5 2.06 30°
San Miniato syntheme: pebbles lithofacies Mc Conglomerates 45° 1.5 2.06 30°
Ponte a Elsa syntheme Eca Conglomerates 45° 1.5 2.06 30°
San Casciano syntheme: sand-silt lithofacies Cl Sands and silts 30° 3.0 0.33 25°
San Miniato syntheme: sand-silt lithofacies Mla Sands and silts 30° 1.5 0.33 30°
Fiume Elsa syntheme El Sandy silts (weathered conglomerates) 30° 3.0 4.98 25°
Slope debris a3 30° 1.5 6.56 30°
Colluvial and eluvial deposits a4 30° 1.5 6.56 30°
Alluvial fans Alf 30° 1.5 6.56 25°
Recent alluvial deposits b 30° 0 6.56 30°

“The threshold slope angle is used in the GIST model, while ¢, &, (saturated hydraulic conductivity), and ¢ are used in the slope stability equation.

crete p values on the basis of qualitative observations and
direct measurements performed over a subset of calibration
points.

[27] 3. In the case of cohesive soils (“‘Shales” lithology in
Figure 1), the bedrock is mainly composed of compact clays
and tectonized shales that give rise to smooth slopes with a
typical toposequence that is similar to that of the previous
TLU except for the absence of small cliffs and less devel-
oped interfluves. As can be expected, n exhibits a similar
trend to the previous case, notwithstanding its lower value in
the interfluve (p = 0). It then decreases rapidly to reach the
minimum value (1 almost zero) at p around 0.2 before rising
again to reach the maximum in the alluvial plain (p = 1)
[Segoni, 2008; Benvenuti et al., 2007]. The polynomial
function n=a p* + b p*> + ¢ p* + d p + e is again appropriate
for describing the identified trend and the coefficients are
determined as in the previous case.

[28] The empirical relationships between p and 7 for each
TLU class described above are based on field observations
and calibrated on direct soil depth measurements (auxiliary
material).’

[29] In a final step, sediment loss by intermittent land-
sliding in the upper portions of the hillslopes is taken into
account by defining appropriate, lithology-dependent thresh-
olds for the triggering of mass transport. This follows the
approach of Roering et al. [2001], who found an exponential
relationship between slope gradient and sediment flux with a
sharp, rapid increase of the latter when a gradient threshold
is approached. In our case, threshold values 6y, (intermediate
between internal friction angle and Roering theoretical
threshold) were selected for each different lithology accord-
ing to the average mechanical characteristics of the terrain
(Table 1). Threshold selection involved several steps. Since
the regolith cover of the area is composed mainly of granular
soils, a first estimate of the threshold angles is based on the
internal friction angle typical of each lithology [see, e.g.,
Bianchi et al., 2001; Focardi and Garzonio, 1983; Canuti et
al., 1982]. Subsequently, the values were modified to include

'Auxiliary materials are available in the HTML. doi:10.1029/
2008 WR007450.

the additional effect of cohesion and vegetation cover
(apparent cohesion), based on a large statistical and back
analysis study of more than 27000 historical landslides in the
Arno River basin [Catani et al., 2005]. Finally, the accuracy
of the thresholds was verified on the basis of detailed analyses
of hillslope profiles by observing, for each geological for-
mation, the local slope angle most frequently associated to
mass movements in the area.
[30] The final expression has the form
h:_Kc'C'n'W717 (6)
where / is soil thickness, K, is a calibration parameter, C is
the curvature-based index, 7 is the relative thickness linked
to the catenary position, and y is the threshold-dependent
contribution of landsliding. This last parameter is equal to
(1 + tand,,) in the pixels with a local slope higher than the
threshold angle and to 1 everywhere else. y accounts only
for the detachment (loss of soil) in the upper slopes, while
downslope accumulation is already explained by curvature.
The three indexes discussed above (C, n and y ') express
(in the form of pure numbers ranging from 0 to 1) the
propensity of a point to accumulate soil cover, while the
constant K., which is calculated for each lithology from
the in situ measurements (Table 2), calibrates the formula
and transforms the pure number to a metric value. We refer
to this model as the Geomorphologically Indexed Soil
Thickness (GIST) model.

4. Model Calibration and Validation

[31] The calibration of K, is fundamental as it summarizes
the effects of the TLU and catenary position for every cell.
All morphometric computations were carried out in a raster-
based GIS environment in which the base DTM had a
horizontal resolution of 10 x 10 m and a vertical accuracy of
about 0.5 m. The DTM was generated from stereo pairs of
low-altitude aerial photographs integrated with point data
from GPS field surveys. The TLU and the catenary sequence
definition were determined from a survey based reclassifi-
cation of detailed 1:5,000 scale geological and geomorpho-
logical maps [Segoni, 2008]. The geological formations were
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Table 2. Measured Soil Depth Parameters for the Main Lithologies®

Geological Formation

Minimum Measured Maximum Measured

Lithology or Lithostratigraphic Unit Depth (cm) Depth (cm)
Flysch and hard rocks Mll, Sil 0 40
Shales Poo, Mla, Cl 0 43
Conglomerates Cc, Mc, Eca 5 60
“Pianalto” paleosol El 21 65
Colluvial and alluvial deposits Ela, E2, b, a3, a4, Alf 30 150

“For an explanation of the abbreviations see Table 1. These values are used for model calibration.

grouped into five units, mainly according to bedrock lithol-
ogy: flysch and hard rocks, shales, conglomerates, Pianalto
(silt loam terrains with paleosols) and a comprehensive unit
including colluvial and alluvial deposits (Figure 1 and
Tables 1 and 2).

[32] During fieldwork, carried out in the spring and
summer of 2004, 217 direct measurements of soil depth
were made from preexisting or newly excavated soil profiles
(see two examples in Figure 3). These measures were
divided in two subsets: the first was used to calibrate the

various indexes and factors constituting the model, the
second was used to perform a validation. The presence of
woods, villages and large private properties prevented soil
depth sampling over a regular network and explains why
some clustering occurs. In any case, a representative
number of measures, sufficient to correctly calibrate and
validate the model, was obtained for every lithology,
catenary unit and TLU. Measured depths for each litho-
logical class are summarized in Table 2. Values range
from O to about 1.5 m and are evidently correlated with

0250 500

1000 1500 2.000

— 1Meters

Figure 3. Location of the soil depth measurements in the Terzona basin.
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Figure 4. DTB maps produced by different soil depth models: (a) elevation-dependent (Z) model,
(b) slope-gradient-dependent (S) model, (c) simplified GIST (sGIST) model, and (d) complete geology-

and geomorphology-dependent (GIST) model.

lithology. Fifty five direct measurements were used to
calibrate each class leading to the definition of a set of K,
values. The same subset of points was used also to define
the p—n trend for each TLU. The remaining 162 surveyed
points were used for model validation and for comparing
the performance of different approaches.

[33] GIST was compared against two other approaches
(proposed by Saulnier et al. [1997]) often used in large-
scale regional analyses. These correlate soil depth to ele-
vation and slope, respectively. The first (here called the
Z model) expresses soil depth solely as a function of local
elevation (z;) and has the form

Zi = Zmin

hi = hmax - (hmax - hmin)a (7)

Zmax — Zmin

while the second (S model) correlates soil depth to the local
slope angle 6

tan 6; — tan Opin Nimin
e L . 8
tan O pnax — tan O, ( hmax) ] ( )

In these equations /; is DTB computed at pixel 7, /,,x and
hin are the maximum and minimum values of DTB
measured in the area, z; and 6, are the local values of ele-
vation and slope, respectively, at pixel i, while z,,.x and z,;,
(or O max and 60,,;,) are the maximum and minimum values of
elevation (or slope) encountered in the test site.

[34] Although the two models rely heavily on geomor-
phological simplifications, they are often used to estimate a
spatially distributed soil depth field when a rapid, easy

hi = hmax 1
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Figure 5. Model performance expressed as scatterplots of observed versus predicted values.

approach is needed in basin-scale modeling [e.g., Salciarini
et al., 2006]. All three models were applied to the Terzona
Creek basin on a cell by cell basis (Figure 4). To further test
the importance of geomorphology in GIST a simplified
version of the model (sGIST), in which the TLUs are not
differentiated on a geomorphological basis, was also applied
(Figure 4c). The main differences between GIST and sGIST
consist of the inverse correlation between curvature and
DTB and in setting 77 = p (soil depth assumed to invariantly
increase downslope) in the latter. The results of all models
were then compared to the 162 direct DTB measurements. A
summary of the error statistics is presented in Table 3 and a
visual comparison between predicted and observed data is
shown in Figure 5.

[35] Errors in the estimation of /4 by the simple topo-
graphic models are substantial, both in terms of maximum
and average absolute errors. The sGIST model produces
slightly better results, with an average absolute error of

about 47 cm. However, when geomorphology is taken into
account (GIST model) the prediction improves markedly.
Maximum absolute error (60 cm) and average absolute error
(11 cm) are satisfactory for most applications requiring soil
depth as an input variable.

5. Results and Model Comparisons

[36] The performance of the different models can be
compared on the basis of error frequency distribution and
the spatial structure of the error field. We propose that
average DTB errors in applications regarding the predictive
modeling of landslides and hydrological processes should
not exceed 0.5 m. The impact of soil depth errors on spatial
predictive models will be explored in detail in section 6.

[37] In the Z model the error distribution (Figure 6a)
shows a bimodal trend with a first peak centered on
acceptable values (average local error of about 15 cm) and a

Table 3. Comparison of Model Performance Against the Soil Depth Values Measured in the Field*

Mean DTB SD of DTB Maximum Positive Error Maximum Negative Error Mean Absolute Error SD of Absolute Error
Model (cm) (cm) (cm) (cm) (cm) (cm)
V4 87.6 26.1 115 -12 54 29.92
S 126.4 15.5 140 -10 94 24.25
sGIST 64.6 30.9 115 =51 47 23.12
GIST 32.7 23.8 60 —40 11 8.54

“Here SD means standard deviation.
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Figure 6. Frequency distribution of residuals for the four models. Residuals are expressed as the differ-
ence between predicted and observed soil thickness. Bin size is 8 cm.

second one, larger in frequency, centered on higher errors
(~70 cm). This behavior points to two different types of
errors, i.e., negative and positive deviations from the
observed local values. Figure 7a shows the spatial distribution
of errors for the Z model. Even though the pattern is to some
extent controlled by the heterogeneous distribution of the
validation points, the direct influence of elevation on the
error structure remains evident. In valleys or at the foot-
slopes soil depth is generally overestimated, while values on
hilltops tend to be underestimated as a result of the lack of
dependence of /4 on hillslope form, position and dominant
processes. Only at the highest elevations in the southern
portion of the basin are predicted and observed DTB values
in agreement. However, in the Terzona basin this is mainly
due to the fact that the higher elevations are incidentally
occupied by scarcely weathered hard rock terrains, which
have very low rates of soil production.

[38] The performance of the S model, which links DTB to
slope gradient, is even less satisfactory. In the error fre-
quency histogram (Figure 6b) a large single maximum is
clearly centered on values of approximately 90 cm, indi-
cating that soil depth is overestimated everywhere within the
test area (Figure 7b). This is especially apparent in the upper

portion of the basin where low gradient hilltops have thin
regolith values. The few instances with relatively small
prediction errors are related to granular soils in flat valleys,
even though the model does not discriminate between the
relatively wide alluvial plains in the lowest part of the basin
and the narrower valleys at intermediate elevations, where
DTB is low.

[39] The sGIST and GIST models have a more consistent
behavior throughout the basin. The sGIST model performs
slightly better than the S and Z models, with a mean absolute
error of 47 cm and an error histogram that approximates a
Gaussian distribution (Figure 6¢). Small errors are quite
homogeneously distributed throughout the basin and are
especially concentrated near hilltops (in areas corresponding
to the convex creep slope and to the seepage slope as per the
classification of Conacher and Dalrymple [1977]) and on
alluvial plains (Figure 7c¢).

[40] Most large errors occur at footslopes, especially in
convex-concave-convex hillslopes in which the base of slope
is only slightly convex. Underestimation of soil thickness
takes place on the “Pianalto” top surface where the absence of
geological information in the model does not allow the dis-
crimination between rocky and soil-mantled hilltops.
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Figure 7. Spatial distribution of residuals (predicted minus observed values of soil thickness) for the
four models. Note that black stars indicate errors of less than £15 cm.

[41] These traits seem to be for the most part absent in the
GIST model, in which differences in land-surface typology
and geomorphology are taken into account explicitly. Model
performance improves markedly as small errors (less than
+15 cm) are evenly distributed throughout the basin and the
standard deviation is lower than in all other cases (Table 3
and Figure 6d). Underestimated DTB values, almost
absent in all other models, are as common as the over-
estimated values. The histogram has a Gaussian distribution
with a mean that is just above zero. The largest under-
estimated values usually occur over conglomerate outcrops in
the upper medium part of hillslope profiles, although several
correct DTB predictions are also present in the same areas.

[42] In general, the spatial distribution of residuals is
homogeneous and the relatively few larger errors (greater
than 15 cm) seem to be correlated to local causes (Figure 7d)
that are not explicitly accounted for in the GIST model but

that can influence soil balance along the hillslope profile,
such as vegetation cover and agricultural practices.

6. Discussion and Hydrogeological Applications

[43] The advantage of having a basin-scale-distributed
DTB map in geological and hydrological applications can
be better understood by coupling the results with spatial or
temporal predictive models for surface processes. Shallow
landslides, one of the most common natural hazards in
central Italy, are ideal for this purpose.

[44] The fundamental role of soil depth in controlling
shallow landsliding has been known for some time. In
particular, several authors have investigated the relative
importance of the different parameters of slope stability
[e.g., Johnson and Sitar, 1990; Wu and Sidle, 1995; Van
Asch et al., 1999; Catani et al., 2005] and have attempted
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Figure 8. Graph of FS (calculated by means of the infinite slope formula of Skempton and Delory
[1957]) versus soil depth for five different soil saturation values. Soil depth is perhaps the most signif-

icant parameter controlling the factor of safety.

to estimate the role played by soil depth in the overall sta-
bility of slopes. Figure 8 easily shows that soil depth is one
of the most significant parameters controlling the factor
of safety (FS). This is especially true for depths of less than
1.5 m, within which small variations produce very rapid
changes in the FS (Figure 8).

[45] The large soil depth errors produced by the Z, S, and
sGIST model can compromise the reliability of slope sta-
bility or rainfall-runoff applications. The reduction in DTB
errors produced by the GIST model should lead to signifi-
cant improvements in applications of this type.

[46] The relative control that soil depth has on process
modeling was assessed by applying a distributed slope sta-
bility model to the Terzona basin. The slope stability model
[Leoni, 2009; F. Catani et al., Real-time forecasting of
landslides using meteorological radar and numerical mod-
eling, submitted to Landslides, 2010] that was used derives
from the classical infinite slope model of Skempton and
Delory [1957] as modified by Iverson [2000], who added
a “hydrologic term” that takes into account a spatially and
time distributed pressure head. This model provides a spatial
estimate of the FS and its evolution through time, and takes
into account the apparent cohesion forces (produced by
suction) in unsaturated soils

oty (c+(y)

y(h t)ywtanyp ©)
~ tanf  ~hsinfcosf

~ehsin@cosf

Model input comprises morphometric data (soil thickness
h and slope gradient 8) and geotechnical parameters (cohesion c,
soil friction angle ¢, soil unit weight ,, water unit weight -,,).
Pressure head y is computed making use of hydraulic
conductivity measures and rainfall intensity through time.
The FS is calculated pixel by pixel at different time steps; FS
values less than one indicate an unstable slope. For further
explanations on equation (9) see Catani et al. (submitted
manuscript, 2010).

[47] As the objective of this part is to assess the utility of
the GIST model for predicting landslide potential, the slope

stability model was run four times using the different DTB
patterns obtained from the four DTB models. Soil slips can
develop at any depth between the topographic surface and
the soil — bedrock interface. The maximum slip surface
depth is equal to the predicted DTB value. All other para-
meters in the equation are held constant: any differences in
the spatial distribution of FS depend only on the DTB pat-
terns generated by the four soil depth models. Table 1 lists
the geotechnical parameters used in the slope stability
analysis of the lithologies in the Terzona basin (7, is held
constant at 20 KNm®). The values are consistent with other
works carried out on sites in the area characterized by similar
lithologies [Bianchi et al., 2001; Focardi and Garzonio,
1983; Canuti et al., 1982]. Hydraulic conductivity was
measured in situ for every lithology (Table 1) using a con-
stant head permeameter [Amoozegar, 1989]. The slope angle
was obtained from the DTM. A rainfall event recorded in
November 2008 by two raingauges a few kilometers from
the Terzona basin was used. The event has a ten year return
period and was characterized by a cumulative rainfall of
87 mm in 24 h with a peak intensity of 31 mm/h.

[48] Figure 9 illustrates the factor of safety produced by
the slope stability model for the four soil thicknesses. The
basin is partitioned into landslide hazard classes according
to FS value: high (FS < 1), moderate (1 > FS < 1.3), and low
(FS > 1.3).

[49] A recently updated landslide inventory in the area
indicates that the rainfall event used in the simulation did
not trigger any shallow landslide in the Terzona basin.
Validation can therefore only be performed by quantifying
the number of false positives (i.e., wrong predictions) pro-
duced by the slope stability model in the prediction of
shallow slope failures in the basin. The assumption is that a
correct soil depth will produce a smaller number of false
positives. Table 4 lists the results of the slope stability
modeling. The run that uses the GIST soil depth produces
by far the best results as only 2% of the basin is classified
within the highest-hazard class and 98% is in the class
characterized as stable.
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Figure 9. Factor of safety maps produced using the DTB values generated by the different soil depth

models.

[s0] The slope- (S) and elevation-based (Z) models, on
the other hand, both place approx. 40% of the basin within
the high-hazard class and only 55 and 60%, respectively, are
classified as stable. Another simulation, performed consid-
ering a smaller rainfall event (44 mm in 3 hours following a
dry spell), produced similar results, indicating that the use of
soil depths from the S and Z models cause significant
overestimation of the landslide hazard; even small amounts
of precipitation are sufficient to destabilize the entire area of
the basin occupied by shales or pliocenic terrains.

[51] The sGIST derived soil depth produces intermediate
results, with 3.5% of the basin classified as high hazard and
64.5% ranked as stable. In this case, the spatial distribution
of FS suggests two main considerations. First, the inclusion
of three morphometric attributes produces a less unreliable
FS distribution. For example, the stability of the pliocenic
terrains increases significantly compared to the S and Z
based slope stability computations, in good agreement with

the local morphology. Conversely, the lack of geological
input in sGIST is evident in the erroneous delineation of
high-hazard areas in the shales (see Figure 1).

7. Conclusions

[52] GIST is a newly developed empirical model for the
prediction of distributed soil thickness at basin scale. Soil

Table 4. Landslide Hazard Classification®

Class 1 Class 2 Class 3
(High Hazard, (Low Hazard, (Stable Areas,
Model FS<1) 1 <FS<1,3) FS > 1.3)
S 40.1% 4.8% 55.1%
Z 40.0% 0.1% 59.9%
sGIST 3.5% 32.1% 64.5%
GIST 1.9% 0.4% 97.7%

“Percentages express the portion of the basin within each hazard class.
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depth patterns produced by the model provide significant
benefits for other process based applications such as slope
stability models. A key difference with other empirical
models is the use of three morphometric attributes (curva-
ture, position along the hillslope profile and slope gradient).
The combined use of such attributes noticeably improves
DTB estimation. However, the primary difference with
traditional approaches is that geomorphology and lithology
are also accounted for. This produces a further, significant
improvement in model performance. The sGIST model,
which lacks the geologically driven parameterization of the
variables, generates larger DTB errors than the full GIST
model. The errors in this version have a spatial distribution
that is linked to both the local geomorphology (footslopes of
convex-concave-convex slopes) and to stratigraphy (local
errors linked to the “Pianalto” surface). The main limitation
of the simplified version is, in fact, the failure to discrimi-
nate between areas in which the topographic indexes are
similar but DTB varies for stratigraphic or geomorphologi-
cal reasons.

[53] The comparative slope stability analysis carried out
in the Terzona basin highlighted that DTB values strongly
influence the spatial distribution of the Factor of Safety. A
validation based on the detection of false positives demon-
strates that by far the best results are obtained by coupling
the GIST-derived DTB values with the infinite slope sta-
bility model to generate the FS map. Further understanding
of the impact of the GIST model on the prediction of
shallow landslides can be gained from its application in
areas where a severe rainfall event triggered numerous
shallow landslides [Segoni et al., 2009; Catani et al., sub-
mitted manuscript, 2009].

[s4] DTB maps produced by GIST could also prove
valuable for generating spatially variable soil transmissivity
values in hydrological models. This type of application
appears especially promising for rainfall-runoff predictions
in small to medium size, high-relief catchments, where
subsurface flow is prominent and small-scale soil depth
variability can strongly influence water transfer behavior.

[55] Acknowledgments. The authors gratefully acknowledge Scott
Tyler and three anonymous referees for careful revision of the manuscript
and their important contribution to the final quality of the paper through
their comments and suggestions.
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